ENERGY DELIVERY DEVICE AND METHODS OF USE
An energy delivery system for delivering electrical energy to tissue, includes an elongate catheter member defining a longitudinal axis and dimensioned for passage within a body vessel and an expandable treatment member mounted to the catheter member. The treatment member includes an inflatable element adapted to transition between an initial condition and an at least partially expanded condition upon introduction of an anesthetic solution within the inflatable element, an electrode for delivering electrical energy to at least the nerve tissue associated with the body vessel to cause at least partial denervation thereof and at least one aperture dimensioned to permit passage of the anesthetic solution from the inflatable element to contact the body vessel whereby the solution at least enters the body vessel to at least partially anesthetize the nerve tissue therewithin. The electrode may be mounted to at least the inflatable element of the treatment member and may be generally helical.
The present application claims the benefit of, and priority to, U.S. Provisional Application Ser. No. 61/624,206 filed on Apr. 13, 2012, the entire contents of which are incorporated herein by reference. This application is also related to and incorporates by reference herein the complete disclosures of the following patent applications: U.S. Provisional Pat. App. No. 61/113,228, filed Dec. 11, 2008; U.S. Provisional Pat. App. No. 61/160,204, filed Mar. 13, 2009; U.S. Provisional Pat. App. No. 61/179,654, filed May 19, 2009; U.S. Pat. App. Pub. No. 2010/0204560, filed Nov. 11, 2009; U.S. Provisional Pat. App. No. 61/334,154, filed May 12, 2010; U.S. Pat. App. No. 13/106,658, filed May 12, 2011; U.S. Provisional Application Ser. No. 61/541,756, filed on Sep. 30, 2011; U.S. Provisional Application Ser. No. 61/593,147, filed on Jan. 31, 2012; and PCT Application No. PCT/US12/57967, filed on Sep. 28, 2012.
INCORPORATION BY REFERENCEAll publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
TECHNICAL FIELDThe present disclosure relates generally to medical devices and methods and more particularly to devices and methods for applying radiofrequency energy to tissue.
BACKGROUNDSome medical treatment procedures involve the disruption of a region of tissue. For example, medical treatment procedures include the delivery of energy to disrupt a region of tissue. Radiofrequency (“RF”) energy devices are an example of devices that can be used to perform such medical treatments.
Some RF energy devices have a single RF energy element or a plurality of discrete RF energy elements that have to be repeatedly moved within the subject in order to apply sufficient RF energy to the entire region of the tissue. Such RF energy devices may need to be moved within a patient during a given procedure, which can increase the complexity, time, and energy required to perform a given procedure.
SUMMARYAccordingly, an energy delivery system for delivering electrical energy to tissue, includes an elongate catheter member defining a longitudinal axis and dimensioned for passage within a body vessel, and an expandable treatment member mounted to the catheter member. The treatment member includes an inflatable element adapted to transition between an initial condition and an at least partially expanded condition upon introduction of an anesthetic solution within the inflatable element, an electrode for delivering electrical energy to at least nerve tissue associated with the body vessel to cause at least partial denervation thereof and at least one aperture dimensioned to permit passage of the anesthetic solution from the inflatable element to contact the body vessel whereby the solution enters a wall of the body vessel to at least partially anesthetize the nerve tissue there within. The electrode may be mounted to the inflatable element of the treatment member and may be generally helical.
In embodiments, the at least one aperture is dimensioned to deliver the anesthetic solution at a pressure sufficient to facilitate passage of the anesthetic solution at least within the wall of the body vessel. At least one of the inflatable element and the electrode may include a plurality of apertures dimensioned to deliver the anesthetic solution at the pressure sufficient to cause at least passage of the anesthetic solution within the wall of the body vessel. The apertures may be each dimensioned to deliver the anesthetic solution at a pressure ranging from about 1 atm to about 4 atm and, in embodiments, over a flow range of about 1 to about 20 mL/min. Each aperture may define a pore size ranging from about 0.5 mil to about 10 mil.
In certain embodiments, the catheter member defines a fluid lumen for delivering the anesthetic solution to the inflatable element of the treatment member. A source of anesthetic solution may be in fluid communication with the fluid lumen of the catheter member and the inflatable element of the treatment member. The system further may include a pump couplable to the fluid lumen of the catheter member. The pump may be dimensioned to deliver the anesthetic solution from the source to the fluid lumen of the catheter member at a pressure sufficient to convey the anesthetic lumen through the fluid lumen and out the apertures causing passage of the anesthetic solution at least within the wall of the body vessel. A sensor may be in fluid communication with at least the fluid lumen of the catheter member. The sensor may be a pressure sensor or transducer adapted to sense pressure corresponding to pressure within the inflatable element. In the alternative, the sensor may be a flow rate sensor adapted to detect flow rate associated with passage of the anesthetic solution through the fluid lumen.
In embodiments, the system includes a controller for controlling operation of the pump. The controller may include logic responsive to a parameter detected by the sensor to vary operation of the pump.
In some embodiments, the system includes a source of irrigation fluid in fluid communication with the inflatable element of the treatment member for passage through the apertures for, e.g., cooling the electrode and/or the tissue. The system may further include a valve in fluid communication with the source of anesthetic solution and the source of irrigation fluid. The valve may be actuable between an anesthetic mode to permit the delivery of the anesthetic solution to the fluid lumen of the catheter member and an irrigation mode to permit the delivery of the irrigation fluid to the fluid lumen of the catheter member.
In certain embodiments, the at least one aperture of the treatment member is dimensioned to permit passage of the anesthetic solution at a relatively pressure whereby the anesthetic solution slowly diffuses at least within the body vessel and migrates to the nerve tissue associated with the body vessel. In instances, the inflatable element of the treatment member is dimensioned to establish a reservoir between the inflatable element and a wall of the body vessel when in the at least partially expanded condition thereof. The reservoir receives the anesthetic solution for diffusion through the wall of the body vessel.
The treatment member may include at least one occluding element. The at least one occluding element may define a dimension greater than a corresponding dimension of the inflatable element when the at least one inflatable element is in an at least partially expanded condition thereof. The at least one occluding element may be dimensioned to at least partially occlude the body vessel to at least partially enclose the reservoir.
In some embodiments, the inflatable element is a balloon member. The balloon member includes first and second axially spaced occluding segments and a central segment between the first and second occluding segments. Each of the first and second occluding segments has a transverse dimension greater thas a corresponding transverse dimension of the central segment when the balloon member is in a first inflated condition, and dimensioned to substantially occlude the body vessel to enclose the reservoir. The balloon member may be adapted to transition between the first inflated condition and a second inflated condition where the central segment defines a greater transverse dimension to position the electrode in opposition to the body vessel to deliver electrical energy to the nerve tissue associated with and/or surrounding the body vessel. The catheter member may define a fluid lumen for delivering the anesthetic solution to the balloon member.
In other embodiments, the catheter member includes first and second occluding elements mounted adjacent opposed ends of the inflation element. The first and second occluding elements may be adapted to expand to occlude the body vessel and enclose the reservoir established between the inflatable element and the wall of the body vessel. The first and second occluding elements may be adapted for expansion independent of expansion of the inflatable element. The first and second occluding elements may be first and second occluding balloon members and the inflation element may be a treatment balloon member having the electrode mounted thereto. The catheter member may define a second fluid lumen for delivering fluid to the first and second occluding balloon members. As an alternative, the first and second occluding balloon members may be inflatable independent of each other.
