This application is a continuation of U.S. application Ser. No. 16/282,540, filed Feb. 22, 2019, which is a continuation of U.S. application Ser. No. 14/887,605, filed Oct. 20, 2015, now U.S. Pat. No. 10,260,104, issued Apr. 16, 2019, which is a continuation of U.S. application Ser. No. 13/190,391, filed Jul. 25, 2011, which claims the benefit of priority to U.S. Provisional Application Nos. 61/368,217, filed Jul. 27, 2010; 61/414,310, filed Nov. 16, 2010; and 61/485,536, filed May 12, 2011, all of which are hereby incorporated by reference.
TECHNICAL FIELD The present disclosure relates to molecular diagnostic assays that provide information concerning methods to use gene expression profiles to determine prognostic information for cancer patients. Specifically, the present disclosure provides genes and microRNAs, the expression levels of which may be used to determine the likelihood that a prostate cancer patient will experience a local or distant cancer recurrence.
INTRODUCTION Prostate cancer is the most common solid malignancy in men and the second most common cause of cancer-related death in men in North America and the European Union (EU). In 2008, over 180,000 patients will be diagnosed with prostate cancer in the United States alone and nearly 30,000 will die of this disease. Age is the single most important risk factor for the development of prostate cancer, and applies across all racial groups that have been studied. With the aging of the U.S. population, it is projected that the annual incidence of prostate cancer will double by 2025 to nearly 400,000 cases per year.
Since the introduction of prostate-specific antigen (PSA) screening in the 1990's, the proportion of patients presenting with clinically evident disease has fallen dramatically such that patients categorized as “low risk” now constitute half of new diagnoses today. PSA is used as a tumor marker to determine the presence of prostate cancer as high PSA levels are associated with prostate cancer. Despite a growing proportion of localized prostate cancer patients presenting with low-risk features such as low stage (T1) disease, greater than 90% of patients in the US still undergo definitive therapy, including prostatectomy or radiation. Only about 15% of these patients would develop metastatic disease and die from their prostate cancer, even in the absence of definitive therapy. A. Bill-Axelson, et al., J Nat'l Cancer Inst. 100(16):1144-1154 (2008). Therefore, the majority of prostate cancer patients are being over-treated.
Estimates of recurrence risk and treatment decisions in prostate cancer are currently based primarily on PSA levels and/or tumor stage. Although tumor stage has been demonstrated to have significant association with outcome sufficient to be included in pathology reports, the College of American Pathologists Consensus Statement noted that variations in approach to the acquisition, interpretation, reporting, and analysis of this information exist. C. Compton, et al., Arch Pathol Lab Med 124:979-992 (2000). As a consequence, existing pathologic staging methods have been criticized as lacking reproducibility and therefore may provide imprecise estimates of individual patient risk.
SUMMARY This application discloses molecular assays that involve measurement of expression level(s) of one or more genes, gene subsets, microRNAs, or one or more microRNAs in combination with one or more genes or gene subsets, from a biological sample obtained from a prostate cancer patient, and analysis of the measured expression levels to provide information concerning the likelihood of cancer recurrence. For example, the likelihood of cancer recurrence could be described in terms of a score based on clinical or biochemical recurrence-free interval.
In addition, this application discloses molecular assays that involve measurement of expression level(s) of one or more genes, gene subsets, microRNAs, or one or more microRNAs in combination with one or more genes or gene subsets, from a biological sample obtained to identify a risk classification for a prostate cancer patient. For example, patients may be stratified using expression level(s) of one or more genes or microRNAs associated, positively or negatively, with cancer recurrence or death from cancer, or with a prognostic factor. In an exemplary embodiment, the prognostic factor is Gleason pattern.
The biological sample may be obtained from standard methods, including surgery, biopsy, or bodily fluids. It may comprise tumor tissue or cancer cells, and, in some cases, histologically normal tissue, e.g., histologically normal tissue adjacent the tumor tissue. In exemplary embodiments, the biological sample is positive or negative for a TMPRSS2 fusion.
In exemplary embodiments, expression level(s) of one or more genes and/or microRNAs that are associated, positively or negatively, with a particular clinical outcome in prostate cancer are used to determine prognosis and appropriate therapy. The genes disclosed herein may be used alone or arranged in functional gene subsets, such as cell adhesion/migration, immediate-early stress response, and extracellular matrix-associated. Each gene subset comprises the genes disclosed herein, as well as genes that are co-expressed with one or more of the disclosed genes. The calculation may be performed on a computer, programmed to execute the gene expression analysis. The microRNAs disclosed herein may also be used alone or in combination with any one or more of the microRNAs and/or genes disclosed.
In exemplary embodiments, the molecular assay may involve expression levels for at least two genes. The genes, or gene subsets, may be weighted according to strength of association with prognosis or tumor microenvironment. In another exemplary embodiment, the molecular assay may involve expression levels of at least one gene and at least one microRNA. The gene-microRNA combination may be selected based on the likelihood that the gene-microRNA combination functionally interact.
BRIEF DESCRIPTION OF THE DRAWING FIG. 1 shows the distribution of clinical and pathology assessments of biopsy Gleason score, baseline PSA level, and clinical T-stage.
DEFINITIONS Unless defined otherwise, technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Singleton et al., Dictionary of Microbiology and Molecular Biology 2nd ed., J. Wiley & Sons (New York, N.Y. 1994), and March, Advanced Organic Chemistry Reactions, Mechanisms and Structure 4th ed., John Wiley & Sons (New York, N.Y. 1992), provide one skilled in the art with a general guide to many of the terms used in the present application.
One skilled in the art will recognize many methods and materials similar or equivalent to those described herein, which could be used in the practice of the present invention. Indeed, the present invention is in no way limited to the methods and materials described herein. For purposes of the invention, the following terms are defined below.
The terms “tumor” and “lesion” as used herein, refer to all neoplastic cell growth and proliferation, whether malignant or benign, and all pre-cancerous and cancerous cells and tissues. Those skilled in the art will realize that a tumor tissue sample may comprise multiple biological elements, such as one or more cancer cells, partial or fragmented cells, tumors in various stages, surrounding histologically normal-appearing tissue, and/or macro or micro-dissected tissue.
The terms “cancer” and “cancerous” refer to or describe the physiological condition in mammals that is typically characterized by unregulated cell growth. Examples of cancer in the present disclosure include cancer of the urogenital tract, such as prostate cancer.
The “pathology” of cancer includes all phenomena that compromise the well-being of the patient. This includes, without limitation, abnormal or uncontrollable cell growth, metastasis, interference with the normal functioning of neighboring cells, release of cytokines or other secretory products at abnormal levels, suppression or aggravation of inflammatory or immunological response, neoplasia, premalignancy, malignancy, invasion of surrounding or distant tissues or organs, such as lymph nodes, etc.
As used herein, the term “prostate cancer” is used interchangeably and in the broadest sense refers to all stages and all forms of cancer arising from the tissue of the prostate gland.
According to the tumor, node, metastasis (TNM) staging system of the American Joint Committee on Cancer (AJCC), AJCC Cancer Staging Manual (7th Ed., 2010), the various stages of prostate cancer are defined as follows: Tumor: T1: clinically inapparent tumor not palpable or visible by imaging, T1a: tumor incidental histological finding in 5% or less of tissue resected, T1b: tumor incidental histological finding in more than 5% of tissue resected, T1c: tumor identified by needle biopsy; T2: tumor confined within prostate, T2a: tumor involves one half of one lobe or less, T2b: tumor involves more than half of one lobe, but not both lobes, T2c: tumor involves both lobes; T3: tumor extends through the prostatic capsule, T3a: extracapsular extension (unilateral or bilateral), T3b: tumor invades seminal vesicle(s); T4: tumor is fixed or invades adjacent structures other than seminal vesicles (bladder neck, external sphincter, rectum, levator muscles, or pelvic wall). Node: NO: no regional lymph node metastasis; N1: metastasis in regional lymph nodes. Metastasis: M0: no distant metastasis; M1: distant metastasis present.
The Gleason Grading system is used to help evaluate the prognosis of men with prostate cancer. Together with other parameters, it is incorporated into a strategy of prostate cancer staging, which predicts prognosis and helps guide therapy. A Gleason “score” or “grade” is given to prostate cancer based upon its microscopic appearance. Tumors with a low Gleason score typically grow slowly enough that they may not pose a significant threat to the patients in their lifetimes. These patients are monitored (“watchful waiting” or “active surveillance”) over time. Cancers with a higher Gleason score are more aggressive and have a worse prognosis, and these patients are generally treated with surgery (e.g., radical prostectomy) and, in some cases, therapy (e.g., radiation, hormone, ultrasound, chemotherapy). Gleason scores (or sums) comprise grades of the two most common tumor patterns. These patterns are referred to as Gleason patterns 1-5, with pattern 1 being the most well-differentiated. Most have a mixture of patterns. To obtain a Gleason score or grade, the dominant pattern is added to the second most prevalent pattern to obtain a number between 2 and 10. The Gleason Grades include: G1: well differentiated (slight anaplasia) (Gleason 2-4); G2: moderately differentiated (moderate anaplasia) (Gleason 5-6); G3-4: poorly differentiated/undifferentiated (marked anaplasia) (Gleason 7-10).
Stage groupings: Stage I: T1a N0 M0 G1; Stage II: (T1a N0 M0 G2-4) or (T1b, c, T1, T2, N0 M0 Any G); Stage III: T3 N0 M0 Any G; Stage IV: (T4 N0 M0 Any G) or (Any T N1 M0 Any G) or (Any T Any N M1 Any G).
As used herein, the term “tumor tissue” refers to a biological sample containing one or more cancer cells, or a fraction of one or more cancer cells. Those skilled in the art will recognize that such biological sample may additionally comprise other biological components, such as histologically appearing normal cells (e.g., adjacent the tumor), depending upon the method used to obtain the tumor tissue, such as surgical resection, biopsy, or bodily fluids.
As used herein, the term “AUA risk group” refers to the 2007 updated American Urological Association (AUA) guidelines for management of clinically localized prostate cancer, which clinicians use to determine whether a patient is at low, intermediate, or high risk of biochemical (PSA) relapse after local therapy.
As used herein, the term “adjacent tissue (AT)” refers to histologically “normal” cells that are adjacent a tumor. For example, the AT expression profile may be associated with disease recurrence and survival.
As used herein “non-tumor prostate tissue” refers to histologically normal-appearing tissue adjacent a prostate tumor.
Prognostic factors are those variables related to the natural history of cancer, which influence the recurrence rates and outcome of patients once they have developed cancer. Clinical parameters that have been associated with a worse prognosis include, for example, increased tumor stage, PSA level at presentation, and Gleason grade or pattern. Prognostic factors are frequently used to categorize patients into subgroups with different baseline relapse risks.
The term “prognosis” is used herein to refer to the likelihood that a cancer patient will have a cancer-attributable death or progression, including recurrence, metastatic spread, and drug resistance, of a neoplastic disease, such as prostate cancer. For example, a “good prognosis” would include long term survival without recurrence and a “bad prognosis” would include cancer recurrence.
As used herein, the term “expression level” as applied to a gene refers to the normalized level of a gene product, e.g. the normalized value determined for the RNA expression level of a gene or for the polypeptide expression level of a gene.
The term “gene product” or “expression product” are used herein to refer to the RNA (ribonucleic acid) transcription products (transcripts) of the gene, including mRNA, and the polypeptide translation products of such RNA transcripts. A gene product can be, for example, an unspliced RNA, an mRNA, a splice variant mRNA, a microRNA, a fragmented RNA, a polypeptide, a post-translationally modified polypeptide, a splice variant polypeptide, etc.
The term “RNA transcript” as used herein refers to the RNA transcription products of a gene, including, for example, mRNA, an unspliced RNA, a splice variant mRNA, a microRNA, and a fragmented RNA.
The term “microRNA” is used herein to refer to a small, non-coding, single-stranded RNA of ˜18-25 nucleotides that may regulate gene expression. For example, when associated with the RNA-induced silencing complex (RISC), the complex binds to specific mRNA targets and causes translation repression or cleavage of these mRNA sequences.
Unless indicated otherwise, each gene name used herein corresponds to the Official Symbol assigned to the gene and provided by Entrez Gene (URL: www.ncbi.nlm.nih.gov/sites/entrez) as of the filing date of this application.
The terms “correlated” and “associated” are used interchangeably herein to refer to the association between two measurements (or measured entities). The disclosure provides genes, gene subsets, microRNAs, or microRNAs in combination with genes or gene subsets, the expression levels of which are associated with tumor stage. For example, the increased expression level of a gene or microRNA may be positively correlated (positively associated) with a good or positive prognosis. Such a positive correlation may be demonstrated statistically in various ways, e.g. by a cancer recurrence hazard ratio less than one. In another example, the increased expression level of a gene or microRNA may be negatively correlated (negatively associated) with a good or positive prognosis. In that case, for example, the patient may experience a cancer recurrence.
The terms “good prognosis” or “positive prognosis” as used herein refer to a beneficial clinical outcome, such as long-term survival without recurrence. The terms “bad prognosis” or “negative prognosis” as used herein refer to a negative clinical outcome, such as cancer recurrence.
The term “risk classification” means a grouping of subjects by the level of risk (or likelihood) that the subject will experience a particular clinical outcome. A subject may be classified into a risk group or classified at a level of risk based on the methods of the present disclosure, e.g. high, medium, or low risk. A “risk group” is a group of subjects or individuals with a similar level of risk for a particular clinical outcome.
The term “long-term” survival is used herein to refer to survival for a particular time period, e.g., for at least 5 years, or for at least 10 years.
The term “recurrence” is used herein to refer to local or distant recurrence (i.e., metastasis) of cancer. For example, prostate cancer can recur locally in the tissue next to the prostate or in the seminal vesicles. The cancer may also affect the surrounding lymph nodes in the pelvis or lymph nodes outside this area. Prostate cancer can also spread to tissues next to the prostate, such as pelvic muscles, bones, or other organs. Recurrence can be determined by clinical recurrence detected by, for example, imaging study or biopsy, or biochemical recurrence detected by, for example, sustained follow-up prostate-specific antigen (PSA) levels ≥0.4 ng/mL or the initiation of salvage therapy as a result of a rising PSA level.
The term “clinical recurrence-free interval (cRFI)” is used herein as time (in months) from surgery to first clinical recurrence or death due to clinical recurrence of prostate cancer. Losses due to incomplete follow-up, other primary cancers or death prior to clinical recurrence are considered censoring events; when these occur, the only information known is that up through the censoring time, clinical recurrence has not occurred in this subject. Biochemical recurrences are ignored for the purposes of calculating cRFI.
The term “biochemical recurrence-free interval (bRFI)” is used herein to mean the time (in months) from surgery to first biochemical recurrence of prostate cancer. Clinical recurrences, losses due to incomplete follow-up, other primary cancers, or death prior to biochemical recurrence are considered censoring events.
The term “Overall Survival (OS)” is used herein to refer to the time (in months) from surgery to death from any cause. Losses due to incomplete follow-up are considered censoring events. Biochemical recurrence and clinical recurrence are ignored for the purposes of calculating OS.
The term “Prostate Cancer-Specific Survival (PCSS)” is used herein to describe the time (in years) from surgery to death from prostate cancer. Losses due to incomplete follow-up or deaths from other causes are considered censoring events. Clinical recurrence and biochemical recurrence are ignored for the purposes of calculating PCSS.
The term “upgrading” or “upstaging” as used herein refers to a change in Gleason grade from 3+3 at the time of biopsy to 3+4 or greater at the time of radical prostatectomy (RP), or Gleason grade 3+4 at the time of biopsy to 4+3 or greater at the time of RP, or seminal vessical involvement (SVI), or extracapsular involvement (ECE) at the time of RP.
In practice, the calculation of the measures listed above may vary from study to study depending on the definition of events to be considered censored.
The term “microarray” refers to an ordered arrangement of hybridizable array elements, e.g. oligonucleotide or polynucleotide probes, on a substrate.
The term “polynucleotide” generally refers to any polyribonucleotide or polydeoxribonucleotide, which may be unmodified RNA or DNA or modified RNA or DNA. Thus, for instance, polynucleotides as defined herein include, without limitation, single- and double-stranded DNA, DNA including single- and double-stranded regions, single- and double-stranded RNA, and RNA including single- and double-stranded regions, hybrid molecules comprising DNA and RNA that may be single-stranded or, more typically, double-stranded or include single- and double-stranded regions. In addition, the term “polynucleotide” as used herein refers to triple-stranded regions comprising RNA or DNA or both RNA and DNA. The strands in such regions may be from the same molecule or from different molecules. The regions may include all of one or more of the molecules, but more typically involve only a region of some of the molecules. One of the molecules of a triple-helical region often is an oligonucleotide. The term “polynucleotide” specifically includes cDNAs. The term includes DNAs (including cDNAs) and RNAs that contain one or more modified bases. Thus, DNAs or RNAs with backbones modified for stability or for other reasons, are “polynucleotides” as that term is intended herein. Moreover, DNAs or RNAs comprising unusual bases, such as inosine, or modified bases, such as tritiated bases, are included within the term “polynucleotides” as defined herein. In general, the term “polynucleotide” embraces all chemically, enzymatically and/or metabolically modified forms of unmodified polynucleotides, as well as the chemical forms of DNA and RNA characteristic of viruses and cells, including simple and complex cells.
The term “oligonucleotide” refers to a relatively short polynucleotide, including, without limitation, single-stranded deoxyribonucleotides, single- or double-stranded ribonucleotides, RNArDNA hybrids and double-stranded DNAs. Oligonucleotides, such as single-stranded DNA probe oligonucleotides, are often synthesized by chemical methods, for example using automated oligonucleotide synthesizers that are commercially available. However, oligonucleotides can be made by a variety of other methods, including in vitro recombinant DNA-mediated techniques and by expression of DNAs in cells and organisms.
The term “Ct” as used herein refers to threshold cycle, the cycle number in quantitative polymerase chain reaction (qPCR) at which the fluorescence generated within a reaction well exceeds the defined threshold, i.e. the point during the reaction at which a sufficient number of amplicons have accumulated to meet the defined threshold.
The term “Cp” as used herein refers to “crossing point.” The Cp value is calculated by determining the second derivatives of entire qPCR amplification curves and their maximum value. The Cp value represents the cycle at which the increase of fluorescence is highest and where the logarithmic phase of a PCR begins.
The terms “threshold” or “thresholding” refer to a procedure used to account for non-linear relationships between gene expression measurements and clinical response as well as to further reduce variation in reported patient scores. When thresholding is applied, all measurements below or above a threshold are set to that threshold value. Non-linear relationship between gene expression and outcome could be examined using smoothers or cubic splines to model gene expression in Cox PH regression on recurrence free interval or logistic regression on recurrence status. D. Cox, Journal of the Royal Statistical Society, Series B 34:187-220 (1972). Variation in reported patient scores could be examined as a function of variability in gene expression at the limit of quantitation and/or detection for a particular gene.
As used herein, the term “amplicon,” refers to pieces of DNA that have been synthesized using amplification techniques, such as polymerase chain reactions (PCR) and ligase chain reactions.
“Stringency” of hybridization reactions is readily determinable by one of ordinary skill in the art, and generally is an empirical calculation dependent upon probe length, washing temperature, and salt concentration. In general, longer probes require higher temperatures for proper annealing, while shorter probes need lower temperatures. Hybridization generally depends on the ability of denatured DNA to re-anneal when complementary strands are present in an environment below their melting temperature. The higher the degree of desired homology between the probe and hybridizable sequence, the higher the relative temperature which can be used. As a result, it follows that higher relative temperatures would tend to make the reaction conditions more stringent, while lower temperatures less so. For additional details and explanation of stringency of hybridization reactions, see Ausubel et al., Current Protocols in Molecular Biology (Wiley Interscience Publishers, 1995).
“Stringent conditions” or “high stringency conditions”, as defined herein, typically: (1) employ low ionic strength and high temperature for washing, for example 0.015 M sodium chloride/0.0015 M sodium citrate/0.1% sodium dodecyl sulfate at 50° C.; (2) employ during hybridization a denaturing agent, such as formamide, for example, 50% (v/v) formamide with 0.1% bovine serum albumin/0.1% Ficoll/0.1% polyvinylpyrrolidone/50 mM sodium phosphate buffer at pH 6.5 with 750 mM sodium chloride, 75 mM sodium citrate at 42° C.; or (3) employ 50% formamide, 5×SSC (0.75 M NaCl, 0.075 M sodium citrate), 50 mM sodium phosphate (pH 6.8), 0.1% sodium pyrophosphate, 5×Denhardt's solution, sonicated salmon sperm DNA (50 μg/ml), 0.1% SDS, and 10% dextran sulfate at 42° C., with washes at 42° C. in 0.2×SSC (sodium chloride/sodium citrate) and 50% formamide, followed by a high-stringency wash consisting of 0.1×SSC containing EDTA at 55° C.
“Moderately stringent conditions” may be identified as described by Sambrook et al., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Press, 1989, and include the use of washing solution and hybridization conditions (e.g., temperature, ionic strength and % SDS) less stringent that those described above. An example of moderately stringent conditions is overnight incubation at 37° C. in a solution comprising: 20% formamide, 5×SSC (150 mM NaCl, 15 mM trisodium citrate), 50 mM sodium phosphate (pH 7.6), 5×Denhardt's solution, 10% dextran sulfate, and 20 mg/ml denatured sheared salmon sperm DNA, followed by washing the filters in 1×SSC at about 37-50° C. The skilled artisan will recognize how to adjust the temperature, ionic strength, etc. as necessary to accommodate factors such as probe length and the like.
The terms “splicing” and “RNA splicing” are used interchangeably and refer to RNA processing that removes introns and joins exons to produce mature mRNA with continuous coding sequence that moves into the cytoplasm of an eukaryotic cell.
The terms “co-express” and “co-expressed”, as used herein, refer to a statistical correlation between the amounts of different transcript sequences across a population of different patients. Pairwise co-expression may be calculated by various methods known in the art, e.g., by calculating Pearson correlation coefficients or Spearman correlation coefficients. Co-expressed gene cliques may also be identified using graph theory. An analysis of co-expression may be calculated using normalized expression data. A gene is said to be co-expressed with a particular disclosed gene when the expression level of the gene exhibits a Pearson correlation coefficient greater than or equal to 0.6.
A “computer-based system” refers to a system of hardware, software, and data storage medium used to analyze information. The minimum hardware of a patient computer-based system comprises a central processing unit (CPU), and hardware for data input, data output (e.g., display), and data storage. An ordinarily skilled artisan can readily appreciate that any currently available computer-based systems and/or components thereof are suitable for use in connection with the methods of the present disclosure. The data storage medium may comprise any manufacture comprising a recording of the present information as described above, or a memory access device that can access such a manufacture.
To “record” data, programming or other information on a computer readable medium refers to a process for storing information, using any such methods as known in the art. Any convenient data storage structure may be chosen, based on the means used to access the stored information. A variety of data processor programs and formats can be used for storage, e.g. word processing text file, database format, etc.
A “processor” or “computing means” references any hardware and/or software combination that will perform the functions required of it. For example, a suitable processor may be a programmable digital microprocessor such as available in the form of an electronic controller, mainframe, server or personal computer (desktop or portable). Where the processor is programmable, suitable programming can be communicated from a remote location to the processor, or previously saved in a computer program product (such as a portable or fixed computer readable storage medium, whether magnetic, optical or solid state device based). For example, a magnetic medium or optical disk may carry the programming, and can be read by a suitable reader communicating with each processor at its corresponding station.
As used herein, the terms “active surveillance” and “watchful waiting” mean closely monitoring a patient's condition without giving any treatment until symptoms appear or change. For example, in prostate cancer, watchful waiting is usually used in older men with other medical problems and early-stage disease.
As used herein, the term “surgery” applies to surgical methods undertaken for removal of cancerous tissue, including pelvic lymphadenectomy, radical prostatectomy, transurethral resection of the prostate (TURP), excision, dissection, and tumor biopsy/removal. The tumor tissue or sections used for gene expression analysis may have been obtained from any of these methods.
As used herein, the term “therapy” includes radiation, hormonal therapy, cryosurgery, chemotherapy, biologic therapy, and high-intensity focused ultrasound.
As used herein, the term “TMPRSS fusion” and “TMPRSS2 fusion” are used interchangeably and refer to a fusion of the androgen-driven TMPRSS2 gene with the ERG oncogene, which has been demonstrated to have a significant association with prostate cancer. S. Perner, et al., Urologe A. 46(7):754-760 (2007); S. A. Narod, et al., Br J Cancer 99(6):847-851 (2008). As used herein, positive TMPRSS fusion status indicates that the TMPRSS fusion is present in a tissue sample, whereas negative TMPRSS fusion status indicates that the TMPRSS fusion is not present in a tissue sample. Experts skilled in the art will recognize that there are numerous ways to determine TMPRSS fusion status, such as real-time, quantitative PCR or high-throughput sequencing. See, e.g., K. Mertz, et al., Neoplasis 9(3):200-206 (2007); C. Maher, Nature 458(7234):97-101 (2009).
Gene Expression Methods Using Genes, Gene Subsets, and MicroRNAs The present disclosure provides molecular assays that involve measurement of expression level(s) of one or more genes, gene subsets, microRNAs, or one or more microRNAs in combination with one or more genes or gene subsets, from a biological sample obtained from a prostate cancer patient, and analysis of the measured expression levels to provide information concerning the likelihood of cancer recurrence.
The present disclosure further provides methods to classify a prostate tumor based on expression level(s) of one or more genes and/or microRNAs. The disclosure further provides genes and/or microRNAs that are associated, positively or negatively, with a particular prognostic outcome. In exemplary embodiments, the clinical outcomes include cRFI and bRFI. In another embodiment, patients may be classified in risk groups based on the expression level(s) of one or more genes and/or microRNAs that are associated, positively or negatively, with a prognostic factor. In an exemplary embodiment, that prognostic factor is Gleason pattern.
Various technological approaches for determination of expression levels of the disclosed genes and microRNAs are set forth in this specification, including, without limitation, RT-PCR, microarrays, high-throughput sequencing, serial analysis of gene expression (SAGE) and Digital Gene Expression (DGE), which will be discussed in detail below. In particular aspects, the expression level of each gene or microRNA may be determined in relation to various features of the expression products of the gene including exons, introns, protein epitopes and protein activity.
The expression level(s) of one or more genes and/or microRNAs may be measured in tumor tissue. For example, the tumor tissue may obtained upon surgical removal or resection of the tumor, or by tumor biopsy. The tumor tissue may be or include histologically “normal” tissue, for example histologically “normal” tissue adjacent to a tumor. The expression level of genes and/or microRNAs may also be measured in tumor cells recovered from sites distant from the tumor, for example circulating tumor cells, body fluid (e.g., urine, blood, blood fraction, etc.).
The expression product that is assayed can be, for example, RNA or a polypeptide. The expression product may be fragmented. For example, the assay may use primers that are complementary to target sequences of an expression product and could thus measure full transcripts as well as those fragmented expression products containing the target sequence. Further information is provided in Table A (inserted in specification prior to claims).
The RNA expression product may be assayed directly or by detection of a cDNA product resulting from a PCR-based amplification method, e.g., quantitative reverse transcription polymerase chain reaction (qRT-PCR). (See e.g., U.S. Pat. No. 7,587,279). Polypeptide expression product may be assayed using immunohistochemistry (IHC). Further, both RNA and polypeptide expression products may also be is assayed using microarrays.
Clinical Utility Prostate cancer is currently diagnosed using a digital rectal exam (DRE) and Prostate-specific antigen (PSA) test. If PSA results are high, patients will generally undergo a prostate tissue biopsy. The pathologist will review the biopsy samples to check for cancer cells and determine a Gleason score. Based on the Gleason score, PSA, clinical stage, and other factors, the physician must make a decision whether to monitor the patient, or treat the patient with surgery and therapy.
At present, clinical decision-making in early stage prostate cancer is governed by certain histopathologic and clinical factors. These include: (1) tumor factors, such as clinical stage (e.g. T1, T2), PSA level at presentation, and Gleason grade, that are very strong prognostic factors in determining outcome; and (2) host factors, such as age at diagnosis and co-morbidity. Because of these factors, the most clinically useful means of stratifying patients with localized disease according to prognosis has been through multifactorial staging, using the clinical stage, the serum PSA level, and tumor grade (Gleason grade) together. In the 2007 updated American Urological Association (AUA) guidelines for management of clinically localized prostate cancer, these parameters have been grouped to determine whether a patient is at low, intermediate, or high risk of biochemical (PSA) relapse after local therapy. I. Thompson, et al., Guideline for the management of clinically localized prostate cancer, J Urol. 177(6):2106-31 (2007).
Although such classifications have proven to be helpful in distinguishing patients with localized disease who may need adjuvant therapy after surgery/radiation, they have less ability to discriminate between indolent cancers, which do not need to be treated with local therapy, and aggressive tumors, which require local therapy. In fact, these algorithms are of increasingly limited use for deciding between conservative management and definitive therapy because the bulk of prostate cancers diagnosed in the PSA screening era now present with clinical stage T1c and PSA ≤10 ng/mL.
Patients with T1 prostate cancer have disease that is not clinically apparent but is discovered either at transurethral resection of the prostate (TURP, T1a, T1b) or at biopsy performed because of an elevated PSA (>4 ng/mL, T1c). Approximately 80% of the cases presenting in 2007 are clinical T1 at diagnosis. In a Scandinavian trial, OS at 10 years was 85% for patients with early stage prostate cancer (T1/T2) and Gleason score ≤7, after radical prostatectomy.
Patients with T2 prostate cancer have disease that is clinically evident and is organ confined; patients with T3 tumors have disease that has penetrated the prostatic capsule and/or has invaded the seminal vesicles. It is known from surgical series that clinical staging underestimates pathological stage, so that about 20% of patients who are clinically T2 will be pT3 after prostatectomy. Most of patients with T2 or T3 prostate cancer are treated with local therapy, either prostatectomy or radiation. The data from the Scandinavian trial suggest that for T2 patients with Gleason grade ≤7, the effect of prostatectomy on survival is at most 5% at 10 years; the majority of patients do not benefit from surgical treatment at the time of diagnosis. For T2 patients with Gleason >7 or for T3 patients, the treatment effect of prostatectomy is assumed to be significant but has not been determined in randomized trials. It is known that these patients have a significant risk (10-30%) of recurrence at 10 years after local treatment, however, there are no prospective randomized trials that define the optimal local treatment (radical prostatectomy, radiation) at diagnosis, which patients are likely to benefit from neo-adjuvant/adjuvant androgen deprivation therapy, and whether treatment (androgen deprivation, chemotherapy) at the time of biochemical failure (elevated PSA) has any clinical benefit.
Accurately determining Gleason scores from needle biopsies presents several technical challenges. First, interpreting histology that is “borderline” between Gleason pattern is highly subjective, even for urologic pathologists. Second, incomplete biopsy sampling is yet another reason why the “predicted” Gleason score on biopsy does not always correlate with the actual “observed” Gleason score of the prostate cancer in the gland itself. Hence, the accuracy of Gleason scoring is dependent upon not only the expertise of the pathologist reading the slides, but also on the completeness and adequacy of the prostate biopsy sampling strategy. T. Stamey, Urology 45:2-12 (1995). The gene/microRNA expression assay and associated information provided by the practice of the methods disclosed herein provide a molecular assay method to facilitate optimal treatment decision-making in early stage prostate cancer. An exemplary embodiment provides genes and microRNAs, the expression levels of which are associated (positively or negatively) with prostate cancer recurrence. For example, such a clinical tool would enable physicians to identify T2/T3 patients who are likely to recur following definitive therapy and need adjuvant treatment.
In addition, the methods disclosed herein may allow physicians to classify tumors, at a molecular level, based on expression level(s) of one or more genes and/or microRNAs that are significantly associated with prognostic factors, such as Gleason pattern and TMPRSS fusion status. These methods would not be impacted by the technical difficulties of intra-patient variability, histologically determining Gleason pattern in biopsy samples, or inclusion of histologically normal appearing tissue adjacent to tumor tissue. Multi-analyte gene/microRNA expression tests can be used to measure the expression level of one or more genes and/or microRNAs involved in each of several relevant physiologic processes or component cellular characteristics. The methods disclosed herein may group the genes and/or microRNAs. The grouping of genes and microRNAs may be performed at least in part based on knowledge of the contribution of those genes and/or microRNAs according to physiologic functions or component cellular characteristics, such as in the groups discussed above. Furthermore, one or more microRNAs may be combined with one or moregenes. The gene-microRNA combination may be selected based on the likelihood that the gene-microRNA combination functionally interact. The formation of groups (or gene subsets), in addition, can facilitate the mathematical weighting of the contribution of various expression levels to cancer recurrence. The weighting of a gene/microRNA group representing a physiological process or component cellular characteristic can reflect the contribution of that process or characteristic to the pathology of the cancer and clinical outcome.
Optionally, the methods disclosed may be used to classify patients by risk, for example risk of recurrence. Patients can be partitioned into subgroups (e.g., tertiles or quartiles) and the values chosen will define subgroups of patients with respectively greater or lesser risk.
The utility of a disclosed gene marker in predicting prognosis may not be unique to that marker. An alternative marker having an expression pattern that is parallel to that of a disclosed gene may be substituted for, or used in addition to, that co-expressed gene or microRNA. Due to the co-expression of such genes or microRNAs, substitution of expression level values should have little impact on the overall utility of the test. The closely similar expression patterns of two genes or microRNAs may result from involvement of both genes or microRNAs in the same process and/or being under common regulatory control in prostate tumor cells. The present disclosure thus contemplates the use of such co-expressed genes, gene subsets, or microRNAs as substitutes for, or in addition to, genes of the present disclosure.
Methods of Assaying Expression Levels of a Gene Product The methods and compositions of the present disclosure will employ, unless otherwise indicated, conventional techniques of molecular biology (including recombinant techniques), microbiology, cell biology, and biochemistry, which are within the skill of the art. Exemplary techniques are explained fully in the literature, such as, “Molecular Cloning: A Laboratory Manual”, 2nd edition (Sambrook et al., 1989); “Oligonucleotide Synthesis” (M. J. Gait, ed., 1984); “Animal Cell Culture” (R. I. Freshney, ed., 1987); “Methods in Enzymology” (Academic Press, Inc.); “Handbook of Experimental Immunology”, 4th edition (D. M. Weir & C. C. Blackwell, eds., Blackwell Science Inc., 1987); “Gene Transfer Vectors for Mammalian Cells” (J. M. Miller & M. P. Calos, eds., 1987); “Current Protocols in Molecular Biology” (F. M. Ausubel et al., eds., 1987); and “PCR: The Polymerase Chain Reaction”, (Mullis et al., eds., 1994).
Methods of gene expression profiling include methods based on hybridization analysis of polynucleotides, methods based on sequencing of polynucleotides, and proteomics-based methods. Exemplary methods known in the art for the quantification of RNA expression in a sample include northern blotting and in situ hybridization (Parker & Barnes, Methods in Molecular Biology 106:247-283 (1999)); RNAse protection assays (Hod, Biotechniques 13:852-854 (1992)); and PCR-based methods, such as reverse transcription PCT (RT-PCR) (Weis et al., Trends in Genetics 8:263-264 (1992)). Antibodies may be employed that can recognize sequence-specific duplexes, including DNA duplexes, RNA duplexes, and DNA-RNA hybrid duplexes or DNA-protein duplexes. Representative methods for sequencing-based gene expression analysis include Serial Analysis of Gene Expression (SAGE), and gene expression analysis by massively parallel signature sequencing (MPSS).
Reverse Transcriptase PCR (RT-PCR)
Typically, mRNA or microRNA is isolated from a test sample. The starting material is typically total RNA isolated from a human tumor, usually from a primary tumor. Optionally, normal tissues from the same patient can be used as an internal control. Such normal tissue can be histologically-appearing normal tissue adjacent a tumor. mRNA or microRNA can be extracted from a tissue sample, e.g., from a sample that is fresh, frozen (e.g. fresh frozen), or paraffin-embedded and fixed (e.g. formalin-fixed).
General methods for mRNA and microRNA extraction are well known in the art and are disclosed in standard textbooks of molecular biology, including Ausubel et al., Current Protocols of Molecular Biology, John Wiley and Sons (1997). Methods for RNA extraction from paraffin embedded tissues are disclosed, for example, in Rupp and Locker, Lab Invest. 56:A67 (1987), and De Andres et al., BioTechniques 18:42044 (1995). In particular, RNA isolation can be performed using a purification kit, buffer set and protease from commercial manufacturers, such as Qiagen, according to the manufacturer's instructions. For example, total RNA from cells in culture can be isolated using Qiagen RNeasy mini-columns. Other commercially available RNA isolation kits include MasterPure™ Complete DNA and RNA Purification Kit (EPICENTRE®, Madison, Wis.), and Paraffin Block RNA Isolation Kit (Ambion, Inc.). Total RNA from tissue samples can be isolated using RNA Stat-60 (Tel-Test). RNA prepared from tumor can be isolated, for example, by cesium chloride density gradient centrifugation.
The sample containing the RNA is then subjected to reverse transcription to produce cDNA from the RNA template, followed by exponential amplification in a PCR reaction. The two most commonly used reverse transcriptases are avilo myeloblastosis virus reverse transcriptase (AMV-RT) and Moloney murine leukemia virus reverse transcriptase (MMLV-RT). The reverse transcription step is typically primed using specific primers, random hexamers, or oligo-dT primers, depending on the circumstances and the goal of expression profiling. For example, extracted RNA can be reverse-transcribed using a GeneAmp RNA PCR kit (Perkin Elmer, CA, USA), following the manufacturer's instructions. The derived cDNA can then be used as a template in the subsequent PCR reaction.
PCR-based methods use a thermostable DNA-dependent DNA polymerase, such as a Taq DNA polymerase. For example, TaqMan® PCR typically utilizes the 5′-nuclease activity of Taq or Tth polymerase to hydrolyze a hybridization probe bound to its target amplicon, but any enzyme with equivalent 5′ nuclease activity can be used. Two oligonucleotide primers are used to generate an amplicon typical of a PCR reaction product. A third oligonucleotide, or probe, can be designed to facilitate detection of a nucleotide sequence of the amplicon located between the hybridization sites the two PCR primers. The probe can be detectably labeled, e.g., with a reporter dye, and can further be provided with both a fluorescent dye, and a quencher fluorescent dye, as in a Taqman® probe configuration. Where a Taqman® probe is used, during the amplification reaction, the Taq DNA polymerase enzyme cleaves the probe in a template-dependent manner. The resultant probe fragments disassociate in solution, and signal from the released reporter dye is free from the quenching effect of the second fluorophore. One molecule of reporter dye is liberated for each new molecule synthesized, and detection of the unquenched reporter dye provides the basis for quantitative interpretation of the data.
TaqMan® RT-PCR can be performed using commercially available equipment, such as, for example, high-throughput platforms such as the ABI PRISM 7700 Sequence Detection System® (Perkin-Elmer-Applied Biosystems, Foster City, Calif., USA), or Lightcycler (Roche Molecular Biochemicals, Mannheim, Germany). In a preferred embodiment, the procedure is run on a LightCycler® 480 (Roche Diagnostics) real-time PCR system, which is a microwell plate-based cycler platform.
5′-Nuclease assay data are commonly initially expressed as a threshold cycle (“CT”). Fluorescence values are recorded during every cycle and represent the amount of product amplified to that point in the amplification reaction. The threshold cycle (CT) is generally described as the point when the fluorescent signal is first recorded as statistically significant. Alternatively, data may be expressed as a crossing point (“Cp”). The Cp value is calculated by determining the second derivatives of entire qPCR amplification curves and their maximum value. The Cp value represents the cycle at which the increase of fluorescence is highest and where the logarithmic phase of a PCR begins.
To minimize errors and the effect of sample-to-sample variation, RT-PCR is usually performed using an internal standard. The ideal internal standard gene (also referred to as a reference gene) is expressed at a quite constant level among cancerous and non-cancerous tissue of the same origin (i.e., a level that is not significantly different among normal and cancerous tissues), and is not significantly affected by the experimental treatment (i.e., does not exhibit a significant difference in expression level in the relevant tissue as a result of exposure to chemotherapy), and expressed at a quite constant level among the same tissue taken from different patients. For example, reference genes useful in the methods disclosed herein should not exhibit significantly different expression levels in cancerous prostate as compared to normal prostate tissue. RNAs frequently used to normalize patterns of gene expression are mRNAs for the housekeeping genes glyceraldehyde-3-phosphate-dehydrogenase (GAPDH) and (3-actin. Exemplary reference genes used for normalization comprise one or more of the following genes: AAMP, ARF1, ATP5E, CLTC, GPS1, and PGK1. Gene expression measurements can be normalized relative to the mean of one or more (e.g., 2, 3, 4, 5, or more) reference genes. Reference-normalized expression measurements can range from 2 to 15, where a one unit increase generally reflects a 2-fold increase in RNA quantity.
Real time PCR is compatible both with quantitative competitive PCR, where internal competitor for each target sequence is used for normalization, and with quantitative comparative PCR using a normalization gene contained within the sample, or a housekeeping gene for RT-PCR. For further details see, e.g. Held et al., Genome Research 6:986-994 (1996).
The steps of a representative protocol for use in the methods of the present disclosure use fixed, paraffin-embedded tissues as the RNA source. For example, mRNA isolation, purification, primer extension and amplification can be performed according to methods available in the art. (see, e.g., Godfrey et al. J. Molec. Diagnostics 2: 84-91 (2000); Specht et al., Am. J. Pathol. 158: 419-29 (2001)). Briefly, a representative process starts with cutting about 10 μm thick sections of paraffin-embedded tumor tissue samples. The RNA is then extracted, and protein and DNA depleted from the RNA-containing sample. After analysis of the RNA concentration, RNA is reverse transcribed using gene specific primers followed by RT-PCR to provide for cDNA amplification products.
Design of Intron-Based PCR Primers and Probes
PCR primers and probes can be designed based upon exon or intron sequences present in the mRNA transcript of the gene of interest. Primer/probe design can be performed using publicly available software, such as the DNA BLAT software developed by Kent, W. J., Genome Res. 12(4):656-64 (2002), or by the BLAST software including its variations.
Where necessary or desired, repetitive sequences of the target sequence can be masked to mitigate non-specific signals. Exemplary tools to accomplish this include the Repeat Masker program available on-line through the Baylor College of Medicine, which screens DNA sequences against a library of repetitive elements and returns a query sequence in which the repetitive elements are masked. The masked intron sequences can then be used to design primer and probe sequences using any commercially or otherwise publicly available primer/probe design packages, such as Primer Express (Applied Biosystems); MGB assay-by-design (Applied Biosystems); Primer3 (Steve Rozen and Helen J. Skaletsky (2000) Primer3 on the WWW for general users and for biologist programmers. See S. Rrawetz, S. Misener, Bioinformatics Methods and Protocols: Methods in Molecular Biology, pp. 365-386 (Humana Press).
Other factors that can influence PCR primer design include primer length, melting temperature (Tm), and G/C content, specificity, complementary primer sequences, and 3′-end sequence. In general, optimal PCR primers are generally 17-30 bases in length, and contain about 20-80%, such as, for example, about 50-60% G+C bases, and exhibit Tm's between 50 and 80° C., e.g. about 50 to 70° C.
For further guidelines for PCR primer and probe design see, e.g. Dieffenbach, C W. et al, “General Concepts for PCR Primer Design” in: PCR Primer, A Laboratory Manual, Cold Spring Harbor Laboratory Press, New York, 1995, pp. 133-155; Innis and Gelfand, “Optimization of PCRs” in: PCR Protocols, A Guide to Methods and Applications, CRC Press, London, 1994, pp. 5-11; and Plasterer, T.N. Primerselect: Primer and probe design. Methods Mol. Biol. 70:520-527 (1997), the entire disclosures of which are hereby expressly incorporated by reference.
Table A provides further information concerning the primer, probe, and amplicon sequences associated with the Examples disclosed herein.
MassARRAY® System
In MassARRAY-based methods, such as the exemplary method developed by Sequenom, Inc. (San Diego, Calif.) following the isolation of RNA and reverse transcription, the obtained cDNA is spiked with a synthetic DNA molecule (competitor), which matches the targeted cDNA region in all positions, except a single base, and serves as an internal standard. The cDNA/competitor mixture is PCR amplified and is subjected to a post-PCR shrimp alkaline phosphatase (SAP) enzyme treatment, which results in the dephosphorylation of the remaining nucleotides. After inactivarion of the alkaline phosphatase, the PCR products from the competitor and cDNA are subjected to primer extension, which generates distinct mass signals for the competitor- and cDNA-derives PCR products. After purification, these products are dispensed on a chip array, which is pre-loaded with components needed for analysis with matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis. The cDNA present in the reaction is then quantified by analyzing the ratios of the peak areas in the mass spectrum generated. For further details see, e.g. Ding and Cantor, Proc. Natl. Acad. Sci. USA 100:3059-3064 (2003).
Other PCR-Based Methods
Further PCR-based techniques that can find use in the methods disclosed herein include, for example, BeadArray® technology (Illumina, San Diego, Calif.; Oliphant et al., Discovery of Markers for Disease (Supplement to Biotechniques), June 2002; Ferguson et al., Analytical Chemistry 72:5618 (2000)); BeadsArray for Detection of Gene Expression® (BADGE), using the commercially available LuminexlOO LabMAP® system and multiple color-coded microspheres (Luminex Corp., Austin, Tex.) in a rapid assay for gene expression (Yang et al., Genome Res. 11:1888-1898 (2001)); and high coverage expression profiling (HiCEP) analysis (Fukumura et al., Nucl. Acids. Res. 31(16) e94 (2003).
Microarrays
Expression levels of a gene or microArray of interest can also be assessed using the microarray technique. In this method, polynucleotide sequences of interest (including cDNAs and oligonucleotides) are arrayed on a substrate. The arrayed sequences are then contacted under conditions suitable for specific hybridization with detectably labeled cDNA generated from RNA of a test sample. As in the RT-PCR method, the source of RNA typically is total RNA isolated from a tumor sample, and optionally from normal tissue of the same patient as an internal control or cell lines. RNA can be extracted, for example, from frozen or archived paraffin-embedded and fixed (e.g. formalin-fixed) tissue samples.
For example, PCR amplified inserts of cDNA clones of a gene to be assayed are applied to a substrate in a dense array. Usually at least 10,000 nucleotide sequences are applied to the substrate. For example, the microarrayed genes, immobilized on the microchip at 10,000 elements each, are suitable for hybridization under stringent conditions. Fluorescently labeled cDNA probes may be generated through incorporation of fluorescent nucleotides by reverse transcription of RNA extracted from tissues of interest. Labeled cDNA probes applied to the chip hybridize with specificity to each spot of DNA on the array. After washing under stringent conditions to remove non-specifically bound probes, the chip is scanned by confocal laser microscopy or by another detection method, such as a CCD camera. Quantitation of hybridization of each arrayed element allows for assessment of corresponding RNA abundance.
With dual color fluorescence, separately labeled cDNA probes generated from two sources of RNA are hybridized pair wise to the array. The relative abundance of the transcripts from the two sources corresponding to each specified gene is thus determined simultaneously. The miniaturized scale of the hybridization affords a convenient and rapid evaluation of the expression pattern for large numbers of genes. Such methods have been shown to have the sensitivity required to detect rare transcripts, which are expressed at a few copies per cell, and to reproducibly detect at least approximately two-fold differences in the expression levels (Schena et at, Proc. Natl. Acad. ScL USA 93(2):106-149 (1996)). Microarray analysis can be performed by commercially available equipment, following manufacturer's protocols, such as by using the Affymetrix GenChip® technology, or Incyte's microarray technology.
Serial Analysis of Gene Expression (SAGE)
Serial analysis of gene expression (SAGE) is a method that allows the simultaneous and quantitative analysis of a large number of gene transcripts, without the need of providing an individual hybridization probe for each transcript. First, a short sequence tag (about 10-14 bp) is generated that contains sufficient information to uniquely identify a transcript, provided that the tag is obtained from a unique position within each transcript. Then, many transcripts are linked together to form long serial molecules, that can be sequenced, revealing the identity of the multiple tags simultaneously. The expression pattern of any population of transcripts can be quantitatively evaluated by determining the abundance of individual tags, and identifying the gene corresponding to each tag. For more details see, e.g. Velculescu et al., Science 270:484-487 (1995); and Velculescu et al., Cell 88:243-51 (1997).
Gene Expression Analysis by Nucleic Acid Sequencing
Nucleic acid sequencing technologies are suitable methods for analysis of gene expression. The principle underlying these methods is that the number of times a cDNA sequence is detected in a sample is directly related to the relative expression of the RNA corresponding to that sequence. These methods are sometimes referred to by the term Digital Gene Expression (DGE) to reflect the discrete numeric property of the resulting data. Early methods applying this principle were Serial Analysis of Gene Expression (SAGE) and Massively Parallel Signature Sequencing (MPSS). See, e.g., S. Brenner, et al., Nature Biotechnology 18(6):630-634 (2000). More recently, the advent of “next-generation” sequencing technologies has made DGE simpler, higher throughput, and more affordable. As a result, more laboratories are able to utilize DGE to screen the expression of more genes in more individual patient samples than previously possible. See, e.g., J. Marioni, Genome Research 18(9):1509-1517 (2008); R. Morin, Genome Research 18(4):610-621 (2008); A. Mortazavi, Nature Methods 5(7):621-628 (2008); N. Cloonan, Nature Methods 5(7):613-619 (2008).
Isolating RNA from Body Fluids
Methods of isolating RNA for expression analysis from blood, plasma and serum (see, e.g., K. Enders, et al., Clin Chem 48, 1647-53 (2002) (and references cited therein) and from urine (see, e.g., R. Boom, et al., J Clin Microbiol. 28, 495-503 (1990) and references cited therein) have been described.
Immunohistochemistry
Immunohistochemistry methods are also suitable for detecting the expression levels of genes and applied to the method disclosed herein. Antibodies (e.g., monoclonal antibodies) that specifically bind a gene product of a gene of interest can be used in such methods. The antibodies can be detected by direct labeling of the antibodies themselves, for example, with radioactive labels, fluorescent labels, hapten' labels such as, biotin, or an enzyme such as horse radish peroxidase or alkaline phosphatase. Alternatively, unlabeled primary antibody can be used in conjunction with a labeled secondary antibody specific for the primary antibody. Immunohistochemistry protocols and kits are well known in the art and are commercially available.
Proteomics
The term “proteome” is defined as the totality of the proteins present in a sample (e.g. tissue, organism, or cell culture) at a certain point of time. Proteomics includes, among other things, study of the global changes of protein expression in a sample (also referred to as “expression proteomics”). Proteomics typically includes the following steps: (1) separation of individual proteins in a sample by 2-D gel electrophoresis (2-D PAGE); (2) identification of the individual proteins recovered from the gel, e.g. my mass spectrometry or N-terminal sequencing, and (3) analysis of the data using bioinformatics.
General Description of the mRNA/microRNA Isolation, Purification and Amplification
The steps of a representative protocol for profiling gene expression using fixed, paraffin-embedded tissues as the RNA source, including mRNA or microRNA isolation, purification, primer extension and amplification are provided in various published journal articles. (See, e.g., T. E. Godfrey, et al, J. Molec. Diagnostics 2: 84-91 (2000); K. Specht et al., Am. J. Pathol. 158: 419-29 (2001), M. Cronin, et al., Am J Pathol 164:35-42 (2004)). Briefly, a representative process starts with cutting a tissue sample section (e.g. about 10 μm thick sections of a paraffin-embedded tumor tissue sample). The RNA is then extracted, and protein and DNA are removed. After analysis of the RNA concentration, RNA repair is performed if desired. The sample can then be subjected to analysis, e.g., by reverse transcribed using gene specific promoters followed by RT-PCR.
Statistical Analysis of Expression Levels in Identification of Genes and MicroRNAs One skilled in the art will recognize that there are many statistical methods that may be used to determine whether there is a significant relationship between a parameter of interest (e.g., recurrence) and expression levels of a marker gene/microRNA as described here. In an exemplary embodiment, the present invention provides a stratified cohort sampling design (a form of case-control sampling) using tissue and data from prostate cancer patients. Selection of specimens was stratified by T stage (T1, T2), year cohort (<1993, ≥1993), and prostatectomy Gleason Score (low/intermediate, high). All patients with clinical recurrence were selected and a sample of patients who did not experience a clinical recurrence was selected. For each patient, up to two enriched tumor specimens and one normal-appearing tissue sample was assayed.
All hypothesis tests were reported using two-sided p-values. To investigate if there is a significant relationship of outcomes (clinical recurrence-free interval (cRFI), biochemical recurrence-free interval (bRFI), prostate cancer-specific survival (PCSS), and overall survival (OS)) with individual genes and/or microRNAs, demographic or clinical covariates Cox Proportional Hazards (PH) models using maximum weighted pseudo partial-likelihood estimators were used and p-values from Wald tests of the null hypothesis that the hazard ratio (HR) is one are reported. To investigate if there is a significant relationship between individual genes and/or microRNAs and Gleason pattern of a particular sample, ordinal logistic regression models using maximum weighted likelihood methods were used and p-values from Wald tests of the null hypothesis that the odds ratio (OR) is one are reported.
Coexpression Analysis The present disclosure provides a method to determine tumor stage based on the expression of staging genes, or genes that co-express with particular staging genes. To perform particular biological processes, genes often work together in a concerted way, i.e. they are co-expressed. Co-expressed gene groups identified for a disease process like cancer can serve as biomarkers for tumor status and disease progression. Such co-expressed genes can be assayed in lieu of, or in addition to, assaying of the staging gene with which they are co-expressed.
In an exemplary embodiment, the joint correlation of gene expression levels among prostate cancer specimens under study may be assessed. For this purpose, the correlation structures among genes and specimens may be examined through hierarchical cluster methods. This information may be used to confirm that genes that are known to be highly correlated in prostate cancer specimens cluster together as expected. Only genes exhibiting a nominally significant (unadjusted p<0.05) relationship with cRFI in the univariate Cox PH regression analysis will be included in these analyses.
One skilled in the art will recognize that many co-expression analysis methods now known or later developed will fall within the scope and spirit of the present invention. These methods may incorporate, for example, correlation coefficients, co-expression network analysis, clique analysis, etc., and may be based on expression data from RT-PCR, microarrays, sequencing, and other similar technologies. For example, gene expression clusters can be identified using pair-wise analysis of correlation based on Pearson or Spearman correlation coefficients. (See, e.g., Pearson K. and Lee A., Biometrika 2, 357 (1902); C. Spearman, Amer. J. Psychol 15:72-101 (1904); J. Myers, A. Well, Research Design and Statistical Analysis, p. 508 (2nd Ed., 2003).)
Normalization of Expression Levels The expression data used in the methods disclosed herein can be normalized. Normalization refers to a process to correct for (normalize away), for example, differences in the amount of RNA assayed and variability in the quality of the RNA used, to remove unwanted sources of systematic variation in Ct or Cp measurements, and the like. With respect to RT-PCR experiments involving archived fixed paraffin embedded tissue samples, sources of systematic variation are known to include the degree of RNA degradation relative to the age of the patient sample and the type of fixative used to store the sample. Other sources of systematic variation are attributable to laboratory processing conditions.
Assays can provide for normalization by incorporating the expression of certain normalizing genes, which do not significantly differ in expression levels under the relevant conditions. Exemplary normalization genes disclosed herein include housekeeping genes. (See, e.g., E. Eisenberg, et al., Trends in Genetics 19(7):362-365 (2003).) Normalization can be based on the mean or median signal (Ct or Cp) of all of the assayed genes or a large subset thereof (global normalization approach). In general, the normalizing genes, also referred to as reference genes should be genes that are known not to exhibit significantly different expression in prostate cancer as compared to non-cancerous prostate tissue, and are not significantly affected by various sample and process conditions, thus provide for normalizing away extraneous effects.
In exemplary embodiments, one or more of the following genes are used as references by which the mRNA or microRNA expression data is normalized: AAMP, ARF1, ATP5E, CLTC, GPS1, and PGK1. In another exemplary embodiment, one or more of the following microRNAs are used as references by which the expression data of microRNAs are normalized: hsa-miR-106a; hsa-miR-146b-5p; hsa-miR-191; hsa-miR-19b; and hsa-miR-92a. The calibrated weighted average CT or Cp measurements for each of the prognostic and predictive genes or microRNAs may be normalized relative to the mean of five or more reference genes or microRNAs.
Those skilled in the art will recognize that normalization may be achieved in numerous ways, and the techniques described above are intended only to be exemplary, not exhaustive.
Standardization of Expression Levels The expression data used in the methods disclosed herein can be standardized. Standardization refers to a process to effectively put all the genes or microRNAs on a comparable scale. This is performed because some genes or microRNAs will exhibit more variation (a broader range of expression) than others. Standardization is performed by dividing each expression value by its standard deviation across all samples for that gene or microRNA. Hazard ratios are then interpreted as the relative risk of recurrence per 1 standard deviation increase in expression.
Kits of the Invention The materials for use in the methods of the present invention are suited for preparation of kits produced in accordance with well-known procedures. The present disclosure thus provides kits comprising agents, which may include gene (or microRNA)-specific or gene (or microRNA)-selective probes and/or primers, for quantifying the expression of the disclosed genes or microRNAs for predicting prognostic outcome or response to treatment. Such kits may optionally contain reagents for the extraction of RNA from tumor samples, in particular fixed paraffin-embedded tissue samples and/or reagents for RNA amplification. In addition, the kits may optionally comprise the reagent(s) with an identifying description or label or instructions relating to their use in the methods of the present invention. The kits may comprise containers (including microliter plates suitable for use in an automated implementation of the method), each with one or more of the various materials or reagents (typically in concentrated form) utilized in the methods, including, for example, chromatographic columns, pre-fabricated microarrays, buffers, the appropriate nucleotide triphosphates (e.g., dATP, dCTP, dGTP and dTTP; or rATP, rCTP, rGTP and UTP), reverse transcriptase, DNA polymerase, RNA polymerase, and one or more probes and primers of the present invention (e.g., appropriate length poly(T) or random primers linked to a promoter reactive with the RNA polymerase). Mathematical algorithms used to estimate or quantify prognostic or predictive information are also properly potential components of kits.
Reports The methods of this invention, when practiced for commercial diagnostic purposes, generally produce a report or summary of information obtained from the herein-described methods. For example, a report may include information concerning expression levels of one or more genes and/or microRNAs, classification of the tumor or the patient's risk of recurrence, the patient's likely prognosis or risk classification, clinical and pathologic factors, and/or other information. The methods and reports of this invention can further include storing the report in a database. The method can create a record in a database for the subject and populate the record with data. The report may be a paper report, an auditory report, or an electronic record. The report may be displayed and/or stored on a computing device (e.g., handheld device, desktop computer, smart device, website, etc.). It is contemplated that the report is provided to a physician and/or the patient. The receiving of the report can further include establishing a network connection to a server computer that includes the data and report and requesting the data and report from the server computer.
Computer Program The values from the assays described above, such as expression data, can be calculated and stored manually. Alternatively, the above-described steps can be completely or partially performed by a computer program product. The present invention thus provides a computer program product including a computer readable storage medium having a computer program stored on it. The program can, when read by a computer, execute relevant calculations based on values obtained from analysis of one or more biological sample from an individual (e.g., gene expression levels, normalization, standardization, thresholding, and conversion of values from assays to a score and/or text or graphical depiction of tumor stage and related information). The computer program product has stored therein a computer program for performing the calculation.
The present disclosure provides systems for executing the program described above, which system generally includes: a) a central computing environment; b) an input device, operatively connected to the computing environment, to receive patient data, wherein the patient data can include, for example, expression level or other value obtained from an assay using a biological sample from the patient, or microarray data, as described in detail above; c) an output device, connected to the computing environment, to provide information to a user (e.g., medical personnel); and d) an algorithm executed by the central computing environment (e.g., a processor), where the algorithm is executed based on the data received by the input device, and wherein the algorithm calculates an expression score, thresholding, or other functions described herein. The methods provided by the present invention may also be automated in whole or in part.
All aspects of the present invention may also be practiced such that a limited number of additional genes and/or microRNAs that are co-expressed or functionally related with the disclosed genes, for example as evidenced by statistically meaningful Pearson and/or Spearman correlation coefficients, are included in a test in addition to and/or in place of disclosed genes.
Having described the invention, the same will be more readily understood through reference to the following Examples, which are provided by way of illustration, and are not intended to limit the invention in any way.
EXAMPLES Example 1: RNA Yield and Gene Expression Profiles in Prostate Cancer Biopsy Cores Clinical tools based on prostate needle core biopsies are needed to guide treatment planning at diagnosis for men with localized prostate cancer. Limiting tissue in needle core biopsy specimens poses significant challenges to the development of molecular diagnostic tests. This study examined RNA extraction yields and gene expression profiles using an RT-PCR assay to characterize RNA from manually micro-dissected fixed paraffin embedded (FPE) prostate cancer needle biopsy cores. It also investigated the association of RNA yields and gene expression profiles with Gleason score in these specimens.
Patients and Samples
This study determined the feasibility of gene expression profile analysis in prostate cancer needle core biopsies by evaluating the quantity and quality of RNA extracted from fixed paraffin-embedded (FPE) prostate cancer needle core biopsy specimens. Forty-eight (48) formalin-fixed blocks from prostate needle core biopsy specimens were used for this study. Classification of specimens was based on interpretation of the Gleason score (2005 Int'l Society of Urological Pathology Consensus Conference) and percentage tumor (<33%, 33-66%, >66%) involvement as assessed by pathologists.
TABLE 1
Distribution of cases
Gleason score ~<33% ~33-66% ~>66%
Category Tumor Tumor Tumor
Low (≤6) 5 5 6
Intermediate (7) 5 5 6
High (8, 9, 10) 5 5 6
Total 15 15 18
Assay Methods
Fourteen (14) serial 5 μm unstained sections from each FPE tissue block were included in the study. The first and last sections for each case were H&E stained and histologically reviewed to confirm the presence of tumor and for tumor enrichment by manual micro-dissection.
