TYMPANOSTOMY TUBE DELIVERY DEVICE WITH REPLACEABLE SHAFT PORTION
A tympanostomy tube delivery device comprises a shaft assembly and a handpiece. All or a portion of the shaft assembly is selectively coupleable and removable from the handpiece. The handpiece includes a housing defining an opening that can receive a portion of the shaft assembly. The shaft assembly comprises a cannula, a piercer/dilator tube, a shield tube, and a pusher tube operable to translate relative to the cannula. The pressure equalization tube is positioned within the shield tube of the shaft assembly. The piercer/dilator tube and the shield tube are operable to pierce the tympanic membrane and dilate an opening formed therein. The pusher tube is operable to drive the pressure equalization tube out of the shield tube of the shaft assembly and into the opening formed in the tympanic membrane. Upon completion of the procedure, all or a portion of the shaft assembly may then be removed and replaced.
Latest TUSKER MEDICAL, INC. Patents:
- System and method for providing iontophoresis at tympanic membrane
- Iontophoresis methods
- Visualization devices and methods for otologic procedures
- Systems, apparatus, and methods for delivery of therapeutic substance to nasal cavity
- Systems, apparatus, and methods for transport and delivery of therapeutic substance to middle ear
This application is a continuation of U.S. application Ser. No. 15/830,473 filed Dec. 4, 2017 titled “Tympanostomy Tube Delivery Device with Replaceable Shaft Portion,” which is a continuation of U.S. application Ser. No. 14/457,293 (now U.S. Pat. No. 9,833,360), filed Aug. 12, 2014, also titled “Tympanostomy Tube Delivery Device with Replaceable Shaft Portion.” Both of these disclosures are incorporated herein by reference in their entirety.
BACKGROUNDSome children may exhibit recurrent episodes of otitis media and/or otitis media with effusion. Treatment of severe cases may involve the placement of a pressure equalization tube or tympanostomy tube through the tympanic membrane to provide adequate drainage of the middle ear by providing fluid communication between the middle and outer ear. In particular, such a tube may provide a vent path that promotes drainage of fluid from the middle ear via the Eustachian tube and may thus reduce stress imposed on the tympanic membrane from pressure within the middle ear. This may further reduce the likelihood of future infections and pressure induced ruptures of the tympanic membrane. Pressure equalization tubes may fall out spontaneously within about a year of placement. Exemplary pressure equalization tube delivery systems are disclosed in U.S. Pat. No. 8,052,693, entitled “System and Method for the Simultaneous Automated Bilateral Delivery of Pressure Equalization Tubes,” issued Nov. 8, 2011, the disclosure of which is incorporated by reference herein. Additional exemplary pressure equalization tube delivery systems are disclosed in U.S. Pat. No. 8,249,700, entitled “System and Method for the Simultaneous Bilateral Integrated Tympanic Drug Delivery and Guided Treatment of Target Tissues within the Ears,” issued Aug. 21, 2012; and U.S. Pub. No. 2011/0015645, entitled “Tympanic Membrane Pressure Equalization Tube Delivery System,” published Jan. 20, 2011, the disclosure of which is incorporated by reference herein. Still additional exemplary pressure equalization tube delivery systems are disclosed in U.S. patent application Ser. No. 13/804,553, entitled “Features to Improve and Sense Tympanic Membrane Apposition by Tympanostomy Tube Delivery Instrument,” filed Mar. 14, 2013, the disclosure of which is incorporated by reference herein.
Insertion of a pressure equalization tube may be performed using general anesthesia in some cases, which may require additional resources such as an operating room, the presence of an anesthesiologist, and time in a recovery room. Furthermore, the use of general anesthesia may include certain risks that a patient may or may not be comfortable with undertaking. Some pressure equalization tube delivery systems and methods provide a local anesthetic through iontophoresis. Examples of such systems and methods are disclosed in U.S. Pub. No. 2010/0198135, entitled “Systems and Methods for Anesthetizing Ear Tissue,” published Aug. 5, 2010, the disclosure of which is incorporated by reference herein. Additional examples of such systems and methods are disclosed in U.S. Pat. No. 8,192,420, entitled “Iontophoresis Methods,” issued Jun. 5, 2012, the disclosure of which is incorporated by reference herein.
