SUPPORT MEMBER FOR ELEVATING A RETAINING WALL PANEL

A support member for elevating a retaining wall panel includes a base arrangement with a first area that engages an underlying mounting surface. A height elevating section extends from the base arrangement to a third area. The height elevating section has a receiving area configured to connect to a wall panel. A sloped surface extends between the base arrangement proximate the first area and the height elevating section proximate to the third area. The sloped surface is configured to support a load bearing panel.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
CROSS REFERENCE TO RELATED APPLICATION

This application claims the benefit of U.S. Provisional Patent Application Ser. No. 62/887,898 filed on Aug. 16, 2019, the entirety of which is incorporated herein by reference in its entirety.

TECHNICAL FIELD

The present invention is directed to a support member for elevating a panel of a retaining wall. Specifically, the present invention is directed to a support member for use when building an ice skating rink on ground that is sloped or otherwise unleveled.

BACKGROUND

In cold climates it is common to create a structure on a yard, field, or hard court that acts as a perimeter for an outdoor ice skating rink. Prior art ice rinks are often made from wooden, plastic, or metal boards and brackets that form the perimeter of the rink and a water impermeable liner that covers the perimeter and provides a barrier for the water and ice. Ice skating rinks that are set up in this manner must be portable and easily assembled because the ice rinks are moved and are erected and taken down on an annual basis. It is important that the assembly is easy while also producing a safe, complete ice skating rink for the user.

One of the main challenges in constructing temporary outdoor ice skating rinks is the slope of the underlying surface. If the underlying surface is sloped, the water that will eventually freeze into ice gathers or pools at the lower end of the rink due to the force of gravity. As a result, the area under the ice rink must be relatively flat or the water will collect and freeze into ice that is uneven and does not reach entirely across the ice rink. Prior art temporary outdoor ice skating rinks allow for a maximum of one vertical foot of slope across the entire ice rink.

There are no economically feasible or widely available solutions for allowing more than one vertical foot of slope across the area of the portable ice rink. One prior art solution, is to have the yard or surface professionally graded. This option is prohibitively time intensive and costly for the land owner. Having a suitably graded surface is often undesirable to the land owner because it can significantly hinder drainage. Another prior art solution is to use taller boards to hold deeper water at one end of the rink. These deep-water solutions use heavily-reinforced boards to withstand the very large force generated by several feet of water pressing against the board. This option is prohibitively expensive because the wall structures must be highly reinforced to withstand the force generated by the water. This option also requires a very large amount of friction between the boards and the ground itself, necessitating large metal or plastic spikes or stakes that penetrate the underlying surface. Penetrating the underlying surface in this manner is also often undesirable to the land owner.

Based on the foregoing, there is a need in the art for an economically feasible, easily assembled temporary ice skating rink that allows more than one foot of slope across the rink.

SUMMARY

There is disclosed herein a support member for elevating a retaining wall panel. The support member includes a base arrangement with a first area (A). The base arrangement engages a mounting surface. A height elevating section extends from the base arrangement near the first area (A) to a second area (C). The height elevating section has a first receiving area that receives a wall panel. A sloped surface extends between the base arrangement near the first area (A) and the height elevating section near the second area (C). The sloped surface supports a load bearing panel extending between the first area (A) and the second area (C).

In some embodiments, the sloped surface includes at least one mounting area that receives a lateral brace member.

In some embodiments, a tension member secures to a second receiving area of the support member.

In some embodiments, the base arrangement includes an anti-skid feature.

In some embodiments, the support member is a unitary body.

In some embodiments, a gusset extends between the base arrangement, the height elevating section and the sloped surface.

In some embodiments, the base arrangement, the height elevating section and the sloped surface are connected to one another.

In some embodiments, an opening extends laterally through the support member.

In some embodiments, the base arrangement, the height elevating section, and the sloped surface form a triangular shape or an A-shape.

In some embodiments, the support member has a first side face and a second side face defining a lateral thickness (T1).

In some embodiments, the sloped surface is at a first angle (δ) relative to the base arrangement. In some embodiments, the first angle (δ) is between about 30 degrees and about 60 degrees.

In some embodiments, the height elevating section has an edge oriented at a second angle (α), relative to the base arrangement. In some embodiments, the second angle (α) is less than 90 degrees.

In some embodiments, the height elevating section has an edge oriented at a second angle (α), relative to the base arrangement. In some embodiments, the second angle (α) is about 87 degrees.

In some embodiments, the first receiving area supports the wall panel vertically, when the base arrangement is positioned on the mounting surface.