RNA from enriched tumor samples was extracted using a manual RNA extraction process. RNA was quantitated using the RiboGreen® assay and tested for the presence of genomic DNA contamination. Samples with sufficient RNA yield and free of genomic DNA tested for gene expression levels of a 24-gene panel of reference and cancer-related genes using quantitative RT-PCR. The expression was normalized to the average of 6 reference genes (AAMP, ARF1, ATP5E, CLTC, EEF1A1, and GPX1).
Statistical Methods
Descriptive statistics and graphical displays were used to summarize standard pathology metrics and gene expression, with stratification for Gleason Score category and percentage tumor involvement category. Ordinal logistic regression was used to evaluate the relationship between gene expression and Gleason Score category.
Results
The RNA yield per unit surface area ranged from 16 to 2406 ng/mm2. Higher RNA yield was observed in samples with higher percent tumor involvement (p=0.02) and higher Gleason score (p=0.01). RNA yield was sufficient (>200 ng) in 71% of cases to permit 96-well RT-PCR, with 87% of cases having >100 ng RNA yield. The study confirmed that gene expression from prostate biopsies, as measured by qRT-PCR, was comparable to FPET samples used in commercial molecular assays for breast cancer. In addition, it was observed that greater biopsy RNA yields are found with higher Gleason score and higher percent tumor involvement. Nine genes were identified as significantly associated with Gleason score (p<0.05) and there was a large dynamic range observed for many test genes.
Example 2: Gene Expression Analysis for Genes Associated with Prognosis in Prostate Cancer Patients and Samples
Approximately 2600 patients with clinical stage T1/T2 prostate cancer treated with radical prostatectomy (RP) at the Cleveland Clinic between 1987 and 2004 were identified. Patients were excluded from the study design if they received neo-adjuvant and/or adjuvant therapy, if pre-surgical PSA levels were missing, or if no tumor block was available from initial diagnosis. 127 patients with clinical recurrence and 374 patients without clinical recurrence after radical prostatectomy were randomly selected using a cohort sampling design. The specimens were stratified by T stage (T1, T2), year cohort (<1993, ≥1993), and prostatectomy Gleason score (low/intermediate, high). Of the 501 sampled patients, 51 were excluded for insufficient tumor; 7 were excluded due to clinical ineligibility; 2 were excluded due to poor quality of gene expression data; and 10 were excluded because primary Gleason pattern was unavailable. Thus, this gene expression study included tissue and data from 111 patients with clinical recurrence and 330 patients without clinical recurrence after radical prostatectomies performed between 1987 and 2004 for treatment of early stage (T1, T2) prostate cancer.
Two fixed paraffin embedded (FPE) tissue specimens were obtained from prostate tumor specimens in each patient. The sampling method (sampling method A or B) depended on whether the highest Gleason pattern is also the primary Gleason pattern. For each specimen selected, the invasive cancer cells were at least 5.0 mm in dimension, except in the instances of pattern 5, where 2.2 mm was accepted. Specimens were spatially distinct where possible.
TABLE 2
Sampling Methods
Sampling Method A Sampling Method B
For patients whose prostatectomy For patients whose prostatectomy
primary Gleason pattern is also primary Gleason pattern is not
the highest Gleason pattern the highest Gleason pattern
Specimen 1 (A1) = Specimen 1 (B1) =
primary Gleason pattern highest Gleason pattern
Select and mark largest focus Select highest Gleason pattern
(greatest cross-sectional area) tissue from spatially distinct area
of primary Gleason pattern from specimen B2, if
tissue. Invasive cancer area possible. Invasive cancer area
≥5.0 mm. at least 5.0 mm if selecting
secondary pattern, at least
2.2 mm if selecting Gleason
pattern 5.
Specimen 2 (A2) = Specimen 2 (B2) =
secondary Gleason pattern primary Gleason pattern
Select and mark secondary Select largest focus
Gleason pattern tissue from (greatest cross-sectional area)
spatially distinct area from of primary Gleason pattern tissue.
specimen A1. Invasive cancer Invasive cancer area ≥5.0 mm.
area ≥5.0 mm.
Histologically normal appearing tissue (NAT) adjacent to the tumor specimen (also referred to in these Examples as “non-tumor tissue”) was also evaluated. Adjacent tissue was collected 3 mm from the tumor to 3 mm from the edge of the FPET block. NAT was preferentially sampled adjacent to the primary Gleason pattern. In cases where there was insufficient NAT adjacent to the primary Gleason pattern, then NAT was sampled adjacent to the secondary or highest Gleason pattern (A2 or B1) per the method set forth in Table 2. Six (6) 10 μm sections with beginning H&E at 5 μm and ending unstained slide at 5 μm were prepared from each fixed paraffin-embedded tumor (FPET) block included in the study. All cases were histologically reviewed and manually micro-dissected to yield two enriched tumor samples and, where possible, one normal tissue sample adjacent to the tumor specimen.
Assay Method
In this study, RT-PCR analysis was used to determine RNA expression levels for 738 genes and chromosomal rearrangements (e.g., TMPRSS2-ERG fusion or other ETS family genes) in prostate cancer tissue and surrounding NAT in patients with early-stage prostate cancer treated with radical prostatectomy.
The samples were quantified using the RiboGreen assay and a subset tested for presence of genomic DNA contamination. Samples were taken into reverse transcription (RT) and quantitative polymerase chain reaction (qPCR). All analyses were conducted on reference-normalized gene expression levels using the average of the of replicate well crossing point (CP) values for the 6 reference genes (AAMP, ARF1, ATP5E, CLTC, GPS1, PGK1).
Statistical Analysis and Results
Primary statistical analyses involved 111 patients with clinical recurrence and 330 patients without clinical recurrence after radical prostatectomy for early-stage prostate cancer stratified by T-stage (T1, T2), year cohort (<1993, ≥1993), and prostatectomy Gleason score (low/intermediate, high). Gleason score categories are defined as follows: low (Gleason score ≤6), intermediate (Gleason score=7), and high (Gleason score ≥8). A patient was included in a specified analysis if at least one sample for that patient was evaluable. Unless otherwise stated, all hypothesis tests were reported using two-sided p-values. The method of Storey was applied to the resulting set of p-values to control the false discovery rate (FDR) at 20%. J. Storey, R. Tibshirani, Estimating the Positive False Discovery Rate Under Dependence, with Applications to DNA Microarrays, Dept. of Statistics, Stanford Univ. (2001).
Analysis of gene expression and recurrence-free interval was based on univariate Cox Proportional Hazards (PH) models using maximum weighted pseudo-partial-likelihood estimators for each evaluable gene in the gene list (727 test genes and 5 reference genes). P-values were generated using Wald tests of the null hypothesis that the hazard ratio (HR) is one. Both unadjusted p-values and the q-value (smallest FDR at which the hypothesis test in question is rejected) were reported. Un-adjusted p-values <0.05 were considered statistically significant. Since two tumor specimens were selected for each patient, this analysis was performed using the 2 specimens from each patient as follows: (1) analysis using the primary Gleason pattern specimen from each patient (Specimens A1 and B2 as described in Table 2); (2) analysis using the highest Gleason pattern specimen from each patient (Specimens A1 and B1 as described in Table 2).
Analysis of gene expression and Gleason pattern (3, 4, 5) was based on univariate ordinal logistic regression models using weighted maximum likelihood estimators for each gene in the gene list (727 test genes and 5 reference genes). P-values were generated using a Wald test of the null hypothesis that the odds ratio (OR) is one. Both unadjusted p-values and the q-value (smallest FDR at which the hypothesis test in question is rejected) were reported. Un-adjusted p-values <0.05 were considered statistically significant. Since two tumor specimens were selected for each patient, this analysis was performed using the 2 specimens from each patient as follows: (1) analysis using the primary Gleason pattern specimen from each patient (Specimens A1 and B2 as described in Table 2); (2) analysis using the highest Gleason pattern specimen from each patient (Specimens A1 and B1 as described in Table 2).
It was determined whether there is a significant relationship between cRFI and selected demographic, clinical, and pathology variables, including age, race, clinical tumor stage, pathologic tumor stage, location of selected tumor specimens within the prostate (peripheral versus transitional zone), PSA at the time of surgery, overall Gleason score from the radical prostatectomy, year of surgery, and specimen Gleason pattern. Separately for each demographic or clinical variable, the relationship between the clinical covariate and cRFI was modeled using univariate Cox PH regression using weighted pseudo partial-likelihood estimators and a p-value was generated using Wald's test of the null hypothesis that the hazard ratio (HR) is one. Covariates with unadjusted p-values <0.2 may have been included in the covariate-adjusted analyses.
It was determined whether there was a significant relationship between each of the individual cancer-related genes and cRFI after controlling for important demographic and clinical covariates. Separately for each gene, the relationship between gene expression and cRFI was modeled using multivariate Cox PH regression using weighted pseudo partial-likelihood estimators including important demographic and clinical variables as covariates. The independent contribution of gene expression to the prediction of cRFI was tested by generating a p-value from a Wald test using a model that included clinical covariates for each nodule (specimens as defined in Table 2). Un-adjusted p-values <0.05 were considered statistically significant.
Tables 3A and 3B provide genes significantly associated (p<0.05), positively or negatively, with Gleason pattern in the primary and/or highest Gleason pattern. Increased expression of genes in Table 3A is positively associated with higher Gleason score, while increased expression of genes in Table 3B are negatively associated with higher Gleason score.
TABLE 3A
Gene significantly (p < 0.05) associated with Gleason pattern for
all specimens in the primary Gleason pattern or highest Gleason
pattern odds ratio (OR) >1.0 (Increased expression
is positively associated with higher Gleason Score)
Primary Pattern Highest Pattern
Official Symbol OR p-value OR p-value
ALCAM 1.73 <.001 1.36 0.009
ANLN 1.35 0.027
APOC1 1.47 0.005 1.61 <.001
APOE 1.87 <.001 2.15 <.001
ASAP2 1.53 0.005
ASPN 2.62 <.001 2.13 <.001
ATP5E 1.35 0.035
AURKA 1.44 0.010
AURKB 1.59 <.001 1.56 <.001
BAX 1.43 0.006
BGN 2.58 <.001 2.82 <.001
BIRC5 1.45 0.003 1.79 <.001
BMP6 2.37 <.001 1.68 <.001
BMPR1B 1.58 0.002
BRCA2 1.45 0.013
BUB1 1.73 <.001 1.57 <.001
CACNA1D 1.31 0.045 1.31 0.033
CADPS 1.30 0.023
CCNB1 1.43 0.023
CCNE2 1.52 0.003 1.32 0.035
CD276 2.20 <.001 1.83 <.001
CD68 1.36 0.022
CDC20 1.69 <.001 1.95 <.001
CDC6 1.38 0.024 1.46 <.001
CDH11 1.30 0.029
CDKN2B 1.55 0.001 1.33 0.023
CDKN2C 1.62 <.001 1.52 <.001
CDKN3 1.39 0.010 1.50 0.002
CENPF 1.96 <.001 1.71 <.001
CHRAC1 1.34 0.022
CLDN3 1.37 0.029
COL1A1 2.23 <.001 2.22 <.001
COL1A2 1.42 0.005
COL3A1 1.90 <.001 2.13 <.001
COL8A1 1.88 <.001 2.35 <.001
CRISP3 1.33 0.040 1.26 0.050
CTHRC1 2.01 <.001 1.61 <.001
CTNND2 1.48 0.007 1.37 0.011
DAPK1 1.44 0.014
DIAPH1 1.34 0.032 1.79 <.001
DIO2 1.56 0.001
DLL4 1.38 0.026 1.53 <.001
ECE1 1.54 0.012 1.40 0.012
ENY2 1.35 0.046 1.35 0.012
EZH2 1.39 0.040
F2R 2.37 <.001 2.60 <.001
FAM49B 1.57 0.002 1.33 0.025
FAP 2.36 <.001 1.89 <.001
FCGR3A 2.10 <.001 1.83 <.001
GNPTAB 1.78 <.001 1.54 <.001
GSK3B 1.39 0.018
HRAS 1.62 0.003
HSD17B4 2.91 <.001 1.57 <.001
HSPA8 1.48 0.012 1.34 0.023
IFI30 1.64 <.001 1.45 0.013
IGFBP3 1.29 0.037
IL11 1.52 0.001 1.31 0.036
INHBA 2.55 <.001 2.30 <.001
ITGA4 1.35 0.028
JAG1 1.68 <.001 1.40 0.005
KCNN2 1.50 0.004
KCTD12 1.38 0.012
KHDRBS3 1.85 <.001 1.72 <.001
KIF4A 1.50 0.010 1.50 <.001
KLK14 1.49 0.001 1.35 <.001
KPNA2 1.68 0.004 1.65 0.001
KRT2 1.33 0.022
KRT75 1.27 0.028
LAMC1 1.44 0.029
LAPTM5 1.36 0.025 1.31 0.042
LTBP2 1.42 0.023 1.66 <.001
MANF 1.34 0.019
MAOA 1.55 0.003 1.50 <.001
MAP3K5 1.55 0.006 1.44 0.001
MDK 1.47 0.013 1.29 0.041
MDM2 1.31 0.026
MELK 1.64 <.001 1.64 <.001
MMP11 2.33 <.001 1.66 <.001
MYBL2 1.41 0.007 1.54 <.001
MYO6 1.32 0.017
NETO2 1.36 0.018
NOX4 1.84 <.001 1.73 <.001
NPM1 1.68 0.001
NRIP3 1.36 0.009
NRP1 1.80 0.001 1.36 0.019
OSM 1.33 0.046
PATE1 1.38 0.032
PECAM1 1.38 0.021 1.31 0.035
PGD 1.56 0.010
PLK1 1.51 0.004 1.49 0.002
PLOD2 1.29 0.027
POSTN 1.70 0.047 1.55 0.006
PPP3CA 1.38 0.037 1.37 0.006
PTK6 1.45 0.007 1.53 <.001
PTTG1 1.51 <.001
RAB31 1.31 0.030
RAD21 2.05 <.001 1.38 0.020
RAD51 1.46 0.002 1.26 0.035
RAF1 1.46 0.017
RALBP1 1.37 0.043
RHOC 1.33 0.021
ROBO2 1.52 0.003 1.41 0.006
RRM2 1.77 <.001 1.50 <.001
SAT1 1.67 0.002 1.61 <.001
SDC1 1.66 0.001 1.46 0.014
SEC14L1 1.53 0.003 1.62 <.001
SESN3 1.76 <.001 1.45 <.001
SFRP4 2.69 <.001 2.03 <.001
SHMT2 1.69 0.007 1.45 0.003
SKIL 1.46 0.005
SOX4 1.42 0.016 1.27 0.031
SPARC 1.40 0.024 1.55 <.001
SPINK1 1.29 0.002
SPP1 1.51 0.002 1.80 <.001
TFDP1 1.48 0.014
THBS2 1.87 <.001 1.65 <.001
THY1 1.58 0.003 1.64 <.001
TK1 1.79 <.001 1.42 0.001
TOP2A 2.30 <.001 2.01 <.001
TPD52 1.95 <.001 1.30 0.037
TPX2 2.12 <.001 1.86 <.001
TYMP 1.36 0.020
TYMS 1.39 0.012 1.31 0.036
UBE2C 1.66 <.001 1.65 <.001
UBE2T 1.59 <.001 1.33 0.017
UGDH 1.28 0.049
UGT2B15 1.46 0.001 1.25 0.045
UHRF1 1.95 <.001 1.62 <.001
VDR 1.43 0.010 1.39 0.018
WNT5A 1.54 0.001 1.44 0.013
TABLE 3B
Gene significantly (p < 0.05) associated with Gleason pattern for all
specimens in the primary Gleason pattern or highest Gleason pattern
odds ratio (OR) < 1.0 (Increased expression is negatively associated
with higher Gleason score)
Table 3B Primary Pattern Highest Pattern
Official Symbol OR p-value OR p-value
ABCA5 0.78 0.041
ABCG2 0.65 0.001 0.72 0.012
ACOX2 0.44 <.001 0.53 <.001
ADH5 0.45 <.001 0.42 <.001
AFAP1 0.79 0.038
AIG1 0.77 0.024
AKAP1 0.63 0.002
AKR1C1 0.66 0.003 0.63 <.001
AKT3 0.68 0.006 0.77 0.010
ALDH1A2 0.28 <.001 0.33 <.001
ALKBH3 0.77 0.040 0.77 0.029
AMPD3 0.67 0.007
ANPEP 0.68 0.008 0.59 <.001
ANXA2 0.72 0.018
APC 0.69 0.002
AXIN2 0.46 <.001 0.54 <.001
AZGP1 0.52 <.001 0.53 <.001
BIK 0.69 0.006 0.73 0.003
BIN1 0.43 <.001 0.61 <.001
BTG3 0.79 0.030
BTRC 0.48 <.001 0.62 <.001
C7 0.37 <.001 0.55 <.001
CADM1 0.56 <.001 0.69 0.001
CAV1 0.58 0.002 0.70 0.009
CAV2 0.65 0.029
CCNH 0.67 0.006 0.77 0.048
CD164 0.59 0.003 0.57 <.001
CDC25B 0.77 0.035
CDH1 0.66 <.001
CDK2 0.71 0.003
CDKN1C 0.58 <.001 0.57 <.001
CDS2 0.69 0.002
CHN1 0.66 0.002
COL6A1 0.44 <.001 0.66 <.001
COL6A3 0.66 0.006
CSRP1 0.42 0.006
CTGF 0.74 0.043
CTNNA1 0.70 <.001 0.83 0.018
CTNNB1 0.70 0.019
CTNND1 0.75 0.028
CUL1 0.74 0.011
CXCL12 0.54 <.001 0.74 0.006
CYP3A5 0.52 <.001 0.66 0.003
CYR61 0.64 0.004 0.68 0.005
DDR2 0.57 0.002 0.73 0.004
DES 0.34 <.001 0.58 <.001
DLGAP1 0.54 <.001 0.62 <.001
DNM3 0.67 0.004
DPP4 0.41 <.001 0.53 <.001
DPT 0.28 <.001 0.48 <.001
DUSP1 0.59 <.001 0.63 <.001
EDNRA 0.64 0.004 0.74 0.008
EGF 0.71 0.012
EGR1 0.59 <.001 0.67 0.009
EGR3 0.72 0.026 0.71 0.025
EIF5 0.76 0.025
ELK4 0.58 0.001 0.70 0.008
ENPP2 0.66 0.002 0.70 0.005
EPHA3 0.65 0.006
EPHB2 0.60 <.001 0.78 0.023
EPHB4 0.75 0.046 0.73 0.006
ERBB3 0.76 0.040 0.75 0.013
ERBB4 0.74 0.023
ERCC1 0.63 <.001 0.77 0.016
FAAH 0.67 0.003 0.71 0.010
FAM107A 0.35 <.001 0.59 <.001
FAM13C 0.37 <.001 0.48 <.001
FAS 0.73 0.019 0.72 0.008
FGF10 0.53 <.001 0.58 <.001
FGF7 0.52 <.001 0.59 <.001
FGFR2 0.60 <.001 0.59 <.001
FKBP5 0.70 0.039 0.68 0.003
FLNA 0.39 <.001 0.56 <.001
FLNC 0.33 <.001 0.52 <.001
FOS 0.58 <.001 0.66 0.005
FOXO1 0.57 <.001 0.67 <.001
FOXQ1 0.74 0.023
GADD45B 0.62 0.002 0.71 0.010
GHR 0.62 0.002 0.72 0.009
GNRH1 0.74 0.049 0.75 0.026
GPM6B 0.48 <.001 0.68 <.001
GPS1 0.68 0.003
GSN 0.46 <.001 0.77 0.027
GSTM1 0.44 <.001 0.62 <.001
GSTM2 0.29 <.001 0.49 <.001
HGD 0.77 0.020
HIRIP3 0.75 0.034
HK1 0.48 <.001 0.66 0.001
HLF 0.42 <.001 0.55 <.001
HNF1B 0.67 0.006 0.74 0.010
HPS1 0.66 0.001 0.65 <.001
HSP90AB1 0.75 0.042
HSPA5 0.70 0.011
HSPB2 0.52 <.001 0.70 0.004
IGF1 0.35 <.001 0.59 <.001
IGF2 0.48 <.001 0.70 0.005
IGFBP2 0.61 <.001 0.77 0.044
IGFBP5 0.63 <.001
IGFBP6 0.45 <.001 0.64 <.001
IL6ST 0.55 0.004 0.63 <.001
ILK 0.40 <.001 0.57 <.001
ING5 0.56 <.001 0.78 0.033
ITGA1 0.56 0.004 0.61 <.001
ITGA3 0.78 0.035
ITGA5 0.71 0.019 0.75 0.017
ITGA7 0.37 <.001 0.52 <.001
ITGB3 0.63 0.003 0.70 0.005
ITPR1 0.46 <.001 0.64 <.001
ITPR3 0.70 0.013
ITSN1 0.62 0.001
JUN 0.48 <.001 0.60 <.001
JUNB 0.72 0.025
KIT 0.51 <.001 0.68 0.007
KLC1 0.58 <.001
KLK1 0.69 0.028 0.66 0.003
KLK2 0.60 <.001
KLK3 0.63 <.001 0.69 0.012
KRT15 0.56 <.001 0.60 <.001
KRT18 0.74 0.034
KRT5 0.64 <.001 0.62 <.001
LAMA4 0.47 <.001 0.73 0.010
LAMB3 0.73 0.018 0.69 0.003
LGALS3 0.59 0.003 0.54 <.001
LIG3 0.75 0.044
MAP3K7 0.66 0.003 0.79 0.031
MCM3 0.73 0.013 0.80 0.034
MGMT 0.61 0.001 0.71 0.007
MGST1 0.75 0.017
MLXIP 0.70 0.013
MMP2 0.57 <.001 0.72 0.010
MMP7 0.69 0.009
MPPED2 0.70 0.009 0.59 <.001
MSH6 0.78 0.046
MTA1 0.69 0.007
MTSS1 0.55 <.001 0.54 <.001
MYBPC1 0.45 <.001 0.45 <.001
NCAM1 0.51 <.001 0.65 <.001
NCAPD3 0.42 <.001 0.53 <.001
NCOR2 0.68 0.002
NDUFS5 0.66 0.001 0.70 0.013
NEXN 0.48 <.001 0.62 <.001
NFAT5 0.55 <.001 0.67 0.001
NFKBIA 0.79 0.048
NRG1 0.58 0.001 0.62 0.001
OLFML3 0.42 <.001 0.58 <.001
OMD 0.67 0.004 0.71 0.004
OR51E2 0.65 <.001 0.76 0.007
PAGE4 0.27 <.001 0.46 <.001
PCA3 0.68 0.004
PCDHGB7 0.70 0.025 0.65 <.001
PGF 0.62 0.001
PGR 0.63 0.028
PHTF2 0.69 0.033
PLP2 0.54 <.001 0.71 0.003
PPAP2B 0.41 <.001 0.54 <.001
PPP1R12A 0.48 <.001 0.60 <.001
PRIMA1 0.62 0.003 0.65 <.001
PRKAR1B 0.70 0.009
PRKAR2B 0.79 0.038
PRKCA 0.37 <.001 0.55 <.001
PRKCB 0.47 <.001 0.56 <.001
PTCH1 0.70 0.021
PTEN 0.66 0.010 0.64 <.001
PTGER3 0.76 0.015
PTGS2 0.70 0.013 0.68 0.005
PTH1R 0.48 <.001
PTK2B 0.67 0.014 0.69 0.002
PYCARD 0.72 0.023
RAB27A 0.76 0.017
RAGE 0.77 0.040 0.57 <.001
RARB 0.66 0.002 0.69 0.002
RECK 0.65 <.001
RHOA 0.73 0.043
RHOB 0.61 0.005 0.62 <.001
RND3 0.63 0.006 0.66 <.001
SDHC 0.69 0.002
SEC23A 0.61 <.001 0.74 0.010
SEMA3A 0.49 <.001 0.55 <.001
SERPINA3 0.70 0.034 0.75 0.020
SH3RF2 0.33 <.001 0.42 <.001
SLC22A3 0.23 <.001 0.37 <.001
SMAD4 0.33 <.001 0.39 <.001
SMARCC2 0.62 0.003 0.74 0.008
SMO 0.53 <.001 0.73 0.009
SORBS1 0.40 <.001 0.55 <.001
SPARCL1 0.42 <.001 0.63 <.001
SRD5A2 0.28 <.001 0.37 <.001
STS 0.52 <.001 0.63 <.001
STAT5A 0.60 <.001 0.75 0.020
STAT5B 0.54 <.001 0.65 <.001
STS 0.78 0.035
SUMO1 0.75 0.017 0.71 0.002
SVIL 0.45 <.001 0.62 <.001
TARP 0.72 0.017
TGFB1I1 0.37 <.001 0.53 <.001
TGFB2 0.61 0.025 0.59 <.001
TGFB3 0.46 <.001 0.60 <.001
TIMP2 0.62 0.001
TIMP3 0.55 <.001 0.76 0.019
TMPRSS2 0.71 0.014
TNF 0.65 0.010
TNFRSF10A 0.71 0.014 0.74 0.010
TNFRSF10B 0.74 0.030 0.73 0.016
TNFSF10 0.69 0.004
TP53 0.73 0.011
TP63 0.62 <.001 0.68 0.003
TPM1 0.43 <.001 0.47 <.001
TPM2 0.30 <.001 0.47 <.001
TPP2 0.58 <.001 0.69 0.001
TRA2A 0.71 0.006
TRAF3IP2 0.50 <.001 0.63 <.001
TRO 0.40 <.001 0.59 <.001
TRPC6 0.73 0.030
TRPV6 0.80 0.047
VCL 0.44 <.001 0.55 <.001
VEGFB 0.73 0.029
VIM 0.72 0.013
VTI1B 0.78 0.046
WDR19 0.65 <.001
WFDC1 0.50 <.001 0.72 0.010
YY1 0.75 0.045
ZFHX3 0.52 <.001 0.54 <.001
ZFP36 0.65 0.004 0.69 0.012
ZNF827 0.59 <.001 0.69 0.004
To identify genes associated with recurrence (cRFI, bRFI) in the primary and the highest Gleason pattern, each of 727 genes were analyzed in univariate models using specimens A1 and B2 (see Table 2, above). Tables 4A and 4B provide genes that were associated, positively or negatively, with cRFI and/or bRFI in the primary and/or highest Gleason pattern. Increased expression of genes in Table 4A is negatively associated with good prognosis, while increased expression of genes in Table 4B is positively associated with good prognosis.
TABLE 4A
Genes significantly (p < 0.05) associated with cRFI or bRFI in the primary
Gleason pattern or highest Gleason pattern with hazard ratio (HR) > 1.0
(increased expression is negatively associated with good prognosis)
cRFI cRFI bRFI bRFI
Official Primary Pattern Highest Pattern Primary Pattern Highest Pattern
Symbol HR p-value HR p-value HR p-value HR p-value
AKR1C3 1.304 0.022 1.312 0.013
ANLN 1.379 0.002 1.579 <.001 1.465 <.001 1.623 <.001
AQP2 1.184 0.027 1.276 <.001
ASAP2 1.442 0.006
ASPN 2.272 <.001 2.106 <.001 1.861 <.001 1.895 <.001
ATP5E 1.414 0.013 1.538 <.001
BAG5 1.263 0.044
BAX 1.332 0.026 1.327 0.012 1.438 0.002
BGN 1.947 <.001 2.061 <.001 1.339 0.017
BIRC5 1.497 <.001 1.567 <.001 1.478 <.001 1.575 <.001
BMP6 1.705 <.001 2.016 <.001 1.418 0.004 1.541 <.001
BMPR1B 1.401 0.013 1.325 0.016
BRCA2 1.259 0.007
BUB1 1.411 <.001 1.435 <.001 1.352 <.001 1.242 0.002
CADPS 1.387 0.009 1.294 0.027
CCNB1 1.296 0.016 1.376 0.002
CCNE2 1.468 <.001 1.649 <.001 1.729 <.001 1.563 <.001
CD276 1.678 <.001 1.832 <.001 1.581 <.001 1.385 0.002
CDC20 1.547 <.001 1.671 <.001 1.446 <.001 1.540 <.001
CDC6 1.400 0.003 1.290 0.030 1.403 0.002 1.276 0.019
CDH7 1.403 0.003 1.413 0.002
CDKN2B 1.569 <.001 1.752 <.001 1.333 0.017 1.347 0.006
CDKN2C 1.612 <.001 1.780 <.001 1.323 0.005 1.335 0.004
CDKN3 1.384 <.001 1.255 0.024 1.285 0.003 1.216 0.028
CENPF 1.578 <.001 1.692 <.001 1.740 <.001 1.705 <.001
CKS2 1.390 0.007 1.418 0.005 1.291 0.018
CLTC 1.368 0.045
COL1A1 1.873 <.001 2.103 <.001 1.491 <.001 1.472 <.001
COL1A2 1.462 0.001
COL3A1 1.827 <.001 2.005 <.001 1.302 0.012 1.298 0.018
COL4A1 1.490 0.002 1.613 <.001
COL8A1 1.692 <.001 1.926 <.001 1.307 0.013 1.317 0.010
CRISP3 1.425 0.001 1.467 <.001 1.242 0.045
CTHRC1 1.505 0.002 2.025 <.001 1.425 0.003 1.369 0.005
CTNND2 1.412 0.003
CXCR4 1.312 0.023 1.355 0.008
DDIT4 1.543 <.001 1.763 <.001
DYNLL1 1.290 0.039 1.201 0.004
EIF3H 1.428 0.012
ENY2 1.361 0.014 1.392 0.008 1.371 0.001
EZH2 1.311 0.010
F2R 1.773 <.001 1.695 <.001 1.495 <.001 1.277 0.018
FADD 1.292 0.018
FAM171B 1.285 0.036
FAP 1.455 0.004 1.560 0.001 1.298 0.022 1.274 0.038
FASN 1.263 0.035
FCGR3A 1.654 <.001 1.253 0.033 1.350 0.007
FGF5 1.219 0.030
GNPTAB 1.388 0.007 1.503 0.003 1.355 0.005 1.434 0.002
GPR68 1.361 0.008
GREM1 1.470 0.003 1.716 <.001 1.421 0.003 1.316 0.017
HDAC1 1.290 0.025
HDAC9 1.395 0.012
HRAS 1.424 0.006 1.447 0.020
HSD17B4 1.342 0.019 1.282 0.026 1.569 <.001 1.390 0.002
HSPA8 1.290 0.034
IGFBP3 1.333 0.022 1.442 0.003 1.253 0.040 1.323 0.005
INHBA 2.368 <.001 2.765 <.001 1.466 0.002 1.671 <.001
JAG1 1.359 0.006 1.367 0.005 1.259 0.024
KCNN2 1.361 0.011 1.413 0.005 1.312 0.017 1.281 0.030
KHDRBS3 1.387 0.006 1.601 <.001 1.573 <.001 1.353 0.006
KIAA0196 1.249 0.037
KIF4A 1.212 0.016 1.149 0.040 1.278 0.003
KLK14 1.167 0.023 1.180 0.007
KPNA2 1.425 0.009 1.353 0.005 1.305 0.019
KRT75 1.164 0.028
LAMA3 1.327 0.011
LAMB1 1.347 0.019
LAMC1 1.555 0.001 1.310 0.030 1.349 0.014
LIMS1 1.275 0.022
LOX 1.358 0.003 1.410 <.001
LTBP2 1.396 0.009 1.656 <.001 1.278 0.022
LUM 1.315 0.021
MANF 1.660 <.001 1.323 0.011
MCM2 1.345 0.011 1.387 0.014
MCM6 1.307 0.023 1.352 0.008 1.244 0.039
MELK 1.293 0.014 1.401 <.001 1.501 <.001 1.256 0.012
MMP11 1.680 <.001 1.474 <.001 1.489 <.001 1.257 0.030
MRPL13 1.260 0.025
MSH2 1.295 0.027
MYBL2 1.664 <.001 1.670 <.001 1.399 <.001 1.431 <.001
MYO6 1.301 0.033
NETO2 1.412 0.004 1.302 0.027 1.298 0.009
NFKB1 1.236 0.050
NOX4 1.492 <.001 1.507 0.001 1.555 <.001 1.262 0.019
NPM1 1.287 0.036
NRIP3 1.219 0.031 1.218 0.018
NRP1 1.482 0.002 1.245 0.041
OLFML2B 1.362 0.015
OR51E1 1.531 <.001 1.488 0.003
PAK6 1.269 0.033
PATE1 1.308 <.001 1.332 <.001 1.164 0.044
PCNA 1.278 0.020
PEX10 1.436 0.005 1.393 0.009
PGD 1.298 0.048 1.579 <.001
PGK1 1.274 0.023 1.262 0.009
PLA2G7 1.315 0.011 1.346 0.005
PLAU 1.319 0.010
PLK1 1.309 0.021 1.563 <.001 1.410 0.002 1.372 0.003
PLOD2 1.284 0.019 1.272 0.014 1.332 0.005
POSTN 1.599 <.001 1.514 0.002 1.391 0.005
PPP3CA 1.402 0.007 1.316 0.018
PSMD13 1.278 0.040 1.297 0.033 1.279 0.017 1.373 0.004
PTK6 1.640 <.001 1.932 <.001 1.369 0.001 1.406 <.001
PTTG1 1.409 <.001 1.510 <.001 1.347 0.001 1.558 <.001
RAD21 1.315 0.035 1.402 0.004 1.589 <.001 1.439 <.001
RAF1 1.503 0.002
RALA 1.521 0.004 1.403 0.007 1.563 <.001 1.229 0.040
RALBP1 1.277 0.033
RGS7 1.154 0.015 1.266 0.010
RRM1 1.570 0.001 1.602 <.001
RRM2 1.368 <.001 1.289 0.004 1.396 <.001 1.230 0.015
SAT1 1.482 0.016 1.403 0.030
SDC1 1.340 0.018 1.396 0.018
SEC14L1 1.260 0.048 1.360 0.002
SESN3 1.485 <.001 1.631 <.001 1.232 0.047 1.292 0.014
SFRP4 1.800 <.001 1.814 <.001 1.496 <.001 1.289 0.027
SHMT2 1.807 <.001 1.658 <.001 1.673 <.001 1.548 <.001
SKIL 1.327 0.008
SLC25A21 1.398 0.001 1.285 0.018
SOX4 1.286 0.020 1.280 0.030
SPARC 1.539 <.001 1.842 <.001 1.269 0.026
SPP1 1.322 0.022
SQLE 1.359 0.020 1.270 0.036
STMN1 1.402 0.007 1.446 0.005 1.279 0.031
SULF1 1.587 <.001
TAF2 1.273 0.027
TFDP1 1.328 0.021 1.400 0.005 1.416 0.001
THBS2 1.812 <.001 1.960 <.001 1.320 0.012 1.256 0.038
THY1 1.362 0.020 1.662 <.001
TK1 1.251 0.011 1.377 <.001 1.401 <.001
TOP2A 1.670 <.001 1.920 <.001 1.869 <.001 1.927 <.001
TPD52 1.324 0.011 1.366 0.002 1.351 0.005
TPX2 1.884 <.001 2.154 <.001 1.874 <.001 1.794 <.001
UAP1 1.244 0.044
UBE2C 1.403 <.001 1.541 <.001 1.306 0.002 1.323 <.001
UBE2T 1.667 <.001 1.282 0.023 1.502 <.001 1.298 0.005
UGT2B15 1.295 0.001 1.275 0.002
UGT2B17 1.294 0.025
UHRF1 1.454 <.001 1.531 <.001 1.257 0.029
VCPIP1 1.390 0.009 1.414 0.004 1.294 0.021 1.283 0.021
WNT5A 1.274 0.038 1.298 0.020
XIAP 1.464 0.006
ZMYND8 1.277 0.048
ZWINT 1.259 0.047
TABLE 4B
Genes significantly (p < 0.05) associated with cRFI or bRFI in the primary
Gleason pattern or highest Gleason pattern with hazard ratio (HR) < 1.0
(increased expression is positively associated with good prognosis)
cRFI cRFI bRFI bRFI
Official Primary Pattern Highest Pattern Primary Pattern Highest Pattern
Symbol HR p-value HR p-value HR p-value HR p-value
AAMP 0.564 <.001 0.571 .001 0.764 0.037 0.786 0.034
ABCA5 0.755 <.001 0.695 <.001 0.800 0.006
ABCB1 0.777 0.026
ABCG2 0.788 0.033 0.784 0.040 0.803 0.018 0.750 0.004
ABHD2 0.734 0.011
ACE 0.782 0.048
ACOX2 0.639 <.001 0.631 <.001 0.713 <.001 0.716 0.002
ADH5 0.625 <.001 0.637 <.001 0.753 0.026
AKAP1 0.764 0.006 0.800 0.005 0.837 0.046
AKR1C1 0.773 0.033 0.802 0.032
AKT1 0.714 0.005
AKT3 0.811 0.015 0.809 0.021
ALDH1A2 0.606 <.001 0.498 <.001 0.613 <.001 0.624 <.001
AMPD3 0.793 0.024
ANPEP 0.584 <.001 0.493 <.001
ANXA2 0.753 0.013 0.781 0.036 0.762 0.008 0.795 0.032
APRT 0.758 0.026 0.780 0.044 0.746 0.008
ATXN1 0.673 0.001 0.776 0.029 0.809 0.031 0.812 0.043
AXIN2 0.674 <.001 0.571 <.001 0.776 0.005 0.757 0.005
AZGP1 0.585 <.001 0.652 <.001 0.664 <.001 0.746 <.001
BAD 0.765 0.023
BCL2 0.788 0.033 0.778 0.036
BDKRB1 0.728 0.039
BIK 0.712 0.005
BIN1 0.607 <.001 0.724 0.002 0.726 <.001 0.834 0.034
BTG3 0.847 0.034
BTRC 0.688 0.001 0.713 0.003
C7 0.589 <.001 0.639 <.001 0.629 <.001 0.691 <.001
CADM1 0.546 <.001 0.529 <.001 0.743 0.008 0.769 0.015
CASP1 0.769 0.014 0.799 0.028 0.799 0.010 0.815 0.018
CAV1 0.736 0.011 0.711 0.005 0.675 <.001 0.743 0.006
CAV2 0.636 0.010 0.648 0.012 0.685 0.012
CCL2 0.759 0.029 0.764 0.024
CCNH 0.689 <.001 0.700 <.001
CD164 0.664 <.001 0.651 <.001
CD1A 0.687 0.004
CD44 0.545 <.001 0.600 <.001 0.788 0.018 0.799 0.023
CD82 0.771 0.009 0.748 0.004
CDC25B 0.755 0.006 0.817 0.025
CDK14 0.845 0.043
CDK2 0.819 0.032
CDK3 0.733 0.005 0.772 0.006 0.838 0.017
CDKN1A 0.766 0.041
CDKN1C 0.662 <.001 0.712 0.002 0.693 <.001 0.761 0.009
CHN1 0.788 0.036
COL6A1 0.608 <.001 0.767 0.013 0.706 <.001 0.775 0.007
CSF1 0.626 <.001 0.709 0.003
CSK 0.837 0.029
C SRP1 0.793 0.024 0.782 0.019
C TNNB 1 0.898 0.042 0.885 <.001
CTSB 0.701 0.004 0.713 0.007 0.715 0.002 0.803 0.038
CTSK 0.815 0.042
CXCL12 0.652 <.001 0.802 0.044 0.711 0.001
CYP3A5 0.463 <.001 0.436 <.001 0.727 0.003
CYR61 0.652 0.002 0.676 0.002
DAP 0.761 0.026 0.775 0.025 0.802 0.048
DARC 0.725 0.005 0.792 0.032
DDR2 0.719 0.001 0.763 0.008
DES 0.619 <.001 0.737 0.005 0.638 <.001 0.793 0.017
DHRS9 0.642 0.003
DHX9 0.888 <.001
DLC1 0.710 0.007 0.715 0.009
DLGAP1 0.613 <.001 0.551 <.001 0.779 0.049
DNIVI3 0.679 <.001 0.812 0.037
DPP4 0.591 <.001 0.613 <.001 0.761 0.003
DPT 0.613 <.001 0.576 <.001 0.647 <.001 0.677 <.001
DUSP1 0.662 0.001 0.665 0.001 0.785 0.024
DUSP6 0.713 0.005 0.668 0.002
EDNRA 0.702 0.002 0.779 0.036
EGF 0.738 0.028
EGR1 0.569 <.001 0.577 <.001 0.782 0.022
EGR3 0.601 <.001 0.619 <.001 0.800 0.038
EIF253 0.756 0.015
EIF5 0.776 0.023 0.787 0.028
ELK4 0.628 <.001 0.658 <.001
EPHA2 0.720 0.011 0.663 0.004
EPHA3 0.727 0.003 0.772 0.005
ERBB2 0.786 0.019 0.738 0.003 0.815 0.041
ERBB3 0.728 0.002 0.711 0.002 0.828 0.043 0.813 0.023
ERCC1 0.771 0.023 0.725 0.007 0.806 0.049 0.704 0.002
EREG 0.754 0.016 0.777 0.034
ESR2 0.731 0.026
FAAH 0.708 0.004 0.758 0.012 0.784 0.031 0.774 0.007
FAM107A 0.517 <.001 0.576 <.001 0.642 <.001 0.656 <.001
FAM13C 0.568 <.001 0.526 <.001 0.739 0.002 0.639 <.001
FAS 0.755 0.014
FASLG 0.706 0.021
FGF10 0.653 <.001 0.685 <.001 0.766 0.022
FGF17 0.746 0.023 0.781 0.015 0.805 0.028
FGF7 0.794 0.030 0.820 0.037 0.811 0.040
FGFR2 0.683 <.001 0.686 <.001 0.674 <.001 0.703 <.001
FKBP5 0.676 0.001
FLNA 0.653 <.001 0.741 0.010 0.682 <.001 0.771 0.016
FLNC 0.751 0.029 0.779 0.047 0.663 <.001 0.725 <.001
FLT1 0.799 0.044
FOS 0.566 <.001 0.543 <.001 0.757 0.006
FOXO1 0.816 0.039 0.798 0.023
FOXQ1 0.753 0.017 0.757 0.024 0.804 0.018
FYN 0.779 0.031
GADD45B 0.590 <.001 0.619 <.001
GDF15 0.759 0.019 0.794 0.048
GHR 0.702 0.005 0.630 <.001 0.673 <.001 0.590 <.001
GNRH1 0.742 0.014
GPM6B 0.653 <.001 0.633 <.001 0.696 <.001 0.768 0.007
GSN 0.570 <.001 0.697 0.001 0.697 <.001 0.758 0.005
GSTM1 0.612 <.001 0.588 <.001 0.718 <.001 0.801 0.020
GSTM2 0.540 <.001 0.630 <.001 0.602 <.001 0.706 <.001
HGD 0.796 0.020 0.736 0.002
HIRIP3 0.753 0.011 0.824 0.050
HK1 0.684 <.001 0.683 <.001 0.799 0.011 0.804 0.014
HLA-G 0.726 0.022
HLF 0.555 <.001 0.582 <.001 0.703 <.001 0.702 <.001
HNF1B 0.690 <.001 0.585 <.001
HPS1 0.744 0.003 0.784 0.020 0.836 0.047
HSD3B2 0.733 0.016
HSP90AB1 0.801 0.036
HSPA5 0.776 0.034
HSPB1 0.813 0.020
HSPB2 0.762 0.037 0.699 0.002 0.783 0.034
HSPG2 0.794 0.044
ICAM1 0.743 0.024 0.768 0.040
IER3 0.686 0.002 0.663 <.001
IFIT1 0.649 <.001 0.761 0.026
IGF1 0.634 <.001 0.537 <.001 0.696 <.001 0.688 <.001
IGF2 0.732 0.004
IGFBP2 0.548 <.001 0.620 <.001
IGFBP5 0.681 <.001
IGFBP6 0.577 <.001 0.675 <.001
IL1B 0.712 0.005 0.742 0.009
IL6 0.763 0.028
IL6R 0.791 0.039
IL6ST 0.585 <.001 0.639 <.001 0.730 0.002 0.768 0.006
IL8 0.624 <.001 0.662 0.001
ILK 0.712 0.009 0.728 0.012 0.790 0.047 0.790 0.042
ING5 0.625 <.001 0.658 <.001 0.728 0.002
ITGA5 0.728 0.006 0.803 0.039
ITGA6 0.779 0.007 0.775 0.006
ITGA7 0.584 <.001 0.700 0.001 0.656 <.001 0.786 0.014
ITGAD 0.657 0.020
ITGB4 0.718 0.007 0.689 <.001 0.818 0.041
ITGB5 0.801 0.050
ITPR1 0.707 0.001
JUN 0.556 <.001 0.574 <.001 0.754 0.008
JUNB 0.730 0.017 0.715 0.010
KIT 0.644 0.004 0.705 0.019 0.605 <.001 0.659 0.001
KLC1 0.692 0.003 0.774 0.024 0.747 0.008
KLF6 0.770 0.032 0.776 0.039
KLK1 0.646 <.001 0.652 0.001 0.784 0.037
KLK10 0.716 0.006
KLK2 0.647 <.001 0.628 <.001 0.786 0.009
KLK3 0.706 <.001 0.748 <.001 0.845 0.018
KRT1 0.734 0.024
KRT15 0.627 <.001 0.526 <.001 0.704 <.001 0.782 0.029
KRT18 0.624 <.001 0.617 <.001 0.738 0.005 0.760 0.005
KRT5 0.640 <.001 0.550 <.001 0.740 <.001 0.798 0.023
KRT8 0.716 0.006 0.744 0.008
L1CAM 0.738 0.021 0.692 0.009 0.761 0.036
LAG3 0.741 0.013 0.729 0.011
LAMA4 0.686 0.011 0.592 0.003
LAMA5 0.786 0.025
LAMB3 0.661 <.001 0.617 <.001 0.734 <.001
LGALS3 0.618 <.001 0.702 0.001 0.734 0.001 0.793 0.012
LIG3 0.705 0.008 0.615 <.001
LRP1 0.786 0.050 0.795 0.023 0.770 0.009
MAP3K7 0.789 0.003
MGMT 0.632 <.001 0.693 <.001
MICA 0.781 0.014 0.653 <.001 0.833 0.043
MPPED2 0.655 <.001 0.597 <.001 0.719 <.001 0.759 0.006
MSH6 0.793 0.015
MTSS1 0.613 <.001 0.746 0.008
MVP 0.792 0.028 0.795 0.045 0.819 0.023
MYBPC1 0.648 <.001 0.496 <.001 0.701 <.001 0.629 <.001
NCAM1 0.773 0.015
NCAPD3 0.574 <.001 0.463 <.001 0.679 <.001 0.640 <.001
NEXN 0.701 0.002 0.791 0.035 0.725 0.002 0.781 0.016
NFAT5 0.515 <.001 0.586 <.001 0.785 0.017
NFATC2 0.753 0.023
NFKB IA 0.778 0.037
NRG1 0.644 0.004 0.696 0.017 0.698 0.012
OAZ1 0.777 0.034 0.775 0.022
OLFML3 0.621 <.001 0.720 0.001 0.600 <.001 0.626 <.001
OMD 0.706 0.003
OR51E2 0.820 0.037 0.798 0.027
PAGE4 0.549 <.001 0.613 <.001 0.542 <.001 0.628 <.001
PCA3 0.684 <.001 0.635 <.001
PCDHGB7 0.790 0.045 0.725 0.002 0.664 <.001
PGF 0.753 0.017
PGR 0.740 0.021 0.728 0.018
PIK3CG 0.803 0.024
PLAUR 0.778 0.035
PLG 0.728 0.028
PPAP2B 0.575 <.001 0.629 <.001 0.643 <.001 0.699 <.001
PPP1R12A 0.647 <.001 0.683 0.002 0.782 0.023 0.784 0.030
PRIMA1 0.626 <.001 0.658 <.001 0.703 0.002 0.724 0.003
PRKCA 0.642 <.001 0.799 0.029 0.677 0.001 0.776 0.006
PRKCB 0.675 0.001 0.648 <.001 0.747 0.006
PROM1 0.603 0.018 0.659 0.014 0.493 0.008
PTCH1 0.680 0.001 0.753 0.010 0.789 0.018
PTEN 0.732 0.002 0.747 0.005 0.744 <.001 0.765 0.002
PTGS2 0.596 <.001 0.610 <.001
PTH1R 0.767 0.042 0.775 0.028 0.788 0.047
PTHLH 0.617 0.002 0.726 0.025 0.668 0.002 0.718 0.007
PTK2B 0.744 0.003 0.679 <.001 0.766 0.002 0.726 <.001
PTPN1 0.760 0.020 0.780 0.042
PYCARD 0.748 0.012
RAB27A 0.708 0.004
RAB30 0.755 0.008
RAGE 0.817 0.048
RAP1B 0.818 0.050
RARB 0.757 0.007 0.677 <.001 0.789 0.007 0.746 0.003
RASSF1 0.816 0.035
RHOB 0.725 0.009 0.676 0.001 0.793 0.039
RLN1 0.742 0.033 0.762 0.040
RND3 0.636 <.001 0.647 <.001
RNF114 0.749 0.011
SDC2 0.721 0.004
SDHC 0.725 0.003 0.727 0.006
SEMA3A 0.757 0.024 0.721 0.010
SERPINA3 0.716 0.008 0.660 0.001
SERPINB5 0.747 0.031 0.616 0.002
SH3RF2 0.577 <.001 0.458 <.001 0.702 <.001 0.640 <.001
SLC22A3 0.565 <.001 0.540 <.001 0.747 0.004 0.756 0.007
SMAD4 0.546 <.001 0.573 <.001 0.636 <.001 0.627 <.001
SMARCD1 0.718 <.001 0.775 0.017
SMO 0.793 0.029 0.754 0.021 0.718 0.003
SOD1 0.757 0.049 0.707 0.006
SORBS1 0.645 <.001 0.716 0.003 0.693 <.001 0.784 0.025
SPARCL1 0.821 0.028 0.829 0.014 0.781 0.030
SPDEF 0.778 <.001
SPINT1 0.732 0.009 0.842 0.026
SRC 0.647 <.001 0.632 <.001
SRD5A1 0.813 0.040
SRD5A2 0.489 <.001 0.533 <.001 0.544 <.001 0.611 <.001
STS 0.713 0.002 0.783 0.011 0.725 <.001 0.827 0.025
STAT3 0.773 0.037 0.759 0.035
STAT5A 0.695 <.001 0.719 0.002 0.806 0.020 0.783 0.008
STAT5B 0.633 <.001 0.655 <.001 0.814 0.028
SUMO1 0.790 0.015
SVIL 0.659 <.001 0.713 0.002 0.711 0.002 0.779 0.010
TARP 0.800 0.040
TBP 0.761 0.010
TFF3 0.734 0.010 0.659 <.001
TGFB1I1 0.618 <.001 0.693 0.002 0.637 <.001 0.719 0.004
TGFB2 0.679 <.001 0.747 0.005 0.805 0.030
TGFB3 0.791 0.037
TGFBR2 0.778 0.035
TIMP3 0.751 0.011
TMPRSS2 0.745 0.003 0.708 <.001
TNF 0.670 0.013 0.697 0.015
TNFRSF10A 0.780 0.018 0.752 0.006 0.817 0.032
TNFRSF10B 0.576 <.001 0.655 <.001 0.766 0.004 0.778 0.002
TNFRSF18 0.648 0.016 0.759 0.034
TNFSF10 0.653 <.001 0.667 0.004
TP53 0.729 0.003
TP63 0.759 0.016 0.636 <.001 0.698 <.001 0.712 0.001
TPM1 0.778 0.048 0.743 0.012 0.783 0.032 0.811 0.046
TPM2 0.578 <.001 0.634 <.001 0.611 <.001 0.710 0.001
TPP2 0.775 0.037
TRAF3IP2 0.722 0.002 0.690 <.001 0.792 0.021 0.823 0.049
TRO 0.744 0.003 0.725 0.003 0.765 0.002 0.821 0.041
TUBB2A 0.639 <.001 0.625 <.001
TYMP 0.786 0.039
VCL 0.594 <.001 0.657 0.001 0.682 <.001
VEGFA 0.762 0.024
VEGFB 0.795 0.037
VIM 0.739 0.009 0.791 0.021
WDR19 0.776 0.015
WFDC1 0.746 <.001
YY1 0.683 0.001 0.728 0.002
ZFHX3 0.684 <.001 0.661 <.001 0.801 0.010 0.762 0.001
ZFP36 0.605 <.001 0.579 <.001 0.815 0.043
ZNF827 0.624 <.001 0.730 0.007 0.738 0.004
Tables 5A and 5B provide genes that were significantly associated (p<0.05), positively or negatively, with recurrence (cRFI, bRFI) after adjusting for AUA risk group in the primary and/or highest Gleason pattern. Increased expression of genes in Table 5A is negatively associated with good prognosis, while increased expression of genes in Table 5B is positively associated with good prognosis.
