ALCOHOL-BASED HEMI-FORMYLS FOR HYDROGEN SULFIDE SCAVENGING
Scavenging compounds and compositions useful in applications relating to the production, transportation, storage, and separation of crude oil and natural gas are disclosed. Also disclosed herein are methods of using the compounds and compositions as scavengers, particularly in applications relating to the production, transportation, storage, and separation of crude oil and natural gas.
Latest ECOLAB USA INC. Patents:
- Alkaline cleaning compositions comprising an alkylamino hydroxy acid and/or secondary amine and methods of reducing metal corrosion
- Deposit monitor
- Verification of cleaning processes with electronically readable coded coupon
- Solid laundry softener composition
- ADHESIVES, PROCESSES FOR MAKING AND USING SAME, AND PRODUCTS MADE THEREWITH
The present disclosure relates generally to scavengers of sulfur-based species, such as hydrogen sulfide and mercaptans.
BACKGROUNDThe removal of sulfur-based species from liquid or gaseous hydrocarbon streams is a long-standing problem in many industries. Hydrogen sulfide is a significant problem in the oil industry, particularly in the drilling, production, transportation, storage, and processing of crude oil, naphtha, fuel, and distillate oils. The same problems exist in the natural gas industry.
The presence of sulfur-containing compounds such as hydrogen sulfide can result in the deposition of sulfur containing salts, which cause plugging, and corrosion of transmission pipes, valves, regulators and other process equipment. Hydrogen sulfide is also toxic and, therefore, desirable to be removed. Even flared natural gas needs to be treated to avoid acid rain generation due to SOx formation. Also, in the manufactured gas or coke making industries, coal-gas emissions containing unacceptable levels of hydrogen sulfide are commonly produced from destructive distillation of bituminous coal.
Since hydrogen sulfide has an offensive odor, and fluids such as petroleum products and natural gas contain it, such fluids are often called “sour.” Treatments to lower hydrogen sulfide are often referred to as “sweetening” processes. When a particular compound is used to remove or lower H2S and mercaptans, it is called scavenging agent.
Despite the availability of scavengers for use in the oil and gas industry, there still exists a need for improved compounds, compositions and methods for removing sulfur-based species from liquid and gas streams. Such improvements include nitrogen-free scavengers and scavengers with increased dispersion into the sour hydrocarbon.
SUMMARYIn one aspect, a method of sweetening a fluid includes treating the fluid with an alcohol-based hemi-formyl of formula (I):
R1—O—[—CH2—O—]x—H; (I)
wherein R1 is C1-C3 alkyl; and x is from 1 to 10. In some embodiments, x is from 1 to 5 or 1 to 3. In certain embodiments, x is 1, 2 or 3.
In some embodiments, the fluid is treated with the hemi-formyl of formula (I), and x is from 1 to 12. In some embodiments, x is from 1 to 5. In some embodiments, xis 1. In some embodiments, x is 2.
In some embodiments, the hemi-formyl is oil-soluble.
In some embodiments, the hemi-formyl of formula (I) is methanolformyl. In some embodiments, the hemi-formyl of formula (I) is ethanolformyl.
In some embodiments, the fluid is selected from crude oil, naphtha, fuel, and distillate oils.
In some embodiments, the method also includes adding one or more additional components, each component independently selected from the group consisting of asphaltene inhibitors, paraffin inhibitors, corrosion inhibitors, emulsifiers, dispersants, emulsion breakers, hydrogen sulfide scavengers, gas hydrate inhibitors, surfactants, solvents, and combinations thereof.
In some embodiments, the surfactant or dispersant is selected from the group consisting of alkyl benzyl ammonium chloride, benzyl cocoalkyl(C12-C18)dimethylammonium chloride, dicocoalkyl (C12-C18)dimethylammonium chloride, ditallow dimethylammonium chloride, di(hydrogenated tallow alkyl)dimethyl quaternary ammonium methyl chloride, methyl bis(2-hydroxyethyl cocoalkyl(C12-C18) quaternary ammonium chloride, dimethyl(2-ethyl) tallow ammonium methyl sulfate, n-dodecylbenzyldimethylammonium chloride, n-octadecylbenzyldimethyl ammonium chloride, n-dodecyltrimethylammonium sulfate, soya alkyltrimethylammonium chloride, hydrogenated tallow alkyl (2-ethylhyexyl) dimethyl quaternary ammonium methyl sulfate, and combinations thereof.
In some embodiments, the method also includes adding an odorant.
In some embodiments, the fluid is produced or used in a coal-fired process, a waste-water process, a farm, a slaughter house, a land-fill, a municipality waste-water plant, a coking coal process, or a biofuel process.
In some embodiments, the method excludes adding any nitrogen-containing compounds to the fluid.
