FUND OF FUNDS ANALYSIS TOOL

Systems and techniques are disclosed to analyze fund of funds investments. The system is configured to provide at least one objective analytic that indicates the level of risk associated with a fund of funds investment strategy. The system provides both a quantitative and qualitative risk measurement value using actual portfolio holdings data of underlying funds that can be used to compare multi-faceted investment portfolios.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
CROSS-REFERENCE TO RELATED APPLICATON

The present application claims benefit of priority to U.S. Non-provisional application Ser. No. 12/765,365 filed Apr. 22, 2010, entitled Fund of Funds Analysis Tool, the entirety of which is hereby incorporated herein by reference.

TECHNICAL FIELD

This disclosure relates to financial risk measurement, and more particularly to systems and methods for computing risk measures associated with fund of funds investments.

BACKGROUND

Fund of funds (FoF) investments have become increasingly popular over the years. Companies and organizations that assume financial responsibility for individuals and groups, such as plan sponsors and advisers, use FoF investments to diversify risk. FoF investments hold a portfolio of other investment funds rather than investing directly in stocks, bonds, or other securities. One type of FoF investment that has garnered increased interest by plan sponsors, advisors, as well as individuals, is a target date fund (TDF). A TDF is a type of mutual fund structured by an entity (e.g., investment firm, mutual fund company, insurance company, and the like.) that automatically rebalances its portfolio to a more conservative asset allocation as a specific date target approaches (e.g., a retirement date).

Entities typically create TDFs in a series, each TDF of the series having a different target date and portfolio mix selected from other funds provided by the entity. In addition, each TDF of the series shares a common glide path, which is a formula that describes how portfolio allocations for each TDF change over time.

While TDFs can improve overall investment and retirement planning, there is an increased need among plan sponsors, advisors, and investors for independent analysis and ratings of TDF series. As each TDF of a series shares the same glide path, there is a need to objectively quantify the risk associated with performance of these funds over the glide path to ensure consistency with investment objectives.

Further, there is a need to understand the risk levels of a series of target date funds on a relative basis, as the glide paths of TDFs having same target dates can vary greatly between investment firms. For example, some entities assume that participants desire a high degree of safety and liquidity, and therefore include more fixed income securities than other asset classes in their TDFs, while other entities assume that participants will hold onto the TDFs, and therefore include more equity securities in their TDFs, reflecting more potential for both risk and reward along a longer time horizon.

Accordingly, there is a need for improved systems and techniques for analyzing and comparing fund of funds investments.

SUMMARY

Systems and techniques are disclosed to analyze fund of funds investments. The system is configured to provide at least one objective analytic that indicates the level of risk associated with a fund of funds investment strategy. The system provides both a quantitative and qualitative risk measurement value using actual portfolio holdings data of underlying funds that can be used to compare multi-faceted investment portfolios.

Various aspects of the system relate to computing risk measurement values for an entity based on return volatility of fund assets.

For example, according to one aspect, a computer-implemented method includes identifying a first fund, the first fund having a glide path and a first volatility of return value, identifying a second fund, the second fund having the glide path and a second volatility of return value, the first fund and the second fund being associated with an entity, and computing a risk score associated with the entity based upon the first volatility of return value and the second volatility of return value. The method also includes generating a signal associated with the risk score and transmitting the signal.

In one implementation, the step of computing the risk score includes weighting the first volatility of return value by a corresponding expected account balance for the first fund, weighting the second volatility of return value by a corresponding expected account balance for the second fund, and summing the weighted first and second volatility of return values. In some implementations, the first and the second funds are target date funds, and each of the target date funds includes a plurality of mutual funds. The method also may include displaying graphically a plurality of computed risk scores associated with different entities on a display device.

In another implementation, the method includes computing the first and the second volatility of return values based on historical rate of return values and expected rate of return values that are associated with asset classifications corresponding to assets underlying the glide path. The method can also include generating the historical rate of return values by computing a standard deviation of asset classification returns for each of the asset classifications over a time interval.

