SYSTEM AND METHOD FOR OPTIMIZING AN EDUCATIONAL STUDY PATH
A system and method for optimizing a study path based on at least one goal are presented. The method includes receiving the at least one goal and at least one constraint; generating a plurality of potential study paths based on a plurality of courses that are required for the at least one goal and the at least one constraint; determining an optimal study path based on the plurality of potential study paths, the at least one goal, and the at least one constraint, wherein the optimal study path satisfies the at least one constraint, the optimal study path is a combination of courses and their order during a plurality of study terms; and generating at least one optimal schedule based on the optimal study path.
Latest Edunav, Inc. Patents:
This application claims the benefit of U.S. application Ser. No. 14/712,565 filed on May 14, 2015 which further claims the benefit of U.S. Provisional Application No. 62/079,578 filed on Nov. 14, 2014 and U.S. Provisional Application No. 62/102,608 filed Jan. 13, 2015. The contents of all of the aforesaid applications are hereby incorporated by reference.
TECHNICAL FIELDThe present disclosure relates generally to creating plans for obtaining educational degrees, and more particularly for creating degree plans according to selected study paths.
BACKGROUNDAs society moves towards increasingly specialized professions, there is also a rising need for new job candidates to achieve higher education requirements. Typically, this includes a bachelor's degree, or its equivalent, from an accredited higher education institution. In some countries, such as the United States of America, higher education can be an expensive choice which, coupled with financial uncertainty, may prove risky for a university candidate.
It is estimated that roughly nineteen billion ($19B) US Dollars are spent annually on excess credits, which students are not required to achieve in order to graduate. This excess spending often occurs due to complicated registration processes and prerequisite courses which may not be evident early on in a candidate's choice of a curriculum. While this is a clear disadvantage for students, it also presents a challenge to institutions. It is estimated that roughly half of candidates in the United States do not graduate within 6 years from entering college.
One particular issue for ensuring prompt graduations is that there is no way to efficiently determine the optimal study path for any particular student from the beginning of college. The number of potential combinations of courses that any given student may undergo during his or her course of study is astronomical. Even in smaller programs with limited numbers of courses offered, the number of potential combinations of courses over the course of a multiple year degree can easily be in the millions. As a result, students may begin taking courses without a clear study path in mind, thereby leading to undesirable results ranging from cramming in courses toward the end of their studies to ultimately missing important classes and delaying graduation. As a result, the completion time and costs are more than what the students initially planned for. For example, currently only about 50% of the students compete their degree within 6 years and about 30% of the community colleges' students graduate within 3 years.
Existing solutions for planning study paths are very limited and in most cases such solutions do not guide or prevent students from taking incorrect courses. An example for such solution is a degree auditing that provides a list of requirements for a student's major or minor such as, for example, required courses, minimum numbers of credits, research or other non-classroom requirements, and so on. At best the degree auditing solution would prevent enrollment of students in courses which the students have not met the prerequisites for. For example, a student may be prevented from enrolling in Calculus II if that student has not yet taken Calculus I.
The existing solutions do not, however, guide a student's study path based on broader goals such as a student's career or educational plans. Moreover, such solutions do not factor in scheduling per semester based around a student's employment or other particular requirements. As a result, such solutions are not capable of ensuring correct curriculum choices for student study paths based on student goals and other restrictions.
Furthermore, currently a career advisor or counselor at best may advise on profession options that may fit the student's interests. However, due to the number of course combinations and schools in which a student may obtain the qualifications to practice the profession, a career advisor cannot provide the student with an optimal study path that ensures the student's graduation based on the student's goals and educational requirements.
It would therefore be advantageous to provide a solution that would overcome the deficiencies of the prior art by generating an optimal study paths.
SUMMARYA summary of several example embodiments of the disclosure follows. This summary is provided for the convenience of the reader to provide a basic understanding of such embodiments and does not wholly define the breadth of the disclosure. This summary is not an extensive overview of all contemplated embodiments, and is intended to neither identify key or critical elements of all embodiments nor to delineate the scope of any or all aspects. Its sole purpose is to present some concepts of one or more embodiments in a simplified form as a prelude to the more detailed description that is presented later. For convenience, the term “some embodiments” may be used herein to refer to a single embodiment or multiple embodiments of the disclosure.
