Growth Hormones with Prolonged In-Vivo Efficacy

The present invention relates to polypeptide compound optimized for subcutaneous administration, exemplified by growth hormone conjugates having a linker providing non-covalent binding to albumin.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 15/845,072, filed Dec. 18, 2017, which is a continuation of U.S. application Ser. No. 14/334,095, filed Jul. 17, 2014 (now abandoned), which is a continuation of U.S. application Ser. No. 13/389,180, filed Mar. 16, 2012 (now U.S. Pat. No. 8,841,249, issued Sep. 23, 2014), which is a 35 U.S.C. § 371 national stage application of International Patent Application PCT/EP2010/061473 (published as WO 2011/015649), filed Aug. 6, 2010, which claimed priority of European Patent Application 09167350.9, filed Aug. 6, 2009; this application further claims priority under 35 U.S.C. § 119 of U.S. Provisional Application 61/232,967, filed Aug. 11, 2009; the contents of which are incorporated herein by reference.

SEQUENCE LISTING

The instant application contains a Sequence Listing which has been submitted in ASCII format via EFS-Web and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Apr. 23, 2020, is named 7928US03_SeqList.txt and is 3 kilobytes in size.

FIELD OF THE INVENTION

The present invention relates to a growth hormone compound linked to an albumin binding residue via a hydrophilic spacer, and to methods of preparing and using such compounds. These compounds have a protracted profile of action and are useful in therapy.

BACKGROUND OF THE INVENTION

It is well-known to modify the properties and characteristics of peptides by conjugating groups to the peptide which duly changes the properties of the peptide. Such conjugation generally requires some functional group in the peptide to react with another functional group in a conjugating group. Typically, amino groups, such as the N-terminal amino group or the ε-amino group in lysines, have been used in combination with a suitable acylating reagent such as described for GLP-1 in WO2005/027978. Alternatively, polyethylene glycol (PEG) or derivatives thereof may be attached to proteins. For a review, see Exp. Opion. Ther. Patent., 14, 859-894, (2004). It has been shown that the attachment of PEG to growth hormone may have a positive effect on the plasma half-life of growth hormone, WO 03/044056.

The use of carboxypeptidases to modify the C-terminal of peptides has been described earlier. WO 92/05271 discloses the use of carboxypeptidases and nucleophilic compounds to amidate the C-terminal carboxy group, and WO 98/38285 discloses variants of carboxypeptidase Y particular suitable for this purpose.

EP 243 929 discloses the use of carboxypeptidase to incorporate polypeptides, reporter groups or cytotoxic agents into the C-terminal of proteins or polypeptides.

WO 2005/035553 describes methods for selective conjugation of peptides by enzymatically incorporating a functional group at the C-terminal of a peptide.

Transglutaminase has previously been used to alter the properties of peptides. In the food industry and particular in the diary industry many techniques are available to e.g. cross-bind peptides using transglutaminases. Other documents disclose the use of transglutaminase to alter the properties of physiologically active peptides. EP 950665, EP 785276 and Sato, Adv. Drug Delivery Rev. 54, 487-504 (2002) disclose the direct reaction between peptides comprising at least one Gln and amine-functionalised PEG or similar ligands in the presence of transglutaminase, and Wada, Biotech. Lett. 23, 1367-1372 (2001) discloses the direct conjugation of β-lactoglobulin with fatty acids by means of transglutaminase. The international patent application published as WO 2005/070468 discloses the use of transglutaminase to incorporate a handle whereto conjugating groups can be attached.

Growth hormone is a key hormone involved in the regulation of not only somatic growth, but also in the regulation of metabolism of proteins, carbohydrates and lipids. The major effect of growth hormone is to promote growth. Human growth hormone is a 191 amino acid residue protein with the sequence:

(SEQ ID NO: 1) FPTIPLSRLFDNAMLRAHRLHQLAFDTYQEFEEAYIPKEQKYSFLQNPQT SLCFSESIPTPSNREETQQKSNLELLRISLLLIQSWLEPVQFLRSVFANS LVYGASDSNVYDLLKDLEEGIQTLMGRLEDGSPRTGQIFKQTYSKFDTNS HNDDALLKNYGLLYCFRKDMDKVETFLRIVQCRSVEGSCGF.

Administration of human growth hormone and closely related variants thereof is used to treat a variety of growth hormone deficiency related diseases. Being a peptide, growth hormone is administered parenterally, i.e., by means of a needle. Growth hormone is, furthermore, characterised by a relative short half-life, hence frequent administrations are required with the corresponding pain and inconvenience for the patient. Hence, there is still a need for the provision of growth hormone compounds with improved pharmacological properties, such as e.g. prolonged half-life.

The present invention provides novel growth hormone conjugates with improved pharmacological properties as well as methods for their production.

SUMMARY OF THE INVENTION

The bioavailability of a subcutaneously administed pharmaceutical compound may be related to the absorption rate. The ability of a compound to pass the tight junctions of the subcutaneous capillaries may in part be related to their physical and chemical properties as well as the molecular size or the hydrodynamic volume of the compound. A protein conjugate such as a pegylated hGH (PEG-hGH) with a 40 kDa PEG has an apparent molecular weight of 150-250 kDa. A hGH molecule with covalent bound albumin has a molecular weight of 87 kDa, whereas a hGH molecule with a non-covalent bound albumin will be dissociated from albumin part of the time and thus have a molecular weight of 22 kDa.

It is contemplated that the time spend in the dissociated state depends, at least partly, on the affinity of the albumin binding moiety. Thus the absorption rate of a hGH molecule with a non-covalent bound albumin may be faster than for a PEG-hGH. An increased rate of absorption may be obtained when using albumin binding moieties having lower affinity for albumin.

Additionally, the physical and chemical properties of the linker and/or the spacer providing the attachment of the albumin binding moiety to hGH will influence the functionalities of the compounds.

The present inventors have surprisingly found that growth hormone compounds (GH) may be selectively linked to an albumin binding residue—via a hydrophilic spacer that separates the GH and the albumin binding residue with a chemical moiety having a mLogP<0—or a cLogP<0.5 to obtain GH conjugates with improved pharmacological properties.

Furthermore, the present invention is based on the observation that introducing an albumin binding residue via a hydrophilic spacer in human growth hormone (hGH) can be done selectively wherein a large proportion of the biological activity can been retained. Preferably, an albumin binding residue via a hydrophilic spacer is introduced at the positions corresponding to positions phenylalanine 1, glutamine 40 and/or glutamine 141 in hGH having the sequence of SEQ ID No.1. The use of transglutaminase (TGase), and in particular TGase from Streptoverticiffium mobaraenae or Streptomyces lydicus allows a selective introduction of an albumin binding residue via a hydrophilic spacer at positions 40 and/or 141, and the remaining 11 glutamine residues are left untouched despite the fact that glutamine is a substrate for transglutaminase.

Thus, in one embodiment of the present invention the growth hormone compound (GH) is linked to one albumin binding residue via a hydrophilic spacer. Typically, the albumin binding residue is attached to the N-terminal, position 40 or position 141 of hGH via a hydrophilic philic spacer. In further embodiments two or three albumin binding residues are attached to the N-terminal, position 40 and/or position 141 of hGH via a hydrophilic spacer.

In a further embodiment of the present invention the hydrophilic spacer has the formula


-X1-X2-X3-X4-

wherein

    • X1 is —W1—[(CHR1)l1—W2]m1—{[(CH2)n1E1]m2—[(CHR2)l2—W3]m3}n2—,
    • X2 is —[(CHR3)l3—W4]m4—{[(CH2)n3E2]m5—[(CHR4)l4—W5]m6}n4—,
    • X3 is —[(CHR5)l5—W6]m7—,
    • X4 is —F-D1-(CH2)l6-D2-,
    • l1, l2, l3, l4, l5 and l6 independently are selected from 0-16,
    • m1, m3, m4, m6 and m7 independently are selected from 0-10,
    • m2 and m5 independently are selected from 0-25,
    • n1, n2, n3 and n4 independently are selected from 0-16,
    • F is aryl, hetaryl, pyrrolidine-2,5-dione or a valence bond, wherein the aryl and hetaryl groups are optionally substituted with halogen, —CN, —OH, —C(O)OH,
    • —C(O)NH2, —S(O)2OH or C1-6-alkyl,
    • R1, R2, R3, R4 and R5 independently are selected from hydrogen, —C(O)OH,
    • —C(O)NH2, —S(O)OH, —S(O)2OH, —NH—C(═NH)—NH2, C1-6-alkyl, aryl or hetaryl; wherein the alkyl, aryl and hetaryl groups optionally are substituted with halogen, —C(O)OH,
    • —C(O)NH2, —S(O)OH, —S(O)2OH, —CN, or —OH,
    • D1, D2, E1 and E2 independently are selected from —O—, —NR6—, —N(COR7)— or a valence bond; wherein R6 and R7 independently represent hydrogen or C1-6-alkyl,
    • W1 to W6 independently are selected from —C(O)NH—, —NHC(O)—, —C(O)NHCH2—, —CH2NHC(O)—, —C(O)NHS(O)2—, —S(O)2NHC(O)—, —OC(O)NH—, —NHC(O)O—, —C(O)CH2—, —CH2C(O)—, —C(O)CH═CH—, —CH═CHC(O)—, —(CH2)s1—, —C(O)—, —C(O)O—, —OC(O)—, or a valence bond; wherein s1 is 0 or 1.

It is a still further objective of the present invention to provide a method for improving the properties of a GH by conjugation said protein according to the methods of the present invention.

Definitions

In the present context, the term “growth hormone compound” as used herein means growth hormone of mammalian origin, such as human, bovine, or porcine growth hormone, and recombinant growth hormone, such as recombinant human, bovine, or porcine growth hormone, and variants of such growth hormones. As used herein “GH” and “growth hormone compound” are interchangeable. When GH is a variant of growth hormone of mammalian origin, such as hGH and recombinant hGH, said variant is understood to be the compound obtained by substituting one or more amino acid residues in the growth hormone, e.g. hGH, sequence with another natural or unnatural amino acid; and/or by adding one or more natural or unnatural amino acids to the growth hormone, e.g. hGH, sequence; and/or by deleting one or more amino acid residue from the growth hormone, e.g. hGH, sequence, wherein any of these steps may optionally be followed by further derivatization of one or more amino acid residues. In particular, such substitutions are conservative in the sense that one amino acid residue is substituted by another amino acid residue from the same group, i.e. by another amino acid residue with similar properties. Amino acids may conveniently be divided in the following groups based on their properties: Basic amino acids (such as arginine, lysine, histidine), acidic amino acids (such as glutamic acid and aspartic acid), polar amino acids (such as glutamine, cysteine and asparagine), hydrophobic amino acids (such as leucine, isoleucine, proline, methionine and valine), aromatic amino acids (such as phenylalanine, tryptophan, tyrosine) and small amino acids (such as glycine, alanine, serine and threonine). Typically, the GH has at least 80% identity with hGH, and typically, has at least 20% of the growth hormone activity of hGH as determined in assay I herein.

In the present context, the term “albumin binding residue” as used herein means a residue which binds noncovalently to human serum albumin. The albumin binding residue attached to the growth hormone compound (GH) typically has a binding affinity towards human serum albumin that is below about 10 μM or even below about 1 μM. A range of albumin binding residues are known among linear and branched lipohophillic moieties containing 12-40 carbon atoms, compounds with a cyclopentanophenanthrene skeleton, and/or peptides having 10-45 amino acid residues etc. Albumin binding properties can be measured by surface plasmon resonance as described in J. Biol. Chem. 277(38), 35035-35042, (2002).

The term “hydrophilic spacer” as used herein means a spacer that separates a growth hormone compound and an albumin binding residue with a chemical moiety which comprises at least 5 nonhydrogen atoms where 30-50% of these are either N or O.

In the present context, the term “transamination” and related terms are intended to indicate a reaction wherein the amide nitrogen in the side chain of glutamine is exchanged with nitrogen from another compound, in particular nitrogen from another nitrogen containing nucelophile.

Transglutaminase (E.C.2.3.2.13) is also known as protein-glutamine-γ-glutamyltransferase and catalyses the general reaction

Q-C(O)—NH2 (amine acceptor) may represent a glutamine residue containing peptide or protein and Q′-NH2 (amine donor) represents an amine-containing nucleophile. Alternatively, QC(O)—NH2 and Q′-NH2 may represent an amine acceptor and a lysine-containing peptide or protein, respectively. In the present invention, however, Q-C(O)—NH2 represents a glutamine residue containing growth hormone and Q′-NH2 represents an amine-containing nucleophile as indicated above.

Examples of useful transglutaminases include microbial transglutaminases, such as e.g. those from Streptomyces mobaraense, Streptomyces cinnamoneum and Streptomyces griseocarneum (all disclosed in U.S. Pat. No. 5,156,956, which is incorporated herein by reference), and from Streptomyces lavendulae (disclosed in U.S. Pat. No. 5,252,469, which is incorporated herein by reference) and Streptomyces ladakanum (JP 2003/199569, which is incorporated herein by reference). It should be noted that members of the former genus Streptoverticillium are now included in the genus Streptomyces (Kaempfer, J. Gen. Microbiol. 137, 1831-1892 (1991)). Other useful microbial transglutaminases have been isolated from Bacillus subtilis (disclosed in U.S. Pat. No. 5,731,183, which is incorporated herein by reference) and from various Myxomycetes. Other examples of useful microbial transglutaminases are those disclosed in WO 96/06931 (e.g. transglutaminase from Bacilus lydicus) and WO 96/22366, both of which are incorporated herein by reference. Useful non-microbial transglutaminases include guinea-pig liver transglutaminase, and transglutaminases from various marine sources like the flat fish Pagrus major (disclosed in EP-0555649, which is incorporated herein by reference), and the Japanese oyster Crassostrea gigas (disclosed in U.S. Pat. No. 5,736,356, which is incorporated herein by reference).

In the present context, the term “not accessible” is intended to indicate that something is absent or de facto absent in the sense that it cannot be reached. When it is stated that functional groups are not accessible in a protein to be conjugated it is intended to indicate that said functional group is absent from the protein or, if present, in some way prevented from taking part in reactions. By way of example, said functional group could be buried deep in the structure of the protein so that it is shielded from participating in the reaction. It is recognised that whether or not a functional group is accessible depends on the reaction conditions. It may be envisaged that, e.g. in the presence of denaturing agents or at elevated temperatures the protein may unfold to expose otherwise not accessible functional groups. It is to be understood that “not accessible” means “not accessible at the reaction condition chosen for the particular reaction of interest”.

The term “alkane” or “alkyl” is intended to indicate a saturated, linear, branched and/or cyclic hydrocarbon. Unless specified with another number of carbon atoms, the term is intended to indicate hydrocarbons with from 1 to 30 (both included) carbon atoms, such as 1 to 20 (both included), such as from 1 to 10 (both included), e.g. from 1 to 5 (both included). The terms alkyl and alkylene refer to the corresponding radical and bi-radical, respectively.

The term “C1-6 alkyl” refers to a straight chained or branched saturated hydrocarbon having from one to six carbon atoms inclusive. Examples of such groups include, but are not limited to, methyl, 2-propyl, 1-butyl, 2-butyl, 2-methyl-2-propyl, 2-methyl-1-butyl and n-hexyl.

The term “C3-10 cycloalkyl” typically refers to cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl, and cyclodecanyl.

The term “alkene” is intended to indicate linear, branched and/or cyclic hydrocarbons comprising at least one carbon-carbon double bond. Unless specified with another number of carbon atoms, the term is intended to indicate hydrocarbons with from 2 to 30 (both included) carbon atoms, such as 2 to 20 (both included), such as from 2 to 10 (both included), e.g. from 2 to 5 (both included). The terms alkenyl and alkenylene refer to the corresponding radical and bi-radical, respectively.

The term “alkyne” is intended to indicate linear, branched and/or cyclic hydrocarbons comprising at least one carbon-carbon triple bond, and it may optionally comprise one or more carbon-carbon double bonds. Unless specified with another number of carbon atoms, the term is intended to indicate hydrocarbons with from 2 to 30 (both included) carbon atoms, such as from 2 to 20 (both included), such as from 2 to 10 (both included), e.g. from 2 to 5 (both included). The terms alkynyl and alkynylene refer to the corresponding radical and bi-radical, respectively.

The term “homocyclic aromatic compound” is intended to indicate aromatic hydrocarbons, such as benzene and naphthalene.

The term “heterocyclic compound” is intended to indicate a cyclic compound comprising 5, 6 or 7 ring atoms from which 1, 2, 3 or 4 are hetero atoms selected from N, O and/or S. Examples include heterocyclic aromatic compounds, such as thiophene, furan, pyran, pyrrole, imidazole, pyrazole, isothiazole, isooxazole, pyridine, pyrazine, pyrimidine, pyridazine, as well as their partly or fully hydrogenated equivalents, such as piperidine, pirazolidine, pyrrolidine, pyroline, imidazolidine, imidazoline, piperazine and morpholine.

The terms “hetero alkane”, “hetero alkene” and “hetero alkyne” are intended to indicate alkanes, alkenes and alkynes as defined above, in which one or more hetero atom or group have been inserted into the structure of said moieties. Examples of hetero groups and atoms include —O—, —S—, —S(O)—, —S(O)2—, —C(O)—C(S)— and —N(R*)—, wherein R* represents hydrogen or C1-C6-alkyl. Examples of heteroalkanes include.

The term “radical” or “biradical” is intended to indicate a compound from which one or two, respectively, hydrogen atoms have been removed. When specifically stated, a radical may also indicate the moiety formed by the formal removal of a larger group of atoms, e.g. hydroxyl, from a compound.

The term “halogen” is intended to indicate members of the seventh main group of the periodic table, e.g. F, Cl, Br and I.

In the present context, the term “aryl” is intended to indicate a carbocyclic aromatic ring radical or a fused aromatic ring system radical wherein at least one of the rings are aromatic. Typical aryl groups include phenyl, biphenylyl, naphthyl, and the like.

The term “heteroaryl” or “hetaryl”, as used herein, alone or in combination, refers to an aromatic ring radical with for instance 5 to 7 member atoms, or to a fused aromatic ring system radical with for instance from 7 to 18 member atoms, wherein at least one ring is aromatic, containing one or more heteroatoms as ring atoms selected from nitrogen, oxygen, or sulfur heteroatoms, wherein N-oxides and sulfur monoxides and sulfur dioxides are permissible heteroaromatic substitutions. Examples include furanyl, thienyl, thiophenyl, pyrrolyl, imidazolyl, pyrazolyl, triazolyl, tetrazolyl, thiazolyl, oxazolyl, isoxazolyl, oxadiazolyl, thiadiazolyl, isothiazolyl, pyridinyl, pyridazinyl, pyrazinyl, pyrimidinyl, quinolinyl, isoquinolinyl, benzofuranyl, benzothiophenyl, indolyl, and indazolyl, and the like.

The term “conjugate” as a noun is intended to indicate a modified protein, i.e. a protein with a moiety bonded to it in order to modify the properties of said protein. As a verb, the term is intended to indicate the process of bonding a moiety to a protein to modify the properties of said protein.

As used herein, the term “prodrug” indicates biohydrolyzable amides and biohydrolyzable esters and also encompasses a) compounds in which the biohydrolyzable functionality in such a prodrug is encompassed in the compound according to the present invention, and b) compounds which may be oxidized or reduced biologically at a given functional group to yield drug substances according to the present invention. Examples of these functional groups include 1,4-dihydropyridine, N-alkylcarbonyl-1,4-dihydropyridine, 1,4-cyclohexadiene, tert-butyl, and the like.

As used herein, the term “biohydrolyzable ester” is an ester of a drug substance (in casu, a compound according to the invention) which either a) does not interfere with the biological activity of the parent substance but confers on that substance advantageous properties in vivo such as duration of action, onset of action, and the like, or b) is biologically inactive but is readily converted in vivo by the subject to the biologically active principle. The advantage is, for example increased solubility or that the biohydrolyzable ester is orally absorbed from the gut and is transformed to a compound according to the present invention in plasma. Many examples of such are known in the art and include by way of example lower alkyl esters (e.g., C1-C4), lower acyloxyalkyl esters, lower alkoxyacyloxyalkyl esters, alkoxyacyloxy esters, alkyl acylamino alkyl esters, and choline esters.

