CONTROL NODE AND PATH CONTROL SYSTEM
A C-plane device in a path control system comprises: a storage unit storing designation information designating search key information of a node used as a search key determining a transmission destination and part information indicating a packet part in which the search key information is included; and a setting unit, in a case in which a new node is connected to the U-plane device, acquires node information relating to the new node, extracts search key information of the new node on the basis of the acquired node information and the stored to designation information, and, in a case in which, in a packet received by the U-plane device, the search key information of the new node is included in a packet part indicated by the part information, sets a transmission destination of the packet for each of at least a part of U-plane devices.
Latest NTT DOCOMO, INC. Patents:
This application is a division of and claims the benefit of priority under 35 U.S.C. § 120 from U.S. application Ser. No. 16/063,340 filed Jun. 18, 2018, the entire contents of which are incorporated herein by reference. U.S. application Ser. No. 16/063,340 is a National Stage of PCT/JP2017/005103 filed Feb. 13, 2017, which claims the benefit of priority under 35 U.S.C. § 119 from Japanese Application No. 2016-032098 filed Feb. 23, 2016.
TECHNICAL FIELDThe present invention relates to a control node performing path control of packet communication between nodes and a path control system comprising one or more relay nodes that are connected to the control node and relay packet communication.
BACKGROUND ARTConventionally, communication systems performing path control in an evolved packet system (EPS) that is a standard of a mobile communication network are known (for example, Patent Literature 1).
CITATION LIST Patent LiteraturePatent Literature 1: Japanese Unexamined Patent Application Publication No. 2014-236234
SUMMARY OF INVENTION Technical ProblemHowever, in the EPS, there are problems in that path control using identification information designated by a network company and a packet field designated by the network company cannot be performed, and flexible path control cannot be performed.
Thus, the present invention is in consideration of such problems, and an object thereof is to provide a control node and a path control system capable of performing more flexible path control.
Solution to ProblemIn order to solve the problems described above, according to one aspect of the present invention, there is provided a control node in a path control system comprising the control node performing path control of packet communication between nodes and one or more relay nodes that are connected to the control node and relay the packet communication, the control node comprising: a memory storing designation information designating search key information of a node used as a search key determining a transmission destination that is a relay destination when one of the one or more relay nodes receives a packet and part information indicating a packet part in which the search key information is included. The control node, in a case in which a new node is connected to at least one of the one or more relay nodes, acquires node information relating to the new node, extracts search key information of the new node on the basis of the acquired node information and the designation information stored in the memory, and, in a case in which, in a packet received by at least one relay node among the one or more relay nodes, the search key information of the new node is included in a packet part indicated by the part information, sets a transmission destination of the packet for at least a part of the one or more relay nodes or each of all the relay nodes in a transmission path of the packet transmission.
By employing such a configuration, in a case in which a new node is connected to at least one of the one or more relay nodes and in a case in which, in a packet received by at least one relay node among the one or more relay nodes, the search key information of the new node based on the designation information stored in the memory is included in a packet part indicated by the part information, a transmission destination of the packet is set for at least a part of the one or more relay nodes or each of all the relay nodes in a transmission path of the packet transmission. In other words, on the basis of the designation information and the part information stored in the memory, a transmission destination of a packet for each relay node can be set. Accordingly, for example, when designation information and part information designated by a network company are stored in the memory, path control can be performed using the designation information and the part information designated by the network company. In other words, more flexible path control can be performed.
In addition, in the control node according to one aspect of the present invention, a plurality of pieces of search key information may be extracted when the search key information is extracted, and a transmission destination may be set for each of the plurality of pieces of extracted search key information. By employing such a configuration, a plurality of pieces of search key information can be set for the node, and thus, for example, more flexible path control such as setting a plurality of pieces of search key information in accordance with purposes and setting path control in accordance with the purposes can be performed.
In addition, in the control node according to one aspect of the present invention, insufficiency information may be dynamically generated when the search key information is extracted. By employing such a configuration, even in a case in which insufficiency information is present, search key information can be extracted more reliably, and accordingly, a transmission destination of the relay node can be set more reliably.
In addition, in the control node according to one aspect of the present invention, the memory may further store topology information relating to network topology of the one or more relay nodes, and the control node may set a transmission destination on the basis of the topology information stored in the memory. By employing such a configuration, for example, a transmission destination forming a shortest path toward a transmission destination node can be set on the basis of the topology information, and more flexible path control can be performed.
