RELATED APPLICATIONS This application claims the benefit of U.S. Provisional Application No. 62/616,861, filed Jan. 12, 2018, the entire contents of which are incorporated herein by reference.
BACKGROUND Technical Field The present invention relates to golf balls having a polyhedra design that can yield lower drag coefficient than a dimpled sphere. The drag reduction is applicable to other sports equipment in general having a bluff body, such as the head of a golf club or a bike helmet.
Background of the Related Art For the past 100 years the vast majority of commercial golf balls have used designs with dimples. For the purpose of this invention, a dimple generally refers to any curved or spherical depression in the face or outer surface of the ball. The traditional golf ball, as readily accepted by the consuming public, is spherical with a plurality of dimples, where the dimples are generally depressions on the outer surface of a sphere. The vast majority of commercial golf balls use dimples that have a substantially spherical shape. Some examples of such golf balls can be found in U.S. Pat. Nos. 6,290,615, 6,923,736, and U.S. Publ. No. 20110268833.
It is well established that such depressions can lower the drag coefficient of a ball compared to that of a smooth sphere at the same speed. The drag coefficient is a dimensionless parameter that is used to quantify the drag force of resistance of an object in a fluid. The drag force is always opposite to the direction in which the object travels. The drag coefficient for a golf ball is defined as CD=2*Fd/(ρ*U2*A), where Fd is the drag force, p is the density of the fluid in which the object is moving, U is the speed of the object and A is the cross sectional area. For a sphere the cross-sectional area is πD2/4, where D is the diameter of the ball.
FIG. 1 shows the variation of the drag coefficient, CD, as a function of Reynolds number, Re, for smooth and dimpled spheres. The data were obtained by performing wind tunnel experiments of non-spinning spheres. The Reynolds number is a dimensionless parameter used in fluid mechanics and is defined as Re=U*D/v, where v is the kinematic viscosity in which the object moves. For a smooth sphere the drag coefficient (shown by the solid black line) remains constant (CD˜0.5) until the Reynolds number approaches a critical value (Recr˜300,000). At this point, which is usually referred to as drag crisis, CD decreases rapidly and hits a minimum, which is an order of magnitude lower CD˜0.08. With further increase in the Reynolds number the flow enters the post-critical regime characterized by turbulent boundary layers on the surface of the sphere. In this regime the drag coefficient rises slowly with increasing Reynolds number.
In dimpled spheres (shown by dashed and dotted black lines) the drag crisis happens at a much lower critical Reynolds number (Re<100,000). In general, a dimpled sphere will have a 50% or more reduction in drag compared to a smooth sphere in the range of Reynolds number from 100,000 to 250,000. A golf ball in flight during a driver shot can experience a Reynolds number ranging from 220,000 at the beginning of the flight to 60,000 at the end of the flight. It is therefore very important that a golf ball design can achieve a very low drag coefficient in that range. The critical value of the Reynolds number, as well as the attained minimum drag coefficient in the post-critical regime depend on the dimple geometry and arrangement. In general, as the aggregate dimple volume, measured as the sum of a dimple volume of each dimple of the plurality of dimples, decreases the critical Reynolds is increased and the drag coefficient in the post-critical regime increases. As the aggregate dimple volume approaches zero the drag curve approaches that of a smooth sphere. Drag is one of the two forces (the other being lift) that influence the aerodynamic performance of a golf ball. To increase the carry distance on a driver shot, the distance a golf ball travels during the flight, the dimple design is a balance between achieving the lowest critical Reynolds number and the lowest drag coefficient in the post-critical regime.
However, dimples are the only configuration known to provide a golf ball having a reduced drag coefficient.
SUMMARY Accordingly, it is an object of the invention to provide a golf ball having minimal drag coefficient. It is a further object of the invention to provide a golf ball having reduced drag coefficient compared to a golf ball having only dimples. It is another object to provide a golf ball with minimal drag coefficient that is non-dimpled. In one embodiment, the golf ball has a plurality of flat faces with sharp edges and points that collectively form a polyhedron. These and other objects of the invention, as well as many of the intended advantages thereof, will become more readily apparent when reference is made to the following description, taken in conjunction with the accompanying drawings.
BRIEF DESCRIPTION OF THE FIGURES FIG. 1 shows a plot of the drag coefficient CD vs Reynolds number Re for smooth and dimpled spheres. The solid black line represents a smooth sphere (Achenbach, 1972); the double-dashed lines represent a dimpled sphere (J. Choi, 2006); and the dash-dot lines represent a dimpled sphere (Harvey, 1976). The shaded area represents the typical range of Reynolds experience by a golf ball in flight during a driver shot (50,000-200,000).
FIG. 2(a) shows a golf ball in accordance with one embodiment of the invention.
FIG. 2(b) shows an outline of a golf ball.
FIG. 2(c) shows an outline of a golf ball with non-sharp rounded edges.
FIG. 2(d) shows an icosahedron, a well-known Platonic solid used to derive the golf ball 100.
FIG. 2(e) shows an example of splitting a hexagonal face into 6 triangular faces.
FIG. 3 shows the Goldberg polyhedron with 192 faces.
FIG. 4 is a graph of the drag coefficient versus Reynolds for the Goldberg polyhedra with 162 faces and 192 faces.
FIG. 5 is a graph showing the CD versus Reynolds for a Goldberg polyhedron with 192 faces and a dimpled sphere.
FIG. 6 is a graph showing the CD versus Reynolds for a Goldberg polyhedron with 162 faces and a dimpled sphere.
FIG. 7 shows a geodesic polyhedron made from 320 triangles.
FIG. 8 shows a geodesic cube with 174 faces.
FIG. 9 shows a polyhedron with 162 faces and 162 dimples.
FIG. 10 is a graph showing the drag coefficient CD versus Reynolds number Re for a Goldberg polyhedron with 162 faces and a Goldberg polyhedron with 162 faces and 162 dimples.
FIG. 11 is a comparison of drag coefficient CD versus Reynolds number for one of the embodiments of the present invention shown in FIG. 9 against a commercial ball Callaway Superhot.
FIG. 12 is an alternative embodiment of a golf ball based on an icosahedron with 312 faces and 312 spherical dimples.
FIG. 13 is a comparison of drag coefficient CD versus Reynolds number Re for one of the embodiments of the present invention based on a polyhedron with 312 faces and 312 spherical dimples of FIG. 12 against a commercial golf ball Bridgestone Tour.
DETAILED DESCRIPTION In describing certain illustrative, non-limiting embodiments of the invention illustrated in the drawings, specific terminology will be resorted to for the sake of clarity. However, the invention is not intended to be limited to the specific terms so selected, and it is to be understood that each specific term includes all technical equivalents that operate in similar manner to accomplish a similar purpose. Several embodiments of the invention are described for illustrative purposes, it being understood that the invention may be embodied in other forms not specifically shown in the drawings.
The present invention is directed to a golf ball design based on polyhedra that can have reduced drag coefficient compared to a dimpled sphere. In one embodiment, a family of golf ball designs are made up of convex polyhedra whose vertices lie on a sphere. A polyhedron is a solid in three dimensions with flat polygonal faces, straight sharp edges and sharp corners or vertices.
FIG. 2(a) shows a golf ball 100 in accordance with one embodiment of the present invention. The golf ball 100 has a body 110 with an inner core and an outer shell with an outer surface 112. A plurality of faces 120 are formed in the outer surface, creating a pattern 116. All the faces are formed in the outer surface and each of such faces is flat and lies in a plane. The faces are bound by straight or linear edges 124. Here, the golf ball 100 is a polyhedron with 162 polygons.
The body 110 defines a circumscribed sphere 102, which is the smallest sphere containing the polyhedron, and is shown with a dashed line about the outermost points 104 of the body 110. The sphere and the diameter provide a reference for the size of the golf ball. The Rules of Golf, jointly governed by the R&A and the USGA, state that the diameter of a “conforming” golf ball cannot be any smaller than 1.680 inches. For the purpose of a golf ball the diameter of the circumscribed sphere is at least 1.68 in. The vertices 122a, 122b of the polyhedron are the only points 104 on the polyhedron that lie on the sphere. Any point along the edges 124a, 124b or on the faces 120a, 120b of the polygons lies below the surface of the circumscribed sphere.
The golf ball body 110 is a polyhedron that is made from first faces 120a and second faces 120b. As shown, the first faces 120a have a first shape, namely pentagons, and the second faces 120b have a second shape different than the first shape, namely hexagons. All of the faces are flat and each such face forms a single plane. In one embodiment, there are 12 pentagons 120a and 150 hexagons 120b (a hexagon-to-pentagon ratio of 12.5:1), each having corners or points 122a, 122b connected by boundaries such as straight lines or edges 124a, 124b. In various other embodiments, other quantities and/or ratios of such pentagons 120a and hexagons 120b can be used. However, the number of polygons and the angle between them determine when the drag coefficient will start to drop and how low it will become. In general, as the number of faces is increased the drag crisis occurs at higher Reynolds number and the drag coefficient decreases. The first and second faces 120a, 120b form the pattern 116.
The edges 124 are sharp, in that the faces are at an angle with respect to one another. FIG. 2(b) shows a cross sectional cut through the body 110 of ball 100 of FIG. 2(a) along the line 150. In this embodiment the edges 124 are sharp, in that the radius of curvature 140 of an edge is less than 0.001 D, where D is the diameter of the circumscribed sphere. Ideally all edges should be the sharpest possible. A radius of curvature of 0 is the case with the sharpest possible edges, though golf ball edges might become a little rounded during manufacture or follow use. FIG. 2(c) shows a cross section cut of two faces with rounded edges, whose radius of curvature is more than 0.001 D. The resulting edge is not sharp and the reduction in drag is not maximized, which can be detrimental to the aerodynamic performance of the golf ball as the shape would approach that of a smooth sphere. Both a sharp edge and a non-sharp edge is shown in that embodiment for illustrative purposes. The angle θ formed between two adjacent flat/planar faces 120 is always smaller than 180 degrees. The geometric shape of the embodiment illustrated in FIG. 2(a) falls into the class of convex polyhedral where the angle between any pair of adjacent faces is always less than 180 degrees. In this embodiment, the angle between a pentagon face 120a and an adjacent hexagonal face 120b is 166.215 degrees. The angle between two adjacent hexagon faces 120b varies from 161.5 degrees to 162.0 degrees.