As used herein, the term “biohydrolyzable amide” is an amide of a drug substance (in casu, a compound according to the present invention) which either a) does not interfere with the biological activity of the parent substance but confers on that substance advantageous properties in vivo such as duration of action, onset of action, and the like, or b) is biologically inactive but is readily converted in vivo by the subject to the biologically active principle. The advantage is, for example increased solubility or that the biohydrolyzable amide is orally absorbed from the gut and is transformed to a compound according to the present invention in plasma. Many examples of such are known in the art and include by way of example lower alkyl amides, α-amino acid amides, alkoxyacyl amides, and alkylaminoalkylcarbonyl amides.

In the present context, the term “pharmaceutically acceptable salt” is intended to indicate salts which are not harmful to the patient. Such salts include pharmaceutically acceptable acid addition salts, pharmaceutically acceptable metal salts, ammonium and alkylated ammonium salts. Acid addition salts include salts of inorganic acids as well as organic acids. Representative examples of suitable inorganic acids include hydrochloric, hydrobromic, hydroiodic, phosphoric, sulfuric, nitric acids and the like. Representative examples of suitable organic acids include formic, acetic, trichloroacetic, trifluoroacetic, propionic, benzoic, cinnamic, citric, fumaric, glycolic, lactic, maleic, malic, malonic, mandelic, oxalic, picric, pyruvic, salicylic, succinic, methanesulfonic, ethanesulfonic, tartaric, ascorbic, pamoic, bismethylene salicylic, ethanedisulfonic, gluconic, citraconic, aspartic, stearic, palmitic, EDTA, glycolic, p-aminobenzoic, glutamic, benzenesulfonic, p-toluenesulfonic acids and the like. Further examples of pharmaceutically acceptable inorganic or organic acid addition salts include the pharmaceutically acceptable salts listed in J. Pharm. Sci. 66, 2, (1977) which is incorporated herein by reference. Examples of metal salts include lithium, sodium, potassium, magnesium salts and the like. Examples of ammonium and alkylated ammonium salts include ammonium, methylammonium, dimethylammonium, trimethylammonium, ethylammonium, hydroxyethylammonium, diethylammonium, butylammonium, tetramethylammonium salts and the like.

A “therapeutically effective amount” of a compound as used herein means an amount sufficient to cure, alleviate or partially arrest the clinical manifestations of a given disease and its complications. An amount adequate to accomplish this is defined as “therapeutically effective amount”. Effective amounts for each purpose will depend on the severity of the disease or injury as well as the weight and general state of the subject. It will be understood that determining an appropriate dosage may be achieved using routine experimentation, by constructing a matrix of values and testing different points in the matrix, which is all within the ordinary skills of a trained physician or veterinary.

The term “treatment” and “treating” as used herein means the management and care of a patient for the purpose of combating a condition, such as a disease or a disorder.

The term is intended to include the full spectrum of treatments for a given condition from which the patient is suffering, such as administration of the active compound to alleviate the symptoms or complications, to delay the progression of the disease, disorder or condition, to alleviate or relief the symptoms and complications, and/or to cure or eliminate the disease, disorder or condition as well as to prevent the condition, wherein prevention is to be understood as the management and care of a patient for the purpose of combating the disease, condition, or disorder and includes the administration of the active compounds to prevent the onset of the symptoms or complications. The patient to be treated is preferably a mammal; in particular a human being, but it may also include animals, such as dogs, cats, cows, sheep and pigs.

DESCRIPTION OF THE INVENTION

In its broadest aspect the present invention relates to a growth hormone conjugate which comprises a growth hormone compound (GH) linked selectively to an albumin binding residue via a hydrophilic spacer, or a pharmaceutically acceptable salt, solvate or prodrug thereof.

In one embodiment of the present invention the hydrophilic spacer has a mLogP<0.

Solubility of a hydrophilic spacer can be described by its log P value. Log P, also known as the partition coefficient, is the logarithm of the ratio of concentrations of a compound in the two phases of a mixture of two immiscible solvents at equilibrium. Typically one of the solvents is water while the second is selected from octan-1-ol, chloroform, cyclohexane and propylene glycol dipelargonate (PGDP). Log P values measured in these different solvents show differences principally due to hydrogen bonding effects. Octanol can donate and accept hydrogen bonds whereas cyclohexane is inert. Chloroform can donate hydrogen bonds whereas PGDP can only accept them.

In another embodiment of the invention, the hydrophilic spacer has a Log P of below −0.5 in either octan-1-ol, chloroform, cyclohexane and propylene glycol dipelargonate (PGDP).

In a further embodiment, the hydrophilic spacer has a log P below −1 in either octan-1-ol, chloroform, cyclohexane and propylene glycol dipelargonate (PGDP).

Alternatively, the Log P value can be calculated as mLog P and/or cLog P for the albumin binder part or hydrophilic spacer part using published algorithms (J. Am. Chem. Soc., 86 (1964) 5175-5180 “A New Substituent Constant, ∉, Derived from Partition Coefficients”, C. A. Lipinski et al. Advanced Drug Delivery Reviews, 23 (1997) 3-25, “Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings” and I. Moriguchi, S. Hirono, I. Nakagome, H. Hirano, Chem. and Pharm. Bull., 42 (1994) 976-978 “Comparison of Reliability of log P Values for Drugs Calculated by Several Methods”. In one embodiment of the present invention the hydrophilic spacer has a cLogP<0.5.

In a further embodiment the growth hormone compound (GH) is linked to one albumin binding residue via a hydrophilic spacer.

In another embodiment the growth hormone compound (GH) is linked to two albumin binding residues via one or two hydrophilic spacer(s). Thus, in one example one albumin binding residue is linked via one hydrophilic spacer to glutamine in position 40 and the other albumin binding residue is linked via one hydrophilic spacer to glutamine in position 141; or alternatively two albumin binding residues are linked via one hydrophilic spacer to glutamine in position 40 or 141 or the N-terminal. In a still other embodiment the growth hormone compound (GH) is linked to three albumin binding residues via one or more hydrophilic spacer(s).

In an embodiment the hydrophilic spacer comprise at least one OEG motif, the radical 8-amino-3,6-dioxaoctanic acid, i.e. —NH—(CH2)2—O—(CH2)2—O—CH2—C(O)—. In further specified embodiment the hydrophilic spacer comprise at least two OEG motifs. The orientation of such OEG motif(s) is in one embodiment so that the —C(O)— is closest to the growth hormone compound but not connecting the growth hormone compound and the albumin binder linker and the —NH— is closest to the albumin binding residue. In additional embodiments comprising two OEG motifs the two motifs have identical orientation or different orientation. In an embodiment two such OEG motifs are located adjactant to each other whereas in alternative embodiments such OEG mofifs are sperated by one or more atoms covalently linked.

In an embodiment the hydrophilic spacer comprise at lease one glutamic acid residue. The amino acid glutamic acid comprises two carboxylic acid groups. Its gamma-carboxy group may be used for forming an amide bond with the epsilon-amino group of lysine, or with an amino group of an OEG molecule, if present, or with the amino group of another Glu residue, if present. The alfa-carboxy group may alternatively be used ofr forming similar amide bond with the epsilon-amino group of lysine, or with an amino group of an OEG molecule, if present, or with the amino group of another Glu residue, if present. The amino group of Glu may in turn form an amide bond with the carboxy group of the albumin binding residue, or with the carboxy group of an OEG motif, if present, or with the gamma-carboxy group or alfa carboxy group of another Glu, if present. The linkage of the amino group of one Glu to a gamma carboxy group of a second Glu may be referred to as a “gamma-Glu” motif.

In an embodiment the hydrophilic spacer comprise at lease one combined OEG-Glu motif (—NH—(CH2)2—O—(CH2)2—O—CH2—C(O)NH—CH(C(O)OH)—(CH2)2—C(O)—) or at least one combinde Glu-OEG motif (—NH—CH(C(O)OH)—(CH2)2—C(O)NH—(CH2)2—O—(CH2)2—O—CH2—C(O)—) or combination here of, where in such Glu-OEG and OEG-Glu motifs may be separated by one or more covalently linked atoms or directly bond to each other by an amide bond of the Glu's foming a gammal-Glu.

In a still further embodiment of the growth hormone conjugate the hydrophilic spacer has the formula

    • X1-X2-X3-X4-
      wherein
    • X1 is —W1—[(CHR1)l1—W2]m1—{[(CH2)n1E1]m2—[(CHR2)l2—W3]m3}n2—,
    • X2 is —[(CHR3)l3—W4]m4—{[(CH2)n3E2]m5—[(CHR4)l4—W5]m6}n4—,
    • X3 is —[(CHR5)l5—W6]m7—,
    • X4 is —F-D1-(CH2)l6-D2-,
    • l1, l2, l3, l4, l5 and l6 independently are selected from 0-16,
    • m1, m3, m4, m6 and m7 independently are selected from 0-10,
    • m2 and m5 independently are selected from 0-25,
    • n1, n2, n3 and n4 independently are selected from 0-16,
    • F is aryl, hetaryl, pyrrolidine-2,5-dione or a valence bond, wherein the aryl and hetaryl groups are optionally substituted with halogen, —CN, —OH, —C(O)OH, —C(O)NH2, —S(O)2OH or C1-6-alkyl,
    • R1, R2, R3, R4 and R5 independently are selected from hydrogen, —C(O)OH, —C(O)NH2, —S(O)OH, —S(O)2OH, —NH—C(═NH)—NH2, C1-6-alkyl, aryl or hetaryl; wherein the alkyl, aryl and hetaryl groups optionally are substituted with halogen, —C(O)OH, —C(O)NH2, —S(O)OH, —S(O)2OH, —CN or —OH,
    • D1, D2, E1 and E2 independently are selected from —O—, —NR6—, —N(COR7)— or a valence bond; wherein R6 and R7 independently represent hydrogen or C1-6-alkyl, W1 to W6 independently are selected from —C(O)NH—, —NHC(O)—, —C(O)NHCH2—, —CH2NHC(O)—, —C(O)NHS(O)2—, —S(O)2NHC(O)—, —OC(O)NH—, —NHC(O)O—, —C(O)CH2—, —CH2C(O)—, —C(O)CH═CH—, —CH═CHC(O)—, —(CH2)s1—, —C(O)—, —C(O)O—, —OC(O)—, or a valence bond; wherein s1 is 0 or 1.

In an embodiment D1 is selected from —O—, —NR6—, —N(COR7)— or a valence bond, D2 is —NR6—, E1 and E2 are independently selected from —O—, —NR6—, —N(COR7)— or a valence bond and R6 and R7 independently represent hydrogen or C1-6-alkyl,

In a further aspect the present invention relates to a growth hormone conjugate of the formula (I):


A-W—B-GH  (I)

wherein

    • GH represents a growth hormone compound,
    • B represents a hydrophilic spacer,
    • W is a chemical group linking A and B, and
    • A represent an albumin binding residue; and
    • pharmaceutically acceptable salts, solvates and prodrugs thereof.

As described above the growth hormone compound (GH) may be linked to two albumin binding residues via a hydrophilic spacer, accordingly in a still further aspect the present invention relates to a growth hormone conjugate of the formula (II):


A-W—B-GH-B′—W′-A′  (II)

wherein

    • GH represents a growth hormone compound,
    • W is a chemical group linking A and B,
    • W′ is a chemical group linking A′ and B′,
    • A and A′ independently represents an albumin binding residue,
    • B and B′ independently are hydrophilic spacers, and
    • pharmaceutically acceptable salts, solvates and prodrugs thereof.

In the conjugate of formula (II) W′ is selected from the same groups as W, A′ is selected from the same groups as A and B′ is selected from the same groups as B, and it should be understood that W and W′, A and A′, and B and B′ are independently selected from any one of the respective groups as defined hereunder. Thus, any embodiments of W, A, and B hereunder are also embodiments of W′, A′, and B′. Furthermore, any one of the embodiments described herein refers independently to both of the conjugates of formula (I) and (II), as well as the broad aspect and embodiments thereof when suitable.

The above embodiments as well as the embodiments to be described hereunder should be seen as referring to any one of the aspects described herein as well as any one of the embodiments described herein unless it is specified that an embodiment relates to a certain aspect or aspects of the present invention.

In one embodiment GH is a variant of hGH, wherein a variant is understood to be the compound obtained by substituting one or more amino acid residues in the hGH sequence with another natural or unnatural amino acid; and/or by adding one or more natural or unnatural amino acids to the hGH sequence; and/or by deleting one or more amino acid residue from the hGH sequence, wherein any of these steps may optionally be followed by further derivatization of one or more amino acid residues. In particular, such substitutions are conservative in the sense that one amino acid residue is substituted by another amino acid residue from the same group, i.e. by another amino acid residue with similar properties. Amino acids may conveniently be divided in the following groups based on their properties: Basic amino acids (such as arginine, lysine, histidine), acidic amino acids (such as glutamic acid and aspartic acid), polar amino acids (such as glutamine, cysteine and asparagine), hydrophobic amino acids (such as leucine, isoleucine, proline, methionine and valine), aromatic amino acids (such as phenylalanine, tryptophan, tyrosine) and small amino acids (such as glycine, alanine, serine and threonine.).

In a further embodiment GH represents a growth hormone compound comprising an amino acid sequence having at least 90% identity to the amino acid sequence of human growth hormone (hGH) (SEQ ID NO:1). In further embodiments, GH has at least 80%, such as at least 85%, such as at least 95% identity with hGH. In further embodiments, said identities to hGH is coupled to at least 20%, such as at least 40%, such as at least 60%, such as at least 80% of the growth hormone activity of hGH as determined in assay I herein. Any one of the sequence identity embodiments may be combined with any one of the activity embodiments, such as a GH having at least 80% identity with hGH and coupled to at least 60% of the growth hormone activity of hGH; a GH having at least 90% identity with hGH and coupled to at least 40% of the growth hormone activity of hGH; a GH having at least 95% identity with hGH and coupled to at least 80% of the growth hormone activity of hGH, and so forth.

In a still further embodiment GH is hGH (SEQ ID NO:1).

In a further embodiment of the conjugate of formula (I) or (II), the hydrophilic spacer B has the formula


-X1-X2-X3-X4-

wherein

    • X1 is —W1—[(CHR1)1—W2]m-{[(CH2)n1E1]m2—[(CHR2)l2—W3]m3}n2—,
    • X2 is —[(CHR3)l3—W4]m4—{[(CH2)n3E2]m5—[(CHR4)l4—W5]m6}n4—,
    • X3 is —[(CHR5)l5—W6]m7—,
    • X4 is —F-D1-(CH2)l6-D2-,
    • l1, l2, l3, l4, l5 and l6 independently are selected from 0-16,
    • m1, m3, m4, m6 and m7 independently are selected from 0-10,
    • m2 and m5 independently are selected from 0-25,
    • n1, n2, n3 and n4 independently are selected from 0-16,
    • F is aryl, hetaryl, pyrrolidine-2,5-dione or a valence bond, wherein the aryl and hetaryl groups are optionally substituted with halogen, —CN, —OH, —C(O)OH, —C(O)NH2, —S(O)2OH or C1-6-alkyl,
    • R1, R2, R3, R4 and R5 independently are selected from hydrogen, —C(O)OH, —C(O)NH2, —S(O)OH, —S(O)2OH, —NH—C(═NH)—NH2, C1-6-alkyl, aryl or hetaryl; wherein the alkyl, aryl and hetaryl groups optionally are substituted with halogen, —C(O)OH, —C(O)NH2, —S(O)OH, —S(O)2OH, —CN or —OH,
    • D1, D2, E1 and E2 independently are selected from —O—, —NR6—, —N(COR7)— or a valence bond; wherein R6 and R7 independently represent hydrogen or C1-6-alkyl,
    • W1 to W6 independently are selected from —C(O)NH—, —NHC(O)—, —C(O)NHCH2—, —CH2NHC(O)—, —C(O)NHS(O)2—, —S(O)2NHC(O)—, —OC(O)NH—, —NHC(O)O—, —C(O)CH2—, —CH2C(O)—, —C(O)CH═CH—, —CH═CHC(O)—, —(CH2)s2—, —C(O)—, —C(O)O—, —OC(O)—, or a valence bond; wherein s2 is 0 or 1.

In a further embodiment W1 is selected from —C(O)NH—, —NHC(O)—, —C(O)NHCH2—, —CH2NHC(O)—, —C(O)NHS(O)2—, —S(O)2NHC(O)— or a valence bond. Typically, W1 is selected from —C(O)NH—, —NHC(O)—, —C(O)NHS(O)2—,

In a further embodiment W2 is selected from —C(O)NH—, —NHC(O)—, —C(O)NHCH2—, —CH2NHC(O)—, —C(O)NHS(O)2—, —S(O)2NHC(O)— or a valence bond. Typically, W2 is selected from —C(O)NH—, —NHC(O)—, —C(O)NHS(O)2—,

In a further embodiment W3 is selected from —C(O)NH—, —NHC(O)—, —C(O)NHCH2—, —CH2NHC(O)—, —C(O)NHS(O)2—, —S(O)2NHC(O)— or a valence bond. Typically, W3 is selected from —C(O)NH—, —NHC(O)—, —C(O)NHS(O)2—,

In a further embodiment W4 is selected from —C(O)NH—, —NHC(O)—, —C(O)NHCH2—, —CH2NHC(O)—, —C(O)NHS(O)2—, —S(O)2NHC(O)— or a valence bond. Typically, W4 is selected from —C(O)NH—, —NHC(O)—, —C(O)NHS(O)2—,

In a further embodiment W5 is selected from —C(O)NH—, —NHC(O)—, —C(O)NHCH2—, —CH2NHC(O)—, —C(O)NHS(O)2—, —S(O)2NHC(O)— or a valence bond. Typically, W5 is selected from —C(O)NH—, —NHC(O)—, —C(O)NHS(O)2—,

In a further embodiment W6 is selected from —C(O)NH—, —NHC(O)—, —C(O)NHCH2—, —CH2NHC(O)—, —C(O)NHS(O)2—, —S(O)2NHC(O)— or a valence bond. Typically, W6 is selected from —C(O)NH—, —NHC(O)—, —C(O)NHS(O)2—,

In a further embodiment R1 selected from hydrogen, —C(O)OH, —C(O)NH2, —S(O)2OH or C1-6-alkyl; wherein the alkyl group optionally is substituted with —C(O)OH, —C(O)NH2, —S(O)2OH. Typically, R1 is selected from —C(O)OH, —C(O)NH2, or C1-6-alkyl; wherein the alkyl group optionally is substituted with —C(O)OH, —C(O)NH2, or —S(O)2OH.

In a further embodiment R2 is selected from hydrogen, —C(O)OH, —C(O)NH2, —S(O)2OH or C1-6-alkyl; wherein the alkyl group optionally is substituted with —C(O)OH, —C(O)NH2, —S(O)2OH. Typically, R2 is selected from —C(O)OH, —C(O)NH2, or C1-6-alkyl; wherein the alkyl group optionally is substituted with —C(O)OH, —C(O)NH2, or —S(O)2OH.

In a further embodiment R3 is selected from hydrogen, —C(O)OH, —C(O)NH2, —S(O)2OH or C1-6-alkyl; wherein the alkyl group optionally is substituted with —C(O)OH, —C(O)NH2, —S(O)2OH. Typically, R3 is selected from —C(O)OH, —C(O)NH2, or C1-6-alkyl; wherein the alkyl group optionally is substituted with —C(O)OH, —C(O)NH2, or —S(O)2OH.

In a further embodiment R4 is selected from hydrogen, —C(O)OH, —C(O)NH2, —S(O)2OH or C1-6-alkyl; wherein the alkyl group optionally is substituted with —C(O)OH, —C(O)NH2, —S(O)2OH. Typically, R4 is selected from —C(O)OH, —C(O)NH2, or C1-6-alkyl; wherein the alkyl group optionally is substituted with —C(O)OH, —C(O)NH2, or —S(O)2OH.

