METHOD OF MANUFACTURING A COMPOSITE RIM

A method of manufacturing a composite rim includes following steps of: disposing a composite material on an outer surface of an air bag to form a semi-formed rim, wherein the air bag is a completely closed annular tube without any through opening on the outer surface and contains a thermal expansion material thereinside; disposing the semi-formed rim in a mold; and heating the thermal expansion material so that the thermal expansion material expands and inflates the air bag and the semi-formed rim is then solidified.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
BACKGROUND OF THE INVENTION Field of the Invention

The present invention relates to a method of manufacturing a composite rim.

Description of the Prior Art

A conventional method of manufacturing a composite rim process, such as the traditional internal pressure process, needs to place nylon, latex or silicone air bag in the pre-preg composite material (such as carbon fiber). An air blowing port must be provided on the air bag for inflating the air bag during heating and solidifying the resin of the composite, so that there is a pressure different between inside and outside of the air bag for squeezing out excess resin and push the pre-preg composite toward the mold to enhance combination of layers of the pre-preg composite. During the solidification process, the air pressure needs to be controlled within a reasonable range of pressure different between inside and outside of the air bag. With an air pressure too low, the resin content of the final product will be too high, the bonding density between layers of the pre-preg composite will be lowered, reducing the structural strength and performance; while with an air pressure too high, the resin content of the final product will be too low, which will cause a decrease in strength and performance of the final product.

The shortcoming of the conventional method of manufacturing a composite rim process is that it requires manual work to additionally dispose the blowing port to the air bag, and the yield rate depends on the experience and skill of the personnel. If there is any flaw in the process of mounting the blowing port, it may cause insufficient air pressure for blowing the air bag or may cause the product to be scrapped due to air leakage.

The present invention is, therefore, arisen to obviate or at least mitigate the above-mentioned disadvantages.

SUMMARY OF THE INVENTION

The main object of the present invention is to provide a method of manufacturing a composite rim which has high precision, good yield and high structural strength.

To achieve the above and other objects, a method of manufacturing a composite rim is provided, including steps of: disposing a composite material on an outer surface of an air bag to form a semi-formed rim, wherein the air bag is a completely closed annular tube without any through opening on the outer surface and contains a thermal expansion material thereinside; disposing the semi-formed rim in a mold; and heating the thermal expansion material so that the thermal expansion material expands and inflates the air bag and the semi-formed rim is then solidified.

The present invention will become more obvious from the following description when taken in connection with the accompanying drawings, which show, for purpose of illustrations only, the preferred embodiment(s) in accordance with the present invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a drawing showing a closed air bag containing a thermal expansion material according to a preferable embodiment of the present invention;

FIG. 2 is a drawing showing an annular thermal expansion material according to a preferable embodiment of the present invention;

FIGS. 3 and 4 are drawings showing a thermal expansion material inflating an air bag according to a preferable embodiment of the present invention;

FIGS. 5 and 6 are drawings showing a semi-formed rim formed in a mold according to a preferable embodiment of the present invention;

FIG. 7 is a drawing showing forming a tire installation groove according to a preferable embodiment of the present invention;

FIGS. 8 and 9 are drawings showing a composite rim with an air bag removed according to a preferable embodiment of the present invention; and

FIGS. 10 and 11 are drawings showing a thermal expansion material inflating an air bag according to another preferable embodiment of the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Please refer to FIGS. 1 to 9 for a preferable embodiment of the present invention. A method of manufacturing a composite rim of the present invention includes the following steps of: disposing a composite material 10 on an outer surface of an air bag 20 to form a semi-formed rim 30, wherein the air bag 20 is a completely closed annular tube without any through opening on the outer surface and contains a thermal expansion material 40 thereinside; disposing the semi-formed rim 30 in a mold 50; heating the thermal expansion material 40 so that the thermal expansion material 40 expands and inflates the air bag 20 and the semi-formed rim 30 is solidified. Whereby, it has high precision and good yield, and the air bag 20 can be well fitted with the composite material 10, which provides high structural strength of the composite rim.