In some embodiments, the treatment member includes a first balloon member and a second balloon member coaxially mounted about the first balloon member. The first and second balloon members are dimensioned to establish a reservoir between the first and second balloon members when in the at least partially inflated condition thereof. The reservoir receives the anesthetic solution and the second balloon member may include the at least one aperture dimensioned to permit passage of the anesthetic solution. The first and second balloon members may be inflatable independent of each other. The elongate member may define a second lumen for supplying fluids to the first balloon member to inflate the first balloon member.
In accordance with an aspect of the disclosure, a method for treating hypertension, includes positioning a treatment member including an inflatable segment and an electrode segment within a renal artery; delivering an anesthetic solution into the inflatable segment such that the anesthetic solution is released from at least one aperture of the treatment member to contact a wall of the renal artery whereby the anesthetic solution enters the wall of the renal artery and migrates to renal nerve tissue associated with the renal artery; and emitting RF energy from the electrode segment to disrupt renal nerve transmission to treat hypertension.
In some embodiments, delivering the anesthetic solution includes directing the anesthetic solution to target nerve tissue for alleviating pain during renal denervation. The targeted nerve tissue may include nerve tissue in the intima, media, adventitia, and/or surrounding tissue of a renal artery. The delivery of the anesthetic solution is at a pressure sufficient to enter and/or pass through the wall of the renal artery and contact the desired renal nerve tissue, and may further include directing the anesthetic solution through a plurality of apertures in the treatment member at, e.g., a pressure ranging from about 1 atm to about 4 atm.
In certain embodiments, delivering the anesthetic solution includes permitting passage of the anesthetic solution at a pressure whereby the anesthetic solution slowly diffuses through the wall of the renal artery and possibly migrates to the renal nerve tissue surrounding the renal artery. Delivering the anesthetic solution may include distributing the anesthetic solution within a reservoir defined between the inflatable segment and the wall of the renal artery. In one aspect, the treatment member may include occluding segments adjacent each end of the inflation segment. The occluding segments may be expanded to contact the wall of the renal artery to occlude the artery and substantially enclose the reservoir.
Particular embodiments of the present disclosure are described hereinbelow with reference to the accompanying drawings; however, the disclosed embodiments are merely examples of the disclosure and may be embodied in various forms. Like reference numerals may refer to similar or identical elements throughout the description of the figures.
This description may use the phrases “in an embodiment,” “in embodiments,” “in some embodiments,” or “in other embodiments,” which may each refer to one or more of the same or different embodiments in accordance with the present disclosure. For the purposes of this description, a phrase in the form “A/B” means A or B. For the purposes of the description, a phrase in the form “A and/or B” means “(A), (B), or (A and B)”. For the purposes of this description, a phrase in the form “at least one of A, B, or C” means “(A), (B), (C), (A and B), (A and C), (B and C), or (A, B and C)”.
As used herein, the terms proximal and distal refer to a direction or a position along a longitudinal axis of a catheter or medical instrument. The term “proximal” refers to the end of the catheter or medical instrument closer to the operator, while the term “distal” refers to the end of the catheter or medical instrument closer to the patient. For example, a first point is proximal to a second point if it is closer to the operator end of the catheter or medical instrument than the second point. The measurement term “French”, abbreviated Fr or F, is defined as three times the diameter of a device as measured in mm. Thus, a 3 mm diameter catheter is 9 French in diameter. The term “clinician” refers to any medical professional (i.e., doctor, surgeon, nurse, or the like) performing a medical procedure.
One aspect of the disclosure is a RF delivery device that is adapted to deliver RF energy to tissue.
Conductive material 18 is disposed on catheter 26 proximal to the expandable portion 14, and it is also disposed on the cylindrical section of inflatable element 16 in a helical pattern forming a helical electrode 19 as shown. In proximal region 2 and in proximal section 20 of the expandable portion, insulation material 34 is disposed on the layer of conductive material 18. In the cylindrical intermediate section 22 of expandable portion 14, insulation material 34 is not disposed on the helical electrode, allowing energy to be delivered to tissue through conductive material 18. In the proximal region 2 of the device, and in proximal section 20 of expandable portion 14, conductive material 18 is covered with a layer of insulation, and thus energy is not applied to tissue in those areas. The conductive material that is not covered by dielectric material on the distal portion of the system is considered an electrode. The conductive material and the electrode are in this embodiment the same material.
The conductive material 18 is disposed on substantially the entire catheter 26 in proximal region 2 of the device. “Substantially the entire,” or “substantially all,” or derivatives thereof as used herein include the entire surface of catheter 26, but also includes most of the surface of the catheter. For example, if a few inches of the proximal end of catheter 26 are not covered with conductive material, conductive material is still considered to be disposed on substantially all of the catheter. The conductive material 18 and insulation material 34 extend 360 degrees around the catheter shaft, as opposed to only covering discrete lateral sections of the catheter. Alternatively, in some embodiments the conductor covers only a portion of the lateral surface of the catheter shaft. The conductive material and insulation material may cover the entirety or only a portion of the proximal transition section of the expandable portion. The insulation will typically cover the entirety of the conductive material in this region. The conductive material and insulation material could, however, also be disposed on the distal section 24 of expandable portion 14.
In some embodiments the helical electrode makes about 0.5 revolutions to about 1.5 revolutions around the inflatable element. The number of revolutions is measured over the length of the helical electrode. The electrode may extend from the proximal transition section to the distal transition section (as shown in
One revolution traverses 360 degrees around the longitudinal axis of the expandable element. One revolution of the electrode, along an end-view of inflatable device, forms a circle, although depending on the cross sectional shape of the expandable element, the electrode can form any variety of shapes in an end-view. An electrode making 0.5 revolutions therefore traverses one half of 360 degrees, or 180 degrees. An electrode making 0.5 revolutions has distal and proximal ends that are on opposite sides of the balloon. In an end-view of the inflatable element with a circular cross section, an electrode making 0.5 revolutions has a semi-circular, or C, shape.
The proximal end of the electrode can be disposed anywhere on the expandable element and the distal end of the electrode can be anywhere on the expandable element, as long as the proximal end is proximal to the distal end. In some embodiments, the proximal end of the electrode is at the boundary between the proximal transition section and the cylindrical intermediate section of the expandable element, and the distal end of the electrode is at the boundary between the distal transition section and the cylindrical intermediate section. In other embodiments the proximal end of the electrode is disposed distal to the boundary between the proximal intermediate section and the cylindrical intermediate section of the expandable element, and the distal end is proximal to the boundary between the distal transition section and the central intermediate section of the expandable element. In these other embodiments the electrode is considered to extend along a subset of the length of the central intermediate section of the expandable element. In the embodiment shown in
The device is adapted to be coupled to an RF generator, which supplies RF current through the conductive material 18 on catheter 26 and inflatable element 16. In this manner RF current can be delivered to the desired tissue. Energy is thus applied to tissue in the configuration of the conductive material on the intermediate section 22 of the expandable portion 14, which in this embodiment is a helical, or spiral, configuration.
Within the expandable portion, catheter 26 is not covered with conductive material or insulation material. Catheter 26 includes guide element lumen 36 and inflation lumen 28, also referred to herein as irrigation lumen, extending therethrough. Guide element lumen 36 extends from the proximal end of the device (not shown) to the distal end. Irrigation lumen 28 extends from the proximal end of catheter 26 (not shown) to a location within inflatable element 16. Irrigation port 30 is located inside inflatable element 16 and is in between proximal and distal ends of irrigation lumen 28. Irrigation lumen 28 and irrigation port 30 provide for fluid communication between the irrigation lumen and the interior of inflatable element 16.