In a further embodiment R5 is selected from hydrogen, —C(O)OH, —C(O)NH2, —S(O)2OH or C1-6-alkyl; wherein the alkyl group optionally is substituted with —C(O)OH, —C(O)NH2, —S(O)2OH. Typically, R5 is selected from —C(O)OH, —C(O)NH2, or C1-6-alkyl; wherein the alkyl group optionally is substituted with —C(O)OH, —C(O)NH2, or —S(O)2OH.

In a further embodiment E1 and E2 independently are selected from —O—, —NR6—, —N—(COR7)— or a valence bond. R6 and R7 independently represent hydrogen or C1-6-alkyl.

In a further embodiment E1 is selected from —O— or —NR6— or a valence bond. Typically, E1 is selected from —O—.

In a further embodiment E2 is selected from —O— or —NR6— or a valence bond. Typically, E2 is selected from —O—.

In a further embodiment E1 and E2 are both —O—.

In a further embodiment E1 and E2 are both —NR6—.

In a further embodiment F is phenyl, pyrrolidine-2,5-dione or a valence bond.

In a further embodiment D1 is selected from —O—, —NR6—, —N(COR7)— or a valence bond.

In a further embodiment D1 is selected from —O— or —NR6— or a valence bond. Typically, D1 is selected from —NR6—.

In a further embodiment D2 is selected from —O—, —NR6—, —N(COR7)— or a valence bond.

In a further embodiment D2 is selected from —O— or —NR6— or a valence bond. Typically, D2 is selected from —NR6—.

R6 and R7 independently represent hydrogen or C1-6-alkyl,

In a further embodiment l1 is 0-6, such as 0, 1, 2, 3, 4, 5 or 6.

In a further embodiment l2 is 0-6, such as 0, 1, 2, 3, 4, 5 or 6.

In a further embodiment l3 is 0-6, such as 0, 1, 2, 3, 4, 5 or 6.

In a further embodiment l4 is 0-6, such as 0, 1, 2, 3, 4, 5 or 6.

In a further embodiment l5 is 0-6, such as 0, 1, 2, 3, 4, 5 or 6.

In a further embodiment l6 is 0-6, such as 0, 1, 2, 3, 4, 5 or 6.

In a further embodiment m1 is 0-6, such as 0, 1, 2, 3, 4, 5 or 6.

In a further embodiment m2 is 0-10, such as 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10.

In a further embodiment m3 is 0-5, such as 0, 1, 2, 3, 4, 5 or 6.

In a further embodiment m4 is 0-5, such as 0, 1, 2, 3, 4, 5 or 6.

In a further embodiment m5 is 0-10, such as 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10.

In a further embodiment m6 is 0-5, such as 0, 1, 2, 3, 4, 5 or 6.

In a further embodiment m7 is 0-5, such as 0, 1, 2, 3, 4, 5 or 6.

In a further embodiment n1 is 0-10, such as 0, 1, 2, 3, 4, 5 or 6.

In a further embodiment n2 is 0-10, such as 0, 1, 2, 3, 4, 5 or 6.

In a further embodiment n3 is 0-10, such as 0, 1, 2, 3, 4, 5 or 6.

In a further embodiment n4 is 0-10, such as 0, 1, 2, 3, 4, 5 or 6.

In a further embodiment X1 is —W1—[(CHR1)1—W2]m-{[(CH2)n1O]m2—[(CHR2)l2—W3]m3}n2— and X2 is —[(CHR3)l3—W4]m4—{[(CH2)n3O]m5—[(CHR4)l4—W5]m6}n4—, wherein —{[(CH2)n1O]m2—[(CHR2)l2—W3]m3}n2— and —{[(CH2)n3O]m5—[(CHR4)l4—W5]m6}n4— are selected from,

wherein * is intended to denote a point of attachment, ie, an open bond.

In a further embodiment the molar weight of said hydrophilic spacer is in the range from 80 Daltons (D) to 1500 D or in the range from 500 D to 1100 D.

In a still further embodiment W has the formula


—W7—Y—,

wherein

Y is —(CH2)7—C3-10-Cycloalkyl-W8— or a valence bond,

l7 is 0-6,

W7 is selected from —C(O)NH—, —NHC(O)—, —C(O)NHCH2—, —CH2NHC(O)—, —C(O)NHS(O)2—, —S(O)2NHC(O)—, —OC(O)NH—, —NHC(O)O—, —C(O)CH2—, —CH2C(O)—, —C(O)CH═CH—, —CH═CHC(O)—, —(CH2)s3—, —C(O)—, —C(O)O—, —OC(O)—, or a valence bond; wherein s3 is 0 or 1,
W8 is selected from —C(O)NH—, —NHC(O)—, —C(O)NHCH2—, —CH2NHC(O)—, C(O)NHS(O)2—, —S(O)2NHC(O)—, —OC(O)NH—, —NHC(O)O—, —C(O)CH2—, —CH2C(O)—, —C(O)CH═CH—, —CH═CHC(O)—, —(CH2)s4—, —C(O)—, —C(O)O—, —OC(O)—, or a valence bond; wherein s4 is 0 or 1.

In an embodiment of W Y is —(CH2)l7-cyclohexyl-W8—.

In a further embodiment Y is a valence bond.

In an embodiment W7 is selected from —C(O)NH—, —NHC(O)—, —C(O)NHCH2—, —CH2NHC(O)—, —C(O)NHS(O)2—, —S(O)2NHC(O)— or a valence bond. Typically, W7 is selected from —C(O)NH—, —NHC(O)—, —C(O)NHS(O)2.

In a further embodiment W8 is selected from —C(O)NH—, —NHC(O)—, —C(O)NHCH2—, —CH2NHC(O)—, —C(O)NHS(O)2—, —S(O)2NHC(O)— or a valence bond. Typically, W8 is selected from —C(O)NH—, —NHC(O)—, —C(O)NHS(O)2.

In a further embodiment l7 is 0 or 1.

In a further embodiment the hydrophilic spacer B of the present invention is selected from

wherein * is intended to denote a point of attachment, ie, an open bond.
The albumin binding residue (substituent A in formula (I) or (II) above) attached to the growth hormone compound of the present invention is a lipophilic residue, which binds non-covalently to albumin. Typically, albumin binding residue is negatively charged at physiological pH, and has a binding affinity towards human serum albumin that is below about 10 μM or even below about 1 μM.

In a further embodiment of the growth hormone compound of the present invention the albumin binding residue is selected from a straight chain alkyl group, a branched alkyl group, a group which has a ω-carboxylic acid group or a ω-carboxylic acid isoster. Typically, the albumin binding residue has from 6 to 40 carbon atoms. In a further embodiment the albumin binding residue has from 8 to 26 carbon atoms. In a further embodiment the albumin binding residue has from 8 to 20 carbon atoms.

In a further embodiment A has 14 to 26 carbon atoms and comprises an ω-carboxylic acid group. In a further embodiment A has 14 to 26 carbon atoms and comprises an ω-carboxylic acid isoster, such as a tetrazol.

In a further embodiment A is selected from

wherein * denotes the attachment to B through W.

The hydrophilic spacer (B) is preferably introduced in a position of the growth hormone compound (GH) in a selective manner in order to be able to control whether one, two, or three albumin binding residues (A) should be incorporated in the growth hormone compound. The hydrophilic spacer (B) may be attached to an amino acid side-chain of the GH compound. Such amino acid side-chain may be a chemically modified amino acid side-chain of the GH compound. Another, such amino acid side-chain may be an enzymatically modified amino acid side-chain of the GH compound. Preferably, a transglutaminase is used to introduce a hydrophilic spacer in the glutamine residue in the position corresponding to position 40 or 141 in SEQ ID No. 1. Another way of selectively introducing a hydrophilic spacer is in the N-terminal residue of the growth hormone compound, such as hGH (SEQ ID No. 1).

In the growth hormone conjugate of the formula (I) the fragment A-W—B may be linear or branched. In one embodiment, A-W—B is not a linear peptide.

In a further embodiment the albumin binding residue via a hydrophilic spacer is attached to the glutamine residue in the position corresponding to position 40 in SEQ ID No. 1.

In a further embodiment the albumin binding residue via a hydrophilic spacer is attached to the glutamine residue in the position corresponding to position 141 in SEQ ID No. 1.

In a further embodiment the albumin binding residue via a hydrophilic spacer is attached to the N-terminal residue of the growth hormone compound, such as hGH (SEQ ID No. 1).

In a further embodiment the albumin binding residue via a hydrophilic spacer is attached to the glutamine residue in the position corresponding to position 40 and to the glutamine residue in the position corresponding to position 141 in SEQ ID No. 1.

In a further embodiment the albumin binding residue via a hydrophilic spacer is attached to the glutamine residue in the position corresponding to position 40 and to the N-terminal residue of the growth hormone compound, such as hGH (SEQ ID No. 1).

In a further embodiment the albumin binding residue via a hydrophilic spacer is attached to the glutamine residue in the position corresponding to position 141 and to the N-terminal residue of the growth hormone compound, such as hGH (SEQ ID No. 1).

The growth hormone conjugates of the present invention are selected from

In a further aspect the present invention relates to a growth hormone conjugate which comprises a growth hormone compound (GH) linked to an albumin binding residue via a hydrophilic spacer, or a pharmaceutically acceptable salt, solvate or prodrug thereof for use in therapy. Furthermore, in the growth hormone conjugate of the present invention GH, the albumin binding residue, and the hydrophilic spacer are selected from any one of the above embodiments, in particular the growth hormone conjugate has the formula (I) or (II).

In a further aspect the present invention relates to a pharmaceutical composition comprising a growth hormone conjugate which comprises a growth hormone compound (GH) linked to an albumin binding residue via a hydrophilic spacer, or a pharmaceutically acceptable salt, solvate or prodrug thereof, optionally in combination with a pharmaceutical acceptable excipient.

The term “identity” as known in the art, refers to a relationship between the sequences of two or more proteins, as determined by comparing the sequences. In the art, “identity” also means the degree of sequence relatedness between proteins, as determined by the number of matches between strings of two or more amino acid residues. “Identity” measures the percent of identical matches between the smaller of two or more sequences with gap alignments (if any) addressed by a particular mathematical model or computer program (i.e., “algorithms”). Identity of related proteins can be readily calculated by known methods. Such methods include, but are not limited to, those described in Computational Molecular Biology, Lesk, A. M., ed., Oxford University Press, New York, 1988; Biocomputing: Informatics and Genome Projects, Smith, D. W., ed., Academic Press, New York, 1993; Computer Analysis of Sequence Data, Part 1, Griffin, A. M., and Griffin, H. G., eds., Humana Press, New Jersey, 1994; Sequence Analysis in Molecular Biology, von Heinje, G., Academic Press, 1987; Sequence Analysis Primer, Gribskov, M. and Devereux, J., eds., M. Stockton Press, New York, 1991; and Carillo et al., SIAM J. Applied Math., 48, 1073, (1988).

Preferred methods to determine identity are designed to give the largest match between the sequences tested. Methods to determine identity are described in publicly available computer programs. Preferred computer program methods to determine identity between two sequences include the GCG program package, including GAP (Devereux et al., Nucl. Acid. Res., 12, 387, (1984); Genetics Computer Group, University of Wisconsin, Madison, Wis.), BLASTP, BLASTN, and FASTA (Altschul et al., J. Mol. Biol., 215, 403-410, (1990)). The BLASTX program is publicly available from the National Center for Biotechnology Information (NCBI) and other sources (BLAST Manual, Altschul et al. NCB/NLM/NIH Bethesda, Md. 20894; Altschul et al., supra). The well known Smith Waterman algorithm may also be used to determine identity.

For example, using the computer algorithm GAP (Genetics Computer Group, University of Wisconsin, Madison, Wis.), two proteins for which the percent sequence identity is to be determined are aligned for optimal matching of their respective amino acids (the “matched span”, as determined by the algorithm). A gap opening penalty (which is calculated as 3.times. the average diagonal; the “average diagonal” is the average of the diagonal of the comparison matrix being used; the “diagonal” is the score or number assigned to each perfect amino acid match by the particular comparison matrix) and a gap extension penalty (which is usually 1/10 times the gap opening penalty), as well as a comparison matrix such as PAM 250 or BLOSUM 62 are used in conjunction with the algorithm. A standard comparison matrix (see Dayhoff et al., Atlas of Protein Sequence and Structure, vol. 5, supp.3 (1978) for the PAM 250 comparison matrix; Henikoff et al., Proc. Natl. Acad. Sci USA, 89, 10915-10919, (1992) for the BLOSUM 62 comparison matrix) is also used by the algorithm.

Preferred parameters for a protein sequence comparison include the following:

Algorithm: Needleman et al., J. Mol. Biol, 48, 443-453, (1970); Comparison matrix: BLOSUM 62 from Henikoff et al., Proc. Natl. Acad. Sci. USA, 89, 10915-10919, (1992); Gap Penalty: 12, Gap Length Penalty: 4, Threshold of Similarity: 0.

The GAP program is useful with the above parameters. The aforementioned parameters are the default parameters for protein comparisons (along with no penalty for end gaps) using the GAP algorithm.

The compounds of the present invention have improved pharmacological properties compared to the corresponding un-conjugated growth hormone, which is also referred to as the parent compound. Examples of such pharmacological properties include functional in vivo half-life, immunogencity, renal filtration, protease protection and albumin binding.

The term “functional in vivo half-life” is used in its normal meaning, i.e., the time at which 50% of the biological activity of the GH or GH conjugate is still present in the body/target organ, or the time at which the activity of the GH or GH conjugate is 50% of its initial value. As an alternative to determining functional in vivo half-life, “in vivo plasma half-life” may be determined, i.e., the time at which 50% of the GH or GH conjugate circulate in the plasma or bloodstream prior to being cleared. Determination of plasma half-life is often more simple than determining functional half-life and the magnitude of plasma half-life is usually a good indication of the magnitude of functional in vivo half-life. Alternative terms to plasma half-life include serum half-life, circulating half-life, circulatory half-life, serum clearance, plasma clearance, and clearance half-life.

The term “increased” as used in connection with the functional in vivo half-life or plasma half-life is used to indicate that the relevant half-life of the GH conjugate is statistically significantly increased relative to that of the parent GH, as determined under comparable conditions. For instance the relevant half-life may be increased by at least about 25%, such as by at lest about 50%, e.g., by at least about 100%, 150%, 200%, 250%, or 500%. In one embodiment, the compounds of the present invention exhibit an increase in half-life of at least about 5 h, preferably at least about 24 h, more preferably at least about 72 h, and most preferably at least about 7 days, relative to the half-life of the parent GH.

Measurement of in vivo plasma half-life can be carried out in a number of ways as described in the literature. An increase in in vivo plasma half-life may be quantified as a decrease in clearance (CL) or as an increase in mean residence time (MRT). Conjugated GH of the present invention for which the CL is decreased to less than 70%, such as less than 50%, such than less than 20%, such than less than 10% of the CL of the parent GH as determined in a suitable assay is said to have an increased in vivo plasma half-life. Conjugated GH of the present invention for which MRT is increased to more than 130%, such as more than 150%, such as more than 200%, such as more than 500% of the MRT of the parent GH in a suitable assay is said to have an increased in vivo plasma half-life. Clearance and mean residence time can be assessed in standard pharmacokinetic studies using suitable test animals. It is within the capabilities of a person skilled in the art to choose a suitable test animal for a given protein. Tests in human, of course, represent the ultimate test. Suitable text animals include normal, Sprague-Dawley male rats, mice and cynomolgus monkeys. Typically the mice and rats are in injected in a single subcutaneous bolus, while monkeys may be injected in a single subcutaneous bolus or in a single iv dose. The amount injected depends on the test animal. Subsequently, blood samples are taken over a period of one to five days as appropriate for the assessment of CL and MRT. The blood samples are conveniently analysed by ELISA techniques.

The term “Immunogenicity” of a compound refers to the ability of the compound, when administered to a human, to elicit a deleterious immune response, whether humoral, cellular, or both. In any human sub-population, there may be individuals who exhibit sensitivity to particular administered proteins. Immunogenicity may be measured by quantifying the presence of growth hormone antibodies and/or growth hormone responsive T-cells in a sensitive individual, using conventional methods known in the art. In one embodiment, the conjugated GH of the present invention exhibit a decrease in immunogenicity in a sensitive individual of at least about 10%, preferably at least about 25%, more preferably at least about 40% and most preferably at least about 50%, relative to the immunogenicity for that individual of the parent GH.

The term “protease protection” or “protease protected” as used herein is intended to indicate that the conjugated GH of the present invention is more resistant to the plasma peptidase or proteases than is the parent GH. Protease and peptidase enzymes present in plasma are known to be involved in the degradation of circulating proteins, such as e.g. circulating peptide hormones, such as growth hormone.

Growth hormone may be susceptible to degradation by for instance thrombin, plasmin, subtilisin, and chymotrypsin-like serine proteinase. Assays for determination of degradation of these proteases are described ain J. Biotech., 65, 183, (1998). In one embodiment, the rate of hydrolysis of the GH conjugate is less than 70%, such as less than 40%, such as less than 10% of that of the parent GH.

The most abundant protein component in circulating blood of mammalian species is serum albumin, which is normally present at a concentration of approximately 3 to 4.5 grams per 100 milliters of whole blood. Serum albumin is a blood protein of approximately 70,000 daltons which has several important functions in the circulatory system. It functions as a transporter of a variety of organic molecules found in the blood, as the main transporter of various metabolites such as fatty acids and bilirubin through the blood, and, owing to its abundance, as an osmotic regulator of the circulating blood. Serum albumin has a half-life of more than one week, and one approach to increasing the plasma half-life of proteins has been to conjugate to the protein a group that binds to serum albumin. Albumin binding property may be determined as described in J. Med. Chem., 43, 1986, (2000) which is incorporated herein by reference.

The growth hormone conjugates of formula (I) or (II) exert growth hormone activity and may as such be used in the treatment of diseases or states which will benefit from an increase in the amount of circulating growth hormone. In particular, the invention provides a method for the treatment of growth hormone deficiency (GHD); Turner Syndrome; Prader-Willi syndrome (PWS); Noonan syndrome; Down syndrome; chronic renal disease, juvenile rheumatoid arthritis; cystic fibrosis, HIV-infection in children receiving HAART treatment (HIV/HALS children); short children born short for gestational age (SGA); short stature in children born with very low birth weight (VLBW) but SGA; skeletal dysplasia; hypochondroplasia; achondroplasia; idiopathic short stature (ISS); GHD in adults; fractures in or of long bones, such as tibia, fibula, femur, humerus, radius, ulna, clavicula, matacarpea, matatarsea, and digit; fractures in or of spongious bones, such as the scull, base of hand, and base of food; patients after tendon or ligament surgery in e.g. hand, knee, or shoulder; patients having or going through distraction oteogenesis; patients after hip or discus replacement, meniscus repair, spinal fusions or prosthesis fixation, such as in the knee, hip, shoulder, elbow, wrist or jaw; patients into which osteosynthesis material, such as nails, screws and plates, have been fixed; patients with non-union or mal-union of fractures; patients after osteatomia, e.g. from tibia or 1st toe; patients after graft implantation; articular cartilage degeneration in knee caused by trauma or arthritis; osteoporosis in patients with Turner syndrome; osteoporosis in men; adult patients in chronic dialysis (APCD); malnutritional associated cardiovascular disease in APCD; reversal of cachexia in APCD; cancer in APCD; chronic abstractive pulmonal disease in APCD; HIV in APCD; elderly with APCD; chronic liver disease in APCD, fatigue syndrome in APCD; Crohn's disease; impaired liver function; males with HIV infections; short bowel syndrome; central obesity; HIV-associated lipodystrophy syndrome (HALS); male infertility; patients after major elective surgery, alcohol/drug detoxification or neurological trauma; aging; frail elderly; osteo-arthritis; traumatically damaged cartilage; erectile dysfunction; fibromyalgia; memory disorders; depression; traumatic brain injury; subarachnoid haemorrhage; very low birth weight; metabolic syndrome; glucocorticoid myopathy; or short stature due to glucucorticoid treatment in children, the method comprising administering to a patient in need thereof a therapeutically effective amount of a growth hormone conjugate according to formula (I) or (II).