TABLE 5A
Genes significantly (p < 0.05) associated with cRFI or bRFI after adjustment for AIA
risk grous in primary Gleason pattern or highest Gleason pattern with hazard
ratio (HR) > 1.0 (increased expression is positively associated with good prognosis)
cRFI cRFI bRFI bRFI
Official Primary Pattern Highest Pattern Primary Pattern Highest Pattern
Symbol HR p-value HR p-value HR p-value HR p-value
AKR1C3 1.315 0.018 1.283 0.024
ALOX12 1.198 0.024
ANLN 1.406 <.001 1.519 <.001 1.485 <.001 1.632 <.001
AQP2 1.209 <.001 1.302 <.001
ASAP2 1.582 <.001 1.333 0.011 1.307 0.019
ASPN 1.872 <.001 1.741 <.001 1.638 <.001 1.691 <.001
ATP5E 1.309 0.042 1.369 0.012
BAG5 1.291 0.044
BAX 1.298 0.025 1.420 0.004
BGN 1.746 <.001 1.755 <.001
BIRC5 1.480 <.001 1.470 <.001 1.419 <.001 1.503 <.001
BMP6 1.536 <.001 1.815 <.001 1.294 0.033 1.429 0.001
BRCA2 1.184 0.037
BUB1 1.288 0.001 1.391 <.001 1.254 <.001 1.189 0.018
CACNA1D 1.313 0.029
CADPS 1.358 0.007 1.267 0.022
CASP3 1.251 0.037
CCNB1 1.261 0.033 1.318 0.005
CCNE2 1.345 0.005 1.438 <.001 1.606 <.001 1.426 <.001
CD276 1.482 0.002 1.668 <.001 1.451 <.001 1.302 0.011
CDC20 1.417 <.001 1.547 <.001 1.355 <.001 1.446 <.001
CDC6 1.340 0.011 1.265 0.046 1.367 0.002 1.272 0.025
CDH7 1.402 0.003 1.409 0.002
CDKN2B 1.553 <.001 1.746 <.001 1.340 0.014 1.369 0.006
CDKN2C 1.411 <.001 1.604 <.001 1.220 0.033
CDKN3 1.296 0.004 1.226 0.015
CENPF 1.434 0.002 1.570 <.001 1.633 <.001 1.610 <.001
CKS2 1.419 0.008 1.374 0.022 1.380 0.004
COL1A1 1.677 <.001 1.809 <.001 1.401 <.001 1.352 0.003
COL1A2 1.373 0.010
COL3A1 1.669 <.001 1.781 <.001 1.249 0.024 1.234 0.047
COL4A1 1.475 0.002 1.513 0.002
COL8A1 1.506 0.001 1.691 <.001
CRISP3 1.406 0.004 1.471 <.001
CTHRC1 1.426 0.009 1.793 <.001 1.311 0.019
CTNND2 1.462 <.001
DDIT4 1.478 0.003 1.783 <.001 1.236 0.039
DYNLL1 1.431 0.002 1.193 0.004
EIF3H 1.372 0.027
ENY2 1.325 0.023 1.270 0.017
ERG 1.303 0.041
EZH2 1.254 0.049
F2R 1.540 0.002 1.448 0.006 1.286 0.023
FADD 1.235 0.041 1.404 <.001
FAP 1.386 0.015 1.440 0.008 1.253 0.048
FASN 1.303 0.028
FCGR3A 1.439 0.011 1.262 0.045
FGF5 1.289 0.006
GNPTAB 1.290 0.033 1.369 0.022 1.285 0.018 1.355 0.008
GPR68 1.396 0.005
GREM1 1.341 0.022 1.502 0.003 1.366 0.006
HDAC1 1.329 0.016
HDAC9 1.378 0.012
HRAS 1.465 0.006
HSD17B4 1.442 <.001 1.245 0.028
IGFBP3 1.366 0.019 1.302 0.011
INHBA 2.000 <.001 2.336 <.001 1.486 0.002
JAG1 1.251 0.039
KCNN2 1.347 0.020 1.524 <.001 1.312 0.023 1.346 0.011
KHDRBS3 1.500 0.001 1.426 0.001 1.267 0.032
KIAA0196 1.272 0.028
KIF4A 1.199 0.022 1.262 0.004
KPNA2 1.252 0.016
LAMA3 1.332 0.004 1.356 0.010
LAMB1 1.317 0.028
LAMC1 1.516 0.003 1.302 0.040 1.397 0.007
LIMS1 1.261 0.027
LOX 1.265 0.016 1.372 0.001
LTBP2 1.477 0.002
LUM 1.321 0.020
MANF 1.647 <.001 1.284 0.027
MCM2 1.372 0.003 1.302 0.032
MCM3 1.269 0.047
MCM6 1.276 0.033 1.245 0.037
MELK 1.294 0.005 1.394 <.001
MK167 1.253 0.028 1.246 0.029
MMP11 1.557 <.001 1.290 0.035 1.357 0.005
MRPL13 1.275 0.003
MSH2 1.355 0.009
MYBL2 1.497 <.001 1.509 <.001 1.304 0.003 1.292 0.007
MY06 1.367 0.010
NDRG1 1.270 0.042 1.314 0.025
NEK2 1.338 0.020 1.269 0.026
NETO2 1.434 0.004 1.303 0.033 1.283 0.012
NOX4 1.413 0.006 1.308 0.037 1.444 <.001
NRIP3 1.171 0.026
NRP1 1.372 0.020
ODC1 1.450 <.001
OR51E1 1.559 <.001 1.413 0.008
PAK6 1.233 0.047
PATE1 1.262 <.001 1.375 <.001 1.143 0.034 1.191 0.036
PCNA 1.227 0.033 1.318 0.003
PEX10 1.517 <.001 1.500 0.001
PGD 1.363 0.028 1.316 0.039 1.652 <.001
PGK1 1.224 0.034 1.206 0.024
PIM1 1.205 0.042
PLA2G7 1.298 0.018 1.358 0.005
PLAU 1.242 0.032
PLK1 1.464 0.001 1.299 0.018 1.275 0.031
PLOD2 1.206 0.039 1.261 0.025
POSTN 1.558 0.001 1.356 0.022 1.363 0.009
PPP3CA 1.445 0.002
PSMD13 1.301 0.017 1.411 0.003
PTK2 1.318 0.031
PTK6 1.582 <.001 1.894 <.001 1.290 0.011 1.354 0.003
PTTG1 1.319 0.004 1.430 <.001 1.271 0.006 1.492 <.001
RAD21 1.278 0.028 1.435 0.004 1.326 0.008
RAF1 1.504 <.001
RALA 1.374 0.028 1.459 0.001
RGS7 1.203 0.031
RRM1 1.535 0.001 1.525 <.001
RRM2 1.302 0.003 1.197 0.047 1.342 <.001
SAT1 1.374 0.043
SDC1 1.344 0.011 1.473 0.008
SEC14L1 1.297 0.006
SESN3 1.337 0.002 1.495 <.001 1.223 0.038
SFRP4 1.610 <.001 1.542 0.002 1.370 0.009
SHMT2 1.567 0.001 1.522 <.001 1.485 0.001 1.370 <.001
SKIL 1.303 0.008
SLC25A21 1.287 0.020 1.306 0.017
SLC44A1 1.308 0.045
SNRPB2 1.304 0.018
SOX4 1.252 0.031
SPARC 1.445 0.004 1.706 <.001 1.269 0.026
SPP1 1.376 0.016
SQLE 1.417 0.007 1.262 0.035
STAT1 1.209 0.029
STMN1 1.315 0.029
SULF1 1.504 0.001
TAF2 1.252 0.048 1.301 0.019
TFDP1 1.395 0.010 1.424 0.002
THBS2 1.716 <.001 1.719 <.001
THY1 1.343 0.035 1.575 0.001
TK1 1.320 <.001 1.304 <.001
TOP2A 1.464 0.001 1.688 <.001 1.715 <.001 1.761 <.001
TPD52 1.286 0.006 1.258 0.023
TPX2 1.644 <.001 1.964 <.001 1.699 <.001 1.754 <.001
TYMS 1.315 0.014
UBE2C 1.270 0.019 1.558 <.001 1.205 0.027 1.333 <.001
UBE2G1 1.302 0.041
UBE2T 1.451 <.001 1.309 0.003
UGT2B15 1.222 0.025
UHRF1 1.370 0.003 1.520 <.001 1.247 0.020
VCPIP1 1.332 0.015
VTI1B 1.237 0.036
XIAP 1.486 0.008
ZMYND8 1.408 0.007
ZNF3 1.284 0.018
ZWINT 1.289 0.028
TABLE 5B
Genes significantly (p < 0.05) associated with cRFI or bRFI after adjustment for AUA
risk group in the primary Gleason pattern or highest Gleason pattern with hazard
ratio (HR) < 1.0 (increased expression is positively associated with good prognosis)
Table 5B cRFI cRFI bRFI bRFI
Official Primary Pattern Highest Pattern Primary Pattern Highest Pattern
Symbol HR p-value HR p-value HR p-value HR p-value
AAMP 0.535 <.001 0.581 <.001 0.700 0.002 0.759 0.006
ABCA5 0.798 0.007 0.745 0.002 0.841 0.037
ABCC1 0.800 0.044
ABCC4 0.787 0.022
ABHD2 0.768 0.023
ACOX2 0.678 0.002 0.749 0.027 0.759 0.004
ADH5 0.645 <.001 0.672 0.001
AGTR1 0.780 0.030
AKAP1 0.815 0.045 0.758 <.001
AKT1 0.732 0.010
ALDH1A2 0.646 <.001 0.548 <.001 0.671 <.001 0.713 0.001
ANPEP 0.641 <.001 0.535 <.001
ANXA2 0.772 0.035 0.804 0.046
ATXN1 0.654 <.001 0.754 0.020 0.797 0.017
AURKA 0.788 0.030
AXIN2 0.744 0.005 0.655 <.001
AZGP1 0.656 <.001 0.676 <.001 0.754 0.001 0.791 0.004
BAD 0.700 0.004
BIN1 0.650 <.001 0.764 0.013 0.803 0.015
BTG3 0.836 0.025
BTRC 0.730 0.005
C7 0.617 <.001 0.680 <.001 0.667 <.001 0.755 0.005
CADM1 0.559 <.001 0.566 <.001 0.772 0.020 0.802 0.046
CASP1 0.781 0.030 0.779 0.021 0.818 0.027 0.828 0.036
CAV1 0.775 0.034
CAV2 0.677 0.019
CCL2 0.752 0.023
CCNH 0.679 <.001 0.682 <.001
CD164 0.721 0.002 0.724 0.005
CD1A 0.710 0.014
CD44 0.591 <.001 0.642 <.001
CD82 0.779 0.021 0.771 0.024
CDC25B 0.778 0.035 0.818 0.023
CDK14 0.788 0.011
CDK3 0.752 0.012 0.779 0.005 0.841 0.020
CDKN1A 0.770 0.049 0.712 0.014
CDKN1C 0.684 <.001 0.697 <.001
CHN1 0.772 0.031
COL6A1 0.648 <.001 0.807 0.046 0.768 0.004
CSF1 0.621 <.001 0.671 0.001
CTNNB1 0.905 0.008
CTSB 0.754 0.030 0.716 0.011 0.756 0.014
CXCL12 0.641 <.001 0.796 0.038 0.708 <.001
CYP3A5 0.503 <.001 0.528 <.001 0.791 0.028
CYR61 0.639 0.001 0.659 0.001 0.797 0.048
DARC 0.707 0.004
DDR2 0.750 0.011
DES 0.657 <.001 0.758 0.022 0.699 <.001
DHRS9 0.625 0.002
DHX9 0.846 <.001
DIAPH1 0.682 0.007 0.723 0.008 0.780 0.026
DLC1 0.703 0.005 0.702 0.008
DLGAP1 0.703 0.008 0.636 <.001
DNM3 0.701 0.001 0.817 0.042
DPP4 0.686 <.001 0.716 0.001
DPT 0.636 <.001 0.633 <.001 0.709 0.006 0.773 0.024
DUSP1 0.683 0.006 0.679 0.003
DUSP6 0.694 0.003 0.605 <.001
EDN1 0.773 0.031
EDNRA 0.716 0.007
EGR1 0.575 <.001 0.575 <.001 0.771 0.014
EGR3 0.633 0.002 0.643 <.001 0.792 0.025
EIF4E 0.722 0.002
ELK4 0.710 0.009 0.759 0.027
ENPP2 0.786 0.039
EPHA2 0.593 0.001
EPHA3 0.739 0.006 0.802 0.020
ERBB2 0.753 0.007
ERBB3 0.753 0.009 0.753 0.015
ERCC1 0.727 0.001
EREG 0.722 0.012 0.769 0.040
ESR1 0.742 0.015
FABP5 0.756 0.032
FAM107A 0.524 <.001 0.579 <.001 0.688 <.001 0.699 0.001
FAM13C 0.639 <.001 0.601 <.001 0.810 0.019 0.709 <.001
FAS 0.770 0.033
FASLG 0.716 0.028 0.683 0.017
FGF10 0.798 0.045
FGF17 0.718 0.018 0.793 0.024 0.790 0.024
FGFR2 0.739 0.007 0.783 0.038 0.740 0.004
FGFR4 0.746 0.050
FKBP5 0.689 0.003
FLNA 0.701 0.006 0.766 0.029 0.768 0.037
FLNC 0.755 <.001 0.820 0.022
FLT1 0.729 0.008
FOS 0.572 <.001 0.536 <.001 0.750 0.005
FOXQ1 0.778 0.033 0.820 0.018
FYN 0.708 0.006
GADD45B 0.577 <.001 0.589 <.001
GDF15 0.757 0.013 0.743 0.006
GHR 0.712 0.004 0.679 0.001
GNRH1 0.791 0.048
GPM6B 0.675 <.001 0.660 <.001 0.735 <.001 0.823 0.049
GSK3B 0.783 0.042
GSN 0.587 <.001 0.705 0.002 0.745 0.004 0.796 0.021
GSTM1 0.686 0.001 0.631 <.001 0.807 0.018
GSTM2 0.607 <.001 0.683 <.001 0.679 <.001 0.800 0.027
HIRIP3 0.692 <.001 0.782 0.007
HK1 0.724 0.002 0.718 0.002
HLF 0.580 <.001 0.571 <.001 0.759 0.008 0.750 0.004
HNF1B 0.669 <.001
HPS1 0.764 0.008
HSD17B10 0.802 0.045
HSD17B2 0.723 0.048
HSD3B2 0.709 0.010
HSP90AB1 0.780 0.034 0.809 0.041
HSPA5 0.738 0.017
HSPB1 0.770 0.006 0.801 0.032
HSPB2 0.788 0.035
ICAM1 0.728 0.015 0.716 0.010
IER3 0.735 0.016 0.637 <.001 0.802 0.035
IFIT1 0.647 <.001 0.755 0.029
IGF1 0.675 <.001 0.603 <.001 0.762 0.006 0.770 0.030
IGF2 0.761 0.011
IGFBP2 0.601 <.001 0.605 <.001
IGFBP5 0.702 <.001
IGFBP6 0.628 <.001 0.726 0.003
IL1B 0.676 0.002 0.716 0.004
IL6 0.688 0.005 0.766 0.044
IL6R 0.786 0.036
IL6ST 0.618 <.001 0.639 <.001 0.785 0.027 0.813 0.042
IL8 0.635 <.001 0.628 <.001
ILK 0.734 0.018 0.753 0.026
ING5 0.684 <.001 0.681 <.001 0.756 0.006
ITGA4 0.778 0.040
ITGA5 0.762 0.026
ITGA6 0.811 0.038
ITGA7 0.592 <.001 0.715 0.006 0.710 0.002
ITGAD 0.576 0.006
ITGB4 0.693 0.003
ITPR1 0.789 0.029
JUN 0.572 <.001 0.581 <.001 0.777 0.019
JUNB 0.732 0.030 0.707 0.016
KCTD12 0.758 0.036
KIT 0.691 0.009 0.738 0.028
KLC1 0.741 0.024 0.781 0.024
KLF6 0.733 0.018 0.727 0.014
KLK1 0.744 0.028
KLK2 0.697 0.002 0.679 <.001
KLK3 0.725 <.001 0.715 <.001 0.841 0.023
KRT15 0.660 <.001 0.577 <.001 0.750 0.002
KRT18 0.623 <.001 0.642 <.001 0.702 <.001 0.760 0.006
KRT2 0.740 0.044
KRT5 0.674 <.001 0.588 <.001 0.769 0.005
KRT8 0.768 0.034
L1CAM 0.737 0.036
LAG3 0.711 0.013 0.748 0.029
LAMA4 0.649 0.009
LAMB3 0.709 0.002 0.684 0.006 0.768 0.006
LGALS3 0.652 <.001 0.752 0.015 0.805 0.028
LIG3 0.728 0.016 0.667 <.001
LRP1 0.811 0.043
MDM2 0.788 0.033
MGMT 0.645 <.001 0.766 0.015
MICA 0.796 0.043 0.676 <.001
NIPPED2 0.675 <.001 0.616 <.001 0.750 0.006
MRC1 0.788 0.028
MTSS1 0.654 <.001 0.793 0.036
MYBPC1 0.706 <.001 0.534 <.001 0.773 0.004 0.692 <.001
NCAPD3 0.658 <.001 0.566 <.001 0.753 0.011 0.733 0.009
NCOR1 0.838 0.045
NEXN 0.748 0.025 0.785 0.020
NFAT5 0.531 <.001 0.626 <.001
NFATC2 0.759 0.024
OAZ1 0.766 0.024
OLFML3 0.648 <.001 0.748 0.005 0.639 <.001 0.675 <.001
OR51E2 0.823 0.034
PAGE4 0.599 <.001 0.698 0.002 0.606 <.001 0.726 <.001
PCA3 0.705 <.001 0.647 <.001
PCDHGB7 0.712 <.001
PGF 0.790 0.039
PLG 0.764 0.048
PLP2 0.766 0.037
PPAP2B 0.589 <.001 0.647 <.001 0.691 <.001 0.765 0.013
PPP1R12A 0.673 0.001 0.677 0.001 0.807 0.045
PRIMA1 0.622 <.001 0.712 0.008 0.740 0.013
PRKCA 0.637 <.001 0.694 <.001
PRKCB 0.741 0.020 0.664 <.001
PROM1 0.599 0.017 0.527 0.042 0.610 0.006 0.420 0.002
PTCH1 0.752 0.027 0.762 0.011
PTEN 0.779 0.011 0.802 0.030 0.788 0.009
PTGS2 0.639 <.001 0.606 <.001
PTHLH 0.632 0.007 0.739 0.043 0.654 0.002 0.740 0.015
PTK2B 0.775 0.019 0.831 0.028 0.810 0.017
PTPN1 0.721 0.012 0.737 0.024
PYCARD 0.702 0.005
RAB27A 0.736 0.008
RAB30 0.761 0.011
RARB 0.746 0.010
RASSF1 0.805 0.043
RHOB 0.755 0.029 0.672 0.001
RLN1 0.742 0.036 0.740 0.036
RND3 0.607 <.001 0.633 <.001
RNF114 0.782 0.041 0.747 0.013
SDC2 0.714 0.002
SDHC 0.698 <.001 0.762 0.029
SERPINA3 0.752 0.030
SERPINB5 0.669 0.014
SH3RF2 0.705 0.012 0.568 <.001 0.755 0.016
SLC22A3 0.650 <.001 0.582 <.001
SMAD4 0.636 <.001 0.684 0.002 0.741 0.007 0.738 0.007
SMARCD1 0.757 0.001
SMO 0.790 0.049 0.766 0.013
SOD1 0.741 0.037 0.713 0.007
SORBS1 0.684 0.003 0.732 0.008 0.788 0.049
SPDEF 0.840 0.012
SPINT1 0.837 0.048
SRC 0.674 <.001 0.671 <.001
SRD5A2 0.553 <.001 0.588 <.001 0.618 <.001 0.701 <.001
ST5 0.747 0.012 0.761 0.010 0.780 0.016 0.832 0.041
STAT3 0.735 0.020
STAT5A 0.731 0.005 0.743 0.009 0.817 0.027
STAT5B 0.708 <.001 0.696 0.001
SUMO1 0.815 0.037
SVIL 0.689 0.003 0.739 0.008 0.761 0.011
TBP 0.792 0.037
TFF3 0.719 0.007 0.664 0.001
TGFB1I1 0.676 0.003 0.707 0.007 0.709 0.005 0.777 0.035
TGFB2 0.741 0.010 0.785 0.017
TGFBR2 0.759 0.022
TIMP3 0.785 0.037
TMPRSS2 0.780 0.012 0.742 <.001
TNF 0.654 0.007 0.682 0.006
TNFRSF10B 0.623 <.001 0.681 <.001 0.801 0.018 0.815 0.019
TNFSF10 0.721 0.004
TP53 0.759 0.011
TP63 0.737 0.020 0.754 0.007
TPM2 0.609 <.001 0.671 <.001 0.673 <.001 0.789 0.031
TRAF3IP2 0.795 0.041 0.727 0.005
TRO 0.793 0.033 0.768 0.027 0.814 0.023
TUBB2A 0.626 <.001 0.590 <.001
VCL 0.613 <.001 0.701 0.011
VIM 0.716 0.005 0.792 0.025
WFDC1 0.824 0.029
YY1 0.668 <.001 0.787 0.014 0.716 0.001 0.819 0.011
ZFHX3 0.732 <.001 0.709 <.001
ZFP36 0.656 0.001 0.609 <.001 0.818 0.045
ZNF827 0.750 0.022
Tables 6A and 6B provide genes that were significantly associated (p<0.05), positively or negatively, with recurrence (cRFI, bRFI) after adjusting for Gleason pattern in the primary and/or highest Gleason pattern. Increased expression of genes in Table 6A is negatively associated with good prognosis, while increased expression of gene in Table 6B is positively associated with good prognosis.
TABLE 6A
Genes significantly (p < 0.05) associated with cRFI or bRFI after adjustment for
Gleason pattern in the primary Gleason pattern or highest Gleason pattern with a hazard
ratio (HR) >1.0 (increased expression is negatively associated with good prognosis)
Table 6A cRFI cRFI bRFI bRFI
Official Primary Pattern Highest Pattern Primary Pattern Highest Pattern
Symbol HR p-value HR p-value HR p-value HR p-value
AKR1C3 1.258 0.039
ANLN 1.292 0.023 1.449 <.001 1.420 0.001
AQP2 1.178 0.008 1.287 <.001
ASAP2 1.396 0.015
ASPN 1.809 <.001 1.508 0.009 1.506 0.002 1.438 0.002
BAG5 1.367 0.012
BAX 1.234 0.044
BGN 1.465 0.009 1.342 0.046
BIRC5 1.338 0.008 1.364 0.004 1.279 0.006
BMP6 1.369 0.015 1.518 0.002
BUB1 1.239 0.024 1.227 0.001 1.236 0.004
CACNA1D 1.337 0.025
CADPS 1.280 0.029
CCNE2 1.256 0.043 1.577 <.001 1.324 0.001
CD276 1.320 0.029 1.396 0.007 1.279 0.033
CDC20 1.298 0.016 1.334 0.002 1.257 0.032 1.279 0.003
CDH7 1.258 0.047 1.338 0.013
CDKN2B 1.342 0.032 1.488 0.009
CDKN2C 1.344 0.010 1.450 <.001
CDKN3 1.284 0.012
CENPF 1.289 0.048 1.498 0.001 1.344 0.010
COL1A1 1.481 0.003 1.506 0.002
COL3A1 1.459 0.004 1.430 0.013
COL4A1 1.396 0.015
COL8A1 1.413 0.008
CRISP3 1.346 0.012 1.310 0.025
CTHRC1 1.588 0.002
DDIT4 1.363 0.020 1.379 0.028
DICER1 1.294 0.008
ENY2 1.269 0.024
FADD 1.307 0.010
FAS 1.243 0.025
FGF5 1.328 0.002
GNPTAB 1.246 0.037
GREM1 1.332 0.024 1.377 0.013 1.373 0.011
HDAC1 1.301 0.018 1.237 0.021
HSD17B4 1.277 0.011
IFN-γ 1.219 0.048
IMMT 1.230 0.049
INHBA 1.866 <.001 1.944 <.001
JAG1 1.298 0.030
KCNN2 1.378 0.020 1.282 0.017
KHDRBS3 1.353 0.029 1.305 0.014
LAMA3 1.344 <.001 1.232 0.048
LAMC1 1.396 0.015
LIMS1 1.337 0.004
LOX 1.355 0.001 1.341 0.002
LTBP2 1.304 0.045
MAGEA4 1.215 0.024
MANF 1.460 <.001
MCM6 1.287 0.042 1.214 0.046
MELK 1.329 0.002
MMP11 1.281 0.050
MRPL13 1.266 0.021
MYBL2 1.453 <.001 1.274 0.019
MYC 1.265 0.037
MY06 1.278 0.047
NET02 1.322 0.022
NFKB1 1.255 0.032
NOX4 1.266 0.041
OR51E1 1.566 <.001 1.428 0.003
PATE1 1.242 <.001 1.347 <.001 1.177 0.011
PCNA 1.251 0.025
PEX10 1.302 0.028
PGD 1.335 0.045 1.379 0.014 1.274 0.025
PIM1 1.254 0.019
PLA2G7 1.289 0.025 1.250 0.031
PLAU 1.267 0.031
PSMD13 1.333 0.005
PTK6 1.432 <.001 1.577 <.001 1.223 0.040
PTTG1 1.279 0.013 1.308 0.006
RAGE 1.329 0.011
RALA 1.363 0.044 1.471 0.003
RGS7 1.120 0.040 1.173 0.031
RRM1 1.490 0.004 1.527 <.001
SESN3 1.353 0.017
SFRP4 1.370 0.025
SHMT2 1.460 0.008 1.410 0.006 1.407 0.008 1.345 <.001
SKIL 1.307 0.025
SLC25A21 1.414 0.002 1.330 0.004
SMARCC2 1.219 0.049
SPARC 1.431 0.005
TFDP1 1.283 0.046 1.345 0.003
THBS2 1.456 0.005 1.431 0.012
TK1 1.214 0.015 1.222 0.006
TOP2A 1.367 0.018 1.518 0.001 1.480 <.001
TPX2 1.513 0.001 1.607 <.001 1.588 <.001 1.481 <.001
UBE2T 1.409 0.002 1.285 0.018
UGT2B15 1.216 0.009 1.182 0.021
XIAP 1.336 0.037 1.194 0.043
TABLE 6B
Genes significantly (p < 0.05) associated with cRFI or bRFI after adjustment for
Gleason pattern in the primary Gleason pattern or highest Gleason pattern with hazard
ration (HR) < 1.0 (increased expression is positively associated with good prognosis)
Table 6B cRFI cRFI bRFI bRFI
Official Primary Pattern Highest Pattern Primary Pattern Highest Pattern
Symbol HR p-value HR p-value HR p-value HR p-value
AAMP 0.660 0.001 0.675 <.001 0.836 0.045
ABCA5 0.807 0.014 0.737 <.001 0.845 0.030
ABCC1 0.780 0.038 0.794 0.015
ABCG2 0.807 0.035
ABHD2 0.720 0.002
ADH5 0.750 0.034
AKAP1 0.721 <.001
ALDH1A2 0.735 0.009 0.592 <.001 0.756 0.007 0.781 0.021
ANGPT2 0.741 0.036
ANPEP 0.637 <.001 0.536 <.001
ANXA2 0.762 0.044
APOE 0.707 0.013
APRT 0.727 0.004 0.771 0.006
ATXN1 0.725 0.013
AURKA 0.784 0.037 0.735 0.003
AXIN2 0.744 0.004 0.630 <.001
AZGP1 0.672 <.001 0.720 <.001 0.764 0.001
BAD 0.687 <.001
BAK1 0.783 0.014
BCL2 0.777 0.033 0.772 0.036
BIK 0.768 0.040
BIN1 0.691 <.001
BTRC 0.776 0.029
C7 0.707 0.004 0.791 0.024
CADM1 0.587 <.001 0.593 <.001
CASP1 0.773 0.023 0.820 0.025
CAV1 0.753 0.014
CAV2 0.627 0.009 0.682 0.003
CCL2 0.740 0.019
CCNH 0.736 0.003
CCR1 0.755 0.022
CD1A 0.740 0.025
CD44 0.590 <.001 0.637 <.001
CD68 0.757 0.026
CD82 0.778 0.012 0.759 0.016
CDC25B 0.760 0.021
CDK3 0.762 0.024 0.774 0.007
CDKN1A 0.714 0.015
CDKN1C 0.738 0.014 0.768 0.021
COL6A1 0.690 <.001 0.805 0.048
CSF1 0.675 0.002 0.779 0.036
CSK 0.825 0.004
CTNNB1 0.884 0.045 0.888 0.027
CTSB 0.740 0.017 0.676 0.003 0.755 0.010
CTSD 0.673 0.031 0.722 0.009
CTSK 0.804 0.034
CTSL2 0.748 0.019
CXCL12 0.731 0.017
CYP3A5 0.523 <.001 0.518 <.001
CYR61 0.744 0.041
DAP 0.755 0.011
DARC 0.763 0.029
DDR2 0.813 0.041
DES 0.743 0.020
DHRS9 0.606 0.001
DHX9 0.916 0.021
DIAPH1 0.749 0.036 0.688 0.003
DLGAP1 0.758 0.042 0.676 0.002
DLL4 0.779 0.010
DNIVI3 0.732 0.007
DPP4 0.732 0.004 0.750 0.014
DPT 0.704 0.014
DUSP6 0.662 <.001 0.665 0.001
EBNA1BP2 0.828 0.019
EDNRA 0.782 0.048
EGF 0.712 0.023
EGR1 0.678 0.004 0.725 0.028
EGR3 0.680 0.006 0.738 0.027
EIF2C2 0.789 0.032
EIF253 0.759 0.012
ELK4 0.745 0.024
EPHA2 0.661 0.007
EPHA3 0.781 0.026 0.828 0.037
ERBB2 0.791 0.022 0.760 0.014 0.789 0.006
ERBB3 0.757 0.009
ERCC1 0.760 0.008
ESR1 0.742 0.014
ESR2 0.711 0.038
ETV4 0.714 0.035
FAM107A 0.619 <.001 0.710 0.011 0.781 0.019
FAM13C 0.664 <.001 0.686 <.001 0.813 0.014
F AM49B 0.670 <.001 0.793 0.014 0.815 0.044 0.843 0.047
FASLG 0.616 0.004 0.813 0.038
FGF10 0.751 0.028 0.766 0.019
FGF17 0.718 0.031 0.765 0.019
FGFR2 0.740 0.009 0.738 0.002
FKBP5 0.749 0.031
FLNC 0.826 0.029
FLT1 0.779 0.045 0.729 0.006
FLT4 0.815 0.024
FOS 0.657 0.003 0.656 0.004
FSD1 0.763 0.017
FYN 0.716 0.004 0.792 0.024
GADD45B 0.692 0.009 0.697 0.010
GDF15 0.767 0.016
GHR 0.701 0.002 0.704 0.002 0.640 <.001
GNRH1 0.778 0.039
GPM6B 0.749 0.010 0.750 0.010 0.827 0.037
GRB7 0.696 0.005
GSK3B 0.726 0.005
GSN 0.660 <.001 0.752 0.019
GSTM1 0.710 0.004 0.676 <.001
GSTM2 0.643 <.001 0.767 0.015
HK1 0.798 0.035
HLA-G 0.660 0.013
HLF 0.644 <.001 0.727 0.011
HNF1B 0.755 0.013
HPS1 0.756 0.006 0.791 0.043
HSD17B10 0.737 0.006
HSD3B2 0.674 0.003
HSP90AB1 0.763 0.015
HSPB1 0.787 0.020 0.778 0.015
HSPE1 0.794 0.039
ICAM1 0.664 0.003
IER3 0.699 0.003 0.693 0.010
IFIT1 0.621 <.001 0.733 0.027
IGF1 0.751 0.017 0.655 <.001
IGFBP2 0.599 <.001 0.605 <.001
IGFBP5 0.745 0.007 0.775 0.035
IGFBP6 0.671 0.005
IL1B 0.732 0.016 0.717 0.005
IL6 0.763 0.040
IL6R 0.764 0.022
IL6ST 0.647 <.001 0.739 0.012
IL8 0.711 0.015 0.694 0.006
ING5 0.729 0.007 0.727 0.003
ITGA4 0.755 0.009
ITGA5 0.743 0.018 0.770 0.034
ITGA6 0.816 0.044 0.772 0.006
ITGA7 0.680 0.004
ITGAD 0.590 0.009
ITGB4 0.663 <.001 0.658 <.001 0.759 0.004
JUN 0.656 0.004 0.639 0.003
KIAA0196 0.737 0.011
KIT 0.730 0.021 0.724 0.008
KLC1 0.755 0.035
KLK1 0.706 0.008
KLK2 0.740 0.016 0.723 0.001
KLK3 0.765 0.006 0.740 0.002
KRT1 0.774 0.042
KRT15 0.658 <.001 0.632 <.001 0.764 0.008
KRT18 0.703 0.004 0.672 <.001 0.779 0.015 0.811 0.032
KRT5 0.686 <.001 0.629 <.001 0.802 0.023
KRT8 0.763 0.034 0.771 0.022
L1CAM 0.748 0.041
LAG3 0.693 0.008 0.724 0.020
LAMA4 0.689 0.039
LAMB3 0.667 <.001 0.645 <.001 0.773 0.006
LGALS3 0.666 <.001 0.822 0.047
LIG3 0.723 0.008
LRP1 0.777 0.041 0.769 0.007
MDM2 0.688 <.001
MET 0.709 0.010 0.736 0.028 0.715 0.003
MGMT 0.751 0.031
MICA 0.705 0.002
MPPED2 0.690 0.001 0.657 <.001 0.708 <.001
MRC1 0.812 0.049
MSH6 0.860 0.049
MTSS1 0.686 0.001
MVP 0.798 0.034 0.761 0.033
MYBPC1 0.754 0.009 0.615 <.001
NCAPD3 0.739 0.021 0.664 0.005
NEXN 0.798 0.037
NFAT5 0.596 <.001 0.732 0.005
NFATC2 0.743 0.016 0.792 0.047
NOS3 0.730 0.012 0.757 0.032
OAZ1 0.732 0.020 0.705 0.002
OCLN 0.746 0.043 0.784 0.025
OLFML3 0.711 0.002 0.709 <.001 0.720 0.001
OMD 0.729 0.011 0.762 0.033
OSM 0.813 0.028
PAGE4 0.668 0.003 0.725 0.004 0.688 <.001 0.766 0.005
PCA3 0.736 0.001 0.691 <.001
PCDHGB7 0.769 0.019 0.789 0.022
PIK3CA 0.768 0.010
PIK3CG 0.792 0.019 0.758 0.009
PLG 0.682 0.009
PPAP2B 0.688 0.005 0.815 0.046
PPP1R12A 0.731 0.026 0.775 0.042
PRIMA1 0.697 0.004 0.757 0.032
PRKCA 0.743 0.019
PRKCB 0.756 0.036 0.767 0.029
PROM1 0.640 0.027 0.699 0.034 0.503 0.013
PTCH1 0.730 0.018
PTEN 0.779 0.015 0.789 0.007
PTGS2 0.644 <.001 0.703 0.007
PTHLH 0.655 0.012 0.706 0.038 0.634 0.001 0.665 0.003
PTK2B 0.779 0.023 0.702 0.002 0.806 0.015 0.806 0.024
PYCARD 0.659 0.001
RAB30 0.779 0.033 0.754 0.014
RARB 0.787 0.043 0.742 0.009
RAS SF1 0.754 0.005
RHOA 0.796 0.041 0.819 0.048
RND3 0.721 0.011 0.743 0.028
SDC1 0.707 0.011
SDC2 0.745 0.002
SDHC 0.750 0.013
SERPINA3 0.730 0.016
SERPINB5 0.715 0.041
SH3RF2 0.698 0.025
SIPA1L1 0.796 0.014 0.820 0.004
SLC22A3 0.724 0.014 0.700 0.008
SMAD4 0.668 0.002 0.771 0.016
SMARCD1 0.726 <.001 0.700 0.001 0.812 0.028
SMO 0.785 0.027
SOD1 0.735 0.012
SORBS1 0.785 0.039
SPDEF 0.818 0.002
SPINT1 0.761 0.024 0.773 0.006
SRC 0.709 <.001 0.690 <.001
SRD5A1 0.746 0.010 0.767 0.024 0.745 0.003
SRD5A2 0.575 <.001 0.669 0.001 0.674 <.001 0.781 0.018
ST5 0.774 0.027
STAT1 0.694 0.004
STAT5A 0.719 0.004 0.765 0.006 0.834 0.049
STAT5B 0.704 0.001 0.744 0.012
SUMO1 0.777 0.014
SVIL 0.771 0.026
TBP 0.774 0.031
TFF3 0.742 0.015 0.719 0.024
TGFB1I1 0.763 0.048
TGFB2 0.729 0.011 0.758 0.002
TMPRSS2 0.810 0.034 0.692 <.001
TNF 0.727 0.022
TNFRSF10A 0.805 0.025
TNFRSF10B 0.581 <.001 0.738 0.014 0.809 0.034
TNFSF10 0.751 0.015 0.700 <.001
TP63 0.723 0.018 0.736 0.003
TPM2 0.708 0.010 0.734 0.014
TRAF3IP2 0.718 0.004
TRO 0.742 0.012
TSTA3 0.774 0.028
TUBB2A 0.659 <.001 0.650 <.001
TYMP 0.695 0.002
VCL 0.683 0.008
VIM 0.778 0.040
WDR19 0.775 0.014
XRC C 5 0.793 0.042
YY1 0.751 0.025 0.810 0.008
ZFHX3 0.760 0.005 0.726 0.001
ZFP36 0.707 0.008 0.672 0.003
ZNF827 0.667 0.002 0.792 0.039
Tables 7A and 7B provide genes significantly associated (p<0.05), positively or negatively, with clinical recurrence (cRFI) in negative TMPRSS fusion specimens in the primary or highest Gleason pattern specimen. Increased expression of genes in Table 7A is negatively associated with good prognosis, while increased expression of genes in Table 7B is positively associated with good prognosis.
TABLE 7A
Genes significantly (p < 0.05) associated with cRFI for TMPRSS2-ERG
fusion negative in the primary Gleason pattern or highest Gleason pattern
with hazard ratio (HR) > 1.0 (increased expression is negatively
associated with good prognosis)
Primary Pattern Highest Pattern
Official Symbol HR p-value HR p-value
ANLN 1.42 0.012 1.36 0.004
AQP2 1.25 0.033
ASPN 2.48 <.001 1.65 <.001
BGN 2.04 <.001 1.45 0.007
BIRC5 1.59 <.001 1.37 0.005
BMP6 1.95 <.001 1.43 0.012
BMPR1B 1.93 0.002
BUB1 1.51 <.001 1.35 <.001
CCNE2 1.48 0.007
CD276 1.93 <.001 1.79 <.001
CDC20 1.49 0.004 1.47 <.001
CDC6 1.52 0.009 1.34 0.022
CDKN2B 1.54 0.008 1.55 0.003
CDKN2C 1.55 0.003 1.57 <.001
CDKN3 1.34 0.026
CENPF 1.63 0.002 1.33 0.018
CKS2 1.50 0.026 1.43 0.009
CLTC 1.46 0.014
COL1A1 1.98 <.001 1.50 0.002
COL3A1 2.03 <.001 1.42 0.007
COL4A1 1.81 0.002
COL8A1 1.63 0.004 1.60 0.001
CRISP3 1.31 0.016
CTHRC1 1.67 0.006 1.48 0.005
DDIT4 1.49 0.037
ENY2 1.29 0.039
EZH2 1.35 0.016
F2R 1.46 0.034 1.46 0.007
FAP 1.66 0.006 1.38 0.012
FGF5 1.46 0.001
GNPTAB 1.49 0.013
HSD17B4 1.34 0.039 1.44 0.002
INHBA 2.92 <.001 2.19 <.001
JAG1 1.38 0.042
KCNN2 1.71 0.002 1.73 <.001
KHDRBS3 1.46 0.015
KLK14 1.28 0.034
KPNA2 1.63 0.016
LAMC1 1.41 0.044
LOX 1.29 0.036
LTBP2 1.57 0.017
MELK 1.38 0.029
MMP11 1.69 0.002 1.42 0.004
MYBL2 1.78 <.001 1.49 <.001
NETO2 2.01 <.001 1.43 0.007
NME1 1.38 0.017
PATE1 1.43 <.001 1.24 0.005
PEX10 1.46 0.030
PGD 1.77 0.002
POSTN 1.49 0.037 1.34 0.026
PPFIA3 1.51 0.012
PPP3CA 1.46 0.033 1.34 0.020
PTK6 1.69 <.001 1.56 <.001
PTTG1 1.35 0.028
RAD51 1.32 0.048
RALBP1 1.29 0.042
RGS7 1.18 0.012 1.32 0.009
RRM1 1.57 0.016 1.32 0.041
RRM2 1.30 0.039
SAT1 1.61 0.007
SESN3 1.76 <.001 1.36 0.020
SFRP4 1.55 0.016 1.48 0.002
SHMT2 2.23 <.001 1.59 <.001
SPARC 1.54 0.014
SQLE 1.86 0.003
STMN1 2.14 <.001
THBS2 1.79 <.001 1.43 0.009
TK1 1.30 0.026
TOP2A 2.03 <.001 1.47 0.003
TPD52 1.63 0.003
TPX2 2.11 <.001 1.63 <.001
TRAP1 1.46 0.023
UBE2C 1.57 <.001 1.58 <.001
UBE2G1 1.56 0.008
UBE2T 1.75 <.001
UGT2B15 1.31 0.036 1.33 0.004
UHRF1 1.46 0.007
UTP23 1.52 0.017
TABLE 7B
Genes significantly (p < 0.05) associated with cRFI for TMPRSS2-ERG
fusion negative in the primary Gleason pattern or highest Gleason pattern
with hazard ratio (HR) < 1.0 (increased expression is positively associated
with good prognosis)
Primary Pattern Highest Pattern
Official Symbol HR p-value HR p-value
AAMP 0.56 <.001 0.65 0.001
ABCA5 0.64 <.001 0.71 <.001
ABCB1 0.62 0.004
ABCC3 0.74 0.031
ABCG2 0.78 0.050
ABHD2 0.71 0.035
ACOX2 0.54 <.001 0.71 0.007
ADH5 0.49 <.001 0.61 <.001
AKAP1 0.77 0.031 0.76 0.013
AKR1C1 0.65 0.006 0.78 0.044
AKT1 0.72 0.020
AKT3 0.75 <.001
ALDH1A2 0.53 <.001 0.60 <.001
AMPD3 0.62 <.001 0.78 0.028
ANPEP 0.54 <.001 0.61 <.001
ANXA2 0.63 0.008 0.74 0.016
ARHGAP29 0.67 0.005 0.77 0.016
ARHGDIB 0.64 0.013
ATP5J 0.57 0.050
ATXN1 0.61 0.004 0.77 0.043
AXIN2 0.51 <.001 0.62 <.001
AZGP1 0.61 <.001 0.64 <.001
BCL2 0.64 0.004 0.75 0.029
BIN1 0.52 <.001 0.74 0.010
BTG3 0.75 0.032 0.75 0.010
BTRC 0.69 0.011
C7 0.51 <.001 0.67 <.001
CADM1 0.49 <.001 0.76 0.034
CASP1 0.71 0.010 0.74 0.007
CAV1 0.73 0.015
CCL5 0.67 0.018 0.67 0.003
CCNH 0.63 <.001 0.75 0.004
CCR1 0.77 0.032
CD164 0.52 <.001 0.63 <.001
CD44 0.53 <.001 0.74 0.014
CDH10 0.69 0.040
CDH18 0.40 0.011
CDK14 0.75 0.013
CDK2 0.81 0.031
CDK3 0.73 0.022
CDKN1A 0.68 0.038
CDKN1C 0.62 0.003 0.72 0.005
COL6A1 0.54 <.001 0.70 0.004
COL6A3 0.64 0.004
CSF1 0.56 <.001 0.78 0.047
CSRP1 0.40 <.001 0.66 0.002
CTGF 0.66 0.015 0.74 0.027
CTNNB1 0.69 0.043
CTSB 0.60 0.002 0.71 0.011
CTSS 0.67 0.013
CXCL12 0.56 <.001 0.77 0.026
CYP3A5 0.43 <.001 0.63 <.001
CYR61 0.43 <.001 0.58 <.001
DAG1 0.72 0.012
DARC 0.66 0.016
DDR2 0.65 0.007
DES 0.52 <.001 0.74 0.018
DHRS9 0.54 0.007
DICER1 0.70 0.044
DLC1 0.75 0.021
DLGAP1 0.55 <.001 0.72 0.005
DNIVI3 0.61 0.001
DPP4 0.55 <.001 0.77 0.024
DPT 0.48 <.001 0.61 <.001
DUSP1 0.47 <.001 0.59 <.001
DUSP6 0.65 0.009 0.65 0.002
DYNLL1 0.74 0.045
EDNRA 0.61 0.002 0.75 0.038
EFNB2 0.71 0.043
EGR1 0.43 <.001 0.58 <.001
EGR3 0.47 <.001 0.66 <.001
EIF5 0.77 0.028
ELK4 0.49 <.001 0.72 0.012
EPHA2 0.70 0.007
EPHA3 0.62 <.001 0.72 0.009
EPHB2 0.68 0.009
ERBB2 0.64 <.001 0.63 <.001
ERBB3 0.69 0.018
ERCC1 0.69 0.019 0.77 0.021
ESR2 0.61 0.020
FAAH 0.57 <.001 0.77 0.035
FABP5 0.67 0.035
FAM107A 0.42 <.001 0.59 <.001
FAM13C 0.53 <.001 0.59 <.001
FAS 0.71 0.035
FASLG 0.56 0.017 0.67 0.014
FGF10 0.57 0.002
FGF17 0.70 0.039 0.70 0.010
FGF7 0.63 0.005 0.70 0.004
FGFR2 0.63 0.003 0.71 0.003
FKBP5 0.72 0.020
FLNA 0.48 <.001 0.74 0.022
FOS 0.45 <.001 0.56 <.001
FOXO1 0.59 <.001
FOXQ1 0.57 <.001 0.69 0.008
FYN 0.62 0.001 0.74 0.013
G6PD 0.77 0.014
GADD45A 0.73 0.045
GADD45B 0.45 <.001 0.64 0.001
GDF15 0.58 <.001
GHR 0.62 0.008 0.68 0.002
GPM6B 0.60 <.001 0.70 0.003
GSK3B 0.71 0.016 0.71 0.006
GSN 0.46 <.001 0.66 <.001
GSTM1 0.56 <.001 0.62 <.001
GSTM2 0.47 <.001 0.67 <.001
HGD 0.72 0.002
HIRIP3 0.69 0.021 0.69 0.002
HK1 0.68 0.005 0.73 0.005
HLA-G 0.54 0.024 0.65 0.013
HLF 0.41 <.001 0.68 0.001
HNF1B 0.55 <.001 0.59 <.001
HPS1 0.74 0.015 0.76 0.025
HSD17B3 0.65 0.031
HSPB2 0.62 0.004 0.76 0.027
ICAM1 0.61 0.010
IER3 0.55 <.001 0.67 0.003
IFIT1 0.57 <.001 0.70 0.008
IFNG 0.69 0.040
IGF1 0.63 <.001 0.59 <.001
IGF2 0.67 0.019 0.70 0.005
IGFBP2 0.53 <.001 0.63 <.001
IGFBP5 0.57 <.001 0.71 0.006
IGFBP6 0.41 <.001 0.71 0.012
IL10 0.59 0.020
IL1B 0.53 <.001 0.70 0.005
IL6 0.55 0.001
IL6ST 0.45 <.001 0.68 <.001
IL8 0.60 0.005 0.70 0.008
ILK 0.68 0.029 0.76 0.036
ING5 0.54 <.001 0.82 0.033
ITGA1 0.66 0.017
ITGA3 0.70 0.020
ITGA5 0.64 0.011
ITGA6 0.66 0.003 0.74 0.006
ITGA7 0.50 <.001 0.71 0.010
ITGB4 0.63 0.014 0.73 0.010
ITPR1 0.55 <.001
ITPR3 0.76 0.007
JUN 0.37 <.001 0.54 <.001
JUNB 0.58 0.002 0.71 0.016
KCTD12 0.68 0.017
KIT 0.49 0.002 0.76 0.043
KLC1 0.61 0.005 0.77 0.045
KLF 6 0.65 0.009
KLK1 0.68 0.036
KLK10 0.76 0.037
KLK2 0.64 <.001 0.73 0.006
KLK3 0.65 <.001 0.76 0.021
KLRK1 0.63 0.005
KRT15 0.52 <.001 0.58 <.001
KRT18 0.46 <.001
KRT5 0.51 <.001 0.58 <.001
KRT8 0.53 <.001
L1CAM 0.65 0.031
LAG3 0.58 0.002 0.76 0.033
LAMA4 0.52 0.018
LAMB3 0.60 0.002 0.65 0.003
LGALS3 0.52 <.001 0.71 0.002
LIG3 0.65 0.011
LRP1 0.61 0.001 0.75 0.040
MGMT 0.66 0.003
MICA 0.59 0.001 0.68 0.001
MLXIP 0.70 0.020
MMP2 0.68 0.022
MMP9 0.67 0.036
MPPED2 0.57 <.001 0.66 <.001
MRC1 0.69 0.028
MTSS1 0.63 0.005 0.79 0.037
MVP 0.62 <.001
MYBPC1 0.53 <.001 0.70 0.011
NCAM1 0.70 0.039 0.77 0.042
NCAPD3 0.52 <.001 0.59 <.001
NDRG1 0.69 0.008
NEXN 0.62 0.002
NFAT5 0.45 <.001 0.59 <.001
NFATC2 0.68 0.035 0.75 0.036
NFKBIA 0.70 0.030
NRG1 0.59 0.022 0.71 0.018
OAZ1 0.69 0.018 0.62 <.001
OLFML3 0.59 <.001 0.72 0.003
OR51E2 0.73 0.013
PAGE4 0.42 <.001 0.62 <.001
PCA3 0.53 <.001
PCDHGB7 0.70 0.032
PGF 0.68 0.027 0.71 0.013
PGR 0.76 0.041
PIK3C2A 0.80 <.001
PIK3CA 0.61 <.001 0.80 0.036
PIK3CG 0.67 0.001 0.76 0.018
PLP2 0.65 0.015 0.72 0.010
PPAP2B 0.45 <.001 0.69 0.003
PPP1R12A 0.61 0.007 0.73 0.017
PRIMA1 0.51 <.001 0.68 0.004
PRKCA 0.55 <.001 0.74 0.009
PRKCB 0.55 <.001
PROM1 0.67 0.042
PROS1 0.73 0.036
PTCH1 0.69 0.024 0.72 0.010
PTEN 0.54 <.001 0.64 <.001
PTGS2 0.48 <.001 0.55 <.001
PTH1R 0.57 0.003 0.77 0.050
PTHLH 0.55 0.010
PTK2B 0.56 <.001 0.70 0.001
PYCARD 0.73 0.009
RAB27A 0.65 0.009 0.71 0.014
RAB30 0.59 0.003 0.72 0.010
RAGE 0.76 0.011
RARB 0.59 <.001 0.63 <.001
RASSF1 0.67 0.003
RB1 0.67 0.006
RFX1 0.71 0.040 0.70 0.003
RHOA 0.71 0.038 0.65 <.001
RHOB 0.58 0.001 0.71 0.006
RND3 0.54 <.001 0.69 0.003
RNF114 0.59 0.004 0.68 0.003
SCUBE2 0.77 0.046
SDHC 0.72 0.028 0.76 0.025
SEC23A 0.75 0.029
SEMA3A 0.61 0.004 0.72 0.011
SEPT9 0.66 0.013 0.76 0.036
SERPINB5 0.75 0.039
SH3RF2 0.44 <.001 0.48 <.001
SHH 0.74 0.049
SLC22A3 0.42 <.001 0.61 <.001
SMAD4 0.45 <.001 0.66 <.001
SMARCD1 0.69 0.016
SOD1 0.68 0.042
SORBS1 0.51 <.001 0.73 0.012
SPARCL1 0.58 <.001 0.77 0.040
SPDEF 0.77 <.001
SPINT1 0.65 0.004 0.79 0.038
SRC 0.61 <.001 0.69 0.001
SRD5A2 0.39 <.001 0.55 <.001
STS 0.61 <.001 0.73 0.012
STAT1 0.64 0.006
STAT3 0.63 0.010
STAT5A 0.62 0.001 0.70 0.003
STAT5B 0.58 <.001 0.73 0.009
SUMO1 0.66 <.001
SVIL 0.57 0.001 0.74 0.022
TBP 0.65 0.002
TFF1 0.65 0.021
TFF3 0.58 <.001
TGFB1I1 0.51 <.001 0.75 0.026
TGFB2 0.48 <.001 0.62 <.001
TGFBR2 0.61 0.003
TIAM1 0.68 0.019
TIMP2 0.69 0.020
TIMP3 0.58 0.002
TNFRSF10A 0.73 0.047
TNFRSF10B 0.47 <.001 0.70 0.003
TNFSF10 0.56 0.001
TP63 0.67 0.001
TPM1 0.58 0.004 0.73 0.017
TPM2 0.46 <.001 0.70 0.005
TRA2A 0.68 0.013
TRAF3IP2 0.73 0.041 0.71 0.004
TRO 0.72 0.016 0.71 0.004
TUBB2A 0.53 <.001 0.73 0.021
TYMP 0.70 0.011
VCAM1 0.69 0.041
VCL 0.46 <.001
VEGFA 0.77 0.039
VEGFB 0.71 0.035
VIM 0.60 0.001
XRCC5 0.75 0.026
YY1 0.62 0.008 0.77 0.039
ZFHX3 0.53 <.001 0.58 <.001
ZFP36 0.43 <.001 0.54 <.001
ZNF827 0.55 0.001
Tables 8A and 8B provide genes that were significantly associated (p<0.05), positively or negatively, with clinical recurrence (cRFI) in positive TMPRSS fusion specimens in the primary or highest Gleason pattern specimen. Increased expression of genes in Table 8A is negatively associated with good prognosis, while increased expression of genes in Table 8B is positively associated with good prognosis.
TABLE 8A
Genes significantly (p < 0.05) associated with cRFI for TMPRSS2-ERG
fusion positive in the primary Gleason pattern or highest Gleason pattern
with hazard ratio (HR) > 1.0 (increased expression is negatively associated
with good prognosis)
Primary Pattern Highest Pattern
Official Symbol HR p-value HR p-value
ACTR2 1.78 0.017
AKR1C3 1.44 0.013
ALCAM 1.44 0.022
ANLN 1.37 0.046 1.81 <.001
APOE 1.49 0.023 1.66 0.005
AQP2 1.30 0.013
ARHGMB 1.55 0.021
ASPN 2.13 <.001 2.43 <.001
ATP5E 1.69 0.013 1.58 0.014
BGN 1.92 <.001 2.55 <.001
BIRC5 1.48 0.006 1.89 <.001
BMP6 1.51 0.010 1.96 <.001
BRCA2 1.41 0.007
BUB1 1.36 0.007 1.52 <.001
CCNE2 1.55 0.004 1.59 <.001
CD276 1.65 <.001
CDC20 1.68 <.001 1.74 <.001
CDH11 1.50 0.017
CDH18 1.36 <.001
CDH7 1.54 0.009 1.46 0.026
CDKN2B 1.68 0.008 1.93 0.001
CDKN2C 2.01 <.001 1.77 <.001
CDKN3 1.51 0.002 1.33 0.049
CENPF 1.51 0.007 2.04 <.001
CKS2 1.43 0.034 1.56 0.007
COL1A1 2.23 <.001 3.04 <.001
COL1A2 1.79 0.001 2.22 <.001
COL3A1 1.96 <.001 2.81 <.001
COL4A1 1.52 0.020
COL5A1 1.50 0.020
COL5A2 1.64 0.017 1.55 0.010
COL8A1 1.96 <.001 2.38 <.001
CRISP3 1.68 0.002 1.67 0.002
CTHRC1 2.06 <.001
CTNND2 1.42 0.046 1.50 0.025
CTSK 1.43 0.049
CXCR4 1.82 0.001 1.64 0.007
DDIT4 1.54 0.016 1.58 0.009
DLL4 1.51 0.007
DYNLL1 1.50 0.021 1.22 0.002
F2R 2.27 <.001 2.02 <.001
FAP 2.12 <.001
FCGR3A 1.94 0.002
FGF5 1.23 0.047
FOXP3 1.52 0.006 1.48 0.018
GNPTAB 1.44 0.042
GPR68 1.51 0.011
GREM1 1.91 <.001 2.38 <.001
HDAC1 1.43 0.048
HDAC9 1.65 <.001 1.67 0.004
HRAS 1.65 0.005 1.58 0.021
IGFBP3 1.94 <.001 1.85 <.001
INHBA 2.03 <.001 2.64 <.001
JAG1 1.41 0.027 1.50 0.008
KCTD12 1.51 0.017
KHDRBS3 1.48 0.029 1.54 0.014
KPNA2 1.46 0.050
LAMA3 1.35 0.040
LAMC1 1.77 0.012
LTBP2 1.82 <.001
LUM 1.51 0.021 1.53 0.009
MELK 1.38 0.020 1.49 0.001
MKI67 1.37 0.014
MMP11 1.73 <.001 1.69 <.001
MRPL13 1.30 0.046
MYBL2 1.56 <.001 1.72 <.001
MYLK3 1.17 0.007
NOX4 1.58 0.005 1.96 <.001
NRIP3 1.30 0.040
NRP1 1.53 0.021
OLFML2B 1.54 0.024
OSM 1.43 0.018
PATE1 1.20 <.001 1.33 <.001
PCNA 1.64 0.003
PEX10 1.41 0.041 1.64 0.003
PIK3CA 1.38 0.037
PLK1 1.52 0.009 1.67 0.002
PLOD2 1.65 0.002
POSTN 1.79 <.001 2.06 <.001
PTK6 1.67 0.002 2.38 <.001
PTTG1 1.56 0.002 1.54 0.003
RAD21 1.61 0.036 1.53 0.005
RAD51 1.33 0.009
RALA 1.95 0.004 1.60 0.007
REG4 1.43 0.042
ROBO2 1.46 0.024
RRM1 1.44 0.033
RRM2 1.50 0.003 1.48 <.001
SAT1 1.42 0.009 1.43 0.012
SEC14L1 1.64 0.002
SFRP4 2.07 <.001 2.40 <.001
SHMT2 1.52 0.030 1.60 0.001
SLC44A1 1.42 0.039
SPARC 1.93 <.001 2.21 <.001
SULF1 1.63 0.006 2.04 <.001
THBS2 1.95 <.001 2.26 <.001
THY1 1.69 0.016 1.95 0.002
TK1 1.43 0.003
TOP2A 1.57 0.002 2.11 <.001
TPX2 1.84 <.001 2.27 <.001
UBE2C 1.41 0.011 1.44 0.006
UBE2T 1.63 0.001
UHRF1 1.51 0.007 1.69 <.001
WISP1 1.47 0.045
WNT5A 1.35 0.027 1.63 0.001
ZWINT 1.36 0.045
TABLE 8B
Genes significantly (p < 0.05) associated with cRFI for TMPRSS2-ERG
fusion positive in the primary Gleason pattern or highest Gleason pattern
with hazard ratio (HR) < 1.0 (increased expression is positively associated
with good prognosis)
Primary Pattern Highest Pattern
Official Symbol HR p-value HR p-value
AAMP 0.57 0.007 0.58 <.001
ABCA5 0.80 0.044
ACE 0.65 0.023 0.55 <.001
ACOX2 0.55 <.001
ADH5 0.68 0.022
AKAP1 0.81 0.043
ALDH1A2 0.72 0.036 0.43 <.001
ANPEP 0.66 0.022 0.46 <.001
APRT 0.73 0.040
AXIN2 0.60 <.001
AZGP1 0.57 <.001 0.65 <.001
BCL2 0.69 0.035
BIK 0.71 0.045
BIN1 0.71 0.004 0.71 0.009
BTRC 0.66 0.003 0.58 <.001
C7 0.64 0.006
CADM1 0.61 <.001 0.47 <.001
CCL2 0.73 0.042
CCNH 0.69 0.022
CD44 0.56 <.001 0.58 <.001
CD82 0.72 0.033
CDC25B 0.74 0.028
CDH1 0.75 0.030 0.72 0.010
CDH19 0.56 0.015
CDK3 0.78 0.045
CDKN1C 0.74 0.045 0.70 0.014
CSF1 0.72 0.037
CTSB 0.69 0.048
CTSL2 0.58 0.005
CYP3A5 0.51 <.001 0.30 <.001
DHX9 0.89 0.006 0.87 0.012
DLC1 0.64 0.023
DLGAP1 0.69 0.010 0.49 <.001
DPP4 0.64 <.001 0.56 <.001
DPT 0.63 0.003
EGR1 0.69 0.035
EGR3 0.68 0.025
EIF2S3 0.70 0.021
EIF5 0.71 0.030
ELK4 0.71 0.041 0.60 0.003
EPHA2 0.72 0.036 0.66 0.011
EPHB 4 0.65 0.007
ERCC1 0.68 0.023
ESR2 0.64 0.027
FAM107A 0.64 0.003 0.61 0.003
FAM13C 0.68 0.006 0.55 <.001
FGFR2 0.73 0.033 0.59 <.001
FKBP5 0.60 0.006
FLNC 0.68 0.024 0.65 0.012
FLT1 0.71 0.027
FOS 0.62 0.006
FOXO1 0.75 0.010
GADD45B 0.68 0.020
GHR 0.62 0.006
GPM6B 0.57 <.001
GSTM1 0.68 0.015 0.58 <.001
GSTM2 0.65 0.005 0.47 <.001
HGD 0.63 0.001 0.71 0.020
HK1 0.67 0.003 0.62 0.002
HLF 0.59 <.001
HNF1B 0.66 0.004 0.61 0.001
IER3 0.70 0.026
IGF1 0.63 0.005 0.55 <.001
IGF1R 0.76 0.049
IGFBP2 0.59 0.007 0.64 0.003
IL6ST 0.65 0.005
IL8 0.61 0.005 0.66 0.019
ILK 0.64 0.015
ING5 0.73 0.033 0.70 0.009
ITGA7 0.72 0.045 0.69 0.019
ITGB4 0.63 0.002
KLC1 0.74 0.045
KLK1 0.56 0.002 0.49 <.001
KLK10 0.68 0.013
KLK11 0.66 0.003
KLK2 0.66 0.045 0.65 0.011
KLK3 0.75 0.048 0.77 0.014
KRT15 0.71 0.017 0.50 <.001
KRT5 0.73 0.031 0.54 <.001
LAMAS 0.70 0.044
LAMB3 0.70 0.005 0.58 <.001
LGALS3 0.69 0.025
LIG3 0.68 0.022
MDK 0.69 0.035
MGMT 0.59 0.017 0.60 <.001
MGST1 0.73 0.042
MICA 0.70 0.009
MPPED2 0.72 0.031 0.54 <.001
MTSS1 0.62 0.003
MYBPC1 0.50 <.001
NCAPD3 0.62 0.007 0.38 <.001
NCOR1 0.82 0.048
NFAT5 0.60 0.001 0.62 <.001
NRG1 0.66 0.040 0.61 0.029
NUP62 0.75 0.037
OMD 0.54 <.001
PAGE4 0.64 0.005
PCA3 0.66 0.012
PCDHGB7 0.68 0.018
PGR 0.60 0.012
PPAP2B 0.62 0.010
PPP1R12A 0.73 0.031 0.58 0.003
PRIMA1 0.65 0.013
PROM1 0.41 0.013
PTCH1 0.64 0.006
PTEN 0.75 0.047
PTGS2 0.67 0.011
PTK2B 0.66 0.005
PTPN1 0.71 0.026
RAGE 0.70 0.012
RARB 0.68 0.016
RGS10 0.84 0.034
RHOB 0.66 0.016
RND3 0.63 0.004
SDHC 0.73 0.044 0.69 0.016
SERPINA3 0.67 0.011 0.51 <.001
SERPINB5 0.42 <.001
SH3RF2 0.66 0.012 0.51 <.001
SLC22A3 0.59 0.003 0.48 <.001
SMAD4 0.64 0.004 0.49 <.001
SMARCC2 0.73 0.042
SMARCD1 0.73 <.001 0.76 0.035
SMO 0.64 0.006
SNAI1 0.53 0.008
SOD1 0.60 0.003
SRC 0.64 <.001 0.61 <.001
SRD5A2 0.63 0.004 0.59 <.001
STAT3 0.64 0.014
STAT5A 0.70 0.032
STAT5B 0.74 0.034 0.63 0.003
SVIL 0.71 0.028
TGFB1I1 0.68 0.036
TMPRSS2 0.72 0.015 0.67 <.001
TNFRSF10A 0.69 0.010
TNFRSF10B 0.67 0.007 0.64 0.001
TNFRSF18 0.38 0.003
TNFSF10 0.71 0.025
TP53 0.68 0.004 0.57 <.001
TP63 0.75 0.049 0.52 <.001
TPM2 0.62 0.007
TRAF3IP2 0.71 0.017 0.68 0.005
TRO 0.72 0.033
TUBB2A 0.69 0.038
VCL 0.62 <.001
VEGFA 0.71 0.037
WWOX 0.65 0.004
ZFHX3 0.77 0.011 0.73 0.012
ZFP36 0.69 0.018
ZNF827 0.68 0.013 0.49 <.001
Tables 9A and 9B provide genes significantly associated (p<0.05), positively or negatively, with TMPRSS fusion status in the primary Gleason pattern. Increased expression of genes in Table 9A are positively associated with TMPRSS fusion positivity, while increased expression of genes in Table 10A are negatively associated with TMPRSS fusion positivity.