Expandable portion 14 includes one or more irrigation apertures 38 to allow irrigation fluid to pass from inside inflatable element 16 to outside inflatable element 16. The irrigation apertures can be formed only in the electrode section of expandable portion 14 (see, for example,
The irrigation fluid is adapted to cool the electrode on the inflatable element. The irrigation fluid cools the RF electrode as it flows within the inflatable element and after it passes through the apertures as it flows across the outer surface of the inflatable element. Temperature sensor 129 is adapted to sense the temperature of the fluid within inflatable element 116. The signal from the temperature sensor may be used in a feedback control mechanism to control the flow of fluid from a fluid reservoir (now shown) into the inflatable element. Alternatively, the irrigation fluid may be delivered at a substantially constant rate and the signal from the temperature sensor used as signal to automatically shut off the RF generator if the sensed fluid temperature is above a threshold limit, thereby terminating that portion of the procedure. Such a condition is considered a fault and after identification and resolution of a fault, a procedure may be restarted.
In some embodiments, an anesthetic (such us lidocaine) may be added to the irrigation fluid, in order to reduce patient discomfort. In some such embodiments, it might be desirable to deliver the irrigation fluid and anesthetic at a higher pressure in order to achieve better tissue passage. The anesthetic may be introduced as a bolus in the initial part of the balloon inflation and electrode irrigation procedure. Alternatively, the balloon may be inflated with an anesthetic solution prior to RF energy delivery, then deflated to remove the anesthetic solution followed by reinflation with a saline solution to serve as the irrigation for the RF procedure. Delivery of the anesthetic solution may be preceded by inflation of the balloon (such as, e.g., with a contrast agent in the balloon or with saline in the balloon and contrast agent injected proximally to the balloon) to confirm positioning. Additional embodiments of energy delivery devices incorporating systems for delivery of anesthetic solution will be discussed hereinbelow.
One aspect of the disclosure is a system to delivery RF energy to treatment tissue.
An embodiment of pressure sensor 332 from the system in
The disclosure includes methods of using any of the RF delivery devices and systems herein. In some embodiments the devices and/or systems are used to treat hypertension by disrupting the transmission within renal nerves adjacent one or both renal arteries.
The present methods control renal neuromodulation via thermal heating mechanisms. Many embodiments of such methods and systems may reduce renal sympathetic nerve activity. Thermally-induced neuromodulation may be achieved by heating structures associated with renal neural activity via an apparatus positioned proximate to target neural fibers. Thermally-induced neuromodulation can be achieved by applying thermal stress to neural structures through heating for influencing or altering these structures. Additionally or alternatively, the thermal neuromodulation can be due to, at least in part, alteration of vascular structures such as arteries, arterioles, capillaries, or veins that perfuse the target neural fibers or surrounding tissue.
Thermal heating mechanisms for neuromodulation include both thermal ablation and non-ablative thermal alteration or damage (e.g., via sustained heating or resistive heating). Thermal heating mechanisms may include raising the temperature of target neural fibers above a desired threshold to achieve non-ablative thermal alteration, or above a higher temperature to achieve ablative thermal alteration. For example, the target temperature can be above body temperature (e.g., approximately 37 degrees C) but less than about 45 degrees C for non-ablative thermal alteration, or the target temperature can be about 45 degrees C or higher for the ablative thermal alteration.
The length of exposure to thermal stimuli may be specified to affect an extent or degree of efficacy of the thermal neuromodulation. For example, the duration of exposure can be as short as about 5, about 10, about 15, about 20, about 25, or about 30 seconds, or could be longer, such as about 1 minute, or even longer, such as about 2 minutes. In other embodiments, the exposure can be intermittent or continuous to achieve the desired result.
In some embodiments, thermally-induced renal neuromodulation may be achieved via generation and/or application of thermal energy to the target neural fibers, such as through application of a “thermal” energy field, including, electromagnetic energy, radiofrequency, ultrasound (including high-intensity focused ultrasound), microwave, light energy (including laser, infrared and near-infrared) etc., to the target neural fibers. For example, thermally-induced renal neuromodulation may be achieved via delivery of a pulsed or continuous thermal energy field to the target neural fibers. The energy field can be sufficient magnitude and/or duration to thermally induce the neuromodulation in the target fibers (e.g., to heat or thermally ablate or necrose the fibers). As described herein, additional and/or alternative methods and systems can also be used for thermally-induced renal neuromodulation.
The energy field thermally modulates the activity along neural fibers that contribute to renal function via heating. In several embodiments, the thermal modulation at least partially denervates the kidney innervated by the neural fibers via tearing. This may be achieved, for example, via thermal ablation or non-ablative alteration of the target neural fibers.
In some uses in which RF energy is used to ablate the renal nerve, the RF delivery device is first positioned within one or more renal arteries and RF energy is delivered into renal nerves to disrupt the nerve transmission sufficiently to treat hypertension. The disruption pattern within the artery preferably extends substantially 360 degrees around the artery. Electrodes that treat tissue falling diametrically in a single plane normal or oblique to the longitudinal axis of the vessel have been shown to increase the risk of stenosing a vessel treated with RF energy. Spiral, or helical, patterns as described herein create patterns of treated tissue for which the projection along the longitudinal axis is circular and therefore have a high probability of treating any renal nerve passing along the periphery of the renal arery. The patterns, however, have minimal risk of creating a stenosis. Previous attempts have used a point electrode at a distal end or distal region of a device. In these attempts, the electrode is disposed in the renal artery followed by RF energy delivery. To disrupt renal nerve tissue in a non circumferential pattern using a point electrode, the device is first positioned within the renal artery adjacent arterial tissue. RF energy is then delivered to disrupt a region of renal nerve. The device must then be moved axially (distally or proximally) and rotated, followed by additional RF delivery. The movement and RF delivery is repeated in a pattern until the renal nerves have been sufficiently disrupted. The repeated movements are time consuming and increase the complexity of the overall process for the physician. During an emergency situation the physician may lose track of the position and sequence of previous burns thereby jeopardizing the likelihood of creating a pattern sufficient to treat the neural tissue or be forced to increase the number of burns thereby over-treating the patient.
Utilizing a single helical electrode as described herein provides procedural improvements over previous attempts. By using an electrode with the configuration of the desired treatment region, the device need not be moved to disrupt tissue in a desired treatment configuration. In particular the device need not be moved axially or rotated to treat an entire renal nerve treatment region. This reduces the overall time of the treatment. Additionally, this allows energy to be delivered to a desired treatment region in a variety of patients with much greater predictability. Additionally, if markers are used that allow for rotational alignment, the device may be moved and/or removed and then replaced and realigned, allowing the procedure to be restarted at a later time.