The method can also include averaging the computed standard deviation of asset classification returns for each asset classification over the time interval, averaging asset classification returns for each asset classification over the time interval, and then computing a volatility premium and volatility free rate for each of the first and second funds using the averaged asset classification returns, averaged standard deviation of asset classification returns, and a data regression technique. Computing the expected rate of return values for each asset classification can include multiplying the computed volatility premium by the averaged standard deviation of asset classification returns and summing the volatility free rate to the multiplied amount.

In yet another implementation, the method includes calculating a weighted average expected return along the time interval of the glide path by multiplying the calculated expected rate of return values of each asset classification by a proportion of the asset classification allocated in each fund over the time interval, and then summing the multiplied amounts.

A system, as well as articles that include a machine-readable medium storing machine-readable instructions for implementing the various techniques, are disclosed. Details of various implementations are discussed in greater detail below.

In some implementations, one or more of the following advantages may be present. For example, the system can provide objective and independent analysis of a series of fund of funds investments. As each series of fund of funds is associated with a risk score, the system can provide a comparison of risk associated with series of fund of funds provided by different entities. This can be particularly advantageous when plan sponsors and/or advisors wish to ensure that risks undertaken by entities are consistent with plan and/or client demographics.

Another advantage relates to scalability. For example, the system can be utilized to analyze not only target date funds, but a wide array of fund of funds investments that may be suitable to investors.

A further benefit of the system relates to accuracy: For example, the system relies on the long-term performance of asset classifications underlying funds, not short or mid-term performance of asset classifications, thereby minimizing the effect of asset classification return anomalies on computed risk scores.

Additional features and advantages will be readily apparent from the following detailed description, the accompanying drawings and the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic of an exemplary computer-based fund of funds analysis system.

FIG. 2 illustrates an exemplary method for calculating a risk score.

FIG. 3 illustrates an exemplary glide path shared for a series of target date funds.

FIGS. 4A-4B illustrate asset allocations for two target date funds shown in FIG. 3.

FIG. 5 illustrates exemplary historical returns for asset classifications.

FIG. 6 illustrates exemplary asset classification returns and risk levels.

FIG. 7 illustrates an exemplary calculation of expected returns for asset classifications.

FIGS. 8A-8B illustrate weighted average portfolio expected returns.

FIG. 9 illustrates an exemplary account balance over a time interval.

FIG. 10 illustrates a computed risk score for an example entity.

FIG. 11 illustrates exemplary identifiers for association with a computed risk score.

FIGS. 12A-12B illustrate rating scores for a plurality of entities.

Like reference symbols in the various drawings indicate like elements.

DETAILED DESCRIPTION

FIG. 1 shows a computer-based system for analyzing fund of funds investments. The system 10 is configured to calculate a risk level for a series of target date funds (TDFs) associated with an entity in response to a request. As used herein, the phrase “series of target date funds” and “series of TDFs” refer to a plurality of target date funds that share a common glide path. Although the example discussed below relates to TDFs, it will be appreciated by one skilled in the art that the systems and techniques disclosed herein can be utilized across various types of fund of funds investments. Example fund of funds (FoF) investments that can be analyzed with the system 10 include, but are not limited to, mutual fund FoF, hedge fund FoF, private equity FoF, investment trust FoF, and combinations thereof.

As shown in FIG. 1, in one implementation, the system 10 is configured to include an access device 12 that is in communication with a server 14 over a network 16. The access device 12 can include a personal computer, laptop computer, or other type of electronic device, such as a cellular phone or Personal Digital Assistant (PDA). In one embodiment, for example, the access device 12 is coupled to I/O devices (not shown) that include a keyboard in combination with a pointing device such as a mouse for sending web page requests to the server 14. Preferably, memory of the access device 12 is configured to include a browser 12A that is used to request and receive information from the server 14. Although only one access device 12 is shown in FIG. 1, the system can support multiple access devices.

The network 16 can include various devices such as routers, server, and switching elements connected in an Intranet, Extranet or Internet configuration. In some implementations, the network 16 uses wired communications to transfer information between the access device 12 and the server 14. In another embodiment, the network 16 employs wireless communication protocols. In yet other embodiments, the network 16 employs a combination of wired and wireless technologies.