The present disclosure also provides for the use of a composition to sweeten a fluid, the composition comprising an alcohol-based hemi-formyl of formula (I):
R1—O—[—CH2—O—]x—H; (I)
wherein R1 is C1-C3 alkyl; and x is from 1 to 10. In some embodiments, x is from 1 to 5 or 1 to 3. In certain embodiments, x is 1, 2 or 3. In some embodiments, R1 is C1 or C2 alkyl.
A detailed description of the invention is hereafter described with specific reference being made to the drawings in which:
Disclosed herein are hydrogen sulfide and/or mercaptan scavenging compounds and compositions, methods of using said compounds and compositions, and processes for their preparation. The compounds and compositions are particularly useful in the control of hydrogen sulfide and/or mercaptan emissions from crude oil based, natural gas based, and coal based products and processes. The compounds and compositions are applicable to both upstream and downstream processes. The scavenging compounds and compositions, optionally blended with non-aqueous solvents, are useful in a wide range of climates and under a wide range of process conditions.
The processes for preparing the compounds and compositions of the invention are economic, waste free, and provide said compounds in quantitative yields. In certain embodiments, the compounds and compositions may be obtained in anhydrous form, thereby providing use in processes where it is desirable to minimize water content (e.g., in an oil production process such as those where the oil temperature is greater than 100° C.). Producing the compounds and compositions in anhydrous form also allows for reduced transportation costs. The anhydrous compounds and compositions can optionally be blended with hydrophilic solvents (e.g., alcohols, glycol, polyols) for non-aqueous applications.
1. DEFINITION OF TERMSUnless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art. In case of conflict, the present document, including definitions, will control.
Various methods and materials are described below, although methods and materials similar or equivalent to those described herein can be used in practice or testing in view of this disclosure. All publications, patent applications, patents and other references mentioned herein are incorporated by reference in their entirety. The materials, methods, and examples disclosed herein are illustrative only and not intended to be limiting.
The terms “comprise(s),” “include(s),” “having,” “has,” “can,” “contain(s),” and variants thereof, as used herein, are intended to be open-ended transitional phrases, terms, or words that do not preclude the possibility of additional acts or structures. The singular forms “a,” “and” and “the” include plural references unless the context clearly dictates otherwise. The present disclosure also contemplates other embodiments “comprising,” “consisting of” and “consisting essentially of,” the embodiments or elements presented herein, whether explicitly set forth or not.
Unless expressly stated to the contrary, use of the term “a” is intended to include “at least one” or “one or more.” For example, “a compound” is intended to include “at least one compound” or “one or more compounds.”
Any ranges given either in absolute terms or in approximate terms are intended to encompass both, and any definitions used herein are intended to be clarifying and not limiting. Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard deviation found in their respective testing measurements. Moreover, all ranges disclosed herein are to be understood to encompass any and all subranges (including all fractional and whole values) subsumed therein.
As used herein, the term “consisting essentially of” means that the methods and compositions may include additional steps, components, ingredients or the like, but only if the additional steps, components and/or ingredients do not materially alter the basic and novel characteristics of the claimed methods and compositions.
The term “alkyl,” as used herein, refers to a linear or branched hydrocarbon radical, a defined number of carbon atoms (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, and 30 carbons). Alkyl groups include, but are not limited to, methyl, ethyl, propyl, n-butyl, iso-butyl, secondary-butyl, and tertiary-butyl.
The term “sweetening,” as used herein, may refer to a process that removes sulfur species from a gas or liquid. The sulfur species may include hydrogen sulfide and mercaptans.
The term “sour gas,” as used herein, may refer to a gas that includes significant amounts of sulfur species, such as hydrogen sulfide and/or mercaptans.
The term “sour liquid” or “sour fluid,” as used herein, may refer to a liquid that includes significant amounts of sulfur species, such as hydrogen sulfide and/or mercaptans.
2. COMPOUNDSCompounds disclosed herein include scavengers of sulfur-based species, such as hydrogen sulfide and mercaptans. In one aspect, compounds disclosed herein are of formula (I): (I) R1—O—[—CH2—O—]x—H where R1 is C1-C3 alkyl and x is from 1 to 10. In some embodiments, x is from 1 to 5 or 1 to 3. In certain embodiments, x is 1, 2 or 3.
The unit [—CH2—O—] represents a formaldehye (i.e. when x is 1) and paraformaldehyde (when x is greater than 1). Thus, the molecular weight of the compounds of formula I depends upon both the selection of R1 as well as number of hemi-formyl units present.
Applicant has found that using mono-functionalized, primary alcohols results in products that have increased effectiveness in an oil phase. In some embodiments, R1 is C1 alkyl, C2 alkyl, or C3 alkyl.
In some embodiments, the compounds of formula I are not corrosive to steel or other iron alloys.