A method of using an RF delivery device to treat hypertension is shown in
The RF delivery device is positioned in a renal artery using a percutaneous access through a femoral artery. The expandable portion is delivered into the renal artery in a collapsed configuration (not shown). Once the expandable portion is in position, fluid from fluid reservoir 326 is pumped in an open loop control configuration, under constant flow, through irrigation line 328 and into inflatable element 116 by pump 330. Fluid flow into inflatable element 116 causes inflatable element 116 to expand. Device 110 in
The fluid continually passes through apertures 138 in the expandable portion as it is replaced with new fluid from fluid reservoir 326. Once fully expanded, the conductive material 118 on the inflatable element fully assumes the helical configuration, as shown in
In general, the RF signal characteristics are chosen to apply energy to depths at which the renal nerves are disposed to effectively ablate the renal nerves. In general, the power is selected to ablate a majority of the renal nerves adjacent to where the device is positioned within the renal nerve. In some embodiments the tissue is ablated to a depth of between about 3 mm to about 7 mm from the tissue closest to the device in the renal artery.
The RF signal can have the following characteristics, but these are not intended to be limiting: the frequency is between about 400 KHz to about 500 KHz and is a sine wave; the power is between about 30 W to about 80 W, the voltage is between about 40v and about 80v; and the signal is an intermittent signal.
Tissue treated by the RF energy via the helical electrode comprised is shown as regions 1005, delineated by a dashed line. As illustrated, a region of treated tissue 1005 adjacent to the cut away section of conductor 118 includes nerve 1004. The device is shown being used in monopolar mode with a return electrode 340 positioned somewhere on the patient's skin.
Control unit 324 controls the operation of pump 330 and therefore controls the flow rate of the fluid from reservoir into the inflatable element. In some embodiments the pump is continuously pumping at constant flow rate such that the flow is continuous from the reservoir, as is illustrated in
The irrigation fluid is delivered from the pump through irrigation line 328 to irrigation lumen 128 to irrigation port 130 into the inflatable element 116, and then out of the inflatable element through irrigation apertures 138. The pressure measured at the pressure sensor is driven by flow rate and the series sum of the fluid resistance of all of the elements in the fluid path. The choice of fluid flow rate is driven by the required cooling rate and limited by the amount of irrigant fluid that can be tolerated by the patient which is delivered during the sum of treatments cycles. The system is designed such that at the desired fluid flow there is a defined operating pressure within the inflatable element. An optimal inflatable element inflation pressure is a pressure that is sufficient to completely inflate the inflatable element such that the RF electrode engages the treatment tissue. The operating pressure within the inflatable element will be driven by the fluid flow, the number of apertures, and their cross sections. The distribution, number, and cross section of the irrigation apertures will be driven by the flow rate, the configuration of the electrode, the intended operating pressure, and the maximum desired exit velocity for the irrigation fluid. If the number of apertures is too small and the distribution too sparse some areas of the surface will not receive appropriate irrigation and thereby be subject to overheating and possible charring of tissue. For a set of circular apertures and a given flow rate, the mean exit velocity for the irrigation fluid will drop as the number of apertures is increased while decreasing the cross sectional area of each aperture such that the fluid resistance of the sum of apertures is appropriate to maintain the desired inflation pressure. Minimizing the irrigation fluid exit velocity minimizes or precludes the possibility that lesions will be eroded through the treatment tissue.
A set of operating conditions and design parameters is now provided, and is not meant to be limiting. An inflation pressure between about 0.5 atm and less than about 4 atm used with a noncompliant inflatable element of approximately 0.75 mil (˜19 um) thick ensures tissue engagement in a renal artery. In some particular embodiments the inflation pressure is about 2 atm +/−0.5 atm. The irrigation fluid delivery rate is between about 1 mL/min and about 20 ml/min. In some particular embodiments the delivery rate is about 10 mL/min +/−2 mL/min. The expandable portion includes eight irrigation apertures about 2.6 mil (0.0026 inches) in diameter distributed on either side of the helical electrode and equally spaced along the edge of the electrode. In such a configuration the mean exit velocity is about 6 m/sec. In some embodiments the maximum mean fiuid exit velocity is between about 1 m/sec and about 20 m/sec.
The above operating parameters are not intended to be limiting. For example, the inflation pressure can be between about 0.5 atm (or less) and about 10 atm, the flow rate can be between about 1 mL/min to about 50 mL/min, and any suitable number of apertures with any suitable size can be incorporated into the device. Apertures may be of the same size or of different sizes and may also be uniformly or non-uniformly distributed through and/or about the electrode. The apertures are sized such that the total resistance of the set of apertures is appropriate to maintain the pressures defined herein internal to the inflatable element at the desired flows described herein. Alternatively, the total resistance is such that the desired flows described herein are maintained at the desired pressures described herein. The total resistance for the parallel combination of apertures is calculated as the inverse of the sum of the inverses of the individual aperture resistances.
The system shown also includes pressure sensor 332, which is adapted to determine if the pressure rises above or below threshold limits. If the fluid pressure rises above an established limit, the controller shuts off the RF energy, and fluid pump 330 is automatically shut off. The pressure can elevate if one or more of the apertures become blocked, preventing fluid from passing out of the balloon, which can prevent the electrode from being cooled sufficiently. Controller 324 therefore runs fluid pump 330 in a binary manner, either open-flow or off.
The system as shown also includes a temperature sensor 129 secured to the catheter within the inflatable element. If the seared temperature of the fluid is above a threshold limit, the fluid will not properly cool the electrode. If the sensed fluid temperature is above a threshold limit, control unit 324 is adapted to cease RF current delivery. The fluid temperature in the balloon can rise if one or more apertures are blocked, preventing the electrode from being properly cooled and also increasing the risk of charring. The fluid pressure generally will rise above a threshold limit if this occurs as well. In some embodiments the system has only one of the temperature sensor and pressure sensor.
The system may also include bubble sensor 334, which is adapted to sense bubbles in the fluid line and communicates with control unit 324 to shut off pump 330 if bubbles of sufficient volume are detected.
The system can also include a flow sensor to determine if the flow rate has gone below or above threshold limits. RF energy delivery is automatically stopped and the pump is automatically shut down if the flow rate goes above or below the threshold limits.
In an alternate embodiment to that of
In general, using a greater number of smaller holes provides substantially the same resistance as a fewer number of larger holes, but mean fluid exit velocity is diminished.
Device 210 is also adapted to query the nervous tissues adjacent to the device, but need not include this functionality. Device 210 includes nerve conduction electrodes 215 located on the outer surface of the dumbbell shaped proximal and distal ends of the expandable portion 214. In use, an electrical signal, typically a low current pulse or group of pulses is transmitted to one of the conduction electrodes. This triggers a response in adjacent renal nerves, which then travels along the nerves and at some time “t” later is sensed by the opposite electrode when the signal is traveling in the appropriate direction. By alternating which electrode is used as the exciter and which the sensor, both changes in efferent and afferent nerve conduction in the renal nerves may be monitored as a function of RF treatments induced by the RF electrode. The conduction electrodes are wired to the sensing circuits in the controller via wires traveling within the catheter shaft, as in the irrigation lumen, or additional lumens (not shown), or multiple conductors may be applied to the outer surface of the shaft (not shown).
In use, the dumbbell configuration creates a small space between the helical electrode and the arterial wall. The irrigation fluid, such as saline, can be used to act as a conductor and transfer energy from the electrode to the tissue. In such a system, the impedance variations, at the interface between the tissue and the electrode, associated with surface irregularities and variations in contact between the electrode and tissue will be minimized. In this manner the fluid can act both to cool the electrode and to transfer energy to tissue. The thin layer of fluid between the electrode and tissue can also prevent sticking and add lubrication.
Unless specifically stated to the contrary, the embodiment of
The configuration of RF delivery device 210 is less dependent on considerations listed above with respect to the embodiment in
In use, the embodiment from
One aspect of the disclosure is a method of manufacturing RP delivery devices.