In some embodiments, the height elevating section extends a height (H1) and the base arrangement extends a length (L1). The support member has an aspect ratio equal to the thickness (T1) divided by a sum of the height (H1) plus the length (L1).

In some embodiments, the aspect ratio is a fractional number.

In some embodiments, the aspect ratio is greater than 1.0.

In some embodiments, the height elevating section slopes inwardly toward the first area (A).

In some embodiments, the height elevating section slopes outwardly away from the first area (A).

In some embodiments, the height elevating section is positioned a predetermined distance (H2) above the mounting surface.

In some embodiments, a lip extends from the base arrangement near the first area (A). The lip has a panel receiving area that receives an end of a load bearing panel.

In some embodiments, the receiving area of the height elevating section abuts the wall panel vertically when the base arrangement is positioned on the mounting surface.

In some embodiments, the support member is an elongate beam.

In some embodiments, the support member is a flat sheet.

In some embodiments, the sloped surface removeably secures to the base arrangement and the height elevating section.

In some embodiments, the sloped surface is selectively positionable on and removeably secured to the base arrangement and the height elevating section.

In some embodiments, the base arrangement and the height elevating section are L-shaped.

In some embodiments, the base arrangement and the height elevating section are a unitary member.

In some embodiments, the height elevating section is integral with the wall panel.

In some embodiments, the wall panel extends from the sloped surface.

In some embodiments, the wall panel and the sloped surface are L-shaped.

In some embodiments, the wall panel and the sloped surface are oriented at an angle (θ2) relative to one another and the angle (θ2) is less than 90 degrees.

In some embodiments, the base arrangement forms a shim receiving slot.

In some embodiments, a second sloped surface extends from the first side face or the second side face.

In some embodiments, the second sloped surface is integral with the first side face or the second side face.

In some embodiments, the second sloped surface removeably secures to the first side face or the second side face.

There is also disclosed herein a retaining wall elevating structure including a support member and a load bearing panel on the support member.

In some embodiments of the retaining wall elevating structure, the load bearing panel extends along a slope between the mounting surface near the first area (A) to the height elevating section near the second area (C).

In some embodiments of the retaining wall elevating structure, a wall panel extends vertically upward from the mounting surface and the wall panel is positioned substantially vertically in the first receiving area.

In some embodiments of the retaining wall elevating structure, a liner drapes over the wall panel and the load bearing panel.

In some embodiments of the retaining wall elevating structure, the load bearing panel is disposed on and extends over two support members.

In some embodiments of the retaining wall elevating structure, a lateral brace member extends between the two support members.

In some embodiments of the retaining wall elevating structure, the load bearing panel is supported by the lateral brace member.

In some embodiments of the retaining wall elevating structure, the support member is positioned substantially inwardly of the wall panel.

In some embodiments of the retaining wall elevating structure, a number of support members of a first support member size, a second support member size, and a third support member size. The first support member size is smaller than the second support member size and the second support member size is less than the third support member size.

In some embodiments of the retaining wall elevating structure, a wall panel is in each adjacent pair of the support members and the wall panels all intersect a common horizontal plane (WL).

In some embodiments, at least one wall shim is in the receiving area to adjust a height of the wall panel.

In some embodiments, at least one wall shim is under the support member to adjust a height of the wall panel.

There is also disclosed herein a retaining wall elevating member including a sloped sheet and an integral wall panel extending at an angle.

In some embodiments of the retaining wall elevating member, the wall panel and the sloped sheet are L-shaped.

In some embodiments of the retaining wall elevating member, the wall panel and the sloped sheet are oriented at an angle (θ2) relative to one another and the angle (θ2) is less than 90 degrees.

There is also disclosed herein, an ice skating rink including the retaining wall system.

In some embodiments of the ice skating rink, the support members are positioned substantially inside the rink.

In some embodiments of the ice skating rink, a liner drapes over a number of tension members. The tension members extend under the liner and are in frictional engagement with the mounting surface. One of the tension members is secured to each of two generally opposing support members.

In some embodiments of the ice skating rink, a bracket supports a retaining wall and a liner draped over a number of tension members extending under the liner and in frictional engagement with the mounting surface. One of the tension members is secured to one of the supports and a bracket.

In some embodiments of the ice skating rink, the bracket is located substantially outside of the ice skating rink.