The compounds of formula I may be prepared by mixing an alkyl alcohol of the formula R1—OH, where R1 is an alkyl group among the options described above, with formaldehyde in the presence of a catalyst, for example, an alkaline catalyst or an acid catalyst, such as dodecyl benzene sulfonic acid. The resulting hemi-formyl may have a single hemi-formyl unit where a single unit of formaldehyde reacts with the alkyl alcohol or multiple hemi-formyl units where multiple units of formaldehyde react with the alkyl alcohol and resulting hemi-formyls.
3. COMPOSITIONSThe compositions disclosed herein include at least one compound as described above. In some embodiments, a composition disclosed herein contains a pure composition of a compound of formula I. In other embodiments, a composition disclosed herein contains a mixture of two or more structurally distinct compounds of formula I.
In some embodiments, a composition comprises from about 20 to about 100 percent by weight of one or more compounds disclosed herein, or from about 20 to about 98 percent by weight of one or more compounds disclosed herein, or from about 50 to 98 percent by weight of one or more compounds disclosed herein, or from about 70 to about 98 percent by weight of one or more compounds disclosed herein.
The compositions disclosed herein can optionally include one or more additives. Suitable additives include, but are not limited to, asphaltene inhibitors, paraffin inhibitors, corrosion inhibitors, scale inhibitors, emulsifiers, dispersants, emulsion breakers, hydrogen sulfide scavengers, gas hydrate inhibitors, surfactants, solvents, and combinations thereof.
a. Asphaltene Inhibitors
Suitable asphaltene inhibitors include, but are not limited to, aliphatic sulphonic acids; alkyl aryl sulphonic acids; aryl sulfonates; lignosulfonates; alkylphenol/aldehyde resins and similar sulfonated resins; polyolefin esters; polyolefin imides; polyolefin esters with alkyl, alkylenephenyl or alkylenepyridyl functional groups; polyolefin amides; polyolefin amides with alkyl, alkylenephenyl or alkylenepyridyl functional groups; polyolefin imides with alkyl, alkylenephenyl or alkylenepyridyl functional groups; alkenyl/vinyl pyrrolidone copolymers; graft polymers of polyolefins with maleic anhydride or vinyl imidazole; hyperbranched polyester amides; polyalkoxylated asphaltenes, amphoteric fatty acids, salts of alkyl succinates, sorbitan monooleate, polyisobutylene succinic anhydride, and combinations thereof.
The amount of asphaltene inhibitor present in the composition is not particularly limited and may be selected by one of ordinary skill in the art. In some embodiments, the asphaltene inhibitor may be present in the composition in an amount of about 0 to about 30% by weight of the composition.
b. Paraffin Inhibitors
Suitable paraffin inhibitors include, but are not limited to, paraffin crystal modifiers, and dispersant/crystal modifier combinations. Suitable paraffin crystal modifiers include, but are not limited to, alkyl acrylate copolymers, alkyl acrylate vinylpyridine copolymers, ethylene vinyl acetate copolymers, maleic anhydride ester copolymers, branched polyethylenes, naphthalene, anthracene, microcrystalline wax and/or asphaltenes, and combinations thereof. Suitable paraffin inhibitors also include dodecyl benzene sulfonate, oxyalkylated alkylphenols, oxyalkylated alkylphenolic resins, and combinations thereof.
The amount of paraffin inhibitor present in the composition is not particularly limited and may be selected by one of ordinary skill in the art. In some embodiments, the paraffin inhibitor may be present in the composition in an amount of about 0 to about 20% by weight of the composition.
c. Corrosion Inhibitors
Suitable corrosion inhibitors include, but are not limited to, amidoamines, quaternary amines, amides, phosphate esters, and combinations thereof. The amount of corrosion inhibitor present in the composition is not particularly limited and may be selected by one of ordinary skill in the art. In some embodiments, the corrosion inhibitor may be present in the composition in an amount of about 0 to about 10% by weight of the composition.
d. Emulsifiers
Suitable emulsifiers include, but are not limited to, salts of carboxylic acids, products of acylation reactions between carboxylic acids or carboxylic anhydrides and amines, alkyl, acyl and amide derivatives of saccharides (alkyl-saccharide emulsifiers), and combinations thereof. The amount of emulsifier present in the composition is not particularly limited and may be selected by one of ordinary skill in the art. In some embodiments, the emulsifier may be present in the composition in an amount of about 0 to about 10% by weight of the composition.
e. Dispersants
Suitable dispersants include, but are not limited to, aliphatic phosphonic acids with 2-50 carbons, such as hydroxyethyl diphosphonic acid, and aminoalkyl phosphonic acids, e.g. polyaminomethylene phosphonates with 2-10 N atoms e.g. each bearing at least one methylene phosphonic acid group; examples of the latter are ethylenediamine tetra(methylene phosphonate), diethylenetriamine penta(methylene phosphonate) and the triamine- and tetramine-polymethylene phosphonates with 2-4 methylene groups between each N atom, at least 2 of the numbers of methylene groups in each phosphonate being different. Other suitable dispersants include lignin or derivatives of lignin such as lignosulfonate and naphthalene sulfonic acid and derivatives, and combinations thereof.