In addition, in the control node according to one aspect of the present invention, the packet communication may be performed through one virtual network among a plurality of virtual networks established on a path, the memory may store designation information and part information for each of the virtual networks, and the control node, in a case in which a new node is connected to at least one of the one or more relay nodes, acquires node information relating to the new node, extracts search key information for each virtual network of the new node on the basis of the acquired node information and the designation information for each virtual network stored in the memory, and, in a case in which, in a packet received by at least one relay node among the one or more relay nodes, the search key information for the virtual network of the new node is included in a packet part indicated by the part information for each virtual network, may set a transmission destination of the packet for each virtual network and for at least a part of the one or more relay nodes or each of all the relay nodes in a transmission path of the packet transmission. By employing such a configuration, in a packet communication network in which a plurality of virtual networks are established on a path, path control for each virtual network can be performed. In other words, more flexible path control can be performed.
In addition, in order to solve the problems described above, according to one aspect of the present invention, there is provided a path control system comprising: a control node performing path control of packet communication between nodes; and one or more relay nodes that are connected to the control node and relay the packet communication. The control node comprises a first memory storing designation information designating search key information of a node used as a search key determining a transmission destination that is a relay destination when one of the one or more relay nodes receives a packet and part information indicating a packet part in which the search key information is included and, in a case in which a new node is connected to at least one of the one or more relay nodes, acquires node information relating to the new node, extracts search key information of the new node on the basis of the acquired node information and the designation information stored in the first memory, and, in a case in which, in a packet received by at least one relay node among the one or more relay nodes, the search key information of the new node is included in a packet part indicated by the part information, generates a settings data table in which a transmission destination of the packet is set for at least a part of the one or more relay nodes or for each of all the relay nodes in a transmission path of the packet transmission and transmits the generated settings data table to the set relay node, and the relay node comprises a second memory storing the settings data table transmitted by the control node and transmits a packet received at the time of relaying on the basis of the settings data table stored in the second memory.
By employing such a configuration, in the control node, in a case in which a new node is connected to at least one of the one or more relay nodes and in a case in which, in a packet received by at least one relay node among the one or more relay nodes, the search key information of the new node based on the designation information stored in the first memory is included in a packet part indicated by the part information, a settings data table in which a transmission destination of the packet is set for at least a part of the one or more relay nodes or for each of all the relay nodes present in a transmission path of the packet transmission is generated. Then, in the relay node, the generated settings data table is stored in the second memory, and a packet received at the time of relaying is transmitted on the basis of the settings data table stored in the second memory. In other words, on the basis of the settings data table generated on the basis of the designation information and the part information stored in the first memory, a packet is transmitted in the relay node. Accordingly, for example, when designation information and part information designated by a network company are stored in the first memory, path control can be performed using the designation information and the part information designated by the network company. In other words, more flexible path control can be performed.
Advantageous Effects of InventionMore flexible path control can be performed.
Hereinafter, a control node and a path control system according to an embodiment will be described in detail with reference to the drawings. In description of the drawings, the same reference signs will be assigned to the same elements, and duplicate description thereof will not be presented.
The C-plane device 1 is connected to the one or more U-plane devices 2 through a network for enabling packet communication. Some or all of U-plane devices 2 among the one or more U-plane devices 2 are connected such that the U-plane devices 2 can perform mutual packet communication through a network. Each of the one or more UNs 3 can be connected to one U-plane device 2 among the one or more U-plane devices 2 through a network to enable mutual packet communication and can appropriately disconnect the communication or update the connection state. A packet-communicable network of the whole path control system 4 is constituted by using the C-plane device 1 and the network between the U-plane devices 2 and the UN 3 described above. The path control system 4, for example, may be a mobile communication system using an evolved packet system (EPS).