Each face 120 is immediately adjacent and touching a neighboring face 120, such that each edge 124 forms a border between two neighboring faces 120 and each point 122 is at the intersection of three neighboring faces 120. And, each point 122 is at an opposite end of each linear edge 124 and is at the intersection of three linear edges 124. Accordingly, there is no gap or space between adjacent neighboring faces 120, and the faces 120 are contiguous and form a single integral, continuous outer surface 112 of the ball 100.
A golf ball usually has a rubber core and at least one more layer surrounding the core. The pattern 116 is formed on the outermost layer. The pattern is based on an icosahedron shown in FIG. 2(d). The icosahedron 170 is a well-known convex polyhedron made up of 20 equilateral triangle faces 180, 12 vertices 182 and 30 edges 184. An icosahedron is one of the five regular Platonic solids, the other four being the cube, the tetrahedron, the octahedron and the dodecahedron (see https://en.wikipedia.org/wiki/Platonic solid).
In the icosahedron 170 five equilateral triangles 180 meet at each of its twelve vertices 182. The 12 pentagons 120a of the golf ball 100 shown in FIG. 2(a) are centered on the vertices of an icosahedron. Therefore, a pair of 3 pentagons 120a forms an equilateral triangular pattern 180. Along each of the edges of the triangles 180 there are 3 hexagons 120b. Finally, inside each triangular pattern 180 there are three hexagons 120b. The pentagons 120a are all equilateral, that is the 5 edges 124a all have the same length equal to 0.151 D, where D is the diameter of the circumscribed sphere. The hexagons 120b are not equilateral and the lengths of the edges 124b vary from 0.151 D to 0.1834 D.
Table 1 lists the coordinates of all the vertices and how each face is formed, which defines the geometry of the golf ball. Table 1 lists the coordinates x, y, and z of all of the vertices 122 of golf ball 100. Faces are constructed by connecting the vertices with straight lines. The coordinates x, y, z are normalized by the diameter D of the circumscribed sphere 104 and are with respect to the center of the sphere. The golf ball 100 contains 320 vertices 122, 480 straight edges 120 and 162 polygonal faces 120.
The particular polyhedron can be any suitable configuration, and in one embodiment is a class of solids called Goldberg polyhedra that comprises convex polyhedra that are made entirely from a combination of rectangles, pentagons and hexagons. Goldberg polyhedra are derived from either an icosahedron (a convex polyhedron made from 12 pentagons), or an octahedron (a convex polyhedron made from 8 triangles) or a tetrahedron (a convex polyhedron made from 4 triangles). An infinite number of Goldberg polyhedra exist, as shown in https://en.wikipedia.org/wiki/List_of_geodesic_polyhedra_and_Goldberg_polyhedra.
However, it will be recognized that the invention can utilize any convex polyhedron (that is, a polyhedron made up of polygons whose angle is less than 180 degrees), though in one embodiment on such polyhedron is a convex polyhedron with sharp edges, flat faces forming a single plane, and adjacent faces having an angle of less than 180 degrees between them.
The particular configuration (Goldberg polyhedral 162 faces and icosahedral symmetry) can only be achieved with a combination of hexagons and pentagons. However other geometries with around 162 faces may be possible to do using only pentagons or only hexagons. Other embodiments of the invention can include a pattern with various geometric configurations. For example, the pattern can be comprised of more or fewer of hexagons and pentagons than shown. Or it can comprise all hexagons, all pentagons, or no hexagons or pentagons but instead one or more other shapes or polyhedrals having flat faces and sharp edges. One other shape can be formed, for example, by splitting each hexagon into 6 triangles or each pentagon into 5 triangles, which provides a similar drag coefficient. One embodiment can include any of the Goldberg polyhedra with a combination of pentagons and hexagons or even a convex polyhedral made of triangles or squares.
It is further noted that flat faces give lower drag and have the uniqueness of not being dimples (curved indentations). The flat faces only provide points of the faces that lie on the circumscribed sphere. The sharp edges are defined by the angle between two adjacent faces. In addition, the edges forming the boundaries between the two adjacent faces are flat and not excessively rounded. An example of a non-sharp edge is shown in FIG. 2(c). The angle between the two edges is the same as is in FIG. 2(b) but it is rounded such that the edge is not sharp.
As the number of polygons increases (i.e. from 162 faces to 312 faces) the angle between the faces increases too and approaches 180 degrees. For the embodiments that are based purely on polyhedral shape such as those shown in FIGS. 2(a), 2(b) with 162 and 192 faces the range of angles is between 160 and 165 degrees. For the other embodiments in which dimples are added inside each face it is possible to go to as many as 312 faces and the angle between the faces can increase to 172 degrees. In one embodiment, the maximum angle could be close to 175 degrees and a range of angles between 160 and 175 degrees may be suitable for the purpose of a golf ball. Thus, a convex polyhedra is one having faces with angles substantially with the values and in the ranges noted herein.
In FIG. 2(a), the ratio of pentagons to hexagons is 12:150, though any suitable ratio can be provided. For example, out of the 150 hexagons one of the hexagons can be split into 6 triangles and a have a polyhedron with 12 pentagons, 149 hexagons and 6 triangles and obtain substantially the same drag coefficient. FIG. 2(e) illustrates how such a splitting can be performed on one of the hexagonal faces 120. A vertex 140 can be chose anywhere inside the hexagon 120. For illustrative purposes, the vertex 140 is near the center of the hexagon although any other location can be used. Six new edges 142 can be formed by connecting the each of the vertices 122 with the new vertex 140. A triangular face 144 is formed by one edge 124 of the hexagon and two adjacent edges 142. The exact shape of the faces making up the polyhedral can vary but one important feature of the polyhedral pattern is the angle between faces.
FIG. 3 shows an example of a golf ball in accordance with another embodiment of the invention. The golf ball 200 has a body 210 with an inner core and an outer shell with an outer surface 212. A plurality of faces 220 are formed in the outer surface, creating a pattern 216. All the faces are formed in the outer surface and each of such faces is flat and lies in a plane. The faces are bound by straight or linear edges 224. Here, the golf ball 200 is a polyhedron with 192 polygons.
The body 210 defines a circumscribed sphere 202, which is the smallest sphere containing the polyhedron, and is shown with a dashed line about the outermost points 204 of the body 210. The vertices 222a, 222b of the polyhedron are the only points 204 on the polyhedron that lie on the sphere. Any point along the edges 224a, 224b or on the face of the polygons lies below the surface of the circumscribed sphere.
The golf ball body 210 is a polyhedron that is made from first faces 220a and second faces 220b. As shown, the first faces 220a have a first shape, namely pentagons, and the second faces 220b have a second shape different than the first shape, namely hexagons. All of the faces are flat and each such face forms a single plane. In one embodiment, there are 12 pentagons 220a and 180 hexagons 220b (a hexagon-to-pentagon ratio of 15:1), each having corners or points 222a, 222b connected by boundaries such as straight lines or edges 224a, 224b. In various other embodiments, other quantities and/or ratios of such pentagons 220a and hexagons 220b can be used. The first and second faces 220a, 220b form the pattern 216. The edges 224 are sharp, in that the radius of curvature of an edge is less than 0.001 D, where D is the diameter of the circumscribed sphere. Ideally all edges should be the sharpest possible. A radius of curvature of 0 is the case with the sharpest possible edges, though golf ball edges might become a little rounded during manufacture or follow use.
The geometric shape of the embodiment illustrated in FIG. 3 falls into the class of convex polyhedral where the angle between any pair of adjacent faces is always less than 180 degrees. In this embodiment, the angle between a pentagon face 220a and an adjacent hexagonal face 220b is 167.6 degrees. The angle between two adjacent hexagon faces 120b varies from 163.4 degrees to 164.2 degrees. When comparing this embodiment with the golf ball 100 illustrated in FIG. 2 it is obvious that as the number of faces on a convex polyhedron increases the angle between faces increases too.
Each face 220 is immediately adjacent and touching a neighboring face 220, such that each edge 224 forms a border between two neighboring faces 220 and each point 222 is at the intersection of three neighboring faces 220. And, each point 222 is at an opposite end of each linear edge 224 and is at the intersection of three linear edges 224. Accordingly, there is no gap or space between adjacent neighboring faces 220, and the faces 220 are contiguous and form a single integral, continuous outer surface 212 of the ball 200.
The pattern is based on an icosahedron shown in FIG. 2(c). In the icosahedron 170 five equilateral triangles 180 meet at each of its twelve vertices 182. The 12 pentagons 220a of the golf ball 200 shown in FIG. 3 are centered on the vertices of an icosahedron. Therefore, any pair of 3 pentagons 220a form an equilateral triangle 280. The pentagons 220a are all equilateral, that is the 5 edges 224a all have the same length equal to 0.136 D, where D is the diameter of the circumscribed sphere. The hexagons 220b are not equilateral and the lengths of the edges 224b vary from 0.136 D to 0.168 D.
Table 2 lists the coordinates of all the vertices and how each face is formed, which defines the geometry of the golf ball. Table 1 lists the coordinates x, y, and z of all of the vertices 220 of polyhedron of golf ball 200. Faces are constructed by connecting the vertices with straight lines. The coordinates x, y, z are normalized by the diameter D of the circumscribed sphere 204 and are with respect to the center of the sphere. The golf ball 200 contains 380 vertices 222, 570 straight edges 220 and 192 polygonal faces 220.
From a visual perspective the above designs of FIGS. 2, 3 have the unique characteristics of not having any dimples. From a utility perspective the behavior of the drag coefficient is very interesting. FIG. 4 shows a graph of the drag coefficient, CD, versus the Reynolds number, Re, for the polyhedron with 162 and 192 faces. The drag coefficient was obtained by wind tunnel experiments of non-spinning models. Overall the drag curve is qualitatively very similar to that of a dimpled sphere. Namely there is a drag crisis that occurs around Re=60,000. For the polyhedron with 162 faces CD reaches a minimum value of 0.16 at Re=90,000 and remains almost constant as the Reynolds increases. For the polyhedron with 192 faces CD reaches a minimum value of 0.14 at Re=110,000 and remains almost constant as the Reynolds increases.