As shown in FIG. 1, in one implementation, the server device 14 preferably includes a processor 18, such as a central processing unit (‘CPU’), random access memory (‘RAM’) 20, input-output devices 22, such as a display device (not shown) and keyboard (not shown), and non-volatile memory 24, all of which are interconnected via a common bus 26 and controlled by the processor 18. In one implementation, as shown in the FIG. 1 example, the non-volatile memory 24 is configured to include a web server 28 for processing requests from the access device.

The web server 28 is configured to send requested web pages to the browser 12A of the access device 12 in response to a web page request. The web server 28 communicates with the web browser 12A using one or more communication protocols, such as HTTP (HyperText Transfer Protocol). In one embodiment, the web server 28 is configured to include the Java 2 Platform, Enterprise Edition (‘J2EE’) for providing a plurality of screens included in a user interface displayed on the browser 12A.

The web server 28 provides a run-time environment that includes software modules for computing risk levels associated with fund of funds (FoF) investments. As shown in FIG. 1, in one implementation, the run-time environment includes a classification module 30 to categorize assets underlying each fund of the series of TDFs, a risk module 32 to compute a risk score for one or more series of TDFs, a participant module 34 to compute expected account balances for each fund of the series of TDFs, a portfolio module 36 to compute a portfolio expected return, a rating module 38 to associate computed risk scores with qualitative identifiers, and a display module 40 to display computed risk scores and qualitative identifiers associated with an entity. Details of the software modules 30, 32, 34, 36, 38, 40 configured in the run-time environment are discussed in further detail below.

In one implementation, as shown in FIG. 1, a data store 42 is provided that is utilized by software modules 30, 32, 34, 36, 38, 40 to access and store information relating to individual TDFs, as well as the series of TDFs. In one implementation, the data store 44 is a relational database. In another implementation, the data store 42 is a directory server, such as a Lightweight Directory Access Protocol (‘LDAP’) server. In yet other implementations, the data store 42 is a configured area in the non-volatile memory 24 of the device server 14. Although the data store 42 shown in FIG. 1 is connected to the network 16, it will be appreciated by one skilled in the art that the data store 42 can be distributed across various servers and be accessible to the server 14 over the network 16, or alternatively, coupled directly to the server 14, or be configured in an area of non-volatile memory 24 of the server 14.

It should be noted that the system 10 shown in FIG. 1 is one implementation of the disclosure. Other system implementations of the disclosure may include additional structures that are not shown, such as secondary storage and additional computational devices. In addition, various other implementations of the disclosure include fewer structures than those shown in FIG. 1. For example, in one implementation, the disclosure is implemented on a single computing device in a non-networked standalone configuration. Data input is communicated to the computing device via an input device, such as a keyboard and/or mouse. Data output of the system is communicated from the computing device to a display device, such as a computer monitor.

Turning now to FIG. 2, a method of calculating a risk score associated with an entity is disclosed. In one implementation, for example, steps 50, 52, 56, 58, 60 and 64-69 of FIG. 2 are executed by the risk module 32 of FIG. 1. Step 54 of the method is executed by the classification module 30 of FIG. 1, and step 62 is executed by the portfolio module 36 of FIG. 1. Output from the participant module 34 of FIG. 1 is used by the risk module in step 64, and the signal generated by the risk module 32 in step 69 optionally includes output from the rating module 38 shown in FIG. 1.

As shown in FIG. 2, in one implementation, the risk module 32 identifies a series of TDFs provided by an entity in response to a request 50. As used herein, the term ‘entity’ refers to any investment firm, mutual fund company, insurance company, or the like, that provides a fund of funds (FoF) investment. In one implementation, the fund of funds investment is a target date fund.

Various techniques may be employed by the system 10 to receive requests. For example, in one implementation, the request is sent from the browser 12A and identifies the entity that provides the FoF investment. In the non-networked stand-alone configuration described previously, the request is received from one of the input/output devices 22 included in the server device 14 and identifies the entity that provides the FoF investment. Accordingly, both the network 16 and the access device 12 shown in FIG. 1 are not required structures in the non-networked stand-alone implementation. In yet other implementations, the request includes one or more entities that provide FoF investments.