Certain embodiments disclosed herein include a method performed at a server for optimizing a study path for a student based on at least one goal, wherein a study path is a combination of courses for each of a plurality of semesters. The method includes obtaining, by the server, the at least one goal and at least one constraint for the student, wherein each of the at least one constraint is assigned a respective constraint priority; receiving, by the server, from a database, information related to a plurality of courses required for the at least one goal; generating, by the server, based on the information, a plurality of potential study paths for the student that comply with the at least one goal; receiving, by the server, at least one preference of the student, each of the at least one preference being assigned a respective preference priority, wherein each constraint priority is higher than any preference priority; eliminating, by the server, from the plurality of potential study paths all study paths that do not meet the at least one constraint in order of the respective priorities assigned to each of the at least one constraint from highest priority to lowest priority to obtain a remaining at least one study path; eliminating, by the server, from the remaining at least one study path all study paths that do not meet the at least one preference in order of the respective priorities assigned to each of the at least one preference from highest priority to lowest priority to obtain a remaining at least one study path so as to retain at least one optimal study path; and supplying as an output, by the server for the student, at least one optimal schedule of courses for each semester of the at least one optimal study path.
Certain embodiments disclosed herein include a system for planning study paths. The study system comprises a database; a processing unit; and a memory, the memory containing instructions that, when executed by the processing unit, configure the system to: obtain the at least one goal and at least one constraint for the student, wherein each of the at least one constraint is assigned a respective constraint priority; receive from a database, information related to a plurality of courses required for the at least one goal; generate based on the information, a plurality of potential study paths for the student that comply with the at least one goal; receive at least one preference of the student, each of the at least one preference being assigned a respective preference priority, wherein each constraint priority is higher than any preference priority; eliminate from the plurality of potential study paths all study paths that do not meet the at least one constraint in order of the respective priorities assigned to each of the at least one constraint from highest priority to lowest priority to obtain a remaining at least one study path; eliminate from the remaining at least one study path all study paths that do not meet the at least one preference in order of the respective priorities assigned to each of the at least one preference from highest priority to lowest priority to obtain a remaining at least one study path so as to retain at least one optimal study path; and supply as an output, for the student, at least one optimal schedule of courses for each semester of the at least one optimal study path.
Certain embodiments disclosed herein include a method performed at a server for optimizing a study path for a student that comprises a combination of courses for each of a plurality of semesters. The method includes obtaining, by the server, the at least one goal, at least one constraint and at least one preference for the student, wherein each of the at least one constraint and each of the at least one preference is assigned a respective priority; receiving, by the server, from a database, information related to a plurality of courses required over a plurality of semesters for the at least one goal; generating, by the server, based on the information, a plurality of potential study paths for the student that comply with the at least one goal; eliminating, by the server, from the plurality of potential study paths at least one potential study path using the at least one constraint and the at least one preference to reach at least one optimal study path, wherein the elimination of a potential study path is performed such that when a first constraint of the at least one constraint having a first priority conflicts with a second constraint of the at least one constraint having a second priority, the second priority being lower than the first priority, the first constraint is utilized first in performance of the elimination, wherein the elimination of a potential study path is further performed such that when a first preference of the at least one preference having a third priority conflicts with a second preference of the at least one preference having a fourth priority, the fourth priority being lower than the third priority, then the first preference is utilized first in performance of the elimination, and wherein upon determination of a conflict between a constraint of the at least one constraint and a preference of the at least one preference then the constraint is utilized first in performance of the elimination; and supplying as an output, by the server for the student, the at least one optimal study path, the optimal study path comprising a schedule of courses for each semester of the plurality of semesters.