The graph reveals that as the number of faces increases the drag crisis shifts towards a higher Reynolds number and the CD in the post-critical regime decreases. This feature can be taken into advantage when designing a golf ball to tailor the needs of a golfer. For an amateur golfer a golf ball in flight during a driver shot can experience a Reynolds number ranging from 180,000 at the beginning of the flight to 60,000 at the end of the flight. For a professional golfer a golf ball in flight during a driver shot can experience a Reynolds number ranging from 220,000 at the beginning of the flight to 80,000 at the end of the flight.
In other words, the range of Reynolds number experienced by a golf ball for an amateur golfer is lower than that for a professional golfer. A golf ball with more polygon faces might suit the needs of a professional golfer while a golf ball with less polygon faces might suit the needs of an amateur golfer.
The advantage of a design based on a convex polyhedron such as golf ball 200 with respect to a dimpled golf ball is now discussed. A comparison of the drag curve of the polyhedron with 192 faces, namely golf ball 200, against a dimpled sphere is shown in FIG. 5. The dimpled sphere has 322 spherical dimples and is representative of a commercial golf ball. The drag crisis for the polyhedron with 192 faces, namely golf ball 200, occurs at approximately the same range of Reynolds numbers as the dimpled sphere. The minimum CD for both balls is reached at Re=110,000. For the dimpled sphere CD=0.16 while for the golf ball 200 CD=0.14, that is 12.5% drag reduction. At Re=140,000 CD=0.174 for the dimpled sphere while for the golf ball 200 CD=0.147, that is 15% drag reduction. Indeed, the drag coefficient for golf ball 200 illustrated in FIG. 3 is consistently lower than that of a dimpled golf ball in the range of Re=90,000-220,000. A lower drag coefficient is important because it plays an important role in achieving more carry distance during a driver shot.
A comparison of the drag curve of the golf ball 100 against the same dimpled sphere is shown in FIG. 6. While CD in the post-critical regime is almost identical for the two balls, the drag crisis for the golf ball 200 occurs at a lower Reynolds number. As a result, CD for Re<110,000 is consistently lower for the polyhedron with 192 faces than for the dimpled sphere. Thus, the embodiment of FIG. 2(a) has a lower drag coefficient than a dimpled sphere. A lower drag coefficient is important because it plays an important role in achieving more carry distance during a driver shot.
FIGS. 7, 8 are additional non-limiting embodiments of the invention. Those golf balls 300, 400 have similar structure as the embodiments of FIGS. 2, 3, and those structures have similar purpose. Those structures have been assigned a similar reference numeral and similar structure with the differences noted below. For example, FIG. 7 shows an example of a golf ball 300 with a body 310 with an inner core and an outer shell with an outer surface 312. A plurality of faces 320 are formed in the outer surface, creating a pattern 316. All the faces are formed in the outer surface 312 and each of such faces is flat and lies in a plane. The faces are bound by straight or linear edges 324 and corners vertices 322. The body 310 defines a circumscribed sphere 302, which is the smallest sphere containing the polyhedron, and is shown with a dashed line about the outermost points 304 of the body 310. And FIG. 8 shows an example of a golf ball 400 with a body 410 with an inner core and an outer shell with an outer surface 412. A plurality of faces 420 are formed in the outer surface, creating a pattern 416. All the faces are formed in the outer surface 412 and each of such faces is flat and lies in a plane. The faces are bound by straight or linear edges 424 and corners or vertices 422. The body 410 defines a circumscribed sphere 402, which is the smallest sphere containing the polyhedron, and is shown with a dashed line about the outermost points 404 of the body 410.
The embodiment shown in FIGS. 7, 8 are included for illustrative purposes as examples of convex polyhedral that are not made from pentagons or hexagons. Other convex polyhedra not made up of pentagons or hexagons can also be used for the design of a golf ball. In another embodiment of the present invention a convex polyhedron is shown in FIG. 7. The polyhedron belongs to a class of solids called Geodesic polyhedron which are derived from an icosahedron by subdividing each face into smaller faces using a triangular grid, and then applying a canonicalization algorithm to make the result more spherical. (see https://en.wikipedia.org/wiki/Geodesic_polyhedron). The vertices of the polyhedron are the only points on the polyhedron that lie on a sphere. Any point along the edges or on the face of the triangles lies below the surface of a circumscribed sphere. The polyhedron in FIG. 7 is made from 320 triangles but any geodesic polyhedron with an arbitrary number of triangles can be used as the design of a golf ball.
In another embodiment of the present invention a convex polyhedron is shown in FIG. 8. The polyhedron belongs to a class of solids called Geodesic cubes which are made from rectangular faces. A geodesic cube is a polyhedron derived from a cube by subdividing each face into smaller faces using a square grid, and then applying a canonicalization algorithm to make the result more spherical (see http://dmccooey.com/polyhedra/GeodesicCubes.html). The vertices of the polyhedron are the only points on the polyhedron that lie on a sphere. Any point along the edges or on the face of the rectangular faces lies below the surface of a circumscribed sphere. The polyhedron in FIG. 8 is made from 174 rectangular flat faces but any geodesic cube with an arbitrary number of faces can be used as the design of a golf ball.
It is important to note that the polyhedra described above and shown in FIGS. 2, 3, 7, 8 do not contain any dimples (i.e., curved or spherical depressions or indents), but instead have flat surfaces that lie in a plane. However, the polyhedra provide enhanced aerodynamic characteristics, drag coefficient being one of them, that can help increase the carry distance of the golf ball.
However, golf ball geometries that are based on any convex polyhedra and either include or omit dimples are contemplated. In particular, for any convex polyhedra at least one of the faces may include one or more dimples. For example, FIG. 9 shows an embodiment of a golf ball 500 that is based on a convex polyhedron with a plurality of polygonal faces 520. The convex polyhedron is identical to the one shown in FIG. 2, and includes a body 510 with an inner core and an outer shell with an outer surface 512. A plurality of faces 520 are formed in the outer surface, creating a pattern 516. All the faces are formed in the outer surface 512 and each of such faces is flat and lies in a plane. The faces are bound by straight or linear edges 524 and corners or vertices 522. The body 510 defines a circumscribed sphere 502, which is the smallest sphere containing the polyhedron, and is shown with a dashed line about the outermost points 504 of the body 510.
However, in this embodiment each face 520 of the polyhedron contains one dimple 560. The dimples 560 have a substantially spherical shape and are created by subtracting spheres 570 from each of the faces 510 of the polyhedron 500. Table 3 lists the coordinates x, y and z of the center of the spheres 570 along with the diameter d of the spheres 570. The coordinates x, y, z and the diameter of the spheres d are normalized by the diameter D of the circumscribed sphere 504. The coordinates x, y, and z are with respect to the center of the circumscribed sphere. The total dimple volume ratio, defined as the aggregate volume removed from the surface of the polyhedron divided by the volume of the polyhedron, is 0.317%.
As shown, the dimples 560 are each located at the center of each 510. However, the dimples 560 can be positioned at another location such as offset within each face 510, or overlapping two or more faces 510. In addition, while spherical dimples 560 are shown, the dimples 560 can have any suitable size and shape. For example, non-spherical depressions can be utilized, such as triangles, hexagons, pentagons. And the dimples need not all have the same size and shape, for example there can be dimples with more than one size and more than one shape.
The effect that the addition of dimples has on the drag coefficient is now discussed. A comparison of the drag curve of this embodiment against that of golf ball 100 is shown in FIG. 10. There are two important observations. First when dimples are added to the faces of a polyhedron, the drag crisis occurs at a lower Reynolds number range. That is, the drag coefficient starts to drop at a lower Reynolds number. Second, the drag coefficient in the post-critical regime increases. This effect may be desirable when designing a golf ball for players with lower swing speeds such as an amateur golf player where the range of Reynolds number that the golf ball experiences during a driver shot is reduced. As the total dimple volume approaches zero the drag curve of golf ball 500 would approach that of golf ball 100. Therefore, one can fine tune the exact behavior of the drag curve by adjusting the total dimple volume. Each dimple is formed by subtracting a sphere for the face of the polyhedron as explained above. The dimple volume is the amount of volume that each sphere subtracts from the volume of the polyhedron.
FIG. 11 compares the drag curve of the golf ball 500 shown in FIG. 9 against a commercial golf ball, namely the Callaway SuperHot, which is a dimpled ball marketed as having a low drag coefficient and shown in U.S. Pat. No. 6,290,615. The drag coefficient for both balls were obtained by performing wind tunnel experiments using the actual commercial golf ball and a 3D printed prototype of the golf ball 500. The drag crisis for the golf ball 500 happens earlier, that is the drag coefficient starts to drop at lower Reynolds number. Clearly CD for golf ball 500 is consistently lower than that of the commercial golf ball for the range of Reynolds numbers 60,000-160,000. A lower drag coefficient can help a golf ball achieve longer carry distances. The golf ball 500 is the exact same polyhedron of golf ball 100, however the golf ball 500 has a dimple on each face. The polyhedron which golf ball 500 is based on is identical to the polyhedron of golf ball 100 in FIG. 2.
FIG. 12 shows an example of a golf ball based on a convex polyhedron with dimples in accordance with another embodiment of the invention. The golf ball 600 has a body 610 with an inner core and an outer shell with an outer surface 612. A plurality of faces 620 are formed in the outer surface, creating a pattern 616. All the faces are formed in the outer surface and each of such faces is flat and lies in a plane. The faces are bound by straight or linear edges 624. Here, the golf ball 600 is based on a polyhedron with 312 polygons.
The body 610 defines a circumscribed sphere 602, which is the smallest sphere containing the polyhedron, and is shown with a dashed line about the outermost points 604 of the body 610. The vertices 622a, 622b of the polyhedron are the only points 604 on the polyhedron that lie on the sphere. Any point along the edges 624 or on the face of the polygons lies below the surface of the circumscribed sphere.
The golf ball body 610 is a polyhedron that is made from first faces 620a and second faces 620b. As shown, the first faces 620a have a first shape, namely pentagons, and the second faces 620b have a second shape different than the first shape, namely hexagons. All of the faces are flat and each such face forms a single plane. In one embodiment, there are 12 pentagons 620a and 300 hexagons 620b (a hexagon-to-pentagon ratio of 25:1), each having corners or points 622a, 622b connected by boundaries such as straight lines or edges 624a, 624b. The first and second faces 620a, 620b form the pattern 616. The edges 624 are sharp, in that the radius of curvature of an edge is less than 0.001 D, where D is the diameter of the circumscribed sphere. Ideally all edges should be the sharpest possible. A radius of curvature of 0 is the case with the sharpest possible edges, though golf ball edges might become a little rounded during manufacture or follow use.