In this embodiment, mainly, path control of packet communication between UNs 3 is described. More specifically, the packet communication between UNs 3 is communication of packets transmitted from a UN 3 that is a transmission source to a UN 3 that is a transmission destination. The communication between the UNs 3 (nodes) is relayed by one or more U-plane devices 2. A UN 3 that is a transmission source, first, transmits a packet to a U-plane device 2 that is directly connected. The U-plane device 2 that has transmitted the packet determines a transmission destination of the packet (a determining method will be described later) and transmits the packet to the determined transmission destination. The transmission destination is another U-plane device 2 or a UN 3 that is a transmission destination. In this way, a packet transmitted from a UN 3 that is a transmission source is relayed through one or more U-plane devices 2 and finally arrives at a UN 3 that is a transmission destination. A network (including a UN 3 and a U-plane device 2) traced by a packet from the UN 3 that is a transmission source to a UN 3 that is a transmission destination is called a path.
The C-plane (control plane) device 1 is a computer device (one node in a network) performing network control such as path control of packet communication between UNs 3 that is relayed by the U-plane device 2. The C-plane device 1, for example, is a home subscriber server (HSS), a mobility management entity (MME), a policy and charging rule function (PCRF), or the like in an EPS. Details of the C-plane device 1 will be described later.
The U-plane (user plane) device 2 is a computer device (one node in a network) relaying packet communication between UNs 3 and, more specifically, is a computer device that performs packet transmission or a packet process of a network. The U-plane device 2, for example, is an evolved node B (eNB), a serving gateway (SGW), a packet data network gateway (PGW), or the like that is a node system in an EPS. Details of the U-plane device 2 will be described later.
The UN (user network) 3 collectively refers to hardware and software connected to a network constituted by the path control system 4 and groups constituted thereby (one node in a network). The UN 3, for example, may be a portable terminal, a network configured from a plurality of devices, a virtual terminal or an application operating on a portable terminal, a network managed by another network company different from a network company managing the C-plane device 1 and the U-plane devices 2, or the Internet that is connected through a network managed by another network company.
Hereinafter, each functional block of the C-plane device 1 will be described on the basis of a functional block diagram of the C-plane device 1 included in
The C-plane device 1 is configured from hardware such as a CPU and the like.
The function of each functional block of the C-plane device 1 illustrated in
In addition, each function may be configured to be executed by building all or some of the functions into a dedicated integrated circuit (IC) instead of executing each function illustrated in
It is apparent that the software is broadly interpreted to mean a command, a command set, a code, a code segment, a program code, a program, a subprogram, a software module, an application, a software application, a software package, a routine, a subroutine, an object, an executable file, an execution thread, an order, a function, and the like regardless whether it is called software, firmware, middleware, a micro-code, a hardware description language, or any other name.
In addition, the software, the command, and the like may be transmitted and received through a transmission medium. For example, in a case in which software is transmitted from a website, a server, or another remote source using a wired technology such as a coaxial cable, an optical fiber cable, a twisted pair, or a digital subscriber line (DSL) and/or a wireless technology such as infrared rays or microwaves, the wired technology and/or the wireless technology are included within the definition of the transmission medium.
The storage unit 10 stores designation information used for designating search key information of the UN 3 that is used as a search key of determination of a transmission destination by the U-plane device 2 at the time of relaying a packet and part information indicating a packet part (for example, a packet field) in which the search key information is included. As will be described later, the U-plane device 2 determines a specific U-plane device 2 or a UN 3 (of a transmission destination) to which a packet is to be transmitted next at the time of relaying the received packet. In other words, a transmission destination is determined. The determination is performed on the basis of the search key information of the UN 3 (of the transmission destination) included in the received packet.
The designation information and the part information are assumed to be designated by a network company managing the path control system 4. For example, the C-plane device 1 may receive the designation information and the part information from a network company through the input/output device 103 as inputs and stores the input information using the storage unit 10.
The storage unit 10 may further store topology information relating to a network topology of one or more U-plane devices 2. More specifically, the network topology of one or more U-plane devices 2 is a connection form representing a manner in which the U-plane devices 2 are connected inside the path control system 4.
In addition to the information described above, the storage unit 10 may store information that is temporarily generated or output information at the time of processing using the acquisition unit 11 and the setting unit 12 to be described later.
When a new UN 3 (a UN 3 that is not connected to any one of U-plane devices 2 included in the path control system 4) is connected to a U-plane device 2 or when the connection state of a UN 3 is updated, the acquisition unit 11 acquires node information relating to the UN 3. The acquisition unit 11 acquires the node information through a connection processing unit 21 of the U-plane device 2 to be described later. In the node information, UN specific information that is specific information of the UN 3 is included. The UN specific information may include all the information that is specific in particular to a user device maintained in software or hardware among specific information of the UN 3, for example, a UN 3 identifier used for identifying the UN 3, the UN 3 identification code described above and information used when the UN 3 is connected to a network constituted by the path control system 4. For example, the UN specific information may include an identifier of the U-plane device 2 to which the UN 3 is connected. The acquisition unit 11 outputs the acquired node information to the setting unit 12.
