ROTATING TENSION LATCH
A delivery apparatus, in one instance, includes suspension means configured to hold a package that is to be delivered or picked up, a locking mechanism in the suspension means configured to securely hold the package onto the suspension means, and a package delivery mechanism configured to control a movement of the suspension means for delivering the package on a delivery area at a delivery destination, or for picking up the package. The locking mechanism is gravity activated to hold and release the package from the suspension means, wherein the locking mechanism is configured to hold the package locked to the suspension means when a force exerted on the locking mechanism exceeds a first value due to a weight of the package, and rotate to release the package from the suspension means when the force exerted on the locking mechanism drops below a second value due to the package weight.
This Application is a continuation of U.S. application Ser. No. 15/620,199 filed on Jun. 12, 2017, entitled “ROTATING TENSION LATCH,” which is a continuation-in-part of U.S. application Ser. No. 13/652,976 filed on Oct. 16, 2012, entitled “ROTATING TENSION LATCH,” which issued on Jun. 13, 2017 under U.S. Pat. No. 9,677,590, all of which are commonly assigned with the present invention and incorporated herein by reference.
TECHNICAL FIELDThis application is directed, in general, to a coupling device or latch and, more specifically, to a rotating tension latch.
BACKGROUNDFasteners are ubiquitous. A quick trip to the hardware section of any home center will readily reveal the broad selection of fasteners. Screws, bolts, rivets, wall anchors, cotter pins, magnets, latches, etc., serve to enable one object to be fastened permanently or temporarily to another object. Seemingly, the choices are so broad that there is likely a specific fastener for every specific application.
Many assembly line operations use fasteners, such as bolts or screws, to couple two separate parts together. However, in many automated assembly line operations it is desirable to grasp an assembly with a robotic arm and temporarily relocate the assembly to the next station where assembly continues. In some applications magnetic or vacuum forces are employed to grasp the assembly for transport. However, in some applications magnetic forces may be undesirable because of the nature of the assembly which may be adversely affected by magnetism. Similarly, other assemblies may be unsuitable for the use of vacuum force because of insufficient area to affect a secure grasp of the assembly, excessive weight of the workpiece, etc. Therefore, there is needed a simple and re-useable mechanical fastener that may be employed in these and other suitable applications.
Reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:
7A-7H illustrate various views of a rotating tension latch using a male latch member and female hook member;
Referring initially to
The male latch member 120, in one embodiment, includes a core 121 having a first end 122; a second end 123; a central axis 124; first, second and third portions 125-127, respectively; and a cone 128. The cone 128 may be truncated as shown. The core 121, in this embodiment, is substantially-cylindrical around the central axis 124 and comes to a blunt point or a truncated cone 128. Such a truncated cone 128 form may also be referred to as chamfered. The first, second and third portions 125-127, respectively, are solid masses contiguous to the core 121 that limit the vertical travel of the first pin 112 when the male latch member 120 is inserted into the female hook member 110. Note that the initial angular (rotated) relationship of the female hook member 110 (and therefore also the first and second pins 112, 113, respectively,) to the male latch member 120 is unimportant, as the male latch member 120 and the female hook member 110 will self-align with the aid of the chamfered/truncated cone 128.
For the purposes of this disclosure, vertical movement is defined as along the central axis 124 of the male latch member 120. Of course, one of skill in the pertinent art will recognize that this “defined vertical” may vary from “absolute local vertical” of the location wherein the tension latch 100 is employed.
In this embodiment, the first portion 125 is proximate the first end 122 and extends radially outward from the core 121. The first portion 125 has a first irregular surface 131 proximate a midpoint 140 of the core 121. The first irregular surface 131, in the illustrated embodiment, is perpendicular to the central axis 124 and has an edge 129 that is saw tooth-like. The first irregular surface 131 defines a vertical limit as a bearing surface that the first pin 112 may travel along the core 121 while the male latch member 120 is inserted into the female hook member 110. The first portion 125 is continuous around the core 121 so that the first and second pins 112, 113 may not pass vertically beyond the first irregular surface 131.