The geometric shape of the embodiment illustrated in FIG. 12 falls into the class of convex polyhedral where the angle between any pair of adjacent faces is always less than 180 degrees. In this embodiment, the angle between a pentagon face 620a and an adjacent hexagonal face 620b is 170.2 degrees. The angle between two adjacent hexagon faces 620b varies from 167.1 degrees to 168.2 degrees.
Each face 620 is immediately adjacent and touching a neighboring face 620, such that each edge 624 forms a border between two neighboring faces 620 and each point 622 is at the intersection of three neighboring faces 620. And, each point 622 is at an opposite end of each linear edge 624 and is at the intersection of three linear edges 624. Accordingly, there is no gap or space between adjacent neighboring faces 620, and the faces 620 are contiguous and form a single integral, continuous outer surface 612 of the ball 600.
The pattern is based on an icosahedron shown in FIG. 2(c). In the icosahedron 170 five equilateral triangles 180 meet at each of its twelve vertices 182. The 12 pentagons 620a of the golf ball 600 shown in FIG. 12 are centered on the vertices of an icosahedron. Therefore, any pair of 3 pentagons 620a form an equilateral triangle 680 shown with dashed line in FIG. 12. The pentagons 620a are all equilateral, that is the 5 edges 624a all have the same length equal to 0.102 D, where D is the diameter of the circumscribed sphere. The hexagons 620b are not equilateral and the lengths of the edges 624b vary from 0.102 D to 0.132 D.
Table 4 lists the coordinates of all the vertices and how each face is formed, which defines the geometry of the polyhedron. Table 4 lists the coordinates x, y, and z of all of the vertices 622 of polyhedron of golf ball 600. Faces are constructed by connecting the group of vertices with straight lines. The coordinates x, y, z are normalized by the diameter D of the circumscribed sphere 604 and are with respect to the center of the sphere. The golf ball 600 contains 620 vertices 622, 930 straight edges 624 and 312 polygonal faces 620.
Each of the face 620 of the polyhedron contains one dimple 690. The dimples 690 have a substantially spherical shape and are created by subtracting spheres 670 from the face 620 of the polyhedron. Table 5 lists the coordinates x, y and z of the center of the spheres 670 along with the diameter d of the spheres 670. The coordinates x, y, z and the diameter of the spheres d are normalized by the diameter D of the circumscribed sphere 604. The coordinates x, y, and z are with respect to the center of the circumscribed sphere.
A comparison of the drag curve of this embodiment against that of a commercial golf ball, namely the Bridgestone Tour is shown in FIG. 13, which is a dimpled ball marketed as having a low drag so that the ball travels further, and described in U.S. Pat. No. 7,503,857. The graphs shows the invention having a lower drag coefficient. The drag coefficient for both balls were obtained by performing wind tunnel experiments using the actual commercial golf ball and a 3D printed prototype of the embodiment. The drag crisis for both golf balls occurs at approximately the same range of Reynolds number, namely from Re=50,000-80,000. At Reynolds number of 100,000 CD for the Bridgestone Tour ball is 0.195 while CD for the current embodiment is 0.162, a drag reduction of 17%. Overall CD for the current embodiment is consistently lower than that of the commercial golf ball for the range of Reynolds numbers 80,000-160,000. A lower drag coefficient can help a golf ball achieve longer carry distances.
Other sizes and shapes of dimples are contemplated by the present invention, and any suitable size and shape dimple can be utilized in the golf balls of FIGS. 2-3, 7-9, 12. While FIG. 2 employs a convex polyhedron that belongs to a class of Goldberg polyhedral, FIGS. 9, 12 are revisions to the Goldberg principle in that each face of the polyhedron contains a dimple.
The following documents are incorporated herein by reference. Achenbach, E. (1972). Experiments on the flow past spheres at high Reynolds numbers. Journal of Fluid Mechanics. Harvey, P. W. (1976). Golf ball aerodynamics. Aeronautical Quarterly. J. Choi, W. J. (2006). Mechanism of drag reduction by dimples on a sphere. Physics of Fluids, 149-167. Ogg, S. S. (2001).
It is further noted that the description and claims use several positional, geometric or relational terms, such as neighboring, circular, spherical, round, and flat. Those terms are merely for convenience to facilitate the description based on the embodiments shown in the figures. Those terms are not intended to limit the invention. Thus, it should be recognized that the invention can be described in other ways without those geometric, relational, directional or positioning terms. In addition, the geometric or relational terms may not be exact. For instance, edges may not be exactly linear, hexagonal, pentagonal or spherical, but still be considered to be substantially linear, hexagonal, pentagonal or spherical, and faces may not be exactly flat or planar but still be considered to be substantially flat or planar because of, for example, roughness of surfaces, tolerances allowed in manufacturing, etc. And, other suitable geometries and relationships can be provided without departing from the spirit and scope of the invention.
In addition, while the invention has been shown and described with boundaries formed by straight edges 124, 224, 324, 424, 524, 624 and points 122, 222, 322, 422, 522, other suitable boundaries can be provided such as curves with or without rounded points. And the boundaries need not be sharped, but can be curved. And other suitable shapes can be utilized for the faces. And, while the invention has been described with a certain number of faces and/or dimples, other suitable numbers of faces and/or dimples, more or fewer, can also be provided within the spirit and scope of the invention. Within this specification, the various sizes, shapes and dimensions are approximate and exemplary to illustrate the scope of the invention and are not limiting. The faces need not all be the same shape and/or size, and there can be multiple sizes and shapes of faces.
The sizes and the terms “substantially” and “about” mean plus or minus 15-20%, and in one embodiment plus or minus 10%, and in other embodiments plus or minus 5%, and plus or minus 1-2%. In addition, while specific dimensions, sizes and shapes may be provided in certain embodiments of the invention, those are simply to illustrate the scope of the invention and are not limiting. Thus, other dimensions, sizes and/or shapes can be utilized without departing from the spirit and scope of the invention.