In a further aspect, the invention provides a method for the acceleration of the healing of muscle tissue, nervous tissue or wounds; the acceleration or improvement of blood flow to damaged tissue; or the decrease of infection rate in damaged tissue, the method comprising administration to a patient in need thereof an effective amount of a therapeutically effective amount of a growth hormone conjugate of formula (I) or (II).

In a further embodiment, the invention relates to the use of a growth hormone conjugate of formula (I) or (II) in the manufacture of diseases benefiting from an increase in the growth hormone plasma level, such as the disease mentioned above.

A typical parenteral dose is in the range of 10−9 mg/kg to about 100 mg/kg body weight per administration. Typical administration doses are from about 0.0000001 to about 10 mg/kg body weight per administration. The exact dose will depend on e.g. indication, medicament, frequency and mode of administration, the sex, age and general condition of the subject to be treated, the nature and the severity of the disease or condition to be treated, the desired effect of the treatment and other factors evident to the person skilled in the art.

Typical dosing frequencies are twice daily, once daily, bi-daily, twice weekly, once weekly or with even longer dosing intervals. Due to the prolonged half-lifes of the fusion proteins of the present invention, a dosing regime with long dosing intervals, such as twice weekly, once weekly or with even longer dosing intervals is a particular embodiment of the invention.

Many diseases are treated using more than one medicament in the treatment, either concomitantly administered or sequentially administered. It is therefore within the scope of the present invention to use a growth hormone conjugate of formula (I) or (II) in therapeutic methods for the treatment of one of the above mentioned diseases in combination with one or more other therapeutically active compound(s) normally used in the treatment said diseases. By analogy, it is also within the scope of the present invention to use a growth hormone conjugate of formula (I) or (II) in combination with other therapeutically active compounds normally used in the treatment of one of the above mentioned diseases in the manufacture of a medicament for said disease.

General Methods of Preparation Enzyme Conjugation:

In the preparation of a growth hormone conjugate of the present invention, typically at least one of the covalent bonds establised in the preparation of a A-W—B-GH conjugate of formula (I) is prepared by use of an enzyme as illustrated in the examples below. Such an enzyme may for instance be selected from the group consisting of transglutaminases, serine proteases and cysteine proteases. Typically, said enzyme is a transglutaminase. Such transglutaminase may for instance be selected from the group consisting of microbial transglutaminases, tissue transglutaminases and factor XIII and variants thereof. In another embodiment, said enzyme is a cysteine protease. Such a cysteine protease may for instance be selected from the group consisting of papain, sortase A and sortase B. In a further embodiment, said enzyme is a serine protease. Such a serine protease may for instance be selected from the group consisting of carboxypeptidase Y (CPY) (PCT application WO2005/035553 contains general disclosure of protein modification using CPY), trypsin and chymotrypsin.

The growth hormone conjugate of the present invention may be prepared by many different methods, non-limiting examples are shown below.

The present invention also provides methods for preparing A-W—B-GH conjugates of formula (I).

Transglutaminase

As stated above, at least one of the covalent bonds establised in the preparation of a A-W—B-GH conjugate of the present invention may be prepared by use of a transglutaminase. Transglutaminases may include microbial transglutaminases such as that isolated from the Streptomyces species; S. mobaraense, S. cinnamoneum, S. griseocarneum (U.S. Pat. No. 5,156,956 incorporated herein by reference), S. lavendulae (U.S. Pat. No. 5,252,469 incorporated herein by reference) and Streptomyces ladakanum (JP2003/199569 incorporated herein by reference). Other useful microbial transglutaminases have been isolated from Bacillus subtilis (disclosed in U.S. Pat. No. 5,731,183, which is incorporated herein by reference) and from various Myxomycetes. Other examples of useful microbial transglutaminases are those disclosed in WO96/06931 (e.g. transglutaminase from Bacilus lydicus) and WO96/22366, both of which are incorporated herein by reference. Useful non-microbial transglutaminases include guinea-pig liver transglutaminase, and transglutaminases from various marine sources like the flat fish Pagrus major (disclosed in EP0555649, which is incorporated herein by reference), and the Japanese oyster Crassostrea gigas (disclosed in U.S. Pat. No. 5,736,356, which is incorporated herein by reference). Functional analogues and derivatives thereof may also be useful.

Typically, the TGase used in the methods of the invention is a microbial transglutaminase. In one embodiment, the TGase is from S. mobaraense or a variant thereof, for instance as described in WO2007/020290 and WO2008/020075. In another embodiment, the TGase is from S. ladakanum or a variant thereof, for instance as described in WO2008/020075.

The conjugation of hGH to A-W—B according to the present invention may be achieved by TGase-mediated modification leading to selective alteration at specific lysine (Lys) or glutamine (Gln) positions in the sequence of the GH compound depending on the substrate used. Use of amines as substrates will leade to modification of Glutamines whereas the use of primary amides will lead to modification of Lysines. hGH (SEQ ID No. 1) has 9 lysine residues at positions 38, 41, 70, 115, 140, 145, 158, 168 and 172 and 13 glutamine residues at positions 22, 29, 40, 46, 49, 68, 69, 84, 91, 122, 137, 141 and 181. Not all of these are readily available for modification nor suitably for modifications as this will lead to diminished binding potency to the growth hormone binding proteine hence leading to reduced biological activity. The x-ray protein crystal structure between hGH and its binding proteine (pdb: 3HHR) reveals that at least 4 lysines (38, 41, 168 and 172) takes part in binding to the binding proteine and potentially only one of the glutamines (Gln 46). This render the glutamines more attractive as target for selective introduction of an albumin binder linker. These structural considerations are further supported by findings summarised by N. Chine et al in Reprod. Nutr. Develop. 29, 1-25 (1989) where it's concluded that chemical modifications affecting lysines have been found to have a negative effect on the in vivo biological activity and on the binding capacity to the liver receptors of GH.

Chemistry I

In an aspect the present invention relates to preparation of a growth hormone conjugate of formula (VI) wherein a GH compound is treated with a property-modifying group-derived aldehyde or ketone to yield an amine, imine or a hemiaminal.

In a further aspect the present invention relates to preparation of a growth hormone conjugate of formula (VI) comprising treatment of an aldehyde or ketone derived from the GH compound with a property-modifying group-derived aniline or heteroarylamine to yield an amine, imine or a hemiaminal.

In an embodiment, aldehyde derived from the GH compound (IV) is treated with property-modifying group-derived aniline or heteroarylamine (V).

The term “GH compound derived aldehyde (or ketone)” or “an aldehyde or ketone derived from the GH compound” is intented to indicate a GH compound to which an aldehyde or ketone functional group has been covalently attached, or a GH compound on which an aldehyde or ketone functional group has been generated. The preparation of GH compound-derived aldehydes, such as compound (IV) illustrated below is well known to those skilled in the art, and any of these known procedures may be used to prepare the GH compound-derived aldehyde (IV) required for the realization of the invention disclosed herein.

In one embodiment, the conjugate A-W—B-hGH (VI) is prepared as illustrated below:

The TGase-mediated enzymatic reaction with GH (I) results in the modification of Gin at position 141 and/or 40 affording GH (II). Conjugation of periodate oxidised GH (II) with A-W—B—NH2 (V) occurs via reductive alkylation. Reductive alkylation is exemplified herein and is well-recognized in the art and results in GH compounds (VI) modified in position Gln(141) and/or 40.

Chemistry II

In one embodiment, the conjugate A-W—B-hGH is prepared as illustrated below:

The derivatization process as shown above provides an albumin binding linker attached to hGH compound in position Phe(1).

A close relationship to the natural peptide is generally regarded as an advantage with therapeutic interventions comprising administration of variants or analogues of this natural peptide as it minimizes the risk of e.g. any unwanted antibody generation.

Many nucleophilic compounds are known which could be incorporated into peptides according to the methods of the present invention, and α-amino acids are one such type of nucleophilic compounds. For the purpose of the present invention, it is, however, preferred to select the nucleophilic compound so that the transacylated compound formed is not itself a substrate for the enzyme applied. Stated differently, it is preferred to apply a nucleophilic compound which effectively blocks any further reaction of the enzyme. One example of such compounds is amides of α-amino acids as carboxy amidated peptides are not substrates for carboxypeptidases.

It is recognised that whether or not a compound is a substrate for a given enzyme in principle depends on the conditions, e.g. the time frame, under which the reaction takes place. Given sufficient time, many compounds are, in fact, substrates for an enzyme although they are not under normal conditions regarded as such. When it is stated above that the transacylated compound itself should not be a substrate of the enzyme it is intended to indicate that the tranacylated compound itself is not a substrate for the enzyme to an extent where the following reactions in the method of the present invention are disturbed. If the transacylated compound is, in fact, a substrate for the enzyme, the enzyme may be removed or inactivated, e.g. by enzyme inhibitors, following the transacylation reaction.

Pharmaceutical Compositions

Another purpose is to provide a pharmaceutical composition comprising a growth hormone conjugate of the present invention, such as a growth hormone conjugate of formula (I) or (II), which is present in a concentration from 10−15 mg/mL to 200 mg/mL, such as e.g. 10−10 mg/mL to 5 mg/mL and wherein said composition has a pH from 2.0 to 10.0. The composition may further comprise pharmaceutical exhibients, such as a buffer system, preservative(s), tonicity agent(s), chelating agent(s), stabilizers and surfactants. In one embodiment of the invention the pharmaceutical composition is an aqueous composition, ie. composition comprising water. Such composition is typically a solution or a suspension. In a further embodiment of the invention the pharmaceutical composition is an aqueous solution. The term “aqueous composition” is defined as a composition comprising at least 50% w/w water. Likewise, the term “aqueous solution” is defined as a solution comprising at least 50% w/w water, and the term “aqueous suspension” is defined as a suspension comprising at least 50% w/w water.

In another embodiment the pharmaceutical composition is a freeze-dried composition, whereto the physician or the patient adds solvents and/or diluents prior to use.

In another embodiment the pharmaceutical composition is a dried composition (e.g. freeze-dried or spray-dried) ready for use without any prior dissolution.

In a further aspect the invention relates to a pharmaceutical composition comprising an aqueous solution of a growth hormone conjugate, such as a growth hormone conjugate of formula (I) or (II), and a buffer, wherein said GH conjugate is present in a concentration from 0.1-100 mg/mL or above, and wherein said composition has a pH from about 2.0 to about 10.0.

In a another embodiment of the invention the pH of the composition is selected from the list consisting of 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4.0, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 5.0, 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 6.0, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, 7.0, 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9, 8.0, 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7, 8.8, 8.9, 9.0, 9.1, 9.2, 9.3, 9.4, 9.5, 9.6, 9.7, 9.8, 9.9, and 10.0.

In a further embodiment of the invention the buffer is selected from the group consisting of sodium acetate, sodium carbonate, citrate, glycylglycine, histidine, glycine, lysine, arginine, sodium dihydrogen phosphate, disodium hydrogen phosphate, sodium phosphate, and tris(hydroxymethyl)-aminomethan, bicine, tricine, malic acid, succinate, maleic acid, fumaric acid, tartaric acid, aspartic acid or mixtures thereof. Each one of these specific buffers constitutes an alternative embodiment of the invention.

In a further embodiment of the invention the composition further comprises a pharmaceutically acceptable preservative. In a further embodiment of the invention the preservative is selected from the group consisting of phenol, o-cresol, m-cresol, p-cresol, methyl p-hydroxybenzoate, propyl p-hydroxybenzoate, 2-phenoxyethanol, butyl p-hydroxybenzoate, 2-phenylethanol, benzyl alcohol, chlorobutanol, and thiomerosal, bronopol, benzoic acid, imidurea, chlorohexidine, sodium dehydroacetate, chlorocresol, ethyl p-hydroxybenzoate, benzethonium chloride, chlorphenesine (3p-chlorphenoxypropane-1,2-diol) or mixtures thereof. In a further embodiment of the invention the preservative is present in a concentration from 0.1 mg/mL to 20 mg/mL. In a further embodiment of the invention the preservative is present in a concentration from 0.1 mg/mL to 5 mg/mL. In a further embodiment of the invention the preservative is present in a concentration from 5 mg/mL to 10 mg/mL. In a further embodiment of the invention the preservative is present in a concentration from 10 mg/mL to 20 mg/mL. Each one of these specific preservatives constitutes an alternative embodiment of the invention. The use of a preservative in pharmaceutical compositions is well-known to the skilled person. For convenience reference is made to Remington: The Science and Practice of Pharmacy, 20th edition, 2000.

In a further embodiment of the invention the composition further comprises an isotonic agent. In a further embodiment of the invention the isotonic agent is selected from the group consisting of a salt (e.g. sodium chloride), a sugar or sugar alcohol, an amino acid (e.g. L-glycine, L-histidine, arginine, lysine, isoleucine, aspartic acid, tryptophan, threonine), an alditol (e.g. glycerol (glycerine), 1,2-propanediol (propyleneglycol), 1,3-propanediol, 1,3-butanediol) polyethyleneglycol (e.g. PEG 400), or mixtures thereof. Any sugar such as mono, di-, or polysaccharides, or water-soluble glucans, including for example fructose, glucose, mannose, sorbose, xylose, maltose, lactose, sucrose, trehalose, dextran, pullulan, dextrin, cyclodextrin, soluble starch, hydroxyethyl starch and carboxymethylcellulose-Na may be used. In one embodiment the sugar additive is sucrose. Sugar alcohol is defined as a C4-C8 hydrocarbon having at least one —OH group and includes, for example, mannitol, sorbitol, inositol, galactitol, dulcitol, xylitol, and arabitol. In one embodiment the sugar alcohol additive is mannitol. The sugars or sugar alcohols mentioned above may be used individually or in combination. There is no fixed limit to the amount used, as long as the sugar or sugar alcohol is soluble in the liquid preparation and does not adversely effect the stabilizing effects obtained using the methods of the invention. In one embodiment, the sugar or sugar alcohol concentration is between about 1 mg/mL and about 150 mg/mL. In a further embodiment of the invention the isotonic agent is present in a concentration from 1 mg/mL to 50 mg/mL. In a further embodiment of the invention the isotonic agent is present in a concentration from 1 mg/mL to 7 mg/mL. In a further embodiment of the invention the isotonic agent is present in a concentration from 8 mg/mL to 24 mg/mL. In a further embodiment of the invention the isotonic agent is present in a concentration from 25 mg/mL to 50 mg/mL. Each one of these specific isotonic agents constitutes an alternative embodiment of the invention. The use of an isotonic agent in pharmaceutical compositions is well-known to the skilled person. For convenience reference is made to Remington: The Science and Practice of Pharmacy, 20th edition, 2000.

In a further embodiment of the invention the composition further comprises a chelating agent. In a further embodiment of the invention the chelating agent is selected from salts of ethylenediaminetetraacetic acid (EDTA), citric acid, and aspartic acid, and mixtures thereof. In a further embodiment of the invention the chelating agent is present in a concentration from 0.1 mg/mL to 5 mg/mL. In a further embodiment of the invention the chelating agent is present in a concentration from 0.1 mg/mL to 2 mg/mL. In a further embodiment of the invention the chelating agent is present in a concentration from 2 mg/mL to 5 mg/mL. Each one of these specific chelating agents constitutes an alternative embodiment of the invention. The use of a chelating agent in pharmaceutical compositions is well-known to the skilled person. For convenience reference is made to Remington: The Science and Practice of Pharmacy, 20th edition, 2000.

In a further embodiment of the invention the composition further comprises a stabilizer. The use of a stabilizer in pharmaceutical compositions is well-known to the skilled person. For convenience reference is made to Remington: The Science and Practice of Pharmacy, 20th edition, 2000.

More particularly, compositions of the invention are stabilized liquid pharmaceutical compositions whose therapeutically active components include a protein that possibly exhibits aggregate formation during storage in liquid pharmaceutical compositions. By “aggregate formation” is intended a physical interaction between the protein molecules that results in formation of oligomers, which may remain soluble, or large visible aggregates that precipitate from the solution. By “during storage” is intended a liquid pharmaceutical composition or composition once prepared, is not immediately administered to a subject. Rather, following preparation, it is packaged for storage, either in a liquid form, in a frozen state, or in a dried form for later reconstitution into a liquid form or other form suitable for administration to a subject. By “dried form” is intended the liquid pharmaceutical composition or composition is dried either by freeze drying (i.e., lyophilization; see, for example, Williams and Polli, J. Parenteral Sci. Technol. 38, 48-59, (1984)), spray drying (see Masters (1991) in Spray-Drying Handbook (5th ed; Longman Scientific and Technical, Essez, U.K.), pp. 491-676; Broadhead et al. (1992) Drug Devel. Ind. Pharm. 18, 1169-1206, (1992); and Mumenthaler et al., Pharm. Res. 11, 12-20 (1994)), or air drying (Carpenter and Crowe, Cryobiology 25, 459-470, (1988); and Roser, Biopharm. 4, 47-53, (1991)). Aggregate formation by a protein during storage of a liquid pharmaceutical composition can adversely affect biological activity of that protein, resulting in loss of therapeutic efficacy of the pharmaceutical composition. Furthermore, aggregate formation may cause other problems such as blockage of tubing, membranes, or pumps when the protein-containing pharmaceutical composition is administered using an infusion system.

The pharmaceutical compositions of the invention may further comprise an amount of an amino acid base sufficient to decrease aggregate formation by the protein during storage of the composition. By “amino acid base” is intended an amino acid or a combination of amino acids, where any given amino acid is present either in its free base form or in its salt form. Where a combination of amino acids is used, all of the amino acids may be present in their free base forms, all may be present in their salt forms, or some may be present in their free base forms while others are present in their salt forms. In one embodiment, amino acids to use in preparing the compositions of the invention are those carrying a charged side chain, such as arginine, lysine, aspartic acid, and glutamic acid. Any stereoisomer (i.e., L or D isomer, or mixtures thereof) of a particular amino acid (methionine, histidine, arginine, lysine, isoleucine, aspartic acid, tryptophan, threonine and mixtures thereof) or combinations of these stereoisomers or glycine or an organic base such as but not limited to imidazole, may be present in the pharmaceutical compositions of the invention so long as the particular amino acid or organic base is present either in its free base form or its salt form. In one embodiment the L-stereoisomer of an amino acid is used. In one embodiment the L-stereoisomer is used. Compositions of the invention may also be formulated with analogues of these amino acids. By “amino acid analogue” is intended a derivative of the naturally occurring amino acid that brings about the desired effect of decreasing aggregate formation by the protein during storage of the liquid pharmaceutical compositions of the invention. Suitable arginine analogues include, for example, aminoguanidine, ornithine and N-monoethyl L-arginine, suitable methionine analogues include ethionine and buthionine and suitable cysteine analogues include S-methyl-L cysteine. As with the other amino acids, the amino acid analogues are incorporated into the compositions in either their free base form or their salt form. In a further embodiment of the invention the amino acids or amino acid analogues are used in a concentration, which is sufficient to prevent or delay aggregation of the protein.

In a further embodiment of the invention methionine (or other sulphuric amino acids or amino acid analogous) may be added to inhibit oxidation of methionine residues to methionine sulfoxide when the protein acting as the therapeutic agent is a protein comprising at least one methionine residue susceptible to such oxidation. By “inhibit” is intended minimal accumulation of methionine oxidized species over time. Inhibiting methionine oxidation results in greater retention of the protein in its proper molecular form. Any stereoisomer of methionine (L or D isomer) or any combinations thereof can be used. The amount to be added should be an amount sufficient to inhibit oxidation of the methionine residues such that the amount of methionine sulfoxide is acceptable to regulatory agencies. Typically, this means that the composition contains no more than about 10% to about 30% methionine sulfoxide.

Generally, this can be obtained by adding methionine such that the ratio of methionine added to methionine residues ranges from about 1:1 to about 1000:1, such as 10:1 to about 100:1.

In a further embodiment of the invention the composition further comprises a stabilizer selected from the group of high molecular weight polymers or low molecular compounds. In a further embodiment of the invention the stabilizer is selected from polyethylene glycol (e.g. PEG 3350), polyvinyl alcohol (PVA), polyvinylpyrrolidone, carboxy/hydroxycellulose or derivates thereof (e.g. HPC, HPC-SL, HPC-L and HPMC), cyclodextrins, sulphur-containing substances as monothioglycerol, thioglycolic acid and 2-methylthioethanol, and different salts (e.g. sodium chloride). Each one of these specific stabilizers constitutes an alternative embodiment of the invention.