TABLE 9A
Genes significantly (p < 0.05) associated with TMPRSS fusion status
in the primary Gleason pattern with odds ratio (OR) > 1.0 (increased
expression is positively associated with TMPRSS fusion positivity
Official Symbol p-value Odds Ratio
ABCC8 <.001 1.86
ALDH18A1 0.005 1.49
ALKBH3 0.043 1.30
ALOX5 <.001 1.66
AMPD3 <.001 3.92
APEX1 <.001 2.00
ARHGD113 <.001 1.87
ASAP2 0.019 1.48
ATXN1 0.013 1.41
BMPR1B <.001 2.37
CACNA1D <.001 9.01
CADPS 0.015 1.39
CD276 0.003 2.25
CDH1 0.016 1.37
CDH7 <.001 2.22
CDK7 0.025 1.43
COL9A2 <.001 2.58
CRISP3 <.001 2.60
CTNND1 0.033 1.48
ECE1 <.001 2.22
EIF5 0.023 1.34
EPHB4 0.005 1.51
ERG <.001 14.5
FAM171B 0.047 1.32
FAM73A 0.008 1.45
FASN 0.004 1.50
GNPTAB <.001 1.60
GPS1 0.006 1.45
GRB7 0.023 1.38
HDAC1 <.001 4.95
HGD <.001 1.64
HIP1 <.001 1.90
HNF1B <.001 3.55
HSPA8 0.041 1.32
IGF1R 0.001 1.73
ILF3 <.001 1.91
IMMT 0.025 1.36
ITPR1 <.001 2.72
ITPR3 <.001 5.91
JAG1 0.007 1.42
KCNN2 <.001 2.80
KHDRBS3 <.001 2.63
KIAA0247 0.019 1.38
KLK11 <.001 1.98
LAMC1 0.008 1.56
LAMC2 <.001 3.30
LOX 0.009 1.41
LRP1 0.044 1.30
MAP3K5 <.001 2.06
MAP7 <.001 2.74
MSH2 0.005 1.59
MSH3 0.006 1.45
MUC1 0.012 1.42
MYO6 <.001 3.79
NCOR2 0.001 1.62
NDRG1 <.001 6.77
NETO2 <.001 2.63
ODC1 <.001 1.98
OR51E1 <.001 2.24
PDE9A <.001 2.21
PEX10 <.001 3.41
PGK1 0.022 1.33
PLA2G7 <.001 5.51
PPP3CA 0.047 1.38
PSCA 0.013 1.43
PSMD13 0.004 1.51
PTCH1 0.022 1.38
PTK2 0.014 1.38
PTK6 <.001 2.29
PTK7 <.001 2.45
PTPRK <.001 1.80
RAB30 0.001 1.60
REG4 0.018 1.58
RELA 0.001 1.62
RFX1 0.020 1.43
RGS10 <.001 1.71
SCUBE2 0.009 1.48
SEPT9 <.001 3.91
SH3RF2 0.004 1.48
SH3YL1 <.001 1.87
SHH <.001 2.45
SIM2 <.001 1.74
SIPA1L1 0.021 1.35
SLC22A3 <.001 1.63
SLC44A1 <.001 1.65
SPINT1 0.017 1.39
TFDP1 0.005 1.75
TMPRSS2ERGA 0.002 14E5
TMPRSS2ERGB <.001 1.97
TRIM14 <.001 1.65
TSTA3 0.018 1.38
UAP1 0.046 1.39
UBE2G1 0.001 1.66
UGDH <.001 2.22
XRCCS <.001 1.66
ZMYND8 <.001 2.19
TABLE 9B
Genes significantly (p < 0.05) associated with TMPRSS fusion status
in the primary Gleason pattern with odds ratio (OR) < 1.0 (increased
expression is negatively associated with TMPRSS fusion positivity)
Official Symbol p-value Odds Ratio
ABCC4 0.045 0.77
ABHD2 <.001 0.38
ACTR2 0.027 0.73
ADAMTS1 0.024 0.58
ADH5 <.001 0.58
AGTR2 0.016 0.64
AKAP1 0.013 0.70
AKT2 0.015 0.71
ALCAM <.001 0.45
ALDH1A2 0.004 0.70
ANPEP <.001 0.43
ANXA2 0.010 0.71
APC 0.036 0.73
APOC1 0.002 0.56
APOE <.001 0.44
ARF1 0.041 0.77
ATM 0.036 0.74
AURKB <.001 0.62
AZGP1 <.001 0.54
BBC3 0.030 0.74
BCL2 0.012 0.70
BIN1 0.021 0.74
BTG1 0.004 0.67
BTG3 0.003 0.63
C7 0.023 0.74
CADM1 0.007 0.69
CASP1 0.011 0.70
CAV1 0.011 0.71
CCND1 0.019 0.72
CCR1 0.022 0.73
CD44 <.001 0.57
CD68 <.001 0.54
CD82 0.002 0.66
CDH5 0.007 0.66
CDKN1A <.001 0.60
CDKN2B <.001 0.54
CDKN2C 0.012 0.72
CDKN3 0.037 0.77
CHN1 0.038 0.75
CKS2 <.001 0.48
COL11A1 0.017 0.72
COL1A1 <.001 0.59
COL1A2 0.001 0.62
COL3A1 0.027 0.73
COL4A1 0.043 0.76
COL5A1 0.039 0.74
COL5A2 0.026 0.73
COL6A1 0.008 0.66
COL6A3 <.001 0.59
COL8A1 0.022 0.74
CSF1 0.011 0.70
CTNNB1 0.021 0.69
CTSB <.001 0.62
CTSD 0.036 0.68
CTSK 0.007 0.70
CTSS 0.002 0.64
CXCL12 <.001 0.48
CXCR4 0.005 0.68
CXCR7 0.046 0.76
CYR61 0.004 0.65
DAP 0.002 0.64
DARC 0.021 0.73
DDR2 0.021 0.73
DHRS9 <.001 0.52
DIAPH1 <.001 0.56
DICER1 0.029 0.75
DLC1 0.013 0.72
DLGAP1 <.001 0.60
DLL4 <.001 0.57
DPT 0.006 0.68
DUSP1 0.012 0.68
DUSP6 0.001 0.62
DVL1 0.037 0.75
EFNB2 <.001 0.32
EGR1 0.003 0.65
ELK4 <.001 0.60
ERBB2 <.001 0.61
ERBB3 0.045 0.76
ESR2 0.010 0.70
ETV1 0.042 0.74
FABP5 <.001 0.21
FAM13C 0.006 0.67
FCGR3A 0.018 0.72
FGF17 0.009 0.71
FGF6 0.011 0.70
FGF7 0.003 0.63
FN1 0.006 0.69
FOS 0.035 0.74
FOXP3 0.010 0.71
GABRG2 0.029 0.74
GADD45B 0.003 0.63
GDF15 <.001 0.54
GPM6B 0.004 0.67
GPNMB 0.001 0.62
GSN 0.009 0.69
HLA-G 0.050 0.74
HLF 0.018 0.74
HPS1 <.001 0.48
HSD17B3 0.003 0.60
HSD17B4 <.001 0.56
HSPB1 <.001 0.38
HSPB2 0.002 0.62
IFI30 0.049 0.75
IFNG 0.006 0.64
IGF1 0.016 0.73
IGF2 0.001 0.57
IGFBP2 <.001 0.51
IGFBP3 <.001 0.59
IGFBP6 <.001 0.57
IL10 <.001 0.62
IL17A 0.012 0.63
IL1A 0.011 0.59
IL2 0.001 0.63
IL6ST <.001 0.52
INSL4 0.014 0.71
ITGA1 0.009 0.69
ITGA4 0.007 0.68
JUN <.001 0.59
KIT <.001 0.64
KRT76 0.016 0.70
LAG3 0.002 0.63
LAPTM5 <.001 0.58
LGALS3 <.001 0.53
LTBP2 0.011 0.71
LUM 0.012 0.70
MAOA 0.020 0.73
MAP4K4 0.007 0.68
MGST1 <.001 0.54
MMP2 <.001 0.61
MPPED2 <.001 0.45
MRC1 0.005 0.67
MTPN 0.002 0.56
MTSS1 <.001 0.53
MVP 0.009 0.72
MYBPC1 <.001 0.51
MYLK3 0.001 0.58
NCAM1 <.001 0.59
NCAPD3 <.001 0.40
NCOR1 0.004 0.69
NFKBIA <.001 0.63
NNMT 0.006 0.66
NPBWR1 0.027 0.67
OAZ1 0.049 0.64
OLFML3 <.001 0.56
OSM <.001 0.64
PAGE1 0.012 0.52
PDGFRB 0.016 0.73
PECAM1 <.001 0.55
PGR 0.048 0.77
PIK3CA <.001 0.55
PIK3CG 0.008 0.71
PLAU 0.044 0.76
PLK1 0.006 0.68
PLOD2 0.013 0.71
PLP2 0.024 0.73
PNLIPRP2 0.009 0.70
PPAP2B <.001 0.62
PRKAR2B <.001 0.61
PRKCB 0.044 0.76
PROS1 0.005 0.67
PTEN <.001 0.47
PTGER3 0.007 0.69
PTH1R 0.011 0.70
PTK2B <.001 0.61
PTPN1 0.028 0.73
RAB27A <.001 0.21
RAD51 <.001 0.51
RAD9A 0.030 0.75
RARB <.001 0.62
RASSF1 0.038 0.76
RECK 0.009 0.62
RHOB 0.004 0.64
RHOC <.001 0.56
RLN1 <.001 0.30
RND3 0.014 0.72
S100P 0.002 0.66
SDC2 <.001 0.61
SEMA3A 0.001 0.64
SMAD4 <.001 0.64
SPARC <.001 0.59
SPARCL1 <.001 0.56
SPINK1 <.001 0.26
SRD5A1 0.039 0.76
STAT1 0.026 0.74
STS 0.006 0.64
SULF1 <.001 0.53
TFF3 <.001 0.19
TGFA 0.002 0.65
TGFB1I1 0.040 0.77
TGFB2 0.003 0.66
TGFB3 <.001 0.54
TGFBR2 <.001 0.61
THY1 <.001 0.63
TIMP2 0.004 0.66
TIMP3 <.001 0.60
TMPRSS2 <.001 0.40
TNFSF11 0.026 0.63
TPD52 0.002 0.64
TRAM1 <.001 0.45
TRPC6 0.002 0.64
TUBB2A <.001 0.49
VCL <.001 0.57
VEGFB 0.033 0.73
VEGFC <.001 0.61
VIM 0.012 0.69
WISP1 0.030 0.75
WNT5A <.001 0.50
A molecular field effect was investigated, and determined that the expression levels of histologically normal-appearing cells adjacent to the tumor exhibited a molecular signature of prostate cancer. Tables 10A and 10B provide genes significantly associated (p<0.05), positively or negatively, with cRFI or bRFI in non-tumor samples. Table 10A is negatively associated with good prognosis, while increased expression of genes in Table 10B is positively associated with good prognosis.
TABLE 10A
Genes significantly (p < 0.05) associated with cRFI
or bRFI in Non-Tumor Samples with hazard ratio
(HR) > 1.0 (increased expression is negatively
associated with good prognosis)
Official cRFI bRFI
Symbol HR p-value HR p-value
ALCAM 1.278 0.036
ASPN 1.309 0.032
BAG5 1.458 0.004
BRCA2 1.385 <.001
CACNA1D 1.329 0.035
CD164 1.339 0.020
CDKN2B 1.398 0.014
COL3A1 1.300 0.035
COL4A1 1.358 0.019
CTNND2 1.370 0.001
DARC 1.451 0.003
DICER1 1.345 <.001
DPP4 1.358 0.008
EFNB2 1.323 0.007
FASN 1.327 0.035
GHR 1.332 0.048
HSPA5 1.260 0.048
INHBA 1.558 <.001
KCNN2 1.264 0.045
KRT76 1.115 <.001
LAMC1 1.390 0.014
LAMC2 1.216 0.042
LIG3 1.313 0.030
MAOA 1.405 0.013
MCM6 1.307 0.036
MKI67 1.271 0.008
NEK2 1.312 0.016
NPBWR1 1.278 0.035
ODC1 1.320 0.010
PEX10 1.361 0.014
PGK1 1.488 0.004
PLA2G7 1.337 0.025
POSTN 1.306 0.043
PTK6 1.344 0.005
REG4 1.348 0.009
RGS7 1.144 0.047
SFRP4 1.394 0.009
TARP 1.412 0.011
TFF1 1.346 0.010
TGFBR2 1.310 0.035
THY1 1.300 0.038
TMPRSS2ERGA 1.333 <.001
TPD52 1.374 0.015
TRPC6 1.272 0.046
UBE2C 1.323 0.007
UHRF1 1.325 0.021
TABLE 10B
Genes significantly (p < 0.05) associated with cRFI
or bRFI in Non-Tumor Samples with hazard ratio
(HR) < 1.0 (increased expression is positively
associated with good prognosis)
Official cRFI bRFI
Symbol HR p-value HR p-value
ABCA5 0.807 0.028
ABCC3 0.760 0.019 0.750 0.003
ABHD2 0.781 0.028
ADAM15 0.718 0.005
AKAP1 0.740 0.009
AMPD3 0.793 0.013
ANGPT2 0.752 0.027
ANXA2 0.776 0.035
APC 0.755 0.014
APRT 0.762 0.025
AR 0.752 0.015
ARHGDIB 0.753 <.001
BIN1 0.738 0.016
CADM1 0.711 0.004
CCNH 0.820 0.041
CCR1 0.749 0.007
CDK14 0.772 0.014
CDK3 0.819 0.044
CDKN1C 0.808 0.038
CHAF1A 0.634 0.002 0.779 0.045
CHN1 0.803 0.034
CHRAC1 0.751 0.014 0.779 0.021
COL5A1 0.736 0.012
COL5A2 0.762 0.013
COL6A1 0.757 0.032
COL6A3 0.757 0.019
CSK 0.663 <.001 0.698 <.001
CTSK 0.782 0.029
CXCL12 0.771 0.037
CXCR7 0.753 0.008
CYP3A5 0.790 0.035
DDIT4 0.725 0.017
DIAPH1 0.771 0.015
DLC1 0.744 0.004 0.807 0.015
DLGAP1 0.708 0.004
DUSP1 0.740 0.034
EDN1 0.742 0.010
EGR1 0.731 0.028
EIF3H 0.761 0.024
EIF4E 0.786 0.041
ERBB2 0.664 0.001
ERBB4 0.764 0.036
ERCC1 0.804 0.041
ESR2 0.757 0.025
EZH2 0.798 0.048
FAAH 0.798 0.042
FAM13C 0.764 0.012
FAM171B 0.755 0.005
FAM49B 0.811 0.043
FAM73A 0.778 0.015
FASLG 0.757 0.041
FGFR2 0.735 0.016
FOS 0.690 0.008
FYN 0.788 0.035 0.777 0.011
GPNMB 0.762 0.011
GSK3B 0.792 0.038
HGD 0.774 0.017
HIRIP3 0.802 0.033
HSP90AB1 0.753 0.013
HSPB1 0.764 0.021
HSPE1 0.668 0.001
IFI30 0.732 0.002
IGF2 0.747 0.006
IGFBP5 0.691 0.006
IL6ST 0.748 0.010
IL8 0.785 0.028
IMMT 0.708 <.001
ITGA6 0.747 0.008
ITGAV 0.792 0.016
ITGB3 0.814 0.034
ITPR3 0.769 0.009
JUN 0.655 0.005
KHDRBS3 0.764 0.012
KLF6 0.714 <.001
KLK2 0.813 0.048
LAMA4 0.702 0.009
LAMA5 0.744 0.011
LAPTM5 0.740 0.009
LGALS3 0.773 0.036 0.788 0.024
LIMS1 0.807 0.012
MAP3K5 0.815 0.034
MAP3K7 0.809 0.032
MAP4K4 0.735 0.018 0.761 0.010
MAPKAPK3 0.754 0.014
MICA 0.785 0.019
MTA1 0.808 0.043
MVP 0.691 0.001
MYLK3 0.730 0.039
MYO6 0.780 0.037
NCOA1 0.787 0.040
NCOR1 0.876 0.020
NDRG1 0.761 <.001
NFAT5 0.770 0.032
NFKBIA 0.799 0.018
NME2 0.753 0.005
NUP62 0.842 0.032
OAZ1 0.803 0.043
OLFML2B 0.745 0.023
OLFML3 0.743 0.009
OSM 0.726 0.018
PCA3 0.714 0.019
PECAM1 0.774 0.023
PIK3C2A 0.768 0.001
PIM1 0.725 0.011
PLOD2 0.713 0.008
PPP3CA 0.768 0.040
PROM1 0.482 <.001
PTEN 0.807 0.012
PTGS2 0.726 0.011
PTTG1 0.729 0.006
PYCARD 0.783 0.012
RAB30 0.730 0.002
RAGE 0.792 0.012
RFX1 0.789 0.016 0.792 0.010
RGS10 0.781 0.017
RUNX1 0.747 0.007
SDHC 0.827 0.036
SEC23A 0.752 0.010
SEPT9 0.889 0.006
SERPINA3 0.738 0.013
SLC25A21 0.788 0.045
SMARCD1 0.788 0.010 0.733 0.007
SMO 0.813 0.035
SRC 0.758 0.026
SRD5A2 0.738 0.005
ST5 0.767 0.022
STAT5A 0.784 0.039
TGFB2 0.771 0.027
TGFB3 0.752 0.036
THBS2 0.751 0.015
TNFRSF10B 0.739 0.010
TPX2 0.754 0.023
TRAF3IP2 0.774 0.015
TRAM1 0.868 <.001 0.880 <.001
TRIM14 0.785 0.047
TUBB2A 0.705 0.010
TYMP 0.778 0.024
UAP1 0.721 0.013
UTP23 0.763 0.007 0.826 0.018
VCL 0.837 0.040
VEGFA 0.755 0.009
WDR19 0.724 0.005
YBX1 0.786 0.027
ZFP36 0.744 0.032
ZNF827 0.770 0.043
Table 11 provides genes that are significantly associated (p<0.05) with cRFI or bRFI after adjustment for Gleason pattern or highest Gleason pattern.
TABLE 11
Genes significantly (p < 0.05) associated with
cRFI or bRFI after adjustment for Gleason
pattern in the primary Gleason pattern or highest
Gleason pattern Some HR <= 1.0 and some HR >1.0
TABLE 11 cRFI bRFI bRFI
Official Highest Pattern Primary Pattern Highest Pattern
Symbol HR p-value HR p-value HR p-value
HSPA5 0.710 0.009 1.288 0.030
ODC1 0.741 0.026 1.343 0.004 1.261 0.046
Tables 12A and 12B provide genes that are significantly associated (p<0.05) with prostate cancer specific survival (PCSS) in the primary Gleason pattern. Increased expression of genes in Table 12A is negatively associated with good prognosis, while increased expression of genes in Table 12B is positively associated with good prognosis.
TABLE 12A
Genes significantly (p < 0.05)
associated with prostate cancer
specific survival (PCSS) in the
Primary Gleason Pattern HR > 1.0
(Increased expression is negatively
associated with good prognosis)
Official
Symbol HR p-value
AKR1C3 1.476 0.016
ANLN 1.517 0.006
APOC1 1.285 0.016
APOE 1.490 0.024
ASPN 3.055 <.001
ATP5E 1.788 0.012
AURKB 1.439 0.008
BGN 2.640 <.001
BIRC5 1.611 <.001
BMP6 1.490 0.021
BRCA1 1.418 0.036
CCNB1 1.497 0.021
CD276 1.668 0.005
CDC20 1.730 <.001
CDH11 1.565 0.017
CDH7 1.553 0.007
CDKN2B 1.751 0.003
CDKN2C 1.993 0.013
CDKN3 1.404 0.008
CENPF 2.031 <.001
CHAF1A 1.376 0.011
CKS2 1.499 0.031
COL1A1 2.574 <.001
COL1A2 1.607 0.011
COL3A1 2.382 <.001
COL4A1 1.970 <.001
COL5A2 1.938 0.002
COL8A1 2.245 <.001
CTHRC1 2.085 <.001
CXCR4 1.783 0.007
DDIT4 1.535 0.030
DYNLL1 1.719 0.001
F2R 2.169 <.001
FAM171B 1.430 0.044
FAP 1.993 0.002
FCGR3A 2.099 <.001
FN1 1.537 0.024
GPR68 1.520 0.018
GREM1 1.942 <.001
IFI30 1.482 0.048
IGFBP3 1.513 0.027
INHBA 3.060 <.001
KIF4A 1.355 0.001
KLK14 1.187 0.004
LAPTM5 1.613 0.006
LTBP2 2.018 <.001
MMP11 1.869 <.001
MYBL2 1.737 0.013
NEK2 1.445 0.028
NOX4 2.049 <.001
OLFML2B 1.497 0.023
PLK1 1.603 0.006
POSTN 2.585 <.001
PPFIA3 1.502 0.012
PTK6 1.527 0.009
PTTG1 1.382 0.029
RAD51 1.304 0.031
RGS7 1.251 <.001
RRM2 1.515 <.001
SAT1 1.607 0.004
SDC1 1.710 0.007
SESN3 1.399 0.045
SFRP4 2.384 <.001
SHMT2 1.949 0.003
SPARC 2.249 <.001
STMN1 1.748 0.021
SULF1 1.803 0.004
THBS2 2.576 <.001
THY1 1.908 0.001
TK1 1.394 0.004
TOP2A 2.119 <.001
TPX2 2.074 0.042
UBE2C 1.598 <.001
UGT2B15 1.363 0.016
UHRF1 1.642 0.001
ZWINT 1.570 0.010
TABLE 12B
Genes significantly (p < 0.05)
associated with prostate cancer
specific survival (PCSS) in
the Primary Gleason
Pattern HR < 1.0 (Increased
expression is positively
associated with good prognosis)
Official
Symbol HR p-value
AAMP 0.649 0.040
ABCA5 0.777 0.015
ABCG2 0.715 0.037
ACOX2 0.673 0.016
ADH5 0.522 <.001
ALDH1A2 0.561 <.001
AMACR 0.693 0.029
AMPD3 0.750 0.049
ANPEP 0.531 <.001
ATXN1 0.640 0.011
AXIN2 0.657 0.002
AZGP1 0.617 <.001
BDKRB1 0.553 0.032
BIN1 0.658 <.001
BTRC 0.716 0.011
C7 0.531 <.001
CADM1 0.646 0.015
CASP7 0.538 0.029
CCNH 0.674 0.001
CD164 0.606 <.001
CD44 0.687 0.016
CDK3 0.733 0.039
CHN1 0.653 0.014
COL6A1 0.681 0.015
CSF1 0.675 0.019
CSRP1 0.711 0.007
CXCL12 0.650 0.015
CYP3A5 0.507 <.001
CYR61 0.569 0.007
DLGAP1 0.654 0.004
DNM3 0.692 0.010
DPP4 0.544 <.001
DPT 0.543 <.001
DUSP1 0.660 0.050
DUSP6 0.699 0.033
EGR1 0.490 <.001
EGR3 0.561 <.001
EIF5 0.720 0.035
ERBB3 0.739 0.042
FAAH 0.636 0.010
FAM107A 0.541 <.001
FAM13C 0.526 <.001
FAS 0.689 0.030
FGF10 0.657 0.024
FKBP5 0.699 0.040
FLNC 0.742 0.036
FOS 0.556 0.005
FOXQ1 0.666 0.007
GADD45B 0.554 0.002
GDF15 0.659 0.009
GHR 0.683 0.027
GPM6B 0.666 0.005
GSN 0.646 0.006
GSTM1 0.672 0.006
GSTM2 0.514 <.001
HGD 0.771 0.039
HIRIP3 0.730 0.013
HK1 0.778 0.048
HLF 0.581 <.001
HNF1B 0.643 0.013
HSD17B10 0.742 0.029
IER3 0.717 0.049
IGF1 0.612 <.001
IGFBP6 0.578 0.003
IL2 0.528 0.010
IL6ST 0.574 <.001
IL8 0.540 0.001
ING5 0.688 0.015
ITGA6 0.710 0.005
ITGA7 0.676 0.033
JUN 0.506 0.001
KIT 0.628 0.047
KLK1 0.523 0.002
KLK2 0.581 <.001
KLK3 0.676 <.001
KRT15 0.684 0.005
KRT18 0.536 <.001
KRT5 0.673 0.004
KRT8 0.613 0.006
LAMB3 0.740 0.027
LGALS3 0.678 0.007
MGST1 0.640 0.002
MPPED2 0.629 <.001
MTSS1 0.705 0.041
MYBPC1 0.534 <.001
NCAPD3 0.519 <.001
NFAT5 0.536 <.001
NRG1 0.467 0.007
OLFML3 0.646 0.001
OMD 0.630 0.006
OR51E2 0.762 0.017
PAGE4 0.518 <.001
PCA3 0.581 <.001
PGF 0.705 0.038
PPAP2B 0.568 <.001
PPP1R12A 0.694 0.017
PRIMA1 0.678 0.014
PRKCA 0.632 0.001
PRKCB 0.692 0.028
PROM1 0.393 0.017
PTEN 0.689 0.002
PTGS2 0.611 0.004
PTH1R 0.629 0.031
RAB27A 0.721 0.046
RND3 0.678 0.029
RNF114 0.714 0.035
SDHC 0.590 <.001
SERPINA3 0.710 0.050
SH3RF2 0.570 0.005
SLC22A3 0.517 <.001
SMAD4 0.528 <.001
SMO 0.751 0.026
SRC 0.667 0.004
SRD5A2 0.488 <.001
STAT5B 0.700 0.040
SVIL 0.694 0.024
TFF3 0.701 0.045
TGFB1I1 0.670 0.029
TGFB2 0.646 0.010
TNFRSF10B 0.685 0.014
TNFSF10 0.532 <.001
TPM2 0.623 0.005
TRO 0.767 0.049
TUBB2A 0.613 0.003
VEGFB 0.780 0.034
ZFP36 0.576 0.001
ZNF827 0.644 0.014
Analysis of gene expression and upgrading/upstaging was based on univariate ordinal logistic regression models using weighted maximum likelihood estimators for each gene in the gene list (727 test genes and 5 reference genes). P-values were generated using a Wald test of the null hypothesis that the odds ratio (OR) is one. Both unadjusted p-values and the q-value (smallest FDR at which the hypothesis test in question is rejected) were reported. Un-adjusted p-values <0.05 were considered statistically significant. Since two tumor specimens were selected for each patient, this analysis was performed using the 2 specimens from each patient as follows: (1) analysis using the primary Gleason pattern specimen from each patient (Specimens A1 and B2 as described in Table 2); and (2) analysis using the highest Gleason pattern specimen from each patient (Specimens A1 and B1 as described in Table 2). 200 genes were found to be significantly associated (p<0.05) with upgrading/upstaging in the primary Gleason pattern sample (PGP) and 203 genes were found to be significantly associated (p<0.05) with upgrading/upstaging in the highest Gleason pattern sample (HGP).
Tables 13A and 13B provide genes significantly associated (p<0.05), positively or negatively, with upgrading/upstaging in the primary and/or highest Gleason pattern. Increased expression of genes in Table 13A is positively associated with higher risk of upgrading/upstaging (poor prognosis), while increased expression of genes in Table 13B is negatively associated with risk of upgrading/upstaging (good prognosis).
TABLE 13A
Genes significantly (p < 0.05) associated with
upgrading/upstaging in the Primary Gleason
Pattern (PGP) and Highest Gleason Pattern
(HGP) OR > 1.0 (Increased expression is
positively associated with higher risk of
upgrading/upstaging (poor prognosis))
PGP HGP
Gene OR p-value OR p-value
ALCAM 1.52 0.0179 1.50 0.0184
ANLN 1.36 0.0451 . .
APOE 1.42 0.0278 1.50 0.0140
ASPN 1.60 0.0027 2.06 0.0001
AURKA 1.47 0.0108 . .
AURKB . . 1.52 0.0070
BAX . . 1.48 0.0095
BGN 1.58 0.0095 1.73 0.0034
BIRC5 1.38 0.0415 . .
BMP6 1.51 0.0091 1.59 0.0071
BUB1 1.38 0.0471 1.59 0.0068
CACNA1D 1.36 0.0474 1.52 0.0078
CASP7 . . 1.32 0.0450
CCNE2 1.54 0.0042 . .
CD276 . . 1.44 0.0265
CDC20 1.35 0.0445 1.39 0.0225
CDKN2B . . 1.36 0.0415
CENPF 1.43 0.0172 1.48 0.0102
CLTC 1.59 0.0031 1.57 0.0038
COL1A1 1.58 0.0045 1.75 0.0008
COL3A1 1.45 0.0143 1.47 0.0131
COL8A1 1.40 0.0292 1.43 0.0258
CRISP3 . . 1.40 0.0256
CTHRC1 . . 1.56 0.0092
DBN1 1.43 0.0323 1.45 0.0163
DIAPH1 1.51 0.0088 1.58 0.0025
DICER1 . . 1.40 0.0293
DIO2 . . 1.49 0.0097
DVL1 . . 1.53 0.0160
F2R 1.46 0.0346 1.63 0.0024
FAP 1.47 0.0136 1.74 0.0005
FCGR3A . . 1.42 0.0221
HPN . . 1.36 0.0468
HSD17B4 . . 1.47 0.0151
HSPA8 1.65 0.0060 1.58 0.0074
IL11 1.50 0.0100 1.48 0.0113
IL1B 1.41 0.0359 . .
INHBA 1.56 0.0064 1.71 0.0042
KHDRBS3 1.43 0.0219 1.59 0.0045
KIF4A . . 1.50 0.0209
KPNA2 1.40 0.0366 . .
KRT2 . . 1.37 0.0456
KRT75 . . 1.44 0.0389
MANF . . 1.39 0.0429
MELK 1.74 0.0016 . .
MKI67 1.35 0.0408 . .
MMP11 . . 1.56 0.0057
NOX4 1.49 0.0105 1.49 0.0138
PLAUR 1.44 0.0185 . .
PLK1 . . 1.41 0.0246
PTK6 . . 1.36 0.0391
RAD51 . . 1.39 0.0300
RAF1 . . 1.58 0.0036
RRM2 1.57 0.0080 . .
SESN3 1.33 0.0465 . .
SFRP4 2.33 <0.0001 2.51 0.0015
SKIL 1.44 0.0288 1.40 0.0368
SOX4 1.50 0.0087 1.59 0.0022
SPINK1 1.52 0.0058 . .
SPP1 . . 1.42 0.0224
THBS2 . . 1.36 0.0461
TK1 . . 1.38 0.0283
TOP2A 1.85 0.0001 1.66 0.0011
TPD52 1.78 0.0003 1.64 0.0041
TPX2 1.70 0.0010 . .
UBE2G1 1.38 0.0491 . .
UBE2T 1.37 0.0425 1.46 0.0162
UHRF1 . . 1.43 0.0164
VCPIP1 . . 1.37 0.0458
TABLE 13B
Genes significantly (p < 0.05) associated with
upgrading/upstaging in the Primary Gleason
Pattern (PGP) and Highest Gleason Pattern
(HGP) OR < 1.0 (Increased expression is
negatively associated with higher risk of
upgrading/upstaging (good prognosis))
PGP HGP
Gene OR p-value OR p-value
ABCC3 . . 0.70 0.0216
ABCC8 0.66 0.0121 . .
ABCG2 0.67 0.0208 0.61 0.0071
ACE . . 0.73 0.0442
ACOX2 0.46 0.0000 0.49 0.0001
ADH5 0.69 0.0284 0.59 0.0047
AIG1 . . 0.60 0.0045
AKR1C1 . . 0.66 0.0095
ALDH1A2 0.36 <0.0001 0.36 <0.0001
ALKBH3 0.70 0.0281 0.61 0.0056
ANPEP . . 0.68 0.0109
ANXA2 0.73 0.0411 0.66 0.0080
APC . . 0.68 0.0223
ATXN1 . . 0.70 0.0188
AXIN2 0.60 0.0072 0.68 0.0204
AZGP1 0.66 0.0089 0.57 0.0028
BCL2 . . 0.71 0.0182
BIN1 0.55 0.0005 . .
BTRC 0.69 0.0397 0.70 0.0251
C7 0.53 0.0002 0.51 <0.0001
CADM1 0.57 0.0012 0.60 0.0032
CASP1 0.64 0.0035 0.72 0.0210
CAV1 0.64 0.0097 0.59 0.0032
CAV2 . . 0.58 0.0107
CD164 . . 0.69 0.0260
CD82 0.67 0.0157 0.69 0.0167
CDH1 0.61 0.0012 0.70 0.0210
CDK14 0.70 0.0354 . .
CDK3 . . 0.72 0.0267
CDKN1C 0.61 0.0036 0.56 0.0003
CHN1 0.71 0.0214 . .
COL6A1 0.62 0.0125 0.60 0.0050
COL6A3 0.65 0.0080 0.68 0.0181
CSRP1 0.43 0.0001 0.40 0.0002
CTSB 0.66 0.0042 0.67 0.0051
CTSD 0.64 0.0355 . .
CTSK 0.69 0.0171 . .
CTSL1 0.72 0.0402 . .
CUL1 0.61 0.0024 0.70 0.0120
CXCL12 0.69 0.0287 0.63 0.0053
CYP3A5 0.68 0.0099 0.62 0.0026
DDR2 0.68 0.0324 0.62 0.0050
DES 0.54 0.0013 0.46 0.0002
DHX9 0.67 0.0164 . .
DLGAP1 . . 0.66 0.0086
DPP4 0.69 0.0438 0.69 0.0132
DPT 0.59 0.0034 0.51 0.0005
DUSP1 . . 0.67 0.0214
EDN1 . . 0.66 0.0073
EDNRA 0.66 0.0148 0.54 0.0005
EIF2C2 . . 0.65 0.0087
ELK4 0.55 0.0003 0.58 0.0013
ENPP2 0.65 0.0128 0.59 0.0007
EPHA3 0.71 0.0397 0.73 0.0455
EPHB2 0.60 0.0014 . .
EPHB4 0.73 0.0418 . .
EPHX3 . . 0.71 0.0419
ERCC1 0.71 0.0325 . .
FAM107A 0.56 0.0008 0.55 0.0011
FAM13C 0.68 0.0276 0.55 0.0001
FAS 0.72 0.0404 . .
FBN1 0.72 0.0395 . .
FBXW7 0.69 0.0417 . .
FGF10 0.59 0.0024 0.51 0.0001
FGF7 0.51 0.0002 0.56 0.0007
FGFR2 0.54 0.0004 0.47 <0.0001
FLNA 0.58 0.0036 0.50 0.0002
FLNC 0.45 0.0001 0.40 <0.0001
FLT4 0.61 0.0045 . .
FOXO1 0.55 0.0005 0.53 0.0005
FOXP3 0.71 0.0275 0.72 0.0354
GHR 0.59 0.0074 0.53 0.0001
GNRH1 0.72 0.0386 . .
GPM6B 0.59 0.0024 0.52 0.0002
GSN 0.65 0.0107 0.65 0.0098
GSTM1 0.44 <0.0001 0.43 <0.0001
GSTM2 0.42 <0.0001 0.39 <0.0001
HLF 0.46 <0.0001 0.47 0.0001
HPS1 0.64 0.0069 0.69 0.0134
HSPA5 0.68 0.0113 . .
HSPB2 0.61 0.0061 0.55 0.0004
HSPG2 0.70 0.0359 . .
ID3 . . 0.70 0.0245
IGF1 0.45 <0.0001 0.50 0.0005
IGF2 0.67 0.0200 0.68 0.0152
IGFBP2 0.59 0.0017 0.69 0.0250
IGFBP6 0.49 <0.0001 0.64 0.0092
IL6ST 0.56 0.0009 0.60 0.0012
ILK 0.51 0.0010 0.49 0.0004
ITGA1 0.58 0.0020 0.58 0.0016
ITGA3 0.71 0.0286 0.70 0.0221
ITGA5 . . 0.69 0.0183
ITGA7 0.56 0.0035 0.42 <0.0001
ITGB1 0.63 0.0095 0.68 0.0267
ITGB3 0.62 0.0043 0.62 0.0040
ITPR1 0.62 0.0032 . .
JUN 0.73 0.0490 0.68 0.0152
KIT 0.55 0.0003 0.57 0.0005
KLC1 . . 0.70 0.0248
KLK1 . . 0.60 0.0059
KRT15 0.58 0.0009 0.45 <0.0001
KRT5 0.70 0.0262 0.59 0.0008
LAMA4 0.56 0.0359 0.68 0.0498
LAMB3 . . 0.60 0.0017
LGALS3 0.58 0.0007 0.56 0.0012
LRP1 0.69 0.0176 . .
MAP3K7 0.70 0.0233 0.73 0.0392
MCM3 0.72 0.0320 . .
MMP2 0.66 0.0045 0.60 0.0009
MMP7 0.61 0.0015 0.65 0.0032
MMP9 0.64 0.0057 0.72 0.0399
MPPED2 0.72 0.0392 0.63 0.0042
MTA1 . . 0.68 0.0095
MTSS1 0.58 0.0007 0.71 0.0442
MVP 0.57 0.0003 0.70 0.0152
MYBPC1 . . 0.70 0.0359
NCAM1 0.63 0.0104 0.64 0.0080
NCAPD3 0.67 0.0145 0.64 0.0128
NEXN 0.54 0.0004 0.55 0.0003
NFAT5 0.72 0.0320 0.70 0.0177
NUDT6 0.66 0.0102 . .
OLFML3 0.56 0.0035 0.51 0.0011
OMD 0.61 0.0011 0.73 0.0357
PAGE4 0.42 <0.0001 0.36 <0.0001
PAK6 0.72 0.0335 . .
PCDHGB7 0.70 0.0262 0.55 0.0004
PGF 0.72 0.0358 0.71 0.0270
PLP2 0.66 0.0088 0.63 0.0041
PPAP2B 0.44 <0.0001 0.50 0.0001
PPP1R12A 0.45 0.0001 0.40 <0.0001
PRIMA1 . . 0.63 0.0102
PRKAR2B 0.71 0.0226 . .
PRKCA 0.34 <0.0001 0.42 <0.0001
PRKCB 0.66 0.0120 0.49 <0.0001
PROM1 0.61 0.0030 . .
PTEN 0.59 0.0008 0.55 0.0001
PTGER3 0.67 0.0293 . .
PTH1R 0.69 0.0259 0.71 0.0327
PTK2 0.75 0.0461 . .
PTK2B 0.70 0.0244 0.74 0.0388
PYCARD 0.73 0.0339 0.67 0.0100
RAD9A 0.64 0.0124 . .
RARB 0.67 0.0088 0.65 0.0116
RGS10 0.70 0.0219 . .
RHOB . . 0.72 0.0475
RND3 . . 0.67 0.0231
SDHC 0.72 0.0443 . .
SEC23A 0.66 0.0101 0.53 0.0003
SEMA3A 0.51 0.0001 0.69 0.0222
SH3RF2 0.55 0.0002 0.54 0.0002
SLC22A3 0.48 0.0001 0.50 0.0058
SMAD4 0.49 0.0001 0.50 0.0003
SMARCC2 0.59 0.0028 0.65 0.0052
SMO 0.60 0.0048 0.52 <0.0001
SORBS1 0.56 0.0024 0.48 0.0002
SPARCL1 0.43 0.0001 0.50 0.0001
SRD5A2 0.26 <0.0001 0.31 <0.0001
ST5 0.63 0.0103 0.52 0.0006
STAT5A 0.60 0.0015 0.61 0.0037
STAT5B 0.54 0.0005 0.57 0.0008
SUMO1 0.65 0.0066 0.66 0.0320
SVIL 0.52 0.0067 0.46 0.0003
TGFB1I1 0.44 0.0001 0.43 0.0000
TGFB2 0.55 0.0007 0.58 0.0016
TGFB3 0.57 0.0010 0.53 0.0005
TIMP1 0.72 0.0224 . .
TIMP2 0.68 0.0198 0.69 0.0206
TIMP3 0.67 0.0105 0.64 0.0065
TMPRSS2 . . 0.72 0.0366
TNFRSF10A 0.71 0.0181 . .
TNFSF10 0.71 0.0284 . .
TOP2B 0.73 0.0432 . .
TP63 0.62 0.0014 0.50 <0.0001
TPM1 0.54 0.0007 0.52 0.0002
TPM2 0.41 <0.0001 0.40 <0.0001
TPP2 0.65 0.0122 . .
TRA2A 0.72 0.0318 . .
TRAF3IP2 0.62 0.0064 0.59 0.0053
TRO 0.57 0.0003 0.51 0.0001
VCL 0.52 0.0005 0.52 0.0004
VIM 0.65 0.0072 0.65 0.0045
WDR19 0.66 0.0097 . .
WFDC1 0.58 0.0023 0.60 0.0026
ZFHX3 0.69 0.0144 0.62 0.0046
ZNF827 0.62 0.0030 0.53 0.0001
Example 3: Identification of MicroRNAs Associated with Clinical Recurrence and Death Due to Prostate Cancer MicroRNAs function by binding to portions of messenger RNA (mRNA) and changing how frequently the mRNA is translated into protein. They can also influence the turnover of mRNA and thus how long the mRNA remains intact in the cell. Since microRNAs function primarily as an adjunct to mRNA, this study evaluated the joint prognostic value of microRNA expression and gene (mRNA) expression. Since the expression of certain microRNAs may be a surrogate for expression of genes that are not in the assessed panel, we also evaluated the prognostic value of microRNA expression by itself.
Patients and Samples
Samples from the 127 patients with clinical recurrence and 374 patients without clinical recurrence after radical prostatectomy described in Example 2 were used in this study. The final analysis set comprised 416 samples from patients in which both gene expression and microRNA expression were successfully assayed. Of these, 106 patients exhibited clinical recurrence and 310 did not have clinical recurrence. Tissue samples were taken from each prostate sample representing (1) the primary Gleason pattern in the sample, and (2) the highest Gleason pattern in the sample. In addition, a sample of histologically normal-appearing tissue adjacent to the tumor (NAT) was taken. The number of patients in the analysis set for each tissue type and the number of them who experienced clinical recurrence or death due to prostate cancer are shown in Table 14.
TABLE 14
Number of Patients and Events in Analysis Set
Clinical Deaths Due to
Patients Recurrences Prostate Cancer
Primary Gleason 416 106 36
Pattern Tumor Tissue
Highest Gleason 405 102 36
Pattern Tumor Tissue
Normal Adjacent 364 81 29
Tissue
Assay Method
Expression of 76 test microRNAs and 5 reference microRNAs were determined from RNA extracted from fixed paraffin-embedded (FPE) tissue. MicroRNA expression in all three tissue type was quantified by reverse transcriptase polymerase chain reaction (RT-PCR) using the crossing point (Cp) obtained from the Taqman® MicroRNA Assay kit (Applied Biosystems, Inc., Carlsbad, Calif.).
Statistical Analysis
Using univariate proportional hazards regression (Cox DR, Journal of the Royal Statistical Society, Series B 34:187-220, 1972), applying the sampling weights from the cohort sampling design, and using variance estimation based on the Lin and Wei method (Lin and Wei, Journal of the American Statistical Association 84:1074-1078, 1989), microRNA expression, normalized by the average expression for the 5 reference microRNAs hsa-miR-106a, hsa-miR-146b-5p, hsa-miR-191, hsa-miR-19b, and hsa-miR-92a, and reference-normalized gene expression of the 733 genes (including the reference genes) discussed above, were assessed for association with clinical recurrence and death due to prostate cancer. Standardized hazard ratios (the proportional change in the hazard associated with a change of one standard deviation in the covariate value) were calculated.
This analysis included the following classes of predictors:
1. MicroRNAs alone
2. MicroRNA-gene pairs Tier 1
3. MicroRNA-gene pairs Tier 2
4. MicroRNA-gene pairs Tier 3
5. All other microRNA-gene pairs Tier 4
The four tiers were pre-determined based on the likelihood (Tier 1 representing the highest likelihood) that the gene-microRNA pair functionally interacted or that the microRNA was related to prostate cancer based on a review of the literature and existing microarray data sets.
False discovery rates (FDR) (Benjamini and Hochberg, Journal of the Royal Statistical Society, Series B 57:289-300, 1995) were assessed using Efron's separate class methodology (Efron, Annals of Applied Statistics 2:197-223, 2008). The false discovery rate is the expected proportion of the rejected null hypotheses that are rejected incorrectly (and thus are false discoveries). Efron's methodology allows separate FDR assessment (q-values) (Storey, Journal of the Royal Statistical Society, Series B 64:479-498, 2002) within each class while utilizing the data from all the classes to improve the accuracy of the calculation. In this analysis, the q-value for a microRNA or microRNA-gene pair can be interpreted as the empirical Bayes probability that the microRNA or microRNA-gene pair identified as being associated with clinical outcome is in fact a false discovery given the data. The separate class approach was applied to a true discovery rate degree of association (TDRDA) analysis (Crager, Statistics in Medicine 29:33-45, 2010) to determine sets of microRNAs or microRNA-gene pairs that have standardized hazard ratio for clinical recurrence or prostate cancer-specific death of at least a specified amount while controlling the FDR at 10%. For each microRNA or microRNA-gene pair, a maximum lower bound (MLB) standardized hazard ratio was computed, showing the highest lower bound for which the microRNA or microRNA-gene pair was included in a TDRDA set with 10% FDR. Also calculated was an estimate of the true standardized hazard ratio corrected for regression to the mean (RM) that occurs in subsequent studies when the best predictors are selected from a long list (Crager, 2010 above). The RM-corrected estimate of the standardized hazard ratio is a reasonable estimate of what could be expected if the selected microRNA or microRNA-gene pair were studied in a separate, subsequent study.
These analyses were repeated adjusting for clinical and pathology covariates available at the time of patient biopsy: biopsy Gleason score, baseline PSA level, and clinical T-stage (T1-T2A vs. T2B or T2C) to assess whether the microRNAs or microRNA-gene pairs have predictive value independent of these clinical and pathology covariates.
Results The analysis identified 21 microRNAs assayed from primary Gleason pattern tumor tissue that were associated with clinical recurrence of prostate cancer after radical prostatectomy, allowing a false discovery rate of 10% (Table 15). Results were similar for microRNAs assessed from highest Gleason pattern tumor tissue (Table 16), suggesting that the association of microRNA expression with clinical recurrence does not change markedly depending on the location within a tumor tissue sample. No microRNA assayed from normal adjacent tissue was associated with the risk of clinical recurrence at a false discovery rate of 10%. The sequences of the microRNAs listed in Tables 15-21 are shown in Table B.
TABLE 15
MicroRNAs Associated with Clinical Recurrence of Prostate Cancer
Primary Gleason Pattern Tumor Tissue
Absolute Standardized Hazard Ratio
Direction Uncor- 95% Max. Lower RM-
q-valuea of Asso- rected Confidence Bound Corrected
MicroRNA p-value (FDR) ciationb Estimate Interval @10% FDR Estimatec
hsa-miR-93 <0.0001 0.0% (+) 1.79 (1.38, 2.32) 1.19 1.51
hsa-miR-106b <0.0001 0.1% (+) 1.80 (1.38,2.34) 1.19 1.51
hsa-miR-30e-5p <0.0001 0.1% (−) 1.63 (1.30, 2.04) 1.18 1.46
hsa-miR-21 <0.0001 0.1% (+) 1.66 (1.31,2.09) 1.18 1.46
hsa-miR-133a <0.0001 0.1% (−) 1.72 (1.33, 2.21) 1.18 1.48
hsa-miR-449a <0.0001 0.1% (+) 1.56 (1.26, 1.92) 1.17 1.42
hsa-miR-30a 0.0001 0.1% (−) 1.56 (1.25, 1.94) 1.16 1.41
hsa-miR-182 0.0001 0.2% (+) 1.74 (1.31, 2.31) 1.17 1.45
hsa-miR-27a 0.0002 0.2% (+) 1.65 (1.27, 2.14) 1.16 1.43
hsa-miR-222 0.0006 0.5% (−) 1.47 (1.18, 1.84) 1.12 1.35
hsa-miR-103 0.0036 2.1% (+) 1.77 (1.21, 2.61) 1.12 1.36
hsa-miR-1 0.0037 2.2% (−) 1.32 (1.10, 1.60) 1.07 1.26
hsa-miR-145 0.0053 2.9% (−) 1.34 (1.09, 1.65) 1.07 1.27
hsa-miR-141 0.0060 3.2% (+) 1.43 (1.11, 1.84) 1.07 1.29
hsa-miR-92a 0.0104 4.8% (+) 1.32 (1.07, 1.64) 1.05 1.25
hsa-miR-22 0.0204 7.7% (+) 1.31 (1.03, 1.64) 1.03 1.23
hsa-miR-29b 0.0212 7.9% (+) 1.36 (1.03, 1.76) 1.03 1.24
hsa-miR-210 0.0223 8.2% (+) 1.33 (1.03, 1.70) 1.00 1.23
hsa-miR-486-5p 0.0267 9.4% (−) 1.25 (1.00, 1.53) 1.00 1.20
hsa-miR-19b 0.0280 9.7% (−) 1.24 (1.00, 1.50) 1.00 1.19
hsa-miR-205 0.0289 10.0% (−) 1.25 (1.00, 1.53) 1.00 1.20
aThe q-value is the empirical Bayes probability that the microRNA's association with clinical recurrence is a false discovery, given the data.
bDirection of association indicates where higher microRNA expression is associated with higher (+) or lower (−) risk of clinical recurrence.
cRM: regression to the mean.
TABLE 16
MicroRNAs Associated with Clinical Recurrence of Prostate Cancer
Highest Gleason Pattern Tumor Tissue
Absolute Standardized Hazard Ratio
Direction Uncor- 95% Max. Lower RM-
q-valuea of Asso- rected Confidence Bound Corrected
MicroRNA p-value (FDR) ciationb Estimate Interval @10% FDR Estimatec
hsa-miR-93 <0.0001 0.0% (+) 1.91 (1.48, 2.47) 1.24 1.59
hsa-miR-449a <0.0001 0.0% (+) 1.75 (1.40, 2.18) 1.23 1.54
hsa-miR-205 <0.0001 0.0% (−) 1.53 (1.29, 1.81) 1.20 1.43
hsa-miR-19b <0.0001 0.0% (−) 1.37 (1.19, 1.57) 1.15 1.32
hsa-miR-106b <0.0001 0.0% (+) 1.84 (1.39, 2.42) 1.22 1.51
hsa-miR-21 <0.0001 0.0% (+) 1.68 (1.32, 2.15) 1.19 1.46
hsa-miR-30a 0.0005 0.4% (−) 1.44 (1.17, 1.76) 1.13 1.33
hsa-miR-30e-5p 0.0010 0.6% (−) 1.37 (1.14, 1.66) 1.11 1.30
hsa-miR-133a 0.0015 0.8% (−) 1.57 (1.19, 2.07) 1.13 1.36
hsa-miR-1 0.0016 0.8% (−) 1.42 (1.14, 1.77) 1.11 1.31
hsa-miR-103 0.0021 1.1% (+) 1.69 (1.21, 2.37) 1.13 1.37
hsa-miR-210 0.0024 1.2% (+) 1.43 (1.13, 1.79) 1.11 1.31
hsa-miR-182 0.0040 1.7% (+) 1.48 (1.13, 1.93) 1.11 1.31
hsa-miR-27a 0.0055 2.1% (+) 1.46 (1.12, 1.91) 1.09 1.30
hsa-miR-222 0.0093 3.2% (−) 1.38 (1.08, 1.77) 1.08 1.27
hsa-miR-331 0.0126 3.9% (+) 1.38 (1.07, 1.77) 1.07 1.26
hsa-miR-191* 0.0143 4.3% (+) 1.38 (1.06, 1.78) 1.07 1.26
hsa-miR-425 0.0151 4.5% (+) 1.40 (1.06, 1.83) 1.07 1.26
hsa-miR-31 0.0176 5.1% (−) 1.29 (1.04, 1.60) 1.05 1.22
hsa-miR-92a 0.0202 5.6% (+) 1.31 (1.03, 1.65) 1.05 1.23
hsa-miR-155 0.0302 7.6% (−) 1.32 (1.00, 1.69) 1.03 1.22
hsa-miR-22 0.0437 9.9% (+) 1.30 (1.00, 1.67) 1.00 1.21
aThe q-value is the empirical Bayes probability that the microRNA's association with death due to prostate cancer is a false discovery, given the data.
bDirection of association indicates where higher microRNA expression is associated with higher (+) or lower (−) risk of clinical recurrence.
cRM: regression to the mean.
Table 17 shows microRNAs assayed from primary Gleason pattern tissue that were identified as being associated with the risk of prostate-cancer-specific death, with a false discovery rate of 10%. Table 18 shows the corresponding analysis for microRNAs assayed from highest Gleason pattern tissue. No microRNA assayed from normal adjacent tissue was associated with the risk of prostate-cancer-specific death at a false discovery rate of 10%.
TABLE 17
MicroRNAs Associated with Death Due to Prostate Cancer
Primary Gleason Pattern Tumor Tissue
Absolute Standardized Hazard Ratio
Max.
Lower
Direction Uncor- 95% Bound RM-
q-valuea of Asso- rected Confidence @10% Corrected
MicroRNA p-value (FDR) ciationb Estimate Interval FDR Estimatec
hsa-miR-30e-5p 0.0001 0.6% (−) 1.88 (1.37, 2.58) 1.15 1.46
hsa-miR-30a 0.0001 0.7% (−) 1.78 (1.33, 2.40) 1.14 1.44
hsa-miR-133a 0.0005 1.2% (−) 1.85 (1.31, 2.62) 1.13 1.41
hsa-miR-222 0.0006 1.4% (−) 1.65 (1.24, 2.20) 1.12 1.38
hsa-miR-106b 0.0024 2.7% (+) 1.85 (1.24, 2.75) 1.11 1.35
hsa-miR-1 0.0028 3.0% (−) 1.43 (1.13, 1.81) 1.08 1.30
hsa-miR-21 0.0034 3.3% (+) 1.63 (1.17, 2.25) 1.09 1.33
hsa-miR-93 0.0044 3.9% (+) 1.87 (1.21, 2.87) 1.09 1.32
hsa-miR-26a 0.0072 5.3% (−) 1.47 (1.11, 1.94) 1.07 1.29
hsa-miR-152 0.0090 6.0% (−) 1.46 (1.10, 1.95) 1.06 1.28
hsa-miR-331 0.0105 6.5% (+) 1.46 (1.09, 1.96) 1.05 1.27
hsa-miR-150 0.0159 8.3% (+) 1.51 (1.07, 2.10) 1.03 1.27
hsa-miR-27b 0.0160 8.3% (+) 1.97 (1.12, 3.42) 1.05 1.25
aThe q-value is the empirical Bayes probability that the microRNA's association with death due to prostate cancer endpoint is a false discovery, given the data.
bDirection of association indicates where higher microRNA expression is associated with higher (+) or lower (−) risk of death due to prostate cancer.
cRM: regression to the mean.
TABLE 18
MicroRNAs Associated with Death Due to Prostate Cancer
Highest Gleason Pattern Tumor Tissue
Absolute Standardized Hazard Ratio
Max.
Lower
Direction Uncor- 95% Bound RM-
q-valuea of Asso- rected Confidence @10% Corrected
MicroRNA p-value (FDR) ciationb Estimate Interval FDR Estimatec
hsa-miR-27b 0.0016 6.1% (+) 2.66 (1.45, 4.88) 1.07 1.32
hsa-miR-21 0.0020 6.4% (+) 1.66 (1.21, 2.30) 1.05 1.34
hsa-miR-10a 0.0024 6.7% (+) 1.78 (1.23, 2.59) 1.05 1.34
hsa-miR-93 0.0024 6.7% (+) 1.83 (1.24, 2.71) 1.05 1.34
hsa-miR-106b 0.0028 6.8% (+) 1.79 (1.22, 2.63) 1.05 1.33
hsa-miR-150 0.0035 7.1% (+) 1.61 (1.17, 2.22) 1.05 1.32
hsa-miR-1 0.0104 9.0% (−) 1.52 (1.10, 2.09) 1.00 1.28
aThe q-value is the empirical Bayes probability that the microRNA's association with clinical endpoint is a false discovery, given the data.
bDirection of association indicates where higher microRNA expression is associated with higher (+) or lower (−) risk of death due to prostate cancer.
cRM: regression to the mean.
Table 19 and Table 20 shows the microRNAs that can be identified as being associated with the risk of clinical recurrence while adjusting for the clinical and pathology covariates of biopsy Gleason score, baseline PSA level, and clinical T-stage. The distributions of these covariates are shown in FIG. 1. Fifteen (15) of the microRNAs identified in Table 15 are also present in Table 19, indicating that these microRNAs have predictive value for clinical recurrence that is independent of the Gleason score, baseline PSA, and clinical T-stage.
Two microRNAs assayed from primary Gleason pattern tumor tissue were found that had predictive value for death due to prostate cancer independent of Gleason score, baseline PSA, and clinical T-stage (Table 21).
TABLE 19
MicroRNAs Associated with Clinical Recurrence of Prostate Cancer
Adjusting for Biopsy Gleason Score, Baseline PSA Level, and Clinical
T-Stage Primary Gleason Pattern Tumor Tissue
Absolute Standardized Hazard Ratio
Max.
Lower
Direction Uncor- 95% Bound RM-
q-valuea of Asso- rected Confidence @10% Corrected
MicroRNA p-value (FDR) ciationb Estimate Interval FDR Estimatec
hsa-miR-30e-5p <0.0001 0.0% (−) 1.80 (1.42, 2.27) 1.23 1.53
hsa-miR-30a <0.0001 0.0% (−) 1.75 (1.40, 2.19) 1.22 1.51
hsa-miR-93 <0.0001 0.1% (+) 1.70 (1.32, 2.20) 1.19 1.44
hsa-miR-449a 0.0001 0.1% (+) 1.54 (1.25, 1.91) 1.17 1.39
hsa-miR-133a 0.0001 0.1% (−) 1.58 (1.25, 2.00) 1.17 1.39
hsa-miR-27a 0.0002 0.1% (+) 1.66 (1.28, 2.16) 1.17 1.41
hsa-miR-21 0.0003 0.2% (+) 1.58 (1.23, 2.02) 1.16 1.38
hsa-miR-182 0.0005 0.3% (+) 1.56 (1.22, 1.99) 1.15 1.37
hsa-miR-106b 0.0008 0.5% (+) 1.57 (1.21, 2.05) 1.15 1.36
hsa-miR-222 0.0028 1.1% (−) 1.39 (1.12, 1.73) 1.11 1.28
hsa-miR-103 0.0048 1.7% (+) 1.69 (1.17, 2.43) 1.13 1.32
hsa-miR-486-5p 0.0059 2.0% (−) 1.34 (1.09, 1.65) 1.09 1.25
hsa-miR-1 0.0083 2.7% (−) 1.29 (1.07, 1.57) 1.07 1.23
hsa-miR-141 0.0088 2.8% (+) 1.43 (1.09, 1.87) 1.09 1.27
hsa-miR-200c 0.0116 3.4% (+) 1.39 (1.07, 1.79) 1.07 1.25
hsa-miR-145 0.0201 5.1% (−) 1.27 (1.03, 1.55) 1.05 1.20
hsa-miR-206 0.0329 7.2% (−) 1.40 (1.00, 1.91) 1.05 1.23
hsa-miR-29b 0.0476 9.4% (+) 1.30 (1.00, 1.69) 1.00 1.20
aThe q-value is the empirical Bayes probability that the microRNA's association with clinical recurrence is a false discovery, given the data.
bDirection of association indicates where higher microRNA expression is associated with higher (+) or lower (−) risk of clinical recurrence.
cRM: regression to the mean.
TABLE 20
MicroRNAs Associated with Clinical Recurrence of Prostate Cancer
Adjusting for Biopsy Gleason Score, Baseline PSA Level, and Clinical T-Stage
Highest Gleason Pattern Tumor Tissue
Absolute Standardized Hazard Ratio
Max.
Lower
Direction Uncor- 95% Bound RM-
q-valuea of Asso- rected Confidence @10% Corrected
MicroRNA p-value (FDR) ciationb Estimate Interval FDR Estimatec
hsa-miR-30a <0.0001 0.0% (−) 1.62 (1.32, 1.99) 1.20 1.43
hsa-miR-30e-5p <0.0001 0.0% (−) 1.53 (1.27, 1.85) 1.19 1.39
hsa-miR-93 <0.0001 0.0% (+) 1.76 (1.37, 2.26) 1.20 1.45
hsa-miR-205 <0.0001 0.0% (−) 1.47 (1.23, 1.74) 1.18 1.36
hsa-miR-449a 0.0001 0.1% (+) 1.62 (1.27, 2.07) 1.18 1.38
hsa-miR-106b 0.0003 0.2% (+) 1.65 (1.26, 2.16) 1.17 1.36
hsa-miR-133a 0.0005 0.2% (−) 1.51 (1.20, 1.90) 1.16 1.33
hsa-miR-1 0.0007 0.3% (−) 1.38 (1.15, 1.67) 1.13 1.28
hsa-miR-210 0.0045 1.2% (+) 1.35 (1.10, 1.67) 1.11 1.25
hsa-miR-182 0.0052 1.3% (+) 1.40 (1.10, 1.77) 1.11 1.26
hsa-miR-425 0.0066 1.6% (+) 1.48 (1.12, 1.96) 1.12 1.26
hsa-miR-155 0.0073 1.8% (−) 1.36 (1.09, 1.70) 1.10 1.24
hsa-miR-21 0.0091 2.1% (+) 1.42 (1.09, 1.84) 1.10 1.25
hsa-miR-222 0.0125 2.7% (−) 1.34 (1.06, 1.69) 1.09 1.23
hsa-miR-27a 0.0132 2.8% (+) 1.40 (1.07, 1.84) 1.09 1.23
hsa-miR-191* 0.0150 3.0% (+) 1.37 (1.06, 1.76) 1.09 1.23
hsa-miR-103 0.0180 3.4% (+) 1.45 (1.06, 1.98) 1.09 1.23
hsa-miR-31 0.0252 4.3% (−) 1.27 (1.00, 1.57) 1.07 1.19
hsa-miR-19b 0.0266 4.5% (−) 1.29 (1.00, 1.63) 1.07 1.20
hsa-miR-99a 0.0310 5.0% (−) 1.26 (1.00, 1.56) 1.06 1.18
hsa-miR-92a 0.0348 5.4% (+) 1.31 (1.00, 1.69) 1.06 1.19
hsa-miR-146b-5p 0.0386 5.8% (−) 1.29 (1.00, 1.65) 1.06 1.19
hsa-miR-145 0.0787 9.7% (−) 1.23 (1.00, 1.55) 1.00 1.15
aThe q-value is the empirical Bayes probability that the microRNA's association with clinical clinical recurrence is a false discovery, given the data.
bDirection of association indicates where higher microRNA expression is associated with higher (+) or lower (−) risk of clinical recurrence.
cRM: regression to the mean.
TABLE 21
MicroRNAs Associated with Death Due to Prostate Cancer
Adjusting for Biopsy Gleason Score, Baseline PSA Level, and Clinical
T-Stage Primary Gleason Pattern Tumor Tissue
Absolute Standardized Hazard Ratio
Max.
Lower
Direction Uncor- 95% Bound RM-
q-valuea of Asso- rected Confidence @10% Corrected
MicroRNA p-value (FDR) ciationb Estimate Interval FDR Estimatec
hsa-miR-30e-5p 0.0001 2.9% (−) 1.97 (1.40, 2.78) 1.09 1.39
hsa-miR-30a 0.0002 3.3% (−) 1.90 (1.36, 2.65) 1.08 1.38
aThe q-value is the empirical Bayes probability that the microRNA's association with clinical recurrence is a false discovery, given the data.
bDirection of association indicates where higher microRNA expression is associated with higher (+) or lower (−) risk of clinical recurrence.
cRM: regression to the mean.
Accordingly, the normalized expression levels of hsa-miR-93; hsa-miR-106b; hsa-miR-21; hsa-miR-449a; hsa-miR-182; hsa-miR-27a; hsa-miR-103; hsa-miR-141; hsa-miR-92a; hsa-miR-22; hsa-miR-29b; hsa-miR-210; hsa-miR-331; hsa-miR-191; hsa-miR-425; and hsa-miR-200c are positively associated with an increased risk of recurrence; and hsa-miR-30e-5p; hsa-miR-133a; hsa-miR-30a; hsa-miR-222; hsa-miR-1; hsa-miR-145; hsa-miR-486-5p; hsa-miR-19b; hsa-miR-205; hsa-miR-31; hsa-miR-155; hsa-miR-206; hsa-miR-99a; and hsa-miR-146b-5p are negatively associated with an increased risk of recurrence.
Furthermore, the normalized expression levels of hsa-miR-106b; hsa-miR-21; hsa-miR-93; hsa-miR-331; hsa-miR-150; hsa-miR-27b; and hsa-miR-10a are positively associated with an increased risk of prostate cancer specific death; and the normalized expression levels of hsa-miR-30e-5p; hsa-miR-30a; hsa-miR-133a; hsa-miR-222; hsa-miR-1; hsa-miR-26a; and hsa-miR-152 are negatively associated with an increased risk of prostate cancer specific death.
Table 22 shows the number of microRNA-gene pairs that were grouped in each tier (Tiers 1-4) and the number and percentage of those that were predictive of clinical recurrence at a false discovery rate of 10%.