In some embodiments of the support member, the base arrangement extends from the first area (A) to a third area (B) near the mounting surface.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A depicts an isometric view of a first embodiment of a support member according to the present disclosure;

FIG. 1B depicts an isometric view of a second embodiment of a support member according to the present disclosure;

FIG. 1C depicts an isometric view of a third embodiment of a support member according to the present disclosure;

FIG. 1D depicts an isometric view of a fourth embodiment of a support member according to the present disclosure;

FIG. 1E depicts an isometric view of a fifth embodiment of a support member according to the present disclosure;

FIG. 1F depicts an isometric view of a sixth embodiment of a support member according to the present disclosure including a load bearing panel;

FIG. 1G depicts an isometric view of a seventh embodiment of a support member according to the present disclosure;

FIG. 2A depicts a side view of a retaining wall elevating structure incorporating the support members of FIG. 1A and a water impermeable liner;

FIG. 2B depicts a side view of a retaining wall elevating structure incorporating the support members of FIG. 1G and a water impermeable liner;

FIG. 3 depicts an isometric view of the retaining wall elevating structure of FIG. 2A with a portion of the load bearing panel omitted and a portion of the retaining wall elevating structure depicted in phantom;

FIG. 4 depicts an isometric view of an alternative embodiment of a support member according to the present disclosure;

FIG. 5A depicts an isometric view of a bracket with the wall panel depicted in phantom;

FIG. 5B depicts a side view of the bracket of FIG. 5A in an assembled state;

FIG. 6 depicts a first support member size, a second support member size, and a third support member size with similar structures to the support member of FIG. 1A;

FIG. 7 depicts a retaining wall system that incorporates the support members of FIG. 6 to accommodate a sloped mounting surface;

FIG. 8 depicts the retaining wall system of FIG. 7 incorporating shims to raise the wall panels to the same level;

FIG. 9 depicts an ice skating rink incorporating both the brackets of FIGS. 5A and 5B and the retaining wall system of FIG. 8;

FIG. 10A depicts a side view of an alternate embodiment of a support member disclosed herein incorporating a wall panel and load bearing panel that are a single member;

FIG. 10B depicts an isometric view of the support member, wall panel, and load bearing panel of FIG. 10A;

FIG. 11 depicts an isometric view of another alternative embodiment of a support member according to the present disclosure including load bearing panels depicted in phantom;

FIG. 12A depicts a retaining wall system that incorporates the support members of FIG. 6 on a steeper sloped surface than FIG. 7;

FIG. 12B depicts a retaining wall system that incorporates the support members of FIG. 6 on an extreme steep sloped surface;

FIG. 13A depicts a side view of an alternate embodiment of a support member according to the present disclosure including a support shim; and

FIG. 13B depicts an end sectional view of the support member and support shim of FIG. 13A.

DETAILED DESCRIPTION

As shown in FIGS. 1A-1F, various embodiments of a support member for elevating a retaining wall panel 12 is generally designated by reference numeral 10. Referring to FIG. 1A and 2A, the support member 10 includes a base arrangement 14 having a first area A proximate to a first end of the support member and a second area B proximate to the a second end opposite the first end. The base arrangement 14 engages a ground (e.g., lawn, asphalt, soil, etc.) or other mounting surface 1. A height elevating section 16 extends from the base arrangement 14 proximate to the second area B to a third area C. The height elevating section 16 defines a receiving area 18 that receives a wall panel 12X. In the embodiment depicted in FIG. 2A, the wall panel 12X is secured by a pin, screw, nail, or other fastening means (not depicted) to the first receiving area 18. A sloped surface 20 extends between the base arrangement 14 proximate to the first area A and the height elevating section 16 proximate to the third area C. The sloped surface 20 supports a load bearing panel 22 extending between the first area A and the third area C. The sloped surface 20 is canted at a first angle (δ) relative to the base arrangement 14. A liner 50 drapes over the load bearing panel 22 and the wall panel 12X.

