EPITAXIAL FORMATION STRUCTURES AND ASSOCIATED METHODS OF MANUFACTURING SOLID STATE LIGHTING DEVICES
Epitaxial formation structures and associated methods of manufacturing solid state lighting (“SSL”) devices with target thermal expansion characteristics are disclosed herein. In one embodiment, an SSL device includes a composite structure having a composite CTE temperature dependency, a formation structure on the composite structure, and an SSL structure on the formation structure. The SSL structure has an SSL temperature dependency, and a difference between the composite CTE and SSL temperature dependencies is below 3 ppm/° C. over the temperature range.
The present application is a continuation of U.S. application Ser. No. 14/077,548, filed Nov. 12, 2013, which is a divisional of U.S. application Ser. No. 12/878,815 filed Sep. 9, 2010, now U.S. Pat. No. 8,580,593, which claims priority to U.S, Provisional Application No. 61/241,233 filed on Sep. 10, 2009, each of which is incorporated herein by reference.
TECHNICAL FIELDThe present disclosure is related to epitaxial formation structures and associated methods of manufacturing solid state lighting (“SSL”) devices with target thermal expansion characteristics.
BACKGROUNDSSL devices generally use semiconductor light emitting diodes (“LEDs”), organic light emitting diodes (“OLED”), and/or polymer light emitting diodes (“PLED”) as sources of illumination rather than electrical filaments, a plasma, or a gas. For example,
One operational difficulty of forming the LED 10 is that the N-type GaN 14, the GaN/InGaN MQWs 16, and the P-type GaN 18 may be delaminated from the substrate material 12 and/or otherwise damaged during high-temperature epitaxial growth and/or cool-down thereafter. Typically, the substrate material 12 includes silicon (Si), sapphire (Al2O31, silicon carbide (SiC), and/or other “non-native” materials because “native” materials (e.g., GaN or InGaN) with usable dimensions are difficult to produce. The non-native substrate materials have different CTEs than the GaN/InGaN materials 14, 16, and 18. For example, the CTE of silicon is substantially smaller than that of GaN, and the CTE of sapphire is substantially higher than that of GaN, It is believed that such CTE mismatches may result in thermal stress causing warpage in the substrate material 12 and/or crystal defects in epitaxial GaN/InGaN materials 14, 16, and 18. Accordingly, several improvements in reliably and cost-effectively manufacturing SSL devices may be desirable.
Various embodiments of epitaxial formation structures and associated methods of manufacturing SSL devices with target thermal expansion characteristics are described below. As used hereinafter, the term “SSL device” generally refers to devices with LEDs, OLEDs, laser diodes (“LDs”), PLEDs, and/or other suitable sources of illumination other than electrical filaments, a plasma, or a gas. A person skilled in the relevant art will also understand that the technology may have additional embodiments, and that the technology may be practiced without several of the details of the embodiments described below with reference to
As shown in
In
The diffusion barrier 104 can include tantalum nitride (TaN), indium oxide (In2O3), copper sillicide (Cu5Si), tungsten nitride (WN2), titanium nitride (TiN), silicon nitride (Si3N4), amorphous or polycrystalline silicon carbide (SiC), amorphous or polycrystalline silicon (Si), and/or other suitable diffusion resistant materials. The insulation material 106 can include silicon dioxide (SiO2), silicon carbide (SiC), silicon nitride (Si3N4), amorphous or polycrystalline silicon (Si), and/or other suitable insulation materials. In the illustrated embodiment, the insulation material 106 includes a generally planar surface 108. Techniques for polishing the insulation material 106 can include chemical-mechanical polishing (“CMP”), electrochemical-mechanical polishing (“ECMP”), and/or other suitable planarizing techniques. In other embodiments, the insulation material 106 may include a non-planar surface (not shown). In further embodiments, the diffusion barrier 104 and/or the insulation material 106 can include a material (e.g., silicon nitride) that is non-stoichiometric (e.g., as silicon-rich).