The pharmaceutical compositions may also comprise additional stabilizing agents, which further enhance stability of a therapeutically active protein therein. Stabilizing agents of particular interest to the present invention include, but are not limited to, methionine and EDTA, which protect the protein against methionine oxidation, and a nonionic surfactant, which protects the protein against aggregation associated with freeze-thawing or mechanical shearing.

In a further embodiment of the invention the composition further comprises a surfactant. In a further embodiment of the invention the surfactant is selected from a detergent, ethoxylated castor oil, polyglycolyzed glycerides, acetylated monoglycerides, sorbitan fatty acid esters, polyoxypropylene-polyoxyethylene block polymers (eg. poloxamers such as Pluronic® F68, poloxamer 188 and 407, Triton X-100), polyoxyethylene sorbitan fatty acid esters, polyoxyethylene and polyethylene derivatives such as alkylated and alkoxylated derivatives (tweens, e.g. Tween-20, Tween-40, Tween-80 and Brij-35), monoglycerides or ethoxylated derivatives thereof, diglycerides or polyoxyethylene derivatives thereof, alcohols, glycerol, lectins and phospholipids (eg. phosphatidyl serine, phosphatidyl choline, phosphatidyl ethanolamine, phosphatidyl inositol, diphosphatidyl glycerol and sphingomyelin), derivates of phospholipids (eg. dipalmitoyl phosphatidic acid) and lysophospholipids (eg. palmitoyl lysophosphatidyl-L-serine and 1-acyl-sn-glycero-3-phosphate esters of ethanolamine, choline, serine or threonine) and alkyl, alkoxyl (alkyl ester), alkoxy (alkyl ether)-derivatives of lysophosphatidyl and phosphatidylcholines, e.g. lauroyl and myristoyl derivatives of lysophosphatidylcholine, dipalmitoylphosphatidylcholine, and modifications of the polar head group, that is cholines, ethanolamines, phosphatidic acid, serines, threonines, glycerol, inositol, and the positively charged DODAC, DOTMA, DCP, BISHOP, lysophosphatidylserine and lysophosphatidylthreonine, and glycerophospholipids (eg. cephalins), glyceroglycolipids (eg. galactopyransoide), sphingoglycolipids (eg. ceramides, gangliosides), dodecylphosphocholine, hen egg lysolecithin, fusidic acid derivatives—(e.g. sodium tauro-dihydrofusidate etc.), long-chain fatty acids and salts thereof C6-C12 (eg. oleic acid and caprylic acid), acylcarnitines and derivatives, Nα-acylated derivatives of lysine, arginine or histidine, or side-chain acylated derivatives of lysine or arginine, Nα-acylated derivatives of dipeptides comprising any combination of lysine, arginine or histidine and a neutral or acidic amino acid, Nα-acylated derivative of a tripeptide comprising any combination of a neutral amino acid and two charged amino acids, DSS (docusate sodium, CAS registry no [577-11-7]), docusate calcium, CAS registry no [128-49-4]), docusate potassium, CAS registry no [7491-09-0]), SDS (sodium dodecyl sulphate or sodium lauryl sulphate), sodium caprylate, cholic acid or derivatives thereof, bile acids and salts thereof and glycine or taurine conjugates, ursodeoxycholic acid, sodium cholate, sodium deoxycholate, sodium taurocholate, sodium glycocholate, N-Hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate, anionic (alkyl-aryl-sulphonates) monovalent surfactants, zwitterionic surfactants (e.g. N-alkyl-N,N-dimethylammonio-1-propanesulfonates, 3-cholamido-1-propyldimethylammonio-1-propanesulfonate, cationic surfactants (quaternary ammonium bases) (e.g. cetyl-trimethylammonium bromide, cetylpyridinium chloride), nonionic surfactants (eg. Dodecyl 3-D-glucopyranoside), poloxamines (eg. Tetronic's), which are tetrafunctional block copolymers derived from sequential addition of propylene oxide and ethylene oxide to ethylenediamine, or the surfactant may be selected from the group of imidazoline derivatives, or mixtures thereof. Each one of these specific surfactants constitutes an alternative embodiment of the invention.

The use of a surfactant in pharmaceutical compositions is well-known to the skilled person. For convenience reference is made to Remington: The Science and Practice of Pharmacy, 20th edition, 2000.

It is possible that other ingredients may be present in the pharmaceutical composition of the present invention. Such additional ingredients may include wetting agents, emulsifiers, antioxidants, bulking agents, tonicity modifiers, chelating agents, metal ions, oleaginous vehicles, proteins (e.g., human serum albumin, gelatine or proteins) and a zwitterion (e.g., an amino acid such as betaine, taurine, arginine, glycine, lysine and histidine). Such additional ingredients, of course, should not adversely affect the overall stability of the pharmaceutical composition of the present invention.

Pharmaceutical compositions containing a growth hormone conjugate according to the present invention may be administered to a patient in need of such treatment at several sites, for example, at topical sites, for example, skin and mucosal sites, at sites which bypass absorption, for example, administration in an artery, in a vein, in the heart, and at sites which involve absorption, for example, administration in the skin, under the skin, in a muscle or in the abdomen.

Administration of pharmaceutical compositions according to the invention may be through several routes of administration, for example, lingual, sublingual, buccal, in the mouth, oral, in the stomach and intestine, nasal, pulmonary, for example, through the bronchioles and alveoli or a combination thereof, epidermal, dermal, transdermal, vaginal, rectal, ocular, for examples through the conjunctiva, uretal, and parenteral to patients in need of such a treatment.

Compositions of the current invention may be administered in several dosage forms, for example, as solutions, suspensions, emulsions, microemulsions, multiple emulsion, foams, salves, pastes, plasters, ointments, tablets, coated tablets, rinses, capsules, for example, hard gelatine capsules and soft gelatine capsules, suppositories, rectal capsules, drops, gels, sprays, powder, aerosols, inhalants, eye drops, ophthalmic ointments, ophthalmic rinses, vaginal pessaries, vaginal rings, vaginal ointments, injection solution, in situ transforming solutions, for example in situ gelling, in situ setting, in situ precipitating, in situ crystallization, infusion solution, and implants.

Compositions of the invention may further be compounded in, or attached to, for example through covalent, hydrophobic and electrostatic interactions, a drug carrier, drug delivery system and advanced drug delivery system in order to further enhance stability of the growth hormone conjugate, increase bioavailability, increase solubility, decrease adverse effects, achieve chronotherapy well known to those skilled in the art, and increase patient compliance or any combination thereof. Examples of carriers, drug delivery systems and advanced drug delivery systems include, but are not limited to, polymers, for example cellulose and derivatives, polysaccharides, for example dextran and derivatives, starch and derivatives, poly(vinyl alcohol), acrylate and methacrylate polymers, polylactic and polyglycolic acid and block co-polymers thereof, polyethylene glycols, carrier proteins, for example albumin, gels, for example, thermogelling systems, for example block co-polymeric systems well known to those skilled in the art, micelles, liposomes, microspheres, nanoparticulates, liquid crystals and dispersions thereof, L2 phase and dispersions there of, well known to those skilled in the art of phase behaviour in lipid-water systems, polymeric micelles, multiple emulsions, self-emulsifying, self-microemulsifying, cyclodextrins and derivatives thereof, and dendrimers.

Compositions of the current invention are useful in the composition of solids, semisolids, powder and solutions for pulmonary administration of growth hormone conjugate, using, for example a metered dose inhaler, dry powder inhaler and a nebulizer, all being devices well known to those skilled in the art.

Compositions of the current invention are specifically useful in the composition of controlled, sustained, protracting, retarded, and slow release drug delivery systems. More specifically, but not limited to, compositions are useful in composition of parenteral controlled release and sustained release systems (both systems leading to a many-fold reduction in number of administrations), well known to those skilled in the art. Even more preferably, are controlled release and sustained release systems administered subcutaneous. Without limiting the scope of the invention, examples of useful controlled release system and compositions are hydrogels, oleaginous gels, liquid crystals, polymeric micelles, microspheres, nanoparticles, Methods to produce controlled release systems useful for compositions of the current invention include, but are not limited to, crystallization, condensation, co-crystallization, precipitation, co-precipitation, emulsification, dispersion, high pressure homogenisation, encapsulation, spray drying, microencapsulating, coacervation, phase separation, solvent evaporation to produce microspheres, extrusion and supercritical fluid processes. General reference is made to Handbook of Pharmaceutical Controlled Release (Wise, D. L., ed. Marcel Dekker, New York, 2000) and Drug and the Pharmaceutical Sciences vol. 99: Protein Composition and Delivery (MacNally, E. J., ed. Marcel Dekker, New York, 2000).

Parenteral administration may be performed by subcutaneous, intramuscular, intraperitoneal or intravenous injection by means of a syringe, optionally a pen-like syringe. Alternatively, parenteral administration can be performed by means of an infusion pump. A further option is a composition which may be a solution or suspension for the administration of the growth hormone conjugate in the form of a nasal or pulmonal spray. As a still further option, the pharmaceutical compositions containing the growth hormone conjugate of the invention can also be adapted to transdermal administration, e.g. by needle-free injection or from a patch, optionally an iontophoretic patch, or transmucosal, e.g. buccal, administration.

The term “stabilized composition” refers to a composition with increased physical stability, increased chemical stability or increased physical and chemical stability.

The term “physical stability” of the protein composition as used herein refers to the tendency of the protein to form biologically inactive and/or insoluble aggregates of the protein as a result of exposure of the protein to thermo-mechanical stresses and/or interaction with interfaces and surfaces that are destabilizing, such as hydrophobic surfaces and interfaces. Physical stability of the aqueous protein compositions is evaluated by means of visual inspection and/or turbidity measurements after exposing the composition filled in suitable containers (e.g. cartridges or vials) to mechanical/physical stress (e.g. agitation) at different temperatures for various time periods. Visual inspection of the compositions is performed in a sharp focused light with a dark background. The turbidity of the composition is characterized by a visual score ranking the degree of turbidity for instance on a scale from 0 to 3 (a composition showing no turbidity corresponds to a visual score 0, and a composition showing visual turbidity in daylight corresponds to visual score 3). A composition is classified physical unstable with respect to protein aggregation, when it shows visual turbidity in daylight. Alternatively, the turbidity of the composition can be evaluated by simple turbidity measurements well-known to the skilled person. Physical stability of the aqueous protein compositions can also be evaluated by using a spectroscopic agent or probe of the conformational status of the protein. The probe is preferably a small molecule that preferentially binds to a non-native conformer of the protein. One example of a small molecular spectroscopic probe of protein structure is Thioflavin T. Thioflavin T is a fluorescent dye that has been widely used for the detection of amyloid fibrils. In the presence of fibrils, and perhaps other protein configurations as well, Thioflavin T gives rise to a new excitation maximum at about 450 nm and enhanced emission at about 482 nm when bound to a fibril protein form. Unbound Thioflavin T is essentially non-fluorescent at the wavelengths.

Other small molecules can be used as probes of the changes in protein structure from native to non-native states. For instance the “hydrophobic patch” probes that bind preferentially to exposed hydrophobic patches of a protein. The hydrophobic patches are generally buried within the tertiary structure of a protein in its native state, but become exposed as a protein begins to unfold or denature. Examples of these small molecular, spectroscopic probes are aromatic, hydrophobic dyes, such as antrhacene, acridine, phenanthroline or the like. Other spectroscopic probes are metal-amino acid complexes, such as cobalt metal complexes of hydrophobic amino acids, such as phenylalanine, leucine, isoleucine, methionine, and valine, or the like.

The term “chemical stability” of the protein composition as used herein refers to chemical covalent changes in the protein structure leading to formation of chemical degradation products with potential less biological potency and/or potential increased immunogenic properties compared to the native protein structure. Various chemical degradation products can be formed depending on the type and nature of the native protein and the environment to which the protein is exposed. Elimination of chemical degradation can most probably not be completely avoided and increasing amounts of chemical degradation products is often seen during storage and use of the protein composition as well-known by the person skilled in the art. Most proteins are prone to deamidation, a process in which the side chain amide group in glutaminyl or asparaginyl residues is hydrolysed to form a free carboxylic acid. Other degradations pathways involves formation of high molecular weight transformation products where two or more protein molecules are covalently bound to each other through transamidation and/or disulfide interactions leading to formation of covalently bound dimer, oligomer and polymer degradation products (Stability of Protein Pharmaceuticals, Ahern. T. J. & Manning M. C., Plenum Press, New York 1992). Oxidation (of for instance methionine residues) can be mentioned as another variant of chemical degradation. The chemical stability of the protein composition can be evaluated by measuring the amount of the chemical degradation products at various time-points after exposure to different environmental conditions (the formation of degradation products can often be accelerated by for instance increasing temperature). The amount of each individual degradation product is often determined by separation of the degradation products depending on molecule size and/or charge using various chromatography techniques (e.g. SEC-HPLC and/or RP-HPLC).

Hence, as outlined above, a “stabilized composition” refers to a composition with increased physical stability, increased chemical stability or increased physical and chemical stability. In general, a composition must be stable during use and storage (in compliance with recommended use and storage conditions) until the expiration date is reached.

In one embodiment of the invention the pharmaceutical composition comprising the growth hormone conjugate of formula (I) or (II) is stable for more than 6 weeks of usage and for more than 3 years of storage.

In another embodiment of the invention the pharmaceutical composition comprising the growth hormone conjugate of formula (I) or (II) is stable for more than 4 weeks of usage and for more than 3 years of storage.

In a further embodiment of the invention the pharmaceutical composition comprising the growth hormone conjugate of formula (I) or (II) is stable for more than 4 weeks of usage and for more than two years of storage.

In an even further embodiment of the invention the pharmaceutical composition comprising the growth hormone conjugate of formula (I) or (II) is stable for more than 2 weeks of usage and for more than two years of storage.

All references, including publications, patent applications and patents, cited herein are hereby incorporated by reference to the same extent as if each reference was individually and specifically indicated to be incorporated by reference and was set forth in its entirety herein.

All headings and sub-headings are used herein for convenience only and should not be construed as limiting the invention in any way,

Any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.

The terms “a” and “an” and “the” and similar referents as used in the context of describing the invention are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context.

Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. Unless otherwise stated, all exact values provided herein are representative of corresponding approximate values (e.g., all exact exemplary values provided with respect to a particular factor or measurement can be considered to also pro-vide a corresponding approximate measurement, modified by “about,” where appropriate).

All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context.

The use of any and all examples, or exemplary language (e.g., “such as”) provided herein, is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention unless otherwise indicated. No language in the specification should be construed as indicating any element is essential to the practice of the invention unless as much is explicitly stated.

The citation and incorporation of patent documents herein is done for convenience only and does not reflect any view of the validity, patentability and/or enforceability of such patent documents.

The invention is further described by, but not limited to, the embodiments listed here below.

1. A growth hormone conjugate which comprises a growth hormone compound (GH) linked to an albumin binding residue via a hydrophilic spacer, or a pharmaceutically acceptable salt, solvate or prodrug thereof.
2. The conjugate of embodiment 1 wherein the hydrophilic spacer has mLogP<0 or a cLogP<0.5.
3. The conjugate of embodiment 1 or 2 wherein the growth hormone compound (GH) is linked to one albumin binding residue via a hydrophilic spacer.
4. The conjugate of embodiment 1 or 2 wherein the growth hormone compound (GH) is linked to two or three albumin binding residues via a hydrophilic spacer.
5. The conjugate of any one of embodiments 1-4 wherein the hydrophilic spacer has the formula


-X1-X2-X3-X4-

wherein

    • X1 is —W1—[(CHR1)1—W2]m-{[(CH2)n1E1]m2—[(CHR2)l2—W3]m3}n2—,
    • X2 is —[(CHR3)l3—W4]m4—{[(CH2)n3E2]m5—[(CHR4)l4—W]m6}n4—,
    • X3 is —[(CHR5)l5—W6]m7—,
    • X4 is F-D1-(CH2)l6-D2-,
    • l1, l2, l3, l4, l5 and l6 independently are selected from 0-16,
    • m1, m3, m4, m6 and m7 independently are selected from 0-10,
    • m2 and m5 independently are selected from 0-25,
    • n1, n2, n3 and n4 independently are selected from 0-16,
    • F is aryl, hetaryl, pyrrolidine-2,5-dione or a valence bond, wherein the aryl and hetaryl groups are optionally substituted with halogen, —CN, —OH, —C(O)OH, —C(O)NH2, —S(O)2OH or C1-6-alkyl,
    • R1, R2, R3, R4 and R5 independently are selected from hydrogen, —C(O)OH, —C(O)NH2, —S(O)OH, —S(O)2OH, —NH—C(═NH)—NH2, C1-6-alkyl, aryl or hetaryl; wherein the alkyl, aryl and hetaryl groups optionally are substituted with halogen, —C(O)OH, —C(O)NH2, —S(O)OH, —S(O)2OH, —CN, or —OH,
    • D1, D2, E1 and E2 independently are selected from —O—, —NR6—, —N(COR7)— or a valence bond; wherein R6 and R7 independently represent hydrogen or C1-6-alkyl,
    • W1 to W6 independently are selected from —C(O)NH—, —NHC(O)—, —C(O)NHCH2—, CH2NHC(O)—, —C(O)NHS(O)2—, —S(O)2NHC(O)—, —OC(O)NH—, —NHC(O)O—, —C(O)CH2—, —CH2C(O)—, —C(O)CH═CH—, —CH═CHC(O)—, —(CH2)s1—, —C(O)—, —C(O)O—, —OC(O)—, or a valence bond; wherein s1 is 0 or 1,
      or a pharmaceutically acceptable salt, solvate or prodrug thereof.
      6. A growth hormone conjugate of the formula (I):


A-W—B-GH  (I)

Wherein

GH represents a growth hormone compound,
B represents a hydrophilic spacer,
W is a chemical group linking A and B, and
A represent an albumin binding residue; and
pharmaceutically acceptable salts, solvates and prodrugs thereof.
7. The conjugate of embodiment 6 wherein GH represents a growth hormone compound comprising an amino acid sequence having at least 90% identity to the amino acid sequence of human growth hormone (hGH) (SEQ ID NO:1).
8. The conjugate of embodiment 6 or 7, wherein GH is hGH (SEQ ID NO:1).
9. The conjugate of any one of embodiments 6-8 wherein B has the formula


-X1-X2-X3-X4-

wherein

    • X1 is —W1—[(CHR1)l1—W2]m-{[(CH2)n1E1]m2—[(CHR2)l2—W3]m3}n2—,
    • X2 is —[(CHR3)l3—W4]m4—{[(CH2)n3E2]m5—[(CHR4)l4—W5]m6}n4—,
    • X3 is —[(CHR5)l5—W6]m7—,
    • X4 is F-D1-(CH2)l6-D2-,
    • l1, l2, l3, l4, l5 and l6 independently are selected from 0-16,
    • m1, m3, m4, m6 and m7 independently are selected from 0-10,
    • m2 and m5 independently are selected from 0-25,
    • n1, n2, n3 and n4 independently are selected from 0-16,
    • F is aryl, hetaryl, pyrrolidine-2,5-dione or a valence bond, wherein the aryl and hetaryl groups are optionally substituted with halogen, —CN, —OH, —C(O)OH, —C(O)NH2, —S(O)2OH or C1-6-alkyl,
    • R1, R2, R3, R4 and R5 independently are selected from hydrogen, —C(O)OH, —C(O)NH2, —S(O)OH, —S(O)2OH, —NH—C(═NH)—NH2, C1-6-alkyl, aryl or hetaryl; wherein the alkyl, aryl and hetaryl groups optionally are substituted with halogen, —C(O)OH, —C(O)NH2, —S(O)OH, —S(O)2OH, —CN or —OH,
    • D1, D2, E1 and E2 independently are selected from —O—, —NR6—, —N(COR7)— or a valence bond; wherein R6 and R7 independently represent hydrogen or C1-6-alkyl,
    • W1 to W6 independently are selected from —C(O)NH—, —NHC(O)—, —C(O)NHCH2—, —CH2NHC(O)—, —C(O)NHS(O)2—, —S(O)2NHC(O)—, —OC(O)NH—, —NHC(O)O—, —C(O)CH2—, —CH2C(O)—, —C(O)CH═CH—, —CH═CHC(O)—, —(CH2)s2—, —C(O)—, —C(O)O—, —OC(O)—, or a valence bond; wherein s2 is 0 or 1.
      10. The conjugate of any one of embodiments 6-9, wherein W has the formula