Certain embodiments disclosed herein include a method performed at a server for optimizing a study path for a student that comprises a combination of courses for each of a plurality of semesters. The method includes obtaining, by the server, at least one goal, at least one constraint and at least one preference for the student, wherein each of the at least one constraint and each of the at least one preference is assigned a respective priority, wherein each constraint priority is higher than any preference priority, and wherein a higher priority is assigned a lower value than a lower priority; receiving, by the server, from a database, information related to a plurality of courses required over a plurality of semesters to meet the at least one goal, wherein each constraint priority is higher than any preference priority, and wherein a higher priority is assigned a lower value than a lower priority; generating, by the server, based on the information, a plurality of potential study paths for the student that meet the at least one goal; sorting, by the server, any of the plurality of potential study paths that meets at least one of the group comprising at least one of the at least one constraint and at least one of the at least one preference, into an alphabetically ordered list of potential study paths based on the priority of the at least one of the at least one constraint that is met and the at least one preference that is met, wherein values of the priorities are used as an alphabet for the alphabetical ordering; eliminating any potential study path that is not tied for being first in the alphabetically ordered list of potential study paths to produce at least one optimal study path; and supplying as an output, by the server for the student, the at least one optimal study path, the optimal study path comprising a schedule of courses for each semester of the plurality of semesters.
The subject matter disclosed herein is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other objects, features, and advantages of the disclosed embodiments will be apparent from the following detailed description taken in conjunction with the accompanying drawings.
It is important to note that the embodiments disclosed herein are only examples of the many advantageous uses of the innovative teachings herein. In general, statements made in the specification of the present application do not necessarily limit any of the various claimed embodiments. Moreover, some statements may apply to some inventive features but not to others. In general, unless otherwise indicated, singular elements may be in plural and vice versa with no loss of generality. In the drawings, like numerals refer to like parts through several views.
In an embodiment, the processing unit 110 may comprise, or be a component of, a larger processing unit implemented with one or more processors. The one or more processors may be implemented with any combination of general-purpose microprocessors, microcontrollers, digital signal processors (DSPs), field programmable gate array (FPGAs), programmable logic devices (PLDs), controllers, state machines, gated logic, discrete hardware components, dedicated hardware finite state machines, or any other suitable entities that can perform calculations or other manipulations of information.
The processing unit 110 and/or the memory 112 may also include machine-readable media for storing software. Software shall be construed broadly to mean any type of instructions, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise. Instructions may include code (e.g., in source code format, binary code format, executable code format, or any other suitable format of code). The instructions, when executed by the one or more processors, cause the processing system to perform the various functions described herein.
In some embodiments, the system 100 may be part of a cloud-computing infrastructure, an application server, a web server, and the like. In such embodiments, users (e.g., students) of the system 100 may access the system remotely via, for example, a web browser.
In S220, at least one goal of a student is received, wherein the at least one goal is related to the study path to be determined. A goal of the user may be, but is not limited to, a profession, a subject in which to major, a subject in which to minor, or an interest area, and so on. In an embodiment, a user may select the at least one goal from among several goals. In a further embodiment, information respective of each goal may be provided to the user during selection. The information respective of each goal typically contains information to help a student select a goal that he or she will be happy with. The information respective of each goal may be, but is not limited to, average income for a profession, employability of graduates with a selected major or minor, a list of professions within an interest area, and so on.
In some embodiments, a focus area may be further displayed respective of each goal. A focus area is an area of interest related to the user's goal and may be, but is not limited to, a concentration for a major, a specialty in a profession, and so on. Selecting goals and information respective thereof are described further herein below with respect to
In S230, information related to a plurality of courses is obtained from a database (e.g., the database 130). The information collected may be based on which courses will be required for the at least one goal given the student's credential information. For example, if a first student's major is Mechanical Engineering, the first student may be required to take courses such as Calculus I, Thermodynamics, and Mechanics. The plurality of courses may cover a plurality of study terms. The information may include hours during which each course is taught (e.g., Mondays from 6 P.M. to 8 P.M.), a midterm exam date of each course (e.g., October 11), a final exam date of each course (e.g., December 9), a start date for each course (e.g., August 28), an end date for each course (e.g., December 2), and so on.
In S240, a plurality of potential study paths is generated over the plurality of study terms respective of the plurality of courses. Each study path is a combination of courses and an order in which to take the courses during the plurality of study terms. An exemplary and non-limiting study path is described further herein below with respect to
In S250, the plurality of study paths may be the saved in a database for future usage, e.g., to process a request from a different student with the same goals or to optimize catalogs. In some embodiments, S250 may further include displaying the plurality of study paths on a display as a time diagram over the plurality of study terms. An exemplary and non-limiting time diagram is described further herein below with respect to
In S260, at least one optimal study path from the plurality of potential study paths is determined. The optimal study path is determined based on goals, constraints, and preferences set by the user. The process for determining the optimal study path is discussed herein below with respect to in
In S270, information of the at least one optimal study path is displayed to the user. The displayed information may include the courses for each term, information about each course, prerequisites for one or more courses, the expected completion time, the expected budget, and so on. In an embodiment, if the user is satisfied with the determined optional study path, a registration process may be initiated.