The composite material 102 can include a base material and at least one CTE control material that together have a CTE temperature dependency that is adjusted based on CTE values of the SSL device and/or other suitable operating parameters for forming and/or subsequently processing the SSL device. As used herein, the term “CTE temperature dependency” generally refers to a profile of CTE values as a function of temperature. In certain embodiments, the base material can include polycrystalline aluminum nitride (AlN) and/or polycrystalline silicon carbide (SiC). In other embodiments, the base material can include tungsten (W), molybdenum (Mo), and/or other suitable refractory metals. In further embodiments, the base material can include other suitable single crystalline, polycrystalline, amorphous materials, or a combination thereof.
The CTE control material can have a CTE value either higher or lower than that of the base material in a target temperature range. In certain embodiments, the CTE control material can include a single material selected from silicon nitride (Si3N4), titanium nitride (TiN), zirconium nitride (ZrN), hafnium nitride (HfN), silicon oxide (SiO2), aluminum oxide (Al2O3), aluminum oxynitride (AlON), titanium carbide (TiC), zirconium carbide (ZrC), hafnium carbide (HfC), silicon carbide (SiC), yttrium oxide (Y2O3), and other suitable materials. For example, the composite material 102 can include AlN and Y2O3.
In other embodiments, the CTE control material can include at least two of the foregoing materials and/or other suitable materials. For example, the composite material 102 can include:
-
- AlN, Y2O3, and Al2O3;
- AlN, Y2O3, and TIN;
- AlN, Y2O3, and ZrN;
- AlN, Y2O3, and HfN; or
- AlN, Y2O3, and HfC.
In further examples, the composite material 102 may include three, four, or any other number and/or combinations of suitable CTE control materials.
The base material and the CTE control material may be combined using isostatic pressing, tape-casting, sintering, and/or a combination of these and/or other suitable techniques. For example, in one embodiment, powders of the base material (e.g., containing AlN) and the CTE control material (e.g., containing Y2O3) may be combined to form an aqueous slurry with a target volume (or weight) ratio. The slurry can then be cast into a tape using tape-casting. The tape can subsequently be sintered at a temperature of about 1800° C. to form the composite material 102. In other embodiments, the composite material 102 may be formed using other suitable techniques.
In certain embodiments, the formation structure 110 may be attached to the surface 108 of the insulation material 106 using solid-solid bonding techniques. For example, the formation structure 110 and the composite structure 100 may be mechanically pressed against each other while being heated to a bonding temperature (e.g., 300° C.). It is believed that the formation structure 110 and the composite structure 100 can bond with each other under such conditions via chemical bonding, van der Waals interactions, hydrogen bonds, and/or other suitable mechanisms. In other embodiments, the formation structure 110 and the composite structure 100 may be attached using an adhesive material (not shown) and/or other suitable techniques.
The optional buffer material 112 can facilitate the formation of the first and second semiconductor materials 114 and 118 and the active region 114 on the formation structure 110. In certain embodiments, the optional buffer material 112 can include at least one of aluminum nitride (AlN), AlGaN, zinc nitride (ZnN), GaN, and/or other suitable materials. In other embodiments, the optional buffer material 112 may be omitted, and the first semiconductor material 114 may be formed directly on the formation structure 120.
In certain embodiments, the first semiconductor material 114 can include N-type GaN (e.g., doped with silicon (Si)), and the second semiconductor material 118 can include P-type GaN (e.g., doped with magnesium (Mg)). In other embodiments, the first semiconductor material 114 can include P-type GaN, and the second semiconductor material 118 can include N-type GaN. In further embodiments, the first and second semiconductor materials 114 and 118 can individually include at least one of gallium arsenide (GaAs), aluminum gallium arsenide (AlGaAs), gallium arsenide phosphide (GaAsP), gallium(III) phosphide (GaP), zinc selenide (ZnSe), boron nitride (BN), AlGaN, and/or other suitable semiconductor materials.