While a variety of pressure equalization tube delivery systems and methods have been made and used, it is believed that no one prior to the inventor(s) has made or used an invention as described herein.
It is believed the present invention will be better understood from the following description of certain examples taken in conjunction with the accompanying drawings, in which like reference numerals identify the same elements and in which:
The drawings are not intended to be limiting in any way, and it is contemplated that various embodiments of the invention may be carried out in a variety of other ways, including those not necessarily depicted in the drawings. The accompanying drawings incorporated in and forming a part of the specification illustrate several aspects of the present invention, and together with the description serve to explain the principles of the invention; it being understood, however, that this invention is not limited to the precise arrangements shown.
DETAILED DESCRIPTIONThe following description of certain examples of the technology should not be used to limit its scope. Other examples, features, aspects, embodiments, and advantages of the technology will become apparent to those skilled in the art from the following description, which is by way of illustration, one of the best modes contemplated for carrying out the technology. As will be realized, the technology described herein is capable of other different and obvious aspects, all without departing from the technology. Accordingly, the drawings and descriptions should be regarded as illustrative in nature and not restrictive.
It is further understood that any one or more of the teachings, expressions, embodiments, examples, etc. described herein may be combined with any one or more of the other teachings, expressions, embodiments, examples, etc. that are described herein. The following-described teachings, expressions, embodiments, examples, etc. should therefore not be viewed in isolation relative to each other. Various suitable ways in which the teachings herein may be combined will be readily apparent to those of ordinary skill in the art in view of the teachings herein. Such modifications and variations are intended to be included within the scope of the claims.
I. Exemplary Pressure Equalization Tube Delivery Instrument
As noted above, a pressure equalization (PE) tube may be delivered to the tympanic membrane (TM) of a patient as a way of treating, for example, otitis media. In some instances, a delivery instrument may be used to insert PE tubes in the tympanic membrane (TM) without the use of general anesthesia.
As shown in
As can be seen in
As best seen in
A cam follower (152) is fixedly secured to the proximal end of piercer/dilator tube (150). Cam follower (152) includes a laterally projecting pin (154) that may be disposed within piercer/dilator track (132), such that rotation of camshaft (130) causes cam follower (152) and piercer/dilator tube (150) to translate. Similarly, a cam follower (162) is fixedly secured to the proximal end of shield tube (160). Cam follower (162) includes a laterally projecting pin (164) that may be disposed within shield tube track (134), such that rotation of camshaft (130) causes cam follower (162) and shield tube (160) to translate. A cam follower (172) is fixedly secured to the proximal end of pusher tube (170). Cam follower (172) includes a laterally projecting pin (174) that may be disposed within pusher tube track (136), such that rotation of camshaft (130) causes cam follower (172) and pusher tube (170) to translate.
As shown in
As mentioned above, tubes (150, 160, 170) all translate relative to cannula (122) in a particular sequence in order to deploy PE tube (200) as will be described in greater detail below. This sequence is driven by rotation of camshaft (130). It should be appreciated that channel (105) may be configured such that shaft assembly (120), and in particular cannula (122) of shaft assembly (120), may be coupled within channel (105) in a snap-fit manner. It should further be appreciated that PE tube (200) may be preloaded within shaft assembly (120) before shaft assembly (120) is coupled with handpiece (102). In some versions of shaft assembly (120), shaft assembly (120) may include a frame, bracket, or other feature(s) configured to maintain the relative spacing of cannula (122) and tubes (150, 160, 170) until shaft assembly (120) coupled with handpiece (102). This may ensure that followers (152, 162, 172) of shaft assembly (120) smoothly and properly engage their corresponding tracks (132, 134, 136) upon insertion of shaft assembly (120) in handpiece (102).