Next, as shown in FIG. 2, the risk module 32 determines a glide path for the series of funds 52. As described previously, each TDF of a series of TDFs shares a common glide path, which describes a portfolio allocation mix for each TDF of the series of TDFs at various time intervals. In one implementation, the risk module 32 accesses the glide path associated with a series of TDFs from the data store 42.

In appreciation of the present invention, an example glide path 70 for a series of TDFs is shown in connection with FIG. 3. Each TDF 70A-F of the series of TDFs utilizes the glide path 70 to determine the percentage of underlying funds (e.g., equity, fixed income, etc.) to include in each TDF portfolio. Notably, as time proceeds forward, the portfolio allocation mix of a first TDF having a later target date approaches that of a TDF in the same series having an earlier target date. For example, in the example shown in FIG. 3, the portfolio allocation mix of the 2040 TDF 70B will approximate the portfolio allocation mix of the 2015 TDF 70G over time.

Turning now to FIG. 4A, an example portfolio allocation mix for the 2040 TDF 70B at month one-hundred twenty-two (122) is illustrated. As shown in the FIG. 4A example, the glide path 70 defines that the 2040 TDF 70B includes seven (7) different underlying funds 74 each weighted separately based on a point along the glide path 70. For example, as shown in the FIG. 4A, at month one-hundred twenty-two (122), the 2045 TDF 70B portfolio includes a ‘Family 1 Large Capitalization fund’ 74A that is approximately thirty percent (30%) 74C of the total portfolio allocation, and a ‘Family 1 Government Bond Fund’ 74B is approximately two percent (2%) 74D of the total portfolio allocation.

Referring now to FIG. 4B, an example portfolio allocation mix for the 2015 TDF 70G is illustrated. As shown in the FIG. 4B example, a larger proportion of the 2015 TDF 70G portfolio 74 is weighted in fixed income securities, rather than equity-based securities. For example, as shown in FIG. 4B, at month three hundred and sixty eight (368), the ‘Family 1 Large Capitalization fund’ 74A is approximately fifteen percent (15%) 74C of the total portfolio funds 74 and the ‘Family 1 Government Bond Fund’ 74B is approximately fifteen percent (15%) 74D of the total portfolio 74.

Advantageously, in several implementations, the risk module 40 provides glide path as well as underlying funds information, such as fund weighting information and asset classification information, to a user for further analysis of TDF dynamics.

Referring back to FIG. 2, once the risk module 32 determines the glide path for the series, the classification module 30 categorizes the underlying funds of each of the series of TDFs 54. The classification module 30 categorizes each of the underlying funds into one of several asset classifications based on characteristics of the assets comprising each underlying fund. In one implementation, for example, the classification module 30 queries the data store 42 for asset information (e.g., holdings data) of each underlying fund and then associates characteristics of the holdings data with one of a plurality of pre-defined asset classification types.

Next, once the classification module 30 determines asset classifications, the risk module 32 calculates a historical risk profile for each of the identified asset classifications 56. In some implementations, for example, the risk module 32 generates historical rate of return values for each identified classification of each TDF in the series of TDFs. For example, in one implementation, as shown in FIG. 5, the risk module 32 generates historical rate of return values by computing a standard deviation of monthly asset classification returns 82 generated over a twenty-year (20) time interval 84 for identified asset classifications 80.

Once the risk module 32 determines the historical returns for each of the asset classifications over the time interval, the risk module 32 estimates the historical relationship between risk and return for each asset classification included in the series 56. In one implementation, the risk module 32 averages the monthly returns 88 and standard deviation of monthly returns 86, from FIG. 6, for each of the asset classifications, and then determines the relationship between the averages.

For example, in some implementations, turning now to FIG. 6, the risk module 32 determines the relationship between average returns and standard deviation of returns by regressing the averaged monthly asset classification returns 88 on the averaged standard deviation of monthly returns 86 using a regression technique. In one implementation, for example, the risk module 32 uses a linear regression technique to determine the relationship. In one implementation, as shown in FIG. 6, the risk module 32 depicts the risk and reward relationship in the form of a regression line 82, which is displayed graphically to a user of the system 10. For example, in one implementation, the regression line 82 is displayed on the browser 12A of the access device 12 shown in FIG. 1. In a non-networked stand-alone configuration, the regression line 82 is displayed on a display device of the stand-alone computing device.