Inflatable element 116, which can be an inflatable balloon, is then secured to the exterior of catheter 126 using any suitable technique such that irrigation port 130 is disposed within inflatable element 116. Next, mask 60 is applied or slid over inflatable element 116. The mask is configured such that it covers areas where the conductive material is not to be deposited and is open where conductive material is to be applied. In
In some embodiments of manufacturing the device, the layers of conductive material and insulation material are between about 0.0001 and about 0.001 inches thick. In some embodiments the conductive layer is about 0.0003 inches thick. In some embodiments the insulation layer is about 0.0005 inches thick.
Alternate methods for deposition of the conductor and/or the dielectric layers which that can be used and do not require masking include ink jet and or pad printing techniques.
These methods of manufacturing form a unitary conductor. A “unitary conductor” as described herein is a single conductive material comprising both a conduction element and an electrode element wherein the conductive element communicates energy between the controller and the electrode element.
The conductive and insulation materials can each be deposited on substantially all of elongate portion 112 (excluding the portion within expandable portion 114) and expandable portion 114 in a single step, reducing the time necessary to form the conductive and insulation layers, respectively. This can also simplify the manufacturing process. To deposit the conductive and insulation material, the device can be secured to a mandrel and spun while the material is deposited, or the device can be secured in place while the device used to deposit the material is moved relative to the device, or a combination of the two steps. “Single step” as used herein includes a step that applies the material without stopping the deposition of material. For example, the conductive material can be deposited on substantially all of the catheter proximal to the inflatable element and to the inflatable element in a single step. “Single step” as used herein also includes applying a second or more coats to the elongate portion and the expandable portion after initially ceasing the deposition of material. For example, a process that applies a first coat of conductive material to substantially all of the catheter proximal to the inflatable element and to the inflatable element, followed by a ceasing of the deposition, but followed by application of a second coat to substantially the entire portion of the catheter proximal to the inflatable element and to the inflatable element, would be considered a “single step” as used herein. Some previous attempts to form a conductive material on an elongate device formed one or more discrete conductive elements on the elongate device, thus complicating the deposition process. These and other attempts failed to appreciate being able to form a single layer of conductive material on substantially all of the catheter or other elongate device. These attempts failed to appreciate being able to form single layer of conductive material on the catheter and an electrode element on an expandable element in a single step.
By disposing the conductive material on the external surfaces of the catheter and inflatable element in a single step, the creation of electrical junctions is avoided. For example, a junction need not be formed between the conductive material on the catheter and the conductive material on the inflatable element. As used herein, electrical junction refers to a connection created between two conductive materials, either the same or different materials, that allows an electrical signal to be conducted from one material to the other.
The inflatable element is, in some embodiments, an inflatable balloon that is adapted to be inflated upon the delivery of a fluid through the irrigation lumen and out of the irrigation port. In the embodiment in
In some embodiments of the embodiment in
The conductive material can be deposited onto the catheter and/or expandable portion. Methods of depositing include, without limitation, pad printing, screen printing, spraying, ink jet, vapor deposition, ion beam assisted deposition, electroplating, electroless plating, or other printed circuit manufacturing processes.
In some embodiments the conductive material deposited is an elastomeric ink and the dielectric material is an elastomeric ink. They can be sprayed on the respective components. In some embodiments the elastomeric ink is diluted with an appropriate diluent to an appropriate viscosity then sprayed in a number of coats while the delivery device is rotated beneath a linearly translating spray head.
Conductive materials that can be deposited on the device to form one or more conductive layers of the device include conductive inks (e.g., electrically conductive silver ink, electrically conductive carbon ink, an electrical conductive gold ink), conductive powders, conductive pastes, conductive epoxies, conductive adhesives, conductive polymers or polymeric materials such as elastomers, or other conductive materials.
In some embodiments the conductive material comprises an elastomeric matrix filled with conductive particles. Elastomeric components include silicones and polyurethanes. Conductive materials are conductive metals such as gold or silver. Conductive inks that can be used are conductive ink CI-1065 and CI-1036 manufactured by ECM of Delaware Ohio. This ink is an extremely abrasion resistant, flexible, and highly conductive elastomeric ink. The ink has the following properties: 65% solids in the form of silver flakes; 0.015 ohms/square (1 mil (0.001 inches) thick); and a 10 minute cure time at 248 F.
The electrodes described herein can also be used as a temperature sensor. Ablative electrodes are routinely used in wide variety of surgical procedures. Many of these procedures are performed percutaneously, and a subset are performed endovascularly. In many of these procedures it is customary to incorporate provisions to monitor the temperature of the ablative electrodes. This temperature information is then used in some fashion as an input in a control scheme to limit the maximum temperature the electrode is allowed to attain. In this fashion a number of mechanisms, that may be deleterious to the desired outcome, may be controlled and or limited. Some of these effects, which in some circumstances are considered deleterious are, tissue charring, creation of steam, and the resultant uncontrolled, rapid, or large changes in interface impedance.
The temperature monitoring is typically carried out by incorporating and mounting some form of a temperature sensor such as a thermocouple, an rdt, or a thermistor in proximity to, or on, the electrode.
The electrodes are typically comprised of metals or metal alloys which are either deposited as metals directly through various metal deposition procedures such as, but not limited to physical or chemical metal vapor deposition, or applied as a component in a matrix such as but not limited to organic polymers in the form of an ink. Such inks are deposited in many ways, a few of which are, screening, spraying, ink jetting.
Metals, metal alloys, and other metal compound have resistance characteristics which are dependent on temperature, typically called the temperature coefficient of resistance or “tempco.” The magnitude and characteristics of these effects varies and is often used in devices such as a resistance temperature detector “RTD”, such as a platinum rtd's, or in positive temperature coefficient “PTC” or negative temperature coefficient “NTC” thermistors.
The systems herein can therefore altentatively monitor temperature by using the inherent tempco of the electrode itself as a way of monitoring its temperature and or controlling its impedance and thereby self-limiting its power output and thereby its temperature.
In one embodiment the electrode is comprised of a layer of platinum and the temperature of the electrode may be characterized by monitoring the voltage drop across the series resistances 626, 619, 650. This may be done intermittently, interspersed in the delivery of the RF energy. As the electrode heats, its resistance will increase in a well-known and repeatable fashion. As the leads 626 and 650 have lower resistance and will not self-heat appreciable, the change in resistance will by primarily due to the heating of electrode 619 and variation in its resistance. Many other scenarios will be understood to those skilled in the art.
An alternate arrangement which relies on the use of a PTC for the electrode relies on the rapid change in resistance of the electrode past a particular set point which is a function of the composition of the electrode. In this configuration the tempco of the electrode is relatively small, for example, below about 40 C but above about 40 C. In this temperature range the tempco rapidly increases thereby limiting delivered power in a voltage-limited RF configuration. Many alternate embodiments will be understood by those skilled in the art.
In yet another alternative the tempco associated with a conductive ink such as the ECM CI-1036 may be used. Experimentally the ECM CI-1036 demonstrated a 0.1% increase in impedance per degree over the range of 30 C to 60 C.