The active region 116 can include a single quantum well (“SQW”), MQWs, and/or a bulk semiconductor material. As used hereinafter, a “bulk semiconductor material” generally refers to a single grain semiconductor material (e.g., InGaN) with a thickness greater than about 10 nanometers and up to about 5 micrometers. In certain embodiments, the active region 116 can include an InGaN SQW, GaN/InGaN MQWs, and/or an InGaN bulk material. In other embodiments, the active region 116 can include aluminum gallium indium phosphide (AlGaInP), aluminum gallium indium nitride (AlGaInN), and/or other suitable materials or configurations.
The optional buffer material 112, the first and second semiconductor materials 114 and 118, and the active region 116 can have lower thermal stress when formed on the template structure 111 by selecting the base material and/or the CTE control material so that the composite structure 100 has a CTE value that at least approximates that of one or more components of the SSL structure 121. However, it has been realized that the CTE values of both the SSL structure 121 and the composite structure 100 are temperature dependent. Thus, the CTE values of the SSL structure 121 and the composite structure 100 may deviate significantly from each other at certain temperatures (e.g., during cool-down) even though they approximate each other at other temperatures (e.g., during epitaxial growth). Various embodiments of selecting the base material and/or the CTE control material to accommodate the CTE temperature dependency of the SSL structure 121 are discussed in more detail below with reference to
Optionally, in certain embodiments, a surface 123 of the SSL structure 121 may be attached to a carrier substrate (not shown) prior to removing the composite structure 100. The carrier substrate can be constructed from silicon (Si), copper (Cu), copper tungsten alloys (Cu—W), molybdenum (Mo), and/or other materials with suitable thermal and electrical properties. The SSL structure 121 may be attached to the carrier substrate through eutectic bonding, metal to metal bonding (e.g., copper to copper bonding), conductive adhesives, and/or other suitable mechanisms.
As shown in
In certain embodiments, the target CTE temperature dependency may be represented as an averaged and/or otherwise correlated value in a temperature range. For example, in certain embodiments, the target CTE temperature dependency may be an averaged value from room temperature (e.g., about 25° C.) to an epitaxial growth temperature (approximately 1100° C.). In other embodiments, the target CTE temperature dependency may be an averaged value over a temperature range (e.g., between about 800° C. and about 1100° C.) suitable for growing various components of the SSL structure 121. In further embodiments, the target CTE temperature dependency may be represented as a continuous function of temperature.
Another stage (block 204) of the method 200 includes selecting components of the composite material 102 (
In any of the foregoing embodiments, the CTE control material may be selected based on a CTE difference (ΔCTE) between the target CTE temperature dependency and the CTE temperature dependency of the CTE control material. As shown in
Referring back to
Using more than one CTE control material can accommodate CTE differences between the SSL structure 121 and the composite structure 100 in more than one temperature ranges. For example, it is believed that the CTE difference between polycrystalline AlN and GaN/InGaN is large enough to induce tensile stress in the GaN/InGaN during cool-down, but the CTE difference is relatively small (e.g., <0.3 ppm/° C.) during epitaxial growth at temperatures between 800° C. and 1100° C. Thus, by selecting a CTE control material (e.g., HfC) having a CTE value that modifies that of polycrystalline AlN more at low temperatures than at high temperatures, the low CTE difference at growth temperatures may be maintained while thermal stress during cool-down is reduced. In other embodiments, more than two CTE control materials may be used.
Another stage (block 205) of the method 200 includes determining the overall CTE temperature dependency of the composite material 102 based on the selected base material and the at least one CTE control material. In one embodiment, the overall CTE temperature dependency of the composite material 102 may be calculated based on the selected compositions, weight (or volume) ratio, respective elastic modulus, and the CTE temperature dependencies of each components. In another embodiment, the overall CTE temperature dependency of the composite material 102 may be determined empirically. In further embodiments, a combination of the foregoing techniques may be used to determine the overall CTE temperature dependency of the composite material 102.
