ARCHITECTURE, SYSTEM, AND METHOD FOR DEVELOPING AND ROBOTICALLY PERFORMING A MEDICAL PROCEDURE ACTIVITY
Embodiments of architecture, systems, and methods to develop a learning/evolving system to robotically perform one or more activities of a medical procedure where the medical procedure may include diagnosing a patient's medical condition(s), treating medical condition(s), and robotically diagnosing a patient's medical condition(s) and performing one or more medical procedure activities based on the diagnosis without User intervention.
Various embodiments described herein relate to apparatus and methods for developing and robotically performing a medical procedure in part via machine learning.
BACKGROUND INFORMATIONIt may be desirable to develop a learning/evolving system to robotically perform one or more activities of a medical procedure where the medical procedure may include diagnosing a patient's medical condition(s), treating medical condition(s), and robotically diagnosing a patient's medical condition(s) and performing one or more medical procedure activities based on the diagnosis without User intervention. The present invention provides architecture, systems, and methods for same.
The present invention provides an architecture (10—
A base logic/model(s)/procedure (L/M/P) may be developed for the step or activities based on available sensor data. Machine learning may be employed to train one or more robots to perform the step or activities based on the developed L/M/P. The robots may then be employed to perform the steps or activities based on the developed L/M/P and live sensor data. The machine learning may be improved or evolved via additional sensor data and User input/guidance.
In an embodiment, a medical professional 70B may be directed to perform various activities of a medical procedure employed on a patient 70A while sensor systems 20A-20C record various data about a patient 70A and medical instruments, implants, and other medical implements employed by a medical professional 70B to perform an activity of a medical procedure. The sensor systems 20A-20C generated, received, and position data may be stored in training databases 30A-30C. Based on the sensor data, system experts/users, and medical professionals 70B inputs a base logic/model(s)/procedure (L/M/P) may be developed for the activities of a medical procedure.
Training systems A-N 40A-40C may use retrieve training data 30A-30C, live sensor system 20A-20C generated, received, and position data, and medical professional(s) 70B input to employ machine learning (form artificial neural network (neural networks) systems A-N 50A-50C in an embodiment) to control operation of one or more robotic systems 60A-60C and sensor system 20A-20C to perform an activity of a medical procedure based on sensor systems A-N 20A-20C live generated, received, and position data based on the developed L/M/P. It is noted that a sensor system A-N 20A-20C may be part of a robotic system A-N 60A-60C and be controlled by a machine learning system (neural network system A-N 50A-50C in an embodiment) including its position relative to a patient and signals it generates (for active sensor systems).
Similarly, a neural network system A-N 50A-50C may also be part of a robotic system A-N 60A-C in an embodiment. In an embodiment, the neural network systems A-N 50A-50C may be any machine learning systems, artificial intelligence systems, or other logic-based learning systems, networks, or architecture.
In a passive system, a sensor system A-N 20A-20C may receive signals) 24 that may be generated in response to other stimuli including electro-magnetic, optical, chemical, temperature, or other patient 70A measurable stimuli. A passive sensor system A-N 20A-20C to be deployed/employed/positioned in architecture 10 may also vary as a function of the medical procedure activity to be conducted by architecture 10 and may include electro-magnetic sensor systems, electrical systems, chemically based sensors, and optical sensor systems.
Sensor system A-N 20A-20C signals (generated and received/measured, position relative to patient) 22, 24 may be stored in training databases 30A-30C during training events and non-training medical procedure activities. In an embodiment, architecture 10 may store sensor system A-N 20A-20C signals 22, 24 (generated, received, and position data) during training and non-training medical procedure activities where the generated, received, and position data may be used by training systems A-N 40A-40C to form and update neural network systems A-N 50A-50C based on developed L/M/P. One or more training system A-N 40A-40C may use data 80B stored in training databases and medical professional(s) 70B feedback or review 42 to generate training signals 80C for use by neural network systems A-N 50A-50C to form or update neural network or networks based on developed L/M/P. The data 80B may be used to initially form the L/M/P for a particular activity of a medical procedure.