TABLE 22
Number of Pairs
Total Predictive of Clinical
Number of Recurrence at False
MicroRNA- Discovery Rate 10%
Tier Gene Pairs (%)
Tier 1 80 46 (57.5%)
Tier 2 719 591 (82.2%)
Tier 3 3,850 2,792 (72.5%)
Tier 4 54,724 38,264 (69.9%)
TABLE A
SEQ SEQ
Official Accession ID ID
Symbol: Number: NO Forward Primer Sequence: NO Reverse Primer Sequence:
AAMP NM_001087 1 GTGTGGCAGGTGGACACTAA 2 CTCCATCCACTCCAGGTCTC
ABCA5 NM_172232 5 GGTATGGATCCCAAAGCCA 6 CAGCCCGCTTTCTGTTTTTA
ABCB1 NM_000927 9 AAACACCACTGGAGCATTGA 10 CAAGCCTGGAACCTATAGCC
ABCC1 NM_004996 13 TCATGGTGCCCGTCAATG 14 CGATTGTCTTTGCTCTTCATGTG
ABCC3 NM_003786 17 TCATCCTGGCGATCTACTTCCT 18 CCGTTGAGTGGAATCAGCAA
ABCC4 NM_005845 21 AGCGCCTGGAATCTACAACT 22 AGAGCCCCTGGAGAGAAGAT
ABCC8 NM_000352 25 CGTCTGTCACTGTGGAGTGG 26 TGATCCGGTTTAGCAGGC
ABCG2 NM_004827 29 GGTCTCAACGCCATCCTG 30 CTTGGATCTTTCCTTGCAGC
ABHD2 NM_007011 33 GTAGTGGGTCTGCATGGATGT 34 TGAGGGTTGGCACTCAGG
ACE NM_000789 37 CCGCTGTACGAGGATTTCA 38 CCGTGTCTGTGAAGCCGT
ACOX2 NM_003500 41 ATGGAGGTGCCCAGAACAC 42 ACTCCGGGTAACTGTGGATG
ACTR2 NM_005722 45 ATCCGCATTGAAGACCCA 46 ATCCGCTAGAACTGCACCAC
ADAM15 NM_003815 49 GGCGGGATGTGGTAACAG 50 ATTTCTGGGCCTCCGAGT
ADAMTS1 NM_006988 53 GGACAGGTGCAAGCTCATCTG 54 ATCTACAACCTTGGGCTGCAA
ADH5 NM_000671 57 ATGCTGTCATCATTGTCACG 58 CTGCTTCCTTTCCCTTTCC
AFAP1 NM_198595 61 GATGTCCATCCTTGAAACAGC 62 CAACCCTGATGCCTGGAG
AGTR1 NM_000685 65 AGCATTGATCGATACCTGGC 66 CTACAAGCATTGTGCGTCG
AGTR2 NM_000686 69 ACTGGCATAGGAAATGGTATCC 70 ATTGACTGGGTCTCTTTGCC
AIG1 NM_016108 73 CGACGGTTCTGCCCTTTAT 74 TGCTCCTGCTGGGATACTG
AKAP1 NM_003488 77 TGTGGTTGGAGATGAAGTGG 78 GTCTACCCACTGGGCAAGG
AKR1C1 BC040210 81 GTGTGTGAAGCTGAATGATGG 82 CTCTGCAGGCGCATAGGT
AKR1C3 NM_003739 85 GCTTTGCCTGATGTCTACCAGAA 86 GTCCAGTCACCGGCATAGAGA
AKT1 NM_005163 89 CGCTTCTATGGCGCTGAGAT 90 TCCCGGTACACCACGTTCTT
AKT2 NM_001626 93 TCCTGCCACCCTTCAAACC 94 GGCGGTAAATTCATCATCGAA
AKT3 NM_005465 97 TTGTCTCTGCCTTGGACTATCTACA 98 CCAGCATTAGATTCTCCAACTTGA
ALCAM NM_001627 101 GAGGAATATGGAATCCAAGGG 102 GTGGCGGAGATCAAGAGG
ALDH18A1 NM_002860 105 GATGCAGCTGGAACCCAA 106 CTCCAGCTCAGTGGGGAA
ALDH1A2 NM_170696 109 CACGTCTGTCCCTCTCTGCT 110 GACCGTGGCTCAACTTTGTAT
ALKBH3 NM_139178 113 TCGCTTAGTCTGCACCTCAAC 114 TCTGAGCCCCAGTTTTTCC
ALOX12 NM_000697 117 AGTTCCTCAATGGTGCCAAC 118 AGCACTAGCCTGGAGGGC
ALOX5 NM_000698 121 GAGCTGCAGGACTTCGTGA 122 GAAGCCTGAGGACTTGCG
AMACR NM_203382 125 GTCTCTGGGCTGTCAGCTTT 126 TGGGTATAAGATCCAGAACTTGC
AMPD3 NM_000480 129 TGGTTCATCCAGCACAAGG 130 CATAAATCCGGGGCACCT
ANGPT2 NM_001147 133 CCGTGAAAGCTGCTCTGTAA 134 TTGCAGTGGGAAGAACAGTC
ANLN NM_018685 137 TGAAAGTCCAAAACCAGGAA 138 CAGAACCAAGGCTATCACCA
ANPEP NM_001150 141 CCACCTTGGACCAAAGTAAAGC 142 TCTCAGCGTCACCTGGTAGGA
ANXA2 NM_004039 145 CAAGACACTAAGGGCGACTACCA 146 CGTGTCGGGCTTCAGTCAT
APC NM_000038 149 GGACAGCAGGAATGTGTTTC 150 ACCCACTCGATTTGTTTCTG
APEX1 NM_001641 153 GATGAAGCCTTTCGCAAGTT 154 AGGTCTCCACACAGCACAAG
APOC1 NM_001645 157 CCAGCCTGATAAAGGTCCTG 158 CACTCTGAATCCTTGCTGGA
APOE NM_000041 161 GCCTCAAGAGCTGGTTCG 162 CCTGCACCTTCTCCACCA
APRT NM_000485 165 GAGGTCCTGGAGTGCGTG 166 AGGTGCCAGCTTCTCCCT
AQP2 NM_000486 169 GTGTGGGTGCCAGTCCTC 170 CCCTTCAGCCCTCTCAAAG
AR NM_000044 173 CGACTTCACCGCACCTGAT 174 TGACACAAGTGGGACTGGGATA
ARF1 NM_001658 177 CAGTAGAGATCCCCGCAACT 178 ACAAGCACATGGCTATGGAA
ARHGAP29 NM_004815 181 CACGGTCTCGTGGTGAAGT 182 CAGTTGCTTGCCCAGGAC
ARHGDIB NM_001175 185 TGGTCCCTAGAACAAGAGGC 186 TGATGGAGGATCAGAGGGAG
ASAP2 NM_003887 189 CGGCCCATCAGCTTCTAC 190 CTCTGGCCAAAGATACAGCG
ASPN NM_017680 193 TGGACTAATCTGTGGGAGCA 194 AAACACCCTTCAACACAGTCC
ATM NM_000051 197 TGCTTTCTACACATGTTCAGGG 198 GTTGTGGATCGGCTCGTT
ATP5E NM_006886 201 CCGCTTTCGCTACAGCAT 202 TGGGAGTATCGGATGTAGCTG
ATP5J NM_ 205 GTCGACCGACTGAAACGG 206 CTCTACTTCCGGCCCTGG
001003703
ATXN1 NM_000332 209 GATCGACTCCAGCACCGTAG 210 GAACTGTATCACGGCCACG
AURKA NM_003600 213 CATCTTCCAGGAGGACCACT 214 TCCGACCTTCAATCATTTCA
AURKB NM_004217 217 AGCTGCAGAAGAGCTGCACAT 218 GCATCTGCCAACTCCTCCAT
AXIN2 NM_004655 221 GGCTATGTCTTTGCACCAGC 222 ATCCGTCAGCGCATCACT
AZGP1 NM_001185 225 GAGGCCAGCTAGGAAGCAA 226 CAGGAAGGGCAGCTACTGG
BAD NM_032989 229 GGGTCAGGGGCCTCGAGAT 230 CTGCTCACTCGGCTCAAACTC
BAG5 NM_ 233 ACTCCTGCAATGAACCCTGT 234 ACAAACAGCTCCCCACGA
001015049
BAK1 NM_001188 237 CCATTCCCACCATTCTACCT 238 GGGAACATAGACCCACCAAT
BAX NM_004324 241 CCGCCGTGGACACAGACT 242 TTGCCGTCAGAAAACATGTCA
BBC3 NM_014417 245 CCTGGAGGGTCCTGTACAAT 246 CTAATTGGGCTCCATCTCG
BCL2 NM_000633 249 CAGATGGACCTAGTACCCACTGAGA 250 CCTATGATTTAAGGGCATTTTTCC
BDKRB1 NM_000710 253 GTGGCAGAAATCTACCTGGC 254 GAAGGGCAAGCCCAAGAC
BGN NM_001711 257 GAGCTCCGCAAGGATGAC 258 CTTGTTGTTCACCAGGACGA
BIK NM_001197 261 ATTCCTATGGCTCTGCAATTGTC 262 GGCAGGAGTGAATGGCTCTTC
BIN1 NM_004305 265 CCTGCAAAAGGGAACAAGAG 266 CGTGGTTGACTCTGATCTCG
BIRC5 NM_ 269 TTCAGGTGGATGAGGAGACA 270 CACACAGCAGTGGCAAAAG
001012271
BMP6 NM_001718 273 GTGCAGACCTTGGTTCACCT 274 CTTAGTTGGCGCACAGCAC
BMPR1B NM_001203 277 ACCACTTTGGCCATCCCT 278 GCGGTGTTTGTACCCAGTG
BRCA1 NM_007294 281 TCAGGGGGCTAGAAATCTGT 282 CCATTCCAGTTGATCTGTGG
BRCA2 NM_000059 285 AGTTCGTGCTTTGCAAGATG 286 AAGGTAAGCTGGGTCTGCTG
BTG1 NM_001731 289 GAGGTCCGAGCGATGTGA 290 AGTTATTTTCGAGACAGGAGGC
BTG3 NM_006806 293 CCATATCGCCCAATTCCA 294 CCAGTGATTCCGGTCACAA
BTRC NM_033637 297 GTTGGGACACAGTTGGTCTG 298 TGAAGCAGTCAGTTGTGCTG
BUB1 NM_004336 301 CCGAGGTTAATCCAGCACGTA 302 AAGACATGGCGCTCTCAGTTC
C7 NM_000587 305 ATGTCTGAGTGTGAGGCGG 306 AGGCCTTATGCTGGTGACAG
CACNA1D NM_000720 309 AGGACCCAGCTCCATGTG 310 CCTACATTCCGTGCCATTG
CADM1 NM_014333 313 CCACCACCATCCTTACCATC 314 GATCCACTGCCCTGATCG
CADPS NM_003716 317 CAGCAAGGAGACTGTGCTGA 318 GGTCCTCTTCTCCACGGTAGAT
CASP3 NM_032991 325 TGAGCCTGAGCAGAGACATGA 326 CCTTCCTGCGTGGTCCAT
CASP7 NM_033338 329 GCAGCGCCGAGACTTTTA 330 AGTCTCTCTCCGTCGCTCC
CAV1 NM_001753 333 GTGGCTCAACATTGTGTTCC 334 CAATGGCCTCCATTTTACAG
CAV2 NM_198212 337 CTTCCCTGGGACGACTTG 338 CTCCTGGTCACCCTTCTGG
CCL2 NM_002982 341 CGCTCAGCCAGATGCAATC 342 GCACTGAGATCTTCCTATTGGTGAA
CCL5 NM_002985 345 AGGTTCTGAGCTCTGGCTTT 346 ATGCTGACTTCCTTCCTGGT
CCNB1 NM_031966 349 TTCAGGTTGTTGCAGGAGAC 350 CATCTTCTTGGGCACACAAT
CCND1 NM_001758 353 GCATGTTCGTGGCCTCTAAGA 354 CGGTGTAGATGCACAGCTTCTC
CCNE2 NM_057749 357 ATGCTGTGGCTCCTTCCTAACT 358 ACCCAAATTGTGATATACAAAAAGGTT
CCNH NM_001239 361 GAGATCTTCGGTGGGGGTA 362 CTGCAGACGAGAACCCAAAC
CCR1 NM_001295 365 TCCAAGACCCAATGGGAA 366 TCGTAGGCTTTCGTGAGGA
CD164 NM_006016 369 CAACCTGTGCGAAAGTCTACC 370 ACACCCAAGACCAGGACAAT
CD1A NM_001763 373 GGAGTGGAAGGAACTGGAAA 374 TCATGGGCGTATCTACGAAT
CD276 NM_ 377 CCAAAGGATGCGATACACAG 378 GGATGACTTGGGAATCATGTC
001024736
CD44 NM_000610 381 GGCACCACTGCTTATGAAGG 382 GATGCTCATGGTGAATGAGG
CD68 NM_001251 385 TGGTTCCCAGCCCTGTGT 386 CTCCTCCACCCTGGGTTGT
CD82 NM_002231 389 GTGCAGGCTCAGGTGAAGTG 390 GACCTCAGGGCGATTCATGA
CDC20 NM_001255 393 TGGATTGGAGTTCTGGGAATG 394 GCTTGCACTCCACAGGTACACA
CDC25B NM_021873 397 GCTGCAGGACCAGTGAGG 398 TAGGGCAGCTGGCTTCAG
CDC6 NM_001254 401 GCAACACTCCCCATTTACCTC 402 TGAGGGGGACCATTCTCTTT
CDH1 NM_004360 405 TGAGTGTCCCCCGGTATCTTC 406 CAGCCGCTTTCAGATTTTCAT
CDH10 NM_006727 409 TGTGGTGCAAGTCACAGCTAC 410 TGTAAATGACTCTGGCGCTG
CDH11 NM_001797 413 GTCGGCAGAAGCAGGACT 414 CTACTCATGGGCGGGATG
CDH19 NM_021153 417 AGTACCATAATGCGGGAACG 418 AGACTGCCTGTATAGGCTCCTG
CDH5 NM_001795 421 ACAGGAGACGTGTTCGCC 422 CAGCAGTGAGGTGGTACTCTGA
CDH7 NM_033646 425 GTTTGACATGGCTGCACTGA 426 AGTCACATCCCTCCGGGT
CDK14 NM_012395 429 GCAAGGTAAATGGGAAGTTGG 430 GATAGCTGTGAAAGGTGTCCCT
CDK2 NM_001798 433 AATGCTGCACTACGACCCTA 434 TTGGTCACATCCTGGAAGAA
CDK3 NM_001258 437 CCAGGAAGGGACTGGAAGA 438 GTTGCATGAGCAGGTCCC
CDK7 NM_001799 441 GTCTCGGGCAAAGCGTTAT 442 CTCTGGCCTTGTAAACGGTG
CDKN1A NM_000389 445 TGGAGACTCTCAGGGTCGAAA 446 GGCGTTTGGAGTGGTAGAAATC
CDKN1C NM_000076 449 CGGCGATCAAGAAGCTGT 450 CAGGCGCTGATCTCTTGC
CDKN2B NM_004936 453 GACGCTGCAGAGCACCTT 454 GCGGGAATCTCTCCTCAGT
CDKN2C NM_001262 457 GAGCACTGGGCAATCGTTAC 458 CAAAGGCGAACGGGAGTAG
CDKN3 NM_005192 461 TGGATCTCTACCAGCAATGTG 462 ATGTCAGGAGTCCCTCCATC
CDS2 NM_003818 465 GGGCTTCTTTGCTACTGTGG 466 ACAGGGCAGACAAAGCATCT
CENPF NM_016343 469 CTCCCGTCAACAGCGTTC 470 GGGTGAGTCTGGCCTTCA
CHAF1A NM_005483 473 GAACTCAGTGTATGAGAAGCGG 474 GCTCTGTAGCACCTGCGG
CHN1 NM_001822 477 TTACGACGCTCGTGAAAGC 478 TCTCCCTGATGCACATGTCT
CHRAC1 NM_017444 481 TCTCGCTGCCTCTATCCC 482 CCTGGTTGATGCTGGACA
CKS2 NM_001827 485 GGCTGGACGTGGTTTTGTCT 486 CGCTGCAGAAAATGAAACGA
CLDN3 NM_001306 489 ACCAACTGCGTGCAGGAC 490 GGCGAGAAGGAACAGCAC
CLTC NM_004859 493 ACCGTATGGACAGCCACAG 494 TGACTACAGGATCAGCGCTTC
COL11A1 NM_001854 497 GCCCAAGAGGGGAAGATG 498 GGACCTGGGTCTCCAGTTG
COL1A1 NM_000088 501 GTGGCCATCCAGCTGACC 502 CAGTGGTAGGTGATGTTCTGGGA
COL1A2 NM_000089 505 CAGCCAAGAACTGGTATAGGAGCT 506 AAACTGGCTGCCAGCATTG
COL3A1 NM_000090 509 GGAGGTTCTGGACCTGCTG 510 ACCAGGACTGCCACGTTC
COL4A1 NM_001845 513 ACAAAGGCCTCCCAGGAT 514 GAGTCCCAGGAAGACCTGCT
COL5A1 NM_000093 517 CTCCCTGGGAAAGATGGC 518 CTGGACCAGGAAGCCCTC
COL5A2 NM_000393 521 GGTCGAGGAACCCAAGGT 522 GCCTGGAGGTCCAACTCTG
COL6A1 NM_001848 525 GGAGACCCTGGTGAAGCTG 526 TCTCCAGGGACACCAACG
COL6A3 NM_004369 529 GAGAGCAAGCGAGACATTCTG 530 AACAGGGAACTGGCCCAC
COL8A1 NM_001850 533 TGGTGTTCCAGGGCTTCT 534 CCCTGTAAACCCTGATCCC
COL9A2 NM_001852 537 GGGAACCATCCAGGGTCT 538 ATTCCGGGTGGACAGTTG
CRISP3 NM_006061 541 TCCCTTATGAACAAGGAGCAC 542 AACCATTGGTGCATAGTCCAT
CSF1 NM_000757 545 TGCAGCGGCTGATTGACA 546 CAACTGTTCCTGGTCTACAAACTCA
CSK NM_004383 549 CCTGAACATGAAGGAGCTGA 550 CATCACGTCTCCGAACTCC
CSRP1 NM_004078 553 ACCCAAGACCCTGCCTCT 554 GCAGGGGTGGAGTGATGT
CTGF NM_001901 557 GAGTTCAAGTGCCCTGACG 558 AGTTGTAATGGCAGGCACAG
CTHRC1 NM_138455 561 TGGCTCACTTCGGCTAAAAT 562 TCAGCTCCATTGAATGTGAAA
CTNNA1 NM_001903 565 CGTTCCGATCCTCTATACTGCAT 566 AGGTCCCTGTTGGCCTTATAGG
CTNNB1 NM_001904 569 GGCTCTTGTGCGTACTGTCCTT 570 TCAGATGACGAAGAGCACAGATG
CTNND1 NM_001331 573 CGGAAACTTCGGGAATGTGA 574 CTGAATCCTTCTGCCCAATCTC
CTNND2 NM_001332 577 GCCCGTCCCTACAGTGAAC 578 CTCACACCCAGGAGTCGG
CTSB NM_001908 581 GGCCGAGATCTACAAAAACG 582 GCAGGAAGTCCGAATACACA
CTSD NM_001909 585 GTACATGATCCCCTGTGAGAAGGT 586 GGGACAGCTTGTAGCCTTTGC
CTSK NM_000396 589 AGGCTTCTCTTGGTGTCCATAC 590 CCACCTCTTCACTGGTCATGT
CTSL2 NM_001333 593 TGTCTCACTGAGCGAGCAGAA 594 ACCATTGCAGCCCTGATTG
CTSS NM_004079 597 TGACAACGGCTTTCCAGTACAT 598 TCCATGGCTTTGTAGGGATAGG
CUL1 NM_003592 601 ATGCCCTGGTAATGTCTGCAT 602 GCGACCACAAGCCTTATCAAG
CXCL12 NM_000609 605 GAGCTACAGATGCCCATGC 606 TTTGAGATGCTTGACGTTGG
CXCR4 NM_003467 609 TGACCGCTTCTACCCCAATG 610 AGGATAAGGCCAACCATGATGT
CXCR7 NM_020311 613 CGCCTCAGAACGATGGAT 614 GTTGCATGGCCAGCTGAT
CYP3A5 NM_000777 617 TCATTGCCCAGTATGGAGATG 618 GACAGGCTTGCCTTTCTCTG
CYR61 NM_001554 621 TGCTCATTCTTGAGGAGCAT 622 GTGGCTGCATTAGTGTCCAT
DAG1 NM_004393 625 GTGACTGGGCTCATGCCT 626 ATCCCACTTGTGCTCCTGTC
DAP NM_004394 629 CCAGCCTTTCTGGTGCTG 630 GACCAGGTCTGCCTCTGC
DAPK1 NM_004938 633 CGCTGACATCATGAATGTTCCT 634 TCTCTTTCAGCAACGATGTGTCTT
DARC NM_002036 637 GCCCTCATTAGTCCTTGGCT 638 CAGACAGAAGGGCTGGGAC
DDIT4 NM_019058 641 CCTGGCGTCTGTCCTCAC 642 CGAAGAGGAGGTGGACGA
DDR2 NM_ 645 CTATTACCGGATCCAGGGC 646 CCCAGCAAGATACTCTCCCA
001014796
DES NM_001927 649 ACTTCTCACTGGCCGACG 650 GCTCCACCTTCTCGTTGGT
DHRS9 NM_005771 653 GGAGAAAGGTCTCTGGGGTC 654 CAGTCAGTGGGAGCCAGC
DHX9 NM_001357 657 GTTCGAACCATCTCAGCGAC 658 TCCAGTTGGATTGTGGAGGT
DIAPH1 NM_005219 661 CAAGCAGTCAAGGAGAACCA 662 AGTTTTGCTCGCCTCATCTT
DICER1 NM_177438 665 TCCAATTCCAGCATCACTGT 666 GGCAGTGAAGGCGATAAAGT
DIO2 NM_013989 669 CTCCTTTCACGAGCCAGC 670 AGGAAGTCAGCCACTGAGGA
DLC1 NM_006094 673 GATTCAGACGAGGATGAGCC 674 CACCTCTTGCTGTCCCTTTG
DLGAP1 NM_004746 677 CTGCTGAGCCCAGTGGAG 678 AGCCTGGAAGGAGTTCCG
DLL4 NM_019074 681 CACGGAGGTATAAGGCAGGAG 682 AGAAGGAAGGTCCAGCCG
DNM3 NM_015569 685 CTTTCCCACCCGGCTTAC 686 AAGGACCTTCTGCAGGTGTG
DPP4 NM_001935 689 GTCCTGGGATCGGGAAGT 690 GTACTCCCACCGGGATACAG
DPT NM_001937 693 CACCTAGAAGCCTGCCCAC 694 CAGTAGCTCCCCAGGGTTC
DUSP1 NM_004417 697 AGACATCAGCTCCTGGTTCA 698 GACAAACACCCTTCCTCCAG
DUSP6 NM_001946 701 CATGCAGGGACTGGGATT 702 TGCTCCTACCCTATCATTTGG
DVL1 NM_004421 705 TCTGTCCCACCTGCTGCT 706 TCAGACTGTTGCCGGATG
DYNLL1 NM_ 709 GCCGCCTACCTCACAGAC 710 GCCTGACTCCAGCTCTCCT
001037494
EBNA1BP2 NM_006824 713 TGCGGCGAGATGGACACT 714 GTGACAAGGGATTCATCGGATT
ECE1 NM_001397 717 ACCTTGGGATCTGCCTCC 718 GGACCAGGACCTCCATCTG
EDN1 NM_001955 721 TGCCACCTGGACATCATTTG 722 TGGACCTAGGGCTTCCAAGTC
EDNRA NM_001957 725 TTTCCTCAAATTTGCCTCAAG 726 TTACACATCCAACCAGTGCC
EFNB2 NM_004093 729 TGACATTATCATCCCGCTAAGGA 730 GTAGTCCCCGCTGACCTTCTC
EGF NM_001963 733 CTTTGCCTTGCTCTGTCACAGT 734 AAATACCTGACACCCTTATGACAAATT
EGR1 NM_001964 737 GTCCCCGCTGCAGATCTCT 738 CTCCAGCTTAGGGTAGTTGTCCAT
EGR3 NM_004430 741 CCATGTGGATGAATGAGGTG 742 TGCCTGAGAAGAGGTGAGGT
EIF2C2 NM_012154 745 GCACTGTGGGCAGATGAA 746 ATGTTTGGTGACTGGCGG
EIF2S3 NM_001415 749 CTGCCTCCCTGATTCAAGTG 750 GGTGGCAAGTGCCTGTAATATC
EIF3H NM_003756 753 CTCATTGCAGGCCAGATAAA 754 GCCATGAAGAGCTTGCCTA
EIF4E NM_001968 757 GATCTAAGATGGCGACTGTCGAA 758 TTAGATTCCGTTTTCTCCTCTTCTG
EIF5 NM_001969 761 GAATTGGTCTCCAGCTGCC 762 TCCAGGTATATGGCTCCTGC
ELK4 NM_001973 765 GATGTGGAGAATGGAGGGAA 766 AGTCATTGCGGCTAGAGGTC
ENPP2 NM_006209 769 CTCCTGCGCACTAATACCTTC 770 TCCCTGGATAATTGGGTCTG
ENY2 NM_020189 773 CCTCAAAGAGTTGCTGAGAGC 774 CCTCTTTACAGTGTGCCTTCA
EPHA2 NM_004431 777 CGCCTGTTCACCAAGATTGAC 778 GTGGCGTGCCTCGAAGTC
EPHA3 NM_005233 781 CAGTAGCCTCAAGCCTGACA 782 TTCGTCCCATATCCAGCG
EPHB2 NM_004442 785 CAACCAGGCAGCTCCATC 786 GTAATGCTGTCCACGGTGC
EPHB4 NM_004444 789 TGAACGGGGTATCCTCCTTA 790 AGGTACCTCTCGGTCAGTGG
ERBB2 NM_004448 793 CGGTGTGAGAAGTGCAGCAA 794 CCTCTCGCAAGTGCTCCAT
ERBB3 NM_001982 797 CGGTTATGTCATGCCAGATACAC 798 GAACTGAGACCCACTGAAGAAAGG
ERBB4 NM_005235 801 TGGCTCTTAATCAGTTTCGTTACCT 802 CAAGGCATATCGATCCTCATAAAGT
ERCC1 NM_001983 805 GTCCAGGTGGATGTGAAAGA 806 CGGCCAGGATACACATCTTA
EREG NM_001432 809 TGCTAGGGTAAACGAAGGCA 810 TGGAGACAAGTCCTGGCAC
ERG NM_004449 813 CCAACACTAGGCTCCCCA 814 CCTCCGCCAGGTCTTTAGT
ESR1 NM_000125 817 CGTGGTGCCCCTCTATGAC 818 GGCTAGTGGGCGCATGTAG
ESR2 NM_001437 821 TGGTCCATCGCCAGTTATCA 822 TGTTCTAGCGATCTTGCTTCACA
ETV1 NM_004956 825 TCAAACAAGAGCCAGGAATG 826 AACTGCCAGAGCTGAAGTGA
ETV4 NM_001986 829 TCCAGTGCCTATGACCCC 830 ACTGTCCAAGGGCACCAG
EZH2 NM_004456 833 TGGAAACAGCGAAGGATACA 834 CACCGAACACTCCCTAGTCC
F2R NM_001992 837 AAGGAGCAAACCATCCAGG 838 GCAGGGTTTCATTGAGCAC
FAH NM_001441 841 GACAGCGTAGTGGTGCATGT 842 AGCTGAACATGGACTGTGGA
FABP5 NM_001444 845 GCTGATGGCAGAAAAACTCA 846 CTTTCCTTCCCATCCCACT
FADD NM_003824 849 GTTTTCGCGAGATAACGGTC 850 CTCCGGTGCCTGATTCAC
FAM107A NM_007177 853 AAGTCAGGGAAAACCTGCG 854 GCTGGCCCTACAGCTCTCT
FAM13C NM_198215 857 ATCTTCAAAGCGGAGAGCG 858 GCTGGATACCACATGCTCTG
FAM171B NM_177454 861 CCAGGAAGGAAAAGCACTGT 862 GTGGTCTGCCCCTTCTTTTA
FAM49B NM_016623 865 AGATGCAGAAGGCATCTTGG 866 GCTGGATTGCCTCTCGTATT
FAM73A NM_198549 869 TGAGAAGGTGCGCTATTCAA 870 GGCCATTAAAAGCTCAGTGC
FAP NM_004460 873 GTTGGCTCACGTGGGTTAC 874 GACAGGACCGAAACATTCTG
FAS NM_000043 877 GGATTGCTCAACAACCATGCT 878 GGCATTAACACTTTTGGACGATAA
FASLG NM_000639 881 GCACTTTGGGATTCTTTCCATTAT 882 GCATGTAAGAAGACCCTCACTGAA
FASN NM_004104 885 GCCTCTTCCTGTTCGACG 886 GCTTTGCCCGGTAGCTCT
FCGR3A NM_000569 889 GTCTCCAGTGGAAGGGAAAA 890 AGGAATGCAGCTACTCACTGG
FGF10 NM_004465 893 TCTTCCGTCCCTGTCACCT 894 AGAGTTGGTGGCCTCTGGT
FGF17 NM_003867 897 GGTGGCTGTCCTCAAAATCT 898 TCTAGCCAGGAGGAGTTTGG
FGF5 NM_004464 901 GCATCGGTTTCCATCTGC 902 AACATATTGGCTTCGTGGGA
FGF6 NM_020996 905 GGGCCATTAATTCTGACCAC 906 CCCGGGACATAGTGATGAA
FGF7 NM_002009 909 CCAGAGCAAATGGCTACAAA 910 TCCCCTCCTTCCATGTAATC
FGFR2 NM_000141 913 GAGGGACTGTTGGCATGCA 914 GAGTGAGAATTCGATCCAAGTCTTC
FGFR4 NM_002011 917 CTGGCTTAAGGATGGACAGG 918 ACGAGACTCCAGTGCTGATG
FKBP5 NM_004117 921 CCCACAGTAGAGGGGTCTCA 922 GGTTCTGGCTTTCACGTCTG
FLNA NM_001456 925 GAACCTGCGGTGGACACT 926 GAAGACACCCTGGCCCTC
FLNC NM_001458 929 CAGGACAATGGTGATGGCT 930 TGATGGTGTACTCGCCAGG
FLT1 NM_002019 933 GGCTCCTGAATCTATCTTTG 934 TCCCACAGCAATACTCCGTA
FLT4 NM_002020 937 ACCAAGAAGCTGAGGACCTG 938 CCTGGAAGCTGTAGCAGACA
FN1 NM_002026 941 GGAAGTGACAGACGTGAAGGT 942 ACACGGTAGCCGGTCACT
FOS NM_005252 945 CGAGCCCTTTGATGACTTCCT 946 GGAGCGGGCTGTCTCAGA
FOXO1 NM_002015 949 GTAAGCACCATGCCCCAC 950 GGGGCAGAGGCACTTGTA
FOXP3 NM_014009 953 CTGTTTGCTGTCCGGAGG 954 GTGGAGGAACTCTGGGAATG
FOXQ1 NM_033260 957 TGTTTTTGTCGCAACTTCCA 958 TGGAAAGGTTCCCTGATGTACT
FSD1 NM_024333 961 AGGCCTCCTGTCCTTCTACA 962 TGTGTGAACCTGGTCTTGAAA
FYN NM_002037 965 GAAGCGCAGATCATGAAGAA 966 CTCCTCAGACACCACTGCAT
G6PD NM_000402 969 AATCTGCCTGTGGCCTTG 970 CGAGATGTTGCTGGTGACA
GABRG2 NM_198904 973 CCACTGTCCTGACAATGACC 974 GAGATCCATCGCTGTGACAT
GADD45A NM_001924 977 GTGCTGGTGACGAATCCA 978 CCCGGCAAAAACAAATAAGT
GADD45B NM_015675 981 ACCCTCGACAAGACCACACT 982 TGGGAGTTCATGGGTACAGA
GDF15 NM_004864 985 CGCTCCAGACCTATGATGACT 986 ACAGTGGAAGGACCAGGACT
GHR NM_000163 989 CCACCTCCCACAGGTTCA 990 GGTGCGTGCCTGTAGTCC
GNPTAB NM_024312 993 GGATTCACATCGCGGAAA 994 GTTCTTGCATAACAATCCGGTC
GNRH1 NM_000825 997 AAGGGCTAAATCCAGGTGTG 998 CTGGATCTCTGTGGCTGGT
GPM6B NM_ 1001 ATGTGCTTGGAGTGGCCT 1002 TGTAGAACATAAACACGGGCA
001001994
GPNMB NM_ 1005 CAGCCTCGCCTTTAAGGAT 1006 TGACAAATATGGCCAAGCAG
001005340
GPR68 NM_003485 1009 CAAGGACCAGATCCAGCG 1010 GGTAGGGCAGGAAGCAGG
GPS1 NM_004127 1013 AGTACAAGCAGGCTGCCAAG 1014 GCAGCTCAGGGAAGTCACA
GRB7 NM_005310 1017 CCATCTGCATCCATCTTGTT 1018 GGCCACCAGGGTATTATCTG
GREM1 NM_013372 1021 GTGTGGGCAAGGACAAGC 1022 GACCTGATTTGGCCTCACC
GSK3B NM_002093 1025 GACAAGGACGGCAGCAAG 1026 TTGTGGCCTGTCTGGACC
GSN NM_000177 1029 CTTCTGCTAAGCGGTACATCGA 1030 GGCTCAAAGCCTTGCTTCAC
GSTM1 NM_000561 1033 AAGCTATGAGGAAAAGAAGTACACGA 1034 GGCCCAGCTTGAATTTTTCA
T
GSTM2 NM_000848 1037 CTGCAGGCACTCCCTGAAAT 1038 CCAAGAAACCATGGCTGCTT
HDAC1 NM_004964 1041 CAAGTACCACAGCGATGACTACATTA 1042 GCTTGCTGTACTCCGACATGTT
A
HDAC9 NM_178423 1045 AACCAGGCAGTCACCTTGAG 1046 CTCTGTCTTCCTGCATCGC
HGD NM_000187 1049 CTCAGGTCTGCCCCTACAAT 1050 TTATTGGTGCTCCGTGGAC
HIP1 NM_005338 1053 CTCAGAGCCCCACCTGAG 1054 GGGTTTCCCTGCCATACTG
HIRIP3 NM_003609 1057 GGATGAGGAAAAGGGGGAT 1058 TCCCTAGCTGACTTTCTCCG
HK1 NM_000188 1061 TACGCACAGAGGCAAGCA 1062 GAGAGAAGTGCTGGAGAGGC
HLA-G NM_002127 1065 CCATCCCCATCATGGGTATC 1066 CCGCAGCTCCAGTGACTACA
HLF NM_002126 1069 CACCCTGCAGGTGTCTGAG 1070 GGTACCTAGGAGCAGAAGGTGA
HNF1B NM_000458 1073 TCCCAGCATCTCAACAAGG 1074 CGTACCAGGTGTACAGAGCG
HPS1 NM_000195 1077 GCGGAAGCTGTATGTGCTC 1078 TTCGGATAAGATGACCGTCC
HRAS NM_005343 1081 GGACGAATACGACCCCACT 1082 GCACGTCTCCCCATCAAT
HSD17B10 NM_004493 1085 CCAGCGAGTTCTTGATGTGA 1086 ATCTCACCAGCCACCAGG
HSD17B2 NM_002153 1089 GCTTTCCAAGTGGGGAATTA 1090 TGCCTGCGATATTTGTTAGG
HSD17B3 NM_000197 1093 GGGACGTCCTGGAACAGT 1094 TGGAGAATCTCACGCACTTC
HSD17B4 NM_000414 1097 CGGGAAGCTTCAGAGTACCTT 1098 ACCTCAGGCCCAATATCCTT
HSD3B2 NM_000198 1101 GCCTTCCTTTAACCCTGATG 1102 GGAGTAAATTGGGCTGAGTAGG
HSP90AB1 NM_007355 1105 GCATTGTGACCAGCACCTAC 1106 GAAGTGCCTGGGCTTTCAT
HSPA5 NM_005347 1109 GGCTAGTAGAACTGGATCCCAACA 1110 GGTCTGCCCAAATGCTTTTC
HSPA8 NM_006597 1113 CCTCCCTCTGGTGGTGCTT 1114 GCTACATCTACACTTGGTTGGCTTAA
HSPB1 NM_001540 1117 CCGACTGGAGGAGCATAAA 1118 ATGCTGGCTGACTCTGCTC
HSPB2 NM_001541 1121 CACCACTCCAGAGGTAGCAG 1122 TGGGACCAAACCATACATTG
HSPE1 NM_002157 1125 GCAAGCAACAGTAGTCGCTG 1126 CCAACTTTCACGCTAACTGGT
HSPG2 NM_005529 1129 GAGTACGTGTGCCGAGTGTT 1130 CTCAATGGTGACCAGGACA
ICAM1 NM_000201 1133 GCAGACAGTGACCATCTACAGCTT 1134 CTTCTGAGACCTCTGGCTTCGT
IER3 NM_003897 1137 GTACCTGGTGCGCGAGAG 1138 GCGTCTCCGCTGTAGTGTT
IFI30 NM_006332 1141 ATCCCATGAAGCCCAGATAC 1142 GCACCATTCTTAGTGGAGCA
IFIT1 NM_001548 1145 TGACAACCAAGCAAATGTGA 1146 CAGTCTGCCCATGTGGTAAT
IFNG NM_000619 1149 GCTAAAACAGGGAAGCGAAA 1150 CAACCATTACTGGGATGCTC
IGF1 NM_000618 1153 TCCGGAGCTGTGATCTAAGGA 1154 CGGACAGAGCGAGCTGACTT
IGF1R NM_000875 1157 GCATGGTAGCCGAAGATTTCA 1158 TTTCCGGTAATAGTCTGTCTCATAGATA
TC
IGF2 NM_000612 1161 CCGTGCTTCCGGACAACTT 1162 TGGACTGCTTCCAGGTGTCA
IGFBP2 NM_000597 1165 GTGGACAGCACCATGAACA 1166 CCTTCATACCCGACTTGAGG
IGFBP3 NM_000598 1169 ACATCCCAACGCATGCTC 1170 CCACGCCCTTGTTTCAGA
IGFBP5 NM_000599 1173 TGGACAAGTACGGGATGAAGCT 1174 CGAAGGTGTGGCACTGAAAGT
IGKBP6 NM_002178 1177 TGAACCGCAGAGACCAACAG 1178 GTCTTGGACACCCGCAGAAT
IL10 NM_000572 1181 CTGACCACGCTTTCTAGCTG 1182 CCAAGCCCAGAGACAAGATAA
IL11 NM_000641 1185 TGGAAGGTTCCACAAGTCAC 1186 TCTTGACCTTGCAGCTTTGT
IL17A NM_002190 1189 TCAAGCAACACTCCTAGGGC 1190 CAGCTCCTTTCTGGGTTGTG
IL1A NM_000575 1193 GGTCCTTGGTAGAGGGCTACTT 1194 GGATGGAGCTTCAGGAGAGA
IL1B NM_000576 1197 AGCTGAGGAAGATGCTGGTT 1198 GGAAAGAAGGTGCTCAGGTC
IL2 NM_000586 1201 ACCTCAACTCCTGCCACAAT 1202 CACTGTTTGTGACAAGTGCAAG
IL6 NM_000600 1205 CCTGAACCTTCCAAAGATGG 1206 ACCAGGCAAGTCTCCTCATT
IL6R NM_000565 1209 CCAGCTTATCTCAGGGGTGT 1210 CTGGCGTAGAACCTTCCG
IL6ST NM_002184 1213 GGCCTAATGTTCCAGATCCT 1214 AAAATTGTGCCTTGGAGGAG
IL8 NM_000584 1217 AAGGAACCATCTCACTGTGTGTAAAC 1218 ATCAGGAAGGCTGCCAAGAG
ILF3 NM_004516 1221 GACACGCCAAGTGGTTCC 1222 CTCAAGACCCGGATCACAA
ILK NM_ 1225 CTCAGGATTTTCTCGCATCC 1226 AGGAGCAGGTGGAGACTGG
001014794
IMMT NM_006839 1229 CTGCCTATGCCAGACTCAGA 1230 GCTTTTCTGGCTTCCTCTTC
ING5 NM_032329 1233 CCTACAGCAAGTGCAAGGAA 1234 CATCTCGTAGGTCTGCATGG
INHBA NM_002192 1237 GTGCCCGAGCCATATAGCA 1238 CGGTAGTGGTTGATGACTGTTGA
INSL4 NM_002195 1241 CTGTCATATTGCCCCATGC 1242 CAGATTCCAGCAGCCACC
ITGA1 NM_181501 1245 GCTTCTTCTGGAGATGTGCTCT 1246 CCTGTAGATAATGACCTGGCCT
ITGA3 NM_002204 1249 CCATGATCCTCACTCTGCTG 1250 GAAGCTTTGTAGCCGGTGAT
ITGA4 NM_000885 1253 CAACGCTTCAGTGATCAATCC 1254 GTCTGGCCGGGATTCTTT
ITGA5 NM_002205 1257 AGGCCAGCCCTACATTATCA 1258 GTCTTCTCCACAGTCCAGCA
ITGA6 NM_000210 1261 CAGTGACAAACAGCCCTTCC 1262 GTTTAGCCTCATGGGCGTC
ITGA7 NM_002206 1265 GATATGATTGGTCGCTGCTTTG 1266 AGAACTTCCATTCCCCACCAT
ITGAD NM_005353 1269 GAGCCTGGTGGATCCCAT 1270 ACTGTCAGGATGCCCGTG
ITGB3 NM_000212 1273 ACCGGGAGCCCTACATGAC 1274 CCTTAAGCTCTTTCACTGACTCAATCT
ITGB4 NM_000213 1277 CAAGGTGCCCTCAGTGGA 1278 GCGCACACCTTCATCTCAT
ITGB5 NM_002213 1281 TCGTGAAAGATGACCAGGAG 1282 GGTGAACATCATGACGCAGT
ITPR1 NM_002222 1285 GAGGAGGTGTGGGTGTTCC 1286 GTAATCCCATGTCCGCGA
ITPR3 NM_002224 1289 TTGCCATCGTGTCAGTGC 1290 ATGGAGCTGGCGTCATTG
ITSN1 NM_003024 1293 TAACTGGGATGCATGGGC 1294 CTCTGCCTTAACTGGCCG
JAG1 NM_000214 1297 TGGCTTACACTGGCAATGG 1298 GCATAGCTGTGAGATGCGG
JUN NM_002228 1301 GACTGCAAAGATGGAAACGA 1302 TAGCCATAAGGTCCGCTCTC
JUNB NM_002229 1305 CTGTCAGCTGCTGCTTGG 1306 AGGGGGTGTCCGTAAAGG
KCNN2 NM_021614 1309 TGTGCTATTCATCCCATACCTG 1310 GGGCATAGGAGAAGGCAAG
KCTD12 NM_138444 1313 AGCAGTTACTGGCAAGAGGG 1314 TGGAGACCTGAGCAGCCT
KNDRBS3 NM_006558 1317 CGGGCAAGAAGAGTGGAC 1318 CTGTAGACGCCCTTTGCTGT
KIAA0196 NM_014846 1321 CAGACACCAGCTCTGAGGC 1322 AACATTGTGAGGCGGACC
KIAA0247 NM_014734 1325 CCGTGGGACATGGAGTGT 1326 GAAGCAAGTCCGTCTCCAAG
KF4A NM_012310 1329 AGAGCTGGTCTCCTCCAAAA 1330 GCTGGTCTTGCTCTGTTTCA
KIT NM_000222 1333 GAGGCAACTGCTTATGGCTTAATTA 1334 GGCACTCGGCTTGAGCAT
KLC1 NM_182923 1337 AGTGGCTACGGGATGAACTG 1338 TGAGCCACAGACTGCTCACT
KLF6 NM_001300 1341 CACGAGACCGGCTACTTCTC 1342 GCTCTAGGCAGGTCTGTTGC
KLK1 NM_002257 1345 AACACAGCCCAGTTTGTTCA 1346 CCAGGAGGCTCATGTTGAAG
KLK10 NM_002776 1349 GCCCAGAGGCTCCATCGT 1350 CAGAGGTTTGAACAGTGCAGACA
KLK11 NM_006853 1353 CACCCCGGCTTCAACAAC 1354 CATCTTCACCAGCATGATGTCA
KLK14 NM_022046 1357 CCCCTAAAATGTTCCTCCTG 1358 CTCATCCTCTTGGCTCTGTG
KLK2 NM_005551 1361 AGTCTCGGATTGTGGGAGG 1362 TGTACACAGCCACCTGCC
KLK3 NM_001648 1365 CCAAGCTTACCACCTGCAC 1366 AGGGTGAGGAAGACAACCG
KLRK1 NM_007360 1369 TGAGAGCCAGGCTTCTTGTA 1370 ATCCTGGTCCTCTTTGCTGT
KPNA2 NM_002266 1373 TGATGGTCCAAATGAACGAA 1374 AAGCTTCACAAGTTGGGGC
KRT1 NM_006121 1377 TGGACAACAACCGCAGTC 1378 TATCCTCGTACTGGGCCTTG
KRT15 NM_002275 1381 GCCTGGTTCTTCAGCAAGAC 1382 CTTGCTGGTCTGGATCATTTC
KRT18 NM_000224 1385 AGAGATCGAGGCTCTCAAGG 1386 GGCCTTTTACTTCCTCTTCG
KRT2 NM_000423 1389 CCAGTGACGCCTCTGTGTT 1390 GGGCATGGCTAGAAGCAC
KRT5 NM_000424 1393 TCAGTGGAGAAGGAGTTGGA 1394 TGCCATATCCAGAGGAAACA
KRT75 NM_004693 1397 TCAAAGTCAGGTACGAAGATGAAATT 1398 ACGTCCTTTTTCAGGGCTACAA
KRT76 NM_015848 1401 ATCTCCAGACTGCTGGTTCC 1402 TCAGGGAATTAGGGGACAGA
KRT8 NM_002273 1405 GGATGAAGCTTACATGAACAAGGTAG 1406 CATATAGCTGCCTGAGGAAGTTGAT
A
L1CAM NM_000425 1409 CTTGCTGGCCAATGCCTA 1410 TGATTGTCCGCAGTCAGG
LAG3 NM_002286 1413 GCCTTAGAGCAAGGGATTCA 1414 CGGTTCTTGCTCCAGCTC
LAMA3 NM_000227 1417 CCTGTCACTGAAGCCTTGG 1418 TGGGTTACTGGTCAGGACAAC
LAMA4 NM_002290 1421 GATGCACTGCGGTTAGCAG 1422 CAGAGGATACGCTCAGCACC
LAMA5 NM_005560 1425 CTCCTGGCCAACAGCACT 1426 ACACAAGGCCCAGCCTCT
LAMB1 NM_002291 1429 CAAGGAGACTGGGAGGTGTC 1430 CGGCAGAACTGACAGTGTTC
LAMB3 NM_000228 1433 ACTGACCAAGCCTGAGACCT 1434 GTCACACTTGCAGCATTTCA
LAMC1 NM_002293 1437 GCCGTGATCTCAGACAGCTAC 1438 ACCTGCTTGCCCAAGAACT
LAMC2 NM_005562 1441 ACTCAAGCGGAAATTGAAGCA 1442 ACTCCCTGAAGCCGAGACACT
LAPTM5 NM_006762 1445 TGCTGGACTTCTGCCTGAG 1446 TGAGATAGGTGGGCACTTCC
LGALS3 NM_002306 1449 AGCGGAAAATGGCAGACAAT 1450 CTTGAGGGTTTGGGTTTCCA
LIG3 NM_002311 1453 GGAGGTGGAGAAGGAGCC 1454 ACAGGTGTCATCAGCGAGG
LIMS1 NM_004987 1457 TGAACAGTAATGGGGAGCTG 1458 TTCTGGGAACTGCTGGAAG
LOX NM_002317 1461 CCAATGGGAGAACAACGG 1462 CGCTGAGGCTGGTACTGTG
LRP1 NM_002332 1465 TTTGGCCCAATGGGCTAAG 1466 GTCTCGATGCGGTCGTAGAAG
LTBP2 NM_000428 1469 GCACACCCATCCTTGAGTCT 1470 GATGGCTGGCCACGTAGT
LUM NM_002345 1473 GGCTCTTTTGAAGGATTGGTAA 1474 AAAAGCAGCTGAAACAGCATC
MAGEA4 NM_002362 1477 GCATCTAACAGCCCTGTGC 1478 CAGAGTGAAGAATGGGCCTC
MANF NM_006010 1481 CAGATGTGAAGCCTGGAGC 1482 AAGGGAATCCCCTCATGG
MAOA NM_000240 1485 GTGTCAGCCAAAGCATGGA 1486 CGACTACGTCGAACATGTGG
MAP3K5 NM_005923 1489 AGGACCAAGAGGCTACGGA 1490 CCTGTGGCCATTTCAATGAT
MAP3K7 NM_145333 1493 CAGGCAAGAACTAGTTGCAGAA 1494 CCTGTACCAGGCGAGATGTAT
MAP4K4 NM_004834 1497 TCGCCGAGATTTCCTGAG 1498 CTGTTGTCTCCGAAGAGCCT
MAP7 NM_003980 1501 GAGGAACAGAGGTGTCTGCAC 1502 CTGCCAACTGGCTTTCCA
MAPKAPK3 NM_004635 1505 AAGCTGCAGAGATAATGCGG 1506 GTGGGCAATGTTATGGCTG
MCM2 NM_004526 1509 GACTTTTGCCCGCTACCTTTC 1510 GCCACTAACTGCTTCAGTATGAAGAG
MCM3 NM_002388 1513 GGAGAACAATCCCCTTGAGA 1514 ATCTCCTGGATGGTGATGGT
MCM6 NM_005915 1517 TGATGGTCCTATGTGTCACATTCA 1518 TGGGACAGGAAACACACCAA
MDK NM_002391 1521 GGAGCCGACTGCAAGTACA 1522 GACTTTGGTGCCTGTGCC
MDM2 NM_002392 1525 CTACAGGGACGCCATCGAA 1526 ATCCAACCAATCACCTGAATGTT
MELK NM_014791 1529 AGGATCGCCTGTCAGAAGAG 1530 TGCACATAAGCAACAGCAGA
MET NM_000245 1533 GACATTTCCAGTCCTGCAGTCA 1534 CTCCGATCGCACACATTTGT
MGMT NM_002412 1537 GTGAAATGAAACGCACCACA 1538 GACCCTGCTCACAACCAGAC
MGST1 NM_020300 1541 ACGGATCTACCACACCATTGC 1542 TCCATATCCAACAAAAAAACTCAAAG
MICA NM_000247 1545 ATGGTGAATGTCACCCGC 1546 AAGCCAGAAGCCCTGCAT
MKI67 NM_002417 1549 GATTGCACCAGGGCAGAA 1550 TCCAAAGTGCCTCTGCTAAGA
MLXIP NM_014938 1553 TGCTTAGCTGGCATGTGG 1554 CAGCCTACTCTCCATGGGC
MMP11 NM_005940 1557 CCTGGAGGCTGCAACATACC 1558 TACAATGGCTTTGGAGGATAGCA
MMP2 NM_004530 1561 CAGCCAGAAGCGGAAACTTA 1562 AGACACCATCACCTGTGCC
MMP7 NM_002423 1565 GGATGGTAGCAGTCTAGGGATTAACT 1566 GGAATGTCCCATACCCAAAGAA
MMP9 NM_004994 1569 GAGAACCAATCTCACCGACA 1570 CACCCGAGTGTAACCATAGC
MPPED2 NM_001584 1573 CCGACCAACCCTCCAATTA 1574 AGGGCATTTAGAGCTTCAGGA
MRC1 NM_002438 1577 CTTGACCTCAGGACTCTGGATT 1578 GGACTGCGGTCACTCCAC
MRPL13 NM_014078 1581 TCCGGTTCCCTTCGTTTAG 1582 GTGGAAAAACTGCGGAAAAC
MSH2 NM_000251 1585 GATGCAGAATTGAGGCAGAC 1586 TCTTGGCAAGTCGGTTAAGA
MSH3 NM_002439 1589 TGATTACCATCATGGCTCAGA 1590 CTTGTGAAAATGCCATCCAC
MSH6 NM_000179 1593 TCTATTGGGGGATTGGTAGG 1594 CAAATTGCGAGTGGTGAAAT
MTA1 NM_004689 1597 CCGCCCTCACCTGAAGAGA 1598 GGAATAAGTTAGCCGCGCTTCT
MTPN NM_145808 1601 GGTGGAAGGAAACCTCTTCA 1602 CAGCAGCAGAAATTCCAGG
MTSS1 NM_014751 1605 TTCGACAAGTCCTCCACCAT 1606 CTTGGAACATCCGTCGGTAG
MUC1 NM_002456 1609 GGCCAGGATCTGTGGTGGTA 1610 CTCCACGTCGTGGACATTGA
MVP NM_017458 1613 ACGAGAACGAGGGCATCTATGT 1614 GCATGTAGGTGCTTCCAATCAC
MYBL2 NM_002466 1617 GCCGAGATCGCCAAGATG 1618 CTTTTGATGGTAGAGTTCCAGTGATTC
MYBPC1 NM_002465 1621 CAGCAACCAGGGAGTCTGTA 1622 CAGCAGTAAGTGCCTCCATC
MYC NM_002467 1625 TCCCTCCACTCGGAAGGACTA 1626 CGGTTGTTGCTGATCTGTCTCA
MYLK3 NM_182493 1629 CACCTGACTGAGCTGGATGT 1630 GATGTAGTGCTGGTGCAGGT
MYO6 NM_004999 1633 AAGCAGTTCTGGAGCAGGAG 1634 GATGAGCTCGGCTTCACTCT
NCAM1 NM_000615 1637 TAGTTCCCAGCTGACCATCA 1638 CAGCCTTGTTCTCAGCAATG
NCAPD3 NM_015261 1641 TCGTTGCTTAGACAAGGCG 1642 CTCCAGACAGTGTGCAAAGC
NCOR1 NM_006311 1645 AACCGTTACAGCCCAGAATC 1646 TCTGGAGAGACCCTTGAACC
NCOR2 NM_006312 1649 CGTCATCTACGAAGGCAAGA 1650 GAGCACTGGGTCACAGACAT
NDRG1 NM_006096 1653 AGGGCAACATTCCACAGC 1654 CAGTGCTCCTACTCCGGC
NDUFS5 NM_004552 1657 AGAAGAGTCAAGGGCACGAG 1658 AGGCCGAACCTTTTCTGG
NEK2 NM_002497 1661 GTGAGGCAGCGCGACTCT 1662 TGCCAATGGTGTACAACACTTCA
NETO2 NM_018092 1665 CCAGGGCACCATACTGTTTC 1666 AACGGTAAATCAAGGTCTTCGT
NEXN NM_144573 1669 AGGAGGAGGAAGAAGGTAGCA 1670 GAGCTCCTGATCTGGTTTGC
NFAT5 NM_006599 1673 CTGAACCCCTCTCCTGGTC 1674 AGGAAACGATGGCGAGGT
NFATC2 NM_173091 1677 CAGTCAAGGTCAGAGGCTGAG 1678 CTTTGGCTCGTGGCATTC
NFKB1 NM_003998 1681 CAGACCAAGGAGATGGACCT 1682 AGCTGCCAGTGCTATCCG
NFKBIA NM_020529 1685 CTACTGGACGACCGCCAC 1686 CCTTGACCATCTGCTCGTACT
NME1 NM_000269 1689 CCAACCCTGCAGACTCCAA 1690 ATGTATAATGTTCCTGCCAACTTGTATG
NNMT NM_006169 1693 CCTAGGGCAGGGATGGAG 1694 CTAGTCCAGCCAAACATCCC
NOS3 NM_000603 1697 ATCTCCGCCTCGCTCATG 1698 TCGGAGCCATACAGGATTGTC
NOX4 NM_016931 1701 CCTCAACTGCAGCCTTATCC 1702 TGCTTGGAACCTTCTGTGAT
NPBWR1 NM_005285 1705 TCACCAACCTGTTCATCCTC 1706 GATGTTGATGGGCAGCAC
NPM1 NM_002520 1709 AATGTTGTCCAGGTTCTATTGC 1710 CAAGCAAAGGGTGGAGTTC
NRG1 NM_013957 1713 CGAGACTCTCCTCATAGTGAAAGGTA 1714 CTTGGCGTGTGGAAATCTACAG
T
NRIP3 NM_020645 1717 CCCACAAGCATGAAGGAGA 1718 TGCTCAATCTGGCCCACTA
NRP1 NM_003873 1721 CAGCTCTCTCCACGCGATTC 1722 CCCAGCAGCTCCATTCTGA
NUP62 NM_153719 1725 AGCCTCTTTGCGTCAATAGC 1726 CTGTGGTCACAGGGGTACAG
OAZ1 NM_004152 1729 AGCAAGGACAGCTTTGCAGT 1730 GAAGACATGGTCGGCTCG
OCLN NM_002538 1733 CCCTCCCATCCGAGTTTC 1734 GACGCGGGAGTGTAGGTG
ODC1 NM_002539 1737 AGAGATCACCGGCGTAATCAA 1738 CGGGCTCAGCTATGATTCTCA
OLFML2B NM_015441 1741 CATGTTGGAAGGAGCGTTCT 1742 CACCAGTTTGGTGGTGACTG
OLFML3 NM_020190 1745 TCAGAACTGAGGCCGACAC 1746 CCAGATAGTCTACCTCCCGCT
OMD NM_005014 1749 CGCAAACTCAAGACTATCCCA 1750 CAGTCACAGCCTCAATTTCATT
OR51E1 NM_152430 1753 GCATGCTTTCAGGCATTGA 1754 AGAAGATGGCCAGCATTTTG
OR51E2 NM_030774 1757 TATGGTGCCAAAACCAAACA 1758 GTCCTTGTCACAGCTGATCTTG
OSM NM_020530 1761 GTTTCTGAAGGGGAGGTCAC 1762 AGGTGTCTGGTTTGGGACA
PAGE1 NM_003785 1765 CAACCTGACGAAGTGGAATC 1766 CAGATGCTCCCTCATCCTCT
PAGE4 NM_007003 1769 GAATCTCAGCAAGAGGAACCA 1770 GTTCTTCGATCGGAGGTGTT
PAK6 NM_020168 1773 CCTCCAGGTCACCCACAG 1774 GTCCCTTCAGGCCAGAACTT
PATE1 NM_138294 1777 TGGTAATCCCTGGTTAACCTTC 1778 TCCACCTTATGCCTTTCACA
PCA3 NR_015342 1781 CGTGATTGTCAGGAGCAAGA 1782 AGAAAGGGGAGATGCAGAGG
PCDHGB7 NM_018927 1785 CCCAGCGTTGAAGCAGAT 1786 GAAACGCCAGTCCGTGTT
PCNA NM_002592 1789 GAAGGTGTTGGAGGCACTCAAG 1790 GGTTTACACCGCTGGAGCTAA
PDE9A NM_ 1793 TTCCACAACTTCCGGCAC 1794 AGACTGCAGAGCCAGACCA
001001570