The setting unit 12 extracts search key information of the UN 3 on the basis of the node information input from the acquisition unit 11 and the designation information stored using the storage unit 10. In a case in which the designation information stored using the storage unit 10 is the table example illustrated in
When search key information is extracted, the setting unit 12 may extract a plurality of pieces of search key information. For example, in the specific example described above, in a case in which a plurality of UN 3 identification codes are included in the node information input from the acquisition unit 11, the setting unit 12 extracts the plurality of UN 3 identification codes.
The setting unit 12 may dynamically generate insufficiency information when the search key information which is insufficient is extracted. In addition, the setting unit 12 may dynamically generate insufficiency information when search key information which is extracted on the basis of the node information and the designation information is insufficient. For example, in the specific example described above, in a case in which a UN 3 identification code included in the node information input from the acquisition unit 11 is not the original code of 64 bits but a code of 32 bits representing the same numerical value, the setting unit 12 converts the code of 32 bits into a code of 64 bits (32 “0”s that are insufficiency information are dynamically generated and added). As another example, the insufficiency information may be generated using a method of assigning a value that is larger than a largest value of the UN 3 identification code, which has already been assigned to the UN 3, by one. In addition, as a yet another example, an embodiment may be conceived in which assignment of a UN 3 identification code is requested for an external C-plane device 1 controlling the UN 3, and the value of the UN 3 identification code included in a response thereof is used.
The setting unit 12 may generate a UN specific information table in which an identifier of a UN 3, an identifier of a U-plane device 2 to which the UN 3 is connected, and search key information are associated with each other or update a record relating to a UN 3 that is newly connected for a UN specific information table stored in advance on the basis of the extracted search key information and the node information input from the acquisition unit 11. For example, when a new UN 3 is connected to the U-plane device 2, the setting unit 12 may acquire an identifier of the UN 3 included in the node information input from the acquisition unit 11 and an identifier of the U-plane device 2 and generates or updates a UN specific information table by associating these with each piece of the extracted search key information.
Subsequently, the setting unit 12 generates a settings data table in which a transmission destination of a packet of a case, in which extracted search key information is included in a packet part, which indicated by part information stored using the storage unit 10, of the packet received when the U-plane device 2 performs packet relay, is set for each U-plane device 2. The setting unit 12 may store the generated settings data table using the storage unit 10. In addition, the setting unit 12 may generate the settings data table for at least a part of the U-plane devices 2 or each of all the U-plane devices 2 present in a transmission path of the packet transmission. Hereinafter, a method of generating the settings data table using the setting unit 12 will be described more specifically.
More specifically, the setting unit 12 generates an example of a settings data table illustrated in
First, the setting unit 12 extracts identifiers of U-plane devices 2 from the topology information table without any duplication and sets the identifiers in the first column of the example of the settings data table illustrated in
Next, the setting unit 12 generates a packet search condition acquired by combining the part information of the pack search rule table and the identification information (search key information) of each UN 3 included in the UN specific information table and sets the generated packet search condition in the second column of the example of the settings data table illustrated in
In the example of the settings data table at this time point illustrated in
The setting unit 12 may set a transmission destination on the basis of the topology information stored using the storage unit 10. For example, a second record of the example of the settings data table illustrated in
The setting unit 12 may set a transmission destination for each of a plurality of pieces of extracted search key information. For example, in the example of the UN specific information table illustrated in
The setting unit 12 performs setting by transmitting the generated settings data table to each U-plane device 2. The setting unit 12 may transmit the generated settings data table to all the U-plane devices 2 or may transmit a record for each U-plane device 2 in the generated settings data table to the U-plane device 2. (For example, all the records in which the first column is the “U-plane device 2-1” in the settings data table are transmitted to the U-plane device 2-1, and all the records of the “U-plane device 2-2” are transmitted to the U-plane device 2-2, and the like).
Subsequently, referring back to
The U-plane device 2 is configured from hardware such as a CPU and the like.