The training system data 80C may represent sensor data 80A that was previously recorded for a particular activity of a medical procedure. In an embodiment, when medical professional(s) 70B may perform an activity of a medical procedure, the sensor systems A-N 20A-C may operate to certain attributes as directed by the professional(s) 70B or training systems A-B 40A-C. One or more neural network systems A-N 50A-50C may include neural networks that may be trained to recognize certain sensor signals including multiple sensor inputs from different sensor systems A-N 20A-20C representing different signal types based on the developed L/M/P. The neural network systems A-N 50A-C may use the formed developed L/M/P and live sensor system A-N 20A-20C data 80D to control the operation of one or more robotic systems A-N 60A-60C and sensor systems A-N 20A-20C where the robotic systems A-N 60A-60C and sensor systems A-N 20A-20C may perform steps of a medical procedure activity learned by the neural network systems A-N 50A-C based on the developed L/M/P.
As noted, one or more sensor systems A-N 20A-C may be part of a robotic system A-N 60A-60C or a neural network system A-N 50A-50C. A sensor system A-N 20A-C may also be an independent system. In either configuration sensor system's A-N 20A-C generated signals (for active sensors) and position(s) relative to a patient during an activity may be controlled by a neural network system A-N 50A-50C based on the developed L/M/P. Similarly, one or more training systems A-N 20A-C may be part of a robotic system A-N 60A-60C or a neural network system A-N 50A-50C. A training system A-N 40A-C may also be an independent system. In addition, a training system A-N 40A-C may also be able to communicate with a neural network system A-N 50A-50C via a wired or wireless network. In addition, one or more training databases 30A-C may be part of a training system A-N 40A-40C. A training database 30A-C may also be an independent system and communicate with a training system A-N 40A-40C or sensor system A-N 20A-C via a wired or wireless network. In an embodiment, the wired or wireless network may be local, network or network (Internet) and employ cellular WiFi, and satellite communication systems.
In a further embodiment, a neural network architecture 90C shown in
Different sets of neural networks 90A-90D may be trained/formed and updated (evolve) for a particular activity of a medical procedure. One or more L/M/P may be developed based on availability of sensor data 80A to perform a particular activity of a medical procedure. The different sets of neural networks 90A-90D may be trained/formed and updated (evolve) for a particular activity of a medical procedure based on the developed one or more L/M/P.
As shown in
As shown in
A medical professional or other user 70B may be able to indicate the one or more activities that underlie a medical procedure. Depending on the medical procedure there may be activities defined by various medical groups or boards (such the American Board of Orthopaedic Surgery “ABOS”) where a medical professional 70B certified in the procedure is expected to perform each activity as defined by a medical group or boards. In an embodiment, a medical professional 70B may also define a new medical procedure and its underlying activities. For example, a medical procedure for performing spinal fusion between two adjacent vertebrae may include activities as defined by the ABOS (activity 104A). The medical procedure may be further sub-divided based on the different L/M/P that may be developed/created for each activity.
A simplified medical procedure may include a plurality of activities including placing a pedicle screw in the superior vertebra left pedicle (using sensor system(s) A-N 20A-C to verify its placement), placing a pedicle screw in the inferior vertebra left pedicle (using sensor system(s) A-N 20A-C to verify its placement), placing a pedicle screw in the superior vertebra right pedicle (using sensor system(s) A-N 20A-C to verify its placement), placing a pedicle screw in the inferior vertebra right pedicle (using sensor system(s) A-N 20A-C to verify its placement), loosely coupling a rod between the superior and inferior left pedicle screws, loosely coupling a rod between the superior and inferior right pedicle screws, compressing or distracting the space between the superior and inferior vertebrae, fixably coupling the rod between the superior and inferior left pedicle screws, and fixably coupling the rod between the superior and interior right pedicle screws.
It is noted that architecture 10 may not be requested or required to perform all the activities of a medical procedure. Certain activities may be performed by a medical professional 70B. For example, architecture 10 may be employed to develop one or more L/M/P and train one or more neural network systems 50A-50C with robotic systems 60A-60C and sensor system(s) A-N 20A-C to insert pedicle screws in left and right pedicles of vertebrae to be coupled based on the developed one or more L/M/P. A medical professional may place rods, compress or decompress vertebrae and lock the rods to the screws. It is further noted that the activities may include multiple steps in an embodiment. Once developed and trained, architecture 10 may be employed to place one or more pedicle screws in vertebrae pedicles.