Referring back to FIG. 2, based on the historical relationship of risk and return, the risk module 32 next computes an expected return for each asset classification 60. As shown in FIG. 7, in one implementation, for example, the risk module 32 first computes a volatility premium 90 and a volatility free rate 92 for the series of TDFs. As used herein the phrase “volatility premium” 90 refers to the amount of additional return expected for each additional unit of risk undertaken. The phrase “volatility free rate” 92 refers to a level of return based on zero (0) volatility. In one implementation, for example, the risk module 32 computes the volatility premium 90 from the slope of the regression line 84 and computes the volatility free rate 92 from an intercept of the regression line 84.

In one implementation, the risk module 32 computes the slope and intercept of the regression line 84 using the following formulas, respectively:


Slope of regression line(b)=(ΣXY−(ΣXΣY)/N)/(ΣX2−(ΣX)2/N)


Intercept of regression line(a)=(ΣY−bX))/N)

Where:

b=The slope of the regression line

a=The intercept point of the regression line and the y axis.

N=Number of selected investment classifications

X=Standard Deviation of Monthly Returns for investment classifications

Y=Average monthly historical returns for investment classifications

ΣXY=Sum of the product of Standard Deviations and Average Monthly Returns

ΣX=Sum of Standard Deviations

ΣY=Sum of Average Monthly Returns

ΣX2=Sum of squared Standard Deviations

Once the volatility premium 90 and volatility free rate 92 are computed for the series of TDFs, the risk module 32 computes an expected return 91 for each asset classification by multiplying the computed volatility premium 90 for the series of TDFs by the averaged standard deviation of return for each asset classification, and then sums the volatility free rate 92 to the multiplied amount.

An example of computing a monthly expected asset classification return for one of a plurality of asset classifications is shown in connection with FIG. 7. In one implementation, for example, the risk module 32 accesses averaged standard deviation of return values 91 for each asset classification from the data store 42. As shown in the FIG. 7 example, the ‘International Multi-Cap Core’ classification has an averaged standard deviation of return of ‘4.83’. The risk module 32 then computes the monthly expected return 96 for the ‘International Multi-Cap Core’ classification by multiplying the averaged standard deviation of return 91 value ‘4.83’ by the computed volatility premium value ‘0.084’ for the series 90. The risk module 32 then adds the computed volatility free rate 92 value of ‘0.363’ to that sum, resulting in a computed expected monthly return 96 of ‘0.768’ for the ‘International Multi-Cap Core’ classification. In some implementations, as shown in the FIG. 7 example, the risk module 32 is also configured to compute expected annualized returns 98 based on the computed expected monthly returns 96 for each asset classification.

Referring back to FIG. 2, once the risk module 32 computes expected returns for the asset classifications, the portfolio module 36 computes a total portfolio expected return for each time interval along the guide path using the computed expected return classifications 62. In one implementation, the portfolio module 36 applies the computed expected returns generated from the risk module 32 to each interval of the glide path, and then calculates an expected total portfolio return for each time interval using asset classification weights defined by the glide path.

For example, referring now to FIG. 8A, an example expected portfolio return for a series of funds provided by an entity at a first time-interval is shown. As explained previously, along each point of a glide path a particular asset allocation mix is defined for a series of TDFs. Accordingly, as shown in the FIG. 8A example, at month one-hundred and twenty-two (122) 114, the glide path defines the asset allocation mix in terms of weights 104. As explained previously, in one implementation for each underlying fund of a TDF, the classification module 30 identified an asset classification 102 and the risk module 32 computed both expected monthly returns 106 and expected annualized returns 108 for each asset classification.

The portfolio module 36 uses the weights 104 and computed expected returns 106, 108 to compute weighted expected portfolio returns 109, which comprises a weighted expected monthly return 110 and a weighted expected annual return 112, along the guide path. For example, as shown in the FIG. 8A example, in one implementation, at month one-hundred and twenty two (122), the portfolio module 36 computes the weighted expected monthly return 110 for the series of TDFs by multiplying the weight 104 associated with each asset classification at month (122) by the corresponding computed expected monthly return 106 for the asset classification at month (122) and then sums these products. Using a similar technique, the portfolio module 36 computes the weighted expected annualized return 112 at month (122) for the series of funds by multiplying the weight 104 associated with each asset classification at month (122) by the corresponding computed expected annualized return 108 for the asset classification at month (122) and then sums these products. FIG. 8B illustrates the same techniques executed by the portfolio module 36 to compute a total portfolio expected return at month three-hundred and sixty-eight (368) for the series of funds.