The second portion 126 is proximate the second end 123 and extends radially outward from the core 121. The second portion 126 has a second irregular surface 132 proximate the midpoint 140 that, in this embodiment, is also perpendicular to the central axis 124. The first and second irregular surfaces 131, 132, respectively, form an irregular channel 133 there between that is configured to guide one of the first and second pins 112, 113, respectively, around at least a portion of a periphery 130 of the core 121. The channel 133 is “irregular” in that the width of the channel 133 between the first and second irregular surfaces 131, 132, respectively, varies with the location around the periphery of the core 121. The second portion 126 also has a third irregular surface 134 proximate the second end 123. The third portion 127, in this embodiment, is similar to, and positioned 180° around the core 121 from, the second portion 127. The third portion 127 together with the first portion 125 forms a second channel (not visible) that is substantially identical to the first channel 133. The second and third portions 126, 127, respectively, are evenly distributed around the core 121, and therefore the first channel 133 and the second channel are evenly distributed around the core 121. Similarly, the first and second pins are evenly distributed around the inner surface 111a of the female hook member 110.
In one embodiment, the female hook member 110 may be fixed to or part of a workpiece 150 and the male latch member 120 may be rotatably coupled around the central axis 124 to a positioning arm 160. The motion of the positioning arm 160 may be controlled by an automated machine (not shown). One of skill in the pertinent art is familiar with conventional methods to rotationally couple the male latch member 120 to the positioning arm 160 and how an automated machine may be made to place the male latch member 120 in a desired position relative to the female hook member 110.
For ease of illustration and understanding of the principles of the present device, the female hook member 110 will be considered fixedly coupled to a workpiece 150 and the male latch member 120 will be moveable vertically with respect to the female hook member 110 as well as capable of rotation with respect to the female hook member 110. This vertical movement along the central axis 124 may be referred to as “reciprocation” as the rotating tension latch operates first in a downward motion and then an upward motion followed by a second downward motion. This combination of linear motions together with rotation of the male latch member 120 causes the tension latch 100 to move from unlatched, to a momentarily latched, to an unlatched condition. Of course, momentarily does not mean only for a very limited time, as the rotating tension latch 100 will maintain the latched condition so long as tension remains between the female hook member 110 and the male latch member 120.
Referring now to
Continuing now with
In an alternative embodiment, the male latch member 120 may be positioned by a flexible attachment 120 such as a cable (not shown). In that embodiment, gravity acting on the male latch member 120 may be used as a force to latch and unlatch the male latch member 120 to the female hook member 110. Of course, one who is of skill in the art will realize that tool tolerances for a gravity-operated device must be carefully considered for reliable operation.
Turning now to
For the purpose of the following discussion, it will be assumed that the male latch member 120 is configured (e.g., allowed) to rotate clockwise and counter-clockwise (e.g., with respect to the female hook member) as may be necessary to operate. In an alternative embodiment, the female hook member might be configured (e.g., allowed) to rotate clockwise and counter-clockwise (e.g., with respect to male latch member) as may be necessary to operate. In yet another embodiment, each of the male latch member and female hook member may be configured (e.g., allowed) to rotate freely with respect to each other.
It should be noted that while the embodiment of
In operation, a pin would typically encounter the second portion 126 either to the left or right of the transition point T1. If the pin were to encounter the upwardly slanting surface S1a of the second portion 126, it would cause the male latch member 120 to rotate counter-clockwise (when viewed from above) and thus the pin would slide upwards until it reaches the transition point T2. After reaching the transition point T2, the pin would travel upward to encounter the upwardly slanting surface S2 of the first portion 125. The upwardly slanting surface S2, in the embodiment shown, slants in an opposite direction as the upwardly slanting surface S1a. When the pin encounters the upwardly slanting surface S2, it causes the male latch member 120 to rotate clockwise (when viewed from above) and thus the pin would travel through the channel C1 and slide upwards until it reaches the vertical upper limit L1. Thus far, the pin has traveled to the vertical upper limit L1 by way of a relative downward force (e.g., an intentional force, gravitational force, etc.) upon the male latch member 120. The term “relative” is used in this instance as the force might be placed upon the male latch member, female hook member, or both of the male latch member and female hook member.