—W7—Y—,

wherein

    • Y is —(CH2)7—C3-10-cycloalkyl-W8— or a valence bond,
    • l7 is 0-6,
    • W7 is selected from —C(O)NH—, —NHC(O)—, —C(O)NHCH2—, —CH2NHC(O)—, —C(O)NHS(O)2—, —S(O)2NHC(O)—, —OC(O)NH—, —NHC(O)O—, —C(O)CH2—, —CH2C(O)—, —C(O)CH═CH—, —CH═CHC(O)—, —(CH2)s3—, —C(O)—, —C(O)O—, —OC(O)—, or a valence bond; wherein s3 is 0 or 1,
    • W8 is selected from —C(O)NH—, —NHC(O)—, —C(O)NHCH2—, —CH2NHC(O)—, —C(O)NHS(O)2—,
    • —S(O)2NHC(O)—, —OC(O)NH—, —NHC(O)O—, —C(O)CH2—, —CH2C(O)—, —C(O)CH═CH—, —CH═CHC(O)—, —(CH2)s4—, —C(O)—, —C(O)O—, —OC(O)—, or a valence bond; wherein s4 is 0 or 1.
      11. The conjugate of any one of embodiments 6-10, wherein l1, l2, l3, l4, l5 and l6 independently are 0-6.
      12. The conjugate of any one of embodiments 6-11, wherein m1, m3, m4, m6 and m7 independently are 0-6.
      13. The conjugate of any one of embodiments 6-12, wherein m2 and m5 independently are 0-10.
      14. The conjugate of any one of embodiments 6-13, wherein n1, n2, n3 and n4 independently are 0-10, such as 0-6.
      15. The conjugate of any one of embodiments 6-14, wherein D1 and D2 are independently selected from —O— or —NR6— or a valence bond.
      16. The conjugate of any one of embodiments 6-15, wherein D1 is —NR6—.
      17. The conjugate of any one of embodiments 6-16, wherein D2 is —NR6—.
      18. The conjugate of any one of embodiments 6-17, wherein D1 and D2 are both —O—.
      19. The conjugate of any one of embodiments 6-18, wherein D1 and D2 are both —NR6—.
      20. The conjugate of any one of embodiments 6-19, wherein E1 and E2 are independently selected from —O— or —NR6— or a valence bond.
      21. The conjugate of any one of embodiments 6-20, wherein E1 is —NR6—.
      22. The conjugate of any one of embodiments 6-21, wherein E2 is —NR6—.
      23. The conjugate of any one of embodiments 6-22, wherein E1 and E2 are both —O—.
      24. The conjugate of any one of embodiments 6-23, wherein E1 and E2 are both —NR6—.
      25. The conjugate of any one of embodiments 6-24, wherein W1 through W8 independently are selected from the group consisting of —C(O)NH—, —NHC(O)—, —C(O)NHCH2—, —CH2NHC(O)—, —C(O)NHS(O)2—, —S(O)2NHC(O)— or a valence bond.
      26. The conjugate of any one of embodiments 6-25, wherein R1, R2, R3, R4 and R5 independently are selected from hydrogen, —C(O)OH, —C(O)NH2, —S(O)2OH or C1-6-alkyl; wherein the alkyl group optionally is substituted with —C(O)OH, —C(O)NH2, —S(O)2OH.
      27. The conjugate of any one of embodiments 6-26, wherein —{[(CH2)n1E1]m2—[(CHR2)l2—W3]m3}n2— and
      —{[(CH2)n3E2]m5—[(CHR4)l4—W5]m6}n4—, wherein E1 and E2 are 0, are selected from

wherein * is intended to denote a point of attachment, ie, an open bond.

28. The conjugate of any one of embodiments 6-27, wherein A is selected from

wherein * denotes the attachment to B through W.
29. The conjugate of any one of embodiments 1-28, wherein the albumin binding residue via a hydrophilic spacer is attached to the glutamine residue in the position corresponding to position 40 in SEQ ID No. 1.
30. The conjugate of any one of embodiments 1-29, wherein the albumin binding residue via a hydrophilic spacer is attached to the glutamine residue in the position corresponding to position 141 in SEQ ID No. 1.
31. The conjugate of any one of embodiments 1-30, wherein the albumin binding residue via a hydrophilic spacer is attached to the N-terminal residue of the growth hormone compound, such as hGH (SEQ ID No. 1).
32. A growth hormone conjugate of the formula (II):


A-W—B-GH-B′—W′-A′  (II)

wherein
GH represents a growth hormone compound,
W is a chemical group linking A and B,
W′ is a chemical group linking A′ and B′,
A and A′ independently represents an albumin binding residue,
B and B′ independently are hydrophilic spacers, and
pharmaceutically acceptable salts, solvates and prodrugs thereof.
33. The conjugate of embodiment 32, wherein GH represents a growth hormone compound comprising an amino acid sequence having at least 90% identity to the amino acid sequence of human growth hormone (hGH) (SEQ ID NO:1).
34. The conjugate of embodiment 33, wherein GH is hGH (SEQ ID NO:1).
35. The conjugate of any one of embodiments 32-34, wherein W′ is selected from W, A′ is selected from A and B′ is selected from B.
36. The conjugate of any one of embodiments 32-35, wherein W and W′, A and A′, and B and B′ independently are selected from their respective definitions of any one of embodiments 6-31.
37. The conjugate of any one of the previous embodiments, wherein the molar weight of said hydrophilic spacer is in the range from 80 D to 1500 D or in the range from 500 D to 1100 D.
38. The conjugate of any one of the previous embodiments, wherein said albumin binding residue is a lipophilic residue.
39. The conjugate of any one of the previous embodiments, wherein said albumin binding residue binds non-covalently to albumin.
40. The conjugate of any one of the previous embodiments, wherein said albumin binding residue is negatively charged at physiological pH.
41. The conjugate of any one of the previous embodiments, wherein said albumin binding residue has a binding affinity towards human serum albumin that is below about 10 μM or below about 1 μM.
42. The conjugate of any one of the previous embodiments, wherein said albumin binding residue is selected from a straight chain alkyl group, a branched alkyl group, a group which has an ω-carboxylic acid group or an ω-carboxylic acid isoster.
43. The conjugate of any one of embodiments the previous embodiments, wherein said albumin binding residue has from 6 to 40 carbon atoms, from 8 to 26 carbon atoms or from 8 to 20 carbon atoms.
44. The conjugate of any one of the previous embodiments, wherein said albumin binding residue is a peptide, such as a peptide comprising less than 40 amino acid residues.
45. The conjugate of any one of the previous embodiments, wherein said compound is selected from

46. The conjugate of any one of embodiments 1-45 for use in therapy.
47. The conjugate of any one of embodiments 1-45 for use in a method of treating Turner Syndrome; Prader-Willi syndrome (PWS); Noonan syndrome; Down syndrome; chronic renal disease, juvenile rheumatoid arthritis; cystic fibrosis, HIV-infection in children receiving HAART treatment (HIV/HALS children); short children born short for gestational age (SGA); short stature in children born with very low birth weight (VLBW) but SGA; skeletal dysplasia; hypochondroplasia; achondroplasia; idiopathic short stature (ISS); GHD in adults; fractures in or of long bones, such as tibia, fibula, femur, humerus, radius, ulna, clavicula, matacarpea, matatarsea, and digit; fractures in or of spongious bones, such as the scull, base of hand, and base of food; patients after tendon or ligament surgery in e.g. hand, knee, or shoulder; patients having or going through distraction oteogenesis; patients after hip or discus replacement, meniscus repair, spinal fusions or prosthesis fixation, such as in the knee, hip, shoulder, elbow, wrist or jaw; patients into which osteosynthesis material, such as nails, screws and plates, have been fixed; patients with non-union or mal-union of fractures; patients after osteatomia, e.g. from tibia or 1st toe; patients after graft implantation; articular cartilage degeneration in knee caused by trauma or arthritis; osteoporosis in patients with Turner syndrome; osteoporosis in men; adult patients in chronic dialysis (APCD); malnutritional associated cardiovascular disease in APCD; reversal of cachexia in APCD; cancer in APCD; chronic abstractive pulmonal disease in APCD; HIV in APCD; elderly with APCD; chronic liver disease in APCD, fatigue syndrome in APCD; Crohn's disease; impaired liver function; males with HIV infections; short bowel syndrome; central obesity; HIV-associated lipodystrophy syndrome (HALS); male infertility; patients after major elective surgery, alcohol/drug detoxification or neurological trauma; aging; frail elderly; osteo-arthritis; traumatically damaged cartilage; erectile dysfunction; fibromyalgia; memory disorders; depression; traumatic brain injury; subarachnoid haemorrhage; very low birth weight; metabolic syndrome; glucocorticoid myopathy; short stature due to glucucorticoid treatment in children, the acceleration of the healing of muscle tissue, nervous tissue or wounds; the acceleration or improvement of blood flow to damaged tissue; or the decrease of infection rate in damaged tissue.
48. A pharmaceutical composition comprising a conjugate of any one of embodiments 1-45, optionally in combination with a pharmaceutical acceptable excipient.
49. A method of preparation of a conjugate of any one of embodiments 1-45, the method comprising introduction of an albumin binder linker to recombinant produced growth hormone or growth hormone analogue via the TGase method.
50. A method of treating growth hormone deficiency (GHD), the method comprising administrating to a patient in need thereof an effective amount of a therapeutically effective amount of a conjugate of any one of embodiments 1-45.
51. A method of treating Turner Syndrome; Prader-Willi syndrome (PWS); Noonan syndrome; Down syndrome; chronic renal disease, juvenile rheumatoid arthritis; cystic fibrosis, HIV-infection in children receiving HAART treatment (HIV/HALS children); short children born short for gestational age (SGA); short stature in children born with very low birth weight (VLBW) but SGA; skeletal dysplasia; hypochondroplasia; achondroplasia; idiopathic short stature (ISS); GHD in adults; fractures in or of long bones, such as tibia, fibula, femur, humerus, radius, ulna, clavicula, matacarpea, matatarsea, and digit; fractures in or of spongious bones, such as the scull, base of hand, and base of food; patients after tendon or ligament surgery in e.g. hand, knee, or shoulder; patients having or going through distraction oteogenesis; patients after hip or discus replacement, meniscus repair, spinal fusions or prosthesis fixation, such as in the knee, hip, shoulder, elbow, wrist or jaw; patients into which osteosynthesis material, such as nails, screws and plates, have been fixed; patients with non-union or mal-union of fractures; patients after osteatomia, e.g. from tibia or 1st toe; patients after graft implantation; articular cartilage degeneration in knee caused by trauma or arthritis; osteoporosis in patients with Turner syndrome; osteoporosis in men; adult patients in chronic dialysis (APCD); malnutritional associated cardiovascular disease in APCD; reversal of cachexia in APCD; cancer in APCD; chronic abstractive pulmonal disease in APCD; HIV in APCD; elderly with APCD; chronic liver disease in APCD, fatigue syndrome in APCD; Crohn's disease; impaired liver function; males with HIV infections; short bowel syndrome; central obesity; HIV-associated lipodystrophy syndrome (HALS); male infertility; patients after major elective surgery, alcohol/drug detoxification or neurological trauma; aging; frail elderly; osteo-arthritis; traumatically damaged cartilage; erectile dysfunction; fibromyalgia; memory disorders; depression; traumatic brain injury; subarachnoid haemorrhage; very low birth weight; metabolic syndrome; glucocorticoid myopathy; short stature due to glucucorticoid treatment in children, the acceleration of the healing of muscle tissue, nervous tissue or wounds; the acceleration or improvement of blood flow to damaged tissue; or the decrease of infection rate in damaged tissue, the method comprising administrating to a patient in need thereof an effective amount of a therapeutically effective amount of a conjugate of any one of embodiments 1-45.
52. The use of a conjugate of any one of embodiments 1-45 in the manufacture of a medicament for the treatment of growth hormone deficiency (GHD).
53. The use of a conjugate of any one of embodiments 1-45 in the manufacture of a medicament for the treatment of Turner Syndrome; Prader-Willi syndrome (PWS); Noonan syndrome; Down syndrome; chronic renal disease, juvenile rheumatoid arthritis; cystic fibrosis, HIV-infection in children receiving HAART treatment (HIV/HALS children); short children born short for gestational age (SGA); short stature in children born with very low birth weight (VLBW) but SGA; skeletal dysplasia; hypochondroplasia; achondroplasia; idiopathic short stature (ISS); GHD in adults; fractures in or of long bones, such as tibia, fibula, femur, humerus, radius, ulna, clavicula, matacarpea, matatarsea, and digit; fractures in or of spongious bones, such as the scull, base of hand, and base of food; patients after tendon or ligament surgery in, e.g., hand, knee, or shoulder; patients having or going through distraction oteogenesis; patients after hip or discus replacement, meniscus repair, spinal fusions or prosthesis fixation, such as in the knee, hip, shoulder, elbow, wrist or jaw; patients into which osteosynthesis material, such as nails, screws and plates, have been fixed; patients with non-union or mal-union of fractures; patients after osteatomia, e.g., from tibia or 1st toe; patients after graft implantation; articular cartilage degeneration in knee caused by trauma or arthritis; osteoporosis in patients with Turner syndrome; osteoporosis in men; adult patients in chronic dialysis (APCD); malnutritional associated cardiovascular disease in APCD; reversal of cachexia in APCD; cancer in APCD; chronic abstractive pulmonal disease in APCD; HIV in APCD; elderly with APCD; chronic liver disease in APCD, fatigue syndrome in APCD; Crohn's disease; impaired liver function; males with HIV infections; short bowel syndrome; central obesity; HIV-associated lipodystrophy syndrome (HALS); male infertility; patients after major elective surgery, alcohol/drug detoxification or neurological trauma; aging; frail elderly; osteo-arthritis; traumatically damaged cartilage; erectile dysfunction; fibromyalgia; memory disorders; depression; traumatic brain injury; subarachnoid haemorrhage; very low birth weight; metabolic syndrome; glucocorticoid myopathy; short stature due to glucucorticoid treatment in children, the acceleration of the healing of muscle tissue, nervous tissue or wounds; the acceleration or improvement of blood flow to damaged tissue; or the decrease of infection rate in damaged tissue.

The description herein of any aspect or embodiment of the invention using terms such as “comprising”, “having”, “including” or “containing” with reference to an element or elements is intended to provide support for a similar aspect or embodiment of the invention that “consists of”, “consists essentially of”, or “substantially comprises” that particular element or elements, unless otherwise stated or clearly contradicted by context (e.g., a composition described herein as comprising a particular element should be understood as also describing a composition consisting of that element, unless otherwise stated or clearly contradicted by context).

This invention includes all modifications and equivalents of the subject matter recited in the aspects or claims presented herein to the maximum extent permitted by applicable law.

The present invention is further illustrated by the following examples which, however, are not to be construed as limiting the scope of protection. The features disclosed in the foregoing description and in the following examples may, both separately and in any combination thereof, be material for realising the invention in diverse forms thereof.

EXAMPLES Abbreviations

amu=atomic mass units
hr(s)=hour(s)
Hz=hertz
L=liter(s)
M=molar
mbar=millibar
mg=milligram(s)
min=minute(s)
mL=milliliter(s)
mM=millimolar
mm=milimeter(s)
mmol=millimole(s)
nmol=nanomole(s)
mol=mole(s)
N=normal
nm=nanometer(s)
sec=second(s)
ppm=parts per million
ESI=electrospray ionization
i.v.=intravenous
m/z=mass to charge ratio
MS=mass spectrometry
HPLC=high pressure liquid chromatography
RP=reverse phase
HPLC-MS=high pressure liquid chromatography-mass spectrometry
NMR=nuclear magnetic resonance spectroscopy
p.o.=per oral
rt or RT=room temperature
s.c.=subcutaneous
tr=retention time
Boc=tert butyloxycarbonyl
OtBu=tert butyl ester
tBu=tert butyl
Boc-4-ABZ—OH=4-tert-Butoxycarbonylamino-benzoic acid
DCM=dichloromethane, CH2Cl2, methylenechloride
DIC=diisopropylcarbdiimide

DIPEA=N,N-diisopropylethylamine DMF=N,N-dimethylformamide

DMSO=dimethylsulfoxide
DTT=dithiothreitol
EDAC=1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride
Et2O=diethyl ether
EtOAc=ethyl acetate
Fmoc=9H-fluoren-9-ylmethoxycarbonyl
Fmoc-Glu-O-t-Bu=N-Fmoc-glutamic acid-1-t-butyl ester
Fmoc-Lys(Mtt)-OH═(S)-6-[(Diphenyl-p-tolyl-methyl)-amino]-2-(9H-fluoren-9-ylmethoxycarbonylamino)-hexanoic acid Fmoc-OEG-OH=(2[2-(Fmoc-amino)ethoxy]ethoxy)acetic acid
H2O=water
HOBt=1-hydroxybenzotriazole
MeCN=acetonitrile
MeOH=methanol
NaCl=sodium chloride
NaOH=sodium hydroxide

NMP=N-methylpyrrolidin-2-one

OEG=(2[2-(amino)ethoxy]ethoxy)acetic acid
TFA=trifuloroacetic acid
THF=tetrahydrofuran
TIS=triisopropylsilane
CDCl3=deuterio chloroform
CD3OD=tetradeuterio methanol
DMSO-d6=hexadeuterio dimethylsulfoxide
The examples also make use of the following general methods:

General Method for Preparing a hGH Compounds.

The gene coding for the growth hormone compound was inserted recombinantly into a plasmid vector. A suitable E. coli strain was subsequently transformed using the plasmid vector. hGH or GH variants may be expressed with an N-terminal methionine or as a MEAE fusion from which the MEAE sequence is subsequently cleaved off.

Cell stock was prepared in 25% glycerol and stored at −80° C. Glycerol stock strain was inoculated into LB plates and subsequently incubated at 37° C. overnight. The content of each plate was washed with LB medium and diluted into 500 mL LB medium for expression. The cultures were incubated at 37° C. with shaking at 220 rpm until OD600 0.6 was reached. Succeeding induction was performed using 0.2 mM IPTG at 25° C. for 6 hrs. Cells were finally harvested by centrifugation.

Cells were subsequently suspended in 10 mM Tris-HCl, pH=9.0 containing 0.05% Tween 20, 2.5 mM EDTA, 10 mM cysteamine and 4M urea, and disrupted using a cell disrupter at 30 kPSI. The supernatant was collected by centrifugation and subsequently subjected to chromatographic purification.

The purification was performed using ion-exchange chromatography and hydrophibic interaction, followed by removal of the peptide tag using human dipeptidyl peptidase I (hDPPI) expressed from CHO cell. Final purification was achieved by isoprecipitation and ion-exchange chromatography. The purification could also be achieved by using but not limited to ion-exchange chromatography, hydrophobic interaction chromatography, affinity chromatography, size exclusion chromatography and membrane based separation techniques known to a person skilled in the art.

Protein Chemical Characterization of Purified Growth Hormone Compounds.

The intact purified protein was analysed using MALDI-MS. The observed mass corresponded to the theoretical mass deduced from the amino acid sequence. The expected linkage disulfide bonds may be demonstrated by peptide mapping using trypsin and AspN digestion followed by MALDI-MS analysis of the digest before and after reduction of the disulfide bonds with DTT.

Capillary Electrophoresis

Capillary electrophoresis was carried out using an Agilent Technologies 3DCE system (Agilent Technologies). Data acquisition and signal processing were performed using Agilent Technologies 3DCE ChemStation. The capillary was a 64.5 cm (56.0 cm efficient length) 50 μm i.d. “Extended Light Path Capillary” from Agilent. UV detection was performed at 200 nm (16 nm Bw, Reference 380 nm and 50 nm Bw). The running electrolyte was phosphate buffer 50 mM pH 7 (method A). The capillary was conditioned with 0.1M NaOH for 3 min, then with Milli-Q water for 2 min and with the electrolyte for 3 min. After each run, the capillary was flushed with milli-Q water for 2 min, then with phosphoric acid for 2 min, and with milli-Q water for 2 min. The hydrodynamic injection was done at 50 mbar for 4.0 sec. The voltage was +25 kV. The capillary temperature was 30° C. and the runtime was 10.5 min.