PDGFRB NM_002609 1797 CCAGCTCTCCTTCCAGCTAC 1798 GGGTGGCTCTCACTTAGCTC
PECAM1 NM_000442 1801 TGTATTTCAAGACCTCTGTGCACTT 1802 TTAGCCTGAGGAATTGCTGTGTT
PEX10 NM_153818 1805 GGAGAAGTTCCCTCCCCAG 1806 ATCTGTGTCCAGGCCCAC
PGD NM_002631 1809 ATTCCCATGCCCTGTTTTAC 1810 CTGGCTGGAAGCATCTCAT
PGF NM_002632 1813 GTGGTTTTCCCTCGGAGC 1814 AGCAAGGGAACAGCCTCAT
PGK1 NM_000291 1817 AGAGCCAGTTGCTGTAGAACTCAA 1818 CTGGGCCTACACAGTCCTTCA
PGR NM_000926 1821 GATAAAGGAGCCGCGTGTCA 1822 TCACAAGTCCGGCACTTGAG
PHTF2 NM_020432 1825 GATATGGCTGATGCTGCTCC 1826 GGTTTGGGTGTTCTTGTGGA
PIK3C2A NM_002645 1829 ATACCAATCACCGCACAAACC 1830 CACACTAGCATTTTCTCCGCATA
PIK3CA NM_006218 1833 GTGATTGAAGAGCATGCCAA 1834 GTCCTGCGTGGGAATAGC
PIK3CG NM_002649 1837 GGAGAACTCAATGTCCATCTCC 1838 TGATGCTTAGGCAGGGCT
PIM1 NM_002648 1841 CTGCTCAAGGACACCGTCTA 1842 GGATCCACTCTGGAGGGC
PLA2G7 NM_005084 1845 CCTGGCTGTGGTTTATCCTT 1846 TGACCCATGCTGATGATTTC
PLAU NM_002658 1849 GTGGATGTGCCCTGAAGGA 1850 CTGCGGATCCAGGGTAAGAA
PLAUR NM_002659 1853 CCCATGGATGCTCCTCTGAA 1854 CCGGTGGCTACCAGACATTG
PLG NM_000301 1857 GGCAAAATTTCCAAGACCAT 1858 ATGTATCCATGAGCGTGTGG
PLK1 NM_005030 1861 AATGAATACAGTATTCCCAAGCACAT 1862 TGTCTGAAGCATCTTCTGGATGA
PLOD2 NM_000935 1865 CAGGGAGGTGGTTGCAAAT 1866 TCTCCCAGGATGCATGAAG
PLP2 NM_002668 1869 CCTGATCTGCTTCAGTGCC 1870 GCAGCAAGGATCATCTCAATC
PNLIPRP2 NM_005396 1873 TGGAGAAGGTGAACTGCATC 1874 CACGGCTTGGGTGTACATT
POSTN NM_006475 1877 GTGGCCCAATTAGGCTTG 1878 TCACAGGTGCCAGCAAAG
PPAP2B NM_003713 1881 ACAAGCACCATCCCAGTGA 1882 CACGAAGAAAACTATGCAGCAG
PPFIA3 NM_003660 1885 CCTGGAGCTCCGTTACTCTC 1886 AGCCACATAGGGATCCAGG
PPP1R12A NM_002480 1889 CGGCAAGGGGTTGATATAGA 1890 TGCCTGGCATCTCTAAGCA
PPP3CA NM_000944 1893 ATACTCCGAGCCCACGAA 1894 GGAAGCCTGTTGTTTGGC
PRIMA1 NM_178013 1897 ATCCTCTTCCCTGAGCCG 1898 CCCAGCTGAGAGGGAATTTA
PRKAR1B NM_002735 1901 ACAAAACCATGACTGCGCT 1902 TGTCATCCAGGTGAGCGA
PRKAR2B NM_002736 1905 TGATAATCGTGGGAGTTTCG 1906 GCACCAGGAGAGGTAGCAGT
PRKCA NM_002737 1909 CAAGCAATGCGTCATCAATGT 1910 GTAAATCCGCCCCCTCTTCT
PRKCB NM_002738 1913 GACCCAGCTCCACTCCTG 1914 CCCATTCACGTACTCCATCA
PROM1 NM_006017 1917 CTATGACAGGCATGCCACC 1918 CTCCAACCATGAGGAAGACG
PROS1 NM_000313 1921 GCAGCACAGGAATCTTCTTCTT 1922 CCCACCTATCCAACCTAATCTG
PSCA NM_005672 1925 ACCGTCATCAGCAAAGGCT 1926 CGTGATGTTCTTCTTGCCC
PSMD13 NM_002817 1929 GGAGGAGCTCTACACGAAGAAG 1930 CGGATCCTGCACAAAATCA
PTCH1 NM_000264 1933 CCACGACAAAGCCGACTAC 1934 TACTCGATGGGCTCTGCTG
PTEN NM_000314 1937 TGGCTAAGTGAAGATGACAATCATG 1938 TGCACATATCATTACACCAGTTCGT
PTGER3 NM_000957 1941 TAACTGGGGCAACCTTTTCT 1942 TTGCAGGAAAAGGTGACTGT
PTGS2 NM_000963 1945 GAATCATTCACCAGGCAAATTG 1946 CTGTACTGCGGGTGGAACAT
PTH1R NM_000316 1949 CGAGGTACAAGCTGAGATCAAGAA 1950 GCGTGCCTTTCGCTTGAA
PTHLH NM_002820 1953 AGTGACTGGGAGTGGGCTAGAA 1954 AAGCCTGTTACCGTGAATCGA
PTK2 NM_005607 1957 GACCGGTCGAATGATAAGGT 1958 CTGGACATCTCGATGACAGC
PTK2B NM_004103 1961 CAAGCCCAGCCGACCTAAG 1962 GAACCTGGAACTGCAGCTTTG
PTK6 NM_005975 1965 GTGCAGGAAAGGTTCACAAA 1966 GCACACACGATGGAGTAAGG
PTK7 NM_002821 1969 TCAGAGGACTCACGGTTCG 1970 CATACACCTCCACGCTGTTG
PTPN1 NM_002827 1973 AATGAGGAAGTTTCGGATGG 1974 CTTCGATCACAGCCAGGTAG
PTPRK NM_002844 1977 TCAAACCCTCCCAGTGCT 1978 AGCAGCCAGTTCGTCCAG
PTTG1 NM_004219 1981 GGCTACTCTGATCTATGTTGATAAGG 1982 GCTTCAGCCCATCCTTAGCA
AA
PYCARD NM_013258 1985 CTTTATAGACCAGCACCGGG 1986 AGCATCCAGCAGCCACTC
RAB27A NM_004580 1989 TGAGAGATTAATGGGCATTGTG 1990 CCGGATGCTTTATTCGTAGG
RAB30 NM_014488 1993 TAAAGGCTGAGGCACGGA 1994 CTCCCCAGCATCTCATGG
RAB31 NM_006868 1997 CTGAAGGACCCTACGCTCG 1998 ATGCAAAGCCAGTGTGCTC
RAD21 NM_006265 2001 TAGGGATGGTATCTGAAACAACA 2002 TCGCGTACACCTCTGCTC
RAD51 NM_002875 2005 AGACTACTCGGGTCGAGGTG 2006 AGCATCCGCAGAAACCTG
RAD9A NM_004584 2009 GCCATCTTCACCATCAAGG 2010 CGGTGTCTGAGAGTGTGGC
RAF1 NM_002880 2013 CGTCGTATGCGAGAGTCTGT 2014 TGAAGGCGTGAGGTGTAGAA
RAGE NM_014226 2017 ATTAGGGGACTTTGGCTCCT 2018 GGGTGGAGATGTATTCCGTG
RALA NM_005402 2021 TGGTCCTGAATGTAGCGTGT 2022 CCCCATTTCACCTCTTCAAT
RALBP1 NM_006788 2025 GGTGTCAGATATAAATGTGCAAATGC 2026 TTCGATATTGCCAGCAGCTATAAA
RAP1B NM_ 2029 TGACAGCGTGAGAGGTACTAGG 2030 CTGAGCCAAGAACGACTAGCTT
001010942
RARB NM_000965 2033 ATGAACCCTTGACCCCAAGT 2034 GAGCTGGGTGAGATGCTAGG
RASSF1 NM_007182 2037 AGGGCACGTGAAGTCATTG 2038 AAAGAGTGCAAACTTGCGG
RB1 NM_000321 2041 CGAAGCCCTTACAAGTTTCC 2042 GGACTCTTCAGGGGTGAAAT
RECK NM_021111 2045 GTCGCCGAGTGTGCTTCT 2046 GTGGGATGATGGGTTTGC
REG4 NM_032044 2049 TGCTAACTCCTGCACAGCC 2050 TGCTAGGTTTCCCCTCTGAA
RELA NM_021975 2053 CTGCCGGGATGGCTTCTAT 2054 CCAGGTTCTGGAAACTGTGGAT
RFX1 NM_002918 2057 TCCTCTCCAAGTTCGAGCC 2058 CAGGCCCTGGTACAGCAC
RGS10 NM_ 2061 AGACATCCACGACAGCGAT 2062 CCATTTGGCTGTGCTCTTG
001005339
RGS7 NM_002924 2065 CAGGCTGCAGAGAGCATTT 2066 TTTGCTTGTGCTTCTGCTTG
RHOA NM_001664 2069 TGGCATAGCTCTGGGGTG 2070 TGCCACAGCTGCATGAAC
RHOB NM_004040 2073 AAGCATGAACAGGACTTGACC 2074 CCTCCCCAAGTCAGTTGC
RHOC NM_175744 2077 CCCGTTCGGTCTGAGGAA 2078 GAGCACTCAAGGTAGCCAAAGG
RLN1 NM_006911 2081 AGCTGAAGGCAGCCCTATC 2082 TTGGAATCCTTTAATGCAGGT
RND3 NM_005168 2085 TCGGAATTGGACTTGGGAG 2086 CTGGTTACTCCCCTCCAACA
RNF114 NM_018683 2089 TGACAGGGGAAGTGGGTC 2090 GGAAGACAGCTTTGGCAAGA
ROBO2 NM_002942 2093 CTACAAGGCCCAGCCAAC 2094 CACCAGTGGCTTTACATTTCAG
RRM1 NM_001033 2097 GGGCTACTGGCAGCTACATT 2098 CTCTCAGCATCGGTACAAGG
RRM2 NM_001034 2101 CAGCGGGATTAAACAGTCCT 2102 ATCTGCGTTGAAGCAGTGAG
S100P NM_005980 2105 AGACAAGGATGCCGTGGATAA 2106 GAAGTCCACCTGGGCATCTC
SAT1 NM_002970 2109 CCTTTTACCACTGCCTGGTT 2110 ACAATGCTGTGTCCTTCCG
SCUBE2 NM_020974 2113 TGACAATCAGCACACCTGCAT 2114 TGTGACTACAGCCGTGATCCTTA
SDC1 NM_002997 2117 GAAATTGACGAGGGGTGTCT 2118 AGGAGCTAACGGAGAACCTG
SDC2 NM_002998 2121 GGATTGAAGTGGCTGGAAAG 2122 ACCAGCCACAGTACCCTCA
SDHC NM_003001 2125 CTTCCCTCGGGTCTCAGG 2126 TTCCCTCCTGGTAAAGGTCA
SEC14L1 NM_ 2129 AGGGTTCCCATGTGACCAG 2130 GCAGGCATGCTGTGGAAT
001039573
SEC23A NM_006364 2133 CGTGTGCATTAGATCAGACAGG 2134 CCCATTACCATGTATCCTCCAG
SEMA3A NM_006080 2137 TTGGAATGCAGTCCGAAGT 2138 CTCTTCATTTCGCCTCTGGA
SEPT9 NM_006640 2141 CAGTGACCACGAGTACCAGG 2142 CTTCGATGGTACCCCACTTG
SERPINA3 NM_001085 2145 GTGTGGCCCTGTCTGCTTA 2146 CCCTGTGCATGTGAGAGCTAC
SERPINB5 NM_002639 2149 CAGATGGCCACTTTGAGAACATT 2150 GGCAGCATTAACCACAAGGATT
SESN3 NM_144665 2153 GACCCTGGTTTTGGGTATGA 2154 GAGCTCGGAATGTTGGCA
SFRP4 NM_003014 2157 TACAGGATGAGGCTGGGC 2158 GTTGTTAGGGCAAGGGGC
SH3RF2 NM_152550 2161 CCATCACAACAGCCTTGAAC 2162 CACTGGGGTGCTGATCTCTA
SH3YL1 NM_015677 2165 CCTCCAAAGCCATTGTCAAG 2166 CTTTGAGAGCCAGAGTTCAGC
SHH NM_000193 2169 GTCCAAGGCACATATCCACTG 2170 GAAGCAGCCTCCCGATTT
SHMT2 NM_005412 2173 AGCGGGTGCTAGAGCTTGTA 2174 ATGGCACTTCGGTCTCCA
SIM2 NM_005069 2177 GATGGTAGGAAGGGATGTGC 2178 CACAAGGAGCTGTGAATGAGG
SIPA1L1 NM_015556 2181 CTAGGACAGCTTGGCTTCCA 2182 CATAACCGTAGGGCTCCACA
SKIL NM_005414 2185 AGAGGCTGAATATGCAGGACA 2186 CTATCGGCCTCAGCATGG
SLC22A3 NM_021977 2189 ATCGTCAGCGAGTTTGACCT 2190 CAGGATGGCTTGGGTGAG
SLC25A21 NM_030631 2193 AAGTGTTTTTCCCCCTTGAGAT 2194 GGCCGATCGATAGTCTCTCTT
SLC44A1 NM_080546 2197 AGGACCGTAGCTGCACAGAC 2198 ATCCCATCCCAATGCAGA
SMAD4 NM_005359 2201 GGACATTACTGGCCTGTTCACA 2202 ACCAATACTCAGGAGCAGGATGA
SMARCC2 NM_003075 2205 TACCGACTGAACCCCCAA 2206 GACATCACCCGCTAGGTTTC
SMARCD1 NM_003076 2209 CCGAGTTAGCATATCCCAGG 2210 CCTTTGTGCCCAGCTGTC
SMO NM_005631 2213 GGCATCCAGTGCCAGAAC 2214 CGCGATGTAGCTGTGCAT
SNAI1 NM_005985 2217 CCCAATCGGAAGCCTAACTA 2218 GTAGGGCTGCTGGAAGGTAA
SNRPB2 NM_003092 2221 CGTTTCCTGCTTTTGGTTCT 2222 AGGTAGAAGGCGCACGAA
SOD1 NM_000454 2225 TGAAGAGAGGCATGTTGGAG 2226 AATAGACACATCGGCCACAC
SORBS1 NM_015385 2229 GCAGATGAGTGGAGGCTTTC 2230 AGCGAGTGAAGAGGGCTG
SOX4 NM_003107 2233 AGATGATCTCGGGAGACTGG 2234 GCGCCCTTCAGTAGGTGA
SPARC NM_003118 2237 TCTTCCCTGTACACTGGCAGTTC 2238 AGCTCGGTGTGGGAGAGGTA
SPARCL1 NM_004684 2241 GGCACAGTGCAAGTGATGA 2242 GATTGAGCTCTCTCGGCCT
SPDEF NM_012391 2245 CCATCCGCCAGTATTACAAG 2246 GGGTGCACGAACTGGTAGA
SPINK1 NM_003122 2249 CTGCCATATGACCCTTCCAG 2250 GTTGAAAACTGCACCGCAC
SPINT1 NM_003710 2253 ATTCCCAGCACAGGCTCTGT 2254 AGATGGCTACCACCACCACAA
SPP1 NM_ 2257 TCACACATGGAAAGCGAGG 2258 GTTCAGGTCCTGGGCAAC
001040058
SQLE NM_003129 2261 ATTTTCGAGGCCAAAAAATC 2262 CCTGAGCAAGGATATTCACG
SRC NM_005417 2265 TGAGGAGTGGTATTTTGGCAAGA 2266 CTCTCGGGTTCTCTGCATTGA
SRD5A1 NM_001047 2269 GGGCTGGAATCTGTCTAGGA 2270 CCATGACTGCACAATGGCT
SRD5A2 NM_000348 2273 GTAGGTCTCCTGGCGTTCTG 2274 TCCCTGGAAGGGTAGGAGTAA
STS NM_005418 2277 CCTGTCCTGCCAGAGCAT 2278 CAGCTGCACAAAACTGGC
STAT1 NM_007315 2281 GGGCTCAGCTTTCAGAAGTG 2282 ACATGTTCAGCTGGTCCACA
STAT3 NM_003150 2285 TCACATGCCACTTTGGTGTT 2286 CTTGCAGGAAGCGGCTATAC
STAT5A NM_003152 2289 GAGGCGCTCAACATGAAATTC 2290 GCCAGGAACACGAGGTTCTC
STAT5B NM_012448 2293 CCAGTGGTGGTGATCGTTCA 2294 GCAAAAGCATTGTCCCAGAGA
STMN1 NM_005563 2297 AATACCCAACGCACAAATGA 2298 GGAGACAATGCAAACCACAC
STS NM_000351 2301 GAAGATCCCTTTCCTCCTACTGTTC 2302 GGATGATGTTCGGCCTTGAT
SULF1 NM_015170 2305 TGCAGTTGTAGGGAGTCTGG 2306 TCTCAAGAATTGCCGTTGAC
SUMO1 NM_003352 2309 GTGAAGCCACCGTCATCATG 2310 CCTTCCTTCTTATCCCCCAAGT
SVIL NM_003174 2313 ACTTGCCCAGCACAAGGA 2314 GACACCATCCGTGTCACATC
TAF2 NM_003184 2317 GCGCTCCACTCTCAGTCTTT 2318 CTTGTGCTCATGGTGATGGT
TARP NM_ 2321 GAGCAACACGATTCTGGGA 2322 GGCACCGTTAACCAGCTAAAT
001003799
TBP NM_003194 2325 GCCCGAAACGCCGAATATA 2326 CGTGGCTCTCTTATCCTCATGAT
TFDP1 NM_007111 2329 TGCGAAGTGCTTTTGTTTGT 2330 GCCTTCCAGACAGTCTCCAT
TFF1 NM_003225 2333 GCCCTCCCAGTGTGCAAAT 2334 CGTCGATGGTATTAGGATAGAAGCA
TFF3 NM_003226 2337 AGGCACTGTTCATCTCAGTTTTTCT 2338 CATCAGGCTCCAGATATGAACTTTC
TGFA NM_003236 2341 GGTGTGCCACAGACCTTCCT 2342 ACGGAGTTCTTGACAGAGTTTTGA
TGFB1I1 NM_ 2345 GCTACTTTGAGCGCTTCTCG 2346 GGTCACCATCTTGTGTCGG
001042454
TGFB2 NM_003238 2349 ACCAGTCCCCCAGAAGACTA 2350 CCTGGTGCTGTTGTAGATGG
TGFB3 NM_003239 2353 GGATCGAGCTCTTCCAGATCCT 2354 GCCACCGATATAGCGCTGTT
TGFBR2 NM_003242 2357 AACACCAATGGGTTCCATCT 2358 CCTCTTCATCAGGCCAAACT
THBS2 NM_003247 2361 CAAGACTGGCTACATCAGAGTCTTAG 2362 CAGCGTAGGTTTGGTCATAGATAGG
TG
THY1 NM_006288 2365 GGACAAGACCCTCTCAGGCT 2366 TTGGAGGCTGTGGGTCAG
TIAM1 NM_003253 2369 GTCCCTGGCTGAAAATGG 2370 GGGCTCCCGAAGTCTTCTA
TIMP2 NM_003255 2373 TCACCCTCTGTGACTTCATCGT 2374 TGTGGTTCAGGCTCTTCTTCTG
TIMP3 NM_000362 2377 CTACCTGCCTTGCTTTGTGA 2378 ACCGAAATTGGAGAGCATGT
TK1 NM_003258 2381 GCCGGGAAGACCGTAATTGT 2382 CAGCGGCACCAGGTTCAG
TMPRSS2 NM_005656 2385 GGACAGTGTGCACCTCAAAG 2386 CTCCCACGAGGAAGGTCC
TMPRSS2 0Q204772 2389 GAGGCGGAGGGCGAG 2390 ACTGGTCCTCACTCACAACT
ERGA
TMPRSS2 0Q204773 2393 GAGGCGGAGGGCGAG 2394 TTCCTCGGGTCTCCAAAGAT
ERGB
TNF NM_000594 2397 GGAGAAGGGTGACCGACTCA 2398 TGCCCAGACTCGGCAAAG
TNFRSF10A NM_003844 2401 TGCACAGAGGGTGTGGGTTAC 2402 TCTTCATCTGATTTACAAGCTGTACATG
TNFRSF10B NM_003842 2405 CTCTGAGACAGTGCTTCGATGACT 2406 CCATGAGGCCCAACTTCCT
TNFRSF18 NM_148901 2409 CAGAAGCTGCCAGTTCCC 2410 CACCCACAGGTCTCCCAG
TNFSF10 NM_003810 2413 CTTCACAGTGCTCCTGCAGTCT 2414 CATCTGCTTCAGCTCGTTGGT
TNFSF11 NM_003701 2417 AACTGCATGTGGGCTATGG 2418 TGACACCCTCTCCACTTCAG
TOP2A NM_001067 2421 AATCCAAGGGGGAGAGTGAT 2422 GTACAGATTTTGCCCGAGGA
TP53 NM_000546 2425 CTTTGAACCCTTGCTTGCAA 2426 CCCGGGACAAAGCAAATG
TP63 NM_003722 2429 CCCCAAGCAGTGCCTCTACA 2430 GAATCGCACAGCATCAATAACAC
TPD52 NM_005079 2433 GCCTGTGAGATTCCTACCTTTG 2434 ATGTGCTTGGACCTCGCTT
TPM1 NM_ 2437 TCTCTGAGCTCTGCATTTGTC 2438 GGCTCTAAGGCAGGATGCTA
001018005
TPM2 NM_213674 2441 AGGAGATGCAGCTGAAGGAG 2442 CCACCTCTTCATATTTGCGG
TPP2 NM_003291 2445 TAACCGTGGCATCTACCTCC 2446 ATGCCAACGCCATGATCT
TPX2 NM_012112 2449 TCAGCTGTGAGCTGCGGATA 2450 ACGGTCCTAGGTTTGAGGTTAAGA
TRA2A NM_013293 2453 GCAAATCCAGATCCCAACAC 2454 CTTCACGAAGATCCCTCTCTG
TRAF3IP2 NM_147200 2457 CCTCACAGGAACCGAGCA 2458 CTGGGGCTGGGAATCATA
TRAM1 NM_014294 2461 CAAGAAAAGCACCAAGAGCC 2462 ATGTCCGCGTGATTCTGC
TRAP1 NM_016292 2465 TTACCAGTGGCTTTCAGATGG 2466 TGTCCCGGTTCTAACTCCC
TRIM14 NM_033220 2469 CATTCGCCTTAAGGAAAGCA 2470 CAAGGTACCTGGCTTGGTG
TRO NM_177556 2473 GCAACTGCCACCCATACAG 2474 TGGTGTGGATACTGGCTGTC
TRPC6 NM_004621 2477 CGAGAGCCAGGACTATCTGC 2478 TAGCCGTAGCAAGGCAGC
TRPV6 NM_018646 2481 CCGTAGTCCCTGCAACCTC 2482 TCCTCACTGTTCACACAGGC
TSTA3 NM_003313 2485 CAATTTGGACTTCTGGAGGAA 2486 CACCTCAAAGGCCGAGTG
TUBB2A NM_001069 2489 CGAGGACGAGGCTTAAAAAC 2490 ACCATGCTTGAGGACAACAG
TYMP NM_001953 2493 CTATATGCAGCCAGAGATGTGACA 2494 CCACGAGTTTCTTACTGAGAATGG
TYMS NM_001071 2497 GCCTCGGTGTGCCTTTCA 2498 CGTGATGTGCGCAATCATG
UAP1 NM_003115 2501 CTGGAGACGGTCGTAGCTG 2502 GCCAAGCTTTGTAGAAATAGGG
UBE2C NM_007019 2505 TGTCTGGCGATAAAGGGATT 2506 ATGGTCCCTACCCATTTGAA
UBE2G1 NM_003342 2509 TGACACTGAACGAGGTGGC 2510 AAGCAGAGAGGAATCGCCT
UBE2T NM_014176 2513 TGTTCTCAAATTGCCACCAA 2514 AGAGGTCAACACAGTTGCGA
UGDH NM_003359 2517 GAAACTCCAGAGGGCCAGA 2518 CTCTGGGAACCCAGTGCTC
UGT2B15 NM_001076 2521 AAGCCTGAAGTGGAATGACTG 2522 CCTCCATTTAAAACCCTCCA
UGT2B17 NM_001077 2525 TTGAGTTTGTCATGCGCC 2526 TCCAGGTGAGGTTGTGGG
UHRF1 NM_013282 2529 CTACAGGGGCAAACAGATGG 2530 GGTGTCATTCAGGCGGAC
UTP23 NM_032334 2533 GATTGCACAAAAATGCCAAG 2534 GGAAAGCAGACATTCTGATCC
VCAM1 NM_001078 2537 TGGCTTCAGGAGCTGAATACC 2538 TGCTGTCGTGATGAGAAAATAGTG
VCL NM_003373 2541 GATACCACAACTCCCATCAAGCT 2542 TCCCTGTTAGGCGCATCAG
VCPIP1 NM_025054 2545 TTTCTCCCAGTACCATTCGTG 2546 TGAATAGGGAGCCTTGGTAGG
VDR NM_000376 2549 CCTCTCCTTCCAGCCTGAGT 2550 TCATTGCCAAACACTTCGAG
VEGFA NM_003376 2553 CTGCTGTCTTGGGTGCATTG 2554 GCAGCCTGGGACCACTTG
VEGFB NM_003377 2557 TGACGATGGCCTGGAGTGT 2558 GGTACCGGATCATGAGGATCTG
VEGFC NM_005429 2561 CCTCAGCAAGACGTTATTTGAAATT 2562 AAGTGTGATTGGCAAAACTGATTG
VIM NM_003380 2565 TGCCCTTAAAGGAACCAATGA 2566 GCTTCAACGGCAAAGTTCTCTT
VTI1B NM_006370 2569 ACGTTATGCACCCCTGTCTT 2570 CCGATGGAGTTTAGCAAGGT
WDR19 NM_025132 2573 GAGTGGCCCAGATGTCCATA 2574 GATGCTTGAGGGCTTGGTT
WFDC1 NM_021197 2577 ACCCCTGCTCTGTCCCTC 2578 ATACCTTCGGCCACGTCAC
WISP1 NM_003882 2581 AGAGGCATCCATGAACTTCACA 2582 CAAACTCCACAGTACTTGGGTTGA
WNT5A NM_003392 2585 GTATCAGGACCACATGCAGTACATC 2586 TGTCGGAATTGATACTGGCATT
WWOX NM_016373 2589 ATCGCAGCTGGTGGGTGTAC 2590 AGCTCCCTGTTGCATGGACTT
XIAP NM_001167 2593 GCAGTTGGAAGACACAGGAAAGT 2594 TGCGTGGCACTATTTTCAAGA
XRCC5 NM_021141 2597 AGCCCACTTCAGCGTCTC 2598 AGCAGGATTCACACTTCCAAC
YY1 NM_003403 2601 ACCCGGGCAACAAGAAGT 2602 GACCGAGAACTCGCCCTC
ZFHX3 NM_006885 2605 CTGTGGAGCCTCTGCCTG 2606 GGAGCAGGGTTGGATTGAG
ZFP36 NM_003407 2609 CATTAACCCACTCCCCTGA 2610 CCCCCACCATCATGAATACT
ZMYND8 NM_183047 2613 GGTCTGGGCCAAACTGAAG 2614 TGCCCGTCTTTATCCCTTAG
ZNF3 NM_017715 2617 CGAAGGGACTCTGCTCCA 2618 GCAGGAGGTCCTCAGAAGG
ZNF827 NM_178835 2621 TGCCTGAGGACCCTCTACC 2622 GAGGTGGCGGAGTGACTTT
ZWINT NM_007057 2625 TAGAGGCCATCAAAATTGGC 2626 TCCGTTTCCTCTGGGCTT
SEQ SEQ
Official ID ID
Symbol: NO Probe Sequence: NO Amplicon Sequence:
AAMP 3 CGCTTCAAAGGACCAGACCTCCTC 4 GTGTGGCAGGTGGACACTAAGGAGGAGGTCTGGTCCTTTGAA
GCGGGAGACCTGGAGTGGATGGAG
ABCA5 7 CACATGTGGCGAGCAATTCGAACT 5 GGTATGGATCCCAAAGCCAAACAGCACATGTGGCGAGCAATT
CGAACTGCATTTAAAAACAGAAAGCGGGCTG
ABCB1 11 CAAGCCTGGAACCTATAGCC 12 AAACACCACTGGAGCATTGACTACCAGGCTCGCCAATGATGCT
GCTCAAGTTAAAGGGGCTATAGGTTCCAGGCTTG
ABCC1 15 ACCTGATACGTCTTGGTCTTCATCGCC 16 TCATGGTGCCCGTCAATGCTGTGATGGCGATGAAGACCAAGA
AT CGTATCAGGTGGCCCACATGAAGAGCAAAGACAATCG
ABCC3 19 TCTGTCCTGGCTGGAGTCGCTTTCAT 20 TCATCCTGGCGATCTACTTCCTCTGGCAGAACCTAGGTCCCTC
TGTCCTGGCTGGAGTCGCTTTCATGGTCTTGCTGATTCCACTC
AACGG
ABCC4 23 CGGAGTCCAGTGTTTTCCCACTTA 24 AGCGCCTGGAATCTACAACTCGGAGTCCAGTGTTTTCCCACTT
ATCATCTTCTCTCCAGGGGCTCT
ABCC8 27 AGTCTCTTGGCCACCTTCAGCCCT 28 CGTCTGTCACTGTGGAGTGGACAGGGCTGAAGGTGGCCAAGA
GACTGCACCGCAGCCTGCTAAACCGGATCA
ABCG2 31 ACGAAGATTTGCCTCCACCTGTGG 32 GGTCTCAACGCCATCCTGGGACCCACAGGTGGAGGCAAATCT
TCGTTATTAGATGTCTTAGCTGCAAGGAAAGATCCAAG
ABHD2 35 CAGGTGGCTCCTTTGATCCCTGA 36 GTAGTGGGTCTGCATGGATGTTTCAGGGATCAAAGGAGCCAC
CTGGGCGCCTGAGTGCCAACCCTCA
ACE 39 TGCCCTCAGCAATGAAGCCTACAA 40 CCGCTGTACGAGGATTTCACTGCCCTCAGCAATGAAGCCTACA
AGCAGGACGGCTTCACAGACACGG
ACOX2 43 TGCTCTCAACTTTCCTGCGGAGTG 44 ATGGAGGTGCCCAGAACACTGCACTCCGCAGGAAAGTTGAGA
GCATCATCCACAGTTACCCGGAGT
ACTR2 47 CCCGCAGAAAGCACATGGTATTCC 48 ATCCGCATTGAAGACCCACCCCGCAGAAAGCACATGGTATTCC
TGGGTGGTGCAGTTCTAGCGGAT
ADAM15 51 TCAGCCACAATCACCAACTCCACA 52 GGCGGGATGTGGTAACAGAGACCAAGACTGTGGAGTTGGTGA
TTGTGGCTGATCACTCGGAGGCCCAGAAAT
ADAMTS1 55 CAAGCCAAAGGCATTGGCTACTTCTTCG 56 GGACAGGTGCAAGCTCATCTGCCAAGCCAAAGGCATTGGCTA
CTTCTTCGTTTTGCAGCCCAAGGTTGTAGAT
ADH5 59 TGTCTGCCCATTATCTTCATTCTGCAA 60 ATGCTGTCATCATTGTCACGGTTTGTCTGCCCATTATCTTCATT
CTGCAAGGGAAAGGGAAAGGAAGCAG
AFAP1 63 CCTCCAGTGCTGTGTTCCCAGAAG 64 GATGTCCATCCTTGAAACAGCCTCTTCTGGGAACACAGCACTG
GAGGTCTCCAGGCATCAGGGTTG
AGTR1 67 ATTGTTCACCCAATGAAGTCCCGC 68 AGCATTGATCGATACCTGGCTATTGTTCACCCAATGAAGTCCC
GCCTTCGACGCACAATGCTTGTAG
AGTR2 71 CCACCCAGACCCCATGTAGCAAAA 72 ACTGGCATAGGAAATGGTATCCAGAATGGAATTTTGCTACATG
GGGTCTGGGTGGGGGCAAAGAGACCCAGTCAAT
AIG1 75 AATCGAGATGAGGACATCGCACCA 76 CGACGGTTCTGCCCTTTATATTAATCGAGATGAGGACATCGCA
CCATCAGTATCCCAGCAGGAGCA
AKAP1 79 CTCCACCAGGGACCGGTTTATCAA 80 TGTGGTTGGAGATGAAGTGGTGTTGATAAACCGGTCCCTGGTG
GAGCGAGGCCTTGCCCAGTGGGTAGAC
AKR1C1 83 CCAAATCCCAGGACAGGCATGAAG 84 GTGTGTGAAGCTGAATGATGGTCACTTCATGCCTGTCCTGGGA
TTTGGCACCTATGCGCCTGCAGAG
AKR1C3 87 TGCGTCACCATCCACACACAGGG 88 GCTTTGCCTGATGTCTACCAGAAGCCCTGTGTGTGGATGGTGA
CGCAGAGGACGTCTCTATGCCGGTGACTGGAC
AKT1 91 CAGCCCTGGACTACCTGCACTCGG 92 CGCTTCTATGGCGCTGAGATTGTGTCAGCCCTGGACTACCTGC
ACTCGGAGAAGAACGTGGTGTACCGGGA
AKT2 95 CAGGTCACGTCCGAGGTCGACACA 96 TCCTGCCACCCTTCAAACCTCAGGTCACGTCCGAGGTCGACA
CAAGGTACTTCGATGATGAATTTACCGCC
AKT3 99 TCACGGTACACAATCTTTCCGGA 100 TTGTCTCTGCCTTGGACTATCTACATTCCGGAAAGATTGTGTAC
CGTGATCTCAAGTTGGAGAATCTAATGCTGG
ALCAM 103 CCAGTTCCTGCCGTCTGCTCTTCT 104 GAGGAATATGGAATCCAAGGGGGCCAGTTCCTGCCGTCTGCT
CTTCTGCCTCTTGATCTCCGCCAC
ALDH18A1 107 CCTGAAACTTGCATCTCCTGCTGC 108 GATGCAGCTGGAACCCAAGCTGCAGCAGGAGATGCAAGTTTC
AGGATGTTCCCCACTGAGCTGGAG
ALDH1A2 111 TCTCTGTAGGGCCCAGCTCTCAGG 112 CACGTCTGTCCCTCTCTGCTTTCTCTGTAGGGCCCAGCTCTCA
GGAATACAAAGTTGAGCCACGGTC
ALKBH3 115 TAAACAGGGCAGTCACTTTCCGCA 116 TCGCTTAGTCTGCACCTCAACCGTGCGGAAAGTGACTGCCCTG
TTTACTGAGGAAAAACTGGGGCTCAGA
ALOX12 119 CATGCTGTTGAGACGCTCGACCTC 120 AGTTCCTCAATGGTGCCAACCCCATGCTGTTGAGACGCTCGAC
CTCTCTGCCCTCCAGGCTAGTGCT
ALOX5 123 CCGCATGCCGTACACGTAGACATC 124 GAGCTGCAGGACTTCGTGAACGATGTCTACGTGTACGGCATG
CGGGGCCGCAAGTCCTCAGGCTTC
AMACR 127 TCCATGTGTTTGATTTCTCCTCAGGC 128 GTCTCTGGGCTGTCAGCTTTCCTTTCTCCATGTGTTTGATTTCT
CCTCAGGCTGGTAGCAAGTTCTGGATCTTATACCCA
AMPD3 131 TACTCTCCCAACATGCGCTGGATC 132 TGGTTCATCCAGCACAAGGTCTACTCTCCCAACATGCGCTGGA
TCATCCAGGTGCCCCGGATTTATG
ANGPT2 135 AAGCTGACACAGCCCTCCCAAGTG 136 CCGTGAAAGCTGCTCTGTAAAAGCTGACACAGCCCTCCCAAGT
GAGCAGGACTGTTCTTCCCACTGCAA
ANLN 139 CCAAAGAACTCGTGTCCCTCGAGC 140 TGAAAGTCCAAAACCAGGAAAATTCCAAAGAACTCGTGTCCCT
CGAGCTGAATCTGGTGATAGCCTTGGTTCTG
ANPEP 143 CTCCCCAACACGCTGAAACCCG 144 CCACCTTGGACCAAAGTAAAGCGTGGAATCGTTACCGCCTCCC
CAACACGCTGAAACCCGATTCCTACCGGGTGACGCTGAGA
ANXA2 147 CCACCACACAGGTACAGCAGCGCT 148 CAAGACACTAAGGGCGACTACCAGAAAGCGCTGCTGTACCTG
TGTGGTGGAGATGACTGAAGCCCGACACG
APC 151 CATTGGCTCCCCGTGACCTGTA 152 GGACAGCAGGAATGTGTTTCTCCATACAGGTCACGGGGAGCC
AATGGTTCAGAAACAAATCGAGTGGGT
APEX1 155 CTTTCGGGAAGCCAGGCCCTT 156 GATGAAGCCTTTCGCAAGTTCCTGAAGGGCCTGGCTTCCCGAA
AGCCCCTTGTGCTGTGTGGAGACCT
APOC1 159 AGGACAGGACCTCCCAACCAAGC 160 CCAGCCTGATAAAGGTCCTGCGGGCAGGACAGGACCTCCCAA
CCAAGCCCTCCAGCAAGGATTCAGAGTG
APOE 163 ACTGGCGCTGCATGTCTTCCAC 164 GCCTCAAGAGCTGGTTCGAGCCCCTGGTGGAAGACATGCAGC
GCCAGTGGGCCGGGCTGGTGGAGAAGGTGCAGG
APRT 167 CCTTAAGCGAGGTCAGCTCCACCA 168 GAGGTCCTGGAGTGCGTGAGCCTGGTGGAGCTGACCTCGCTT
AAGGGCAGGGAGAAGCTGGCACCT
AQP2 171 CTCCTTCCCTTCCCCTTCTCCTGA 172 GTGTGGGTGCCAGTCCTCCTCAGGAGAAGGGGAAGGGAAGG
AGGCCACTTTGAGAGGGCTGAAGGG
AR 175 ACCATGCCGCCAGGGTACCACA 176 CGACTTCACCGCACCTGATGTGTGGTACCCTGGCGGCATGGT
GAGCAGAGTGCCCTATCCCAGTCCCACTTGTGTCA
ARF1 179 CTTGTCCTTGGGTCACCCTGCA 180 CAGTAGAGATCCCCGCAACTCGCTTGTCCTTGGGTCACCCTGC
ATTCCATAGCCATGTGCTTGT
ARHGAP29 183 ATGCCAGACCCAGACAAAGCATCA 184 CACGGTCTCGTGGTGAAGTCAATGCCAGACCCAGACAAAGCA
TCAGCTTGTCCTGGGCAAGCAACTG
ARHGDIB 187 TAAAACCGGGCTTTCACCCAACCT 188 TGGTCCCTAGAACAAGAGGCTTAAAACCGGGCTTTCACCCAAC
CTGCTCCCTCTGATCCTCCATCA
ASAP2 191 CTGGGCTCCAACCAGCTTCAGTCT 192 CGGCCCATCAGCTTCTACCAGCTGGGCTCCAACCAGCTTCAG
TCTAACGCTGTATCTTTGGCCAGAG
ASPN 195 AGTATCACCCAGGGTGCAGCCAC 196 TGGACTAATCTGTGGGAGCAGTTTATTCCAGTATCACCCAGGG
TGCAGCCACACCAGGACTGTGTTGAAGGGTGTTT
ATM 199 CCAGCTGTCTTCGACACTTCTCGC 200 TGCTTTCTACACATGTTCAGGGATTTTTCACCAGCTGTCTTCGA
CACTTCTCGCAAACGAGCCGATCCACAAC
ATP5E 203 TCCAGCCTGTCTCCAGTAGGCCAC 204 CCGCTTTCGCTACAGCATGGTGGCCTACTGGAGACAGGCTGG
ACTCAGCTACATCCGATACTCCCA
ATP5J 207 CTACCCGCCATCGCAATGCATTAT 208 GTCGACCGACTGAAACGGCGGCCCATAATGCATTGCGATGGC
GGGTAGGCGTGTGGGGGCGGAGCCAGGGCCGGAAGTAGAG
ATXN1 211 CGGGCTATGGCTGTCTTCAATCCT 212 GATCGACTCCAGCACCGTAGAGAGGATTGAAGACAGCCATAG
CCCGGGCGTGGCCGTGATACAGTTC
AURKA 215 CTCTGTGGCACCCTGGACTACCTG 216 CATCTTCCAGGAGGACCACTCTCTGTGGCACCCTGGACTACCT
GCCCCCTGAAATGATTGAAGGTCGGA
AURKB 219 TGACGAGCAGCGAACAGCCACG 220 AGCTGCAGAAGAGCTGCACATTTGACGAGCAGCGAACAGCCA
CGATCATGGAGGAGTTGGCAGATGC
AXIN2 223 ACCAGCGCCAACGACAGTGAGATA 224 GGCTATGTCTTTGCACCAGCCACCAGCGCCAACGACAGTGAG
ATATCCAGTGATGCGCTGACGGAT
AZGP1 227 TCTGAGATCCCACATTGCCTCCAA 228 GAGGCCAGCTAGGAAGCAAGGGTTGGAGGCAATGTGGGATCT
CAGACCCAGTAGCTGCCCTTCCTG
BAD 231 TGGGCCCAGAGCATGTTCCAGATC 232 GGGTCAGGGGCCTCGAGATCGGGCTTGGGCCCAGAGCATGTT
CCAGATCCCAGAGTTTGAGCCGAGTGAGCAG
BAG5 235 ACACCGGATTTAGCTCTTGTCGGC 236 ACTCCTGCAATGAACCCTGTTGACACCGGATTTAGCTCTTGTC
GGCCTTCGTGGGGAGCTGTTTGT
BAK1 239 ACACCCCAGACGTCCTGGCCT 240 CCATTCCCACCATTCTACCTGAGGCCAGGACGTCTGGGGTGT
GGGGATTGGTGGGTCTATGTTCCC
BAX 243 TGCCACTCGGAAAAAGACCTCTCGG 244 CCGCCGTGGACACAGACTCCCCCCGAGAGGTCTTTTTCCGAG
TGGCAGCTGACATGTTTTCTGACGGCAA
BBC3 247 CATCATGGGACTCCTGCCCTTACC 248 CCTGGAGGGTCCTGTACAATCTCATCATGGGACTCCTGCCCTT
ACCCAGGGGCCACAGAGCCCCCGAGATGGAGCCCAATTAG
BCL2 251 TTCCACGCCGAAGGACAGCGAT 252 CAGATGGACCTAGTACCCACTGAGATTTCCACGCCGAAGGAC
AGCGATGGGAAAAATGCCCTTAAATCATAGG
BDKRB1 255 ACCTGGCAGCCTCTGATCTGGTGT 256 GTGGCAGAAATCTACCTGGCCAACCTGGCAGCCTCTGATCTG
GTGTTTGTCTTGGGCTTGCCCTTC
BGN 259 CAAGGGTCTCCAGCACCTCTACGC 260 GAGCTCCGCAAGGATGACTTCAAGGGTCTCCAGCACCTCTAC
GCCCTCGTCCTGGTGAACAACAAG
BIK 263 CCGGTTAACTGTGGCCTGTGCCC 264 ATTCCTATGGCTCTGCAATTGTCACCGGTTAACTGTGGCCTGT
GCCCAGGAAGAGCCATTCACTCCTGCC
BIN1 267 CTTCGCCTCCAGATGGCTCCC 268 CCTGCAAAAGGGAACAAGAGCCCTTCGCCTCCAGATGGCTCC
CCTGCCGCCACCCCCGAGATCAGAGTCAACCACG
BIRC5 271 TCTGCCAGACGCTTCCTATCACTCTATTC 272 TTCAGGTGGATGAGGAGACAGAATAGAGTGATAGGAAGCGTC
TGGCAGATACTCCTTTTGCCACTGCTGTGTG
BMP6 275 TGAACCCCGAGTATGTCCCCAAAC 276 GTGCAGACCTTGGTTCACCTTATGAACCCCGAGTATGTCCCCA
AACCGTGCTGTGCGCCAACTAAG
BMPR1B 279 ATTCACATTACCATAGCGGCCCCA 280 ACCACTTTGGCCATCCCTGCATTTGGGGCCGCTATGGTAATGT
GAATGCACTGGGTACAAACACCGC
BRCA1 283 CTATGGGCCCTTCACCAACATGC 284 TCAGGGGGCTAGAAATCTGTTGCTATGGGCCCTTCACCAACAT
GCCCACAGATCAACTGGAATGG
BRCA2 287 CATTCTTCACTGCTTCATAAAGCTCTGCA 288 AGTTCGTGCTTTGCAAGATGGTGCAGAGCTTTATGAAGCAGTG
AAGAATGCAGCAGACCCAGCTTACCTT
BTG1 291 CGCTCGTCTCTTCCTCTCTCCTGC 292 GAGGTCCGAGCGATGTGACCAGGCCGCCATCGCTCGTCTCTT
CCTCTCTCCTGCCGCCTCCTGTCTCGAAAATAACT
BTG3 295 CATGGGTACCTCCTCCTGGAATGC 296 CCATATCGCCCAATTCCAGTGACATGGGTACCTCCTCCTGGAA
TGCATTGTGACCGGAATCACTGG
BTRC 299 CAGTCGGCCCAGGACGGTCTACT 300 GTTGGGACACAGTTGGTCTGCAGTCGGCCCAGGACGGTCTAC
TCAGCACAACTGACTGCTTCA
BUB1 303 TGCTGGGAGCCTACACTTGGCCC 304 CCGAGGTTAATCCAGCACGTATGGGGCCAAGTGTAGGCTCCC
AGCAGGAACTGAGAGCGCCATGTCTT
C7 307 ATGCTCTGCCCTCTGCATCTCAGA 308 ATGTCTGAGTGTGAGGCGGGCGCTCTGAGATGCAGAGGGCAG
AGCATCTCTGTCACCAGCATAAGGCCT
CACNA1D 311 CAGTACACTGGCGTCCATTCCCTG 312 AGGACCCAGCTCCATGTGCGTTCTCAGGGAATGGACGCCAGT
GTACTGCCAATGGCACGGAATGTAGG
CADM1 315 TCTTCACCTGCTCGGGAATCTGTG 316 CCACCACCATCCTTACCATCATCACAGATTCCCGAGCAGGTGA
AGAAGGCTCGATCAGGGCAGTGGATC
CADPS 319 CTCCTGGATGGCCAAATTTGATGC 320 CAGCAAGGAGACTGTGCTGAGCTCCTGGATGGCCAAATTTGAT
GCCATCTACCGTGGAGAAGAGGACC
CASP1 323 TCACAGGCATGACAATGCTGCTACA 324 AACTGGAGCTGAGGTTGACATCACAGGCATGACAATGCTGCTA
CAAAATCTGGGGTACAGCGTAGATG
CASP3 327 TCAGCCTGTTCCATGAAGGCAGAGC 328 TGAGCCTGAGCAGAGACATGACTCAGCCTGTTCCATGAAGGC
AGAGCCATGGACCACGCAGGAAGG
CASP7 331 CTTTCGCTAAAGGGGCCCCAGAC 332 GCAGCGCCGAGACTTTTAGTTTCGCTTTCGCTAAAGGGGCCCC
AGACCCTTGCTGCGGAGCGACGGAGAGAGACT
CAV1 335 ATTTCAGCTGATCAGTGGGCCTCC 336 GTGGCTCAACATTGTGTTCCCATTTCAGCTGATCAGTGGGCCT
CCAAGGAGGGGCTGTAAAATGGAGGCCATTG
CAV2 339 CCCGTACTGTCATGCCTCAGAGCT 340 CTTCCCTGGGACGACTTGCCAGCTCTGAGGCATGACAGTACG
GGCCCCCAGAAGGGTGACCAGGAG
CCL2 343 TGCCCCAGTCACCTGCTGTTA 344 CGCTCAGCCAGATGCAATCAATGCCCCAGTCACCTGCTGTTAT
AACTTCACCAATAGGAAGATCTCAGTGC
CCL5 347 ACAGAGCCCTGGCAAAGCCAAG 348 AGGTTCTGAGCTCTGGCTTTGCCTTGGCTTTGCCAGGGCTCTG
TGACCAGGAAGGAAGTCAGCAT
CCNB1 351 TGTCTCCATTATTGATCGGTTCATGCA 352 TTCAGGTTGTTGCAGGAGACCATGTACATGACTGTCTCCATTAT
TGATCGGTTCATGCAGAATAATTGTGTGCCCAAGAAGATG
CCND1 355 AAGGAGACCATCCCCCTGACGGC 356 GCATGTTCGTGGCCTCTAAGATGAAGGAGACCATCCCCCTGA
CGGCCGAGAAGCTGTGCATCTACACCG
CCNE2 359 TACCAAGCAACCTACATGTCAAGAAAGC 360 ATGCTGTGGCTCCTTCCTAACTGGGGCTTTCTTGACATGTAGG
CC TTGCTTGGTAATAACCTTTTTGTATATCACAATTTGGGT
CCNH 363 CATCAGCGTCCTGGCGTAAAACAC 364 GAGATCTTCGGTGGGGGTACGGGTGTTTTACGCCAGGACGCT
GATGCGTTTGGGTTCTCGTCTGCAG
CCR1 367 ACTCACCACACCTGCAGCCTTCAC 368 TCCAAGACCCAATGGGAATTCACTCACCACACCTGCAGCCTTC
ACTTTCCTCACGAAAGCCTACGA
CD164 371 CCTCCAATGAAACTGGCTGCATCA 372 CAACCTGTGCGAAAGTCTACCTTTGATGCAGCCAGTTTCATTG
GAGGAATTGTCCTGGTCTTGGGTGT
CD1A 375 CGCACCATTCGGTCATTTGAGG 376 GGAGTGGAAGGAACTGGAAACATTATTCCGTATACGCACCATT
CGGTCATTTGAGGGAATTCGTAGATACGCCCATGA
CD276 379 CCACTGTGCAGCCTTATTTCTCCAATG 380 CCAAAGGATGCGATACACAGACCACTGTGCAGCCTTATTTCTC
CAATGGACATGATTCCCAAGTCATCC
CD44 383 ACTGGAACCCAGAAGCACACCCTC 384 GGCACCACTGCTTATGAAGGAAACTGGAACCCAGAAGCACAC
CCTCCCCTCATTCACCATGAGCATC
CD68 387 CTCCAAGCCCAGATTCAGATTCGAGTCA 388 TGGTTCCCAGCCCTGTGTCCACCTCCAAGCCCAGATTCAGATT
CGAGTCATGTACACAACCCAGGGTGGAGGAG
CD82 391 TCAGCTTCTACAACTGGACAGACAACGC 392 GTGCAGGCTCAGGTGAAGTGCTGCGGCTGGGTCAGCTTCTAC
TG AACTGGACAGACAACGCTGAGCTCATGAATCGCCCTGAGGTC
CDC20 395 ACTGGCCGTGGCACTGGACAACA 396 TGGATTGGAGTTCTGGGAATGTACTGGCCGTGGCACTGGACA
ACAGTGTGTACCTGTGGAGTGCAAGC
CDC25B 399 CTGCTACCTCCCTTGCCTTTCGAG 400 GCTGCAGGACCAGTGAGGGGCCTGCGCCAGTCCTGCTACCTC
CCTTGCCTTTCGAGGCCTGAAGCCAGCTGCCCTA
CDC6 403 TTGTTCTCCACCAAAGCAAGGCAA 404 GCAACACTCCCCATTTACCTCCTTGTTCTCCACCAAAGCAAGG
CAAGAAAGAGAATGGTCCCCCTCA
CDH1 407 TGCCAATCCCGATGAAATTGGAAATTT 408 TGAGTGTCCCCCGGTATCTTCCCCGCCCTGCCAATCCCGATGA
AATTGGAAATTTTATTGATGAAAATCTGAAAGCGGCTG
CDH10 411 ATGCCGATGACCCTTCATATGGGA 412 TGTGGTGCAAGTCACAGCTACAGATGCCGATGACCCTTCATAT
GGGAACAGCGCCAGAGTCATTTACA
CDH11 415 CCTTCTGCCCATAGTGATCAGCGA 416 GTCGGCAGAAGCAGGACTTGTACCTTCTGCCCATAGTGATCAG
CGATGGCGGCATCCCGCCCATGAGTAG
CDH19 419 ACTCGGAAAACCACAAGCGCTGAG 420 AGTACCATAATGCGGGAACGCAAGACTCGGAAAACCACAAGC
GCTGAGATCAGGAGCCTATACAGGCAGTCT
CDH5 423 TATTCTCCCGGTCCAGCCTCTCAA 424 ACAGGAGACGTGTTCGCCATTGAGAGGCTGGACCGGGAGAAT
ATCTCAGAGTACCACCTCACTGCTG
CDH7 427 ACCTCAACGTCATCCGAGACACCA 428 GTTTGACATGGCTGCACTGAGAAACCTCAACGTCATCCGAGAC
ACCAAGACCCGGAGGGATGTGACT
CDK14 431 CTTCCTGCAGCCTGATCACCTTCA 432 GCAAGGTAAATGGGAAGTTGGTAGCTCTGAAGGTGATCAGGC
TGCAGGAAGAAGAAGGGACACCTTTCACAGCTATC
CDK2 435 CCTTGGCCGAAATCCGCTTGT 436 AATGCTGCACTACGACCCTAACAAGCGGATTTCGGCCAAGGC
AGCCCTGGCTCACCCTTTCTTCCAGGATGTGACCAA
CDK3 439 CTCTGGCTCCAGATTGGGCACAAT 440 CCAGGAAGGGACTGGAAGAGATTGTGCCCAATCTGGAGCCAG
AGGGCAGGGACCTGCTCATGCAAC
CDK7 443 CCTCCCCAAGGAAGTCCAGCTTCT 444 GTCTCGGGCAAAGCGTTATGAGAAGCTGGACTTCCTTGGGGA
GGGACAGTTTGCCACCGTTTACAAGGCCAGAG
CDKN1A 447 CGGCGGCAGACCAGCATGAC 448 TGGAGACTCTCAGGGTCGAAAACGGCGGCAGACCAGCATGAC
AGATTTCTACCACTCCAAACGCC
CDKN1C 451 CGGGCCTCTGATCTCCGATTTCTT 452 CGGCGATCAAGAAGCTGTCCGGGCCTCTGATCTCCGATTTCTT
CGCCAAGCGCAAGAGATCAGCGCCTG
CDKN2B 455 CACAGGATGCTGGCCTTTGCTCTT 456 GACGCTGCAGAGCACCTTTGCACAGGATGCTGGCCTTTGCTCT
TACTACACTGAGGAGAGATTCCCGC
CDKN2C 459 CCTGTAACTTGAGGGCCACCGAAC 460 GAGCACTGGGCAATCGTTACGACCTGTAACTTGAGGGCCACC
GAACTGCTACTCCCGTTCGCCTTTG
CDKN3 463 ATCACCCATCATCATCCAATCGCA 464 TGGATCTCTACCAGCAATGTGGAATTATCACCCATCATCATCC
AATCGCAGATGGAGGGACTCCTGACAT
CDS2 467 CCCGGACATCACATAGGACAGCAG 468 GGGCTTCTTTGCTACTGTGGTGTTTGGCCTTCTGCTGTCCTAT
GTGATGTCCGGGTACAGATGCTTTGTCTGCCCTGT
CENPF 471 ACACTGGACCAGGAGTGCATCCAG 472 CTCCCGTCAACAGCGTTCTTTCCAAACACTGGACCAGGAGTGC
ATCCAGATGAAGGCCAGACTCACCC
CHAF1A 475 TGCACGTACCAGCACATCCTGAAG 476 GAACTCAGTGTATGAGAAGCGGCCTGACTTCAGGATGTGCTG
GTACGTGCACCCGCAGGTGCTACAGAGC
CHN1 479 CCACCATTGGCCGCTTAGTGGTAT 480 TTACGACGCTCGTGAAAGCACATACCACTAAGCGGCCAATGGT
GGTAGACATGTGCATCAGGGAGA
CHRAC1 483 ATCCGGGTCATCATGAAGAGCTCC 484 TCTCGCTGCCTCTATCCCGCATCCGGGTCATCATGAAGAGCTC
CCCCGAGGTGTCCAGCATCAACCAGG
CKS2 487 CTGCGCCCGCTCTTCGCG 488 GGCTGGACGTGGTTTTGTCTGCTGCGCCCGCTCTTCGCGCTCT
CGTTTCATTTTCTGCAGCG
CLDN3 491 CAAGGCCAAGATCACCATCGTGG 492 ACCAACTGCGTGCAGGACGACACGGCCAAGGCCAAGATCACC
ATCGTGGCAGGCGTGCTGTTCCTTCTCGCC
CLTC 495 TCTCACATGCTGTACCCAAAGCCA 496 ACCGTATGGACAGCCACAGCCTGGCTTTGGGTACAGCATGTG
AGATGAAGCGCTGATCCTGTAGTCA
COL11A1 499 CTGCTCGACCTTTGGGTCCTTCAG 500 GCCCAAGAGGGGAAGATGGCCCTGAAGGACCCAAAGGTCGA
GCAGGCCCAACTGGAGACCCAGGTCC
COL1A1 503 TCCTGCGCCTGATGTCCACCG 504 GTGGCCATCCAGCTGACCTTCCTGCGCCTGATGTCCACCGAG
GCCTCCCAGAACATCACCTACCACTG
COL1A2 507 TCTCCTAGCCAGACGTGTTTCTTGTCCT 508 CAGCCAAGAACTGGTATAGGAGCTCCAAGGACAAGAAACACG
TG TCTGGCTAGGAGAAACTATCAATGCTGGCAGCCAGTTT
COL3A1 511 CTCCTGGTCCCCAAGGTGTCAAAG 512 GGAGGTTCTGGACCTGCTGGTCCTCCTGGTCCCCAAGGTGTC
AAAGGTGAACGTGGCAGTCCTGGT
COL4A1 515 CTCCTTTGACACCAGGGATGCCAT 516 ACAAAGGCCTCCCAGGATTGGATGGCATCCCTGGTGTCAAAG
GAGAAGCAGGTCTTCCTGGGACTC
COL5A1 519 CCAGGGAAACCACGTAATCCTGGA 520 CTCCCTGGGAAAGATGGCCCTCCAGGATTACGTGGTTTCCCTG
GGGACCGAGGGCTTCCTGGTCCAG
COL5A2 523 CCAGGAAATCCTGTAGCACCAGGC 524 GGTCGAGGAACCCAAGGTCCGCCTGGTGCTACAGGATTTCCT
GGTTCTGCGGGCAGAGTTGGACCTCCAGGC
COL6A1 527 CTTCTCTTCCCTGATCACCCTGCG 528 GGAGACCCTGGTGAAGCTGGCCCGCAGGGTGATCAGGGAAG
AGAAGGCCCCGTTGGTGTCCCTGGAGA
COL6A3 531 CCTCTTTGACGGCTCAGCCAATCT 532 GAGAGCAAGCGAGACATTCTGTTCCTCTTTGACGGCTCAGCCA
ATCTTGTGGGCCAGTTCCCTGTT
COL8A1 535 CCTAAGGGAGAGCCAGGAATCCCA 536 TGGTGTTCCAGGGCTTCTCGGACCTAAGGGAGAGCCAGGAAT
CCCAGGGGATCAGGGTTTACAGGG
COL9A2 539 ACACAGGAAATCCGCACTGCCTTC 540 GGGAACCATCCAGGGTCTGGAAGGCAGTGCGGATTTCCTGTG
TCCAACCAACTGTCCACCCGGAAT
CRISP3 543 TGCCAGTTGCCCAGATAACTGTGA 544 TCCCTTATGAACAAGGAGCACCTTGTGCCAGTTGCCCAGATAA
CTGTGACGATGGACTATGCACCAATGGTT
CSF1 547 TCAGATGGAGACCTCGTGCCAAATTACA 548 TGCAGCGGCTGATTGACAGTCAGATGGAGACCTCGTGCCAAA
TTACATTTGAGTTTGTAGACCAGGAACAGTTG
CSK 551 TCCCGATGGTCTGCAGCAGCT 552 CCTGAACATGAAGGAGCTGAAGCTGCTGCAGACCATCGGGAA
GGGGGAGTTCGGAGACGTGATG
CSRP1 555 CCACCCTTCTCCAGGGACCCTTAG 556 ACCCAAGACCCTGCCTCTTCCACTCCACCCTTCTCCAGGGACC
CTTAGATCACATCACTCCACCCCTGC
CTGF 559 AACATCATGTTCTTCTTCATGACCTCGC 560 GAGTTCAAGTGCCCTGACGGCGAGGTCATGAAGAAGAACATG
ATGTTCATCAAGACCTGTGCCTGCCATTACAACT
CTHRC1 563 CAACGCTGACAGCATGCATTTCTG 564 TGGCTCACTTCGGCTAAAATGCAGAAATGCATGCTGTCAGCGT
TGGTATTTCACATTCAATGGAGCTGA
CTNNA1 567 ATGCCTACAGCACCCTGATGTCGCA 568 CGTTCCGATCCTCTATACTGCATCCCAGGCATGCCTACAGCAC
CCTGATGTCGCAGCCTATAAGGCCAACAGGGACCT
CTNNB1 571 AGGCTCAGTGATGTCTTCCCTGTCACCAG 572 GGCTCTTGTGCGTACTGTCCTTCGGGCTGGTGACAGGGAAGA