At this point, the pin is locked in the vertical upper limit L1 position until the relative downward force subsides. Exchanging the downward force for an upward force, the pin would travel down the surface S3 (e.g., substantially vertical surface S3 in one embodiment) to the transition point T3. At the transition point T3, the pin would head toward the downwardly slanting surface S4 of the second portion 126. As the pin encounters the downwardly slanting surface S4, it would cause the male latch member 120 to rotate clockwise (when viewed from above) and thus the pin would slide downward until it reaches the vertical lower limit L2. At this point, the female hook member 110, as well as anything attached to it, could be picked up by way of the pin being held in the vertical lower limit L2. This would be considered the “pick” of the “pick and place” process.
The pin may be released from the vertical lower limit L2 of the male latch member 120 by putting relative downward force (e.g., an intentional force, gravitational force, etc.) upon the male latch member 120. As downward force is applied to the male latch member 120, the pin travels up the upward slanting surface S5 (e.g., substantially vertical upward slanting surface S5 in one embodiment) until it encounters the transition point T4. After reaching the transition point T4, the pin would travel upward through the channel C2 to encounter the upwardly slanting surface S6 of the first portion 125. The upwardly slanting surface S6, in the embodiment shown, slants in an opposite direction as the upwardly slanting surface S1A, and in the same direction as the upwardly slanting surface S2. In the embodiment shown, the upwardly slanting surface S2 and upwardly slanting surface S6 are substantially, if not completely, parallel with one another. When the pin encounters the upwardly slanting surface S6, it causes the male latch member 120 to rotate clockwise (when viewed from above) and thus the pin would slide upwards until it reaches the vertical upper limit L3.
At this point, the pin is locked in the vertical upper limit L3 position until the relative downward force subsides. Exchanging the downward force for an upward force, the pin would travel down the surface S7 (e.g., substantially vertical surface S7 in one embodiment) to the transition point T5. At the transition point T5, the pin would head through the channel C3 toward the downwardly slanting surface S8 of the second portion 126. As the pin encounters the downwardly slanting surface S8, it would cause the male latch member 120 to rotate clockwise (when viewed from above) and thus the pin would slide downward past the transition point T6 until it reaches the transition point T7. When the pin reaches the transition point T7, the female hook member 110, as well as anything attached to it, would disengage from the male latch member 120. This would be considered the “place” of the “pick and place” process.
In contrast, to that described above, the pin might first encounter the upwardly slanting surface S1b of the second portion 126, which would cause it to take an entirely different path. For example, if the pin were to encounter the upwardly slanting surface S1b, it would cause the male latch member 120 to rotate clockwise (when viewed from above) and thus the pin would slide upwards until it reaches the transition point T7. After reaching the transition point T6, the pin would travel upward through the channel C4 to encounter the upwardly slanting surface S2′ of the first portion 125. The upwardly slanting surface S2′, in the embodiment shown, slants in the same direction as the upwardly slanting surface S1b. When the pin encounters the upwardly slanting surface S2′, it causes the male latch member 120 to rotate clockwise (when viewed from above) and thus the pin would slide upwards until it reaches the vertical upper limit L1′. Thus far, the pin has traveled to the vertical upper limit L1′ by way of a relative downward force (e.g., an intentional force, gravitational force, etc.) upon the male latch member 120.