The amount of dispersant present in the composition is not particularly limited and may be selected by one of ordinary skill in the art. In some embodiments, the dispersant may be present in the composition in an amount of about 0 to about 5% by weight of the composition.
f. Emulsion Breakers
Suitable emulsion breakers include, but are not limited to, dodecylbenzylsulfonic acid (DDBSA), the sodium salt of xylenesulfonic acid (NAXSA), epoxylated and propoxylated compounds, anionic cationic and nonionic surfactants, resins such as phenolic and epoxide resins, and combinations thereof. The amount of emulsion breaker present in the composition is not particularly limited and may be selected by one of ordinary skill in the art. In some embodiments, the emulsion breaker may be present in the composition in an amount of about 0 to about 10% by weight of the composition.
g. Other Hydrogen Sulfide Scavengers
Suitable other hydrogen sulfide scavengers include, but are not limited to, oxidants (e.g., inorganic peroxides such as sodium peroxide, or chlorine dioxide) and combinations thereof. The amount of other hydrogen sulfide scavengers present in the composition is not particularly limited and may be selected by one of ordinary skill in the art. In some embodiments, the other hydrogen sulfide scavengers may be present in the composition in an amount of about 0 to about 50% by weight of the composition.
h. Gas Hydrate Inhibitors
Suitable gas hydrate inhibitors include, but are not limited to, thermodynamic hydrate inhibitors (THI), kinetic hydrate inhibitors (KHI), anti-agglomerates (AA), and combinations thereof. Suitable thermodynamic hydrate inhibitors include, but are not limited to, methylethyl benzoate), and combinations thereof. Suitable kinetic hydrate inhibitors and anti-agglomerates include, but are not limited to, polymers and copolymers, polysaccharides (such as hydroxy-ethylcellulose (HEC), carboxymethylcellulose (CMC), starch, starch derivatives, and xanthan), lactams (such as polyvinylcaprolactam, polyvinyl lactam), pyrrolidones (such as polyvinyl pyrrolidone of various molecular weights), surfactants (such as fatty acid salts, ethoxylated alcohols, propoxylated alcohols, sorbitan esters, ethoxylated sorbitan esters, polyglycerol esters of fatty acids, alkyl glucosides, alkyl polyglucosides, alkyl sulfates, alkyl sulfonates, alkyl ester sulfonates, alkyl aromatic sulfonates, alkyl betaine, alkyl amido betaines), hydrocarbon based dispersants (such as lignosulfonates, iminodisuccinates, polyaspartates), amino acids, proteins, and combinations thereof.
The amount of gas hydrate inhibitor present in the composition is not particularly limited and may be selected by one of ordinary skill in the art. In some embodiments, the gas hydrate inhibitor may be present in the composition in an amount of about 0 to about 5% by weight of the composition.
i. Surfactants
Suitable surfactants include, but are not limited to, anionic surfactants, cationic surfactants, nonionic surfactants, and combinations thereof. Anionic surfactants include alkyl aryl sulfonates, olefin sulfonates, paraffin sulfonates, alcohol sulfates, alcohol ether sulfates, alkyl carboxylates and alkyl ether carboxylates, and alkyl and ethoxylated alkyl phosphate esters, and mono and dialkyl sulfosuccinates and sulfosuccinamates, and combinations thereof. Cationic surfactants include alkyl trimethyl quaternary ammonium salts, alkyl dimethyl benzyl quaternary ammonium salts, dialkyl dimethyl quaternary ammonium salts, imidazolinium salts, and combinations thereof. Nonionic surfactants include alcohol alkoxylates, alkylphenol alkoxylates, block copolymers of ethylene, propylene and butylene oxides, alkyl dimethyl amine oxides, alkyl-bis(2-hydroxyethyl) amine oxides, alkyl amidopropyl dimethyl amine oxides, alkylamidopropyl-bis(2-hydroxyethyl) amine oxides, alkyl polyglucosides, polyalkoxylated glycerides, sorbitan esters and polyalkoxylated sorbitan esters, and alkoyl polyethylene glycol esters and diesters, and combinations thereof. Also included are betaines and sultanes, amphoteric surfactants such as alkyl amphoacetates and amphodiacetates, alkyl amphopropripionates and amphodipropionates, alkyliminodiproprionate, and combinations thereof.