A medical professional 70B or other user may start an activity of a medical procedure (activity 106A), and one or more sensor systems 20A-20C may be employed/positioned to generate (active) and collect sensor data while the activity is performed (activity 108A). Architecture 10 may sample sensor data (generated, received, and position) 80A of one or more sensor systems 20A-20C at an optimal rate to ensure sufficient data is obtained during an activity (activity 108A). For example, the sensor data may include the positions of a radiographic system, its generated signals, and its radiographic images such as images 220A, 220B shown in
As shown in
In detail, architecture 10 may be employed to monitor all the steps a medical professional 70B completes to conduct an activity of a medical procedure to develop one or more base L/M/P (activity 115A) and train one or more neural network networks 50A-50C to control one or more robotic systems 60A-60C and sensor systems 20A-20C to perform the same steps to conduct an activity of a medical procedure based on the one or more L/M/P. For example, for the activity of placing a pedicle screw 270C in the left pedicle 232 of a vertebra 230B (as shown completed in
In this activity one or more target trajectory lines 234A, 234D may be needed to accurately place a pedicle screw in a safe and desired location. In an embodiment, the activity may include placing a screw in the right pedicle of the L3 vertebra 256 shown in
If one or more L/M/P do not exist for the region to be affected by an activity, a User 70B via architecture 10 or architecture 10 via training systems 40A-40C or neural systems 50A-50C may develop or form and store one or more L/M/P for the region (activities 102E-110E). In an embodiment, physical landmarks or anatomical features in a region to be affected may be identified (activity 102E) and protected areas/anatomical boundaries may also be identified (activity 104E). Based on the identified landmarks and boundaries, targets or access to targets may be determined or calculated in an embodiment (activity 108E). The resultant one or more L/M/P (models in an embodiment) may then be formed (such a 3-D model from two or more 2-D models) and stored for similar regions. The resultant L/M/P may be stored in training databases 30A-30C or other storage areas.
In an embodiment, architecture 10 may include a display/touch screen display (317
The GPU 291 may generate 3-D image(s) from two or more 2-D images 220A, 220B, in particular where two 2-D images 220A, 220B are substantially orthogonal in orientation. Architecture 10 may enable a User 70B via a display/touch screen display (317
As noted, algorithm 100F of
As shown in
As shown in
As shown in
Similarly, as shown in
As shown in
As noted,
As shown in
As shown in
As shown in
The resultant model(s) or L/M/P 220E, 220G may be stored in a database such a training database 30A-30C in an embodiment for use for a current activity or future activities. The stored models may be categorized by the associated region or region(s) (activity 110E—
In an embodiment, a training system 40A-40C or neural network system 60A-60C may enlarge, shrink, and shift models (L/M/P) up/down to attempt to match landmarks in the models (L/M/P) with the image represented by current sensor data 80A. When the image represented by current sensor data 80A is sufficiently correlated with the model's landmarks, the model L/M/P may be used to determine/verity targets or access to targets (activity 124E). In an embodiment, the model may be updated and stored based on the verified or determined targets or access to targets (activity 126E).
In an embodiment, current sensor data 80A is sufficiently correlated with the model's landmarks when the combined error (differential area versus integrated total area represented by landmarks in an embodiment) is less than 10 percent. When image represented by current sensor data 80A is not sufficiently correlated with the retrieved model's landmarks, another model for the region may be retrieved if available (activities 118E, 122E). If another model for the region is not available (activity 118E), a new model may be formed (activities 102E-110E).
Once the screw trajectories 189A, 189B are determined, architecture 10 employ the trajectories in a medical procedure including inserting a pedicle screw along a trajectory 189A, 189B. For the next activity or step of a procedure, another I/M/P 220E may be formed to be used with neural networks 50A-50C to control the operation of one or more robots 60A-60C with sensor data 80A. For example, architecture 10 could be employed to insert a tap 210 as shown in
A medical professional 70B may select a tap 210 having a desired outer diameter to create a bony tap in a pedicle 232 based on the pedicle size. Architecture 10 may also select a tap having an optimal diameter based on measuring the pedicle 232 dimensions as provided by one or more sensor systems 20A-20C. The neural network systems 50A-50C may direct a robotic system 60A-60C to select a tap having an optimal outer tapping section 212 diameter. The taps 210 may have markers 214A, 214B that a sensor system 20A-20C may be able to image so one or more neural network systems 50A-50C may be able to confirm tap selection where the neural network systems 50A-50C may direct sensor system(s) 20A-20C to image a tap 210.