At this point, the pin is locked in the vertical upper limit L1′ position until the relative downward force subsides. Exchanging the downward force for an upward force, the pin would travel down the surface S3′ (e.g., substantially vertical surface S3 in one embodiment) to the transition point T3′. At the transition point T3′, the pin would head toward the downwardly slanting surface S4′ of the third portion 127. As the pin encounters the downwardly slanting surface S4′, it would cause the male latch member 120 to rotate clockwise (when viewed from above) and thus the pin would slide downward until it reaches the vertical lower limit L2′. At this point, the female hook member 110, as well as anything attached to it, could be picked up by way of the pin being held in the vertical lower limit L2′. This would again be considered the “pick” of the “pick and place” process.
The pin may be released from the vertical lower limit L2′ of the male latch member 120 by putting relative downward force (e.g., an intentional force, gravitational force, etc.) upon the male latch member 120. As downward force is applied to the male latch member 120, the pin travels up the upward slanting surface S5′ (e.g., substantially vertical upward slanting surface S5 in one embodiment) until it encounters the transition point T4′. After reaching the transition point T4′, the pin would travel upward through the channel C2′ to encounter the upwardly slanting surface S6′ of the first portion 125. The upwardly slanting surface S6′, in the embodiment shown, slants in the same direction as the upwardly slanting surface S1b and upwardly slanting surface S2′. When the pin encounters the upwardly slanting surface S6′, it causes the male latch member 120 to rotate clockwise (when viewed from above) and thus the pin would slide upwards until it reaches the vertical upper limit L3′.
At this point, the pin is locked in the vertical upper limit L3′ position until the relative downward force subsides. Exchanging the downward force for an upward force, the pin would travel down the surface S7′ (e.g., substantially vertical surface S7 in one embodiment) to the transition point T5′. At the transition point T5′, the pin would head through the channel C3′ toward the downwardly slanting surface S8′ of the second portion 126. As the pin encounters the downwardly slanting surface S8′, it would cause the male latch member 120 to rotate clockwise (when viewed from above) and thus the pin would slide downward past the transition point T6′ until it reaches the transition point T7′. When the pin reaches the transition point T7′, the female hook member 110, as well as anything attached to it, would disengage from the male latch member 120. This would again be considered the “place” of the “pick and place” process.
As noted in
As further noted in
One who is of skill in the art will recognize that the pins may also be located on a male member while the first, second and third portions may be located on a female member. Such a configuration will now be discussed.
Referring now to
Referring now to
One or both male or female members (e.g., whether latch or hook) could contain sensors 165 to assist a control system or user in recognizing the pin or pins' relative position within the channel. For example, in
It should also be noted that one or both of the members (e.g., whether latch or hook) could contain sensors to assist a control system or user in aligning the two parts concentrically before latching. For example, in
Thus, a rotating tension latch and a pick-and-place system have been described wherein vertical motion of the one latch member relative to the complementary hook member latches and unlatches the two members. Clockwise or counterclockwise rotation of one member is automatically accomplished as the first member engages or disengages from the second member. One of skill in the pertinent art will readily understand that the roles of the male and female members as described may be reversed, i.e., the male member may be affixed to a workpiece or other apparatus, and the female member may be used to engage and disengage the male member.
Tension in the present disclosure is defined as the resistance of one member, e.g., female hook member 110, to motion when a vertical upward force is applied to the complementary member, e.g., male latch member 120. The use of such terms as providing, forming, etc., as used herein includes: manufacturing, milling, casting, contracting, purchasing, etc. Those skilled in the art to which this application relates will appreciate that other and further additions, deletions, substitutions and modifications may be made to the described embodiments.
Referring to
The first upper limit is configured to align the contours created by the main body 415 and inserts 420 in such a way that a force away from the male hook member 450 will cause the pin to land in the lower limit. Likewise, lower limit is configured to align the contours created by the main body 415 and inserts 420 in such a way that a force toward the male hook member 450 will cause the pin to land in the second upper limit. Similarly, the second upper limit is configured to align the contours created by the main body 415 and inserts 420 in such a way that a force away from the male hook member 450 will cause the pin to release from the structure, and thereby complete the latch sequence.