In S420, at least one of a student's constraints and/or preferences is received. A constraint is a restriction on the study path that may be, but is not limited to, a total time to complete education (e.g., 4 years), an educational budget (e.g., $150,000), and so on. Each constraint may be assigned a priority. If two constraints conflict, then the constraint with the higher assigned priority would be utilized first. For example, a student may want to prioritize completing his degree in 4 years (i.e. a typical college course load) rather than take summer courses at a lower cost and completing his degree in 3 years.
A preference is a particular inclination of the user that may be used to guide selection of courses when multiple courses can be utilized to achieve the student's goals. A preference may be, but is not limited to, favoring or disfavoring particular days of the week (e.g., favoring classes on Monday through Thursday but disfavoring classes on Friday), particular times (e.g., not beginning class before 10 A.M.), whether the course is offered online, favored instructors, areas of interest (e.g., sports, art, reading, writing, etc.), and so on. In an embodiment, each preference may be assigned a priority. If two preferences conflict, the higher priority preference would be utilized first. In a further embodiment, all preferences have a lower priority than all constraints such that, if a constraint and a preference conflict, the constraint will be utilized first.
In S430, scheduling information related to a plurality of courses included in the study plan and offered during a plurality of study terms are retrieved. The scheduling information may include days of the week in which a course is presented, location of a class of the course, hours during which each course is taught (e.g., Mondays from 6 P.M. to 8 P.M.), a midterm exam date of each course (e.g., October 11), a final exam date of each course (e.g., December 9), a start date for each course (e.g., August 28), an end date for each course (e.g., December 2), and so on. In an embodiment, the scheduling information may be retrieved from a database (e.g., the database 130). The study terms are the semesters in which the student plans to attend the school (e.g., all semesters between Fall of 2015 and May of 2019).
In S440, at least one optimal study path is computed respective of the plurality of study paths, the at least one constraint and/or preference, and the course information. In some embodiments, S440 includes eliminating from the received study paths all paths that do not meet the constraints in order of the constraints' respective priorities. For example, if the first priority constraint is a completion time and the second priority constrain is the budget, then first all the paths having a completion time higher than the input completion time are eliminated. Then, from the remaining study paths, all paths that cost more to complete than the input budget are removed. The remaining set of study paths are sorted or further eliminated based on the input preferences. For example, if one of the preference includes disfavoring classes on Friday, then all paths that include classes on Friday are filtered out. In an embodiment, the remaining potential study paths are sorted based on their best match to the at least one preference. The best match study path is the optimal study path.
In S450, at least schedule of courses is generated for each study term based on each of the at least one optimal study path.
In S460, the schedule of courses and/or the determined optimal study path are returned and/or displayed to a user. In one embodiment, the optimal study path is automatically modified whenever circumstances change. For example, circumstances may have changed when a new schedule is published and/or a selected course will not be delivered in the coming term. Alternatively or collectively, the determined optimal study path may be interactively modified by the user as discussed in more detail with respect to
In S620, an estimated attendance for each term in which the course is offered is determined. The attendance may be estimated based on factors such as, but not limited to, expected numbers of students in the institution during various study terms, a number of students whose optimal study paths suggest taking the course during the particular term, and so on.
In S630, the schedules for all classes provided by the academic institution are received. In an embodiment, the schedules are provide by the different departments of the academic institution. This allows for further optimization the catalog across different departments. A schedule of a class includes at least the class hours assigned to each course. Class hours may be, for example, every other Monday from 4 P.M. to 6 P.M. and Thursdays from 11 A.M. to 1 P.M. In an embodiment, S630 may further include determining a number of classes for each course based on at least a parameter (for example, two sections of the same class). The parameter may be determined based on the estimated attendance for the course during the term.