During training activities (108A and 112A of
In an embodiment, a medical professional 70B may also train architecture 10 on improper tap 210 usage as shown in
In the activity, once the tap 210 has been advanced to a desired depth as shown in
A neural network systems 50A-30C may be trained to select a pedicle screw 270A-270D having an optimal diameter and length based on sensor data 80A provided by one or more sensor systems 20A-20C (under a neural network system's 50A-50C direction in an embodiment) based on one or more developed I/M/P. It is noted that during the deployment of the tap 210 or a pedicle screw 270A-D, other sensor data 80A from many different sensor systems 20A-20C may be employed, trained, and analyzed to ensure a tap 210 is properly deployed and a pedicle screw 270A-D is properly implanted. Sensor systems 20A-20C may include electromyogram “EMG” surveillance systems that measure muscular response in muscle electrically connected near a subject vertebra 230A where the architecture 10 may be trained to stop advancing a tap 210 or pedicle screw 270A-D as a function of the EMG levels in related muscle. A sensor system 20A-20C may also include pressure sensors that detect the effort required to rotate a tap 210 or pedicle screw 270A-D where the architecture 10 may be trained to prevent applying too much rotational force or torque on a tap 210 or pedicle screw 270A-D. A sensor system 20A-20C may also include tissue discriminators that detect the tissue type(s) near a tap 210 or pedicle screw 270A-D where the architecture 10 may be trained to prevent placing or advancing a tap 210 or a pedicle screw 270A-D into or near certain tissue types.
Once an activity is complete (112A of
As shown in
Based on the selected robotic systems 60A-60C and sensor systems 20A-20C to be employed to conduct/perform a particular medical procedure activity, one or more training systems 40A-40C may retrieve related sensor data 80 from training databases 30A-30C to train neural network systems 50A-50C to control the selected robotic systems 60A-60C and sensor systems 20A-20C (activity 118A) based on one or more develop I/M/P 202E. In an embodiment, one or more neural network systems 50A-50C may be trained to control one or more robotic systems 60A-60C and sensor systems 20A-20C. The neural network systems 50A-50C may be used for all relevant sensor data 80A (activity 122A) and for all robotic systems 60A-60C and sensor systems 20A-20C to be employed to conduct/perform a particular medical procedure activity (activity 124A) based on one or more develop I/M/P 202E. Activities 116A to 124A may be repeated for other activities of a medical procedure.
In activity 102A, algorithm 100A first determined whether a medical procedure was new to architecture 10. When a medical procedure or activity is not new, architecture 10 may still perform activities 128A to 146A, which are similar to activities 106A to 126A discussed above to update/improve one or more neural network systems 50A-50C training.
Once neural network systems 50A-50C have been trained, architecture 10 may be employed to perform one or more activities of a medical procedure.
Architecture 10 via one or more neural network systems 50A-50C or robotic systems 60A-60C may cause the activated sensor systems 20A-20C to start optimally sampling sensor data (generated, received, and position) 80D that is considered in real time by one or more neural network systems 50A-50C to control one or more robotic systems 60A-60C and sensor systems 20A-20C (activity 104B) based on one or more develop I/M/P 202E. When the initial sensor data 80D is not considered with acceptable parameters by the one or more neural network systems 50A-50C (activity 106B), a medical professional 70B or system user may be notified of the measured parameters (activity 124B). The medical professional 70B or system user may be notified via wired or wireless communication systems and may direct architecture 10 to continue the activity (activity 128B) or halt the operation.
it is rioted the sensor systems 20A-20C deployed during an activity may vary during the activity. If the initial sensor data SOD is determined to be within parameters (activity 106B), then one or more robotics systems 60A-60C may be deployed and controlled by one or more neural network systems 50A-50C based on one or more develop I/M/P 202E (activity 108B). One or more neural network systems 50A-50C may control the operation/position of one or more sensor systems 20A-20C, review their sensor data 80D, and continue deployment of one or more robotic systems 60A-60C and sensor systems 20A-20C needed for an activity while the sensor data 80D is within parameters (activities 112B, 114B, 116B) until the activity is complete (activity 118B) and procedure is complete (activity 122B) based on one or more develop I/M/P 202E.