Referring back to FIG. 2, once the portfolio module 36 computes the total portfolio expected returns, the risk module 32 applies the total portfolio expected returns to estimated account balances along the guide path 64. In one implementation, the risk module 32 weights the total portfolio expected returns by estimated account balances for each fund along the glide path. Advantageously, by weighting fund expected returns by estimated account balances, the contribution of returns and actual contributions to account balances over time is obtained.

An example of factors affecting an estimated fund account balance 120 over time is shown in FIG. 9. As shown in the FIG. 9 example, the estimated fund account balance 120 is based at least in part on the amount of contribution 122 provided to the fund and the return of assets 124 underlying the fund. Typically, for a TDF, the amount of contribution 122 provides a much larger percentage of the estimated fund account balance 120 the earlier the fund is from the target date. As the target date approaches, the amount of contributions 122 provided to the fund typically contributes a lesser percentage of total account balance and the return of assets 124 underlying the fund provide a greater percentage of the estimated fund account balance 120.

The participant module 34 of the system 10 determines the amount of contributions 122 provided to the fund over time based on expected contributions to the fund. For example, in one implementation, the participant module 34 bases the amount of contributions 122 on at least one of a contributor salary, a contributor savings rate, a contributor salary increase(s), and/or a contribution schedule for contributors. The contributor salary, contributor salary increase(s), contributor savings rate, and/or contribution schedule can be dynamically defined by a user of the system and/or be included in the request. Alternatively, the contributor salary, contributor salary increase(s), contributor savings rate, and/or contribution schedule are predefined in the system 10. As used herein the term ‘contributor’ refers to any company, partnership, sole proprietor, or individual that adds value to the fund.

Referring back to FIG. 2, once estimated account balances are applied to total portfolio expected returns, in one implementation, the risk module 32 computes classification return correlations and volatility of return values for each of the funds comprising the series of funds 66. In one implementation, for example, the risk module 32 computes historical correlations between asset classifications over a ten (10) year period and then computes an expected portfolio standard deviation for each of the finds in the target date series. Each of the computed portfolio standard deviations represents a volatility of return value for each fund in the series.

Next, the risk module 32 computes a risk score for the entity by weighting the volatility of return values for each of the funds of the series of funds by estimated account balances of each fund along the guide path, and then summing the weighted volatilities 68. The risk score provides an indication of how aggressive or conservative the investment style of an entity is. An example risk score computation is illustrated in FIG. 10.

Turning now to the FIG. 10, a plurality of TDFs 132A-132I of a series of TDFs are shown with associated volatility of return values 134 and account balances 136 at a particular point in time. In one implementation, the risk module 132 computes a weighting 138 for each of the funds in the series by dividing the current account balance 136 of each fund by the estimated account balance corresponding to each fund. The risk module 32 then multiples each computed account balance weight 138 by a corresponding volatility of return 134 value (e.g., standard deviation) for each fund, and then sums the weighted volatility of return values for each fund in the series to compute a risk score 140 for the entity.

Once the risk module 32 computes the risk score, the rating module 38 associates the computed risk score with one of a plurality of qualitative identifiers describing an investment style for the entity. In one implementation, for example, the rating module 38 compares the computed risk score to a plurality of pre-defined risk score range values associated with the identifiers, and then determines which of the identifiers to associate with the computed risk score based on the comparison.

For example, referring now to FIG. 11, an example of a plurality of TDF ratings 142 and pre-defined risk score range values 144 are shown. As shown in the FIG. 11 example, in one implementation, the plurality of TDF ratings 142 include identifiers entitled “Aggressive” 142A, “Moderately Aggressive” 142B, “Moderate” 142C, “Moderately Conservative” 142D, and “Conservative” 142E, each have a corresponding risk score range value 144A-E, respectively. The ratings module 38 compares the computed risk score to each of the risk score range values 144A-E and then associates one of the plurality of identifiers with the computed risk score based on the comparison.