Use of the term optional or alternative with respect to any element of a claim means that the element is required, or alternatively, the element is not required, both alternatives being within the scope of the claim. Use of broader terms such as comprises, includes, and having may be understood to provide support for narrower terms such as consisting of, consisting essentially of, and comprised substantially of. Accordingly, the scope of protection is not limited by the description set out above but is defined by the claims that follow, that scope including all equivalents of the subject matter of the claims. Each and every claim is incorporated as further disclosure into the specification and the claims are embodiment(s) of the present disclosure.
TABLE 1
Vertex x/D y/D z/D Face Group of vertices
1 0.0000 0.0000 0.9778 1 301 300 69 296 295 20
2 0.6519 0.0000 0.7288 2 312 311 74 302 301 20
3 −0.3260 0.5646 0.7288 3 295 294 79 313 312 20
4 −0.3259 −0.5646 0.7288 4 299 300 301 302 303 304
5 0.7288 0.5646 0.3259 5 293 294 295 296 297 298
6 0.7288 −0.5645 0.3259 6 310 311 312 313 314 315
7 −0.8533 0.3489 0.3259 7 300 299 70 292 291 69
8 0.1245 0.9135 0.3259 8 303 302 74 308 307 73
9 0.1245 −0.9135 0.3259 9 297 296 69 291 290 68
10 −0.8533 −0.3489 0.3260 10 311 310 75 309 308 74
11 0.8533 0.3489 −0.3260 11 294 293 80 320 319 79
12 0.8533 −0.3489 −0.3259 12 314 313 79 319 318 78
13 −0.7288 0.5645 −0.3259 13 288 289 290 291 292
14 −0.1245 0.9135 −0.3259 14 305 306 307 308 309
15 −0.1245 −0.9135 −0.3259 15 316 317 318 319 320
16 −0.7288 −0.5646 −0.3259 16 244 243 70 299 304 17
17 0.3259 0.5646 −0.7288 17 304 303 73 251 250 17
18 0.3260 −0.5646 −0.7288 18 298 297 68 268 267 18
19 −0.6519 0.0000 −0.7288 19 261 260 80 293 298 18
20 0.0000 0.0000 −0.9778 20 278 277 75 310 315 19
21 0.1755 0.3040 0.9230 21 315 314 78 285 284 19
22 0.4845 0.3040 0.8050 22 288 292 70 243 242 66
23 0.5210 0.5716 0.6140 23 252 251 73 307 306 72
24 0.2345 0.7370 0.6140 24 269 268 68 290 289 67
25 0.0210 0.5716 0.8050 25 305 309 75 277 276 71
26 −0.3510 0.0000 0.9230 26 316 320 80 260 259 76
27 −0.5055 0.2676 0.8050 27 286 285 78 318 317 77
28 −0.7555 0.1654 0.6140 28 183 182 67 289 288 66
29 −0.7555 −0.1654 0.6140 29 206 205 72 306 305 71
30 −0.5055 −0.2676 0.8050 30 229 228 77 317 316 76
31 0.1755 −0.3040 0.9230 31 250 249 53 245 244 17
32 0.0210 −0.5716 0.8050 32 267 266 59 262 261 18
33 0.2345 −0.7370 0.6140 33 284 283 63 279 278 19
34 0.5210 −0.5716 0.6140 34 242 243 244 245 246 247
35 0.4845 −0.3040 0.8050 35 248 249 250 251 252 253
36 0.8770 0.0000 0.4540 36 265 266 267 268 269 270
37 0.9135 −0.2676 0.2630 37 276 277 278 279 280 281
38 0.9725 −0.1654 −0.0460 38 259 260 261 262 263 264
39 0.9725 0.1654 −0.0460 39 282 283 284 285 286 287
40 0.9135 0.2676 0.2630 40 184 183 66 242 247 11
41 −0.4385 0.7595 0.4540 41 253 252 72 205 204 14
42 −0.2250 0.9249 0.2630 42 270 269 67 182 181 12
43 −0.3430 0.9249 −0.0460 43 207 206 71 276 281 13
44 −0.6295 0.7595 −0.0460 44 230 229 76 259 264 15
45 −0.6885 0.6573 0.2630 45 287 286 77 228 227 16
46 −0.4385 −0.7595 0.4540 46 246 245 53 239 238 52
47 −0.6885 −0.6573 0.2630 47 249 248 54 240 239 53
48 −0.6295 −0.7595 −0.0460 48 266 265 60 258 257 59
49 −0.3430 −0.9249 −0.0460 49 263 262 59 257 256 58
50 −0.2250 −0.9249 0.2630 50 280 279 63 273 272 62
51 0.6295 0.7595 0.0460 51 283 282 64 274 273 63
52 0.6885 0.6573 −0.2630 52 179 180 181 182 183 184
53 0.4385 0.7595 −0.4540 53 202 203 204 205 206 207
54 0.2250 0.9249 −0.2630 54 225 226 227 228 229 230
55 0.3430 0.9249 0.0460 55 247 246 52 188 187 11
56 0.6295 −0.7595 0.0460 56 198 197 54 248 253 14
57 0.3430 −0.9249 0.0460 57 175 174 60 265 270 12
58 0.2250 −0.9249 −0.2630 58 281 280 62 211 210 13
59 0.4385 −0.7595 −0.4540 59 264 263 58 234 233 15
60 0.6885 −0.6573 −0.2630 60 221 220 64 282 287 16
61 −0.9725 0.1654 0.0460 61 237 238 239 240 241
62 −0.9135 0.2676 −0.2630 62 254 255 256 257 258
63 −0.8770 0.0000 −0.4540 63 271 272 273 274 275
64 −0.9135 −0.2676 −0.2630 64 187 186 39 179 184 11
65 −0.9725 −0.1654 0.0460 65 181 180 38 176 175 12
66 0.7555 0.1654 −0.6140 66 204 203 43 199 198 14
67 0.7555 −0.1654 −0.6140 67 210 209 44 202 207 13
68 0.5055 −0.2676 −0.8050 68 233 232 49 225 230 15
69 0.3510 0.0000 −0.9230 69 227 226 48 222 221 16
70 0.5055 0.2676 −0.8050 70 189 188 52 238 237 51
71 −0.5210 0.5716 −0.6140 71 197 196 55 241 240 54
72 −0.2345 0.7370 −0.6140 72 254 258 60 174 173 56
73 −0.0210 0.5716 −0.8050 73 235 234 58 256 255 57
74 −0.1755 0.3040 −0.9230 74 212 211 62 272 271 61
75 −0.4845 0.3040 −0.8050 75 220 219 65 275 274 64
76 −0.2345 −0.7370 −0.6140 76 180 179 39 171 170 38
77 −0.5210 −0.5716 −0.6140 77 203 202 44 194 193 43
78 −0.4845 −0.3040 −0.8050 78 226 225 49 217 216 48
79 −0.1755 −0.3040 −0.9230 79 185 186 187 188 189 190
80 −0.0210 −0.5716 −0.8050 80 196 197 198 199 200 201
81 0.2485 0.4305 0.8677 81 173 174 175 176 177 178
82 0.3932 0.4305 0.8124 82 208 209 210 211 212 213
83 0.4103 0.5558 0.7230 83 231 232 233 234 235 236
84 0.2762 0.6332 0.7230 84 219 220 221 222 223 224
85 0.1762 0.5558 0.8124 85 237 241 55 105 104 51
86 0.0023 0.3047 0.9342 86 160 159 57 255 254 56
87 −0.0798 0.4470 0.8714 87 271 275 65 134 133 61
88 −0.2538 0.4396 0.8361 88 186 185 40 172 171 39
89 −0.3472 0.2926 0.8714 89 177 176 38 170 169 37
90 −0.2650 0.1503 0.9342 90 200 199 43 193 192 42
91 −0.0895 0.1550 0.9616 91 209 208 45 195 194 44
92 0.2627 −0.1544 0.9342 92 232 231 50 218 217 49
93 0.4270 −0.1544 0.8714 93 223 222 48 216 215 47
94 0.5077 0.0000 0.8361 94 190 189 51 104 109 5
95 0.4270 0.1544 0.8714 95 106 105 55 196 201 8
96 0.2627 0.1544 0.9342 96 161 160 56 173 178 6
97 0.1790 0.0000 0.9616 97 236 235 57 159 158 9
98 0.8203 0.1503 0.5196 98 213 212 61 133 138 7
99 0.8397 0.2926 0.4181 99 135 134 65 219 224 10
100 0.7466 0.4396 0.4540 100 168 169 170 171 172
101 0.6405 0.4470 0.5963 101 191 192 193 194 195
102 0.6211 0.3047 0.6979 102 214 215 216 217 218
103 0.7078 0.1550 0.6571 103 100 99 40 185 190 5
104 0.5551 0.7856 0.2006 104 201 200 42 113 112 8
105 0.4028 0.8735 0.2006 105 178 177 37 165 164 6
106 0.2971 0.8664 0.3433 106 129 128 45 208 213 7
107 0.3477 0.7781 0.4890 107 152 151 50 231 236 9
108 0.5000 0.6902 0.4890 108 224 223 47 142 141 10
109 0.6018 0.6905 0.3433 109 104 105 106 107 108 109
110 −0.0467 0.6902 0.6979 110 156 157 158 159 160 161
111 0.0669 0.7781 0.5963 111 133 134 135 136 137 138
112 0.0075 0.8664 0.4540 112 168 172 40 99 98 36
113 −0.1664 0.8735 0.4181 113 166 165 37 169 168 36
114 −0.2800 0.7856 0.5196 114 114 113 42 192 191 41
115 −0.2196 0.6905 0.6571 115 191 195 45 128 127 41
116 −0.4971 0.0000 0.8677 116 214 218 50 151 150 46
117 −0.5694 0.1253 0.8124 117 143 142 47 215 214 46
118 −0.6865 0.0774 0.7230 118 109 108 23 101 100 5
119 −0.6865 −0.0774 0.7230 119 112 111 24 107 106 8
120 −0.5694 −0.1253 0.8124 120 164 163 34 156 161 6
121 −0.2650 −0.1503 0.9342 121 138 137 28 130 129 7
122 −0.3472 −0.2926 0.8714 122 158 157 33 153 152 9
123 −0.2538 −0.4396 0.8361 123 141 140 29 136 135 10
124 −0.0798 −0.4470 0.8714 124 98 99 100 101 102 103
125 0.0023 −0.3047 0.9342 125 110 111 112 113 114 115
126 −0.0895 −0.1550 0.9616 126 162 163 164 165 166 167
127 −0.5403 0.6353 0.5196 127 127 128 129 130 131 132
128 −0.6733 0.5809 0.4181 128 150 151 152 153 154 155
129 −0.7540 0.4267 0.4540 129 139 140 141 142 143 144
130 −0.7073 0.3312 0.5963 130 167 166 36 98 103 2
131 −0.5744 0.3855 0.6979 131 115 114 41 127 132 3