In the embodiments depicted in FIGS. 1A and 1C-1G, the sloped surface 20 includes two optional mounting areas 20M, each for receiving a lateral brace member 24 (e.g., a wooden two inch by four inch piece of lumber, etc.) (depicted in FIGS. 2A-3). Referring to FIG. 3, the lateral brace member 24 is an additional support structure that engages the support member 10. The support member 10 depicted in FIG. 1B omits the mounting areas 20M discussed previously. In some embodiments, the support member 10 has a receiving area 26 for securing a tension member 5 (e.g., a strap or web made of nylon or equivalent) thereto. In the embodiment depicted in FIG. 1A, the receiving area 26 is located proximate to the first area A. As depicted in the isolated view in FIG. 2A, the tension member 5 engages (e.g., removeably seats or locks into). the receiving area 26, travels under the base arrangement 14, travels under the lower end of the load bearing panel 22, and ultimately travels under the water impermeable liner 50 to connect to another support member 10 at the opposite end (see FIG. 9). In the embodiment depicted in FIG. 2A, the receiving area 26 penetrates the base arrangement 14 and terminates in an eyelet 26E. The eyelet 26E retains the end 5H of the tension member 5. In the depicted embodiment, the tension member end 5H passes through the eyelet 26E from one side of the support member 10A to the other side of the support member 10B. In the depicted embodiment, the tension slot 16A extends from the eyelet 26E to the base arrangement 14. Other configurations of the receiving area 26 and tension member 5 do not depart from the device disclosed herein. In the depicted embodiment, the location of the receiving area 26 is proximate to the first area A. In other embodiments, the location of the receiving area 26 is at the second area B, between the first area A and the second area B, or along the edge 16E of the elevating section 16 between the second area B and third area C. Other locations for the receiving area 26 do not depart from the device disclosed herein.

Referring to FIG. 1A, the receiving area 18 of the height elevating section 16 extends a height H1 above the base arrangement 14 (i.e., between the first area A and the third area C) and the base arrangement 14 extends a length L1 (i.e., between the first area A and the second area (B). The support member 10 has an aspect ratio defined by the thickness T1 divided by a sum of the height H1 plus the length L1. The aspect ratio is a fractional number. In one embodiment, the support member 10 has a height H1 of twelve inches, a length L1 of twelve inches, and a thickness of two inches, resulting in an aspect ratio of approximately 0.08. In one embodiment, the support member 10 has a height H1 of twenty four inches, a length L1 of twenty four inches, and a thickness of two inches, resulting in an aspect ratio of approximately 0.04. In one embodiment, the support member 10 has a height H1 of twelve inches, a length L1 of twelve inches, and a thickness of four inches, resulting in an aspect ratio of approximately 0.17. In some embodiments, the aspect ratio is between 0.03 and 0.20. In some embodiments, the aspect ratio is greater than 1.0. The aspect ratio of the support member 10 depicted in FIG. 4 is approximately 1.47.

In the embodiments depicted in FIGS. 1A, 1B, 1C, 1E, and 1F, the base arrangement 14, the height elevating section 16 and the sloped surface 20 form a substantially triangular shape. Other shapes, such as a polygon, trapezoid, hexagon, etc., do not depart from the scope of the device disclosed herein.

In the embodiment depicted in FIG. 1C, the support member 10 includes an opening 30 extending laterally therethrough. In the embodiment depicted in FIG. 1D, the base arrangement 14, the height elevating section 16, and the sloped surface 20 form an A-shape with a void 40 interrupting the base arrangement 14 of the support member 10. Referring to FIG. 1F, the support member 10 includes a lip 77 extending from the base arrangement 14 proximate to the first area A. The lip 77 has a panel receiving area 77B that receives an end of a load bearing panel 22 therein.

FIG. 1G depicts an embodiment of the support member 10 that omits the second area (B). In the depicted embodiment, the height elevating section 16 extends along the sloped surface 20 from the first area (A) to the third area (C). In alternate embodiments of the support member 10, similar to that depicted in FIG. 1G, the sloped surface 20 is defined by a convex or concave arcuate curve. In some embodiments, the support member 10 is substantially rectangular, trapezoidal, or otherwise polygonal. In some embodiments, the ends of the support member 10 are beveled or cut at an angle (i.e., ends that are 46 degrees or 30 to 60 degrees measured relative to the sloped surface.

In the depicted embodiments, the base arrangement 14 has an anti-skid feature 14A to increase the friction between the bottom of the base arrangement 14 and the mounting surface 1. In the depicted embodiments, the anti-skid feature 14A is a series of angled teeth extending from the base arrangement 14. Other features, such as pins, protrusions, ribs, or other means of increasing the friction between the base arrangement 14 and the mounting surface 1 do not depart from the device disclosed herein. In other embodiments, the lower surface of the base arrangement 14 is substantially smooth. In the depicted embodiments, the support member 10 is a unitary body, but other arrangements do not depart from the devices disclosed herein. In some embodiments, the base arrangement 14, the height elevating section 16, and the sloped surface 20 are separate pieces connected to one another. In some embodiments, a gusset 10G extends between the base arrangement 14, the height elevating section 16, and/or the sloped surface 20.