CATCACTGAGCCTGCCATCTGTGCTCTTCGTCATCTGA
CTNND1 575 TTGATGCCCTCATTTTCATTGTTCAGGC 576 CGGAAACTTCGGGAATGTGATGGTTTAGTTGATGCCCTCATTT
TCATTGTTCAGGCTGAGATTGGGCAGAAGGATTCAG
CTNND2 579 CTATGAAACGAGCCACTACCCGGC 580 GCCCGTCCCTACAGTGAACTGAACTATGAAACGAGCCACTACC
CGGCCTCCCCCGACTCCTGGGTGTGAG
CTSB 583 CCCCGTGGAGGGAGCTTTCTC 584 GGCCGAGATCTACAAAAACGGCCCCGTGGAGGGAGCTTTCTC
TGTGTATTCGGACTTCCTGC
CTSD 587 ACCCTGCCCGCGATCACACTGA 588 GTACATGATCCCCTGTGAGAAGGTGTCCACCCTGCCCGCGAT
CACACTGAAGCTGGGAGGCAAAGGCTACAAGCTGTCCC
CTSK 591 CCCCAGGTGGTTCATAGCCAGTTC 592 AGGCTTCTCTTGGTGTCCATACATATGAACTGGCTATGAACCA
CCTGGGGGACATGACCAGTGAAGAGGTGG
CTSL2 595 CTTGAGGACGCGAACAGTCCACCA 596 TGTCTCACTGAGCGAGCAGAATCTGGTGGACTGTTCGCGTCCT
CAAGGCAATCAGGGCTGCAATGGT
CTSS 599 TGATAACAAGGGCATCGACTCAGACGCT 600 TGACAACGGCTTTCCAGTACATCATTGATAACAAGGGCATCGA
CTCAGACGCTTCCTATCCCTACAAAGCCATGGA
CUL1 603 CAGCCACAAAGCCAGCGTCATTGT 604 ATGCCCTGGTAATGTCTGCATTCAACAATGACGCTGGCTTTGT
GGCTGCTCTTGATAAGGCTTGTGGTCGC
CXCL12 607 TTCTTCGAAAGCCATGTTGCCAGA 608 GAGCTACAGATGCCCATGCCGATTCTTCGAAAGCCATGTTGCC
AGAGCCAACGTCAAGCATCTCAAA
CXCR4 611 CTGAAACTGGAACACAACCACCCACAAG 612 TGACCGCTTCTACCCCAATGACTTGTGGGTGGTTGTGTTCCAG
TTTCAGCACATCATGGTTGGCCTTATCCT
CXCR7 615 CTCAGAGCCAGGGAACTTCTCGGA 616 CGCCTCAGAACGATGGATCTGCATCTCTTCGACTACTCAGAGC
CAGGGAACTTCTCGGACATCAGCTGGCCATGCAAC
CYP3A5 619 TCCCGCCTCAAGTTTCTCACCAAT 620 TCATTGCCCAGTATGGAGATGTATTGGTGAGAAACTTGAGGCG
GGAAGCAGAGAAAGGCAAGCCTGTC
CYR61 623 CAGCACCCTTGGCAGTTTCGAAAT 624 TGCTCATTCTTGAGGAGCATTAAGGTATTTCGAAACTGCCAAG
GGTGCTGGTGCGGATGGACACTAATGCAGCCAC
DAG1 627 CAAGTCAGAGTTTCCCTGGTGCCC 628 GTGACTGGGCTCATGCCTCCAAGTCAGAGTTTCCCTGGTGCC
CCAGAGACAGGAGCACAAGTGGGAT
DAP 631 CTCACCAGCTGGCAGACGTGAACT 632 CCAGCCTTTCTGGTGCTGTTCTCCAGTTCACGTCTGCCAGCTG
GTGAGGGCAGAGGCAGACCTGGTC
DAPK1 635 TCATATCCAAACTCGCCTCCAGCCG 636 CGCTGACATCATGAATGTTCCTCGACCGGCTGGAGGCGAGTTT
GGATATGACAAAGACACATCGTTGCTGAAAGAGA
DARC 639 TCAGCGCCTGTGCTTCCAAGATAA 640 GCCCTCATTAGTCCTTGGCTCTTATCTTGGAAGCACAGGCGCT
GACAGCCGTCCCAGCCCTTCTGTCTG
DDIT4 643 CTAGCCTTTGGGACCGCTTCTCGT 644 CCTGGCGTCTGTCCTCACCATGCCTAGCCTTTGGGACCGCTTC
TCGTCGTCGTCCACCTCCTCTTCG
DDR2 647 AGTGCTCCCTATCCGCTGGATGTC 648 CTATTACCGGATCCAGGGCCGGGCAGTGCTCCCTATCCGCTG
GATGTCTTGGGAGAGTATCTTGCTGGG
DES 651 TGAACCAGGAGTTTCTGACCACGC 652 ACTTCTCACTGGCCGACGCGGTGAACCAGGAGTTTCTGACCA
CGCGCACCAACGAGAAGGTGGAGC
DHRS9 655 ATCAATAATGCTGGTGTTCCCGGC 656 GGAGAAAGGTCTCTGGGGTCTGATCAATAATGCTGGTGTTCCC
GGCGTGCTGGCTCCCACTGACTG
DHX9 659 CCAAGGAACCACACCCACTTGGTT 660 GTTCGAACCATCTCAGCGACAAAACCAAGTGGGTGTGGTTCCT
TGGTCACCTCCACAATCCAACTGGA
DIAPH1 663 TTCTTCTGTCTCCCGCCGCTTC 664 CAAGCAGTCAAGGAGAACCAGAAGCGGCGGGAGACAGAAGA
AAAGATGAGGCGAGCAAAACT
DICER1 667 AGAAAAGCTGTTTGTCTCCCCAGCA 668 TCCAATTCCAGCATCACTGTGGAGAAAAGCTGTTTGTCTCCCC
AGCATACTTTATCGCCTTCACTGCC
DIO2 671 ACTCTTCCACCAGTTTGCGGAAGG 672 CTCCTTTCACGAGCCAGCTGCCAGCCTTCCGCAAACTGGTGG
AAGAGTTCTCCTCAGTGGCTGACTTCCT
DLC1 675 AAAGTCCATTTGCCACTGATGGCA 676 GATTCAGACGAGGATGAGCCTTGTGCCATCAGTGGCAAATGG
ACTTTCCAAAGGGACAGCAAGAGGTG
DLGAP1 679 CGCAGACCACCCATACTACACCCA 680 CTGCTGAGCCCAGTGGAGCACCACCCCGCAGACCACCCATAC
TACACCCAGCGGAACTCCTTCCAGGCT
DLL4 683 CTACCTGGACATCCCTGCTCAGCC 684 CACGGAGGTATAAGGCAGGAGCCTACCTGGACATCCCTGCTC
AGCCCCGCGGCTGGACCTTCCTTCT
DNM3 687 CATATCGCTGACCGAATGGGAACC 688 CTTTCCCACCCGGCTTACAGACATATCGCTGACCGAATGGGAA
CCCCACACCTGCAGAAGGTCCTT
DPP4 691 CGGCTATTCCACACTTGAACACGC 692 GTCCTGGGATCGGGAAGTGGCGTGTTCAAGTGTGGAATAGCC
GTGGCGCCTGTATCCCGGTGGGAGTAC
DPT 695 TTCCTAGGAAGGCTGGCAGACACC 696 CACCTAGAAGCCTGCCCACGATTCCTAGGAAGGCTGGCAGAC
ACCCTGGAACCCTGGGGAGCTACTG
DUSP1 699 CGAGGCCATTGACTTCATAGACTCCA 700 AGACATCAGCTCCTGGTTCAACGAGGCCATTGACTTCATAGAC
TCCATCAAGAATGCTGGAGGAAGGGTGTTTGTC
DUSP6 703 TCTACCCTATGCGCCTGGAAGTCC 704 CATGCAGGGACTGGGATTCGAGGACTTCCAGGCGCATAGGGT
AGAACCAAATGATAGGGTAGGAGCA
DVL1 707 CTTGGAGCAGCCTGCACCTTCTCT 708 TCTGTCCCACCTGCTGCTGCCCCTTGGAGCAGCCTGCACCTTC
TCTCCTCCCATCCGGCAACAGTCTGA
DYNLL1 711 ACCCACGTCAGTGAGTGCTCACAA 712 GCCGCCTACCTCACAGACTTGTGAGCACTCACTGACGTGGGT
AGCGCCCAGGGCCTGCGGGGCGCAGGAGAGCTGGAGTCAGG
C
EBNA1BP2 715 CCCGCTCTCGGATTCGGAGTCG 716 TGCGGCGAGATGGACACTCCCCCGCTCTCGGATTCGGAGTCG
GAATCCGATGAATCCCTTGTCAC
ECE1 719 TCCACTCTCGATACCCTGCACCAG 720 ACCTTGGGATCTGCCTCCAAGCTGGTGCAGGGTATCGAGAGT
GGATTCCAGATGGAGGTCCTGGTCC
EDN1 723 CACTCCCGAGCACGTTGTTCCGT 724 TGCCACCTGGACATCATTTGGGTCAACACTCCCGAGCACGTTG
TTCCGTATGGACTTGGAAGCCCTAGGTCCA
EDNRA 727 CCTTTGCCTCAGGGCATCCTTTT 728 TTTCCTCAAATTTGCCTCAAGATGGAAACCCTTTGCCTCAGGG
CATCCTTTTGGCTGGCACTGGTTGGATGTGTAA
EFNB2 731 CGGACAGCGTCTTCTGCCCTCACT 732 TGACATTATCATCCCGCTAAGGACTGCGGACAGCGTCTTCTGC
CCTCACTACGAGAAGGTCAGCGGGGACTAC
EGF 735 AGAGTTTAACAGCCCTGCTCTGGCTGAC 736 CTTTGCCTTGCTCTGTCACAGTGAAGTCAGCCAGAGCAGGGCT
TT GTTAAACTCTGTGAAATTTGTCATAAGGGTGTCAGGTATTT
EGR1 739 CGGATCCTTTCCTCACTCGCCCA 740 GTCCCCGCTGCAGATCTCTGACCCGTTCGGATCCTTTCCTCAC
TCGCCCACCATGGACAACTACCCTAAGCTGGAG
EGR3 743 ACCCAGTCTCACCTTCTCCCCACC 744 CCATGTGGATGAATGAGGTGTCTCCTTTCCATACCCAGTCTCA
CCTTCTCCCCACCCTACCTCACCTCTTCTCAGGCA
EIF2C2 747 CGGGTCACATTGCAGACACGGTAC 748 GCACTGTGGGCAGATGAAGAGGAAGTACCGCGTCTGCAATGT
GACCCGGCGGCCCGCCAGTCACCAAACAT
EIF2S3 751 TCTCGTGCTTCAGCCTCCCATGTA 752 CTGCCTCCCTGATTCAAGTGATTCTCGTGCTTCAGCCTCCCAT
GTAGCTGATATTACAGGCACTTGCCACC
EIF3H 755 CAGAACATCAAGGAGTTCACTGCCCA 756 CTCATTGCAGGCCAGATAAACACTTACTGCCAGAACATCAAGG
AGTTCACTGCCCAAAACTTAGGCAAGCTCTTCATGGC
EIF4E 759 ACCACCCCTACTCCTAATCCCCCGACT 760 GATCTAAGATGGCGACTGTCGAACCGGAAACCACCCCTACTC
CTAATCCCCCGACTACAGAAGAGGAGAAAACGGAATCTAA
EIF5 763 CCACTTGCACCCGAATCTTGATCA 764 GAATTGGTCTCCAGCTGCCTTTGATCAAGATTCGGGTGCAAGT
GGAGCAGGAGCCATATACCTGGA
ELK4 767 ATAAACCACCTCAGCCTGGTGCCA 768 GATGTGGAGAATGGAGGGAAAGATAAACCACCTCAGCCTGGT
GCCAAGACCTCTAGCCGCAATGACT
ENPP2 771 TAACTTCCTCTGGCATGGTTGGCC 772 CTCCTGCGCACTAATACCTTCAGGCCAACCATGCCAGAGGAA
GTTACCAGACCCAATTATCCAGGGA
ENY2 775 CTGATCCTTCCAGCCACATTCAATTAAT 776 CCTCAAAGAGTTGCTGAGAGCTAAATTAATTGAATGTGGCTGG
TT AAGGATCAGTTGAAGGCACACTGTAAAGAGG
EPHA2 779 TGCGCCCGATGAGATCACCG 780 CGCCTGTTCACCAAGATTGACACCATTGCGCCCGATGAGATCA
CCGTCAGCAGCGACTTCGAGGCACGCCAC
EPHA3 783 TATTCCAAATCCGAGCCCGAACAG 784 CAGTAGCCTCAAGCCTGACACTATATACGTATTCCAAATCCGA
GCCCGAACAGCCGCTGGATATGGGACGAA
EPHB2 787 CACCTGATGCATGATGGACACTGC 788 CAACCAGGCAGCTCCATCGGCAGTGTCCATCATGCATCAGGT
GAGCCGCACCGTGGACAGCATTAC
EPHB4 791 CGTCCCATTTGAGCCTGTCAATGT 792 TGAACGGGGTATCCTCCTTAGCCACGGGGCCCGTCCCATTTG
AGCCTGTCAATGTCACCACTGACCGAGAGGTACCT
ERBB2 795 CCAGACCATAGCACACTCGGGCAC 796 CGGTGTGAGAAGTGCAGCAAGCCCTGTGCCCGAGTGTGCTAT
GGTCTGGGCATGGAGCACTTGCGAGAGG
ERBB3 799 CCTCAAAGGTACTCCCTCCTCCCGG 800 CGGTTATGTCATGCCAGATACACACCTCAAAGGTACTCCCTCC
TCCCGGGAAGGCACCCTTTCTTCAGTGGGTCTCAGTTC
ERBB4 803 TGTCCCACGAATAATGCGTAAATTCTCC 804 TGGCTCTTAATCAGTTTCGTTACCTGCCTCTGGAGAATTTACGC
AG ATTATTCGTGGGACAAAACTTTATGAGGATCGATATGCCTTG
ERCC1 807 CAGCAGGCCCTCAAGGAGCTG 808 GTCCAGGTGGATGTGAAAGATCCCCAGCAGGCCCTCAAGGAG
CTGGCTAAGATGTGTATCCTGGCCG
EREG 811 TAAGCCATGGCTGACCTCTGGAGC 812 TGCTAGGGTAAACGAAGGCATAATAAGCCATGGCTGACCTCTG
GAGCACCAGGTGCCAGGACTTGTCTCCA
ERG 815 AGCCATATGCCTTCTCATCTGGGC 816 CCAACACTAGGCTCCCCACCAGCCATATGCCTTCTCATCTGGG
CACTTACTACTAAAGACCTGGCGGAGG
ESR1 819 CTGGAGATGCTGGACGCCC 820 CGTGGTGCCCCTCTATGACCTGCTGCTGGAGATGCTGGACGC
CCACCGCCTACATGCGCCCACTAGCC
ESR2 823 ATCTGTATGCGGAACCTCAAAAGAGTCC 824 TGGTCCATCGCCAGTTATCACATCTGTATGCGGAACCTCAAAA
CT GAGTCCCTGGTGTGAAGCAAGATCGCTAGAACA
ETV1 827 ATCGGGAAGGACCCACATACCAAC 828 TCAAACAAGAGCCAGGAATGTATCGGGAAGGACCCACATACC
AACGGCGAGGATCACTTCAGCTCTGGCAGTT
ETV4 831 CAGACAAATCGCCATCAAGTCCCC 832 TCCAGTGCCTATGACCCCCCCAGACAAATCGCCATCAAGTCCC
CTGCCCCTGGTGCCCTTGGACAGT
EZH2 835 TCCTGACTTCTGTGAGCTCATTGCG 836 TGGAAACAGCGAAGGATACAGCCTGTGCACATCCTGACTTCTG
TGAGCTCATTGCGCGGGACTAGGGAGTGTTCGGTG
F2R 839 CCCGGGCTCAACATCACTACCTGT 840 AAGGAGCAAACCATCCAGGTGCCCGGGCTCAACATCACTACC
TGTCATGATGTGCTCAATGAAACCCTGC
FAH 843 TGCCCTTCGTGCACACCAATG 844 GACAGCGTAGTGGTGCATGTGCTGAAGCTGCAGGGTGCCGTG
CCCTTCGTGCACACCAATGTTCCACAGTCCATGTTCAGCT
FABP5 847 CCTGATGCTGAACCAATGCACCAT 848 GCTGATGGCAGAAAAACTCAGACTGTCTGCAACTTTACAGATG
GTGCATTGGTTCAGCATCAGGAGTGGGATGGGAAGGAAAG
FADD 851 AACGCGCTCTTGTCGATTTCCTGT 852 GrITTCGCGAGATAACGGTCGAAAACGCGCTCTTGTCGATTTC
CTGTAGTGAATCAGGCACCGGAG
FAM107A 855 AATTGCCACACTGACCAGCGAAGA 856 AAGTCAGGGAAAACCTGCGGAGAATTGCCACACTGACCAGCG
AAGAGAGAGAGCTGTAGGGCCAGC
FAM13C 859 TCCTGACTTTCTCCGTGGCTCCTC 860 ATCTTCAAAGCGGAGAGCGGGAGGAGCCACGGAGAAAGTCAG
GAGACAGAGCATGTGGTATCCAGC
FAM171B 863 TGAAGATTTTGAAGCTAATACATCCCCC 864 CCAGGAAGGAAAAGCACTGTTGAAGATTTTGAAGCTAATACAT
AC CCCCCACTAAAAGAAGGGGCAGACCAC
FAM49B 867 TGGCCAGCTCCTCTGTATGACTGC 868 AGATGCAGAAGGCATCTTGGAGGACTTGCAGTCATACAGAGG
AGCTGGCCACGAAATACGAGAGGCAATCCAGC
FAM73A 871 AAGACCTCATGCAGTTACTCATTCGCC 872 TGAGAAGGTGCGCTATTCAAGTACAGAGACTTTAGCTGAAGAC
CTCATGCAGTTACTCATTCGCCGCACTGAGCTTTTAATGGCC
FAP 875 AGCCACTGCAAACATACTCGTTCATCA 876 GTTGGCTCACGTGGGTTACTGATGAACGAGTATGTTTGCAGTG
GCTAAAAAGAGTCCAGAATGTTTCGGTCCTGTC
FAS 879 TCTGGACCCTCCTACCTCTGGTTCTTAC 880 GGATTGCTCAACAACCATGCTGGGCATCTGGACCCTCCTACCT
GT CTGGTTCTTACGTCTGTTGCTAGATTATCGTCCAAAAGTGTTAA
TGCC
FASLG 883 ACAACATTCTCGGTGCCTGTAACAAAGAA 884 GCACTTTGGGATTCTTTCCATTATGATTCTTTGTTACAGGCACC
GAGAATGTTGTATTCAGTGAGGGTCTTCTTACATGC
FASN 887 TCGCCCACCTACGTACTGGCCTAC 888 GCCTCTTCCTGTTCGACGGCTCGCCCACCTACGTACTGGCCTA
CACCCAGAGCTACCGGGCAAAGC
FCGR3A 891 CCCATGATCTTCAAGCAGGGAAGC 892 GTCTCCAGTGGAAGGGAAAAGCCCATGATCTTCAAGCAGGGA
AGCCCCAGTGAGTAGCTGCATTCCT
FGF10 895 ACACCATGTCCTGACCAAGGGCTT 896 TCTTCCGTCCCTGTCACCTGCCAAGCCCTTGGTCAGGACATGG
TGTCACCAGAGGCCACCAACTCT
FGF17 899 TTCTCGGATCTCCCTCAGTCTGCC 900 GGTGGCTGTCCTCAAAATCTGCTTCTCGGATCTCCCTCAGTCT
GCCCCCAGCCCCCAAACTCCTCCTGGCTAGA
FGF5 903 CCATTGACTTTGCCATCCGGGTAG 904 GCATCGGTTTCCATCTGCAGATCTACCCGGATGGCAAAGTCAA
TGGATCCCACGAAGCCAATATGTT
FGF6 907 CATCCACCTTGCCTCTCAGGCAC 908 GGGCCATTAATTCTGACCACGTGCCTGAGAGGCAAGGTGGAT
GGCCCTGGGACAGAAACTGTTCATCACTATGTCCCGGG
FGF7 911 CAGCCCTGAGCGACACACAAGAAG 912 CCAGAGCAAATGGCTACAAATGTGAACTGTTCCAGCCCTGAGC
GACACACAAGAAGTTATGATTACATGGAAGGAGGGGA
FGFR2 915 TCCCAGAGACCAACGTTCAAGCAGTTG 916 GAGGGACTGTTGGCATGCAGTGCCCTCCCAGAGACCAACGTT
CAAGCAGTTGGTAGAAGACTTGGATCGAATTCTCACTC
FGFR4 919 CCTTTCATGGGGAGAACCGCATT 920 CTGGCTTAAGGATGGACAGGCCTTTCATGGGGAGAACCGCAT
TGGAGGCATTCGGCTGCGCCATCAGCACTGGAGTCTCGT
FKBP5 923 TCTCCCCAGTTCCACAGCAGTGTC 924 CCCACAGTAGAGGGGTCTCATGTCTCCCCAGTTCCACAGCAG
TGTCACAGACGTGAAAGCCAGAACC
FLNA 927 TACCAGGCCCATAGCACTGGACAC 928 GAACCTGCGGTGGACACTTCCGGTGTCCAGTGCTATGGGCCT
GGTATTGAGGGCCAGGGTGTCTTC
FLNC 931 ATGTGCTGTCAGCTACCTGCCCAC 932 CAGGACAATGGTGATGGCTCATGTGCTGTCAGCTACCTGCCCA
CGGAGCCTGGCGAGTACACCATCA
FLT1 935 CTACAGCACCAAGAGCGACGTGTG 936 GGCTCCTGAATCTATCTTTGACAAAATCTACAGCACCAAGAGC
GACGTGTGGTCTTACGGAGTATTGCTGTGGGA
FLT4 939 AGCCCGCTGACCATGGAAGATCT 940 ACCAAGAAGCTGAGGACCTGTGGCTGAGCCCGCTGACCATGG
AAGATCTTGTCTGCTACAGCTTCCAGG
FN1 943 ACTCTCAGGCGGTGTCCACATGAT 944 GGAAGTGACAGACGTGAAGGTCACCATCATGTGGACACCGCC
TGAGAGTGCAGTGACCGGCTACCGTGT
FOS 947 TCCCAGCATCATCCAGGCCCAG 948 CGAGCCCTTTGATGACTTCCTGTTCCCAGCATCATCCAGGCCC
AGTGGCTCTGAGACAGCCCGCTCC
FOXO1 951 TATGAACCGCCTGACCCAAGTGAA 952 GTAAGCACCATGCCCCACACCTCGGGTATGAACCGCCTGACC
CAAGTGAAGACACCTGTACAAGTGCCTCTGCCCC
FOXP3 955 TGTTTCCATGGCTACCCCACAGGT 956 CTGTTTGCTGTCCGGAGGCACCTGTGGGGTAGCCATGGAAAC
AGCACATTCCCAGAGTTCCTCCAC
FOXQ1 959 TGATTTATGTCCCTTCCCTCCCCC 960 TGTTTTTGTCGCAACTTCCATTGATTTATGTCCCTTCCCTCCCC
CCTAAGTACATCAGGGAACCTTTCCA
FSD1 963 CGCACCAAACAAGTGCTGCACA 964 AGGCCTCCTGTCCTTCTACAATGCCCGCACCAAACAAGTGCTG
CACACTTTCAAGACCAGGTTCACACA
FYN 967 CTGAAGCACGACAAGCTGGTCCAG 968 GAAGCGCAGATCATGAAGAAGCTGAAGCACGACAAGCTGGTC
CAGCTCTATGCAGTGGTGTCTGAGGAG
G6PD 971 CCAGCCTCAGTGCCACTTGACATT 972 AATCTGCCTGTGGCCTTGCCCGCCAGCCTCAGTGCCACTTGA
CATTCCTTGTCACCAGCAACATCTCG
GABRG2 975 CTCAGCACCATTGCCCGGAAAT 976 CCACTGTCCTGACAATGACCACCCTCAGCACCATTGCCCGGA
AATCGCTCCCCAAGGTCTCCTATGTCACAGCGATGGATCTC
GADD45A 979 TTCATCTCAATGGAAGGATCCTGCC 980 GTGCTGGTGACGAATCCACATTCATCTCAATGGAAGGATCCTG
CCTTAAGTCAACTTATTTGTTTTTGCCGGG
GADD45B 983 TGGGAGTTCATGGGTACAGA 984 ACCCTCGACAAGACCACACTTTGGGACTTGGGAGCTGGGGCT
GAAGTTGCTCTGTACCCATGAACTCCCA
GDF15 987 TGTTAGCCAAAGACTGCCACTGCA 988 CGCTCCAGACCTATGATGACTTGTTAGCCAAAGACTGCCACTG
CATATGAGCAGTCCTGGTCCTTCCACTGT
GHR 991 CGTGCCTCAGCCTCCTGAGTAGCT 992 CCACCTCCCACAGGTTCAGGCGATTCCCGTGCCTCAGCCTCC
TGAGTAGCTGGGACTACAGGCACGCACC
GNPTAB 995 CCCTGCTCACATGCCTCACATGAT 996 GGATTCACATCGCGGAAAGTCCCTGCTCACATGCCTCACATGA
TTGACCGGATTGTTATGCAAGAAC
GNRH1 999 TCCTGTCCTTCACTGTCCTTGCCA 1000 AAGGGCTAAATCCAGGTGTGACGGTATCTAATGATGTCCTGTC
CTTCACTGTCCTTGCCATCACCAGCCACAGAGATCCAG
GPM6B 1003 CGCTGAGAAACCAAACACACCCAG 1004 ATGTGCTTGGAGTGGCCTGGCTGGGTGTGTTTGGTTTCTCAGC
GGTGCCCGTGTTTATGTTCTACA
GPNMB 1007 CAAACAGTGCCCTGATCTCCGTTG 1008 CAGCCTCGCCTTTAAGGATGGCAAACAGTGCCCTGATCTCCGT
TGGCTGCTTGGCCATATTTGTCA
GPR68 1011 CTCAGCACCGTGGTCATCTTCCTG 1012 CAAGGACCAGATCCAGCGGCTGGTGCTCAGCACCGTGGTCAT
CTTCCTGGCCTGCTTCCTGCCCTACC
GPS1 1015 CCTCCTGCTGGCTTCCTTTGATCA 1016 AGTACAAGCAGGCTGCCAAGTGCCTCCTGCTGGCTTCCTTTGA
TCACTGTGACTTCCCTGAGCTGC
GRB7 1019 CTCCCCACCCTTGAGAAGTGCCT 1020 CCATCTGCATCCATCTTGTTTGGGCTCCCCACCCTTGAGAAGT
GCCTCAGATAATACCCTGGTGGCC
GREM1 1023 TCCACCCTCCCTTTCTCACTCCAC 1024 GTGTGGGCAAGGACAAGCAGGATAGTGGAGTGAGAAAGGGAG
GGTGGAGGGTGAGGCCAAATCAGGTC
GSK3B 1027 CCAGGAGTTGCCACCACTGTTGTC 1028 GACAAGGACGGCAGCAAGGTGACAACAGTGGTGGCAACTCCT
GGGCAGGGTCCAGACAGGCCACAA
GSN 1031 ACCCAGCCAATCGGGATCGGC 1032 CTTCTGCTAAGCGGTACATCGAGACGGACCCAGCCAATCGGG
ATCGGCGGACGCCCATCACCGTGGTGAAGCAAGGCTTTGAGC
C
GSTM1 1035 TCAGCCACTGGCTTCTGTCATAATCAGG 1036 AAGCTATGAGGAAAAGAAGTACACGATGGGGGACGCTCCTGA
AG TTATGACAGAAGCCAGTGGCTGAATGAAAAATTCAAGCTGGGC
C
GSTM2 1039 CTGAAGCTCTACTCACAGTTTCTGGG 1040 CTGCAGGCACTCCCTGAAATGCTGAAGCTCTACTCACAGTTTC
TGGGGAAGCAGCCATGGTTTCTTGG
HDAC1 1043 TTCTTGCGCTCCATCCGTCCAGA 1044 CAAGTACCACAGCGATGACTACATTAAATTCTTGCGCTCCATC
CGTCCAGATAACATGTCGGAGTACAGCAAGC
HDAC9 1047 CCCCCTGAAGCTCTTCCTCTGCTT 1048 AACCAGGCAGTCACCTTGAGGAAGCAGAGGAAGAGCTTCAGG
GGGACCAGGCGATGCAGGAAGACAGAG
HGD 1051 CTGAGCAGCTCTCAGGATCGGCTT 1052 CTCAGGTCTGCCCCTACAATCTCTATGCTGAGCAGCTCTCAGG
ATCGGCTTTCACTTGTCCACGGAGCACCAATAA
HIP1 1055 CGACTCACTGACCGAGGCCTGTAA 1056 CTCAGAGCCCCACCTGAGCCTGCCGACTCACTGACCGAGGCC
TGTAAGCAGTATGGCAGGGAAACCC
HIRIP3 1059 CCATTGCTCCTGGTTCTGGGTTTC 1060 GGATGAGGAAAAGGGGGATTGGAAACCCAGAACCAGGAGCAA
TGGCCGGAGAAAGTCAGCTAGGGA
HK1 1063 TAAGAGTCCGGGATCCCCAGCCTA 1064 TACGCACAGAGGCAAGCAGCTAAGAGTCCGGGATCCCCAGCC
TACTGCCTCTCCAGCACTTCTCTC
HLA-G 1067 CTGCAAGGACAACCAGGCCAGCAA 1068 CCTGCGCGGCTACTACAACCAGAGCGAGGCCAGTTCTCACAC
CCTCCAGTGGATGATTGGCTGCGACCTG
HLF 1071 TAAGTGATCTGCCCTCCAGGTGGC 1072 CACCCTGCAGGTGTCTGAGACTAAGTGATCTGCCCTCCAGGT
GGCGATCACCTTCTGCTCCTAGGTACC
HNF1B 1075 CCCCTATGAAGACCCAGAAGCGTG 1076 TCCCAGCATCTCAACAAGGGCACCCCTATGAAGACCCAGAAG
CGTGCCGCTCTGTACACCTGGTACG
HPS1 1079 CAGTCACCAGCCCAAAGTGCACTT 1080 GCGGAAGCTGTATGTGCTCAAGTACCTGTTTGAAGTGCACTTT
GGGCTGGTGACTGTGGACGGTCATCTTATCCGAA
HRAS 1083 ACCACCTGCTTCCGGTAGGAATCC 1084 GGACGAATACGACCCCACTATAGAGGATTCCTACCGGAAGCA
GGTGGTCATTGATGGGGAGACGTGC
HSD17B10 1087 TCATGGGCACCTTCAATGTGATCC 1088 CCACCAGACAAGACCGATTCGCTGGCCTCCATTTCTTCAACCC
AGTGCCTGTCATGAAACTTGTGG
HSD17B2 1091 AGTTGCTTCCATCCAACCTGGAGG 1092 GCTTTCCAAGTGGGGAATTAAAGTTGCTTCCATCCAACCTGGA
GGCTTCCTAACAAATATCGCAGGCA
HSD17B3 1095 CTTCATCCTCACAGGGCTGCTGGT 1096 GGGACGTCCTGGAACAGTTCTTCATCCTCACAGGGCTGCTGG
TGTGCCTGGCCTGCCTGGCGAAGTGCGTGAGATTCTCCA
HSD17B4 1099 AGGCGGCGTCCTATTTCCTCAAAT 1100 CGGGAAGCTTCAGAGTACCTTTGTATTTGAGGAAATAGGACGC
CGCCTAAAGGATATTGGGCCTGAGGT
HSD3B2 1103 ACTTCCAGCAGGAAGCCAATCCAG 1104 GCCTTCCTTTAACCCTGATGTACTGGATTGGCTTCCTGCTGGA
AGTAGTGAGCTTCCTACTCAGCCCAATTTACTCC
HSP90AB1 1107 ATCCGCTCCATATTGGCTGTCCAG 1108 GCATTGTGACCAGCACCTACGGCTGGACAGCCAATATGGAGC
GGATCATGAAAGCCCAGGCACTTC
HSPA5 1111 TAATTAGACCTAGGCCTCAGCTGCACTG 1112 GGCTAGTAGAACTGGATCCCAACACCAAACTCTTAATTAGACC
CC TAGGCCTCAGCTGCACTGCCCGAAAAGCATTTGGGCAGACC
HSPA8 1115 CTCAGGGCCCACCATTGAAGAGGTTG 1116 CCTCCCTCTGGTGGTGCTTCCTCAGGGCCCACCATTGAAGAG
GTTGATTAAGCCAACCAAGTGTAGATGTAGC
HSPB1 1119 CGCACTTTTCTGAGCAGACGTCCA 1120 CCGACTGGAGGAGCATAAAAGCGCAGCCGAGCCCAGCGCCC
CGCACTTTTCTGAGCAGACGTCCAGAGCAGAGTCAGCCAGCA
T
HSPB2 1123 CACCTTTCCCTTCCCCCAAGGAT 1124 CACCACTCCAGAGGTAGCAGCATCCTTGGGGGAAGGGAAAGG
TGCATGGTCCACAATGTATGGTTTGGTCCCA
HSPE1 1127 TCTCCACCCTTTCCTTTAGAACCCG 1128 GCAAGCAACAGTAGTCGCTGTTGGATCGGGTTCTAAAGGAAA
GGGTGGAGAGATTCAACCAGTTAGCGTGAAAGTTGG
HSPG2 1131 CAGCTCCGTGCCTCTAGAGGCCT 1132 GAGTACGTGTGCCGAGTGTTGGGCAGCTCCGTGCCTCTAGAG
GCCTCTGTCCTGGTCACCATTGAG
ICAM1 1135 CCGGCGCCCAACGTGATTCT 1136 GCAGACAGTGACCATCTACAGCTTTCCGGCGCCCAACGTGATT
CTGACGAAGCCAGAGGTCTCAGAAG
IER3 1139 TCAAGTTGCCTCGGAAGTCCCAGT 1140 GTACCTGGTGCGCGAGAGCGTATCCCCAACTGGGACTTCCGA
GGCAACTTGAACTCAGAACACTACAGCGGAGACGC
IFI30 1143 AAAATTCCACCCCATGATCAAGAATCC 1144 ATCCCATGAAGCCCAGATACACAAAATTCCACCCCATGATCAA
GAATCCTGCTCCACTAAGAATGGTGC
IFIT1 1147 AAGTTGCCCCAGGTCACCAGACTC 1148 TGACAACCAAGCAAATGTGAGGAGTCTGGTGACCTGGGGCAA
CTTTGCCTGGATGTATTACCACATGGGCAGACTG
IFNG 1151 TCGACCTCGAAACAGCATCTGACTCC 1152 GCTAAAACAGGGAAGCGAAAAAGGAGTCAGATGCTGTTTCGA
GGTCGAAGAGCATCCCAGTAATGGTTG
IGF1 1155 TGTATTGCGCACCCCTCAAGCCTG 1156 TCCGGAGCTGTGATCTAAGGAGGCTGGAGATGTATTGCGCAC
CCCTCAAGCCTGCCAAGTCAGCTCGCTCTGTCCG
IGF1R 1159 CGCGTCATACCAAAATCTCCGATTTTGA 1160 GCATGGTAGCCGAAGATTTCACAGTCAAAATCGGAGATTTTGG
TATGACGCGAGATATCTATGAGACAGACTATTACCGGAAA
IGF2 1163 TACCCCGTGGGCAAGTTCTTCCAA 1164 CCGTGCTTCCGGACAACTTCCCCAGATACCCCGTGGGCAAGT
TCTTCCAATATGACACCTGGAAGCAGTCCA
IGFBP2 1167 CTTCCGGCCAGCACTGCCTC 1168 GTGGACAGCACCATGAACATGTTGGGCGGGGGAGGCAGTGCT
GGCCGGAAGCCCCTCAAGTCGGGTATGAAGG
IGFBP3 1171 ACACCACAGAAGGCTGTGAGCTCC 1172 ACATCCCAACGCATGCTCCTGGAGCTCACAGCCTTCTGTGGTG
TCATTTCTGAAACAAGGGCGTGG
IGFBP5 1175 CCCGTCAACGTACTCCATGCCTGG 1176 TGGACAAGTACGGGATGAAGCTGCCAGGCATGGAGTACGTTG
ACGGGGACTTTCAGTGCCACACCTTCG
IGKBP6 1179 ATCCAGGCACCTCTACCACGCCCTC 1180 TGAACCGCAGAGACCAACAGAGGAATCCAGGCACCTCTACCA
CGCCCTCCCAGCCCAATTCTGCGGGTGTCCAAGAC
IL10 1183 TTGAGCTGTTTTCCCTGACCTCCC 1184 CTGACCACGCTTTCTAGCTGTTGAGCTGTTTTCCCTGACCTCC
CTCTAATTTATCTTGTCTCTGGGCTTGG
IL11 1187 CCTGTGATCAACAGTACCCGTATGGG 1188 TGGAAGGTTCCACAAGTCACCCTGTGATCAACAGTACCCGTAT
GGGACAAAGCTGCAAGGTCAAGA
IL17A 1191 TGGCTTCTGTCTGATCAAGGCACC 1192 TCAAGCAACACTCCTAGGGCCTGGCTTCTGTCTGATCAAGGCA
CCACACAACCCAGAAAGGAGCTG
IL1A 1195 TCTCCACCCTGGCCCTGTTACAGT 1196 GGTCCTTGGTAGAGGGCTACTTTACTGTAACAGGGCCAGGGT
GGAGAGTTCTCTCCTGAAGCTCCATCC
IL1B 1199 TGCCCACAGACCTTCCAGGAGAAT 1200 AGCTGAGGAAGATGCTGGTTCCCTGCCCACAGACCTTCCAGG
AGAATGACCTGAGCACCTTCTTTCC
IL2 1203 TGCAACTCCTGTCTTGCATTGCAC 1204 ACCTCAACTCCTGCCACAATGTACAGGATGCAACTCCTGTCTT
GCATTGCACTAAGTCTTGCACTTGTCACAAACAGTG
IL6 1207 CCAGATTGGAAGCATCCATCTTTTTCA 1208 CCTGAACCTTCCAAAGATGGCTGAAAAAGATGGATGCTTCCAA
TCTGGATTCAATGAGGAGACTTGCCTGGT
IL6R 1211 CCTTTGGCTTCACGGAAGAGCCTT 1212 CCAGCTTATCTCAGGGGTGTGCGGCCTTTGGCTTCACGGAAG
AGCCTTGCGGAAGGTTCTACGCCAG
IL6ST 1215 CATATTGCCCAGTGGTCACCTCACA 1216 GGCCTAATGTTCCAGATCCTTCAAAGAGTCATATTGCCCAGTG
GTCACCTCACACTCCTCCAAGGCACAATTTT
IL8 1219 TGACTTCCAAGCTGGCCGTGGC 1220 AAGGAACCATCTCACTGTGTGTAAACATGACTTCCAAGCTGGC
CGTGGCTCTCTTGGCAGCCTTCCTGAT
ILF3 1223 ACACAAGACTTCAGCCCGTTGGCT 1224 GACACGCCAAGTGGTTCCAGGCCAGAGCCAACGGGCTGAAGT
CTTGTGTCATTGTGATCCGGGTCTTGAG
ILK 1227 ATGTGCTCCCAGTGCTAGGTGCCT 1228 CTCAGGATTTTCTCGCATCCAAATGTGCTCCCAGTGCTAGGTG
CCTGCCAGTCTCCACCTGCTCCT
IMMT 1231 CAACTGCATGGCTCTGAACAGCCT 1232 CTGCCTATGCCAGACTCAGAGGAATCGAACAGGCTGTTCAGA
GCCATGCAGTTGCTGAAGAGGAAGCCAGAAAAGC
ING5 1235 CCAGCTGCACTTTGTCGTCACTGT 1236 CCTACAGCAAGTGCAAGGAATACAGTGACGACAAAGTGCAGC
TGGCCATGCAGACCTACGAGATG
INHBA 1239 ACGTCCGGGTCCTCACTGTCCTTCC 1240 GTGCCCGAGCCATATAGCAGGCACGTCCGGGTCCTCACTGTC
CTTCCACTCAACAGTCATCAACCACTACCG
INSL4 1243 TGAGAAGACATTCACCACCACCCC 1244 CTGTCATATTGCCCCATGCCTGAGAAGACATTCACCACCACCC
CAGGAGGGTGGCTGCTGGAATCTG
ITGA1 1247 TTGCTGGACAGCCTCGGTACAATC 1248 GCTTCTTCTGGAGATGTGCTCTATATTGCTGGACAGCCTCGGT
ACAATCATACAGGCCAGGTCATTATCTACAGG
ITGA3 1251 CACTCCAGACCTCGCTTAGCATGG 1252 CCATGATCCTCACTCTGCTGGTGGACTATACACTCCAGACCTC
GCTTAGCATGGTAAATCACCGGCTACAAAGCTTC
ITGA4 1255 CGATCCTGCATCTGTAAATCGCCC 1256 CAACGCTTCAGTGATCAATCCCGGGGCGATTTACAGATGCAG
GATCGGAAAGAATCCCGGCCAGAC
ITGA5 1259 TCTGAGCCTTGTCCTCTATCCGGC 1260 AGGCCAGCCCTACATTATCAGAGCAAGAGCCGGATAGAGGAC
AAGGCTCAGATCTTGCTGGACTGTGGAGAAGAC
ITGA6 1263 TCGCCATCTTTTGTGGGATTCCTT 1264 CAGTGACAAACAGCCCTTCCAACCCAAGGAATCCCACAAAAGA
TGGCGATGACGCCCATGAGGCTAAAC
ITGA7 1267 CAGCCAGGACCTGGCCATCCG 1268 GATATGATTGGTCGCTGCTTTGTGCTCAGCCAGGACCTGGCCA
TCCGGGATGAGTTGGATGGTGGGGAATGGAAGTTCT
ITGAD 1271 CAACTGAAAGGCCTGACGTTCACG 1272 GAGCCTGGTGGATCCCATCGTCCAACTGAAAGGCCTGACGTT
CACGGCCACGGGCATCCTGACAGT
ITGB3 1275 AAATACCTGCAACCGTTACTGCCGTGAC 1276 ACCGGGGAGCCCTACATGACGAAAATACCTGCAACCGTTACT
GCCGTGACGAGATTGAGTCAGTGAAAGAGCTTAAGG
ITGB4 1279 CACCAACCTGTACCCGTATTGCGA 1280 CAAGGTGCCCTCAGTGGAGCTCACCAACCTGTACCCGTATTG
CGACTATGAGATGAAGGTGTGCGC
ITGB5 1283 TGCTATGTTTCTACAAAACCGCCAAGG 1284 TCGTGAAAGATGACCAGGAGGCTGTGCTATGTTTCTACAAAAC
CGCCAAGGACTGCGTCATGATGTTCACC
ITPR1 1287 CCATCCTAACGGAACGAGCTCCCT 1288 GAGGAGGTGTGGGTGTTCCGCTTCCATCCTAACGGAACGAGC
TCCCTCTTCGCGGACATGGGATTAC
ITPR3 1291 TCCAGGTCTCGGATCTCAGACACG 1292 TTGCCATCGTGTCAGTGCCCGTGTCTGAGATCCGAGACCTGG
ACTTTGCCAATGACGCCAGCTCCAT
ITSN1 1295 AGCCCTCTCTCACCGTTCCAAGTG 1296 TAACTGGGATGCATGGGCAGCCCAGCCCTCTCTCACCGTTCC
AAGTGCCGGCCAGTTAAGGCAGAG
JAG1 1299 ACTCGATTTCCCAGCCAACCACAG 1300 TGGCTTACACTGGCAATGGTAGTTTCTGTGGTTGGCTGGGAAA
TCGAGTGCCGCATCTCACAGCTATGC
JUN 1303 CTATGACGATGCCCTCAACGCCTC 1304 GACTGCAAAGATGGAAACGACCTTCTATGACGATGCCCTCAAC
GCCTCGTTCCTCCCGTCCGAGAGCGGACCTTATGGCTA
JUNB 1307 CAAGGGACACGCCTTCTGAACGT 1308 CTGTCAGCTGCTGCTTGGGGTCAAGGGACACGCCTTCTGAAC
GTCCCCTGCCCCTTTACGGACACCCCCT
KCNN2 1311 TTATACATTCACATGGACGGCCCG 1312 TGTGCTATTCATCCCATACCTGGGAATTATACATTCACATGGAC
GGCCCGGCTTGCCTTCTCCTATGCCC
KCTD12 1315 ACTCTTAGGCGGCAGCGTCCTTTC 1316 AGCAGTTACTGGCAAGAGGGAGAAAGGACGCTGCCGCCTAAG
AGTGCAAGGCTGCTCAGGTCTCCA
KNDRBS3 1319 CAAGACACAAGGCACCTTCAGCGA 1320 CGGGCAAGAAGAGTGGACTAACTCAAGACACAAGGCACCTTC
AGCGAGGACAGCAAAGGGCGTCTACAG
KIAA0196 1323 TCCCCAGTGTCCAGGCACAGAGTA 1324 CAGACACCAGCTCTGAGGCCAGTTAATCATCCCCAGTGTCCAG
GCACAGAGTAGTCGGTCCGCCTCACAATGTT
KIAA0247 1327 TCCGCTAGTGATCCTTTGCACCCT 1328 CCGTGGGACATGGAGTGTTCCTTCCGCTAGTGATCCTTTGCAC
CCTGCTTGGAGACGGACTTGCTTC
KF4A 1331 CAGGTCAGCAAACTTGAAAGCAGCC 1332 AGAGCTGGTCTCCTCCAAAATACAGGTCAGCAAACTTGAAAGC
AGCCTGAAACAGAGCAAGACCAGC
KIT 1335 TTACAGCGACAGTCATGGCCGCAT 1336 GAGGCAACTGCTTATGGCTTAATTAAGTCAGATGCGGCCATGA
CTGTCGCTGTAAAGATGCTCAAGCCGAGTGCC
KLC1 1339 CAACACGCAGCAGAAACTGCAGAA 1340 AGTGGCTACGGGATGAACTGGCCAACACGCAGCAGAAACTGC
AGAAGAGTGAGCAGTCTGTGGCTCA
KLF6 1343 AGTACTCCTCCAGAGACGGCAGCG 1344 CACGAGACCGGCTACTTCTCGGCGCTGCCGTCTCTGGAGGAG
TACTGGCAACAGACCTGCCTAGAGC
KLK1 1347 TCAGTGAGAGCTTCCCACACCCTG 1348 AACACAGCCCAGTTTGTTCATGTCAGTGAGAGCTTCCCACACC
CTGGCTTCAACATGAGCCTCCTGG
KLK10 1351 CCTCTTCCTCCCCAGTCGGCTGA 1352 GCCCAGAGGCTCCATCGTCCATCCTCTTCCTCCCCAGTCGGCT
GAACTCTCCCCTTGTCTGCACTGTTCAAACCTCTG
KLK11 1355 CCTCCCCAACAAAGACCACCGCA 1356 CACCCCGGCTTCAACAACAGCCTCCCCAACAAAGACCACCGC
AATGACATCATGCTGGTGAAGATG
KLK14 1359 CAGCACTTCAAGTCCTGGCTATAGCCA 1360 CCCCTAAAATGTTCCTCCTGCTGACAGCACTTCAAGTCCTGGC
TATAGCCATGACACAGAGCCAAGAGGATGAG
KLK2 1363 TTGGGAATGCTTCTCACACTCCCA 1364 AGTCTCGGATTGTGGGAGGCTGGGAGTGTGAGAAGCATTCCC
AACCCTGGCAGGTGGCTGTGTACA
KLK3 1367 ACCCACATGGTGACACAGCTCTCC 1368 CCAAGCTTACCACCTGCACCCGGAGAGCTGTGTCACCATGTG
GGTCCCGGTTGTCTTCCTCACCCT
KLRK1 1371 TGTCTCAAAATGCCAGCCTTCTGAA 1372 TGAGAGCCAGGCTTCTTGTATGTCTCAAAATGCCAGCCTTCTG
AAAGTATACAGCAAAGAGGACCAGGAT
KPNA2 1375 ACTCCTGTTTTCACCACCATGCCA 1376 TGATGGTCCAAATGAACGAATTGGCATGGTGGTGAAAACAGGA
GTTGTGCCCCAACTTGTGAAGCTT
KRT1 1379 CCTCAGCAATGATGCTGTCCAGGT 1380 TGGACAACAACCGCAGTCTCGACCTGGACAGCATCATTGCTGA
GGTCAAGGCCCAGTACGAGGATA
KRT15 1383 TGAACAAAGAGGTGGCCTCCAACA 1384 GCCTGGTTCTTCAGCAAGACTGAGGAGCTGAACAAAGAGGTG
GCCTCCAACACAGAAATGATCCAGACCAGCAAG
KRT18 1387 TGGTTCTTCTTCATGAAGAGCAGCTCC 1388 AGAGATCGAGGCTCTCAAGGAGGAGCTGCTCTTCATGAAGAA
GAACCACGAAGAGGAAGTAAAAGGCC
KRT2 1391 ACCTAGACAGCACAGATTCCGCCC 1392 CCAGTGACGCCTCTGTGTTCTGGGGCGGAATCTGTGCTGTCTA
GGTTTGTGCTTCTAGCCATGCCC
KRT5 1395 CCAGTCAACATCTCTGTTGTCACAAGCA 1396 TCAGTGGAGAAGGAGTTGGACCAGTCAACATCTCTGTTGTCAC
AAGCAGTGTTTCCTCTGGATATGGCA
KRT75 1399 TTCATTCTCAGCAGCTGTGCGCTTGT 1400 TCAAAGTCAGGTACGAAGATGAAATTAACAAGCGCACAGCTGC
TGAGAATGAATTTGTAGCCCTGAAAAAGGACGT
KRT76 1403 TCTGGGCTTCAGATCCTGACTCCC 1404 ATCTCCAGACTGCTGGTTCCCAGGGAACCCTCCCTACATCTGG
GCTTCAGATCCTGACTCCCTTCTGTCCCCTAATTCCCTGA
KRT8 1407 CGTCGGTCAGCCCTTCCAGGC 1408 GGATGAAGCTTACATGAACAAGGTAGAGCTGGAGTCTCGCCT
GGAAGGGCTGACCGACGAGATCAACTTCCTCAGGCAGCTATA
TG
L1CAM 1411 ATCTACGTTGTCCAGCTGCCAGCC 1412 CTTGCTGGCCAATGCCTACATCTACGTTGTCCAGCTGCCAGCC
AAGATCCTGACTGCGGACAATCA
LAG3 1415 TCTATCTTGCTCTGAGCCTGCGGA 1416 GCCTTAGAGCAAGGGATTCACCCTCCGCAGGCTCAGAGCAAG
ATAGAGGAGCTGGAGCAAGAACCG
LAMA3 1419 ATTCAGACTGACAGGCCCCTGGAC 1420 CCTGTCACTGAAGCCTTGGAAGTCCAGGGGCCTGTCAGTCTG
AATGGTTGTCCTGACCAGTAACCCA
LAMA4 1423 CTCTCCATCGAGGAAGGCAAATCC 1424 GATGCACTGCGGTTAGCAGCGCTCTCCATCGAGGAAGGCAAA
TCCGGGGTGCTGAGCGTATCCTCTG
LAMA5 1427 CTGTTCCTGGAGCATGGCCTCTTC 1428 CTCCTGGCCAACAGCACTGCACTAGAAGAGGCCATGCTCCAG
GAACAGCAGAGGCTGGGCCTTGTGT
LAMB1 1431 CAAGTGCCTGTACCACACGGAAGG 1432 CAAGGAGACTGGGAGGTGTCTCAAGTGCCTGTACCACACGGA
AGGGGAACACTGTCAGTTCTGCCG
LAMB3 1435 CCACTCGCCATACTGGGTGCAGT 1436 ACTGACCAAGCCTGAGACCTACTGCACCCAGTATGGCGAGTG
GCAGATGAAATGCTGCAAGTGTGAC
LAMC1 1439 CCTCGGTACTTCATTGCTCCTGCA 1440 GCCGTGATCTCAGACAGCTACTTTCCTCGGTACTTCATTGCTC
CTGCAAAGTTCTTGGGCAAGCAGGT
LAMC2 1443 AGGTCTTATCAGCACAGTCTCCGCCTCC 1444 ACTCAAGCGGAAATTGAAGCAGATAGGTCTTATCAGCACAGTC
TCCGCCTCCTGGATTCAGTGTCTCGGCTTCAGGGAGT
LAPTM5 1447 TCCTGACCCTCTGCAGCTCCTACA 1448 TGCTGGACTTCTGCCTGAGCATCCTGACCCTCTGCAGCTCCTA
CATGGAAGTGCCCACCTATCTCA
LGALS3 1451 ACCCAGATAACGCATCATGGAGCGA 1452 AGCGGAAAATGGCAGACAATTTTTCGCTCCATGATGCGTTATC
TGGGTCTGGAAACCCAAACCCTCAAG
LIG3 1455 CTGGACGCTCAGAGCTCGTCTCTG 1456 GGAGGTGGAGAAGGAGCCGGGCCAGAGACGAGCTCTGAGCG
TCCAGGCCTCGCTGATGACACCTGT
LIMS1 1459 ACTGAGCGCACACGAAACACTGCT 1460 TGAACAGTAATGGGGAGCTGTACCATGAGCAGTGTTTCGTGTG
CGCTCAGTGCTTCCAGCAGTTCCCAGAA
LOX 1463 CAGGCTCAGCAAGCTGAACACCTG 1464 CCAATGGGAGAACAACGGGCAGGTGTTCAGCTTGCTGAGCCT
GGGCTCACAGTACCAGCCTCAGCG
LRP1 1467 TCCCGGCTGGGCGCCTCTACT 1468 TTTGGCCCAATGGGCTAAGCCTGGACATCCCGGCTGGGCGCC
TCTACTGGGTGGATGCCTTCTACGACCGCATCGAGAC
LTBP2 1471 CTTTGCAGCCCTCAGAACTCCAGC 1472 GCACACCCATCCTTGAGTCTCCTTTGCAGCCCTCAGAACTCCA
GCCCCACTACGTGGCCAGCCATC
LUM 1475 CCTGACCTTCATCCATCTCCAGCA 1476 GGCTCTTTTGAAGGATTGGTAAACCTGACCTTCATCCATCTCC
AGCACAATCGGCTGAAAGAGGATGCTGTTTCAGCTGCTTTT
MAGEA4 1479 CAGCTTCCCTTGCCTCGTGTAACA 1480 GCATCTAACAGCCCTGTGCAGCAGCTTCCCTTGCCTCGTGTAA
CATGAGGCCCATTCTTCACTCTG
MANF 1483 TTCCTGATGATGCTGGCCCTACAG 1484 CAGATGTGAAGCCTGGAGCTTTCCTGATGATGCTGGCCCTACA
GTACCCCCATGAGGGGATTCCCTT
MAOA 1487 CCGCGATACTCGCCTTCTCTTGAT 1488 GTGTCAGCCAAAGCATGGAGAATCAAGAGAAGGCGAGTATCG
CGGGCCACATGTTCGACGTAGTCG
MAP3K5 1491 CAGCCCAGAGACCAGATGTCTGCT 1492 AGGACCAAGAGGCTACGGAAAAGCAGCAGACATCTGGTCTCT
GGGCTGTACAATCATTGAAATGGCCACAGG
MAP3K7 1495 TGCTGGTCCTTTTCATCCTGGTCC 1496 CAGGCAAGAACTAGTTGCAGAACTGGACCAGGATGAAAAGGA
CCAGCAAAATACATCTCGCCTGGTACAGG
MAP4K4 1499 AACGTTCCTTGTTCTCCTGCTGCA 1500 TCGCCGAGATTTCCTGAGACTGCAGCAGGAGAACAAGGAACG
TTCCGAGGCTCTTCGGAGACAACAG
MAP7 1503 CATGTACAACAAACGCTCCGGGAA 1504 GAGGAACAGAGGTGTCTGCACTTCCATGTACAACAAACGCTCC
GGGAAATGGAAAGCCAGTTGGCAG
MAPKAPK3 1507 ATTGGCACTGCCATCCAGTTTCTG 1508 AAGCTGCAGAGATAATGCGGGATATTGGCACTGCCATCCAGTT
TCTGCACAGCCATAACATTGCCCAC
MCM2 1511 ACAGCTCATTGTTGTCACGCCGGA 1512 GACTTTTGCCCGCTACCTTTCATTCCGGCGTGACAACAATGAG
CTGTTGCTCTTCATACTGAAGCAGTTAGTGGC
MCM3 1515 TGGCCTTTCTGTCTACAAGGATCACCA 1516 GGAGAACAATCCCCTTGAGACAGAATATGGCCTTTCTGTCTAC
AAGGATCACCAGACCATCACCATCCAGGAGAT
MCM6 1519 CAGGTTTCATACCAACACAGGCTTCAGC 1520 TGATGGTCCTATGTGTCACATTCATCACAGGTTTCATACCAACA
AC CAGGCTTCAGCACTTCCTTTGGTGTGTTTCCTGTCCCA
MDK 1523 ATCACACGCACCCCAGTTCTCAAA 1524 GGAGCCGACTGCAAGTACAAGTTTGAGAACTGGGGTGCGTGT
GATGGGGGCACAGGCACCAAAGTC
MDM2 1527 CTTACACCAGCATCAAGATCCGG 1528 CTACAGGGACGCCATCGAATCCGGATCTTGATGCTGGTGTAAG
TGAACATTCAGGTGATTGGTTGGAT
MELK 1531 CCCGGGTTGTCTTCCGTCAGATAG 1532 AGGATCGCCTGTCAGAAGAGGAGACCCGGGTTGTCTTCCGTC
AGATAGTATCTGCTGTTGCTTATGTGCA
MET 1535 TGCCTCTCTGCCCCACCCTTTGT 1536 GACATTTCCAGTCCTGCAGTCAATGCCTCTCTGCCCCACCCTT
TGTTCAGTGTGGCTGGTGCCACGACAAATGTGTGCGATCGGA
G
MGMT 1539 CAGCCCTTTGGGGAAGCTGG 1540 GTGAAATGAAACGCACCACACTGGACAGCCCTTTGGGGAAGC
TGGAGCTGTCTGGTTGTGAGCAGGGTC
MGST1 1543 TTTGACACCCCTTCCCCAGCCA 1544 ACGGATCTACCACACCATTGCATATTTGACACCCCTTCCCCAG
CCAAATAGAGCTTTGAGTTTTTTTGTTGGATATGGA
MICA 1547 CGAGGCCTCAGAGGGCAACATTAC 1548 ATGGTGAATGTCACCCGCAGCGAGGCCTCAGAGGGCAACATT
ACCGTGACATGCAGGGCTTCTGGCTT
MKI67 1551 CCACTCTTCCTTGAACACCCTCCC 1552 GATTGCACCAGGGCAGAACAGGGGAGGGTGTTCAAGGAAGAG
TGGCTCTTAGCAGAGGCACTTTGGA
MLXIP 1555 CATGAGATGCCAGGAGACCCTTCC 1556 TGCTTAGCTGGCATGTGGCCGCATGAGATGCCAGGAGACCCT
TCCCTGCCCATGGAGAGTAGGCTG
MMP11 1559 ATCCTCCTGAAGCCCTTTTCGCAGC 1560 CCTGGAGGCTGCAACATACCTCAATCCTGTCCCAGGCCGGAT
CCTCCTGAAGCCCTTTTCGCAGCACTGCTATCCTCCAAAGCCA
TTGTA
MMP2 1563 AAGTCCGAATCTCTGCTCCCTGCA 1564 CAGCCAGAAGCGGAAACTTAAAAAGTCCGAATCTCTGCTCCCT
GCAGGGCACAGGTGATGGTGTCT
MMP7 1567 CCTGTATGCTGCAACTCATGAACTTGGC 1568 GGATGGTAGCAGTCTAGGGATTAACTTCCTGTATGCTGCAACT
CATGAACTTGGCCATTCTTTGGGTATGGGACATTCC
MMP9 1571 ACAGGTATTCCTCTGCCAGCTGCC 1572 GAGAACCAATCTCACCGACAGGCAGCTGGCAGAGGAATACCT
GTACCGCTATGGTTACACTCGGGTG
MPPED2 1575 ATTTGACCTTCCAAACCCACAGGG 1576 CCGACCAACCCTCCAATTATATTTGACCTTCCAAACCCACAGG
GTTCCTGAAGCTCTAAATGCCCT
MRC1 1579 CCAACCGCTGTTGAAGCTCAGACT 1580 CTTGACCTCAGGACTCTGGATTGGACTTAACAGTCTGAGCTTC
AACAGCGGTTGGCAGTGGAGTGACCGCAGTCC
MRPL13 1583 CGGCTGGAAATTATGTCCTCCGTC 1584 TCCGGTTCCCTTCGTTTAGGTCGGCTGGAAATTATGTCCTCCG
TCGGTTTTCCGCAGTTTTTCCAC
MSH2 1587 CAAGAAGATTTACTTCGTCGATTCCCAGA 1588 GATGCAGAATTGAGGCAGACTTTACAAGAAGATTTACTTCGTC
GATTCCCAGATCTTAACCGACTTGCCAAGA
MSH3 1591 TCCCAATTGTCGCTTCTTCTGCAG 1592 TGATTACCATCATGGCTCAGATTGGCTCCTATGTTCCTGCAGA
AGAAGCGACAATTGGGATTGTGGATGGCATTTTCACAAG
MSH6 1595 CCGTTACCAGCTGGAAATTCCTGAGA 1596 TCTATTGGGGGATTGGTAGGAACCGTTACCAGCTGGAAATTCC
TGAGAATTTCACCACTCGCAATTTG
MTA1 1599 CCCAGTGTCCGCCAAGGAGCG 1600 CCGCCCTCACCTGCAGAGAAACGCGCTCCTTGGCGGACACTG
GGGGAGGAGAGGAAGAAGCGCGGCTAACTTATTCC
MTPN 1603 AAGCTGCCCACAATCTGCTGCATA 1604 GGTGGAAGGAAACCTCTTCATTATGCAGCAGATTGTGGGCAGC
TTGAAATCCTGGAATTTCTGCTGCTG
MTSS1 1607 CCAAGAAACAGCGACATCAGCCAG 1608 TTCGACAAGTCCTCCACCATTCCAAGAAACAGCGACATCAGCC
AGTCCTACCGACGGATGTTCCAAG
MUC1 1611 CTCTGGCCTTCCGAGAAGGTACC 1612 GGCCAGGATCTGTGGTGGTACAATTGACTCTGGCCTTCCGAG
AAGGTACCATCAATGTCCACGACGTGGAG
MVP 1615 CGCACCTTTCCGGTCTTGACATCCT 1616 ACGAGAACGAGGGCATCTATGTGCAGGATGTCAAGACCGGAA
AGGTGCGCGCTGTGATTGGAAGCACCTACATGC
MYBL2 1619 CAGCATTGTCTGTCCTCCCTGGCA 1620 GCCGAGATCGCCAAGATGTTGCCAGGGAGGACAGACAATGCT
GTGAAGAATCACTGGAACTCTACCATCAAAAG
MYBPC1 1623 AAATTCGCAAGCCCAGCCCCTAT 1624 CAGCAACCAGGGAGTCTGTACCCTGGAAATTCGCAAGCCCAG
CCCCTATGATGGAGGCACTTACTGCTG
MYC 1627 TCTGACACTGTCCAACTTGACCCTCTT 1628 TCCCTCCACTCGGAAGGACTATCCTGCTGCCAAGAGGGTCAA
GTTGGACAGTGTCAGAGTCCTGAGACAGATCAGCAACAACCG
MYLK3 1631 CACACCCTCACAGATCTGCCTGGT 1632 CACCTGACTGAGCTGGATGTGGTCCTGTTCACCAGGCAGATCT