The amount of surfactant present in the composition is not particularly limited and may be selected by one of ordinary skill in the art. In some embodiments, the surfactant may be present in the composition in an amount of about 0 to about 10% by weight of the composition.
j. Solvents
Suitable solvents include, but are not limited to, isopropanol, methanol, ethanol, 2-ethylhexanol, heavy aromatic naphtha, toluene, ethylene glycol, ethylene glycol monobutyl ether (EGMBE), diethylene glycol monoethyl ether, xylene, and combinations thereof. In some embodiments, the solvent is toluene. In some embodiments, the solvent is naphtha. Representative polar solvents suitable for formulation with the composition include, alcohols (including straight chain or branched aliphatic such as methanol, ethanol, propanol, isopropanol, butanol, 2-ethylhexanol, hexanol, octanol, decanol, 2-butoxyethanol, etc.), glycols and derivatives (ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, ethylene glycol monobutyl ether, etc.), ketones (cyclohexanone, diisobutylketone), N-methylpyrrolidinone (NMP), N,N-dimethylformamide and the like. Representative of non-polar solvents suitable for formulation with the composition include aliphatics such as pentane, hexane, cyclohexane, methylcyclohexane, heptane, decane, dodecane, diesel, and the like; aromatics such as toluene, xylene, heavy aromatic naphtha, fatty acid derivatives (acids, esters, amides), and the like. In some embodiments, the solvent is monoethyleneglycol, methanol, dimethyl sulfoxide (DMSO), dimethylformamide (DMF), tetrahydrofuran (THF), or a combination thereof.
In some embodiments, a composition disclosed herein comprises from 0 to about 80 percent by weight of one or more solvents, based on the weight of the composition. In some embodiments, a composition of the invention comprises from 0 to about 50 percent by weight of one or more solvents, based on the weight of the composition. In certain embodiments, a composition comprises 20%, 25%, 30%, 35%, 40%, 45%, or 50% by weight of one or more solvents, based on the weight of the composition.
k. Odorants
In some embodiments, a composition disclosed herein comprises an odorant, such as vanillin. The amount of odorant present in the composition is not particularly limited and may be selected by one of ordinary skill in the art. In some embodiments, the odorant may be present in the composition in an amount of about 0 to about 50% by weight of the composition.
l. Additional Components
Compositions disclosed herein may further include additional functional agents or additives that provide a beneficial property. Additional agents or additives will vary according to the particular scavenging composition being manufactured and its intend use as one skilled in the art will appreciate. According to one embodiment, the scavenging compositions do not contain any of the additional agents or additives. The amount of an additional component present in the composition is not particularly limited and may be selected by one of ordinary skill in the art. In some embodiments, the additional component may be present in the composition in an amount of about 0 to about 90% by weight of the composition.
4. METHODS OF USEThe compounds and compositions disclosed herein may be used for sweetening a gas or liquid, such as a sour gas or a sour liquid. The compounds and compositions may be used for scavenging hydrogen sulfide and/or mercaptans from a gas or liquid stream by treating the stream with an effective amount of a compound or composition described herein. The compounds and compositions can be used in any industry where it is desirable to capture hydrogen sulfide and/or mercaptans from a gas or liquid stream. In certain embodiments, the compounds and compositions can be used in, condensate/oil systems/gas systems, or any combination thereof. In certain embodiments, the compounds and compositions can be applied to a gas or liquid produced or used in the production, transportation, storage, and/or separation of crude oil or natural gas. In some embodiments, the compounds and compositions can be applied to a gas stream used or produced in a coal-fired process, such as a coal-fired power plant. In certain embodiments, the compounds and compositions can be applied to a gas or liquid produced or used in a waste-water process, a farm, a slaughter house, a land-fill, a municipality waste-water plant, a coking coal process, or a biofuel process.
The compounds and compositions may be added to any fluid or gas containing hydrogen sulfide and/or a mercaptan, or a fluid or gas that may be exposed to hydrogen sulfide and/or a mercaptan. A fluid to which the compounds and compositions may be introduced may be an aqueous medium. The aqueous medium may comprise water, gas, and optionally liquid hydrocarbon. A fluid to which the compounds and compositions may be introduced may be a liquid hydrocarbon. The liquid hydrocarbon may be any type of liquid hydrocarbon including, but not limited to, crude oil, heavy oil, processed residual oil, bitminous oil, coker oils, coker gas oils, fluid catalytic cracker feeds, gas oil, naphtha, fluid catalytic cracking slurry, diesel fuel, fuel oil, jet fuel, gasoline, and kerosene. In some embodiments, the gas may be a sour gas. In some embodiments, the fluid or gas may be a refined hydrocarbon product.
A fluid or gas treated with a compound or composition of the invention may be at any selected temperature, such as ambient temperature or an elevated temperature. In some embodiments, the fluid (e.g., liquid hydrocarbon) or gas may be at a temperature of from about 40° C. to about 250° C. In some embodiments, the fluid or gas may be at a temperature of from −50° C. to 300° C., 0° C. to 200° C., 10° C. to 100° C., or 20° C. to 90° C. In some embodiments, the fluid or gas may be at a temperature of 22° C., 23° C., 24° C., 25° C., 26° C., 27° C., 28° C., 29° C., 30° C., 31° C., 32° C., 33° C., 34° C., 35° C., 36° C., 37° C., 38° C., 39° C., or 40° C. In some embodiments, the fluid or gas may be at a temperature of 85° C., 86° C., 87° C., 88° C., 89° C., 90° C., 91° C., 92° C., 93° C., 94° C., 95° C., 96° C., 97° C., 98° C., 99° C., or 100° C.