PE tube (200) is formed of a resilient material that is biased to assume the rivet like configuration shown in
As shown in
Once camshaft (130) starts rotating at the urging of torsion spring (140) upon actuation of trigger mechanism (106), pins (154, 164, 174) begin to ride along their respective tracks (132, 134, 136), such that piercer tip (159) and leaves (156, 157) are driven distally through the patient's tympanic membrane (TM) as shown in
Upon completion of the above described sequence shown in
If the operator desires to perform the procedure on the patient's other ear, the operator may remove the spent shaft assembly (120) from handpiece (102), re-cock torsion spring (140), reset trigger mechanism (106), and load a new shaft assembly (120) into handpiece (102). It should therefore be understood that only shaft assembly (120) needs to be replaced for each procedure. Torsion spring (140) may be re-cocked by rotating cam shaft (130) via a hexagonal socket formed in a proximal end of camshaft (130). In some instances, a separate tool may be provided with PETDD (100) to facilitate rotation of cam shaft (130) via the hexagonal socket. In some other versions, a knob or other feature may be provided on handpiece (102) (or may otherwise be integrated with handpiece (102)) to provide re-cocking of torsion spring (140). If the operator desires to perform the procedure on another patient, the operator may sterilize and reuse handpiece (102), such that for different patients, only shaft assembly (120) needs to be replaced for each procedure.
It should be understood that the foregoing components, features, and operabilities of PETDD (100) are merely illustrative examples. A PETDD (100) may include various other features in addition to or in lieu of those described above. By way of example only, any of the devices herein may also include one or more of the various features disclosed in any of the various references that are incorporated by reference herein. By way of further example only, some variations of PETDD (100) may lack a PE tube (200). Some such versions of PETDD (100) may also lack a shield tube (160) and a pusher tube (170). For instance, some such versions of PETDD (100) may just include a piercing element that is configured to pierce a tympanic membrane (TM), simply to provide an opening for fluid drainage or otherwise. Such a piercing element may be configured similar to piercer/dilator tube (150). Alternatively, such a piercing element may have a closed sharp tip. For instance, such a closed sharp tip may be configured in accordance with the teachings of any of the references cited herein. Other suitable forms that a piercing element may take will be apparent to those of ordinary skill in the art in view of the teachings herein. Some additional merely illustrative variations of PETDD (100) will be described in greater detail below, while other variations of PETDD (100) will be apparent to those of ordinary skill in the art in view of the teachings herein.
II. Exemplary Alternative Pressure Equalization Tube Delivery Instrument
As can be seen in
As best seen in
A cam follower (352) is fixedly secured to the proximal end of piercer/dilator tube (350). Cam follower (352) includes a laterally projecting pin (354) that is disposed within piercer/dilator track (332), such that rotation of camshaft (330) causes cam follower (352) and piercer/dilator tube (350) to translate. Similarly, a cam follower (362) is fixedly secured to the proximal end of shield tube (360). Cam follower (362) includes a laterally projecting pin (364) that may be disposed within shield tube track (334), such that rotation of camshaft (330) causes cam follower (362) and shield tube (360) to translate. A cam follower (372) is fixedly secured to the proximal end of pusher tube (370). Cam follower (372) includes a laterally projecting pin (374) that may be disposed within pusher tube track (336), such that rotation of camshaft (330) causes cam follower (372) and pusher tube (370) to translate.
As best seen in
As shown in
If the operator desires to reuse PETDD (300) to perform the procedure on the patient's other ear, the operator may remove the spent proximal shaft assembly (320) from handpiece (302), re-cock torsion spring (340), reset trigger mechanism (306), and load a new proximal shaft assembly (320) into handpiece (302). It should therefore be understood that only proximal shaft assembly (320) needs to be replaced for each procedure. Torsion spring (340) may be re-cocked by rotating cam shaft (330) via a hexagonal socket formed in a proximal end of camshaft (330). In some instances, a separate tool may be provided with PETDD (300) to facilitate rotation of cam shaft (330) via the hexagonal socket. In some other versions, a knob or other feature may be provided on handpiece (302) (or may otherwise be integrated with handpiece (102)) to provide re-cocking of torsion spring (340). If the operator desires to perform the procedure on another patient, the operator may sterilize and reuse the combination of handpiece (302) and distal shaft assembly (390), such that for different patients, only proximal shaft assembly (320) needs to be replaced for each procedure.