When during the deployment of one or more robotic systems 60A-60C and sensor systems 20A-20C, sensor data 80D is determined by one or more neural network systems 50A-50C to be not within acceptable parameters (activity 114B), architecture 10 may inform a medical professional 70B or system user of the measured parameters (activity 124B). The medical professional 70B or system user may be notified via wired or wireless communication systems and may direct architecture 10 to continue the activity (activity 128B) or halt the operation.
As noted, architecture 10 may also be employed to developing a base logic/model/procedure (L/M/P) and training/improving neural network systems to enable robot(s) to diagnose a medical condition of a patient 70A based on a developed L/M/P. For example,
As shown in
The modem/transceiver 314 or CPU 292 may couple, in a well-known manner, the device 290 in architecture 10 to enable communication with devices 20A-60C. The modem/transceiver 314 may also be able to receive global positioning signals (GPS) and the CPU 292 may be able to convert the GPS signals to location data that may be stored in the RAM 314. The ROM 297 may store program instructions to be executed by the CPU 292 or neural network module 324. The electric motor 332 may control to the position of a mechanical structure in an embodiment.
The modules may include hardware circuitry, single or multi-processor circuits, memory circuits, software program modules and objects, firmware, and combinations thereof, as desired by the architect of the architecture 10 and as appropriate for particular implementations of various embodiments. The apparatus and systems of various embodiments may be useful in applications other than a sales architecture configuration. They are not intended to serve as a complete description of all the elements and features of apparatus and systems that might make use of the structures described herein.
Applications that may include the novel apparatus and systems of various embodiments include electronic circuitry used in high-speed computers, communication and signal processing circuitry, modems, single or multi-processor modules, single or multiple embedded processors, data switches, and application-specific modules, including multilayer, multi-chip modules. Such apparatus and systems may further be included as sub-components within and couplable to a variety of electronic systems, such as televisions, cellular telephones, personal computers (e.g., laptop computers, desktop computers, handheld computers, tablet computers, etc.), workstations, radios, video players, audio players (e.g., mp3 players), vehicles, medical devices (e.g., heart monitor, blood pressure monitor, etc.) and others. Some embodiments may include a number of methods.
It may be possible to execute the activities described herein in an order other than the order described. Various activities described with respect to the methods identified herein can be executed in repetitive, serial, or parallel fashion. A software program may be launched from a computer-readable medium in a computer-based system to execute functions defined in the software program. Various programming languages may be employed to create software programs designed to implement and perform the methods disclosed herein. The programs may be structured in an object-orientated format, using an object-oriented language such as Java or C++. Alternatively, the programs may be structured in a procedure-orientated format using a procedural language, such as assembly, C, python, or others. The software components may communicate using a number of mechanisms well known to those skilled in the art, such as application program interfaces or inter-process communication techniques, including remote procedure calls. The teachings of various embodiments are not limited to any particular programming language or environment.
The accompanying drawings that form a part hereof show, by way of illustration and not of limitation, specific embodiments in which the subject matter may be practiced. The embodiments illustrated are described in sufficient detail to enable those skilled in the art to practice the teachings disclosed herein. Other embodiments may be utilized and derived therefrom, such that structural and logical substitutions and changes may be made without departing from the scope of this disclosure. This Detailed Description, therefore, is not to be taken in a limiting sense, and the scope of various embodiments is defined only by the appended claims, along with the full range of equivalents to which such claims are entitled.
Such embodiments of the inventive subject matter may be referred to herein individually or collectively by the term “invention” merely for convenience and without intending to voluntarily limit the scope of this application to any single invention or inventive concept, if more than one is in fact disclosed. Thus, although specific embodiments have been illustrated and described herein, any arrangement calculated to achieve the same purpose may be substituted for the specific embodiments shown. This disclosure is intended to cover any and all adaptations or variations of various embodiments. Combinations of the above embodiments, and other embodiments not specifically described herein, will be apparent to those of skill in the art upon reviewing the above description.