FIG. 4 depicts an alternate embodiment in which the support member 10 extends the length of the wall panel 12X and has a first side face 10A and a second side face 10B defining a lateral thickness T2 therebetween. The aspect ratio of the support member 10 depicted in FIG. 4 is approximately 1.47. In another embodiment, the support member 10 has a height H1 of twelve inches, a length L1 of twelve inches, and a thickness of seventy two inches, resulting in an aspect ratio of approximately 3.00. In some embodiments, the aspect ratio is between 1.25 and 3.25.

Referring to FIG. 2A, a retaining wall elevating structure 100 incorporates the support members 10. A load bearing panel 22 is disposed on the sloped surface 20 of the support members 10. In the depicted embodiment, the load bearing panel 22 extends in a sloped manner between the mounting surface 1 proximate to the first area A and the height elevating section 16 proximate to the third area C. In the depicted embodiment, the retaining wall elevating structure 100 includes a wall panel 12X positioned substantially vertically, engaging the receiving area 18 of the height elevating section 16. In some embodiments, a pin, screw, nail, or other fastening means fixes the wall panel 12X to the receiving area 18 of the support member 10. A water impermeable liner 50 drapes over the wall panel 12X and the load bearing panel 22. In the depicted embodiment, the load bearing panel 22 is disposed on and extends over two support members 10. Two (optional) lateral brace members 24 extend between the support members 10. The lateral brace members 24 provide further support for the load bearing panel 22. FIG. 2B depicts an alternate embodiment of the retaining well elevating structure 100 incorporating the support member 10 of FIG. 1G.

In the embodiments depicted in FIGS. 1A-2B, the support member 10 is positioned inwardly of the wall panel 12X. This arrangement is the opposite of that provided by a bracket 3, as depicted in FIGS. 5A and 5B. The majority of the depicted bracket 3 is positioned outside of the wall panels 12X (e.g., outside the perimeter of the ice rink). A tension member 5 reaches below the wall panels 12X to mate with the bracket 3 outside of the perimeter of the ice rink. In FIG. 7, the bracket 3 supports a joint between two adjacent wall panels 12X. In other embodiments, the bracket 3 supports a single wall panel 12X (not depicted). The bracket 3 does not accommodate mounting surfaces with a total slope greater than one foot.

FIGS. 7-9 depict a retaining wall system 1000 installed on a sloped mounting surface 1 including a number of support members similar in structure to the support member 10, but having three different sizes. There is a first support member size 10S, a second support member size 10M, and a third support member size 10L. The first support member size 10S is smaller than the second support member size 10M and the second support member size 10M is smaller than the third support member size 10L. The three support members 10S, 10M, 10L are depicted side by side for the purposes of comparison in FIG. 6. The depicted first support member size 10S has a height elevating section 16 that extends a first height H1 and a base arrangement 14 that extends a first length L1. The depicted second support member size 10M has a height elevating section 16 that extends a second height H2 and a base arrangement 14 that extends a second length L2. The depicted third support member size 10L has a height elevating section 16 that extends a third height H3 and a base arrangement 14 that extends a third length L3. In the depicted embodiment, the first support member size 10S, the second support member size 10M, and the third support member size 10L all have a structure similar to the support member 10 depicted in FIG. 1A. In some embodiments of the retaining wall system 1000, two different sized support members (i.e., one support member 10S and one support member 10M, one support member 10M and one support member 10L, etc.) are connected to a single wall panel 12X.

Referring to FIG. 8, a wall panel 12X is disposed in each adjacent pair of the support members 10 such that the wall panels 12X all intersect a horizontal water level WL. In the depicted embodiments, the bottom of all wall panels 12X rest on the mounting surface 1. FIGS. 7 and 8 depict a mounting surface 1 that slopes downward from left to right an angle θ. The depicted mounting surface 1 extends from a first level surface 1002 to a second level surface 1006 with a sloped surface 1004 therebetween. In the depicted embodiment, the sloped surface 1004 is relatively constant and canted at a relatively small angle. The support members disclosed herein also accommodate steeper slopes, as discussed below with respect to FIG. 12. Referring to FIG. 7, the water that will ultimately freeze into ice fills the retaining wall system 1000 up to a water level line WL. A water impermeable liner 50 (depicted in FIGS. 2A and 2B) is laid over the retaining wall system 1000, overlapping the wall panels 12X, to retain the water that ultimately freezes into ice. In order for the wall panels 12X to be used for the entire perimeter of the retaining wall system 1000 each wall panel 12X must be raised at least to the height of the water level WL. This prevents the water from spilling out of the retaining wall system 1000 prior to freezing into ice and high enough to retain objects such as hockey pucks. The first support member size 10S raises the wall panel 12X contained therein to the first height H1. The second support member size 10M raises the wall panels 12X contained therein to the second height H2. The third support member size 10L raises the wall panels 12X contained therein to the third height H3.