Turning briefly to
The main body 415, in the embodiment of
Turning briefly to
Turning now to
The male hook member 450, similar to the female latch member 410, is specifically designed to be readily and easily manufactured using injection molding. When injection molded, the male hook member 450 may be created using a single (e.g., straight) pull mold. Notwithstanding, the male hook member 450 could additionally be machined on a standard CNC mill, among a number of different manufacturing processes.
The term pins has been used throughout the disclosure. Those skilled in the art understand that the term pins is a generic name, which could encompass many different features capable of following the contours to complete the latch sequence. For example, cam rollers could be used, among other features, in lieu of static posts (e.g., as shown above). Similarly, the features need not be round, but could be flat as well as shown by feature 755 in
Turning to
In yet another embodiment, a spring or other similar feature could be used so that the rough or toothed surfaces only contact when the weight of a payload is present and not when the rotating tension latch is not engaged. When the payload weight is removed and the pin moves upwards through the mechanism to engage an upper limit, or upper surface, it will be able to spin freely because the rough or toothed surfaces will not be touching/mated. It should be noted that as the hook is being released from the latch, it may put slight pressure on the toothed or rough surface. A spring could be used so that a certain amount of force (a fraction of the weight of a package) is required so that the toothed or rough surfaces make contact.
A floating bearing could also allow for a predetermined amount of tilt. This tilt could help move the center of mass of the payload, such that the center of mass could be closer to being directly underneath the bearing. This would allow the hook to be offset from the center of the payload intentionally (to allow for package contents to fit better) or by accident (due to uneven packaging).
The floating bearing 470 illustrated in
Turning briefly to
As can also be readily seen, the male floating bearing portion 480 may include the aforementioned shoulder 482 for engaging the central opening 477 in the female floating bearing portion 475. In the given embodiment of
The female floating bearing portion 475 and male floating bearing portion 480, similar to many of the other features of the rotating tension latch 400, are specifically designed to be readily and easily manufactured using injection molding. When injection molded, the female floating bearing portion 475 and male floating bearing portion 480 may each be created using a straight-pull mold. Notwithstanding, the female floating bearing portion 475 and male floating bearing portion 480 could additionally be machined on a standard CNC mill, among a number of different manufacturing processes.
Turning now to
Turning briefly to
Turning now to
A screw-type male hook member 600, such as that shown in
Referring to
The first and second main body portions 715, 720 may be attached to one another using bolts or screws 730. Alternatively, the first and second main body portions 715, 720 may snap together, be glued together, be fused together, or otherwise joined. The present disclosure should not be limited to any specific connection method, unless otherwise stated.
Turning briefly to
Turning now to
The female hook member 750, similar to the male latch member 710, is specifically designed to be readily and easily manufactured using injection molding. When injection molded, the female hook member 750 may be created using a straight-pull mold. Notwithstanding, the female hook member 750 could additionally be machined on a standard CNC mill, among a number of different manufacturing processes.
Turning to
Turning briefly to
As can also be readily seen, the male floating bearing portion 780 may include the aforementioned shoulder 782 for engaging the central opening 777 in the female floating bearing portion 775. The male floating bearing portion 780 additionally includes a second friction member 782. In the embodiment of
The female floating bearing portion 775 and male floating bearing portion 780, similar to many of the other features of the rotating tension latch 700, are specifically designed to be readily and easily manufactured using injection molding. When injection molded, the female floating bearing portion 775 and male floating bearing portion 780 may each be created using a straight-pull mold. Notwithstanding, the female floating bearing portion 775 and male floating bearing portion 780 could additionally be machined on a standard CNC mill, among a number of different manufacturing processes.