The function of each functional block of the U-plane device 2 illustrated in
In addition, each function may be configured to be executed by building all or some of the functions into a dedicated integrated circuit (IC) instead of executing each function illustrated in
The storage unit 20 stores a settings data table transmitted by the setting unit 12. In addition, the settings data table transmitted by the setting unit 12 may be received by a reception unit not illustrated in the drawing, and the received settings data table may be stored by the storage unit 20.
The connection processing unit 21 performs a process of connecting with the UN 3. More specifically, the connection processing unit 21 receives a new connection request from the UN 3 or receives a request for updating a connection state in the connection state of already being connected with the UN 3. Then, when a connection request or an update request is received, the connection processing unit 21 establishes a connection with the UN 3. In addition, when the connection request or the update request is received, the connection processing unit 21 receives the node information described above from the UN 3. In addition, the connection processing unit 21 may receive information of a part of the node information from the UN 3 and generate node information on the basis of the information of the part. The connection processing unit 21 transmits the node information that has been received or generated to the acquisition unit 11 of the C-plane device 1.
The transmission unit 22 transmits a packet that has been received at the time of relaying the packet on the basis of the settings data table stored using the storage unit 20. More specifically, the transmission unit 22, first, acquires records in which the identifier of the U-plane device 2 is the identifier of its own device in the settings data table stored using the storage unit 20. Next, the transmission unit 22 extracts a record satisfying a packet search condition included in a record among the acquired records for the packet transmitted from a transmission source device (another U-plane device 2 or the UN 3) and acquires an identifier of a transmission destination device of the record. Then, the transmission unit 22 transmits the packet to the transmission destination device corresponding to the acquired identifier of the transmission destination device.
Next, by using the setting unit 12 of the C-plane device 1, a settings data table is generated on the basis of the packet search rule table and the topology information table stored in S0 and the UN specific information table updated in S2 (Step S3). Next, by using the setting unit 12 of the C-plane device 1, the settings data table generated in S3 is transmitted to (set in) the U-plane device 2 (Step S4). Next, by using the storage unit 20 of the U-plane device 2, the settings data table transmitted in S4 is stored, and, by using the transmission unit 22, a process of transmitting a packet on the basis of the stored settings data table is performed (Step S5).
Next, by using the setting unit 12, for each U-plane device 2, a transmission destination device forming a shortest path toward the UN 3 to which search key information based on the UN specific information of the UN 3 acquired in S2 is assigned is calculated (Step S13). Next, by using the setting unit 12, for each U-plane device 2, a record including the identifier of the U-plane device 2, the packet search condition generated in S12, and the identifier of the transmission destination device forming the shortest path calculated in S13 is generated and is added to the settings data table stored using the storage unit 10 (Step S14). After S14, the process proceeds to S4 illustrated in
Subsequently, example of the path control system 4 will be described. In this example, a setting order of the settings data table will be described using a sequence diagram illustrated in
Each of
Next, the set settings data table is referred to by the U-plane device 2-1, and it is determined that a first record of the table example illustrated in
The process of “b” illustrated in
Subsequently, Modified example 1 of the example of the path control system 4 described above will be described. In this Modified example 1, packet communication is performed through one virtual network among a plurality of virtual networks established on a path, which is mainly different from the example described above. In this Modified example 1, on the basis of a specific configuration example of a path control system 4v illustrated in
When a new UN 3v is connected to a U-plane device 2v, the setting unit 12v acquires node information relating to the UN 3v, extracts search key information of the UN 3v for each virtual network on the basis of the acquired node information and designation information of each virtual network stored using the storage unit 10v, and sets a transmission destination of the packet of a case in which the extracted search key information of the virtual network is included in a packet part indicated by the part information of each virtual network stored using the storage unit 10v of a packet received by the U-plane device 2v at the time of relaying the packet for each virtual network and each U-plane device 2v. Hereinafter, description will be presented more specifically with reference to
S79 to S85 of the sequence diagram illustrated in
S86 to S90 of the sequence diagram illustrated in
S91 to S95 of the sequence diagram illustrated in
An example of a packet illustrated in
Each of
Next, the virtual network 1 is determined as a virtual network to which the packet transmitted by the U-plane device 2v-1 belongs, a settings data table corresponding to the determined virtual network 1 is referred to (in other words, records of the virtual network 1 determined as the virtual network identifier are referred to), and it is determined that a first record of the table example illustrated in
The process of “b” illustrated in
Subsequently, Modified example 2 of the example of the path control system 4 described above will be described. In this Modified example 2, a U-plane device 2 (rendezvous node) that is a default transmission destination of a case in which a packet search condition does not match is designated using an access point name (a so-called an access point name (APN)), which is the mainly difference from the example described above. The rendezvous node, for example, is a packet data network gateway (PDN-GW) in an EPS.