The fluid or gas in which the compounds and compositions are introduced may be contained in and/or exposed to many different types of apparatuses. For example, the fluid or gas may be contained in an apparatus that transports fluid or gas from one point to another, such as an oil and/or gas pipeline. In certain embodiments, the apparatus may be part of an oil and/or gas refinery, such as a pipeline, a separation vessel, a dehydration unit, or a gas line. The fluid may be contained in and/or exposed to an apparatus used in oil extraction and/or production, such as a wellhead. The apparatus may be part of a coal-fired power plant. The apparatus may be a scrubber (e.g., a wet flue gas desulfurizer, a spray dry absorber, a dry sorbent injector, a spray tower, a contact or bubble tower, or the like). The apparatus may be a cargo vessel, a storage vessel, a holding tank, or a pipeline connecting the tanks, vessels, or processing units. In certain embodiments, the fluid or gas may be contained in water systems, condensate/oil systems/gas systems, or any combination thereof.
The compounds or compositions may be introduced into a fluid or gas by any appropriate method for ensuring dispersal of the scavenger through the fluid or gas. The compounds and compositions may be injected using mechanical equipment such as chemical injection pumps, piping tees, injection fittings, atomizers, quills, and the like. The compounds and compositions of the invention may be introduced with or without one or more additional polar or non-polar solvents depending upon the application and requirements. In some embodiments, the compounds and compositions may be pumped into an oil and/or gas pipeline using an umbilical line. In some embodiments, capillary injection systems can be used to deliver the compounds and compositions to a selected fluid. In some embodiments, the compounds and compositions can be introduced into a liquid and mixed. In some embodiments, the compounds and compositions can be injected into a gas stream as an aqueous or nonaqueous solution, mixture, or slurry. In some embodiments, the fluid or gas may be passed through an absorption tower comprising a compound or composition.
The compounds and compositions may be applied to a fluid or gas to provide a scavenger concentration of about 1 parts per million (ppm) to about 1,000,000 ppm, about 1 ppm to about 100,000 ppm, about 10 ppm to about 75,000 ppm, about 100 ppm to about 45,000 ppm, about 500 ppm to about 40,000 ppm, about 1,000 ppm to about 35,000 ppm, about 3,000 ppm to about 30,000 ppm, about 4,000 ppm to about 25,000 ppm, about 5,000 ppm to about 20,000 ppm, about 6,000 ppm to about 15,000 ppm, or about 7,000 ppm to about 10,000 ppm. The compounds and compositions may be applied to a fluid at a concentration of about 100 ppm to about 2,000 ppm, about 200 ppm to about 1,500 ppm, or about 500 ppm to about 1000 ppm. Each system may have its own requirements, and a more sour gas (e.g., containing more hydrogen sulfide) may require a higher dose rate of a compound or composition. In some embodiments, the compounds and compositions may be applied to a fluid or gas in an equimolar amount or greater relative to hydrogen sulfide and/or mercaptans present in the fluid or gas. In some embodiments, the compounds and compositions may be applied to a fluid or gas as a neat composition (e.g., the compounds and compositions may be used neat in a contact tower).
The hydrogen sulfide and/or mercaptan in a fluid or gas may be reduced by any amount by treatment with a compound or composition. The actual amount of residual hydrogen sulfide and/or mercaptan after treatment may vary depending on the starting amount. In some embodiments, the hydrogen sulfide and/or mercaptan levels may be reduced to about 150 ppm by volume or less, as measured in the vapor phase, based on the volume of the liquid media. In some embodiments, the hydrogen sulfide levels and/or mercaptan may be reduced to 100 ppm by volume or less, as measured in the vapor phase, based on the volume of the liquid media. In some embodiments, the hydrogen sulfide and/or mercaptan levels may be reduced to 50 ppm by volume or less, as measured in the vapor phase, based on the volume of the liquid media. In some embodiments, the hydrogen sulfide and/or mercaptan levels may be reduced to 20 ppm by volume or less, as measured in the vapor phase, based on the volume of the liquid media. In some embodiments, the hydrogen sulfide and/or mercaptan levels may be reduced to 15 ppm by volume or less, as measured in the vapor phase, based on the volume of the liquid media. In some embodiments, the hydrogen sulfide and/or mercaptan levels may be reduced to 10 ppm by volume or less, as measured in the vapor phase, based on the volume of the liquid media. In some embodiments, the hydrogen sulfide and/or mercaptan levels may be reduced to 5 ppm by volume or less, as measured in the vapor phase, based on the volume of the liquid media. In some embodiments, the hydrogen sulfide and/or mercaptan levels may be reduced to 1 ppm by volume, as measured in the vapor phase, based on the volume of the liquid media. In some embodiments, the hydrogen sulfide and/or mercaptan levels may be reduced to 0 ppm by volume, as measured in the vapor phase, based on the volume of the liquid media.