As described above, devices capable of ablating renal nerves surrounding the renal arteries are useful in treating hypertension. The device disclosed in
Referring to
Prior to assembly, a conductive material is deposited on substantially the entire inner shaft 830. A dielectric material is then deposited on the conductive material except at the distal most end of the inner shaft 830. The inner shaft 830 is then lilted within the outer shaft 840 and the two are affixed to one another such that the inner shaft 830 extends beyond the most distal portion of the outer shaft 840 and the balloon 850. The dielectric on the inner shaft 830 is deposited on at least the portions of the surface of the conductor on the inner shaft 830 that would contact irrigation fluid, thus preventing the conductive material on the inner shaft 830 from coming into contact with irrigation fluid. The distal end of the inner shaft 830, which extends distal to the outer shaft 840, is not coated with dielectric. This allows the inner shaft 830 to be in electrical communication with the inner sourced electrode as described below.
Next, the outer shaft 840 and balloon 850 are coated with an elastomeric ink, and then, subsequently, by a dielectric as described above. The conductive coating is deposited on the outer shaft 840, all or a portion of the proximal cone 843 of the balloon 850, and on the balloon 850, forming a conductive material that includes an outer sourced spiral electrode 842. This conductive material can be deposited in a uritary manner, as is described above and in the materials incorporated by reference herein. Conductive material is also deposited on the most distal section of the shaft assembly, the distal cone portion 833 of the balloon 850, and the balloon 850, forming a conductive material that includes an inner sourced electrode 832. This conductor can also be formed in a unitary manner. The conductive material that forms the inner sourced electrode can be the same material that is used for the outer sourced electrode. When the distal conductor (which includes the inner sourced electrode 832) is formed, it interfaces electrically with the conductor on the inner shaft 830 that extends distal to the balloon 850. The conductive materials can be selected such that when the conductive materials are deposited, the interface is a single layer of the same material rather than two distinct layers. The conductor and dielectric structures can be fabricated as described above. When used in bipolar mode, energy passes from one spiral electrode 832 or 842, through renal nerve tissue, to the other electrode. The electrodes 832, 842 can be used in a bipolar manner, or each electrode can be used in monopolar mode. Bipolar mode can be used if the tissue burn need not be in deep as may be needed if using a monopolar mode. Bipolar mode generally allows more control in the tissue burn. Additionally or alternatively, the electrodes 832, 842 can be used together as a single monopolar electrode (e.g., by feeding both electrodes with the same frequency and RF energy such that the electrodes appear to be one electrode).
In an alternative embodiment, the inner shaft is not coated with a conductor (or dielectric) and, instead, a wire extends through the irrigation lumen, and interfaces the conductor that includes the inner sourced electrode.
Although not shown in
One or more radio opaque markers 813 may be affixed to the outer shaft.
In embodiments, an anesthetic solution may be introduced in conjunction with, or independent of, the irrigation fluid, to potentially reduce pain or discomfort associated with renal denervation treatment. Suitable anesthetics include lidocaine, articaine, bupivacaine, cinchocaine/dibucaine, etidocaine, levobupivacaine, lidocaine/lignocaine, mepivacaine, prilocaine, ropivacaine, trimecaine. Other possibilities include, but are not limited to drugs which target neuropathic pain such as: butyl-para-aminobensoate (Butamben), an ester local anesthetic, bupivacaine microspheres, SNX-111 (a selective calcium channel blocker), nicotinic acetylcholine receptor agonists such as ABT-594, and adrenergic blocking agents such as guanethidine or reserpine. Lidocaine is particularly suitable because it is approved for arterial use and the systemic limits are understood. In addition, lidocaine is a small molecule, which may result in faster diffusion through the artery wall. A contrast agent may be incorporated in the solution to enable visualization of the delivery of the anesthetic solution and confirmation that the targeted nerve structure has been engulfed by the solution. The contrast agent can be mixed with the anesthetic solution before the mixture is conveyed through the catheter. Examples of suitable contrast agents include those traditionally used for angiographic imaging such as the non-ionic fluoroscopic contrast agents that are iodate based (e.g., UltraVist 300).
Several factors for consideration in the delivery of an anesthetic solution as part of a renal denervation procedure include the ability to control the total dose or volume delivered and the ability to control the residence time or period the anesthetic solution remains at the treatment site while considering parameters relating to mobility, tissue density, etc. to ensure the anesthetic solution reaches the target renal nerves. The total volume delivered may vary depending on the targeted tissue and the anesthetic used. For lidocaine, the volume may be about 10 ml for a 1% solution.
Various approaches for delivery of the anesthetic solution to target nerve tissue for alleviating pain during renal denervation include, e.g., a high pressure delivery approach and/or a dwell time approach. The targeted nerve tissue may include nerve tissue in the intima, media, adventitia, and/or surrounding tissue of a renal artery. Generally, a high pressure delivery approach involves delivering anesthetic solution under relatively high pressure against the renal artery wall to cause passing within and/or through the wall via the vaso vasorum and infiltrate the targeted nerve tissue. With the dwell time approach, the anesthetic solution is maintained within the renal artery for a period of time to eventually diffuse or otherwise migrate through the vessel wall to at least partially engulf the targeted nerve tissue. Any of the aforedescribed embodiments of the energy delivery devices may be modified to deliver the anesthetic solution via the high pressure or dwell time approaches.
Referring now to
The energy delivery system 2000 further includes an irrigation or inflation source 2018 and associated irrigation fluid line 2020. The irrigation source 2018 includes fluids for expanding the treatment member 2008 and/or for cooling tissue and/or for cooling the conductive material on the treatment member 2008. Any of the aforementioned irrigation fluids may be utilized.
The energy delivery device 2000 further includes a source of anesthetic solution 2022 and associated anesthetic fluid line 2024. The anesthetic source 2022 may include any of the anesthetic solutions mentioned hereinabove or other anesthetic solutions.
The energy delivery system 2000 may further include a valve 2026 which is in line with the irrigation fluid line 2020 and the anesthetic fluid line 2024 to permit selective infusion of either the irrigation fluid or the anesthetic solution. The valve 2026 may be manually operated or may be controlled via automation (e.g., programmable) to switch between an irrigation mode for supplying irrigation fluids from the irrigation source 2018 and an anesthetic mode for supplying the anesthetic solution from the anesthetic source 2022. A pump 2028 may be in fluid communication with the valve 2026 to deliver the irrigation fluid or the anesthetic solution under pressure to the fluid lumen 2012 via a supply line 2030.
The energy delivery system 2000 may also include a controller, identified schematically as reference numeral 2032, with associated logic, software or circuitry for controlling operation of the pump 2028 and/or the valve 2026. The software may contain at least one program for automated operation of the pump 2028 and/or the valve 2026 and/or may operate in response to various parameters detected during operation. For example, a sensor 2034 may be in communication with the feed line 2030 extending from the pump 2028 to the fluid port 2012 of the catheter hub 2004 to detect flow rate (e.g., a flow rate sensor) or pressure associated (e.g., a pressure sensor or transducer) with the irrigation fluid or anesthetic solution delivered to the expandable treatment member 2008. The activity of the pump 2028 (e.g., an increase or decrease in pump speed, output or flow rate) may be controlled by the controller 2032 based at least in part on parameters detected by the sensor 2034. Signals transmitted between the controller 2032 and the valve 2026, the pump 2028 and the sensor 2034 are represented as signals “v1”, “v2”, “v3”, respectively.