The composite material 10 is a carbon fiber composite material; however, the composite material may be other type of reinforced fiber composite material. In this embodiment, the thermal expansion material 40 is wax, and the air bag 20 is inflated by the thermal expansion material 40 of a volume change of 15%. Preferably, after the semi-formed rim 30 is solidified, the air bag 20 and the thermal expansion material 40 are removed (FIG. 9). In this embodiment, after the semi-formed rim 30 is solidified, an outer annular part of the semi-formed rim 30 may be removed to form a tire installation groove 31 for receiving a tire.

In an alternative embodiment shown in FIGS. 10 and 11, the thermal expansion material 40a produces gas 41 during inflation of the air bag 20. The pressure generated by the thermal expansion material 40a to inflate the air bag 20 is 1 kg/cm2 to 20 kg/cm2. The thermal expansion material 40a may be ammonium carbonate. After the inflation of the thermal expansion material 40, the air bag 20 contains a part of the thermal expansion material 40a which is solid state and the gas 41 which is produced from thermal expansion material 40. It is noted that the thermal expansion material 40a may be completely gasified, and none of residue of solid-state thermal expansion material is contained in the air bag 20. In the embodiment with the thermal expansion material 40a being ammonium carbonate, the ammonium carbonate can be decomposed into carbon dioxide, ammonia and H2O at a temperature about 60□, wherein 1 gram of ammonium carbonate can be decomposed to produce 0.25 grams of carbon dioxide which is equal to 0.5 liters of gas. The amount of adding ammonium carbonate can be chosen according to the reserved space of the mold 50 and predetermined inflation rate.

It is noted that the thermal expansion material in the air bag, initially, may be gas such as inert gas, in which gas can have greater volume change when heated, and inert gas is much stable and safe; however, other gas may be applicable. The thermal expansion material in the air bag, initially, may be fluid, which can provide precise inflation, sufficient inflation volume change and good inflation rate. Gas-state or fluid-state thermal expansion material is convenient to be removed after the semi-formed rim is solidified.

Although particular embodiments of the invention have been described in detail for purposes of illustration, various modifications and enhancements may be made without departing from the spirit and scope of the invention. Accordingly, the invention is not to be limited except as by the appended claims.

Claims

1. A method of manufacturing a composite rim, including steps of:

disposing a composite material on an outer surface of an air bag to form a semi-formed rim, wherein the air bag is a completely closed annular tube without any through opening on the outer surface and contains a thermal expansion material thereinside;
disposing the semi-formed rim in a mold; and
heating the thermal expansion material so that the thermal expansion material expands and inflates the air bag and the semi-formed rim is then solidified.

2. The method of claim 1, wherein the composite material is a carbon fiber composite material.

3. The method of claim 1, wherein the pressure generated by the thermal expansion material to inflate the air bag is 1 kg/cm2 to 20 kg/cm2.

4. The method of claim 3, wherein the thermal expansion material produces gas during inflation of the air bag.

5. The method of claim 4, wherein the thermal expansion material is ammonium carbonate.

6. The method of claim 5, wherein the composite material is a carbon fiber composite material; after the inflation of the thermal expansion material, the air bag contains a part of the thermal expansion material which is solid state and the gas which is produced from the thermal expansion material; after the semi-formed rim is solidified, the air bag and the thermal expansion material are removed.

7. The method of claim 1, wherein the air bag is inflated by the thermal expansion material of a volume change of 15%.

8. The method of claim 7, wherein the thermal expansion material is wax.

9. The method of claim 8, wherein the composite material is carbon fiber composite material; after the semi-formed rim is solidified, the air bag and the thermal expansion material are removed.

10. The method of claim 1, wherein the thermal expansion material is gas.

Patent History
Publication number: 20200398505
Type: Application
Filed: Jun 9, 2020
Publication Date: Dec 24, 2020
Inventor: Ming-Jen Tsai (Miaoli County)
Application Number: 16/897,104
Classifications
International Classification: B29C 70/42 (20060101); B29C 70/54 (20060101);