FIG. 12A depicts a retaining wall system 1000 similar to that depicted in FIG. 8, but installed on and accommodating a mounting surface 1 with an extremely steep slope for angled portion 1004. In FIG. 12A, a wall shim 70 is inserted below each of the wall panels 12X to raise an edge of the wall panel 12X a desired distance to orient the wall panel 12X horizontally. FIG. 12B depicts a retaining wall system 1000 similar to that depicted in FIG. 7, but installed on and accommodating a mounting surface 1 with an extremely steep slope for angled portion 1004. In FIG. 12B the wall panel 12X is not raised from the mounting surface 1 and the bottom of each wall panel 12X is generally aligned with the mounting surface 1. In the depicted embodiment, the angle of the angled surface 1004 is exaggerated for illustrative purposes only.

In the embodiments depicted in FIGS. 8 and 9, a customizable number of wall shims 70 are placed below each of the wall panels 12X to adjust the height of the wall panels 12X and to orient the top of the wall panel 12X horizontally. Referring to FIG. 8, as the mounting surface 1 slopes downward, from left to right in the figure, the bottom 18B of each receiving area 18 is at lower positions than the previous receiving area 18, relative to the water line WL, resulting in lower positions of each successive wall panel 12X (as depicted in FIG. 7). In some cases, inserting one or more wall shims 70 below the wall panel (depicted in detail in FIGS. 8 and 12A) is sufficient to raise the engagement point with the wall panel 12X, thereby allowing the top of the wall panel 12X to remain horizontally oriented and at the desired depth D2 relative to the water line WL. In the embodiment depicted in FIG. 8, all wall panels 12X extend a first distance D1 above the water line WL. In some embodiments, the wall panels 12X extend different distances above the water line WL. In other cases, the second support member size 10M or the third support member size 10L alone or in combination with one or more wall shims 70 is necessary to maintain the desired orientation and depth of the wall panel 12X.

FIG. 9 depicts an ice skating rink 2000 incorporating the retaining wall system 1000 disclosed herein. The slope of the underlying mounting surface 1 of FIG. 9 is similar to that depicted in FIG. 7. Approximately half of the perimeter formed by the wall panels 12X is supported by brackets 3 on the outside of the perimeter. The wall panels 12X assembled on the first level surface 1002 are supported by the brackets 3; the wall panels 12X assembled on the sloped surface 1004 are supported by the support members 10S, 10M, and 10L; and the wall panels 12X assembled on the second level surface 1006 are supported by the support members 10L. Incorporating brackets 3 in this manner is possible because the underlying portion of the mounting surface 1 is relatively level. As the mounting surface 1 slopes downwards, support members 10S, 10M, and 10L are necessary to maintain the wall panels 12X in the preferred orientations and at the preferred depths (in the depicted embodiment, the preferred depth is designated by the lower end of the wall panel 12X measuring D2 from the water line WL). In some embodiments, the preferred depth varies around the perimeter of the retaining wall system 1000 and in other embodiments the preferred depth varies based on time of year or other factors related to water retention and freezing ability.

In some embodiments, the ice skating rink 2000 includes tension members 5 extending under the water impermeable liner 50 and in frictional engagement with the mounting surface 1. Referring to FIG. 9, each depicted tension member 5 secures to each of two generally opposing support members 10. In some embodiments, multiple tension members 5 extend under the water impermeable liner 50 and are in frictional engagement with the mounting surface 1. In the depicted embodiment, tension members 5 connect a bracket 3 to an opposite bracket 3, a bracket 2 to an opposite support member 10L, and a support member 10S to an opposite support member 10S. In some embodiments, a tension member connects two support members of different sizes.

In the embodiments depicted in FIGS. 10A and 10B, the wall panel 112X and the load bearing panel in the form of a sloped sheet 220 are incorporated into a single united element. The support member 10 depicted therein provides support for the sloped sheet 220 and raises the lower edge of the wall panel 112X to a distance H1, measured relative to the mounting surface 1. In the depicted embodiment, the top of the wall panel 112X is a second height H2 from the underlying mounting surface. In some embodiments, the sloped sheet 220 and the wall panel 112X have an L-shaped configuration. Other arrangements of the sloped sheet 220 and the wall panel 112X do not depart from the device disclosed herein.