The expandable treatment member 2008 may be any of the expandable portions described hereinabove. In embodiments, the treatment member 2008 includes a balloon or inflatable element 2036, a helical electrode 2038 on the outer surface of the inflatable element 2036 for delivering energy to the renal nerve tissue and non-conductive segment or material 2040 surrounding the helical electrode 2038. The treatment member 2008 further includes a plurality of apertures 2042 defined in the inflatable element 2036 and/or the helical electrode 2038. In
In operation, with reference to
Once the renal nerves are desensitized by the anesthetic solution “s”, the valve 2026 can be switched to the irrigation mode and the controller 2032 activated to introduce irrigation and/or inflation fluids through the inflation lumen 2015 and within the inflatable element 2036. In the irrigation mode, the flow rate and pressure may be reduced relative to the anesthetic mode to a pressure, e.g., below 1 atm. The inflatable element 2036 expands to position the helical electrode 2038 in apposition with the wall of the renal artery “a”. The system is energized and energy is delivered through the helical electrode 2038 to treat and/or denervate the renal nerves. The irrigation fluid cools the electrode 2038 and surrounding tissue as described hereinabove.
If during treatment, it is determined that another injection of anesthetic solution “s” is warranted, the irrigation fluid within the irflatable element 2036 may be drained either passively or actively from the inflatable element 2036, and the anesthetic fluid delivered directly to the uninflated inflatable element 2036 for delivery to the nerve tissues through the apertures 2042. In some embodiments, the anesthetic solution may be prefilled within the inflatable element 2036, and used to purge the system 2000 prior to use. This may present a more efficient and faster method for delivery of the anesthetic solution “s’.
In embodiments, the helical electrode 2042 may be used to enhance the delivery of the anesthetic solution “s” through electrophoresis. For example, the helical electrode 2042 can be used to deliver a low current high voltage creating a charge gradient across the tissue, which increases the infusion rate of ionic anesthetic solutions “s” through the wall and into the nerves. In some embodiments, the generator associated with the controller 2032 can have two settings. The first setting can be for the delivery of a high voltage low current signal to the electrode 2038 during delivery of the anesthetic solution “s” to establish the electrophoretic environment. The second setting can be for the delivery of RF energy for nerve ablation. The use of electrophoresis to improve infusion of anesthesia into the tissue can be used with any of die single electrode helical electrode configurations described in
In embodiments, the source of anesthetic solution 2022 and the pump 2028 may be replaced with a syringe 2100 containing the anesthetic solution “s” (
As indicated hereinabove, in certain embodiments, instead of, or in addition to, the high pressure delivery of anesthetic solution to the renal nerves, a dwell-time approach may be utilized for delivery of anesthetic solution to the renal nerves. In accordance with this approach, the anesthetic solution is caused to dwell for a sufficient period of time at the treatment site such that the anesthesia solution has time to passively diffuse or otherwise move through the wall of the renal vasculature, e.g., the renal artery “a” or a renal vein. Increasing the dwell time of anesthetic solution at the treatment site can effectively increase the volume of delivered anesthesia that passes within and/or through the wall of the renal artery. This can, for example, result in delivery of an effective amount of anesthetic while using only a small portion of the overall systemic dose of the anesthetic solution.
In embodiments, the anesthetic solution may incorporate or be infused with microbeads. For example, microbeads can be saturated in an anesthetic such as lidocaine. The saturated microbeads can be mixed with saline to form the anesthetic solution and the solution can be delivered to the inflatable member 2036. The anesthetic solution will leave the microbeads as the microbeads migrate through the vessel wall of the renal artery “a” acting as a localized drug source delivering the anesthetic for a predetermined period of time during their migration and when at rest. This may increase the amount of time the anesthetic or drug is active in the area. This can facilitate the use of less anesthetic solution and allow for the anesthetic to be active for a longer period of time as compared to an injected drug, which gets removed by the lymphatics.
In the alternative, the dwell time of anesthesia delivery may be increased by altering the rate of delivery of the anesthetic solution into the inflatable element of the treatment member thereby slowing the infusion rate into the renal artery. One procedure using an anesthetic solution containing lidocaine for treating renal arteries prior to an RF ablation for the treatment of hypertension includes a slow infusion of 2-4 ml of a 1% lidocaine solution (20-40 mg lidocaine) with an upper limit of a bolus 10 ml (100 mg lidocaine). Referring now to
In operation, a catheter member 2410 is advanced to position the inflatable element 2400 within the renal vasculature at the targeted site. The inflatable element 2400 is inflated to assume the first state or condition with the proximal and distal end segments 2402, 2404 engaging and at least partially occluding the vessel wall with the intermediate segment 2406 spaced from the wall to define the annular reservoir “r” discussed hereinabove and shown in
In operation, the expandable treatment member 2500 is positioned at the desired location within the renal artery “a”. The proximal and distal occluding balloon elements 2502, 2504 are simultaneously inflated with the irrigation fluid to occlude the renal artery at upstream and downstream locations as shown in
In use, the first inflation element 2702 is at least partially inflated or fully inflated through introduction of irrigation fluids through the first lumen 2706 and out the first port 2708. The second inflation element 2704 is inflated with, e.g., the anesthetic solution “s” through introduction of the solution through the second lumen 2710 and the second port 2712. The anesthetic solution “s” fills the space or reservoir defined between the inner wall of the second inflation element 2704 and the outer wall of the first inflation element 2702. The anesthetic solution “s” passes through the apertures 2716 for delivery within and/or through the wall of the renal artery “a” into the nerve structure “t”. In embodiments, the first inflation element 2702 may be fully expanded to the position depicted in
Subsequent to the treatment with the anesthetic solution “s”, the irrigation fluid is introduced through the second lumen 2710 and into the interior volume of the second inflation element 2704. The irrigation fluids pass through the apertures 2716 to cool the electrode 2714 and/or surrounding tissue. The first inner inflation element 2702 maybe inflated/deflated to any predetermined inflation state during introduction of the anesthetic solution “s” or the irrigation fluid within the second inflation element 2704. The independent inflation of the first inflation element 2702 to maintain apposition of the electrode 2714 against the vessel wall allows the flow rate of anesthetic and/or the irrigation fluid to be independent of maintenance of the apposition of the electrode 2714 against wall. Additionally, full inflation of the first inner inflation element 2702 may reduce the volume and/or flow rate of anesthetic solution “s” or irrigation fluid required to be delivered while maintaining the electrode(s) 2714 in contact with the vessel wall.
While several embodiments of the disclosure have been shown in the drawings and/or discussed herein, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplifications of particular embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.
Claims
1. An energy delivery system for delivering electrical energy to tissue, the energy delivery system comprising:
- an elongate catheter member defining a longitudinal axis and dimensioned for passage within a body vessel; and
- an expandable treatment member mounted to the catheter member, the treatment member including: an inflatable element adapted to transition between an initial condition and an at least partially expanded condition upon introduction of an anesthetic solution within the inflatable element; an electrode for delivering electrical energy to at least nerve tissue associated with the body vessel to cause at least partial denervation thereof; and at least one aperture dimensioned to permit passage of the anesthetic solution from the inflatable element to contact the body vessel whereby the solution enters a wall of the body vessel to at least partially anesthetize nerve tissue therewithin.
2. The energy delivery system according to claim 1 wherein the electrode is mounted to at least the inflatable element of the treatment member.
3. The energy delivery system according to claim 2 wherein the electrode is generally helical.
4. The energy delivery system accoiding to claim 1 wherein the at least one aperture is dimensioned to deliver the anesthetic solution at a pressure sufficient to facilitate passage of the anesthetic solution at least within the wall of the body vessel.