132 −0.4881 0.5354 0.6571 132 144 143 46 150 155 4
133 −0.9579 0.0879 0.2007 133 108 107 24 84 83 23
134 −0.9579 −0.0880 0.2007 134 157 156 34 148 147 33
135 −0.8988 −0.1759 0.3433 135 137 136 29 119 118 28
136 −0.8477 −0.0880 0.4890 136 102 101 23 83 82 22
137 −0.8477 0.0880 0.4890 137 111 110 25 85 84 24
138 −0.8988 0.1759 0.3433 138 163 162 35 149 148 34
139 −0.5744 −0.3855 0.6979 139 131 130 28 118 117 27
140 −0.7073 −0.3312 0.5963 140 154 153 33 147 146 32
141 −0.7540 −0.4267 0.4540 141 140 139 30 120 119 29
142 −0.6733 −0.5809 0.4181 142 103 102 22 95 94 2
143 −0.5403 −0.6353 0.5196 143 94 93 35 162 167 2
144 −0.4881 −0.5354 0.6571 144 88 87 25 110 115 3
145 0.2485 −0.4305 0.8677 145 132 131 27 89 88 3
146 0.1762 −0.5558 0.8124 146 155 154 32 124 123 4
147 0.2762 −0.6332 0.7230 147 123 122 30 139 144 4
148 0.4103 −0.5558 0.7230 148 81 82 83 84 85
149 0.3932 −0.4305 0.8124 149 145 146 147 148 149
150 −0.2800 −0.7856 0.5196 150 116 117 118 119 120
151 −0.1664 −0.8735 0.4181 151 96 95 22 82 81 21
152 0.0075 −0.8664 0.4540 152 81 85 25 87 86 21
153 0.0669 −0.7781 0.5963 153 145 149 35 93 92 31
154 −0.0467 −0.6902 0.6979 154 90 89 27 117 116 26
155 −0.2196 −0.6905 0.6571 155 125 124 32 146 145 31
156 0.5000 −0.6902 0.4890 156 116 120 30 122 121 26
157 0.3477 −0.7781 0.4890 157 92 93 94 95 96 97
158 0.2971 −0.8664 0.3433 158 86 87 88 89 90 91
159 0.4028 −0.8735 0.2007 159 121 122 123 124 125 126
160 0.5551 −0.7856 0.2007 160 97 96 21 86 91 1
161 0.6018 −0.6905 0.3433 161 126 125 31 92 97 1
162 0.6211 −0.3047 0.6979 162 91 90 26 121 126 1
163 0.6405 −0.4470 0.5963
164 0.7466 −0.4396 0.4540
165 0.8397 −0.2926 0.4181
166 0.8203 −0.1503 0.5196
167 0.7078 −0.1550 0.6571
168 0.9490 0.0000 0.3154
169 0.9660 −0.1253 0.2259
170 0.9937 −0.0774 0.0813
171 0.9937 0.0774 0.0813
172 0.9660 0.1253 0.2259
173 0.7492 −0.6353 0.0271
174 0.7806 −0.5809 −0.1372
175 0.8647 −0.4267 −0.1643
176 0.9247 −0.3312 −0.0271
177 0.8934 −0.3855 0.1372
178 0.8019 −0.5354 0.1643
179 0.9579 0.0880 −0.2007
180 0.9579 −0.0879 −0.2007
181 0.8988 −0.1759 −0.3433
182 0.8477 −0.0880 −0.4890
183 0.8477 0.0880 −0.4890
184 0.8988 0.1759 −0.3433
185 0.8934 0.3855 0.1372
186 0.9247 0.3312 −0.0271
187 0.8647 0.4267 −0.1643
188 0.7805 0.5809 −0.1372
189 0.7492 0.6353 0.0271
190 0.8019 0.5354 0.1643
191 −0.4745 0.8218 0.3154
192 −0.3745 0.8993 0.2259
193 −0.4298 0.8993 0.0813
194 −0.5639 0.8218 0.0813
195 −0.5915 0.7740 0.2259
196 0.1756 0.9664 0.0271
197 0.1128 0.9664 −0.1372
198 −0.0628 0.9622 −0.1643
199 −0.1756 0.9664 −0.0271
200 −0.1128 0.9664 0.1372
201 0.0628 0.9622 0.1643
202 −0.5551 0.7856 −0.2007
203 −0.4028 0.8735 −0.2007
204 −0.2971 0.8664 −0.3433
205 −0.3477 0.7781 −0.4890
206 −0.5000 0.6902 −0.4890
207 −0.6018 0.6905 −0.3433
208 −0.7806 0.5809 0.1372
209 −0.7492 0.6353 −0.0271
210 −0.8019 0.5354 −0.1643
211 −0.8934 0.3855 −0.1372
212 −0.9247 0.3312 0.0271
213 −0.8647 0.4267 0.1643
214 −0.4745 −0.8218 0.3154
215 −0.5915 −0.7740 0.2259
216 −0.5639 −0.8218 0.0813
217 −0.4298 −0.8993 0.0813
218 −0.3745 −0.8993 0.2259
219 −0.9247 −0.3312 0.0271
220 −0.8934 −0.3855 −0.1372
221 −0.8019 −0.5354 −0.1643
222 −0.7492 −0.6353 −0.0271
223 −0.7805 −0.5809 0.1372
224 −0.8647 −0.4267 0.1643
225 −0.4028 −0.8735 −0.2006
226 −0.5551 −0.7856 −0.2006
227 −0.6018 −0.6905 −0.3433
228 −0.5000 −0.6902 −0.4890
229 −0.3477 −0.7781 −0.4890
230 −0.2971 −0.8664 −0.3433
231 −0.1128 −0.9664 0.1372
232 −0.1756 −0.9664 −0.0271
233 −0.0628 −0.9622 −0.1643
234 0.1128 −0.9664 −0.1372
235 0.1756 −0.9664 0.0271
236 0.0628 −0.9622 0.1643
237 0.5639 0.8218 −0.0813
238 0.5915 0.7740 −0.2259
239 0.4745 0.8218 −0.3154
240 0.3745 0.8993 −0.2259
241 0.4298 0.8993 −0.0813
242 0.7073 0.3312 −0.5963
243 0.5744 0.3855 −0.6979
244 0.4881 0.5354 −0.6571
245 0.5403 0.6353 −0.5196
246 0.6733 0.5809 −0.4181
247 0.7540 0.4267 −0.4540
248 0.1664 0.8735 −0.4181
249 0.2800 0.7856 −0.5196
250 0.2196 0.6905 −0.6571
251 0.0467 0.6902 −0.6979
252 −0.0669 0.7781 −0.5963
253 −0.0075 0.8664 −0.4540
254 0.5639 −0.8218 −0.0813
255 0.4298 −0.8993 −0.0813
256 0.3745 −0.8993 −0.2259
257 0.4745 −0.8218 −0.3154
258 0.5915 −0.7740 −0.2259
259 −0.0669 −0.7781 −0.5963
260 0.0467 −0.6902 −0.6979
261 0.2196 −0.6905 −0.6571
262 0.2800 −0.7856 −0.5196
263 0.1664 −0.8735 −0.4181
264 −0.0075 −0.8664 −0.4540
265 0.6733 −0.5809 −0.4181
266 0.5403 −0.6353 −0.5196
267 0.4881 −0.5354 −0.6571
268 0.5744 −0.3855 −0.6979
269 0.7073 −0.3312 −0.5963
270 0.7540 −0.4267 −0.4540
271 −0.9937 0.0774 −0.0813
272 −0.9660 0.1253 −0.2259
273 −0.9490 0.0000 −0.3154
274 −0.9660 −0.1253 −0.2259
275 −0.9937 −0.0774 −0.0813
276 −0.6405 0.4470 −0.5963
277 −0.6211 0.3047 −0.6979
278 −0.7078 0.1550 −0.6571
279 −0.8203 0.1503 −0.5196
280 −0.8397 0.2926 −0.4181
281 −0.7466 0.4396 −0.4540
282 −0.8397 −0.2926 −0.4181
283 −0.8203 −0.1503 −0.5196
284 −0.7078 −0.1550 −0.6571
285 −0.6211 −0.3047 −0.6979
286 −0.6405 −0.4470 −0.5963
287 −0.7466 −0.4396 −0.4540
288 0.6865 0.0774 −0.7230
289 0.6865 −0.0774 −0.7230
290 0.5694 −0.1253 −0.8124
291 0.4971 0.0000 −0.8677
292 0.5694 0.1253 −0.8124
293 0.0798 −0.4470 −0.8714
294 −0.0023 −0.3047 −0.9342
295 0.0895 −0.1550 −0.9616
296 0.2650 −0.1503 −0.9342
297 0.3472 −0.2926 −0.8714
298 0.2538 −0.4396 −0.8361
299 0.3472 0.2926 −0.8714
300 0.2650 0.1503 −0.9342
301 0.0895 0.1550 −0.9616
302 −0.0023 0.3047 −0.9342
303 0.0798 0.4470 −0.8714
304 0.2538 0.4396 −0.8361
305 −0.4103 0.5558 −0.7230
306 −0.2762 0.6332 −0.7230
307 −0.1762 0.5558 −0.8124
308 −0.2485 0.4305 −0.8677
309 −0.3932 0.4305 −0.8124
310 −0.4270 0.1544 −0.8714
311 −0.2627 0.1544 −0.9342
312 −0.1790 0.0000 −0.9616
313 −0.2627 −0.1544 −0.9342
314 −0.4270 −0.1544 −0.8714
315 −0.5077 0.0000 −0.8361
316 −0.2762 −0.6332 −0.7230
317 −0.4103 −0.5558 −0.7230
318 −0.3932 −0.4305 −0.8124
319 −0.2485 −0.4305 −0.8677
320 −0.1762 −0.5558 −0.8124
TABLE 2
Vertex x/D y/D z/D Face Group of vertices
1 0.0166 0.0382 0.4983 1 96 168 240 216 144
2 0.0166 −0.0382 −0.4983 2 97 169 241 217 145
3 −0.0166 −0.0382 0.4983 3 98 170 242 218 146
4 −0.0166 0.0382 −0.4983 4 99 171 243 219 147
5 0.4983 0.0166 0.0382 5 100 172 244 221 149
6 0.4983 −0.0166 −0.0382 6 101 173 245 220 148
7 −0.4983 −0.0166 0.0382 7 102 174 246 223 151
8 −0.4983 0.0166 −0.0382 8 103 175 247 222 150
9 0.0382 0.4983 0.0166 9 104 176 248 226 154
10 0.0382 −0.4983 −0.0166 10 105 177 249 227 155
11 −0.0382 −0.4983 0.0166 11 106 178 250 224 152
12 −0.0382 0.4983 −0.0166 12 107 179 251 225 153
13 0.0979 0.0465 0.4881 13 72 26 0 12 60 84
14 0.0979 −0.0465 −0.4881 14 72 84 192 264 230 134
15 −0.0979 −0.0465 0.4881 15 72 134 158 110 50 26
16 −0.0979 0.0465 −0.4881 16 73 25 3 15 63 87
17 0.4881 0.0979 0.0465 17 73 87 195 267 229 133
18 0.4881 −0.0979 −0.0465 18 73 133 157 109 49 25
19 −0.4881 −0.0979 0.0465 19 74 24 2 14 62 86
20 −0.4881 0.0979 −0.0465 20 74 86 194 266 228 132
21 0.0465 0.4881 0.0979 21 74 132 156 108 48 24
22 0.0465 −0.4881 −0.0979 22 75 27 1 13 61 85
23 −0.0465 −0.4881 0.0979 23 75 85 193 265 231 135
24 −0.0465 0.4881 −0.0979 24 75 135 159 111 51 27
25 0.0333 −0.1043 0.4879 25 76 28 4 16 64 88
26 0.0333 0.1043 −0.4879 26 76 88 196 268 232 136
27 −0.0333 0.1043 0.4879 27 76 136 160 112 52 28