Referring to FIG. 11, two adjacent supports similar in structure to second support member size 10M and third support member size 10L are united as single support member 410. The support member 410 provides a first sloped surface 420 and a second sloped surface 20. The first sloped surface 420 supports the load bearing panel 22M and the second sloped surface 20 supports the load bearing panel 22L. In this embodiment, the support member 410 provides a barrier between the two load bearing panels of different sizes 22M, 22L. In some embodiments, support members of different sizes are united as a single support member in a similar manner. In some embodiments, support members of the same size are united as a single support member that provides the sloped surface for two separate load bearing panels. In some embodiments, the second sloped surface 420 is removeably secured to the first side face 10A or the second side face 10B.

FIGS. 13A and 13B depict a support member 310 with a shim receiving slot 71C formed within the base arrangement 14. In the depicted embodiment, a support shim 71 raises the support member 310 a height H10. In the depicted embodiment, a shim protrusion 71D of the support shim 71 extends beyond the height H10 to engage the shim receiving slot 71C, but other connection configurations do not depart from the device disclosed herein. In the depicted embodiment, the base arrangement 14 and the support shim 71 both extend the first length L1. In some embodiments, the support shim 71 is longer or shorter than the first length L1.

Although this invention has been shown and described with respect to the detailed embodiments thereof, it will be understood by those of skill in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiments disclosed in the above detailed description, but that the invention will include all embodiments falling within the scope of the appended claims.

Claims

1. A support member for elevating a retaining wall panel, the support member comprising:

a base arrangement having a first area, the base arrangement being configured to engage a mounting surface;
a height elevating section extending from the base arrangement proximate the first area to a second area, the height elevating section having a first receiving area configured to receive a wall panel;
a sloped surface extending between the base arrangement proximate the first area and the height elevating section proximate the second area, the sloped surface being configured to support a load bearing panel extending between the first area and the second area.

2. The support member of claim 1, wherein the sloped surface comprises at least one mounting area for receiving a lateral brace member.

3. The support member of claim 1, further comprising a second receiving area for securing a tension member thereto.

4. The support member of claim 1, wherein the base arrangement comprises an anti-skid feature.

5. The support member of claim 1 comprised of a unitary body.

6. The support member of claim 1, further comprising a gusset extending between the base arrangement, the height elevating section and the sloped surface.

7. The support member of claim 1, further wherein the base arrangement, the height elevating section and the sloped surface are connected to one another.

8. The support member of claim 1, further comprising an opening extending laterally therethrough.

9. The support member of claim 1, wherein the base arrangement, the height elevating section and the sloped surface form one of a triangular shape and a A-shape.

10. The support member of claim 1, having a first side face and a second side face defining a lateral thickness between the first side face and the second side face.

11. The support member of claim 1, wherein the sloped surface is at a first angle relative to the base arrangement and wherein the first angle being from about 30 degrees to about 60 degrees.

12. The support member of claim 1, wherein the height elevating section comprises an edge oriented at a second angle relative to the base arrangement, the second angle being less than 90 degrees.

13. The support member of claim 1, wherein the height elevating section comprises an edge oriented at a second angle relative to the base arrangement, the second angle is about 87 degrees.

14. The support member of claim 11, wherein the first receiving area is configured such that the wall panel is configurable in a vertical orientation when the base arrangement positioned on the mounting surface.

15. The support member of claim 10, wherein the height elevating section extends a height and the base arrangement extends a length, and the support member has an aspect ratio equal to the thickness divided by a sum of the height plus the length.

16. The support member of claim 15, wherein the aspect ratio is a fractional number.

17. The support member of claim 15, wherein the aspect ratio is greater than 1.0.

18. The support member of claim 1, wherein the height elevating section slopes inwardly toward the first area.

19. The support member of claim 1, wherein the height elevating section slopes outwardly away from the first area.

20. The support member of claim 1, wherein the height elevating section is positioned a predetermined distance above the mounting surface.

21. The support member of claim 1, further comprising a lip extending from the base arrangement proximate the first area, the lip having a panel receiving area configured to receive an end of a load bearing panel therein.

22. The support member of claim 1, wherein the receiving area of the height elevating section is configured to abut the wall panel in a vertical orientation when the base arrangement is positioned on the mounting surface.