Maldi-Tof Mass Spectrometry

Molecular weights were determined using the Autoflex Maldi-Tof instrument (Bruker). Samples were prepared using alfa-cyano-4-hydroxy-cinnamic acid as matrix.

RP-HPLC

RP-HPLC analysis was performed on an Agilent 1100 system using a Vydac 218TP54 4.6 mm×250 mm 5 μm C-18 silica column (The Separations Group, Hesperia). Detection was by UV at 214 nm, 254 nm, 280 nm and 301 nm. The column was equilibrated with 0.1% trifluoracetic acid/H2O and the sample was eluted by a suitable gradient of 0 to 90% acetonitrile against 0.1% trifluoracetic acid/H2O.

LC-MS

LC-MS analysis was performed on a PE-Sciex API 100 or 150 mass spectrometer equipped with two Perkin Elmer Series 200 Micropumps, a Perkin Elmer Series 200 autosampler, a Applied Biosystems 785A UV detector and a Sedex 75 Evaporative Light scattering detector. A Waters Xterra 3.0 mm×50 mm 5μ C-18 silica column was eluted at 1.5 ml/min at room temperature. It was equilibrated with 5% MeCN/0.1% TFA/H2O and eluted for 1.0 min with 5% MeCN/0.1% TFA/H2O and then with a linear gradient to 90% MeCN/0.1% TFA/H2O over 7 min. Detection was by UV detection at 214 nm and Evaporative light Scattering. A fraction of the column eluate was introduced into the ionspray interface of a PE-Sciex API 100 mass spectrometer. The mass range 300-2000 amu was scanned every 2 seconds during the run.

Quantification of Protein

Protein concentrations were estimated by measuring absorbance at 280 nm using a NanoDrop ND-1000 UV-spectrofotometer.

Enzymatic Peptide Mapping for Determination of Site(s) of Derivatization

Peptide mapping was performed using Asp-N digestion of the reduced and alkylated protein. First the protein was treated with DTT and iodoacetamide according to standard procedures. The alkylated product was purified using HPLC. Subsequently the alkylated purified product was digested overnight with endoprotease Asp-N(Boehringer) at an enzyme:substrate ratio of 1:100. The digest was HPLC separated using a C-18 column and standard TFA/MeCN buffer system. The resulting peptide map was compared to that of underivatized hGH and fractions with different retention times were collected and further analyzed using Maldi-tof mass spectrometry.

SDS Page

SDS poly-acrylamide gel electrophoresis was performed using NuPAGE 4%-12% Bis-Tris gels (Invitrogen NP0321BOX). The gels were silver stained (Invitrogen LC6100) or Coomassie stained (Invitrogen LC6065) and where relevant also stained for PEG with barium iodide as described by M. M. Kurfurst in Anal. Biochem. 200(2), 244-248, (1992).

Protein Chromatography

Protein chromatography was performed on an Äkta Explorer chromatographic system and columns from GE Health Care. Anion exchange was done using a Q-Sepharose HP 26/10 column. Starting buffer was 20 mM triethanolamine buffer pH 8.5 and eluting buffer was starting buffer+0.2 M NaCl. The compounds were typically eluted with a gradient of 0-75% eluting buffer over 15 column volumes. De-salting and buffer exchange was performed using a HiPrep 26/10 column.

The TGase used in the examples is microbial transglutaminase from Streptoverticillium mobaraense according to U.S. Pat. No. 5,156,956.

Log P Calculation

Log P values can be calculated as mLog P and/or cLog P for the albumin binder part and/or the hydrophilic spacer part using published algorithms (J. Am. Chem. Soc., 86 (1964) 5175-5180 “A New Substituent Constant, v, Derived from Partition Coefficients”, C. A. Lipinski et al. Advanced Drug Delivery Reviews, 23 (1997) 3-25, “Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings” and I. Moriguchi, S. Hirono, I. Nakagome, H. Hirano, Chem. and Pharm. Bull., 42 (1994) 976-978 “Comparison of Reliability of log P Values for Drugs Calculated by Several Methods”. Herein clogP—Pomona College log P (octanol/water partition coefficient) is calculated with Sybyl 7.0 from Tripos (htt p:iiwww.tripos.com) version 4.2 of the clog P algorithm and version 22 of its associated fragment database as provided by BioByte Corp (http://vww.biobte.com/).

Assay (I) BAF-3GHR Assay to Determine Growth Hormone Activity

The BAF-3 cells (a murine pro-B lymphoid cell line derived from the bone marrow) was originally IL-3 dependent for growth and survival. 11-3 activates JAK-2 and STAT which are the same mediators GH is activating upon stimulation. After transfection of the human growth hormone receptor the cell line was turn into a growth hormone-dependent cell line. This clone can be used to evaluate the effect of different growth hormone samples on the survival of the BAF-3GHR.

The BAF-3GHR cells are grown in starvation medium (culture medium without growth hormone) for 24 hours at 37° C., 5% CO2.

The cells are washed and re-suspended in starvation medium and seeded in plates. 10 μl of growth hormone compound or human growth hormone in different concentrations or control is added to the cells, and the plates are incubated for 68 hours at 37° C., 5% CO2.

AlamarBlue® is added to each well and the cells are then incubated for another 4 hours. The AlamarBlue® is a redox indicator, and is reduced by reactions innate to cellular metabolism and, therefore, provides an indirect measure of viable cell number.

Finally, the metabolic activity of the cells is measure in a fluorescence plate reader. The absorbance in the samples is expressed in % of cells not stimulated with growth hormone compound or control and from the concentration-response curves the activity (amount of a compound that stimulates the cells with 50%) can be calculated.

Assay for Measuring Rate of Protease Degradation of GH and hGH Compound Conjugates

The compound of interest is digested by a relevant protease (Trypsin, Chymotrypsin, Pepsin, Elastase, Factor VIIa, Factor Xa, Proteinase K, Carboxy peptidase, DPPIV, Neutral Endopeptidase, Granzyme B, Proline-endopeptidase, Staphylococcal peptidase I, Thermolysin, Thrombin, Arg-C proteinase, Asp-N endopeptidase, Caspase 1-10, Clostripain, Enterokinase, Glutamyl endopeptidase, Granzyme B, LysC, LysN, Proline-endopeptidase and Staphylococcal peptidase I or tissue extracts.) in an appropriate buffer (e.g. PBS or ammonium bicarbonate) at 37° C. for up till 24 hrs. Proteolytic degradation is assessed by a HPLC assay.

Proteolytic Digestion:

100 μL of test compound solution at 1 mg/mL in ammonium bicarbonate buffer is degraded by enzyme for up till 24 hrs at 37° C. Sub-samples are taken to various time points and the proteolytic reaction is stopped by acidifying the sample by 10 times dilution into 1% TFA. These diluted samples are analysed by reversed phase HPLC to estimate the degree of proteolytic digestion.

HPLC Method:

10 μL of the above solution is injected on a reversed phase Vydac C4 2×150 mm column eluted with a linear gradient from 0.1% TFA in water to 100% acetonitrile containing 0.1% TFA over a period of 30 min at a flow rate of 0.2 ml/min. Detection of peaks is performed at 214 nm UV absorption. Percentage (%) intact compound at time point t=T is calculated from the peak area at time point t=T (AT) and the peak area at t=0 (A0) as (AT/A0)×100%. Percentage (%) intact compound is plotted against time using GraphPad Prims software ver. 5.01. Half life (T %) is calculated as one phase decay also by GraphPad Prism software. Examples of enzymes that may be used are elastase (Sigma from porcine pancrease) and chymotrypsin (Roche sequencing grade). Example of buffer is 50 mM ammonium bicarbonate, pH=8.5.

Pharmacokinetics

The pharmacokinetic of the compounds of the examples is investigated in male Spraque Dawley rats after intravenous (i.v.) and/or subcutaneous (s.c.) single dose administration.

Test compounds are diluted to a final concentration of 1 mg/mL in a dilution buffer consisting of: Glycine 20 mg/mL, mannitol 2 mg/mL, NaHCO3 2.5 mg/mL, pH adjusted to 8.2.

The test compounds are studied in male Spraque Dawley rats weighing 250 g. The test compounds are administered as a single injection either i.v. in the tail vein or s.c. in the neck with a 25 G needle at a dose of 60 nmol/kg body weight.

For each test compound blood sampling is conducted according to the following schedule presented in table 1.

TABLE 1 Blood sampling schedule for each test compound. Animal Sampling time (h) no. RoA Predose 0.08 0.25 0.5 1 2 4 6 8 18 24 48 72 1 s.c. X X X X X X 2 X X X X X X 3 X X X X 4 X X X X 5 X X 6 X X 7 i.v. X X X X X X X 8 X X X X X X X 9 X X X 10 X X X

At each sampling time 0.25 mL blood is drawn from the tail vein using a 25 G needle. The blood is sampled into a EDTA coated test tube and stored on ice until centrifugation at 1200×G for 10 min at 4° C. Plasma is transferred to a Micronic tube and stored at −20° C. until analysis.

Test compound concentrations are determined by a sandwich ELISA using a guinea pig anti-hGH polyclonal antibody as catcher, and biotinylated hGH binding-protein (soluble part of human GH receptor) as detector. The limit of detection of the assay was 0.2 nM.

A non-compartmental pharmacokinetic analysis is performed on mean concentration-time profiles of each test compound using WinNonlin Professional (Pharsight Inc., Mountain View, Calif., USA). The pharmacokinetic parameter estimates of terminal half-life (t %) and mean residence time (MRT) are calculated.

In Vivo Dose-Response Study in Hypophysectomised Sprague Dawley Rats

The in vivo dose-response relationship is studied in hypophysectomised male Sprague Dawley rats. The hypophysectomised rat is a well known and recognised animal model of growth hormone deficiency, where no production of growth hormone occurs after the surgical removal of the pituitary gland. This also leads to low circulating levels of insulin-like growth factor-1 (IGF-1) another important clinical feature of growth hormone deficiency in humans.

The hypophysectomy is performed on 4 week old male rats weighing 90-100 g. The animals entering the study 3-4 weeks after the surgery weighing 100-110 g. Animals with a body weight gain of more than 10% during the 3-4 weeks after surgery are not allowed to enter the study.

Dose response studies are usually performed using five dose levels of test compound from 1-150 nmol/rat.

Disapperance

Disapperence rates may be measured in pigs, usually at least five female pigs of crossbred LYD. The pigs are weighted, fasted and issued a special “pig coat” in order to carry the gamma counter and transmitter and placed in single pens before the start of the study. All pigs are fasted for 18 hours prior the study.

The animals are dosed (60 nmol) subcutaneously on the left and the right side of the neck respectively with a Novopen3® and a NovoFine® 28 G needle with fixed black needle stopper. Injection depth is 5 mm. The test solutions (including the compounds) are diluted in a buffer consisting of: Glycine 20 mg/mL, mannitol 2 mg/mL, NaHCO3 2.4 mg/mL, pH adjusted to 8.2.

Iodination with 125I is performed by Chemistry & Isotope Lab. Novo Nordisk A/S. The final radioactive formulation has a specific radioactive activity of 3 μCi/mL and is provided in 3 mL Penfills. The solutions were stored at 2-8° C. until used.

The desapperence of the radioactive depots is measured by portable equipment for about 24-48 hours.

Preparation of Albumin Binders Example 1 Tetrazol OEG Linker (I):

The tetrazole OEG linker (I) was synthesised according to scheme 1.

2 g of Rink-Amide-Resin (2 g, 0.6 mMol/g) was weighed into a flask. The resin was swelled with NMP (3×30 mL) for 2 hrs.

Removal of the Fmoc-group: The resin was shaken with 25% piperidine in NMP (30 mL) for 10 min. The resin was drained and treated with 25% piperidine in NMP (30 mL) for 1 hour followed by draining and wash with NMP (6×30 mL).

Fmoc-Lys(Mtt)-OH and HOBT were weighed into a flask, dissolved in bromo phenol blue in NMP (30 mL, 0.5 mM). This solution was added to the drained resin above followed by addition of DIC. The reaction was shaken at ambient temperature for 21 hrs. The resin was drained and washed with NMP (6×30 mL) followed by washing with DCM (3×30 mL).

The resin was treated with hexafluorisopropanol (20 mL) for 10 min. Shaken for 10 min. The resin was drained and washed with DCM (3×30 mL). The resin was treated with hexafluorisopropanol (20 mL) for 10 min again and shaked for 10 min. The resin was drained and washed with DCM (3×30 mL) followed by drained and washed with NMP (3×30 mL).

Boc-4-ABZ—OH and HOBT were weighed into a flask, dissolved in bromo phenol blue in NMP (30 mL, 0.5 mM). This solution was added to the drained resin above followed by addition of DIC. The reaction was shaken at ambient temperature. The resin was drained and washed with NMP (6×30 mL).

Removal of the Fmoc-group: The resin was shaken with 25% piperidine in NMP (10 mL) for 10 min. The resin was drained and treated with 25% piperidine in NMP (10 mL) for 1 hour followed by draining and wash with NMP (6×15 mL).

Fmoc-OEG-OH and HOBT were weighed into a flask, dissolved in brom phenol blue in NMP (15 mL, 0.5 mM). This solution was added to the drained resin followed by addition of DIC. The reaction was shaken at ambient temperature for 23 hrs. The resin was drained and washed with NMP (6×15 mL).

Removal of the Fmoc-group: The resin was shaken with 25% piperidine in NMP (10 mL) for 10 min. The resin was drained and treated with 25% piperidine in NMP (10 mL) for 1 hour followed by draining and wash with NMP (6×15 mL).

Fmoc-Glu-O-t-Bu and HOBT were weighed into a flask, dissolved in bromo phenol blue in NMP (15 mL, 0.5 mM). This solution was added to the drained resin followed by addition of DIC. The reaction was shaken at ambient temperature for 18 hrs. The resin was drained and washed with NMP (6×15 mL).

Removal of the Fmoc-group: The resin was shaken with 25% piperidine in NMP (10 mL) for 10 min. The resin was drained and treated with 25% piperidine in NMP (10 mL) for 1 hour followed by draining and wash with NMP (6×15 mL).

Fmoc-Glu-O-t-Bu and HOBT were weighed into a flask, dissolved in 15 ml 0.5 mM bromo phenol blue in NMP. This solution was added to the drained resin followed by addition of DIC. The reaction was shaken at ambient temperature for 18 hrs. The resin was drained and washed with NMP (6×15 mL).

Removal of the Fmoc-group: The resin was shaken with 25% piperidine in NMP (10 mL) for 10 min. The resin was drained and treated with 25% piperidine in NMP (10 mL) for 1 hour followed by draining and washing with NMP (6×15 mL).

Fmoc-OEG-OH and HOBT were weighed into a flask, dissolved in bromo phenol blue in NMP (15 mL, 0.5 mM). This solution was added to the drained resin followed by addition of DIC. The reaction was shaken at ambient temperature.

The resin was drained and washed with NMP (6×15 mL).

Removal of the Fmoc-group: The resin was shaken with 25% piperidine in NMP (10 mL) for 10 min. The resin was drained and treated with 25% piperidine in NMP (10 mL) for 1 hour followed by draining and washing with NMP (6×15 mL). 4-(16-1H-Tetrazol-5-yl-hexadecanoylsulfamoyl)-butyric acid and HOBT were weighed into a flask, dissolved in bromo phenol blue in NMP (15 mL, 0.5 mM). This solution was added to the drained resin followed by the addition of DIC. The reaction was shaken at ambient temperature for 21 hrs. The resin was drained and washed with NMP (6×15 mL NMP) followed by draining and wash with DCM (6×15 mL).

The resin was cleaved with a mixture of 95% TFA in water (10 mL)+DCM (0.25 mL) and TIPS (0.25 mL). The resin was shaken for 2 hrs at ambient temperature and filtered into cold diethyl ether (75 mL). The resulting precipitate was isolated by centrifugation followed by washing with diethyl ether (3×) and dried in vacuum for 48 hrs affording crude 300 mg of the compound.

TOF-MS: Rt=4.7 min, mass 1268.71

The crude compound was purified on prep-HPLC (GILSON). T2145-10; 30->80% MeCN. Pooled fractions were evaporated to dryness on rotavap and the residue dissolved in H2O/MeCN 1:1 and freezedried over night affording 170 mg of the_compound.

Example 2

In a similar way as described in Example 1 above the following compound may be prepared using FMOC-Lys(Mtt)-OH and Wang Resin.

Calculated mass 1124.33

Example 3

In a similar way as described in Example 1 above and depicted below the following compound was prepared using Boc-Gly-PAM resin as starting material.

TOF-MS: mass 1128.38

Example 4

In a similar way as described in Example 1 above the following compound was prepared using FMOC-Lys(Mtt)-OH and Rink amid resin.

TOF-MS: mass 1333.64

Example 5

In a similar way as described in Example 1 above the following compound was prepared using FMOC-Lys(Mtt)-OH and Rink amid resin.

TOF-MS: mass 1320.67

Example 6

In a similar way as described in Example 1 above the following compound was prepared using FMOC-Lys(Mtt)-OH and Rink amid resin.

TOF-MS: mass 2114.64

Example 7

In a similar way as described in Example 1 above the following compound was prepared using FMOC-Lys(Mtt)-OH and Rink amid resin.

TOF-MS: mass 1534.82

Example 8

In a similar way as described in Example 1 above the following compound was prepared using FMOC-Lys(Mtt)-OH and Rink amid resin.

TOF-MS: mass 823.05

Example 9

In a similar way as described in Example 1 above the following compound was prepared using FMOC-Lys(Mtt)-OH and Wang Resin.

TOF-MS: mass 980.22

Example 10

In a similar way as described in Example 1 above the following compound was prepared using FMOC-Lys(Mtt)-OH and Rink amid resin.

TOF-MS: mass 851.10

Example 11

In a similar way as described in Example 1 above the following compound was prepared using FMOC-Lys(Mtt)-OH and Rink amid resin.

TOF-MS: mass 1258.51

Example 12

In a similar way as described in Example 1 above the following compound was prepared using FMOC-Lys(Mtt)-OH and Wang Resin.

TOF-MS: mass 1269.49

Example 13

In a similar way as described in Example 1 above the following compound was prepared using FMOC-Lys(Mtt)-OH and Rink amid resin.

TOF-MS: mass 841.04

Example 14

In a similar way as described in Example 1 above the following compound may be prepared using FMOC-Lys(Mtt)-OH and Rink amid resin.

Calculated mass 863.07

Example 15

In a similar way as described in Example 1 above the following compound may be prepared using FMOC-Lys(Mtt)-OH and Rink amid resin.

Calculated mass 855.07

Example 16

In a similar way as described in Example 1 above the following compound may be prepared using FMOC-Lys(Mtt)-OH and Rink amid resin.

Calculated mass 883.12

Example 17

In a similar way as described in Example 1 above the following compound was prepared using FMOC-Lys(Mtt)-OH and Rink amid resin.

TOF-MS: mass 1123.35

Example 18

In a similar way as described in Example 1 above the following compound was prepared using FMOC-Lys(Mtt)-OH and Rink amid resin.

TOF-MS: Rt=4.7 min, mass 1267.45

Example 19

In a similar way as described in Example 1 above the following compound was prepared using FMOC-Lys(Mtt)-OH and Rink amid resin.

TOF-MS: mass 1310.67

Example 20

In a similar way as described in Example 1 above the following compound may be prepared using FMOC-Lys(Mtt)-OH and Rink amid resin.

Calculated mass 1308.58

Example 21

In a similar way as described in Example 1 above the following compound may be prepared using FMOC-Glu(ODmab)-OH and 2-chlorotrityl chloride resine.

Calculated: mass 1235.56

Example 22

In a similar way as described in Example 1 above the following compound may be prepared using FMOC-Glu(ODmab)-OH and 2-chlorotrityl chloride resine.