28 −0.0333 −0.1043 −0.4879 28 77 29 5 17 65 89
29 0.4879 −0.0333 0.1043 29 77 89 197 269 233 137
30 0.4879 0.0333 −0.1043 30 77 137 161 113 53 29
31 −0.4879 0.0333 0.1043 31 78 30 6 18 66 90
32 −0.4879 −0.0333 −0.1043 32 78 90 198 270 234 138
33 0.1043 −0.4879 0.0333 33 78 138 162 114 54 30
34 0.1043 0.4879 −0.0333 34 79 31 7 19 67 91
35 −0.1043 0.4879 0.0333 35 79 91 199 271 235 139
36 −0.1043 −0.4879 −0.0333 36 79 139 163 115 55 31
37 0.1443 −0.0179 0.4784 37 80 33 8 20 68 92
38 0.1443 0.0179 −0.4784 38 80 92 200 272 237 141
39 −0.1443 0.0179 0.4784 39 80 141 165 117 57 33
40 −0.1443 −0.0179 −0.4784 40 81 32 9 21 69 93
41 0.4784 −0.1443 0.0179 41 81 93 201 273 236 140
42 0.4784 0.1443 −0.0179 42 81 140 164 116 56 32
43 −0.4784 0.1443 0.0179 43 82 34 11 23 71 95
44 −0.4784 −0.1443 −0.0179 44 82 95 203 275 238 142
45 0.0179 −0.4784 0.1443 45 82 142 166 118 58 34
46 0.0179 0.4784 −0.1443 46 83 35 10 22 70 94
47 −0.0179 0.4784 0.1443 47 83 94 202 274 239 143
48 −0.0179 −0.4784 −0.1443 48 83 143 167 119 59 35
49 0.1142 −0.0920 0.4780 49 372 360 252 204 312 364
50 0.1142 0.0920 −0.4780 50 372 364 256 208 316 368
51 −0.1142 0.0920 0.4780 51 372 368 260 212 320 360
52 −0.1142 −0.0920 −0.4780 52 373 325 277 349 297 333
53 0.4780 −0.1142 0.0920 53 373 333 285 357 293 329
54 0.4780 0.1142 −0.0920 54 373 329 281 353 289 325
55 −0.4780 0.1142 0.0920 55 374 324 276 348 296 332
56 −0.4780 −0.1142 −0.0920 56 374 332 284 356 292 328
57 0.0920 −0.4780 0.1142 57 374 328 280 352 288 324
58 0.0920 0.4780 −0.1142 58 375 361 253 205 313 365
59 −0.0920 0.4780 0.1142 59 375 365 257 209 317 369
60 −0.0920 −0.4780 −0.1142 60 375 369 261 213 321 361
61 0.1304 0.1181 0.4680 61 376 326 278 350 298 334
62 0.1304 −0.1181 −0.4680 62 376 334 286 358 294 330
63 −0.1304 −0.1181 0.4680 63 376 330 282 354 290 326
64 −0.1304 0.1181 −0.4680 64 377 363 255 207 315 367
65 0.4680 0.1304 0.1181 65 377 367 259 211 319 371
66 0.4680 −0.1304 −0.1181 66 377 371 263 215 323 363
67 −0.4680 −0.1304 0.1181 67 378 362 254 206 314 366
68 −0.4680 0.1304 −0.1181 68 378 366 258 210 318 370
69 0.1181 0.4680 0.1304 69 378 370 262 214 322 362
70 0.1181 −0.4680 −0.1304 70 379 327 279 351 299 335
71 −0.1181 −0.4680 0.1304 71 379 335 287 359 295 331
72 −0.1181 0.4680 −0.1304 72 379 331 283 355 291 327
73 0.0000 0.1784 0.4671 73 48 108 180 168 96 36
74 0.0000 0.1784 −0.4671 74 49 109 181 169 97 37
75 0.0000 −0.1784 0.4671 75 50 110 182 170 98 38
76 0.0000 −0.1784 −0.4671 76 51 111 183 171 99 39
77 0.4671 0.0000 0.1784 77 52 112 184 172 100 40
78 0.4671 0.0000 −0.1784 78 53 113 185 173 101 41
79 −0.4671 0.0000 0.1784 79 54 114 186 174 102 42
80 −0.4671 0.0000 −0.1784 80 55 115 187 175 103 43
81 0.1784 0.4671 0.0000 81 56 116 188 176 104 44
82 0.1784 −0.4671 0.0000 82 57 117 189 177 105 45
83 −0.1784 0.4671 0.0000 83 58 118 190 178 106 46
84 −0.1784 −0.4671 0.0000 84 59 119 191 179 107 47
85 0.0830 0.1847 0.4571 85 60 12 36 96 144 120
86 0.0830 −0.1847 −0.4571 86 61 13 37 97 145 121
87 −0.0830 −0.1847 0.4571 87 62 14 38 98 146 122
88 −0.0830 0.1847 −0.4571 88 63 15 39 99 147 123
89 0.4571 0.0830 0.1847 89 64 16 41 101 148 124
90 0.4571 −0.0830 −0.1847 90 65 17 40 100 149 125
91 −0.4571 −0.0830 0.1847 91 66 18 43 103 150 126
92 −0.4571 0.0830 −0.1847 92 67 19 42 102 151 127
93 0.1847 0.4571 0.0830 93 68 20 46 106 152 128
94 0.1847 −0.4571 −0.0830 94 69 21 47 107 153 129
95 −0.1847 −0.4571 0.0830 95 70 22 44 104 154 130
96 −0.1847 0.4571 −0.0830 96 71 23 45 105 155 131
97 0.2123 −0.0080 0.4526 97 228 266 310 226 248 336
98 0.2123 0.0080 −0.4526 98 229 267 311 227 249 337
99 −0.2123 0.0080 0.4526 99 230 264 308 224 250 338
100 −0.2123 −0.0080 −0.4526 100 231 265 309 225 251 339
101 0.4526 −0.2123 0.0080 101 232 268 300 216 240 340
102 0.4526 0.2123 −0.0080 102 233 269 301 217 241 341
103 −0.4526 0.2123 0.0080 103 234 270 302 218 242 342
104 −0.4526 −0.2123 −0.0080 104 235 271 303 219 243 343
105 0.0080 −0.4526 0.2123 105 236 273 305 221 244 344
106 0.0080 0.4526 −0.2123 106 237 272 304 220 245 345
107 −0.0080 0.4526 0.2123 107 238 275 307 223 246 346
108 −0.0080 −0.4526 −0.2123 108 239 274 306 222 247 347
109 0.1621 −0.1505 0.4484 109 288 352 340 240 168 180
110 0.1621 0.1505 −0.4484 110 289 353 341 241 169 181
111 −0.1621 0.1505 0.4484 111 290 354 342 242 170 182
112 −0.1621 −0.1505 −0.4484 112 291 355 343 243 171 183
113 0.4484 −0.1621 0.1505 113 292 356 344 244 172 184
114 0.4484 0.1621 −0.1505 114 293 357 345 245 173 185
115 −0.4484 0.1621 0.1505 115 294 358 346 246 174 186
116 −0.4484 −0.1621 −0.1505 116 295 359 347 247 175 187
117 0.1505 −0.4484 0.1621 117 296 348 336 248 176 188
118 0.1505 0.4484 −0.1621 118 297 349 337 249 177 189
119 −0.1505 0.4484 0.1621 119 298 350 338 250 178 190
120 −0.1505 −0.4484 −0.1621 120 299 351 339 251 179 191
121 0.2055 0.1169 0.4406 121 312 204 120 144 216 300
122 0.2055 −0.1169 −0.4406 122 313 205 121 145 217 301
123 −0.2055 −0.1169 0.4406 123 314 206 122 146 218 302
124 −0.2055 0.1169 −0.4406 124 315 207 123 147 219 303
125 0.4406 0.2055 0.1169 125 316 208 124 148 220 304
126 0.4406 −0.2055 −0.1169 126 317 209 125 149 221 305
127 −0.4406 −0.2055 0.1169 127 318 210 126 150 222 306
128 −0.4406 0.2055 −0.1169 128 319 211 127 151 223 307
129 0.1169 0.4406 0.2055 129 320 212 128 152 224 308
130 0.1169 −0.4406 −0.2055 130 321 213 129 153 225 309
131 −0.1169 −0.4406 0.2055 131 322 214 130 154 226 310
132 −0.1169 0.4406 −0.2055 132 323 215 131 155 227 311
133 0.0497 −0.2387 0.4365 133 48 36 12 0 2 24
134 0.0497 0.2387 −0.4365 134 49 37 13 1 3 25
135 −0.0497 0.2387 0.4365 135 50 38 14 2 0 26
136 −0.0497 −0.2387 −0.4365 136 51 39 15 3 1 27
137 0.4365 −0.0497 0.2387 137 52 40 17 5 4 28
138 0.4365 0.0497 −0.2387 138 53 41 16 4 5 29
139 −0.4365 0.0497 0.2387 139 54 42 19 7 6 30
140 −0.4365 −0.0497 −0.2387 140 55 43 18 6 7 31
141 0.2387 −0.4365 0.0497 141 56 44 22 10 9 32
142 0.2387 0.4365 −0.0497 142 57 45 23 11 8 33
143 −0.2387 0.4365 0.0497 143 58 46 20 8 11 34
144 −0.2387 −0.4365 −0.0497 144 59 47 21 9 10 35
145 0.2396 0.0521 0.4358 145 60 120 204 252 192 84
146 0.2396 −0.0521 −0.4358 146 61 121 205 253 193 85
147 −0.2396 −0.0521 0.4358 147 62 122 206 254 194 86
148 −0.2396 0.0521 −0.4358 148 63 123 207 255 195 87
149 0.4358 0.2396 0.0521 149 64 124 208 256 196 88
150 0.4358 −0.2396 −0.0521 150 65 125 209 257 197 89
151 −0.4358 −0.2396 0.0521 151 66 126 210 258 198 90
152 −0.4358 0.2396 −0.0521 152 67 127 211 259 199 91
153 0.0521 0.4358 0.2396 153 68 128 212 260 200 92
154 0.0521 −0.4358 −0.2396 154 69 129 213 261 201 93
155 −0.0521 −0.4358 0.2396 155 70 130 214 262 202 94
156 −0.0521 0.4358 −0.2396 156 71 131 215 263 203 95
157 0.1314 −0.2239 0.4274 157 132 228 336 348 276 156
158 0.1314 0.2239 −0.4274 158 133 229 337 349 277 157
159 −0.1314 0.2239 0.4274 159 134 230 338 350 278 158
160 −0.1314 −0.2239 −0.4274 160 135 231 339 351 279 159
161 0.4274 −0.1314 0.2239 161 136 232 340 352 280 160
162 0.4274 0.1314 −0.2239 162 137 233 341 353 281 161
163 −0.4274 0.1314 0.2239 163 138 234 342 354 282 162
164 −0.4274 −0.1314 −0.2239 164 139 235 343 355 283 163
165 0.2239 −0.4274 0.1314 165 140 236 344 356 284 164