It should be understood that the foregoing components, features, and operabilities of PETDD (300) are merely illustrative examples. A PETDD (300) may include various other features in addition to or in lieu of those described above. By way of example only, any of the devices herein may also include one or more of the various features disclosed in any of the various references that are incorporated by reference herein. By way of further example only, some variations of PETDD (300) may lack a PE tube (200). Some such versions of PETDD (300) may also lack a shield tube (360) and a pusher tube (370). For instance, some such versions of PETDD (300) may just include a piercing element that is configured to pierce a tympanic membrane (TM), simply to provide an opening for fluid drainage or otherwise. Such a piercing element may be configured similar to piercer/dilator tube (350). Alternatively, such a piercing element may have a closed sharp tip. For instance, such a closed sharp tip may be configured in accordance with the teachings of any of the references cited herein. Other suitable forms that a piercing element may take will be apparent to those of ordinary skill in the art in view of the teachings herein. Similarly, other variations of PETDD (300) will be apparent to those of ordinary skill in the art in view of the teachings herein.
III. Miscellaneous
It should be appreciated that any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated material does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.
Versions described above may be designed to be disposed of after a single use, or they can be designed to be used multiple times. Versions may, in either or both cases, be reconditioned for reuse after at least one use. Reconditioning may include any combination of the steps of disassembly of the device, followed by cleaning or replacement of particular pieces, and subsequent reassembly. In particular, some versions of the device may be disassembled, and any number of the particular pieces or parts of the device may be selectively replaced or removed in any combination. Upon cleaning and/or replacement of particular parts, some versions of the device may be reassembled for subsequent use either at a reconditioning facility, or by a user immediately prior to a procedure. Those skilled in the art will appreciate that reconditioning of a device may utilize a variety of techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned device, are all within the scope of the present application.
By way of example only, versions described herein may be sterilized before and/or after a procedure. In some instances, the device is sterilized using conventional ethylene oxide sterilization techniques and systems. In some other instances, the device is placed in a closed and sealed container, such as a plastic or TYVEK bag; and the container and device may then be placed in a field of radiation that can penetrate the container, such as gamma radiation, x-rays, or high-energy electrons. The radiation may kill bacteria on the device and in the container. The sterilized device may then be stored in the sterile container for later use. A device may also be sterilized using any other technique known in the art, including but not limited to beta or gamma radiation, steam, etc.
Having shown and described various embodiments of the present invention, further adaptations of the methods and systems described herein may be accomplished by appropriate modifications by one of ordinary skill in the art without departing from the scope of the present invention. Several of such potential modifications have been mentioned, and others will be apparent to those skilled in the art. For instance, the examples, embodiments, geometric s, materials, dimensions, ratios, steps, and the like discussed above are illustrative and are not required. Accordingly, the scope of the present invention should be considered in terms of the following claims and is understood not to be limited to the details of structure and operation shown and described in the specification and drawings.
Claims
1.-20. (canceled)
21. A shaft assembly for a tympanostomy tube delivery device, the shaft assembly comprising:
- a shield tube defining a proximal end, a distal end, and a longitudinal central axis;
- a first cam follower rigidly coupled to the proximal end of the shield tube;
- a pusher tube defining a proximal end and a distal end, the pusher tube coaxially disposed within the shield tube;
- a second cam follower rigidly coupled to the proximal end of the pusher tube;
- a tympanostomy tube disposed within the shield tube, the distal end of the pusher tube abutting a proximal end of the tympanostomy tube, and the tympanostomy tube having a length measured along the longitudinal central axis; and
- the first cam follower and the second cam follower separated by a distance greater than the length of the tympanostomy tube.
22. The shaft assembly of claim 21 further comprising:
- a cannula defining a proximal end and a distal end;
- a dilator tube defining a proximal end and a distal end, the dilator tube coaxially disposed within the cannula;
- a third cam follower rigidly coupled to the proximal end of the dilator tube;
- the shield tube, the pusher tube, and the tympanostomy tube coaxially disposed within the dilator tube.
23. The shaft assembly of claim 22 wherein the dilator tube is further configured to both cut and dilate a tympanic membrane.