In S640, the assignment of class hours is optimized to maximize the number of students who are able to complete their respective study paths. In an embodiment, optimization may be performed by minimizing the number of empty seats in each class. Minimizing the number of empty seats may be performed based on, e.g., an estimated number of students attending the class, study paths of students, and comparing the estimated number to a number of planned seats for the class. A notification may be generated to add or remove seats for the class respective of the performed comparison. In an embodiment, optimization is performed by minimizing the overlap between class hours of courses which are taken in the same term according to a study path.
In S650, the optimized assignment is compared to a proposed assignment. The proposed assignment may be created by a group of faculty members based on, e.g., faculty availability, classroom availability, and so on.
In S660, an optimal course catalog is determined based on the optimized assignment and the proposed assignment. The catalog containing each course and each class of each course respective of the optimized assignment of class hours may be displayed.
In S820, a plurality of courses for a plurality of study terms respective of the at least one desired goal is displayed. In S830, a plurality of courses respective of the at least a desired goal and the plurality of study terms is displayed. In S840, a connecting path between the plurality of courses that connects to at least one of the at least the desired goal is displayed. In S850, a user modification is received. The user modification may be, but is not limited to, adding a class, dropping a class, and so on. In S860, The user modification is incorporated. In an embodiment, the incorporation may further include adjusting the optimal study path of the student so as to incorporate the change while maintaining the user's goals. In an embodiment, the modification can be in response to changes made to at least one of the course's schedules. The changes to the schedules are automatically incorporated in to the study path.
It should be appreciated that the ability to interactively change the determined study paths allow the user to trade-off between various goals prior to and post registration. As a non-limiting example, the interactive modification allows a user to easily assess implications of switching a degree (lost credit hours and delay in graduation).
The various embodiments disclosed herein can be implemented as hardware, firmware, software, or any combination thereof. Moreover, the software is preferably implemented as an application program tangibly embodied on a program storage unit or computer readable medium consisting of parts, or of certain devices and/or a combination of devices. The application program may be uploaded to, and executed by, a machine comprising any suitable architecture. Preferably, the machine is implemented on a computer platform having hardware such as one or more central processing units (“CPUs”), a memory, and input/output interfaces. The computer platform may also include an operating system and microinstruction code. The various processes and functions described herein may be either part of the microinstruction code or part of the application program, or any combination thereof, which may be executed by a CPU, whether or not such a computer or processor is explicitly shown. In addition, various other peripheral units may be connected to the computer platform such as an additional data storage unit and a printing unit. Furthermore, a non-transitory computer readable medium is any computer readable medium except for a transitory propagating signal.
All examples and conditional language recited herein are intended for pedagogical purposes to aid the reader in understanding the principles of the disclosed embodiment and the concepts contributed by the inventor to furthering the art, and are to be construed as being without limitation to such specifically recited examples and conditions. Moreover, all statements herein reciting principles, aspects, and embodiments of the disclosed embodiments, as well as specific examples thereof, are intended to encompass both structural and functional equivalents thereof. Additionally, it is intended that such equivalents include both currently known equivalents as well as equivalents developed in the future, i.e., any elements developed that perform the same function, regardless of structure.
Claims
1. A method performed at a server for optimizing a study path for a student based on at least one goal, wherein a study path is a combination of courses for each of a plurality of semesters, comprising:
- obtaining, by the server, the at least one goal and at least one constraint for the student, wherein each of the at least one constraint is assigned a respective constraint priority;
- receiving, by the server, from a database, information related to a plurality of courses required for the at least one goal;
- generating, by the server, based on the information, a plurality of potential study paths for the student that comply with the at least one goal;
- receiving, by the server, at least one preference of the student, each of the at least one preference being assigned a respective preference priority, wherein each constraint priority is higher than any preference priority;
- eliminating, by the server, from the plurality of potential study paths all study paths that do not meet the at least one constraint in order of the respective priorities assigned to each of the at least one constraint from highest priority to lowest priority to obtain a remaining at least one study path;
- eliminating, by the server, from the remaining at least one study path all study paths that do not meet the at least one preference in order of the respective priorities assigned to each of the at least one preference from highest priority to lowest priority to obtain a remaining at least one study path so as to retain at least one optimal study path; and
- supplying as an output, by the server for the student, at least one optimal schedule of courses for each semester of the at least one optimal study path.