In this Modified example 2, a specific configuration example of a path control system 4r is illustrated in
Each of
The example of the settings data table illustrated in
Next, the operations and effects of the C-plane device 1 and the U-plane device 2 configured as in this embodiment will be described.
The C-plane device 1 according to this embodiment is a C-plane device 1 in a path control system 4 comprising one or more U-plane devices 2 relaying packet communication between UNs 3 and the C-plane device 1 performing path control of the packet communication and comprises a storage unit 10 that stores designation information designating search key information of a UN 3 used as a search key of transmission destination determination when the U-plane device 2 relays a packet and part information indicating a packet part in which the search key information is included and an acquisition unit 11 and a setting unit 12 that, when a new UN 3 is connected to a U-plane device 2, acquire node information relating to the UN 3, extract the search key information of the UN 3 based on the acquired node information and the designation information stored using the storage unit 10, and set a transmission destination of a packet for each U-plane device 2 in a case in which extracted search key information is included in a packet part indicated by part information, which is stored using the storage unit 10, of the packet received by the U-plane device 2 at the time of packet relaying.
By employing such a configuration, when a new UN 3 is connected to a U-plane device 2, the transmission destination of a packet is set for each U-plane device 2 in a case in which the search key information of the UN 3 based on designation information stored using the storage unit 10 is included in a packet part indicated by the part information, which is stored using the storage unit 10, of the packet that is received by the U-plane device 2 at the time of packet relaying. In other words, a transmission destination of a packet for each U-plane device 2 can be set on the basis of the designation information and the part information stored using the storage unit 10. In this way, for example, when designation information and part information designated by a network company are stored using the storage unit 10, path control can be performed using the designation information and the part information designated by the network company. In other words, more flexible path control can be performed.
In addition, in the C-plane device 1 according to this embodiment, the setting unit 12 may extract a plurality of pieces of search key information when the search key information is extracted and set a transmission destination for each of the extracted plurality of pieces of the search key information. By employing such a configuration, a plurality of pieces of search key information can be set for a UN 3, and thus, for example, more flexible path control such as setting a plurality of pieces of search key information in accordance with purposes and setting path control according to a purpose can be performed.
In addition, in the C-plane device 1 according to this embodiment, the setting unit 12 may dynamically generate insufficiency information when search key information is extracted. By employing such a configuration, search key information can be extracted more reliably even in a case in which insufficiency information is present, and accordingly, a transmission destination of the U-plane device 2 can be set more reliably.
In addition, in the C-plane device 1 according to this embodiment, the storage unit 10 may further store topology information relating to a network topology of one or more U-plane devices 2, and the setting unit 12 may set a transmission destination on the basis of the topology information stored using the storage unit 10. By employing such a configuration, for example, a transmission destination forming a shortest path toward a transmission destination UN 3 can be set on the basis of the topology information, and more efficient path control can be performed.
In addition, in the C-plane device 1v according to this embodiment, packet communication may be performed through one virtual network among a plurality of virtual networks established on a path, the storage unit 10v may store designation information and part information for each virtual network, and the acquisition unit 11v and the setting unit 12v, when a new UN 3v is connected to a U-plane device 2v, may acquire node information relating to the UN 3v, extract search key information of the UN 3v for each virtual network, on the basis of the acquired node information and the designation information for each virtual network that is stored using the storage unit 10v, and set a transmission destination of a packet for each virtual network and for each U-plane device 2v in a case in which the extracted search key information of the virtual network is included in a packet part indicated by part information of the packet received by the U-plane device 2v at the time of relaying the packet, which is stored using the storage unit 10v, for each virtual network. By employing such a configuration, in a packet communication network in which a plurality of virtual networks are established on a path, path control for each virtual network can be performed. In other words, more flexible path control can be performed.