In certain embodiments, a water wash may be added in an amount suitable for forming an emulsion with a hydrocarbon. In certain embodiments, the water wash may be added in an amount of from about 1 to about 50 percent by volume based on the volume of the emulsion. In certain embodiments, the wash water may be added in an amount of from about 1 to about 25 percent by volume based on the volume of the emulsion. In certain embodiments, the wash water may be added in an amount of from about 1 to about 10 percent by volume based on the volume of the emulsion. In certain embodiments, the amount of hydrocarbon may be present in an amount of from about 50 to about 99 percent by volume based on the volume of the emulsion. In some embodiments, the hydrocarbon may be present in an amount of from about 75 to about 99 percent by volume based on the volume of the emulsion. In some embodiments, the hydrocarbon may be present in an amount of from about 90 to about 99 percent by volume based on the volume of the emulsion.
The water wash and hydrocarbon may be emulsified by any conventional manner. In some embodiments, the water wash and hydrocarbon may be heated and thoroughly mixed to produce an oil-in-water emulsion. In certain embodiments, the water wash and hydrocarbon may be heated at a temperature in a range of from about 90° C. to about 150° C. The water wash and hydrocarbon may be mixed in any conventional manner, such as an in-line static mixer or an in-line mix valve with a pressure drop of about 0.2 to about 2 bar depending on the density of the hydrocarbon. The emulsion may be allowed to separate, such as by settling, into an aqueous phase and an oil phase. In certain embodiments, the aqueous phase may be removed. In another embodiment, the aqueous phase may be removed by draining the aqueous phase.
Optionally, demulsifiers may be added to aid in separating water from the hydrocarbon. In certain embodiments, the demulsifiers include, but are not limited to, oxyalkylated organic compounds, anionic surfactants, nonionic surfactants or mixtures of these materials. The oxyalkylated organic compounds include, but are not limited to, phenolformaldehyde resin ethoxylates and alkoxylated polyols. The anionic surfactants include alkyl or aryl sulfonates, such as dodecylbenzenesulfonate. These demulsifiers may be added in amounts to contact the water from about 1 to about 1000 ppm by weight based on the weight of the hydrocarbon.
The compounds, compositions, methods, and processes will be better understood by reference to the following examples, which are intended as an illustration of and not a limitation upon the scope of the invention.
5. EXAMPLES Example 1Testing of various scavengers was performed using a dynamic reactor.
About 700 mL of crude oil was added to the dynamic reactor for each test. Reactions were carried out at about 70° C. and about 120° C. The pressure inside of the reactor was set to about 10 bar. Stirring was carried out inside of the reactor using a magnetic stir bar at about 500 rpm. A mass flow controller was used to control the flow of CO2 and H2S at about 600 mL/min. Scavengers were added to the reactor in an amount of about 1000 ppm.
As can be seen in
-
- 1000 ppm, 10 min, 508.54 L/kg;
- 1000 ppm, 60 min, 29.54 L/kg;
-
- 1000 ppm, 10 min, 837.18 L/kg;
- 1000 ppm, 60 min, 37.81 L/kg;
-
- 1000 ppm, 10 min, 400.43 L/kg;
- 1000 ppm, 60 min, 27.80 L/kg;
-
- 1000 ppm, 10 min, 520.36 L/kg;
- 1000 ppm, 60 min, 32.53 L/kg;
-
- 1000 ppm, 10 min, 247.12 L/kg;
- 1000 ppm, 60 min, 26.85 L/kg;
-
- 1000 ppm, 10 min, 251.84 L/kg;
- 1000 ppm, 60 min, 32.09 L/kg;
Based on the foregoing data, it can be concluded that the alcohol-based hemi-formyls outperformed the benchmark hexahydro-1,3,5-tris(hydroxyethyl)-s-triazine. There was an increased kinetic reaction with the alcohol-based hemi-formyls as compared to the triazine at certain conditions.
A liquid phase analysis was also performed. A sample of crude oil was saturated in a Hastelloy autoclave of nominal volume (about 5 L) using a gas mixture containing about 0.2% in H2S using CO2 as a balanced gas. The equipment was modified with micrometric flow control valves and bubble rock in addition to a reactor valve for the sample collection. The aliquots were removed by the lower valve of the autoclave where a drain is located. The bottle (penicillin, 100 mL) was filled to about 50% (crude oil) of the volume as it is necessary to leave a headspace for agitation and homogenization of the microsystem.