5. The energy delivery system according to claim 4 wherein at least one of the inflatable element and the electrode includes a plurality of apertures dimensioned to deliver the anesthetic solution at the pressure sufficient to cause passage of the anesthetic solution at least within the wall of the body vessel.
6. The energy delivery system according to claim 4 wherein the apertures are each dimensioned to deliver the anesthetic solution at a pressure ranging from about 1 atm to about 4 atm.
7. The energy delivery system according to claim 6 wherein the apertures are each dimensioned to deliver the anesthetic solution at a pressure ranging from about 1 atm to about 4 atm and over a flow range of about 1 to about 20 mL/min.
8. The energy delivery system according to claim 7 wherein each aperture defines a pore size ranging from about 0.5 mil to about 10 mil.
9. The energy delivery system according to claim 6 wherein the catheter member defines a fluid lumen for delivering the anesthetic solution to the inflatable element of the treatment member.
10. The energy delivery system according to claim 9 further comprising a source of anesthetic solution in fluid communication with the fluid lumen of the catheter member and the inflatable element of the treatment member.
11. The energy delivery system according to claim 10 farther comprising a pump couplable to the fluid lumen of the catheter member, the pump dimensioned to deliver the anesthetic solution from the source to the fluid lumen of the catheter member at a pump pressure sufficient to convey the anesthetic through the fluid lumen and out the apertures at the pressure to enhance passage of the anesthetic solution at least within the wall of the body vessel.
12. The energy delivery system according to claim 11 including a sensor in fluid communication with at least the fluid lumen of the catheter member.
13. The energy delivery system according to claim 12 wherein the sensor is a pressure sensor adapted to sense pressure corresponding to pressure within the inflatable element.
14. The energy delivery system according to claim 11 wherein the sensor is a flow rate sensor adapted to detect flow rate associated with passage of the anesthetic solution through the fluid lumen.
15. The energy delivery system according to claim 12 further comprising a controller for controlling operation of the pump.
16. The energy delivery system according to claim 15 wherein the controller includes logic responsive to a parameter detected by the sensor to vary operation of the pump.
17. The energy delivery system according to claim 9 further comprising a source of irrigation fluid in fluid communication with the inflatable element of the treatment member for passage through the apertures.
18. The energy delivery system according to claim 17 further comprising a valve in fluid communication with the source of anesthetic solution and the source of irrigation fluid, the valve being actuable between an anesthetic mode to permit the delivery of the anesthetic solution to the fluid lumen of the catheter member and an irrigation mode to permit the delivery of the irrigation fluid to the fluid lumen of the catheter member.
19. The energy delivery system according to claim 1 wherein the at least one aperture is dimensioned to permit passage of the anesthetic solution at a pressure whereby the anesthetic solution slowly diffuses through the wall of the body vessel and migrates to the nerve tissue associated with the body vessel.
20. The energy delivery system according to claim 19 wherein the inflatable element of the treatment member is dimensioned to establish a reservoir between the inflatable element and the wall of the body vessel when in the at least partially expanded condition thereof, the reservoir for receiving the anesthetic solution for diffusion through the wall of the body vessel.
21. The energy delivery system according to claim 20 wherein the treatment member includes at least one occluding element, the at least one occluding element defining a dimension greater than a corresponding dimension of the inflatable element when the at least one inflatable clement is in an at least partially expanded condition thereof, the at least one occluding element dimensioned to at least partially occlude the body vessel to at least partially enclose the reservoir.
22. The energy delivery system according to claim 21 wherein the inflatable element is a balloon member, the balloon member including first and second axially spaced occluding segments and a central segment between the first and second occluding segments, each of the first and second occluding segments having a transverse dimension greater than a corresponding transverse dimension of the central segment when the balloon member is in a first inflated condition, and being dimensioned to substantially occlude the body vessel to enclose the reservoir.
23. The energy delivery system according to claim 22 wherein the balloon member is adapted to transition between the first inflated condition and a second inflated condition where the central segment defines a greater transverse dimension to position the electrode in apposition with the body vessel to deliver electrical energy to the nerve tissue surrounding the body vessel.
24. The energy delivery system according to claim 23 wherein the catheter member defines a fluid lumen for delivering the anesthetic solution to the balloon member.
25. The energy delivery system according to claim 20 wherein the catheter member includes first and second occluding elements mounted adjacent opposed ends of the inflation element, the first and second occluding elements adapted to expand to occlude the body vessel and enclose the reservoir established between the inflatable element and the wall of the body vessel, the first and second occluding elements adapted for expansion independent of expansion of the inflatable element.
26. The energy delivery system according to claim 25 wherein the first and second occluding elements are first and second occluding balloon members and the inflation element is a treatment balloon member.
27. The energy delivery system according to claim 26 wherein the catheter member defines a second fluid lumen for delivering fluid to the first and second occluding balloon members.
28. The energy delivery system according to claim 26 wherein the first and second occluding balloon members are inflatable independent of each other.
29. The energy delivery system according to claim 19 wherein the treatment member includes a first balloon member and a second balloon member coaxially mounted about the first balloon member, the first and second balloon members establishing a reservoir between the first and second balloon members when in the at least partially inflated condition thereof, the reservoir for receiving the anesthetic solution, the second balloon member including the at least one aperture dimensioned to permit passage of the anesthetic solution and having the electrode mounted thereto.
30. The energy delivery system according to claim 29 wherein the first and second balloon members are inflatable independent of each other.
31. The energy delivery system according to claim 30 wherein the elongate member defines a second lumen for supplying fluids to the first balloon member to inflate the first balloon member.
32. A method for treating hypertension, comprising:
- positioning a treatment member including an inflatable segment and an electrode segment within a renal artery;
- delivering an anesthetic solution into the inflatable segment such that the anesthetic solution is released from at least one aperture of the treatment member to contact a wall of the renal artery whereby the anesthetic solution at least enters the wall of the renal artery and migrates to nerve tissue associated with the renal artery; and
- emitting RF energy from the electrode segment to disrupt renal nerve transmission to treat hypertension.
33. The method according to claim 32 wherein delivering the anesthetic solution includes directing the anesthetic solution at a pressure sufficient to enter the wall of the renal artery and contact the renal nerve tissue.
34. The method according to claim 33 wherein delivering the anesthetic solution includes directing the anesthetic solution through a plurality of apertures in the treatment member.
35. The method according to claim 34 wherein delivering the anesthetic solution includes directing the anesthetic solution through a plurality of apertures in the treatment member at a pressure ranging from about 1 atm to about 4 atm.
36. The method according to claim 32 wherein delivering the anesthetic solution includes permitting passage of the anesthetic solution at a pressure whereby the anesthetic solution slowly diffuses through the wall of the renal artery and migrates to the renal nerve tissue surrounding the renal artery.
37. The method according to claim 36 wherein delivering the anesthetic solution includes distributing the anesthetic solution within a reservoir defined between the inflatable segment and the wall of the renal artery.
38. The method according to claim 37 wherein the treatment member includes occluding segments adjacent each end of the inflation segment and further including expanding the occluding segments to contact the wall of the renal artery to occlude the artery and substantially enclose the reservoir.
Type: Application
Filed: Nov 23, 2020
Publication Date: Jun 3, 2021
Inventors: Amr Salahieh (Saratoga, CA), Tom Saul (Saratoga, CA)
Application Number: 17/102,260