In addition, in the path control system 4 according to this embodiment, the setting unit 12 may generate a settings data table and transmit the generated settings data table to each U-plane device 2, and the U-plane device 2 comprises: the storage unit 20 that stores a settings data table transmitted by the setting unit 12; and the transmission unit 22 that transmits a packet received at the time of relaying on the basis of the settings data table stored using the storage unit 20. By employing such a configuration, in the U-plane device 2, the generated settings data table is stored, and a packet received at the time of relaying is transmitted on the basis of the stored settings data table. In other words, a packet is transmitted in the U-plane device 2 on the basis of the settings data table generated on the basis of the designation information and the part information stored using the storage unit 10 of the C-plane device 1. In this way, for example, when designation information and part information designated by a network company are stored using the storage unit 20, path control can be performed using the designation information and the part information designated by the network company. In other words, more flexible path control can be performed.
Here, as a problem of a conventional technology, there is a problem in that an EPS that is a standard of a mobile communication network cannot perform path control using an ID designated by a network company and a value of a packet field designated by the network company. According to the path control system 4 of this embodiment, a packet search rule table including a set of an ID designated by a network company and a packet field designated by the network company is maintained by the C-plane device 1 that is a device responsible for controlling the network, and a settings data table relating to path control generated by combining the packet search rule table and UN user specific information is transmitted to the U-plane device 2 that is a device responsible for packet transmission and packet processing of the network. In this way, path control (ID routing) using an ID (search key information or designation information) designated by a network company and a packet field (part information) designated by the network company can be realized. For example, path control inside a mobile network can be realized using an arbitrary network protocol other than an Internet protocol (IP). In addition, the configuration of the path control system 4 according to this embodiment can be applied to software defined networking (SDN), network function virtualization (NFV), a transport, a link, a node, a mobile core, a base station, and the like.
Here, “information” described in this specification may be represented using any one of other various technologies. For example, data, a direction, a command, information, a signal, a bit, a symbol, a chip, and the like acquired as described over the description presented above may be represented using a voltage, a current, an electromagnetic wave, a magnetic field or a magnetic particle, a photo field or a photon, or an arbitrary combination thereof.
A term “determining” used in this specification includes various operations of various kinds. “Judging” or “deciding” for example, may include calculating, computing, processing, deriving, investigating, looking up (for example, a search in a table, a database, or another data structure), ascertaining, and the like. In addition, “determining” may include receiving (for example, reception of information), accessing (for example, an access to data included in a memory), or the like. Furthermore, “determining” may include resolving, selecting, choosing, establishing, comparing, and the like.
A term “connected” or any modification thereof means a direct or indirect connection or combination of any kind between two or more elements and may include presence of one or more intermediate elements between two elements that are “connected” to each other. The combination or connection between elements may be a physical combination or connection, a logical combination or connection, or a physical and logical combination thereof. In the case of being used in this specification, two elements may be considered as being “connected” to each other by using one or more wires, cables, and/or a print electric connection and by using electromagnetic energy such as electromagnetic energy having a wavelength of a radio frequency region, a micro wave region, and a light (both visible light and invisible light) region as one non-limiting and non-inclusive example.
Description of “on the basis of” used in this specification does not mean “on the basis of only” unless otherwise described clearly. In other words, description of “on the basis of” means both “on the basis of only” and “on the basis of at least.”
As long as “including” and a modification thereof are used in this specification or the claims, these terms are intended to be inclusive similar to a term “being equipped with.” In addition, a term “or” used in this specification or the claims is intended not to be exclusive OR.
In the processing order of each aspect/embodiment, a sequence diagram, a flowchart, and the like described in this specification, the order may be changed as long as there is no contradiction. For example, for a method described in this specification, elements of various steps are presented in an exemplary order, the order is not limited to the presented specific order.
Aspects/embodiments described in this specification may be used independently, be combined to be used, or be used to be switched over in accordance with the execution. In addition, a notification (for example, a notification of “being X”) of predetermined information is not limited to be performed explicitly and may be performed implicitly (for example, a notification of predetermined information is not performed).
As above, while the present invention has been described in detail, it is apparent to a person skilled in the art that the present invention is not limited to the embodiments described in this specification. The present invention may be modified or changed without departing from the concept and the scope of the present invention set in accordance with the claims. Thus, the description presented in this specification is for the purpose of exemplary description and does not have any limited meaning for the present invention.