The H2S liquid phase reduction assay was performed by potentiometric titration using a silver electrode coated with silver sulfide (Ag/Ag2S), where the sample containing H2S was titrated with a solution of about 0.01M silver nitrate in ammoniacal isopropanol, previously purged with nitrogen, in order to avoid oxygen as an interfering agent in the titration. After weighing the sample, a small amount of the titration solvent (ammoniacal isopropanol) was added to aid in electrode equilibration, thus avoiding possible titration errors and a small amount of solvent, or solvent mixture, to aid in the homogenization of solvent/sample and on the volume for electrode reading. The product dosage varied greatly over the various assays. Table 1 shows the various ratios used between H2S and H2S scavenger.
After the aliquot removal, the scavenger was added and, if necessary, agitation, stirring, and/or heating may be carried out. Stirring time and temperature vary according to the conditions required for each test.
For these tests, the BS&W (base, sediment and water) used was about 0.5%, meaning that about 99.5% of the system was crude oil.
Percentage reduction of H2S was calculated from the ratio between the concentration obtained at each control point and the concentration obtained at each point of the sample. The results obtained are depicted in
Any ranges given either in absolute terms or in approximate terms are intended to encompass both, and any definitions used herein are intended to be clarifying and not limiting. Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard deviation found in their respective testing measurements. Moreover, all ranges disclosed herein are to be understood to encompass any and all subranges (including all fractional and whole values) subsumed therein.
Furthermore, the invention encompasses any and all possible combinations of some or all of the various embodiments described herein. Any and all patents, patent applications, scientific papers, and other references cited in this application, as well as any references cited therein, are hereby incorporated by reference in their entirety.
Finally, the compositions of the present disclosure may comprise any compound(s) or component(s) disclosed herein and the compositions may also consist of or consist essentially of any compound(s) or component(s) disclosed herein.
Claims
1. A method of sweetening a fluid, comprising:
- treating the fluid with a hemi-formyl of formula (I): R1—O—[—CH2—O—]x—H; (I)
- wherein R1 is C1-C3 alkyl; and x is from 1 to 10.
2. The method of claim 1, wherein x is from 1 to 5.
3. The method of claim 1, wherein x is from 1 to 3.
4. The method of claim 1, wherein x is 2.
5. The method of claim 1, wherein x is 1.
6. The method of claim 1, wherein R1 is C1 or C2 alkyl.
7. The method of claim 1, wherein the hemi-formyl is methanol hemi-formyl.
8. The method of claim 1, wherein the hemi-formyl is ethanol hemi-formyl.
9. The method of claim 1, wherein the fluid is selected from the group consisting of crude oil, naphtha, fuel, distillate oils, and any combination thereof.
10. The method of claim 1, further comprising adding one or more additional components selected from the group consisting of asphaltene inhibitors, paraffin inhibitors, corrosion inhibitors, emulsifiers, water clarifiers, dispersants, emulsion breakers, hydrogen sulfide scavengers, gas hydrate inhibitors, surfactants, dispersant, solvents, and any combination thereof.
11. The method of claim 10, wherein the surfactant or dispersant is selected from the group consisting of alkyl benzyl ammonium chloride, benzyl cocoalkyl(C12-C18)dimethylammonium chloride, dicocoalkyl (C12-C18)dimethylammonium chloride, ditallow dimethylammonium chloride, di(hydrogenated tallow alkyl)dimethyl quaternary ammonium methyl chloride, methyl bis(2-hydroxyethyl cocoalkyl(C12-C18) quaternary ammonium chloride, dimethyl(2-ethyl) tallow ammonium methyl sulfate, n-dodecylbenzyldimethylammonium chloride, n-octadecylbenzyldimethyl ammonium chloride, n-dodecyltrimethylammonium sulfate, soya alkyltrimethylammonium chloride, hydrogenated tallow alkyl (2-ethylhyexyl) dimethyl quaternary ammonium methyl sulfate, and any combination thereof.
12. The method of claim 1, further comprising adding an odorant.
13. The method of claim 1, wherein the fluid is produced or used in a coal-fired process, a waste-water process, a farm, a slaughter house, a land-fill, a municipality waste-water plant, a coking coal process, or a biofuel process.
14. The method of claim 1, wherein the method excludes adding any nitrogen-containing compounds to the fluid.
Type: Application
Filed: Jan 28, 2020
Publication Date: Sep 10, 2020
Applicant: ECOLAB USA INC. (St. Paul, MN)
Inventors: Rafaela Carvalhal PASSOS (Campinas), Geeta Rana (Sugar Land, TX), Simael Manuel Rodrigues (Hortolândia), Bárbara Valente Melanda (Itapira), Julian M. Gallardo, III (Pearland, TX), Jeffery Caleb Clark (Sugar Land, TX)
Application Number: 16/774,531