23. The support member of claim 1, comprising an elongate beam.

24. The support member of claim 1, comprising flat sheet configuration.

25. The support member of claim 1, wherein the sloped surface is removeably secured to the base arrangement and the height elevating section.

26. The support member of claim 1, wherein the sloped surface is selectively positionable on and removeably secured to the base arrangement and the height elevating section.

27. The support member of claim 1, wherein the base arrangement and the height elevating section have an L-shaped configuration.

28. The support member of claim 1, wherein the base arrangement and the height elevating section are a unitary member.

29. The support member of claim 1, wherein the height elevating section is integral with the wall panel.

30. The support member of claim 1, wherein the wall panel extends from the sloped surface.

31. The support member of claim 1, wherein the wall panel and the sloped surface have an L-shaped configuration.

32. The support member of claim 1, wherein wall panel and the sloped surface are oriented at an angle relative to one another and wherein the angle is less than 90 degrees.

33. The support member of claim 1, wherein the base arrangement has a shim receiving slot formed therein.

34. The support member of claim 1, at least one of the first side face and the second side face have a second sloped surface extending therefrom.

35. The support member of claim 34, wherein the second sloped surface is integral with the at least one of the first side face and the second side face.

36. The support member of claim 34, wherein the second sloped surface is removeably secured to the at least one of the first side face and the second side face.

37. A retaining wall elevating structure comprising:

at least one of the support members of claim 1; and
at least one load bearing panel disposed on the at least one support member.

38. The retaining wall elevating structure of claim 37, wherein the load bearing panel extends in a sloped manner between the mounting surface proximate the first area to height elevating section proximate second area.

39. The retaining wall elevating structure of claim 37, further comprising a wall panel extending substantially vertically upward from the mounting surface and positioned substantially vertically along the first receiving area.

40. The retaining wall elevating structure of claim 37, further comprising liner draped over the wall panel and the load bearing panel.

41. The retaining wall elevating structure of claim 37, further comprising:

at least two support members of any one of the preceding claims; and wherein the load bearing panel is disposed on and extends over the at least two support members.

42. The retaining wall elevating structure of claim 37, further comprising at least one lateral brace member extending between the at least two support members.

43. The retaining wall elevating structure of claim 41, wherein the load bearing panel is supported by the at least one lateral brace member.

44. The retaining wall elevating structure of claim 37, wherein the support member is positioned substantially inwardly of the wall panel.

45. A retaining wall system, comprising a plurality of support members, the plurality of support members comprising a first support member size, a second support member size and a third member support size, wherein the first support member size is smaller than the second support member size and the second support member size is less than the third support member size.

46. The retaining wall system of claim 45, wherein a wall panel is disposed in each adjacent pair of the support members so that the wall panels all intersect a common horizontal plane.

47. The retaining wall system of claim 45, further comprising at least one wall shim disposed in the receiving area to adjust a height of the wall panel.

48. The retaining wall system of claim 45, further comprising at least one support shim disposed under the support member to adjust a height of the wall panel.

49. A retaining wall elevating member comprising:

a sloped sheet; and
a wall panel integral with and extending at an angle.

50. The retaining wall elevating member of claim 49, wherein the wall panel and the sloped sheet have an L-shaped configuration.

51. The retaining wall elevating member of claim 49, wherein wall panel and the sloped sheet are oriented at an angle relative to one another and wherein the angle is less than 90 degrees.

52. An ice skating rink comprising the retaining wall system of claim 45.

53. The ice skating rink of claim 52, wherein the support members are positioned substantially inside the rink.

54. The ice skating rink of claim 52, further comprising a liner draped over a plurality of tension members, the tension members extending under the liner and being in frictional engagement with the mounting surface, one of the tension members being secured to each of two generally opposing support members.

55. The ice skating rink of claim 52, further comprising a bracket for supporting a retaining wall and a liner draped over a plurality of tension members extending under the liner and in frictional engagement with the mounting surface, one of the tension members being secured to one of the support members and a bracket.

56. The ice skating rink of claim 55, wherein the bracket is located substantially outside of the ice skating rink.

57. The support member of claim 1, wherein the base arrangement extends from the first area to a third area proximate to the mounting surface.

Patent History
Publication number: 20210046376
Type: Application
Filed: Aug 14, 2020
Publication Date: Feb 18, 2021
Inventor: Dylan Gastel (Boston, MA)
Application Number: 16/993,801
Classifications
International Classification: A63C 19/10 (20060101); E02D 29/02 (20060101);