Referring back to FIG. 2, once the risk score is computed, the risk module 32 generates and transmits a signal associated with the risk score in response to the request 69. In one implementation, the transmitted signal includes the computed risk score and corresponding qualitative identifier which are displayed to a user of the system 10 by the display module 40. In some implementations, the signal includes a plurality of computed risk scores and corresponding qualitative identifiers for several different entities.

The display module 40 of the web server 28 may implement various technologies to display contents of the signal depending on system 10 configuration. For example, in one implementation, the display module 40 utilizes eXtensible Markup Language (XML) to display risk scores associated with different entities on the browser 12A of the access device 12. In another implementation, the display module 40 is formed from one or more enterprise java beans (EJBs) that execute and graphically display entity names in an order corresponding to computed risk scores for each entity. For example, as shown in FIG. 12A, in one implementation, the display module 40 plots each entity name 150A-150H on a risk/return scale 152 in an order corresponding to each entity's computed risk score. The display module 40 then displays the plot 150 to a user of the system 10 for comparison purposes. In some implementations, as shown in FIG. 12B, the display module 40 displays one or more risk scores 164 for entities 162 and corresponding qualitative identifiers 166 in a tabular text format 160 on a display device of the server 14. In yet other implementations, the display module 40 displays both the plot of entity names 152 and the tabular text format 160 on a display device of the system 10.

Various features of the system may be implemented in hardware, software, or a combination of hardware and software. For example, some features of the system may be implemented in one or more computer programs executing on programmable computers. Each program may be implemented in a high-level procedural or object-oriented programming language to communicate with a computer system or other machine. Furthermore, each such computer program may be stored on a storage medium such as read-only-memory (ROM) readable by a general or special purpose programmable computer or processor, for configuring and operating the computer to perform the functions described above.

Claims

1. A computer-implemented method comprising:

receiving, by a central server, an electronic signal representing a request generated via a user interface operating on a remote computing device connected to the central server over a communications network, the request relating to an entity associated with a first series of funds comprising a first fund and a second fund both associated with the entity;
identifying, by the central server, a set of glide path data and a set of volatility of return data associated with the first and second funds;
identifying, by a classification module executed on the central server, a set of asset classifications associated with one or more discrete assets comprising one or more funds from the first series of finds, each one of the set of asset classifications having a database record. comprising a set of associated asset characteristics;
determining, by a risk module executed on the central server, a historical risk profile for each of the identified set of asset classifications, each historical risk profile including historical rate of return data determined based upon a standard deviation of asset classification return values;
categorizing, by the classification module, the first and second funds into one of a set of asset classifications based on correlation of the first and second funds with sets of asset characteristics; and
transmitting a signal representing data associated with a historical risk profile for display via a user interface presented on the remote computing device.

2. The method of claim 1, wherein the step of determining a historical risk profile comprises: weighting a first volatility of return value by a corresponding expected account balance associated with the first fund; weighting a second volatility of return value by a corresponding expected account balance associated with the second fund; and summing the weighted first and second volatility of return values.

3. The method of claim 1, further comprising computing the set of volatility of return data based at least in part on historical rate of return values and expected rate of return values associated with asset classifications corresponding to assets underlying a glide path.

4. The method of claim 1, further comprising: averaging a computed standard deviation of asset classification returns for each asset classification over a time interval; averaging asset classification returns for each asset classification over a time interval; and computing a volatility premium and volatility free rate for each of the first and second funds using the averaged asset classification returns, averaged standard deviation of asset classification returns, and a data regression technique.

5. The method of claim 4, further comprising calculating a weighted average expected return along the time interval of the glide path by multiplying the calculated expected rate of return values of each asset classification by a proportion of the asset classification allocated in each fund over the time interval; and summing the multiplied amounts.

6. The method of claim 1, further comprising displaying a plurality of computed risk scores associated with different entities on a display device graphically.