Turning now to
Turning now to
The rotating tension latch features illustrated above with regard to
A rotating tension latch system, in accordance with the disclosure, could have many different applications. For example, as briefly discussed above, the rotating tension latch, particularly when used with the screw type male hook member, could be used for surgical procedures. Similarly, the rotating latch system could be used with robotics. As the rotating tension latch technology does not require a separate actuator for lifting and dropping objects, it has a lot of benefits for robotics in terms of simplicity, weight, and energy conservation. A robot or rover could use a latch to drop and pick up payloads. This could be especially useful in hazardous environments (gaseous environments, space, underwater, military). A robot or other operation could also employ more than one latch to prevent rotation and possibly help with maintaining the center of mass. The use of multiple latches requires more precise alignment, but could be beneficial in some applications.
In yet another application, the rotating tension latch system could be used for package delivery. A male hook member for use with a female latch member could be integrated into a package, like a cardboard box. Once the box is assembled, it can be picked up, transported, and dropped off by robots or cranes. For example, an automated product fulfilment center could use the female latch member to transport boxes through the facility. The same male hook member could be used by an automated drone to pick up the package and transport it to the customer.
A female hook member that attaches to a package could include some protection for the latch to enter. The female hook member may need to be more than a ring, otherwise the contents of the package could interfere with the male latch member. If the female hook member were placed in the middle, it could create problems for fitting contents in the package. The female hook member could be placed on one end or in a corner and use spring stabilizers (described later) to position the box in a way that does not create a Center of Mass problem for an operator such as a drone. Another solution would be to have multiple latch members and multiple hook members. With two hook members, each hook member could extend away from the box on opposite ends. This may require specific spacing of the latches and hooks, which means the operator would have to align every time, and the box sizes could be limited. The benefit of a female hook member is that it allows boxes to be stacked, whereas a male hook member would not be as easy to stack. Boxes with male hooks might have to be stacked in an offset pattern so that boxes fit in between the male hooks of the underlying layer of boxes. However, a benefit of a male hook member is that it allows the use of a female latch member, which allows for easier landing of a drone on a flat surface (described below).
Turning briefly to
The spring plungers could be integrated into the drone, robot, or crane arm or into the latch and bearing system itself. One of the springs could be integrated inside the female latch member configuration. Likewise, a cylindrical plunger could be used around the male latch configuration. Multiple springs could be spaced around the latch on the operator to provide better leverage. On a drone, these plungers could be the landing gear as well.
The springs could also provide a downward force to replace gravity in the operation of the rotating tension latch. This would allow the rotating tension latch to be used in zero or low gravity environments. It could also allow the rotating tension latch to be used horizontally or at an angle. So long as the spring force is enough to keep the pins engaged in the appropriate position, the payload can be moved to any angle. The maximum desired or available downward force supplied by the operator must be greater than the maximum force supplied by the sum of the springs when fully engaged. The springs could also help axial alignment, as well as help provide sensor feedback as described below.
A key challenge with using the rotating tension latch for automated drone package delivery is handling the landing gear of the drone. The use of a male latch member requires that the landing pads be spaced far enough apart that the payload can fit between the landing gear. This is because the landing pads must reach below the lowest point of the rotating tension latch, but the package must be allowed to engage with the rotating tension latch. Alternatively, the male latch member could have features that act as a landing point. The latch could be used to reduce the load on the drone's motors, which would only need to provide stability to prevent tipping. The drone could also have landing gear on a side so that it could tip towards the landing gear. The use of a female latch member would not require special landing considerations because the payload's top surface would not have to reach the landing gear. In fact, the landing gear could be used as the spring stabilizers.
Ground effect could have a negative impact on a drone's ability to pick up a package automatically. The ground effect will push the drone away from the package (or the drone could push the package away from the drone). A conical air shield 910, as shown in
In another embodiment, as discussed briefly above, one or more sensors can be used to detect and/or confirm engagement by the rotating tension latch. One or more sensors could sense force to detect the weight increase or decrease from engaging and lifting or disengaging and dropping. In one embodiment, the pins could be used to complete an electrical circuit at certain positions in the contour to communicate the pin location(s) to the operator (human or automated). A similar sensor could be used at the floating bearing. The male part could complete a circuit when in contact with the female part. When they are separated due to an upwards force (presumably because the latch member has gone down as far as possible) it could communicate with the operator (human or automated). This would prevent pushing down too far. The sensors could also be integrated into the rotating tension latch or into the operator. It could be a strain or force gauge within either. In the case of a drone, position, altitude, or acceleration sensors paired with readings of the propeller speeds could be used to determine the pin position with respect to the upper and or lower limits.