REFERENCE SIGNS LIST
-
- 1 C-plane device
- 2 U-plane device
- 3 UN
- 4 Path control system
- 10 Storage unit
- 11 Acquisition unit
- 12 Setting unit
- 20 Storage unit
- 21 Connection processing unit
- 22 Transmission unit
Claims
1. A control node, which is a control plane (C-plane) device, in a path control system comprising the control node performing path control of packet communication between nodes and one or more relay nodes that are connected to the control node and relay the packet communication, the control node comprising:
- a memory storing (i) designation information designating search key information of a node used as a search key determining a transmission destination that is a relay destination when one of the one or more relay nodes receives a packet, (ii) part information indicating a packet part in which the search key information is included and (iii) topology information relating to network topology of the one or more relay nodes,
- wherein the control node,
- in a case in which a new node is connected to at least one of the one or more relay nodes, acquires node information relating to the new node, extracts search key information of the new node on the basis of the acquired node information and the designation information stored in the memory, and, in a case in which, in a packet received by at least one relay node among the one or more relay nodes, the search key information of the new node is included in a packet part indicated by the part information, sets a transmission destination of the packet, on the basis of the topology information stored in the memory, for at least a part of the one or more relay nodes or each of all the relay nodes in a transmission path of the packet transmission.
2. The control node according to claim 1, wherein a plurality of pieces of search key information are extracted when the search key information is extracted, and a transmission destination is set for each of the plurality of pieces of extracted search key information.
3. The control node according to claim 1, wherein insufficiency information is dynamically generated when the search key information is extracted.
4. The control node according to claim 1,
- wherein the packet communication is performed through one virtual network among a plurality of virtual networks established on a path,
- wherein the memory stores designation information, part information and topology information for each of the virtual networks, and
- wherein the control node,
- in a case in which the new node is connected to at least one of the one or more relay nodes, acquires node information relating to the new node, extracts search key information for each virtual network of the new node on the basis of the acquired node information and the designation information for each virtual network stored in the memory, and, in a case in which, in a packet received by at least one relay node among the one or more relay nodes, the search key information for the virtual network of the new node is included in a packet part indicated by the part information for each virtual network, sets a transmission destination of the packet, on the basis of the topology information for each virtual network stored in the memory, for each virtual network and for at least a part of the one or more relay nodes or each of all the relay nodes in a transmission path of the packet transmission.
5. A path control system comprising:
- a control node, which is a control plane (C-plane) device, performing path control of packet communication between nodes; and
- one or more relay nodes that are connected to the control node and relay the packet communication,
- wherein the control node comprises a first memory storing (i) designation information designating search key information of a node used as a search key determining a transmission destination that is a relay destination when one of the one or more relay nodes receives a packet, (ii) part information indicating a packet part in which the search key information is included and (iii) topology information relating to network topology of the one or more relay nodes and, in a case in which a new node is connected to at least one of the one or more relay nodes, acquires node information relating to the new node, extracts search key information of the new node on the basis of the acquired node information and the designation information stored in the first memory, and, in a case in which, in a packet received by at least one relay node among the one or more relay nodes, the search key information of the new node is included in a packet part indicated by the part information, generates a settings data table in which a transmission destination of the packet is set, on the basis of the topology information stored in the memory, for at least a part of the one or more relay nodes or for each of all the relay nodes in a transmission path of the packet transmission and transmits the generated settings data table to a determined relay node, from among the at least a part of the one or more relay nodes or for each of all the relay nodes in a transmission path of the packet transmission, and
- wherein the determined relay node comprises a second memory storing the settings data table transmitted by the control node and transmits a packet received at the time of relaying on the basis of the settings data table stored in the second memory.
6. The control node according to claim 2, wherein insufficiency information is dynamically generated when the search key information is extracted.
Type: Application
Filed: Apr 10, 2020
Publication Date: Jul 30, 2020
Applicant: NTT DOCOMO, INC. (Chiyoda-ku)
Inventors: Youhei Katayama (Chiyoda-ku), Ryousuke Kurebayashi (Chiyoda-ku), Shigeru Iwashina (Chiyoda-ku), Motoshi Tamura (Chiyoda-ku)
Application Number: 16/845,452