Another stage (block 206) compares the CTE temperature dependency of the SSL structure 121 to that of the composite material 102 and determines whether the CTE difference is below a target threshold. The target threshold may be about 0.3 ppm/° C., 0.2 ppm/° C., 0.1 ppm/° C., and/or other suitable values. The target threshold of the CTE difference may be determined based on a thermal stress threshold during thermal processing associated with attaching the formation structure 110, growing the SSL structure 121, and/or other suitable processing operations. For example, in one embodiment, the thermal stress threshold may be set to less than about 100 MPa, less than about 200 MPa, less than about 300 MPa, or less than about other suitable values. Based on the thermal stress threshold, the target threshold for the CTE difference may be determined empirically and/or via other techniques.
In one embodiment, the CTE difference is calculated based on an averaged CTE value of both the SSL structure 121 and the composite material 102 over a target temperature range. If the CTE difference is greater than or equal to the target threshold, the process reverts to selecting different and/or additional components for the composite material 102 at block 204. If the CTE difference is less than the target threshold, the process proceeds to indicating that the selected. components are acceptable (block 208).
In other embodiments, the CTE difference may be calculated as a function of temperature over a target temperature range. If the CTE difference is greater than or equal to the threshold at any temperature in the target temperature range, the process reverts to selecting components of the composite material 102 at block 204. If the CTE difference is less than the target threshold over the entire target temperature range, the process proceeds to indicating that the selected components are acceptable (block 208).
In further embodiments, the CTE difference may be integrated over a target temperature range as follows:
where T is temperature; T1 is a low temperature limit; and T2 is a high temperature limit of the target temperature range. If the integrated CTE difference |ΔCTE| is greater than or equal to the threshold, the process reverts to selecting components of the composite material 102 at block 204; otherwise, the process proceeds to indicating that the selected components are acceptable (block 208).
Experiments have been conducted to measure a temperature dependency of curvature of a GaN film deposited on a composite structure, as shown in
Also shown for each curve are simulated temperature dependencies for the same structures (solid black lines). In order to obtain these curves, literature values for the elastic modulus and temperature dependencies of CTE of Si, SiO2, and polycrystalline AlN were used. No fitting parameters were used to match the temperature dependencies of the measured data. However the initial curvature values (at 25° C.) were adjusted to account for initial stress and warpage of the starting materials. As shown in
Using the measured data, an effective CTE temperature dependency of the deposited GaN film was extracted. The extracted CTE temperature dependency is shown in
Based on the foregoing experimental results, it is believed that in order to reduce the thermal stress associated with epitaxial growth, cool-down after epitaxial growth and/or other processing operations, the CTE of the polycrystalline AlN may be increased over the temperature range from room temperature to growth temperature (about 25° C. to about 1100° C.) by adding CTE control material(s) having CTE values higher than GaN. Examples of such materials included Y2O3, Al2O3, TiCxN(1−x), ZrCxN(1−x), and/or HfCxN(1−x).
Following examples of material combinations are believed to be suitable for forming a composite material that when used as a composite substrate, resulted in less than 100 MPa of thermally induced stress at 25° C. in GaN grown at between 600° C. and 1100° C.:
-
- 1. AlN(x):Y2O3(1-x), 0.75<x<0.95
- 2. AlN(x):Y2O3(y):Al2O3(1-x-y), 0.75<x<0.9 and 0.01<y<0.2
- 3. AlN(x):Y2O3(y):TiN(1-x-y)
- 4. AlN(X):Y2O3(y):ZrN(1-x-y)
- 5. AlN(X):Y2O3(y)HfN(1-x-y)
- 6. AlN(x):Y2O3(y):HfC(1-x-y), 0.4<x<0.7 and 0.01<y<0.2
From the foregoing, it will be appreciated that specific embodiments of the technology have been described herein for purposes of illustration, but that various modifications may be made without deviating from the disclosure. Many of the elements of one embodiment may be combined with other embodiments in addition to or in lieu of the elements of the other embodiments. Accordingly, the disclosure is not limited except as by the appended claims.