The Abstract of the Disclosure is provided to comply with 37 C.F.R. § 1.72(b), requiring an abstract that will allow the reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. In the foregoing Detailed Description, various features are grouped together in a single embodiment for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted to require more features than are expressly recited in each claim. Rather, inventive subject matter may be found in less than all features of a single disclosed embodiment. Thus, the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separate embodiment.
Claims
1. A method of forming an automated system to perform an activity of a medical procedure for a patient, the method comprising:
- forming a base model of an activity of a medical procedure for a patient based on sensor system data for a region of the patient to be affected by the activity, wherein the sensor system data is sampled from a sensor system positioned to monitor an aspect of the medical procedure activity to be automated;
- determining one of a target or access to the target for a region to be affected by the activity based on the formed base model; and
- determining the number of robotic systems needed to perform the medical procedure activity based on the base model and one of the target or access to target.
2. The method of claim 1, wherein the sensor system data is sampled from start to completion of the medical procedure activity to be automated.
3. The method of claim 1, wherein the sensor system includes a plurality of sensor systems to monitor a plurality of aspects of the medical procedure activity.
4. The method of claim 1, further comprising storing the sampled sensor system data from the sensor system in a training database.
5. The method of claim 1, further comprising employing a training system to train an automated robotic control system to control one of the determined robotic systems to perform the medical procedure activity based on the sampled sensor system data, the formed base model, and one of the target or the access to the target.
6. The method of claim 5, wherein the automated robotic control system uses one or more neural networks to control one of the determined robotic systems to perform the medical procedure activity based on the sampled sensor system data, the formed base model, and one of the target or the access to the target.
7. The method of claim 1, further comprising training an automated robotic control system to control one of the determined robotic systems to perform the medical procedure activity based on the sampled sensor system data, the formed base model, and one of the target or the access to the target.
8. The method of claim 7, wherein the automated robotic control system includes one or more neural networks.
9. The method of claim 1, wherein the sensor system data includes the sensor system physical location relative to the patient and one of sensor system received data and processed received data.
10. The method of claim 9, wherein the sensor system data includes generated sensor system data.
11. The method of claim 1, further comprising employing a training system to train an automated robotic control system including one or more neural networks to control one of the determined robotic systems to perform the medical procedure activity based on the sampled sensor system data, the formed base model, and one of the target or access to target.
12. A system for forming an automated system to perform an activity of a medical procedure for a patient, the system comprising:
- a base model formation system to form a base model for a region of the patient to be affected by an activity of a medical procedure based on sensor system data monitored from a sensor system positioned to monitor an aspect of the medical procedure activity, the base model including one or landmarks and one of a target or access to the target; and
- an automated robotic control system to control a robotic system to perform an aspect of the medical procedure activity based on the monitored sensor system data and the formed base model.
13. The system of claim 12, wherein the sensor system includes a plurality of sensor systems positioned to monitor a plurality of aspects of the medical procedure activity.
14. The system of claim 12, further comprising a training system that trains the automated robotic control system to control a robotic system to perform an aspect of the medical procedure activity based on the monitored sensor system data and the formed base model.
15. The system of claim 12, further comprising a training database for storing the monitored sensor system data from the sensor system.
16. The system of claim 12, further comprising a training system to train the automated robotic control system to control a robotic system to perform the medical procedure activity based on the monitored sensor system data and the formed base model.
17. The system of claim 16, wherein the automated robotic control system includes one or more neural networks to control the robotic system to perform the medical procedure activity based on the monitored sensor system data and the formed base model.
18. The system of claim 12, wherein the sensor system data includes the sensor system physical location relative to the patient and one of sensor system received data and processed received data.
19. The system of claim 12, wherein the automated robotic control system includes one or more neural networks.
20. The system of claim 12, further comprising a training system to train an automated robotic control system including one or more neural networks to control a robotic system to perform the medical procedure activity based on the sampled sensor system data and the formed base model.
Type: Application
Filed: Jan 20, 2021
Publication Date: May 13, 2021
Inventor: Samuel Cho (Englewood Cliffs, NJ)
Application Number: 17/152,928