GTGAGGGTGTGCATTACCTGCACCAGCACTACATC
MYO6 1635 CAATCCTCAGGGCCAGCTCCC 1636 AAGCAGTTCTGGAGCAGGAGCGCAGGGACCGGGAGCTGGCC
CTGAGGATTGCCCAGAGTGAAGCCGAGCTCATC
NCAM1 1639 CTCAGCCTCGTCGTTCTTATCCACC 1640 TAGTTCCCAGCTGACCATCAAAAAGGTGGATAAGAACGACGAG
GCTGAGTACATCTGCATTGCTGAGAACAAGGCTG
NCAPD3 1643 CTACTGTCCGCAGCAAGGCACTGT 1644 TCGTTGCTTAGACAAGGCGCCTACTGTCCGCAGCAAGGCACT
GTCCAGCTTTGCACACTGTCTGGAG
NCOR1 1647 CCAGGCTCAGTCTGTCCATCATCA 1648 AACCGTTACAGCCCAGAATCCCAGGCTCAGTCTGTCCATCATC
AAAGACCAGGTTCAAGGGTCTCTCCAGA
NCOR2 1651 CCTCATAGGACAAGACGTGGCCCT 1652 CGTCATCTACGAAGGCAAGAAGGGCCACGTCTTGTCCTATGA
GGGTGGCATGTCTGTGACCCAGTGCTC
NDRG1 1655 CTGCAAGGACACTCATCACAGCCA 1656 AGGGCAACATTCCACAGCTGCCCTGGCTGTGATGAGTGTCCTT
GCAGGGGCCGGAGTAGGAGCACTG
NDUFS5 1659 TGTCCAAGAAAGGCATGGCTACCC 1660 AGAAGAGTCAAGGGCACGAGCATCGGGTAGCCATGCCTTTCT
TGGACATCCAGAAAAGGTTCGGCCT
NEK2 1663 TGCCTTCCCGGGCTGAGGACT 1664 GTGAGGCAGCGCGACTCTGGCGACTGGCCGGCCATGCCTTCC
CGGGCTGAGGACTATGAAGTGTTGTACACCATTGGCA
NETO2 1667 AGCCAACCCTTTTCTCCCATCACA 1668 CCAGGGCACCATACTGTTTCCAGCAGCCAACCCTTTTCTCCCA
TCACAACTACGAAGACCTTGATTTACCGTT
NEXN 1671 TCATCTTCAGCAGTGGAGCCATTCA 1672 AGGAGGAGGAAGAAGGTAGCATCATGAATGGCTCCACTGCTG
AAGATGAAGAGCAAACCAGATCAGGAGCTC
NFAT5 1675 CGAGAATCAGTCCCCGTGGAGTTC 1676 CTGAACCCCTCTCCTGGTCACCGAGAATCAGTCCCCGTGGAG
TTCCCCCTCCACCTCGCCATCGTTTCCT
NFATC2 1679 CGGGTTCCTACCCCACAGTCATTC 1680 CAGTCAAGGTCAGAGGCTGAGCCCGGGTTCCTACCCCACAGT
CATTCAGCAGCAGAATGCCACGAGCCAAAG
NFKB1 1683 AAGCTGTAAACATGAGCCGCACCA 1684 CAGACCAAGGAGATGGACCTCAGCGTGGTGCGGCTCATGTTT
ACAGCTTTTCTTCCGGATAGCACTGGCAGCT
NFKBIA 1687 CTCGTCTTTCATGGAGTCCAGGCC 1688 CTACTGGACGACCGCCACGACAGCGGCCTGGACTCCATGAAA
GACGAGGAGTACGAGCAGATGGTCAAGG
NME1 1691 CCTGGGACCATCCGTGGAGACTTCT 1692 CCAACCCTGCAGACTCCAAGCCTGGGACCATCCGTGGAGACT
TCTGCATACAAGTTGGCAGGAACATTATACAT
NNMT 1695 CCCTCTCCTCATGCCCAGACTCTC 1696 CCTAGGGCAGGGATGGAGAGAGAGTCTGGGCATGAGGAGAG
GGTCTCGGGATGTTTGGCTGGACTAG
NOS3 1699 TTCACTCGCTTCGCCATCACCG 1700 ATCTCCGCCTCGCTCATGGGCACGGTGATGGCGAAGCGAGTG
AAGGCGACAATCCTGTATGGCTCCGA
NOX4 1703 CCGAACACTCTTGGCTTACCTCCG 1704 CCTCAACTGCAGCCTTATCCTTTTACCCATGTGCCGAACACTC
TTGGCTTACCTCCGAGGATCACAGAAGGTTCCAAGCA
NPBWR1 1707 ATCGCCGACGAGCTCTTCACG 1708 TCACCAACCTGTTCATCCTCAACCTGGCCATCGCCGACGAGCT
CTTCACGCTGGTGCTGCCCATCAACATC
NPM1 1711 AACAGGCATTTTGGACAACACATTCTTG 1712 AATGTTGTCCAGGTTCTATTGCCAAGAATGTGTTGTCCAAAATG
CCTGTTTAGTTTTTAAAGATGGAACTCCACCCTTTGCTTG
NRG1 1715 ATGACCACCCCGGCTCGTATGTCA 1716 CGAGACTCTCCTCATAGTGAAAGGTATGTGTCAGCCATGACCA
CCCCGGCTCGTATGTCACCTGTAGATTTCCACACGCCAAG
NRIP3 1719 AGCTTTCTCTACCCCGGCATCTCA 1720 CCCACAAGCATGAAGGAGAAAAGCTTTCTCTACCCCGGCATCT
CAAAGTAGTGGGCCAGATTGAGCA
NRP1 1723 CAGGATCTACCCCGAGAGAGCCACTCAT 1724 CAGCTCTCTCCACGCGATTCATCAGGATCTACCCCGAGAGAG
CCACTCATGGCGGACTGGGGCTCAGAATGGAGCTGCTGGG
NUP62 1727 TCATCTGCCACCACTGGACTCTCC 1728 AGCCTCTTTGCGTCAATAGCAACTGCTCCAACCTCATCTGCCA
CCACTGGACTCTCCCTCTGTACCCCTGTGACCACAG
OAZ1 1731 CTGCTCCTCAGCGAACTCCAGGAG 1732 AGCAAGGACAGCTTTGCAGTTCTCCTGGAGTTCGCTGAGGAG
CAGCTGCGAGCCGACCATGTCTTC
OCLN 1735 CTCCTCCCTCGGTGACCAATTCAC 1736 CCCTCCCATCCGAGTTTCAGGTGAATTGGTCACCGAGGGAGG
AGGCCGACACACCACACCTACACTCCCGCGTC
ODC1 1739 CCAGCGTTGGACAAATACTTTCCGTCA 1740 AGAGATCACCGGCGTAATCAACCCAGCGTTGGACAAATACTTT
CCGTCAGACTCTGGAGTGAGAATCATAGCTGAGCCCG
OLFML2B 1743 TGGCCTGGATCTCCTGAAGCTACA 1744 CATGTTGGAAGGAGCGTTCTATGGCCTGGATCTCCTGAAGCTA
CATTCAGTCACCACCAAACTGGTG
OLFML3 1747 CAGACGATCCACTCTCCCGGAGAT 1748 TCAGAACTGAGGCCGACACCATCTCCGGGAGAGTGGATCGTC
TGGAGCGGGAGGTAGACTATCTGG
OMD 1751 TCCGATGCACATTCAGCAACTCTACC 1752 CGCAAACTCAAGACTATCCCAAATATTCCGATGCACATTCAGC
AACTCTACCTTCAGTTCAATGAAATTGAGGCTGTGACTG
OR51E1 1755 TCCTCATCTCCACCTCATCCATGC 1756 GCATGCTTTCAGGCATTGACATCCTCATCTCCACCTCATCCAT
GCCCAAAATGCTGGCCATCTTCT
OR51E2 1759 ACATAGCCAGCACCCGTGTTCTGA 1760 TATGGTGCCAAAACCAAACAGATCAGAACACGGGTGCTGGCT
ATGTTCAAGATCAGCTGTGACAAGGAC
OSM 1763 CTGAGCTGGCCTCCTATGCCTCAT 1764 GTTTCTGAAGGGGAGGTCACAGCCTGAGCTGGCCTCCTATGC
CTCATCATGTCCCAAACCAGACACCT
PAGE1 1767 CCAACTCAAAGTCAGGATTCTACACCTGC 1768 CAACCTGACGAAGTGGAATCACCAACTCAAAGTCAGGATTCTA
CACCTGCTGAAGAGAGAGAGGATGAGGGAGCATCTG
PAGE4 1771 CCAACTGACAATCAGGATATTGAACCTGG 1772 GAATCTCAGCAAGAGGAACCACCAACTGACAATCAGGATATTG
AACCTGGACAAGAGAGAGAAGGAACACCTCCGATCGAAGAAC
PAK6 1775 AGTTTCAGGAAGGCTGCCCCTCTC 1776 CCTCCAGGTCACCCACAGCCAGTTTCAGGAAGGCTGCCCCTC
TCTCCCACTAAGTTCTGGCCTGAAGGGAC
PATE1 1779 CAGCACAGTTCTTTAGGCAGCCCA 1780 TGGTAATCCCTGGTTAACCTTCATGGGCTGCCTAAAGAACTGT
GCTGATGTGAAAGGCATAAGGTGGA
PCA3 1783 CTGAGATGCTCCCTGCCTTCAGTG 1784 CGTGATTGTCAGGAGCAAGACCTGAGATGCTCCCTGCCTTCAG
TGTCCTCTGCATCTCCCCTTTCT
PCDHGB7 1787 ATTCTTAAACAGCAAGCCCCGCC 1788 CCCAGCGTTGAAGCAGATAAGAAGATTCTTAAACAGCAAGCCC
CGCCCAACACGGACTGGCGTTTC
PCNA 1791 ATCCCAGCAGGCCTCGTTGATGAG 1792 GAAGGTGTTGGAGGCACTCAAGGACCTCATCAACGAGGCCTG
CTGGGATATTAGCTCCAGCGGTGTAAACC
PDE9A 1795 TACATCATCTGGGCCACGCAGAAG 1796 TTCCACAACTTCCGGCACTGCTTCTGCGTGGCCCAGATGATGT
ACAGCATGGTCTGGCTCTGCAGTCT
PDGFRB 1799 ATCAATGTCCCTGTCCGAGTGCTG 1800 CCAGCTCTCCTTCCAGCTACAGATCAATGTCCCTGTCCGAGTG
CTGGAGCTAAGTGAGAGCCACCC
PECAM1 1803 TTTATGAACCTGCCCTGCTCCCACA 1804 TGTATTTCAAGACCTCTGTGCACTTATTTATGAACCTGCCCTGC
TCCCACAGAACACAGCAATTCCTCAGGCTAA
PEX10 1807 CTACCTTCGGCACTACCGCTGAGC 1808 GGAGAAGTTCCCTCCCCAGAAGCTCATCTACCTTCGGCACTAC
CGCTGAGCCGGCGCCCGGGTGGGCCTGGACACAGAT
PGD 1811 ACTGCCCTCTCCTTCTATGACGGGT 1812 ATTCCCATGCCCTGTTTTACCACTGCCCTCTCCTTCTATGACGG
GTACAGACATGAGATGCTTCCAGCCAG
PGF 1815 ATCTTCTCAGACGTCCCGAGCCAG 1816 GTGGTTTTCCCTCGGAGCCCCCTGGCTCGGGACGTCTGAGAA
GATGCCGGTCATGAGGCTGTTCCCTTGCT
PGK1 1819 TCTCTGCTGGGCAAGGATGTTCTGTTC 1820 AGAGCCAGTTGCTGTAGAACTCAAATCTCTGCTGGGCAAGGAT
GTTCTGTTCTTGAAGGACTGTGTAGGCCCAG
PGR 1823 TAAATTGCCGTCGCAGCCGCA 1824 GATAAAGGAGCCGCGTGTCACTAAATTGCCGTCGCAGCCGCA
GCCACTCAAGTGCCGGACTTGTGA
PHTF2 1827 ACAATCTGGCAATGCACAGTTCCC 1828 GATATGGCTGATGCTGCTCCTGGGAACTGTGCATTGCCAGATT
GTTTCCACAAGAACACCCAAACC
PIK3C2A 1831 TGTGCTGTGACTGGACTTAACAAATAGC 1832 ATACCAATCACCGCACAAACCCAGGCTATTTGTTAAGTCCAGT
CT CACAGCACAAAGAAACATATGCGGAGAAAATGCTAGTGTG
PIK3CA 1835 TCCTGCTTCTCGGGATACAGACCA 1836 GTGATTGAAGAGCATGCCAATTGGTCTGTATCCCGAGAAGCAG
GATTTAGCTATTCCCACGCAGGAC
PIK3CG 1839 TTCTGGACAATTACTGCCACCCGA 1840 GGAGAACTCAATGTCCATCTCCATTCTTCTGGACAATTACTGC
CACCCGATAGCCCTGCCTAAGCATCA
PIM1 1843 TACACTCGGGTCCCATCGAAGTCC 1844 CTGCTCAAGGACACCGTCTACACGGACTTCGATGGGACCCGA
GTGTATAGCCCTCCAGAGTGGATCC
PLA2G7 1847 TGGCAATACATAAATCCTGTTGCCCA 1848 CCTGGCTGTGGTTTATCCTTTTGACTGGCAATACATAAATCCTG
TTGCCCATATGAAATCATCAGCATGGGTCA
PLAU 1851 AAGCCAGGCGTCTACACGAGAGTCTCAC 1852 GTGGATGTGCCCTGAAGGACAAGCCAGGCGTCTACACGAGAG
TCTCACACTTCTTACCCTGGATCCGCAG
PLAUR 1855 CATTGACTGCCGAGGCCCCATG 1856 CCCATGGATGCTCCTCTGAAGAGACTTTCCTCATTGACTGCCG
AGGCCCCATGAATCAATGTCTGGTAGCCACCGG
PLG 1859 TGCCAGGCCTGGGACTCTCA 1860 GGCAAAATTTCCAAGACCATGTCTGGACTGGAATGCCAGGCCT
GGGACTCTCAGAGCCCACACGCTCATGGATACAT
PLK1 1863 AACCCCGTGGCCGCCTCC 1864 AATGAATACAGTATTCCCAAGCACATCAACCCCGTGGCCGCCT
CCCTCATCCAGAAGATGCTTCAGACA
PLOD2 1867 TCCAGCCTTTTCGTGGTGACTCAA 1868 CAGGGAGGTGGTTGCAAATTTCTAAGGTACAATTGCTCTATTG
AGTCACCACGAAAAGGCTGGAGCTTCATGCATCCTGGGAGA
PLP2 1871 ACACCAGGCTACTCCTCCCTGTCG 1872 CCTGATCTGCTTCAGTGCCTCCACACCAGGCTACTCCTCCCTG
TCGGTGATTGAGATGATCCTTGCTGC
PNLIPRP2 1875 ACCCGTGCCTCCAGTCCACAC 1876 TGGAGAAGGTGAACTGCATCTGTGTGGACTGGAGGCACGGGT
CCCGGGCAATGTACACCCAAGCCGTG
POSTN 1879 TTCTCCATCTGGCCTCAGAGCAGA 1880 GTGGCCCAATTAGGCTTGGCATCTGCTCTGAGGCCAGATGGA
GAATACACTTTGCTGGCACCTGTGA
PPAP2B 1883 ACCAGGGCTCCTTGAGCAAATCCT 1884 ACAAGCACCATCCCAGTGATGTTCTGGCAGGATTTGCTCAAGG
AGCCCTGGTGGCCTGCTGCATAGTTTTCTTCGTG
PPFIA3 1887 CACCCACTTTACCTTCTGGTGCCC 1888 CCTGGAGCTCCGTTACTCTCAGGCACCCACTTTACCTTCTGGT
GCCCACCTGGATCCCTATGTGGCT
PPP1R12A 1891 CCGTTCTTCTTCCTTTCGAGCTGC 1892 CGGCAAGGGGTTGATATAGAAGCAGCTCGAAAGGAAGAAGAA
CGGATCATGCTTAGAGATGCCAGGCA
PPP3CA 1895 TACATGCGGTACCCTGCATCTTGG 1896 ATACTCCGAGCCCACGAAGCCCAAGATGCAGGGTACCGCATG
TACAGGAAAAGCCAAACAACAGGCTTCC
PRIMA1 1899 TGACGCATCCAGGGCTCTAGTCTG 1900 ATCCTCTTCCCTGAGCCGCTGACGCATCCAGGGCTCTAGTCTG
CACATAAATTCCCTCTCAGCTGGG
PRKAR1B 1903 AAGGCCATCTCCAAGAACGTGCTC 1904 ACAAAACCATGACTGCGCTGGCCAAGGCCATCTCCAAGAACG
TGCTCTTCGCTCACCTGGATGACA
PRKAR2B 1907 CGAACTGGCCTTAATGTACAATACACCCA 1908 TGATAATCGTGGGAGTTTCGGCGAACTGGCCTTAATGTACAAT
ACACCCAGAGCAGCTACAATCACTGCTACCTCTCCTGGTGC
PRKCA 1911 CAGCCTCTGCGGAATGGATCACACT 1912 CAAGCAATGCGTCATCAATGTCCCCAGCCTCTGCGGAATGGAT
CACACTGAGAAGAGGGGGCGGATTTAC
PRKCB 1915 CCAGACCATGGACCGCCTGTACTT 1916 GACCCAGCTCCACTCCTGCTTCCAGACCATGGACCGCCTGTA
CTTTGTGATGGAGTACGTGAATGGG
PROM1 1919 ACCCGAGGCTGTGTCTCCAACAC 1920 CTATGACAGGCATGCCACCCCGACCACCCGAGGCTGTGTCTC
CAACACCGGAGGCGTCTTCCTCATGGTTGGAG
PROS1 1923 CTCATCCTGACAGACTGCAGCTGC 1924 GCAGCACAGGAATCTTCTTCTTGGCAGCTGCAGTCTGTCAGGA
TGAGATATCAGATTAGGTTGGATAGGTGGG
PSCA 1927 CCTGTGAGTCATCCACGCAGTTCA 1928 ACCGTCATCAGCAAAGGCTGCAGCTTGAACTGCGTGGATGAC
TCACAGGACTACTACGTGGGCAAGAAGAACATCACG
PSMD13 1931 CCTGAAGTGTCAGCTGATGCCACA 1932 GGAGGAGCTCTACACGAAGAAGTTGTGGCATCAGCTGACACT
TCAGGTGCTTGATTTTGTGCAGGATCCG
PTCH1 1935 CCTGAAACAAGGCTGAGAATCCCG 1936 CCACGACAAAGCCGACTACATGCCTGAAACAAGGCTGAGAAT
CCCGGCAGCAGAGCCCATCGAGTA
PTEN 1939 CCTTTCCAGCTTTACAGTGAATTGCTGCA 1940 TGGCTAAGTGAAGATGACAATCATGTTGCAGCAATTCACTGTA
AAGCTGGAAAGGGACGAACTGGTGTAATGATATGTGCA
PTGER3 1943 CCTTTGCCTTCCTGGGGCTCTT 1944 TAACTGGGGCAACCTTTTCTTCGCCTCTGCCTTTGCCTTCCTG
GGGCTCTTGGCGCTGACAGTCACCTTTTCCTGCAA
PTGS2 1947 CCTACCACCAGCAACCCTGCCA 1948 GAATCATTCACCAGGCAAATTGCTGGCAGGGTTGCTGGTGGTA
GGAATGTTCCACCCGCAGTACAG
PTH1R 1951 CCAGTGCCAGTGTCCAGCGGCT 1952 CGAGGTACAAGCTGAGATCAAGAAATCTTGGAGCCGCTGGAC
ACTGGCACTGGACTTCAAGCGAAAGGCACGC
PTHLH 1955 TGACACCTCCACAACGTCGCTGGA 1956 AGTGACTGGGAGTGGGCTAGAAGGGGACCACCTGTCTGACAC
CTCCACAACGTCGCTGGAGCTCGATTCACGGTAACAGGCTT
PTK2 1959 ACCAGGCCCGTCACATTCTCGTAC 1960 GACCGGTCGAATGATAAGGTGTACGAGAATGTGACGGGCCTG
GTGAAAGCTGTCATCGAGATGTCCAG
PTK2B 1963 CTCCGCAAACCAACCTCCTGGCT 1964 CAAGCCCAGCCGACCTAAGTACAGACCCCCTCCGCAAACCAA
CCTCCTGGCTCCAAAGCTGCAGTTCCAGGTTC
PTK6 1967 AGTGTCTGCGTCCAATACACGCGT 1968 GTGCAGGAAAGGTTCACAAATGTGGAGTGTCTGCGTCCAATAC
ACGCGTGTGCTCCTCTCCTTACTCCATCGTGTGTGC
PTK7 1971 CGCAAGGTCCCATTCTTGAAGACC 1972 TCAGAGGACTCACGGTTCGAGGTCTTCAAGAATGGGACCTTGC
GCATCAACAGCGTGGAGGTGTATG
PTPN1 1975 CTGATCCAGACAGCCGACCAGCT 1976 AATGAGGAAGTTTCGGATGGGGCTGATCCAGACAGCCGACCA
GCTGCGCTTCTCCTACCTGGCTGTGATCGAAG
PTPRK 1979 CCCCATCGTTGTACATTGCAGTGC 1980 TCAAACCCTCCCAGTGCTGGCCCCATCGTTGTACATTGCAGTG
CTGGTGCTGGACGAACTGGCTGCT
PTTG1 1983 CACACGGGTGCCTGGTTCTCCA 1984 GGCTACTCTGATCTATGTTGATAAGGAAAATGGAGAACCAGGC
ACCCGTGTGGTTGCTAAGGATGGGCTGAAGC
PYCARD 1987 ACGTTTGTGACCCTCGCGATAAGC 1988 CTTTATAGACCAGCACCGGGCTGCGCTTATCGCGAGGGTCAC
AAACGTTGAGTGGCTGCTGGATGCT
RAB27A 1991 ACAAATTGCTTCTCACCATCCCCATT 1992 TGAGAGATTAATGGGCATTGTGTACAAATTGCTTCTCACCATCC
CCATTAGACCTACGAATAAAGCATCCGG
RAB30 1995 CCATCAGGGCAGTTGCTGATTCCT 1996 TAAAGGCTGAGGCACGGAGAAGAAAAGGAATCAGCAACTGCC
CTGATGGGCCATGAGATGCTGGGGAG
RAB31 1999 CTTCTCAAAGTGAGGTGCCAGGCC 2000 CTGAAGGACCCTACGCTCGGTGGCCTGGCACCTCACTTTGAG
AAGAGTGAGCACACTGGCTTTGCAT
RAD21 2003 CACTTAAAACGAATCTCAAGAGGGTGAC 2004 TAGGGATGGTATCTGAAACAACAATGGTCACCCTCTTGAGATT
CA CGTTTTAAGTGTAATTCCATAATGAGCAGAGGTGTACGCGA
RAD51 2007 CTTTCAGCCAGGCAGATGCACTTG 2008 AGACTACTCGGGTCGAGGTGAGCTTTCAGCCAGGCAGATGCA
CTTGGCCAGGTTTCTGCGGATGCT
RAD9A 2011 CTTTGCTGGACGGCCACTTTGTCT 2012 GCCATCTTCACCATCAAGGACTCTTTGCTGGACGGCCACTTTG
TCTTGGCCACACTCTCAGACACCG
RAF1 2015 TCCAGGATGCCTGTTAGTTCTCAGCA 2016 CGTCGTATGCGAGAGTCTGTTTCCAGGATGCCTGTTAGTTCTC
AGCACAGATATTCTACACCTCACGCCTTCA
RAGE 2019 CCGGAGTGTCTATTCCAAGCAGCC 2020 ATTAGGGGACTTTGGCTCCTGCCGGAGTGTCTATTCCAAGCAG
CCGTACACGGAATACATCTCCACCC
RALA 2023 TTGTGTTTCTTGGGCAGTCTTTCTTGAA 2024 TGGTCCTGAATGTAGCGTGTAAGCTTGTGTTTCTTGGGCAGTC
TTTCTTGAAATTGAAGAGGTGAAATGGGG
RALBP1 2027 TGCTGTCCTGTCGGTCTCAGTACGTTCA 2028 GGTGTCAGATATAAATGTGCAAATGCCTTCTTGCTGTCCTGTC
GGTCTCAGTACGTTCACTTTATAGCTGCTGGCAATATCGAA
RAP1B 2031 CACGCATGATGCAAGCTTGTCAAA 2032 TGACAGCGTGAGAGGTACTAGGTTTTGACAAGCTTGCATCATG
CGTGAGTATAAGCTAGTCGTTCTTGGCTCAG
RARB 2035 TGTGCTCTGCTGTGTTCCCACTTG 2036 ATGAACCCTTGACCCCAAGTTCAAGTGGGAACACAGCAGAGC
ACAGTCCTAGCATCTCACCCAGCTC
RASSF1 2039 CACCACCAAGAACTTTCGCAGCAG 2040 AGGGCACGTGAAGTCATTGAGGCCCTGCTGCGAAAGTTCTTG
GTGGTGGATGACCCCCGCAAGTTTGCACTCTTT
RB1 2043 CCCTTACGGATTCCTGGAGGGAAC 2044 CGAAGCCCTTACAAGTTTCCTAGTTCACCCTTACGGATTCCTG
GAGGGAACATCTATATTTCACCCCTGAAGAGTCC
RECK 2047 TCAAGTGTCCTTCGCTCTTGGCAG 2048 GTCGCCGAGTGTGCTTCTGTCAAGTGTCCTTCGCTCTTGGCAG
CTGGATGCAAACCCATCATCCCAC
REG4 2051 TCCTCTTCCTTTCTGCTAGCCTGGC 2052 TGCTAACTCCTGCACAGCCCCGTCCTCTTCCTTTCTGCTAGCC
TGGCTAAATCTGCTCATTATTTCAGAGGGGAAACCTAGCA
RELA 2055 CTGAGCTCTGCCCGGACCGCT 2056 CTGCCGGGATGGCTTCTATGAGGCTGAGCTCTGCCCGGACCG
CTGCATCCACAGTTTCCAGAACCTGG
RFX1 2059 TCCAATGGACCAAGCACTGTGACA 2060 TCCTCTCCAAGTTCGAGCCCGTGCTCCAATGGACCAAGCACTG
TGACAACGTGCTGTACCAGGGCCTG
RGS10 2063 AGTTCCAGCAGCAGCCACCAGAG 2064 AGACATCCACGACAGCGATGGCAGTTCCAGCAGCAGCCACCA
GAGCCTCAAGAGCACAGCCAAATGG
RGS7 2067 TGAAAATGAACTCCCACTTCCGGG 2068 CAGGCTGCAGAGAGCATTTGCCCGGAAGTGGGAGTTCATTTTC
ATGCAAGCAGAAGCACAAGCAAA
RHOA 2071 AAATGGGCTCAACCAGAAAAGCCC 2072 TGGCATAGCTCTGGGGTGGGCAGTTTTTTGAAAATGGGCTCAA
CCAGAAAAGCCCAAGTTCATGCAGCTGTGGCA
RHOB 2075 CTTTCCAACCCCTGGGGAAGACAT 2076 AAGCATGAACAGGACTTGACCATCTTTCCAACCCCTGGGGAAG
ACATTTGCAACTGACTTGGGGAGG
RHOC 2079 TCCGGTTCGCCATGTCCCG 2080 CCCGTTCGGTCTGAGGAAGGCCGGGACATGGCGAACCGGATC
AGTGCCTTTGGCTACCTTGAGTGCTC
RLN1 2083 TGAGAGGCAACCATCATTACCAGAGC 2084 AGCTGAAGGCAGCCCTATCTGAGAGGCAACCATCATTACCAG
AGCTACAGCAGTATGTACCTGCATTAAAGGATTCCAA
RND3 2087 TTTTAAGCCTGACTCCTCACCGCG 2088 TCGGAATTGGACTTGGGAGGCGCGGTGAGGAGTCAGGCTTAA
AACTTGTTGGAGGGGAGTAACCAG
RNF114 2091 CCAGGTCAGCCCTTCTCTTCCCTT 2092 TGACAGGGGAAGTGGGTCCCCAGGTCAGCCCTTCTCTTCCCT
TTGGGCTCTTGCCAAAGCTGTCTTCC
ROBO2 2095 CTGTACCATCCACTGCCAGCGTTT 2096 CTACAAGGCCCAGCCAACCAAACGCTGGCAGTGGATGGTACA
GCGTTACTGAAATGTAAAGCCACTGGTG
RRM1 2099 CATTGGAATTGCCATTAGTCCCAGC 2100 GGGCTACTGGCAGCTACATTGCTGGGACTAATGGCAATTCCAA
TGGCCTTGTACCGATGCTGAGAG
RRM2 2103 CCAGCACAGCCAGTTAAAAGATGCA 2104 CAGCGGGATTAAACAGTCCTTTAACCAGCACAGCCAGTTAAAA
GATGCAGCCTCACTGCTTCAACGCAGAT
S100P 2107 TTGCTCAAGGACCTGGACGCCAA 2108 AGACAAGGATGCCGTGGATAAATTGCTCAAGGACCTGGACGC
CAATGGAGATGCCCAGGTGGACTTC
SAT1 2111 TCCAGTGCTCTTTCGGCACTTCTG 2112 CCTTTTACCACTGCCTGGTTGCAGAAGTGCCGAAAGAGCACTG
GACTCCGGAAGGACACAGCATTGT
SCUBE2 2115 CAGGCCCTCTTCCGAGCGGT 2116 TGACAATCAGCACACCTGCATTCACCGCTCGGAAGAGGGCCT
GAGCTGCATGAATAAGGATCACGGCTGTAGTCACA
SDC1 2119 CTCTGAGCGCCTCCATCCAAGG 2120 GAAATTGACGAGGGGTGTCTTGGGCAGAGCTGGCTCTGAGCG
CCTCCATCCAAGGCCAGGTTCTCCGTTAGCTCCT
SDC2 2123 AACTCCATCTCCTTCCCCAGGCAT 2124 GGATTGAAGTGGCTGGAAAGAGTGATGCCTGGGGAAGGAGAT
GGAGTTATGAGGGTACTGTGGCTGGT
SDHC 2127 TTACATCCTCCCTCTCCCCGCAAT 2128 CTTCCCTCGGGTCTCAGGCATTTACATCCTCCCTCTCCCCGCA
ATCTGACCTTTACCAGGAGGGAA
SEC14L1 2131 CGGGCTTCTACATCCTGCAGTGG 2132 AGGGTTCCCATGTGACCAGGTGGCCGGGCTTCTACATCCTGC
AGTGGAAATTCCACAGCATGCCTGC
SEC23A 2135 TCCTGGAGATGAAATGCTGTCCCA 2136 CGTGTGCATTAGATCAGACAGGTCTCCTGGAGATGAAATGCTG
TCCCAACCTTACTGGAGGATACATGGTAATGGG
SEMA3A 2139 TTGCCAATAGACCAGCGCTCTCTG 2140 TTGGAATGCAGTCCGAAGTCGCAGAGAGCGCTGGTCTATTGG
CAATTCCAGAGGCGAAATGAAGAG
SEPT9 2143 TTGCCAATAGACCAGCGCTCTCTG 2144 CAGTGACCACGAGTACCAGGTCAACGGCAAGAGGATCCTTGG
GAGGAAGACCAAGTGGGGTACCATCGAAG
SERPINA3 2147 AGGGAATCGCTGTCACCTTCCAAG 2148 GTGTGGCCCTGTCTGCTTATCCTTGGAAGGTGACAGCGATTCC
CTGTGTAGCTCTCACATGCACAGGG
SERPINB5 2151 AGCTGACAACAGTGTGAACGACCAGACC 2152 CAGATGGCCACTTTGAGAACATTTTAGCTGACAACAGTGTGAA
CGACCAGACCAAAATCCTTGTGGTTAATGCTGCC
SESN3 2155 TGCTCTTCTCCTCGTCTGGCAAAG 2156 GACCCTGGTTTTGGGTATGAAGACTTTGCCAGACGAGGAGAA
GAGCATTTGCCAACATTCCGAGCTC
SFRP4 2159 CCTGGGACAGCCTATGTAAGGCCA 2160 TACAGGATGAGGCTGGGCATTGCCTGGGACAGCCTATGTAAG
GCCATGTGCCCCTTGCCCTAACAAC
SH3RF2 2163 AACCGGATGGTCCATTCTCCTTCA 2164 CCATCACAACAGCCTTGAACACTCTCAACCGGATGGTCCATTC
TCCTTCAGGGCGCCATATGGTAGAGATCAGCACCCCAGTG
SH3YL1 2167 CACAGCAGTCATCTGCACCAGTCC 2168 CCTCCAAAGCCATTGTCAAGACCACAGCAGTCATCTGCACCAG
TCCAGCTGAACTCTGGCTCTCAAAG
SHH 2171 CACCGAGTTCTCTGCTTTCACCGA 2172 GTCCAAGGCACATATCCACTGCTCGGTGAAAGCAGAGAACTC
GGTGGCGGCCAAATCGGGAGGCTGCTTC
SHMT2 2175 CCATCACTGCCAACAAGAACACCTG 2176 AGCGGGTGCTAGAGCTTGTATCCATCACTGCCAACAAGAACAC
CTGTCCTGGAGACCGAAGTGCCAT
SIM2 2179 CGCCTCTCCACGCACTCAGCTAT 2180 GATGGTAGGAAGGGATGTGCCCGCCTCTCCACGCACTCAGCT
ATACCTCATTCACAGCTCCTTGTG
SIPA1L1 2183 CGCCACAATGCCCTCATAGTTGAC 2184 CTAGGACAGCTTGGCTTCCATGTCAACTATGAGGGCATTGTGG
CGGATGTGGAGCCCTACGGTTATG
SKIL 2187 CCAATCTCTGCCTCAGTTCTGCCA 2188 AGAGGCTGAATATGCAGGACAGTTGGCAGAACTGAGGCAGAG
ATTGGACCATGCTGAGGCCGATAG
SLC22A3 2191 CAGCATCCACGCATTGACACAGAC 2192 ATCGTCAGCGAGTTTGACCTTGTCTGTGTCAATGCGTGGATGC
TGGACCTCACCCAAGCCATCCTG
SLC25A21 2195 TCATGGTGCTGCATAGCAAATATCCA 2196 AAGTGTTTTTCCCCCTTGAGATAATGGATATTTGCTATGCAGCA
CCATGAAGAAGAGAGACTATCGATCGGCC
SLC44A1 2199 TACCATGGCTGCTGCTCTTCATCC 2200 AGGACCGTAGCTGCACAGACATACCATGGCTGCTGCTCTTCAT
CCTCTTCTGCATTGGGATGGGAT
SMAD4 2203 TGCATTCCAGCCTCCCATTTCCA 2204 GGACATTACTGGCCTGTTCACAATGAGCTTGCATTCCAGCCTC
CCATTTCCAATCATCCTGCTCCTGAGTATTGGT
SMARCC2 2207 TATCTTACCTCTACCGCCTGCCGC 2208 TACCGACTGAACCCCCAAGAGTATCTTACCTCTACCGCCTGCC
GCCGAAACCTAGCGGGTGATGTC
SMARCD1 2211 CCCACCCTTGCTGTGTTGAGTCTG 2212 CCGAGTTAGCATATCCCAGGCTCGCAGACTCAACACAGCAAG
GGTGGGAGACAGCTGGGCACAAAGG
SMO 2215 CTTCACAGAGGCTGAGCACCAGGA 2216 GGCATCCAGTGCCAGAACCCGCTCTTCACAGAGGCTGAGCAC
CAGGACATGCACAGCTACATCGCG
SNAI1 2219 TCTGGATTAGAGTCCTGCAGCTCGC 2220 CCCAATCGGAAGCCTAACTACAGCGAGCTGCAGGACTCTAAT
CCAGAGTTTACCTTCCAGCAGCCCTAC
SNRPB2 2223 CCCACCTAAGGCCTACGCCGACTA 2224 CGTTTCCTGCTTTTGGTTCTTACAGTAGTCGGCGTAGGCCTTA
GGTGGGTTCGTGCGCCTTCTACCT
SOD1 2227 TTTGTCAGCAGTCACATTGCCCAA 2228 TGAAGAGAGGCATGTTGGAGACTTGGGCAATGTGACTGCTGA
CAAAGATGGTGTGGCCGATGTGTCTATT
SORBS1 2231 ATTTCCATTGGCATCAGCACTGGA 2232 GCAGATGAGTGGAGGCTTTCTTCCAGTGCTGATGCCAATGGAA
ATGCCCAGCCCTCTTCACTCGCT
SOX4 2235 CGAGTCCAGCATCTCCAACCTGGT 2236 AGATGATCTCGGGAGACTGGCTCGAGTCCAGCATCTCCAACC
TGGTTTTCACCTACTGAAGGGCGC
SPARC 2239 TGGACCAGCACCCCATTGACGG 2240 TCTTCCCTGTACACTGGCAGTTCGGCCAGCTGGACCAGCACC
CCATTGACGGGTACCTCTCCCACACCGAGCT
SPARCL1 2243 ACTTCATCCCAAGCCAGGCCTTTC 2244 GGCACAGTGCAAGTGATGACTACTTCATCCCAAGCCAGGCCTT
TCTGGAGGCCGAGAGAGCTCAATC
SPDEF 2247 ATCATCCGGAAGCCAGACATCTCC 2248 CCATCCGCCAGTATTACAAGAAGGGCATCATCCGGAAGCCAG
ACATCTCCCAGCGCCTCGTCTACCAGTTCGTGCACCC
SPINK1 2251 ACCACGTCTCTTCAGAAGCCTGGG 2252 CTGCCATATGACCCTTCCAGTCCCAGGCTTCTGAAGAGACGTG
GTAAGTGCGGTGCAGTTTTCAAC
SPINT1 2255 CTGTCGCAGTGTTCCTGGTCATCTGC 2256 ATTCCCAGCACAGGCTCTGTGGAGATGGCTGTCGCAGTGTTC
CTGGTCATCTGCATTGTGGTGGTGGTAGCCATCT
SPP1 2259 TGAATGGTGCATACAAGGCCATCC 2260 TCACACATGGAAAGCGAGGAGTTGAATGGTGCATACAAGGCC
ATCCCCGTTGCCCAGGACCTGAAC
SQLE 2263 TGGGCAAGAAAAACATCTCATTCCTTTG 2264 ATTTTCGAGGCCAAAAAATCATTTTACTGGGCAAGAAAAACATC
TCATTCCTTTGTCGTGAATATCCTTGCTCAGG
SRC 2267 AACCGCTCTGACTCCCGTCTGGTG 2268 TGAGGAGTGGTATTTTGGCAAGATCACCAGACGGGAGTCAGA
GCGGTTACTGCTCAATGCAGAGAACCCGAGAG
SRD5A1 2271 CCTCTCTCGGAGGCCACAGAGGCT 2272 GGGCTGGAATCTGTCTAGGAGCCCTCTCTCGGAGGCCACAGA
GGCTGGGGGTAGCCATTGTGCAGTCATGG
SRD5A2 2275 AGACACCACTCAGAATCCCCAGGC 2276 GTAGGTCTCCTGGCGTTCTGCCAGCTGGCCTGGGGATTCTGA
GTGGTGTCTGCTTAGAGTTTACTCCTACCCTTCCAGGGA
STS 2279 AGTCACGAGCACCCAGCGAAACTT 2280 CCTGTCCTGCCAGAGCATGGATGAAGTTTCGCTGGGTGCTCGT
GACTGGCCAGTTTTGTGCAGCTG
STAT1 2283 TGGCAGTTTTCTTCTGTCACCAAAA 2284 GGGCTCAGCTTTCAGAAGTGCTGAGTTGGCAGTTTTCTTCTGT
CACCAAAAGAGGTCTCAATGTGGACCAGCTGAACATGT
STAT3 2287 TCCTGGGAGAGATTGACCAGCA 2288 TCACATGCCACTTTGGTGTTTCATAATCTCCTGGGAGAGATTGA
CCAGCAGTATAGCCGCTTCCTGCAAG
STAT5A 2291 CGGTTGCTCTGCACTTCGGCCT 2292 GAGGCGCTCAACATGAAATTCAAGGCCGAAGTGCAGAGCAAC
CGGGGCCTGACCAAGGAGAACCTCGTGTTCCTGGC
STAT5B 2295 CAGCCAGGACAACAATGCGACGG 2296 CCAGTGGTGGTGATCGTTCATGGCAGCCAGGACAACAATGCG
ACGGCCACTGTTCTCTGGGACAATGCTTTTGC
STMN1 2299 CACGTTCTCTGCCCCGTTTCTTG 2300 AATACCCAACGCACAAATGACCGCACGTTCTCTGCCCCGTTTC
TTGCCCCAGTGTGGTTTGCATTGTCTCC
STS 2303 CTGCGTGGCTCTCGGCTTCCCA 2304 GAAGATCCCTTTCCTCCTACTGTTCTTTCTGTGGGAAGCCGAG
AGCCACGCAGCATCAAGGCCGAACATCATCC
SULF1 2307 TACCGTGCCAGCAGAAGCCAAAG 2308 TGCAGTTGTAGGGAGTCTGGTTACCGTGCCAGCAGAAGCCAA
AGAAAGAGTCAACGGCAATTCTTGAGA
SUMO1 2311 CTGACCAGGAGGCAAAACCTTCAACTGA 2312 GTGAAGCCACCGTCATCATGTCTGACCAGGAGGCAAAACCTTC
AACTGAGGACTTGGGGGATAAGAAGGAAGG
SVIL 2315 ACCCCAGGACTGATGTCAAGGCAT 2316 ACTTGCCCAGCACAAGGAAGACCCCAGGACTGATGTCAAGGC
ATACGATGTGACACGGATGGTGTC
TAF2 2319 AGCCTCCAAACACAGTGACCACCA 2320 GCGCTCCACTCTCAGTCTTTACTAAGGAATCTACAGCCTCCAA
ACACAGTGACCACCATCACCACCATCACCATGAGCACAAG
TARP 2323 TCTTCATGGTGTTCCCCTCCTGG 2324 GAGCAACACGATTCTGGGATCCCAGGAGGGGAACACCATGAA
GACTAACGACACATACATGAAATTTAGCTGGTTAACGGTGCC
TBP 2327 TACCGCAGCAAACCGCTTGGG 2328 GCCCGAAACGCCGAATATAATCCCAAGCGGTTTGCTGCGGTA
ATCATGAGGATAAGAGAGCCACG
TFDP1 2331 CGCACCAGCATGGCAATAAGCTTT 2332 TGCGAAGTGCTTTTGTTTGTTTGTTTTCGTTTGGTTAAAGCTTAT
TGCCATGCTGGTGCGGCTATGGAGACTGTCTGGAAGGC
TFF1 2335 TGCTGTTTCGACGACACCGTTCG 2336 GCCCTCCCAGTGTGCAAATAAGGGCTGCTGTTTCGACGACAC
CGTTCGTGGGGTCCCCTGGTGCTTCTATCCTAATACCATCGAC
G
TFF3 2339 CAGAAGCGCTTGCCGGGAGCAAAGG 2340 AGGCACTGTTCATCTCAGCTTTTCTGTCCCTTTGCTCCCGGCA
AGCGCTTCTGCTGAAAGTTCATATCTGGAGCCTGATG
TGFA 2343 TTGGCCTGTAATCACCTGTGCAGCCTT 2344 GGTGTGCCACAGACCTTCCTACTTGGCCTGTAATCACCTGTGC
AGCCTTTTGTGGGCCTTCAAAACTCTGTCAAGAACTCCGT
TGFB1I1 2347 CAAGATGTGGCTTCTGCAACCAGC 2348 GCTACTTTGAGCGCTTCTCGCCAAGATGTGGCTTCTGCAACCA
GCCCATCCGACACAAGATGGTGACC
TGFB2 2351 TCCTGAGCCCGAGGAAGTCCC 2352 ACCAGTCCCCCAGAAGACTATCCTGAGCCCGAGGAAGTCCCC
CCGGAGGTGATTTCCATCTACAACAGCACCAGG
TGFB3 2355 CGGCCAGATGAGCACATTGCC 2356 GGATCGAGCTCTTCCAGATCCTTCGGCCAGATGAGCACATTGC
CAAACAGCGCTATATCGGTGGC
TGFBR2 2359 TTCTGGGCTCCTGATTGCTCAAGC 2360 AACACCAATGGGTTCCATCTTTCTGGGCTCCTGATTGCTCAAG
CACAGTTTGGCCTGATGAAGAGG
THBS2 2363 TGAGTCTGCCATGACCTGTTTTCCTTCAT 2364 CAAGACTGGCTACATCAGAGTCTTAGTGCATGAAGGAAAACAG
GTCATGGCAGACTCAGGACCTATCTATGACCAAACCTACGCTG
THY1 2367 CAAGCTCCCAAGAGCTTCCAGAGC 2368 GGACAAGACCCTCTCAGGCTGTCCCAAGCTCCCAAGAGCTTC
CAGAGCTCTGACCCACAGCCTCCAA
TIAM1 2371 TGGAGCCCTTCTCCCAAGATGGTA 2372 GTCCCTGGCTGAAAATGGCCTGGAGCCCTTCTCCCAAGATGG
TACCCTAGAAGACTTCGGGAGCCC
TIMP2 2375 CCCTGGGACACCCTGAGCACCA 2376 TCACCCTCTGTGACTTCATCGTGCCCTGGGACACCCTGAGCAC
CACCCAGAAGAAGAGCCTGAACCACA
TIMP3 2379 CCAAGAACGAGTGTCTCTGGACCG 2380 CTACCTGCCTTGCTTTGTGACTTCCAAGAACGAGTGTCTCTGG
ACCGACATGCTCTCCAATTTCGGT
TK1 2383 CAAATGGCTTCCTCTGGAAGGTCCCA 2384 GCCGGGAAGACCGTAATTGTGGCTGCACTGGATGGGACCTTC
CAGAGGAAGCCATTTGGGGCCATCCTGAACCTGGTGCCGCTG
TMPRSS2 2387 AAGCACTGTGCATCACCTTGACCC 2388 GGACAGTGTGCACCTCAAAGACTAAGAAAGCACTGTGCATCAC
CTTGACCCTGGGGACCTTCCTCGTGGGAG
TMPRSS2 2391 TAAGGCTTCCTGCCGCGCTCCA 2392 GAGGCGGAGGCGGAGGGCGAGGGGCGGGGAGCGCCGCCTG
ERGA GAGCGCGGCAGGAAGCCTTATCAGTTGTGAGTGAGGACCAGT
TMPRSS2 2395 CCTGGAATAACCTGCCGCGC 2396 GAGGCGGAGGGCGAGGGGCGGGGAGCGCCGCCTGGAGCGC
ERGB GGCAGGTTATTCCAGGATCTTTGGAGACCCGAGGAA
TNF 2399 CGCTGAGATCAATCGGCCCGACTA 2400 GGAGAAGGGTGACCGACTCAGCGCTGAGATCAATCGGCCCGA
CTATCTCGACTTTGCCGAGTCTGGGCA
TNFRSF10A 2403 CAATGCTTCCAACAATTTGTTTGCTTGCC 2404 TGCACAGAGGGTGTGGGTTACACCAATGCTTCCAACAATTTGT
TTGCTTGCCTCCCATGTACAGCTTGTAAATCAGATGAAGA
TNFRSF10B 2407 CAGACTTGGTGCCCTTTGACTCC 2408 CTCTGAGACAGTGCTTCGATGACTTTGCAGACTTGGTGCCCTT
TGACTCCTGGGAGCCGCTCATGAGGAAGTTGGGCCTCATGG
TNFRSF18 2411 CCTTCTCCTCTGCCGATCGCTC 2412 CAGAAGCTGCCAGTTCCCCGAGGAAGAGCGGGGCGAGCGAT
CGGCAGAGGAGAAGGGGCGGCTGGGAGACCTGTGGGTG
TNFSF10 2415 AAGTACACGTAAGTTACAGCCACACA 2416 CTTCACAGTGCTCCTGCAGTCTCTCTGTGTGGCTGTAACTTAC
GTGTACTTTACCAACGAGCTGAAGCAGATG
TNFSF11 2419 ACATGACCAGGGACCAACCCCTC 2420 AACTGCATGTGGGCTATGGGAGGGGTTGGTCCCTGGTCATGT
GCCCCTTCGCAGCTGAAGTGGAGAGGGTGTCA
TOP2A 2423 CATATGGACTTTGACTCAGCTGTGGC 2424 AATCCAAGGGGGAGAGTGATGACTTCCATATGGACTTTGACTC
AGCTGTGGCTCCTCGGGCAAAATCTGTAC
TP53 2427 AAGTCCTGGGTGCTTCTGACGCACA 2428 CTTTGAACCCTTGCTTGCAATAGGTGTGCGTCAGAAGCACCCA
GGACTTCCATTTGCTTTGTCCCGGG
TP63 2431 CCCGGGTCTCACTGGAGCCCA 2432 CCCCAAGCAGTGCCTCTACAGTCAGTGTGGGCTCCAGTGAGA
CCCGGGGTGAGCGTGTTATTGATGCTGTGCGATTC
TPD52 2435 TCTGCTACCCACTGCCAGATGCTG 2436 GCCTGTGAGATTCCTACCTTTGTTCTGCTACCCACTGCCAGAT
GCTGCAAGCGAGGTCCAAGCACAT
TPM1 2439 TTCTCCAGCTGACCCTGGTTCTCTC 2440 TCTCTGAGCTCTGCATTTGTCTATTCTCCAGCTGACCCTGGTTC
TCTCTCTTAGCATCCTGCCTTAGAGCC
TPM2 2443 CCAAGCACATCGCTGAGGATTCAG 2444 AGGAGATGCAGCTGAAGGAGGCCAAGCACATCGCTGAGGATT
CAGACCGCAAATATGAAGAGGTGG
TPP2 2447 ATCCTGTTCAGGTGGCTGCACCTT 2448 TAACCGTGGCATCTACCTCCGAGATCCTGTTCAGGTGGCTGCA
CCTTCAGATCATGGCGTTGGCAT
TPX2 2451 CAGGTCCCATTGCCGGGCG 2452 TCAGCTGTGAGCTGCGGATACCGCCCGGCAATGGGACCTGCT
CTTAACCTCAAACCTAGGACCGT
TRA2A 2455 AACTGAGGCCAAACACTCCAAGGC 2456 GCAAATCCAGATCCCAACACTTGCCTTGGAGTGTTTGGCCTCA
GTTTGTACACAACAGAGAGGGATCTTCGTGAAG
TRAF3IP2 2459 TGGATCTGCCAACCATAGACACGG 2460 CCTCACAGGAACCGAGCAGGCCTGGATCTGCCAACCATAGAC
ACGGGATATGATTCCCAGCCCCAG
TRAM1 2463 AGTGCTGAGCCACGAATTCGTCC 2464 CAAGAAAAGCACCAAGAGCCCCCCAGTGCTGAGCCACGAATT
CGTCCTGCAGAATCACGCGGACAT
TRAP1 2467 TTCGGCGATTTCAAACACTCCAGA 2468 TTACCAGTGGCTTTCAGATGGTTCTGGAGTGTTTGAAATCGCC
GAAGCTTCGGGAGTTAGAACCGGGACA
TRIM14 2471 AACTGCCAGCTCTCAGACCCTTCC 2472 CATTCGCCTTAAGGAAAGCATAAACTGCCAGCTCTCAGACCCT
TCCAGCACCAAGCCAGGTACCTTG
TRO 2475 CCACCCAAGGCCAAATTACCAATG 2476 GCAACTGCCACCCATACAGCTACCACCCAAGGCCAAATTACCA
ATGAGACAGCCAGTATCCACACCA
TRPC6 2479 CTTCTCCCAGCTCCGAGTCCATG 2480 CGAGAGCCAGGACTATCTGCTCATGGACTCGGAGCTGGGAGA
AGACGGCTGCCCGCAAGCCCCGCTGCCTTGCTACGGCTA
TRPV6 2483 ACTTTGGGGAGCACCCTTTGTCCT 2484 CCGTAGTCCCTGCAACCTCATCTACTTTGGGGAGCACCCTTTG
TCCTTTGCTGCCTGTGTGAACAGTGAGGA
TSTA3 2487 AACGTGCACATGAACGACAACGTC 2488 CAATTTGGACTTCTGGAGGAAAAACGTGCACATGAACGACAAC
GTCCTGCACTCGGCCTTTGAGGTG
TUBB2A 2491 TCTCAGATCAATCGTGCATCCTTAGTGAA 2492 CGAGGACGAGGCTTAAAAACTTCTCAGATCAATCGTGCATCCT
TAGTGAACTTCTGTTGTCCTCAAGCATGGT
TYMP 2495 ACAGCCTGCCACTCATCACAGCC 2496 CTATATGCAGCCAGAGATGTGACAGCCACCGTGGACAGCCTG
CCACTCATCACAGCCTCCATTCTCAGTAAGAAACTCGTGG
TYMS 2499 CATCGCCAGCTACGCCCTGCTC 2500 GCCTCGGTGTGCCTTTCAACATCGCCAGCTACGCCCTGCTCAC
GTACATGATTGCGCACATCACG
UAP1 2503 TACCTGTAAACCTTTCTCGGCGCG 2504 CTGGAGACGGTCGTAGCTGCGGTCGCGCCGAGAAAGGTTTAC
AGGTACATACATTACACCCCTATTTCTACAAAGCTTGGC
UBE2C 2507 TCTGCCTTCCCTGAATCAGACAACC 2508 TGTCTGGCGATAAAGGGATTTCTGCCTTCCCTGAATCAGACAA
CCTTTTCAAATGGGTAGGGACCAT
UBE2G1 2511 TTGTCCCACCAGTGCCTCATCAGT 2512 TGACACTGAACGAGGTGGCTTTTGTCCCACCAGTGCCTCATCA
GTGTGAGGCGATTCCTCTCTGCTT
UBE2T 2515 AGGTGCTTGGAGACCATCCCTCAA 2516 TGTTCTCAAATTGCCACCAAAAGGTGCTTGGAGACCATCCCTC
AACATCGCAACTGTGTTGACCTCT
UGDH 2519 TATACAGCACACAGGGCCTGCACA 2520 GAAACTCCAGAGGGCCAGAGAGCTGTGCAGGCCCTGTGTGCT
GTATATGAGCACTGGGTTCCCAGAG
UGT2B15 2523 AAAGATGGGACTCCTCCTTTATTTCAGCA 2524 AAGCCTGAAGTGGAATGACTGAAAGATGGGACTCCTCCTTTAT
TTCAGCATGGAGGGTTTTAAATGGAGG
UGT2B17 2527 ACCCGAAGGTGCTTGGCTCCTTTA 2528 TTGAGTTTGTCATGCGCCATAAAGGAGCCAAGCACCTTCGGGT
CGCAGCCCACAACCTCACCTGGA
UHRF1 2531 CGGCCATACCCTCTTCGACTACGA 2532 CTACAGGGGCAAACAGATGGAGGACGGCCATACCCTCTTCGA
CTACGAGGTCCGCCTGAATGACACC
UTP23 2535 TCGAAATTGTCCTCATTTCAAGAATGCA 2536 GATTGCACAAAAATGCCAAGTTCGAAATTGTCCTCATTTCAAGA
ATGCAGTGAGTGGATCAGAATGTCTGCTTTCC
VCAM1 2539 CAGGCACACACAGGTGGGACACAAAT 2540 TGGCTTCAGGAGCTGAATACCCTCCCAGGCACACACAGGTGG
GACACAAATAAGGGTTTTGGAACCACTATTTTCTCATCACGACA
GCA
VCL 2543 AGTGGCAGCCACGGCGCC 2544 GATACCACAACTCCCATCAAGCTGTTGGCAGTGGCAGCCACG
GCGCCTCCTGATGCGCCTAACAGGGA
VCPIP1 2547 TGGTCCATCCTCTGCACCTGCTAC 2548 TTTCTCCCAGTACCATTCGTGATGGTCCATCCTCTGCACCTGC
TACACCTACCAAGGCTCCCTATTCA
VDR 2551 CAGCATGAAGCTAACGCCCCTTGT 2552 CCTCTCCTTCCAGCCTGAGTGCAGCATGAAGCTAACGCCCCTT
GTGCTCGAAGTGTTTGGCAATGA
VEGFA 2555 TTGCCTTGCTGCTCTACCTCCACCA 2556 CTGCTGTCTTGGGTGCATTGGAGCCTTGCCTTGCTGCTCTACC
TCCACCATGCCAAGTGGTCCCAGGCTGC
VEGFB 2559 CTGGGCAGCACCAAGTCCGGA 2560 TGACGATGGCCTGGAGTGTGTGCCCACTGGGCAGCACCAAGT
CCGGATGCAGATCCTCATGATCCGGTACC
VEGFC 2563 CCTCTCTCTCAAGGCCCCAAACCAGT 2564 CCTCAGCAAGACGTTATTTGAAATTACAGTGCCTCTCTCTCAAG
GCCCCAAACCAGTAACAATCAGTTTTGCCAATCACACTT
VIM 2567 ATTTCACGCATCTGGCGTTCCA 2568 TGCCCTTAAAGGAACCAATGAGTCCCTGGAACGCCAGATGCG
TGAAATGGAAGAGAACTTTGCCGTTGAAGC
VTI1B 2571 CGAAACCCCATGATGTCTAAGCTTCG 2572 ACGTTATGCACCCCTGTCTTTCCGAAACCCCATGATGTCTAAG
CTTCGAAACTACCGGAAGGACCTTGCTAAACTCCATCGG
WDR19 2575 CCCCTCGACGTATGTCTCCCATTC 2576 GAGTGGCCCAGATGTCCATAAGAATGGGAGACATACGTCGAG
GGGTTAACCAAGCCCTCAAGCATC
WFDC1 2579 CTATGAGTGCCACATCCTGAGCCC 2580 ACCCCTGCTCTGTCCCTCGGGCTATGAGTGCCACATCCTGAG
CCCAGGTGACGTGGCCGAAGGTAT
WISP1 2583 CGGGCTGCATCAGCACACGC 2584 AGAGGCATCCATGAACTTCACACTTGCGGGCTGCATCAGCACA
CGCTCCTATCAACCCAAGTACTGTGGAGTTTG
WNT5A 2587 TTGATGCCTGTCTTCGCGCCTTCT 2588 GTATCAGGACCACATGCAGTACATCGGAGAAGGCGCGAAGAC
AGGCATCAAAGAATGCCAGTATCAATTCCGACA
WWOX 2591 CTGCTGTTTACCTTGGCGAGGCCTTTC 2592 ATCGCAGCTGGTGGGTGTACACACTGCTGTTTACCTTGGCGAG
GCCTTTCACCAAGTCCATGCAACAGGGAGCT
XIAP 2595 TCCCCAAATTGCAGATTTATCAACGGC 2596 GCAGTTGGAAGACACAGGAAAGTATCCCCAAATTGCAGATTTA
TCAACGGCTTTTATCTTGAAAATAGTGCCACGCA
XRCC5 2599 TCTGGCTGAAGGCAGTGTCACCTC 2600 AGCCCACTTCAGCGTCTCCAGTCTGGCTGAAGGCAGTGTCAC
CTCTGTTGGAAGTGTGAATCCTGCT
YY1 2603 TTGATCTGCACCTGCTTCTGCTCC 2604 ACCCGGGCAACAAGAAGTGGGAGCAGAAGCAGGTGCAGATCA
AGACCCTGGAGGGCGAGTTCTCGGTC
ZFHX3 2607 ACCTGGCCCAACTCTACCAGCATC 2608 CTGTGGAGCCTCTGCCTGCGGACCTGGCCCAACTCTACCAGC
ATCAGCTCAATCCAACCCTGCTCC
ZFP36 2611 CAGGTCCCCAAGTGTGCAAGCTC 2612 CATTAACCCACTCCCCTGACCTCACGCTGGGGCAGGTCCCCA
AGTGTGCAAGCTCAGTATTCATGATGGTGGGGG
ZMYND8 2615 CTTTTGCAGGCCAGAATGGAAACC 2616 GGTCTGGGCCAAACTGAAGGGGTTTCCATTCTGGCCTGCAAAA
GCTCTAAGGGATAAAGACGGGCA
ZNF3 2619 AGGAGGTTCCACACTCGCCAGTTC 2620 CGAAGGGACTCTGCTCCAGTGAACTGGCGAGTGTGGAACCTC
CTGACACCTTCTGAGGACCTCCTGC
ZNF827 2623 CCCGCCTTCAGAGAAGAAACCAGA 2624 TGCCTGAGGACCCTCTACCGCCCCCGCCTTCAGAGAAGAAAC
CAGAAAAAGTCACTCCGCCACCTC
ZWINT 2627 ACCAAGGCCCTGACTCAGATGGAG 2628 TAGAGGCCATCAAAATTGGCCTCACCAAGGCCCTGACTCAGAT
GGAGGAAGCCCAGAGGAAACGGA
TABLE B
microRNA Sequence SEQ ID NO
hsa-miR-1 UGGAAUGUAAAGAAGUAUGUAU 2629
hsa-miR-103 GCAGCAUUGUACAGGGCUAUGA 2630
hsa-miR-106b UAAAGUGCUGACAGUGCAGAU 2631
hsa-miR-10a UACCCUGUAGAUCCGAAUUUGUG 2632
hsa-miR-133a UUUGGUCCCCUUCAACCAGCUG 2633
hsa-miR-141 UAACACUGUCUGGUAAAGAUGG 2634
hsa-miR-145 GUCCAGUUUUCCCAGGAAUCCCU 2635
hsa-miR-146b-5p UGAGAACUGAAUUCCAUAGGCU 2636
hsa-miR-150 UCUCCCAACCCUUGUACCAGUG 2637
hsa-miR-152 UCAGUGCAUGACAGAACUUGG 2638
hsa-miR-155 UUAAUGCUAAUCGUGAUAGGGGU 2639
hsa-miR-182 UUUGGCAAUGGUAGAACUCACACU 2640
hsa-miR-191 CAACGGAAUCCCAAAAGCAGCUG 2641
hsa-miR-19b UGUAAACAUCCUCGACUGGAAG 2642
hsa-miR-200c UAAUACUGCCGGGUAAUGAUGGA 2643
hsa-miR-205 UCCUUCAUUCCACCGGAGUCUG 2644
hsa-miR-206 UGGAAUGUAAGGAAGUGUGUGG 2645
hsa-miR-21 UAGCUUAUCAGACUGAUGUUGA 2646
hsa-miR-210 CUGUGCGUGUGACAGCGGCUGA 2647
hsa-miR-22 AAGCUGCCAGUUGAAGAACUGU 2648
hsa-miR-222 AGCUACAUCUGGCUACUGGGU 2649
hsa-miR-26a UUCAAGUAAUCCAGGAUAGGCU 2650
hsa-miR-27a UUCACAGUGGCUAAGUUCCGC 2651
hsa-miR-27b UUCACAGUGGCUAAGUUCUGC 2652
hsa-miR-29b UAGCACCAUUUGAAAUCAGUGUU 2653
hsa-miR-30a CUUUCAGUCGGAUGUUUGCAGC 2654
hsa-miR-30e-5p CUUUCAGUCGGAUGUUUACAGC 2655
hsa-miR-31 AGGCAAGAUGCUGGCAUAGCU 2656
hsa-miR-331 GCCCCUGGGCCUAUCCUAGAA 2657
hsa-miR-425 AAUGACACGAUCACUCCCGUUGA 2658
hsa-miR-449a UGGCAGUGUAUUGUUAGCUGGU 2659
hsa-miR-486-5p UCCUGUACUGAGCUGCCCCGAG 2660
hsa-miR-92a UAUUGCACUUGUCCCGGCCUGU 2661
hsa-miR-93 CAAAGUGCUGUUCGUGCAGGUAG 2662
hsa-miR-99a AACCCGUAGAUCCGAUCUUGUG 2663