2. The method of claim 1, further comprising:
- collecting credential information, wherein the plurality of potential study paths is further generated based on the credential information.
3. The method of claim 1, wherein each of the at least one goal is any of: a profession, an interest area, and a minor.
4. The method of claim 1, wherein generating the plurality of potential study paths further comprises:
- performing degree auditing on each potential study path; and
- including in the generated plurality of potential study paths only those potential study paths that meet the at least one goal based on the degree auditing.
5. The method of claim 1, wherein the at least one constraint is any of: a total time to complete the at least one goal and an educational budget.
6. The method of claim 1, wherein each constraint priority is a relative weight to be accorded to the constraint to which the constraint priority is assigned and wherein each preference priority is a relative weight to be accorded to the preference to which the preference priority is assigned.
7. The method of claim 1, wherein the at least one preference is any of: favoring a day of the week, disfavoring a day of the week, a time, online availability, favored instructors, and areas of interest.
8. The method of claim 1, wherein the at least one optimal schedule is further based on scheduling information that includes any of: course hours of each course, days of the week the course is presented, location of the classes, a start date of each course, and an end date of each course.
9. The method of claim 1, wherein the information related to a plurality of courses includes timing information related to at least one of the courses.
10. The method of claim 9, wherein the timing information includes at least one of day of a week on which the at least one of the courses is taught, hours of the day during which the at least one of the courses is taught, a midterm exam date for the at least one of the courses, a final exam date for the at least one of the courses, a start date for the at least one of the courses, and an end date for the at least one of the courses.
11. A system for planning study paths, comprising:
- a database;
- a processing unit; and
- a memory, the memory containing instructions that, when executed by the processing unit, configure the system to:
- obtain the at least one goal and at least one constraint for the student, wherein each of the at least one constraint is assigned a respective constraint priority;
- receive from a database, information related to a plurality of courses required for the at least one goal;
- generate based on the information, a plurality of potential study paths for the student that comply with the at least one goal;
- receive at least one preference of the student, each of the at least one preference being assigned a respective preference priority, wherein each constraint priority is higher than any preference priority;
- eliminate from the plurality of potential study paths all study paths that do not meet the at least one constraint in order of the respective priorities assigned to each of the at least one constraint from highest priority to lowest priority to obtain a remaining at least one study path;
- eliminate from the remaining at least one study path all study paths that do not meet the at least one preference in order of the respective priorities assigned to each of the at least one preference from highest priority to lowest priority to obtain a remaining at least one study path so as to retain at least one optimal study path; and
- supply as an output, for the student, at least one optimal schedule of courses for each semester of the at least one optimal study path.
12. The system of claim 11, further comprising:
- collect credential information, wherein the plurality of potential study paths is further generated based on the credential information.
13. The system of claim 11, wherein each of the at least one goal is any of: a profession, an interest area, and a minor.
14. The system of claim 11, wherein the system, in generating the plurality of potential study paths, is further configured to:
- perform degree auditing on each potential study path; and
- include in the generated plurality of potential study paths only those potential study paths that meet the at least one goal based on the degree auditing
15. The system of claim 11, wherein the at least one constraint is any of: a total time to complete the at least one goal and an educational budget.
16. The system of claim 11, wherein each constraint priority is a relative weight to be accorded to the constraint to which the constraint priority is assigned and wherein each preference priority is a relative weight to be accorded to the preference to which the preference priority is assigned.
17. The system of claim 11, wherein the at least one preference is any of: favoring a day of the week, disfavoring a day of the week, a time, online availability, favored instructors, and areas of interest.
18. The system of claim 11, wherein the at least one optimal schedule is further based on scheduling information that includes any of: course hours of each course, days of the week the course is presented, location of the classes, a start date of each course, and an end date of each course.
19. The system of claim 11, wherein the information related to a plurality of courses includes timing information related to at least one of the courses.
20. The system of claim 19, wherein the timing information includes at least one of day of a week on which the at least one of the courses is taught, hours of the day during which the at least one of the courses is taught, a midterm exam date for the at least one of the courses, a final exam date for the at least one of the courses, a start date for the at least one of the courses, and an end date for the at least one of the courses.