24. The shaft assembly of claim 22 wherein the dilator tube further comprises:
- a first flexible leaf on the distal end of the dilator tube;
- a second flexible leaf on the distal end of the dilator tube;
- a piercer tip on the distal end of the first flexible leaf, the piercer tip configured to pierce a tympanic membrane.
25. The shaft assembly of claim 22 wherein the cannula further comprises an annular flange on an outside surface of the cannula.
26. The shaft assembly of claim 22 further comprising the pusher tube is configured to translate along the longitudinal central axis relative to the shield tube, the shield tube is configured to translate along the longitudinal central axis relative to the dilator tube, and the dilator tube is configured to translate along the longitudinal central axis relative to the cannula.
27. The shaft assembly of claim 22 further comprising at least one component configured to maintain a distance between the first cam follower, the second cam follower, and the third cam follower.
28. The shaft assembly of claim 22 further comprising the first cam follower and the third cam follower separated by a distance greater than the length of the tympanostomy tube.
29. The shaft assembly of claim 21 wherein the tympanostomy tube is radially compressed with the shield tube.
30. The shaft assembly of claim 21 wherein the first cam follower further comprises:
- a first flange member extending laterally in a first direction;
- a second flange member extending laterally in a second direction opposite the first direction, and the first and second flange members define a plane parallel to the longitudinal central axis;
- each of the first and second cam followers includes an annular flange.
31. The shaft assembly of claim 30 wherein the first cam follower further comprises a pin extending from a first side of the first and second flange members, first side opposite a second side of the first and second flange members at which the proximal end of the shield tube couples to the first and second flange members.
32. The shaft assembly of claim 21 wherein the pusher tube is configured to translate along the longitudinal central axis relative to the shield tube.
33. The shaft assembly of claim 21 further comprising at least one component configured to maintain a distance between the first cam follower and the second cam follower.
34. A shaft assembly for a tympanostomy tube delivery device, the shaft assembly comprising:
- a cannula defining a proximal end, a distal end, and a longitudinal central axis;
- a dilator tube defining a proximal end and a distal end, the dilator tube coaxially disposed within the cannula;
- a dilator cam follower rigidly coupled to the proximal end of the dilator tube;
- a shield tube defining a proximal end and a distal end, the shield tube coaxially disposed within the dilator tube;
- a shield cam follower rigidly coupled to the proximal end of the shield tube;
- a pusher tube defining a proximal end and a distal end, the pusher tube coaxially disposed within the shield tube;
- a pusher cam follower rigidly coupled to the proximal end of the pusher tube;
- a tympanostomy tube disposed within the shield tube, the distal end of the pusher tube abutting a proximal end of the tympanostomy tube, and the tympanostomy tube having a length measured along the longitudinal central axis.
35. The shaft assembly of claim 34 further comprising the pusher cam follower and the shield cam follower separated by a distance greater than the length of the tympanostomy tube.
36. The shaft assembly of claim 34 further comprising the shield cam follower and the dilator cam follower separated by a distance greater than the length of the tympanostomy tube.
37. The shaft assembly of claim 34 wherein the dilator tube is further configured to both cut and dilate a tympanic membrane.
38. The shaft assembly of claim 34 wherein the dilator tube further comprises:
- a first flexible leaf on the distal end of the dilator tube;
- a second flexible leaf on the distal end of the dilator tube; and
- a piercer tip on the distal end of the first flexible leaf, the piercer tip configured to pierce a tympanic membrane.
39. The shaft assembly of claim 34 further comprising the pusher tube is configured to translate along the longitudinal central axis relative to the shield tube, the shield tube is configured to translate along the longitudinal central axis relative to the dilator tube, and the dilator tube is configured to translate along the longitudinal central axis relative to the cannula.
40. The shaft assembly of claim 34 wherein the tympanostomy tube is radially compressed with the shield tube.
Type: Application
Filed: Apr 15, 2020
Publication Date: Jul 30, 2020
Applicant: TUSKER MEDICAL, INC. (Menlo Park, CA)
Inventors: Bernard H. ANDREAS (Redwood City, CA), Thomas D. GROSS (Los Gatos, CA)
Application Number: 16/849,478