In yet another embodiment, lifting lugs could be used in conjunction with the rotating tension latch. For example, if the pins or rollers of the hook member are not strong enough to hold the desired payload, fixed lugs or plates could be used to engage to make a reinforced connection at or near the lower limit. Ideally, this would take the load off of the pins and put it on a reinforced lug.
In even yet different embodiments, alignment mechanisms can be employed to help bring the latch member and hook member together. Several feedback mechanisms can be used to help guide the latch member to align with the hook member. Fiducials or other visual targets can be used to specify the hook location. The feature could be on the actual hook (or be the hook itself) or nearby. In one embodiment, a camera could find the target and the operator (human or automated) could align accordingly. This could be particularly useful on a drone that already has a camera. Alignment could also be aided by other sensors such as some kind of wireless signal (like NFC), a reflective material that could reflect a laser or other light back onto a sensor located on the operator, or other similar idea.
A rotating tension latch, in accordance with the present disclosure, desires to be able to handle many different types of misalignment between the latch member and the hook member. Essentially, the latch member needs to be relatively aligned with the hook member to properly engage. The rotating tension latch design is configured to allow for engagement in the following modes of misalignment. Rotational Misalignment: any angular position of the pins with respect to the peaks of the contours of the latch will lead to successful engagement. The most likely to cause problems would be if the pins were perfectly aligned with the peaks. In this situation, slight deformations in either the latch or the hook, along with angular axial misalignment will allow the latch to engage properly. Axial misalignment: This refers to the latch central axis and the hook central axis not being collinear. In this case, the slopes on the peaks and the slopes of the hook, along with the allowed float of the bearing will allow the latch to engage properly. The amount of allowable linear axial misalignment is determined by the largest inner diameter of the hook opening (in the case of the male latch member).
Claims
1. A delivery apparatus, comprising:
- suspension means configured to hold a package that is to be delivered or picked up;
- a locking mechanism in the suspension means configured to securely hold the package onto the suspension means; and
- a package delivery mechanism configured to control a movement of the suspension means for delivering the package on a delivery area at a delivery destination, or for picking up the package;
- wherein the locking mechanism is gravity activated to hold and release the package from the suspension means;
- wherein the locking mechanism is configured to:
- hold the package locked to the suspension means when a gravitational force exerted on the locking mechanism exceeds a first specified value due to a weight of the package; and
- automatically rotate to release the package from the suspension means when the gravitational force exerted on the locking mechanism drops below a second specified value due to the weight of the package.
2. The delivery apparatus as recited in claim 1, wherein the suspension means is a cable.
3. The delivery apparatus as recited in claim 1, wherein the suspension means is a positioning arm.
4. The delivery apparatus as recited in claim 1, wherein the suspension means includes a first end that is attached to the package delivery mechanism and a second end that is attached to the locking mechanism.
5. The delivery apparatus as recited in claim 1, wherein the locking mechanism is configured to:
- couple with a coupling mechanism of the package to hold the package securely onto the suspension means, and
- decouple with the coupling mechanism to release the package from the suspension means.