21. A method performed at a server for optimizing a study path for a student that comprises a combination of courses for each of a plurality of semesters, the method comprising:
- obtaining, by the server, the at least one goal, at least one constraint and at least one preference for the student, wherein each of the at least one constraint and each of the at least one preference is assigned a respective priority;
- receiving, by the server, from a database, information related to a plurality of courses required over a plurality of semesters for the at least one goal;
- generating, by the server, based on the information, a plurality of potential study paths for the student that comply with the at least one goal;
- eliminating, by the server, from the plurality of potential study paths at least one potential study path using the at least one constraint and the at least one preference to reach at least one optimal study path, wherein the elimination of a potential study path is performed such that when a first constraint of the at least one constraint having a first priority conflicts with a second constraint of the at least one constraint having a second priority, the second priority being lower than the first priority, the first constraint is utilized first in performance of the elimination, wherein the elimination of a potential study path is further performed such that when a first preference of the at least one preference having a third priority conflicts with a second preference of the at least one preference having a fourth priority, the fourth priority being lower than the third priority, then the first preference is utilized first in performance of the elimination, and wherein upon determination of a conflict between a constraint of the at least one constraint and a preference of the at least one preference then the constraint is utilized first in performance of the elimination; and
- supplying as an output, by the server for the student, the at least one optimal study path, the optimal study path comprising a schedule of courses for each semester of the plurality of semesters.
22. The method of claim 21, wherein each of the at least one goal is any of: a profession, an interest area, and a minor;
- wherein the at least one constraint is any of: a total time to complete the at least one goal and an educational budget;
- wherein the at least one preference is any of: favoring a day of the week, disfavoring a day of the week, a time, online availability, favored instructors, and areas of interest; and
- wherein the information related to a plurality of courses includes timing information related to at least one of the courses.
23. The method of claim 21, wherein generating the plurality of potential study paths further comprises:
- performing degree auditing on each potential study path; and
- including in the generated plurality of potential study paths only those potential study paths that meet the at least one goal based on the degree auditing.
24. A method performed at a server for optimizing a study path for a student that comprises a combination of courses for each of a plurality of semesters, the method comprising:
- obtaining, by the server, at least one goal, at least one constraint and at least one preference for the student, wherein each of the at least one constraint and each of the at least one preference is assigned a respective priority, wherein each constraint priority is higher than any preference priority, and wherein a higher priority is assigned a lower value than a lower priority;
- receiving, by the server, from a database, information related to a plurality of courses required over a plurality of semesters to meet the at least one goal, wherein each constraint priority is higher than any preference priority, and wherein a higher priority is assigned a lower value than a lower priority;
- generating, by the server, based on the information, a plurality of potential study paths for the student that meet the at least one goal;
- sorting, by the server, any of the plurality of potential study paths that meets at least one of the group comprising at least one of the at least one constraint and at least one of the at least one preference, into an alphabetically ordered list of potential study paths based on the priority of the at least one of the at least one constraint that is met and the at least one preference that is met, wherein values of the priorities are used as an alphabet for the alphabetical ordering;
- eliminating any potential study path that is not tied for being first in the alphabetically ordered list of potential study paths to produce at least one optimal study path; and
- supplying as an output, by the server for the student, the at least one optimal study path, the optimal study path comprising a schedule of courses for each semester of the plurality of semesters.
25. The method of claim 24, wherein each of the at least one goal is any of: a profession, an interest area, and a minor;
- wherein the at least one constraint is any of: a total time to complete the at least one goal and an educational budget;
- wherein the at least one preference is any of: favoring a day of the week, disfavoring a day of the week, a time, online availability, favored instructors, and areas of interest; and
- wherein the information related to a plurality of courses includes timing information related to at least one of the courses.
26. The method of claim 24, wherein generating the plurality of potential study paths further comprises:
- performing degree auditing on each potential study path; and
- including in the generated plurality of potential study paths only those potential study paths that meet the at least one goal based on the degree auditing.
Type: Application
Filed: Jun 5, 2020
Publication Date: Sep 24, 2020
Applicant: Edunav, Inc. (Cupertino, CA)
Inventors: Tsakhi SEGAL (Cupertino, CA), Justin FALK (Sunnyvale, CA), Andrey STEPANTSOV (San Jose, CA)
Application Number: 16/894,254