Calculated: mass 1173.40

Example 23

In a similar way as described in Example 1 above the following compound was prepared using FMOC-Lys(Mtt)-OH and Rink amid resin.

TOF-MS: mass 703.93

Example 24

In a similar way as described in Example 1 above the following compound may be prepared using FMOC-Lys(Mtt)-OH and Rink amid resin.

Calculated mass 689.90

Example 25

In a similar way as described in Example 1 above the following compound may be prepared using FMOC-Glu(ODmab)-OH and 2-chlorotrityl chloride resine.

Calculated mass 1182.34

Preparation of GH Albumin Binder Compounds Example 26 1. Coupling of Albumin Binder of General Formular A-W—B1-NH2 to Transaminated and Oxidised GH Compound (I)

The use of a transglutaminase to attach an aldehyde handle to GH on glutamine residues has previously been described in WO2005/070468. The method may be used in accordance with the present invention for attachment of a albumin binder based linker of formula A-W—B1-NH2. The TGase used is microbial transglutaminase from Streptoverticillium mobaraense according to U.S. Pat. No. 5,156,956.

The reaction may be performed as follows: GH (I) is initially transaminated with 1,3-diamino-2-propanol (II) as described in WO2005/070468:

In the next step, transaminated GH (III) is added periodate. The oxidation is typically done at low temperature, such as 4-10° C. over 30 min. optionally in the dark. Periodate may oxidize metheonine residues in GH to their corresponding metheonine sulfoxide residues. To minimize this oxidation risk, small molecule organic thioethers may be added during periodate oxidation. A suitable organic thioether is 3-methylthiopropan-1-ol but the skilled person will be able to suggest others.

Oxidation of Transaminated GH Compound (III):

Buffer change may be performed in order to obtain an acid solution required for efficient sodium cyano borohydride reduction. Typically, an excess of A-W—B1-NH2 amine is used, and sodium cyanoborohydride may be added in smaller portions over time.
Reductive amination of (IV) with albumin binder linker (V):

The later reaction may be performed as follows:

A solution of oxidized transaminated GH (IV) is added a solution of albumin binder linker (V) in a mixture of AcOH (1.5 mL) and 50 mM MES (0.5 mL) at pH 6.00. The resulting reaction mixture is gently shaken at RT for 30 min. at which time a NaCNBH3 solution (15 μL, (22 mg NaCNBH3 dissolved in 500 μL Milli-Q water+AcOH (15 μL))) is added. The sample is covered with tin foil and stirrer over night at RT.

The conjugate can be isolated by anion exchange chromatography as follows: Acetic acid is removed by buffer changed with pure water (3×) using Amicon Ultra15 devices (Ultracel 10K tubes) by centrifugation at 4000 rpm/min. for 3×8 min. The mixture is then buffer changed to 20 mM TEA, pH: 8.50 using Amicon Filter devises and diluted to a final volume of 50 mL with 20 mM TEA, before loading it on a HiLoad Q Sepharose, 26/10 column. The column is initially washed with 20 mM TEA, pH 8.50 (buffer A) and then eluted with 20 mM TEA, 500 mM NaCl, pH 8.50 (buffer B) using a 0-100% (B) gradient over 20 CV, with a flow rate of 2 m1/min. The pooled fractions were buffer changed 5 times to 10 mM ammoniumbicarbonate buffer in pure water using Amicon Ultra15 devices (Ultracel 10K tubes) by centrifugation at 4000 rpm/min. for 3×8 min

Example 27

In a similar way as described in Example 26 above the following compound may be prepared using albumin binder from Example 2.

Calculated mass 23.473,81

Example 28

In a similar way as described in Example 26 above the following compound was prepared using albumin binder from Example 4.

TOF-MS: mass 23.428

Example 29

In a similar way as described in Example 26 above the following compound was prepared using albumin binder from Example 5.

TOF-MS: mass 23.428

Example 30

In a similar way as described in Example 26 above the following compound was prepared using albumin binder from Example 6.

TOF-MS: mass 24.265,71

Example 31

In a similar way as described in Example 26 above the following compound was prepared using albumin binder from Example 7.

TOF-MS: mass 23.686,83

Example 32

In a similar way as described in Example 26 above the following compound was prepared using albumin binder from Example 8.

TOF-MS: mass 22.974,75

Example 33

In a similar way as described in Example 26 above the following compound was prepared using albumin binder from Example 9.

TOF-MS: mass 23.131,31

Example 34

In a similar way as described in Example 26 above the following compound was prepared using albumin binder from Example 10.

TOF-MS: mass 23.002

Example 35

In a similar way as described in Example 26 above the following compound was prepared using albumin binder from Example 11.

TOF-MS: mass 23.419,59

Example 36

In a similar way as described in Example 26 above the following compound was prepared using albumin binder from Example 12.

TOF-MS: mass 23.420,58

Example 37

In a similar way as described in Example 26 above the following compound was prepared using albumin binder from Example 13.

TOF-MS: mass 22.992,13

Example 38

In a similar way as described in Example 26 above the following compound may be prepared using albumin binder from Example 14.

Calculated mass 23.015,15

Example 39

In a similar way as described in Example 26 above the following compound may be prepared using albumin binder from Example 15.

Calculated mass 23.006,15

Example 40

In a similar way as described in Example 26 above the following compound may be prepared using albumin binder from Example 16.

Calculated mass 23.034,18

Example 41

In a similar way as described in Example 26 above the following compound was prepared using albumin binder from Example 17.

TOF-MS: mass 23.273,97

Example 42

In a similar way as described in Example 26 above the following compound was prepared using albumin binder from Example 18.

TOF-MS: mass 23.333

Example 43

In a similar way as described in Example 26 above the following compound may be prepared using albumin binder from Example 19.

Calculated mass 23.461,75

Example 44

In a similar way as described in Example 26 above the following compound may be prepared using albumin binder from Example 20.

Calculated mass 23.459,67

Example 45

In a similar way as described in Example 26 above the following compound may be prepared using albumin binder from Example 21.

Calculated mass 23.386,65

Example 46

In a similar way as described in Example 26 above the following compound may be prepared using albumin binder from Example 22.

Calculated mass 23.324,48

Example 47

In a similar way as described in Example 26 above the following compound was prepared using albumin binder from Example 23.

TOF-MS: mass 22.841

Example 48

In a similar way as described in Example 26 above the following compound may be prepared using albumin binder from Example 24.

Calculated mass 22.826,97

Example 49

In a similar way as described in Example 26 above the following compound may be prepared using albumin binder from Example 25.

Example 50

Coupling of Albumin Binder Linker of General Formular A-W—B1-NH2 to Transaminated and Oxidised GH Compound (I)

The use of a transglutaminase to attach an aldehyde handle to GH on glutamine residues has previously been described in WO2005/070468. The method may be used in accordance with the present invention for attachment of a albumin binder based linker of formula A-WB1-NH2. The TGase used is microbial transglutaminase from Streptoverticillium mobaraense according to U.S. Pat. No. 5,156,956.

The reaction may be performed as follows: GH (I) is initially transaminated with 1,3-diamino-2-propanol (II) as described in WO2005/070468:
Transaminated hGH Gln40 (111) was obtained from Example 26 as a biproduct from the CIE chromatography purification.

In the next step, transaminated GH (III) is added periodate. The oxidation is typically done at low temperature, such as 4-10° C. over 30 min. optionally in the dark. Periodate may oxidize metheonine residues in GH to their corresponding metheonine sulfoxide residues. To minimize this oxidation risk, small molecule organic thioethers may be added during periodate oxidation. A suitable organic thioether is 3-methylthiopropan-1-ol but the skilled person will be able to suggest others.

Oxidation of Transaminated GH Compound (III):

Buffer change may be performed in order to obtain an acid solution required for efficient sodium cyano borohydride reduction. Typically, an excess of A-W—B1-NH2 amine is used, and sodium cyanoborohydride may be added in smaller portions over time.
Reductive Amination of (IV) with Albumin Binder Linker (V):

The later reaction may be performed as follows:

A solution of oxidized transaminated GH (IV) is added a solution of bile acid linker (V) in a mixture of AcOH (1.5 mL) and 50 mM MES (0.5 mL) at pH 6.00. The resulting reaction mixture is gently shaken at RT for 30 min. at which time a NaCNBH3 solution (15 μL, (22 mg NaCNBH3 dissolved in 500 μL Milli-Q water+AcOH (15 μL))) is added. The sample is covered with tin foil and stirrer over night at RT.

The conjugate can be isolated by anion exchange chromatography as follows: Acetic acid is removed by buffer changed with pure water (3×) using Amicon Ultra15 devices (Ultracel 10K tubes) by centrifugation at 4000 rpm/min. for 3×8 min. The mixture is then buffer changed to 20 mM TEA, pH: 8.50 using Amicon Filter devises and diluted to a final volume of 50 mL with 20 mM TEA, before loading it on a HiLoad Q Sepharose, 26/10 column. The column is initially washed with 20 mM TEA, pH 8.50 (buffer A) and then eluted with 20 mM TEA, 500 mM NaCl, pH 8.50 (buffer B) using a 0-100% (B) gradient over 20 CV, with a flow rate of 2 mL/min. The pooled fractions were buffer changed 5 times to 10 mM ammoniumbicarbonate buffer in pure water using Amicon Ultra15 devices (Ultracel 10K tubes) by centrifugation at 4000 rpm/min. for 3×8 min

In a similar way as described in Example 50 above the following compound was prepared using albumin binder from Example 6.

TOF-MS: Rt=4.7 min, mass 23.473,81

Example 51

1. Coupling of a GH Compound (I) N-Terminaly with an Albumine Binder (II)

(A) Reductive Alkylation of (I) with an Albumin Binder Aldehyde (II)

Albumin binder (II) was obtained as described in Example 3.

2-(C20diacid-Trx-γGlu-Glu-OEG-OEG-Gly-Glycin amid)-ethyl-Nα1-hGH

hGH (23 mg) was dissolved in Hepes buffer (2.3 mL 0.25 mM pH 7.0).
C20diacid-Trx-γGlu-Glu-OEG-OEG-Gly-Gly-dimethylacetal (2 mg, see example 3 above) was treated with TFA (50 μL) for 6 min. and evaporated to dryness in vacuum. The residue was stripped with EtOH (200 μL) and evaporated to dryness in vacuum. The residue was dissolved in DMF (100 μL) and added to the hGH solution. A precipitate was formed and redissolved by addition of DMF (1 mL). After 1 hr a solution of NaCNBH3 (20 mg, in 0.5 mL MeCN (230 μL)) was added portionwise and left for 20 hrs. The reaction was quenched by addition of AcOH (2 mL) and diluted with water to a total volume of 20 m1 and purified on prep. HPLC on a C18 column with a gradient of MeCN/O, 1% TFA from 40-80% against 0.1% TFA in water. The latest eluting peak was collected, diluted from 70% MeCN to 10% with water and lyophilized affording 4.51 mg of the compound.
TOF-MS: mass 23.237,6

Example 52

GH compounds as described herein were tested in one or more of the assays described herein above.

EC50 values based on BAF assay as well as half life (T1/2) and mean residence time (MRT) were determined and included in table 2 below.

Disapperence rate for selected compounds were measured in five female pigs of crossbred LYD as described above. The result are presented as AUC (0-45 hrs) in table 2.

The solubility enhancing propertiy expressed as cLog P of the space (B) as determined by the method described above is also included in table 2.

Albumin binding affinity as determined by Biacor and or HPLC is also included in table 2.

Data relating to a pegylated hGH compound is included as well. PEG-hGH being identical to the compound disclosed in Example 1 of WO2006024953A2.

TABLE 2 Mean Albumin Albumin Albumin Solublity of EC50/ T1/2 residence Disapperance binder binding binder and spacer (B)1 potency (i.v. Rat) time AUC affinity (HPLC) Compound attachment cLogP (BAF) (hours) (MRT) (0-45 hour) (Biacor) (Rt, min) hGH 1 0.15  519 0.36 hGH-PEG 26 5.8 2426 Ex. 28 Gln141 −5.32 1.4 1.6 8.3 ND 0.58 7.16 Ex. 4 Ex. 29 Gln141 0.25 1.3 1.5 12.3  1659 0.50 6.76 Ex. 5 Ex. 30 Gln141 −6.79 1.5 2 3.6 2283 0.76 7.00 Ex. 6 Ex. 31 Gln141 −7.05 1.7 ND ND 1977 0.65 7.46 Ex. 7 Ex. 32 Gln141 −0.44 0.3 ND ND 1500 ND 4.25 Ex. 8 Ex. 33 Gln141 −2.17 0.63 ND ND 1789 0.02 6.57 Ex. 9 Ex. 34 Gln141 −0.44 0.62 0.84 ND  903 ND 6.01 Ex. 10 Ex. 35 Gln141 −3.43 0.78 1.6 7.0 ND 0.23 6.75 Ex. 11 Ex. 36 Gln141 −2.43 0.84 1.8 7.4 1606 0.41 6.88 Ex. 12 Ex. 37 Gln141 −5.07 0.64 0.86 1.5 1260 ND 6.45 Ex. 13 Ex. 41 Gln141 −2.74 2.52 2.3 6.2 1570 0.29 7.06 Ex. 17 Ex. 42 Gln141 −4.76 2.10 ND ND ND ND 5.69 Ex. 18 Ex. 47 Gln141 −0.67 ND ND ND ND ND 7.00 Ex. 23 Ex. 50 Gln40 −6.79 1.60 2.8 4.3 ND 0.55 ND Ex. 6 Ex. 51 N-term −5.87 2.80 2.5 11.6  1935 0.74 7.07 Ex. 3 1For calculation purpose * has been set to carbon in the individual B-spacer elements.

Claims

1. A growth hormone conjugate which comprises a growth hormone compound (GH) linked to an albumin binding residue via a hydrophilic spacer, or a pharmaceutically acceptable salt, solvate or prodrug thereof.

2. The conjugate of claim 1 wherein the growth hormone conjugate has the formula (I):

A-W—B-GH  (I)
wherein:
GH is a growth hormone compound,
B is a hydrophilic spacer,
W is a chemical group linking A and B, and
A is an albumin binding residue.

3. The conjugate of claim 1, wherein GH is hGH (SEQ ID NO:1).

4. The conjugate of claim 2 wherein B has the formula

-X1-X2-X3-X4-
wherein
X1 is —W1—[(CHR1)l1—W2]m1—{[(CH2)n1E1]m2—[(CHR2)l2—W3]m3}n2—;
X2 is —[(CHR3)l3—W4]m4—{[(CH2)n3E2]m5—[(CHR4)l4—W5]m6}n4—;
X3 is —[(CHR5)l5—W6]m7—;
X4 is F-D1-(CH2)l6-D2-;
l1, l2, l3, l4, l5 and l6 independently are selected from 0-16;
m1, m3, m4, m6 and m7 independently are selected from 0-10;
m2 and m5 independently are selected from 0-25;
n1, n2, n3 and n4 independently are selected from 0-16;
F is aryl, hetaryl, pyrrolidine-2,5-dione or a valence bond, wherein the aryl and hetaryl groups are optionally substituted with halogen, —CN, —OH, —C(O)OH, —C(O)NH2, —S(O)2OH or C1-6-alkyl;
R1, R2, R3, R4 and R5 independently are selected from hydrogen, —C(O)OH, —C(O)NH2, —S(O)OH, —S(O)2OH, —NH—C(═NH)—NH2, C1-6-alkyl, aryl or hetaryl;
wherein
the alkyl, aryl and hetaryl groups optionally are substituted with halogen, —C(O)OH, —C(O)NH2, —S(O)OH, —S(O)2OH, —CN or —OH;
D1, D2, E1 and E2 independently are selected from —O—, —NR6—, —N(COR7)— or a valence bond, wherein R6 and R7 independently represent hydrogen or C1-6-alkyl;W1 to W6 independently are selected from —C(O)NH—, —NHC(O)—, —C(O)NHCH2—, —CH2NHC(O)—, —C(O)NHS(O)2—, —S(O)2NHC(O)—, —OC(O)NH—, —NHC(O)O—, —C(O)CH2—, —CH2C(O)—, —C(O)CH═CH—, —CH═CHC(O)—, —(CH2)s2—, —C(O)—, —C(O)O—, —OC(O)—, or a valence bond, wherein s2 is 0 or 1.

5. The conjugate of claim 2, wherein W has the formula

—W7—Y—,
wherein
Y is —(CH2)l7—C3-10-cycloalkyl-W8— or a valence bond,
l7 is 0-6,
W7 is selected from the group consisting of —C(O)NH—, —NHC(O)—, —C(O)NHCH2—, —CH2NHC(O)—, —C(O)NHS(O)2—, —S(O)2NHC(O)—, —OC(O)NH—, —NHC(O)O—, —C(O)CH2—, —CH2C(O)—, —C(O)CH═CH—, —CH═CHC(O)—, —(CH2)s3—, —C(O)—, —C(O)O—, —OC(O)—, or a valence bond, wherein s3 is 0 or 1;
W8 is selected from the group consisting of —C(O)NH—, —NHC(O)—, —C(O)NHCH2—, —CH2NHC(O)—, —C(O)NHS(O)2—, —S(O)2NHC(O)—, —OC(O)NH—, —NHC(O)O—, —C(O)CH2—, —CH2C(O)—, —C(O)CH═CH—, —CH═CHC(O)—, —(CH2)s4—, —C(O)—, —C(O)O—, —OC(O)—, or a valence bond, wherein s4 is 0 or 1.

6. The conjugate of claim 4, wherein

l1, l2, l3, l4, l5 and l6 independently are 0-6,
m1, m3, m4, m6 and m7 independently are 0-6,
m2 and m5 independently are 0-10, and
n1, n2, n3 and n4 independently are 0-10.

7. The conjugate of claim 4, wherein D1 and D2 are independently selected from —O— or —NR6— or a valence bond.

8. The conjugate of claim 4, wherein E1 and E2 are independently selected from —O— or —NR6— or a valence bond.

9. The conjugate of claim 4, wherein W1 through W8 independently are selected from the group consisting of —C(O)NH—, —NHC(O)—, —C(O)NHCH2—, —CH2NHC(O)—, —C(O)NHS(O)2—, —S(O)2NHC(O)— and a valence bond.

10. The conjugate of claim 4, wherein R1, R2, R3, R4 and R5 independently are selected from the group consisting of hydrogen, —C(O)OH, —C(O)NH2, —S(O)2OH and C1-6-alkyl, wherein the alkyl group optionally is substituted with —C(O)OH, —C(O)NH2, or —S(O)2OH.

11. The conjugate of claim 2, wherein A is selected from

wherein * denotes the attachment to B through W.

12. The conjugate of claim 1, wherein the albumin binding residue via a hydrophilic spacer is attached to the glutamine residue in the position corresponding to position 40 in SEQ ID No. 1, or the glutamine residue in the position corresponding to position 141 in SEQ ID No. 1, or the N-terminal residue of the growth hormone compound.

13. The conjugate of claim 1, wherein said compound is selected from the group consisting of

14. A pharmaceutical composition comprising a conjugate of claim 1, optionally in combination with a pharmaceutically acceptable excipient.

15. A method of treating a disease or condition treatable with an increased amount of circulating growth hormone comprising administering an effective amount of the growth hormone conjugate of claim 1.

16. The method of claim 15, wherein the disease or condition is selected from the group consisting of growth hormone deficiency (GHD), Turner Syndrome, Prader-Willi syndrome (PWS), Noonan syndrome and idiopathic short stature (ISS).

17. The method of claim 15, wherein the disease or condition is growth hormone deficiency (GHD).

Patent History
Publication number: 20200306382
Type: Application
Filed: Apr 28, 2020
Publication Date: Oct 1, 2020
Applicant: Novo Nordisk HealthCare AG (Zurich)
Inventors: Henrik Sune Andersen (Holte), Nils Langeland Johansen (Copenhagen OE), Jens Buchardt (Gentofte), Leif Noerskov-Lauritsen (Tappernoeje)
Application Number: 16/860,703
Classifications
International Classification: A61K 47/64 (20060101); A61K 47/54 (20060101); A61K 47/60 (20060101);