6. A delivery apparatus, comprising:
- suspension means configured to hold a workpiece that is to be delivered or picked up;
- a locking mechanism coupled to the suspension means and configured to securely hold the workpiece onto the suspension means; and
- an automated machine configured to control a movement of the suspension means for delivering the workpiece on a delivery area at a delivery destination, or for picking up the workpiece;
- wherein the locking mechanism is gravity activated to hold and release the workpiece from the suspension means;
- wherein the locking mechanism is configured to:
- hold the workpiece locked to the suspension means when a force exerted on the locking mechanism due to a weight of the workpiece exceeds a first specified value; and
- automatically rotate to release the workpiece from the suspension means after the force exerted on the locking mechanism due to a weight of the workpiece drops below a second specified value.
7. The delivery apparatus as recited in claim 6, wherein the suspension means is a cable.
8. The delivery apparatus as recited in claim 6, wherein the suspension means is a positioning arm.
9. The delivery apparatus as recited in claim 6, wherein the suspension means includes a first end that is attached to the package delivery mechanism and a second end that is attached to the locking mechanism.
10. The delivery apparatus as recited in claim 6, wherein the locking mechanism is configured to:
- couple with a coupling mechanism of the workpiece to hold the workpiece securely onto the suspension means, and
- decouple with the coupling mechanism to release the workpiece from the suspension means.
11. A method, comprising:
- loading a package onto a delivery apparatus, wherein the package is locked to a suspension means of the delivery apparatus using a gravity activated locking mechanism,
- wherein the gravitational force exerted on the locking mechanism due to the weight of the package holds the package locked to the suspension means;
- lowering, by a package delivery mechanism of the delivery apparatus, the suspension means to deliver the package at a delivery area in a delivery destination; and
- releasing, by the locking mechanism, the package from the suspension means, wherein, when the package rests on the delivery area, the weight of package is off the suspension means, which enables the locking mechanism to automatically rotate and disengage from the package such that the package is released from the suspension means.
12. The method as recited in claim 11, wherein the suspension means is a cable.
13. The method as recited in claim 11, wherein the suspension means is a positioning arm.
14. The method as recited in claim 11, wherein the suspension means includes a first end that is attached to the package delivery mechanism and a second end that is attached to the locking mechanism.
15. A pick-and-place system, comprising:
- a hook member including two pins;
- a latch member having a central axis and a surface surrounding the central axis, the latch member having a first upper portion and second and third lower portions extending radially from the surface, the second and third lower portions circumferentially spaced from one another and axially spaced from the first upper portion, guide and limit surfaces of the second and third lower portions facing respective guide and limit surfaces of the first upper portion that cooperate to form first and second channels, the first and second channels being substantially identically shaped, each of the first and second channels having in order a first upwardly sloping path defined by a respective first upwardly slanting guide surface and a first limit surface of the first upper portion, a second downwardly sloping path defined by a respective second downwardly slanting guide surface and a second limit surface of a respective lower portion, and a third upwardly sloping path defined by a respective third upwardly slanting guide surface and a third limit surface of the first upper portion, the first and second channels configured to each receive one of the two pins of the hook member and cause the latch member to rotate relative to the hook member, wherein the latch member and the hook member alternate between latched and unlatched configurations as the latch member reciprocates substantially along the central axis relative to the hook member, the latch member and the hook member configured to temporarily engage one another when latched; and
- one or more electronic or optical sensors associated with the hook member or the latch member, the one or more electronic or optical sensors configured to assist a control system or user in recognizing a position of least one of the two pins relative to at least one of the first or second channels.
16. The pick-and-place system as recited in claim 15 wherein the latch member is a female latch member and the hook member is a male latch member.
17. The pick-and-place system as recited in claim 16 wherein the two pins extend radially outward from the male latch member.
18. The pick-and-place system as recited in claim 15 wherein the latch member is a male latch member and the hook member is a female latch member.
19. The pick-and-place system as recited in claim 18 wherein the two pines extend radially inward from the female latch member.
20. The pick-and-place system as recited in claim 15 wherein the latch member is configured to be driven to reciprocate by gravity.
Type: Application
Filed: Oct 21, 2020
Publication Date: Feb 4, 2021
Inventor: Javier E. Oliver (Dallas, TX)
Application Number: 17/076,630