Claims
1. A method for manufacturing a solid state lighting (SSL) device, comprising:
- attaching a formation structure to a composite structure, the composite structure having a first coefficient of thermal expansion (CTE) dependency over a temperature range, the composite structure including polycrystalline aluminum nitride (AlN) and a CTE control material combined with the polycrystalline AlN; and
- forming an SSL structure on the formation structure, the SSL structure having a second CTE temperature dependency over the temperature range,
- wherein a first difference between the first and second CTE temperature dependencies is below a first target threshold over a first portion of the temperature range, and
- wherein a second difference between the first and second CTE temperature dependencies is below a second target threshold over a second portion of the temperature range, wherein the second portion is lower than the first portion.
2. The method of claim 1, wherein the first target threshold and the second target threshold are each less than 3 ppm/° C.
3. The method of claim 1, wherein the st target threshold and the second target threshold are each less than 3 ppm/° C.
4. The method of claim 1, wherein the CTE control material includes a first material configured to increase the first CTE dependency over the first portion of the temperature range and a second material configured to increase the first CTE dependency over the second portion of the temperature range.
5. The method of claim 1, wherein the second material increases the first CTE dependency over the second portion of the temperature range by a larger amount than the second material increases the first CTE dependency over the first portion of the temperature range.
6. The method of claim 1, wherein the first portion of the temperature range corresponds to an epitaxial growth of the SSL structure and wherein the second portion of the temperature range corresponds to a cool-down of the SSL device.
7. The method of claim 1, wherein the first portion of the temperature range is between 800° C. and 1100° C. and the second portion of the temperature range is between room temperature and 800° C.
8. The method of claim 1, further comprising reducing a thickness of the formation structure attached to the composite structure prior to forming the SSL structure.
9. The method of claim 1, wherein the formation structure is attached to the composite structure through solid-solid bonding.
10. The method of claim 1. wherein the formation structure has a thickness that is about 10 nanometers to about 2 micrometers.
11. The method of claim 1, further comprising removing the composite structure from the SSL device after forming the SSL structure.
12. The method of claim 1, further comprising removing the formation structure from the SSL device after removing composite structure.
13. The method of claim 1, wherein the CTE control material comprises silicon nitride (Si3N4), titanium nitride (TiN), zirconium nitride (ZrN), hafnium nitride (HfN), silicon oxide (SiO2), aluminum oxide (Al2O3), aluminum oxynitride (AlON), titanium carbide (TiC), zirconium carbide (ZrC), hafnium carbide (HfC), silicon carbide (SiC), yttrium oxide (Y2O3), or a combination thereof.
14. The method of claim 1, wherein the formation structure includes silicon having a Si(1,1,1) crystal orientation or Si(1,0,0) crystal orientation.
15. The method of claim 1, wherein the formation structure includes silicon, aluminum gallium nitride (AlGaN), GaN, SiC, Al2O3, zinc oxide (ZnO2), gallium arsenide (GaAs), or a combination thereof.
16. The method of claim 1, wherein a volume ratio of the polycrystalline aluminum nitride (AlN) to the CTE control material is between about 0.75 to about 0.95.
17. The method of claim 1, wherein a volume ratio of the polycrystalline aluminum nitride (AlN) to the CTE control material is between about 0.4 to about 0.7.
18. The method of claim 1, wherein the composite structure comprises AlNx:Y2O3(y):HfC(1-x-y), wherein x is between about 0.4 and about 0.7, and y is between about 0.01 and about 0.1.
19. The method of claim 1, wherein the composite structure comprises AlN(x):Y2O3(y):Al2O3(1-x-y), wherein x is between about 0.75 and about 0.9, and y is between about 0.01 and about 0.2.
20. The method of claim 1, wherein the composite structure comprises AlN(x):Y2O3(1-x,), wherein x is between about 0.75 and about 0.9.
Type: Application
Filed: Nov 30, 2020
Publication Date: Mar 18, 2021
Inventor: Thomas Pinnington (Vancouver)
Application Number: 17/107,644