7. A system comprising:

a server including a processor and memory storing instructions that, in response to receiving a request for access to a service, cause the processor to: receive, by the server, an electronic signal representing a request generated via a user interface operating on a remote computing device connected to the server over a communications network, the request relating to an entity associated with a first series of funds comprising a first fund and a second fund both associated with the entity; identify, by the server, a set of glide path data and a set of volatility of return data associated with the first and second funds; identify, by a classification module executed on the server, a set of asset classifications associated with one or more discrete assets comprising one or more funds from the first series of funds, each one of the set of asset classifications having a database record comprising a set of associated asset characteristics; determine, by a risk module executed on the server, a historical risk profile for each of the identified set of asset classifications, each historical risk profile including historical rate of return data determined based upon a standard deviation of asset classification return values; categorize, by the classification module, the first and second funds into one of a set of asset classifications based on correlation of the first and second funds with sets of asset characteristics; and transmit a signal representing data associated with a historical risk profile for display via a user interface presented on the remote computing device.

8. The system of claim 7 wherein the memory stores instructions that, in response to receiving the request, cause the processor to: weight a first volatility of return value by a corresponding expected account balance associated with the first fund; weight a second volatility of return value by a corresponding expected account balance associated with the second fund; and sum the weighted first and second volatility of return values.

9. The system of claim 7 wherein the memory stores instructions that, in response to receiving the request, cause the processor to compute first and the second volatility of return values based on historical rate of return values and expected rate of return values associated with asset classifications corresponding to assets underlying a glide path.

10. The system of claim 7 wherein the memory stores instructions that, in response to receiving the request, cause the processor to generate a historical rate of return value by computing a standard deviation of asset classification returns for each of the asset classifications over a time interval.

11. The system of claim 7 wherein the memory stores instructions that, in response to receiving the request, cause the processor to: average a computed standard deviation of asset classification returns for each asset classification over the time interval; average asset classification returns for each asset classification over the time interval; and compute a volatility premium and volatility free rate for each of the first and second funds using the averaged asset classification returns, averaged standard deviation of asset classification returns, and a data regression technique.

12. The system of claim 7 wherein the memory stores instructions that, in response to receiving the request, cause the processor to: multiply a set of calculated expected rate of return values of each asset classification by a proportion of the asset classification allocated in each fund over the time interval; and sum the multiplied amounts to compute a weighted average expected return for each time interval along a glide path.

13. The system of claim 7 wherein the memory stores instructions that, in response to receiving the request, cause the processor to classify assets underlying a glide path to determine asset classifications.

14. The system of claim 7 wherein the memory stores instructions that, in response to receiving the request, cause the processor to display a plurality of computed risk scores associated with different entities on the display device graphically.

15. The system of claim 7 further comprising a data store adapted to store asset information associated with one or more discrete assets comprising one or more funds from the first series of funds; and wherein the classification module is adapted to query the data store for asset information and to associate characteristics of the asset information with one of a plurality of pre-defined asset classification types.

16. An article comprising a machine-readable medium storing machine-readable instructions that, when executed by a server, cause the server to:

receive an electronic signal representing a request generated via a user interface operating on a remote computing device connected to the server over a communications network, the request relating to an entity associated with a first series of funds comprising a first find and a second fund both associated with the entity;
identify a set of glide path data and a set of volatility of return data associated with the first and second funds;
identify, by a classification module executed on the server, a set of asset classifications associated with one or more discrete assets comprising one or more funds from the first series of funds, each one of the set of asset classifications having a database record comprising a set of associated asset characteristics;
determine, by a risk module executed on the server, a historical risk profile for each of the identified set of asset classifications, each historical risk profile including historical rate of return data determined based upon a standard deviation of asset classification return values;
categorize, by the classification module, the first and second funds into one of a set of asset classifications based on correlation of the first and second funds with sets of asset characteristics, and
transmit a signal representing data associated with a historical risk profile for display via a user interface presented on the remote computing device.
Patent History
Publication number: 20200219195
Type: Application
Filed: Feb 3, 2020
Publication Date: Jul 9, 2020
Applicant: Refinitiv US Organization LLC (New York, NY)
Inventors: Jonathan Kreider (Broomfield, CO), Peter R. Ormsbee (Centennial, CO)
Application Number: 16/780,860
Classifications
International Classification: G06Q 40/06 (20060101);