166 0.2239 0.4274 −0.1314 166 141 237 345 357 285 165
167 −0.2239 0.4274 0.1314 167 142 238 346 358 286 166
168 −0.2239 −0.4274 −0.1314 168 143 239 347 359 287 167
169 0.2525 −0.0570 0.4278 169 288 180 108 156 276 324
170 0.2525 0.0570 −0.4278 170 289 181 109 157 277 325
171 −0.2525 0.0570 0.4278 171 290 182 110 158 278 326
172 −0.2525 −0.0570 −0.4278 172 291 183 111 159 279 327
173 0.4278 −0.2525 0.0570 173 292 184 112 160 280 328
174 0.4278 0.2525 −0.0570 174 293 185 113 161 281 329
175 −0.4278 0.2525 0.0570 175 294 186 114 162 282 330
176 −0.4278 −0.2525 −0.0570 176 295 187 115 163 283 331
177 0.0570 −0.4278 0.2525 177 296 188 116 164 284 332
178 0.0570 0.4278 −0.2525 178 297 189 117 165 285 333
179 −0.0570 0.4278 0.2525 179 298 190 118 166 286 334
180 −0.0570 −0.4278 −0.2525 180 299 191 119 167 287 335
181 0.2345 −0.1280 0.4227 181 308 264 192 252 360 320
182 0.2345 0.1280 −0.4227 182 309 265 193 253 361 321
183 −0.2345 0.1280 0.4227 183 310 266 194 254 362 322
184 −0.2345 −0.1280 −0.4227 184 311 267 195 255 363 323
185 0.4227 −0.2345 0.1280 185 300 268 196 256 364 312
186 0.4227 0.2345 −0.1280 186 301 269 197 257 365 313
187 −0.4227 0.2345 0.1280 187 302 270 198 258 366 314
188 −0.4227 −0.2345 −0.1280 188 303 271 199 259 367 315
189 0.1280 −0.4227 0.2345 189 304 272 200 260 368 316
190 0.1280 0.4227 −0.2345 190 305 273 201 261 369 317
191 −0.1280 0.4227 0.2345 191 306 274 202 262 370 318
192 −0.1280 −0.4227 −0.2345 192 307 275 203 263 371 319
193 0.1147 0.2508 0.4171
194 0.1147 −0.2508 −0.4171
195 −0.1147 −0.2508 0.4171
196 −0.1147 0.2508 −0.4171
197 0.4171 0.1147 0.2508
198 0.4171 −0.1147 −0.2508
199 −0.4171 −0.1147 0.2508
200 −0.4171 0.1147 −0.2508
201 0.2508 0.4171 0.1147
202 0.2508 −0.4171 −0.1147
203 −0.2508 −0.4171 0.1147
204 −0.2508 0.4171 −0.1147
205 0.2374 0.1793 0.4019
206 0.2374 −0.1793 −0.4019
207 −0.2374 −0.1793 0.4019
208 −0.2374 0.1793 −0.4019
209 0.4019 0.2374 0.1793
210 0.4019 −0.2374 −0.1793
211 −0.4019 −0.2374 0.1793
212 −0.4019 0.2374 −0.1793
213 0.1793 0.4019 0.2374
214 0.1793 −0.4019 −0.2374
215 −0.1793 −0.4019 0.2374
216 −0.1793 0.4019 −0.2374
217 0.2966 0.0401 0.4005
218 0.2966 −0.0401 −0.4005
219 −0.2966 −0.0401 0.4005
220 −0.2966 0.0401 −0.4005
221 0.4005 0.2966 0.0401
222 0.4005 −0.2966 −0.0401
223 −0.4005 −0.2966 0.0401
224 −0.4005 0.2966 −0.0401
225 0.0401 0.4005 0.2966
226 0.0401 −0.4005 −0.2966
227 −0.0401 −0.4005 0.2966
228 −0.0401 0.4005 −0.2966
229 0.0162 −0.3030 0.3974
230 0.0162 0.3030 −0.3974
231 −0.0162 0.3030 0.3974
232 −0.0162 −0.3030 −0.3974
233 0.3974 −0.0162 0.3030
234 0.3974 0.0162 −0.3030
235 −0.3974 0.0162 0.3030
236 −0.3974 −0.0162 −0.3030
237 0.3030 −0.3974 0.0162
238 0.3030 0.3974 −0.0162
239 −0.3030 0.3974 0.0162
240 −0.3030 −0.3974 −0.0162
241 0.3045 −0.0273 0.3956
242 0.3045 0.0273 −0.3956
243 −0.3045 0.0273 0.3956
244 −0.3045 −0.0273 −0.3956
245 0.3956 −0.3045 0.0273
246 0.3956 0.3045 −0.0273
247 −0.3956 0.3045 0.0273
248 −0.3956 −0.3045 −0.0273
249 0.0273 −0.3956 0.3045
250 0.0273 0.3956 −0.3045
251 −0.0273 0.3956 0.3045
252 −0.0273 −0.3956 −0.3045
253 0.1932 0.2475 0.3891
254 0.1932 −0.2475 −0.3891
255 −0.1932 −0.2475 0.3891
256 −0.1932 0.2475 −0.3891
257 0.3891 0.1932 0.2475
258 0.3891 −0.1932 −0.2475
259 −0.3891 −0.1932 0.2475
260 −0.3891 0.1932 −0.2475
261 0.2475 0.3891 0.1932
262 0.2475 −0.3891 −0.1932
263 −0.2475 −0.3891 0.1932
264 −0.2475 0.3891 −0.1932
265 0.0643 0.3089 0.3879
266 0.0643 −0.3089 −0.3879
267 −0.0643 −0.3089 0.3879
268 −0.0643 0.3089 −0.3879
269 0.3879 0.0643 0.3089
270 0.3879 −0.0643 −0.3089
271 −0.3879 −0.0643 0.3089
272 −0.3879 0.0643 −0.3089
273 0.3089 0.3879 0.0643
274 0.3089 −0.3879 −0.0643
275 −0.3089 −0.3879 0.0643
276 −0.3089 0.3879 −0.0643
277 0.1766 −0.2744 0.3788
278 0.1766 0.2744 −0.3788
279 −0.1766 0.2744 0.3788
280 −0.1766 −0.2744 −0.3788
281 0.3788 −0.1766 0.2744
282 0.3788 0.1766 −0.2744
283 −0.3788 0.1766 0.2744
284 −0.3788 −0.1766 −0.2744
285 0.2744 −0.3788 0.1766
286 0.2744 0.3788 −0.1766
287 −0.2744 0.3788 0.1766
288 −0.2744 −0.3788 −0.1766
289 0.2793 −0.1750 0.3760
290 0.2793 0.1750 −0.3760
291 −0.2793 0.1750 0.3760
292 −0.2793 −0.1750 −0.3760
293 0.3760 −0.2793 0.1750
294 0.3760 0.2793 −0.1750
295 −0.3760 0.2793 0.1750
296 −0.3760 −0.2793 −0.1750
297 0.1750 −0.3760 0.2793
298 0.1750 0.3760 −0.2793
299 −0.1750 0.3760 0.2793
300 −0.1750 −0.3760 −0.2793
301 0.3335 0.0901 0.3615
302 0.3335 −0.0901 −0.3615
303 −0.3335 −0.0901 0.3615
304 −0.3335 0.0901 −0.3615
305 0.3615 0.3335 0.0901
306 0.3615 −0.3335 −0.0901
307 −0.3615 −0.3335 0.0901
308 −0.3615 0.3335 −0.0901
309 0.0901 0.3615 0.3335
310 0.0901 −0.3615 −0.3335
311 −0.0901 −0.3615 0.3335
312 −0.0901 0.3615 −0.3335
313 0.3054 0.1650 0.3599
314 0.3054 −0.1650 −0.3599
315 −0.3054 −0.1650 0.3599
316 −0.3054 0.1650 −0.3599
317 0.3599 0.3054 0.1650
318 0.3599 −0.3054 −0.1650
319 −0.3599 −0.3054 0.1650
320 −0.3599 0.3054 −0.1650
321 0.1650 0.3599 0.3054
322 0.1650 −0.3599 −0.3054
323 −0.1650 −0.3599 0.3054
324 −0.1650 0.3599 −0.3054
325 0.2518 −0.2492 0.3528
326 0.2518 0.2492 −0.3528
327 −0.2518 0.2492 0.3528
328 −0.2518 −0.2492 −0.3528
329 0.3528 −0.2518 0.2492
330 0.3528 0.2518 −0.2492
331 −0.3528 0.2518 0.2492
332 −0.3528 −0.2518 −0.2492
333 0.2492 −0.3528 0.2518
334 0.2492 0.3528 −0.2518
335 −0.2492 0.3528 0.2518
336 −0.2492 −0.3528 −0.2518
337 0.0612 −0.3504 0.3514
338 0.0612 0.3504 −0.3514
339 −0.0612 0.3504 0.3514
340 −0.0612 −0.3504 −0.3514
341 0.3514 −0.0612 0.3504
342 0.3514 0.0612 −0.3504
343 −0.3514 0.0612 0.3504
344 −0.3514 −0.0612 −0.3504
345 0.3504 −0.3514 0.0612
346 0.3504 0.3514 −0.0612
347 −0.3504 0.3514 0.0612
348 −0.3504 −0.3514 −0.0612
349 0.1395 −0.3376 0.3414
350 0.1395 0.3376 −0.3414
351 −0.1395 0.3376 0.3414
352 −0.1395 −0.3376 −0.3414
353 0.3414 −0.1395 0.3376
354 0.3414 0.1395 −0.3376
355 −0.3414 0.1395 0.3376
356 −0.3414 −0.1395 −0.3376
357 0.3376 −0.3414 0.1395
358 0.3376 0.3414 −0.1395
359 −0.3376 0.3414 0.1395
360 −0.3376 −0.3414 −0.1395
361 0.2185 0.3031 0.3322
362 0.2185 −0.3031 −0.3322
363 −0.2185 −0.3031 0.3322
364 −0.2185 0.3031 −0.3322
365 0.3322 0.2185 0.3031
366 0.3322 −0.2185 −0.3031
367 −0.3322 −0.2185 0.3031
368 −0.3322 0.2185 −0.3031
369 0.3031 0.3322 0.2185
370 0.3031 −0.3322 −0.2185
371 −0.3031 −0.3322 0.2185
372 −0.3031 0.3322 −0.2185
373 0.2887 0.2887 0.2887
374 0.2887 0.2887 −0.2887
375 0.2887 −0.2887 0.2887
376 0.2887 −0.2887 −0.2887
377 −0.2887 0.2887 0.2887
378 −0.2887 0.2887 −0.2887
379 −0.2887 −0.2887 0.2887
380 −0.2887 −0.2887 −0.2887
TABLE 3
Sphere x/D y/D z/D d/D
1 0.1437 0.0000 −0.7810 0.6114
2 −0.0718 0.1244 −0.7811 0.6115
3 −0.0718 −0.1244 −0.7811 0.6115
4 0.1418 0.2456 −0.7424 0.6127
5 0.1418 −0.2456 −0.7424 0.6127
6 −0.2836 0.0000 −0.7424 0.6127
7 0.3189 0.1091 −0.6648 0.5125
8 −0.0649 0.3307 −0.6648 0.5125
9 0.3189 −0.1091 −0.6648 0.5125
10 −0.2539 0.2216 −0.6648 0.5125
11 −0.0649 −0.3307 −0.6648 0.5125
12 −0.2539 −0.2216 −0.6648 0.5125
13 0.3860 0.0000 −0.5053 0.2902
14 −0.1930 0.3343 −0.5053 0.2902
15 −0.1930 −0.3343 −0.5053 0.2902
16 0.3413 0.3423 −0.6301 0.6115
17 0.1258 0.4668 −0.6301 0.6115
18 0.3413 −0.3423 −0.6301 0.6115
19 0.1258 −0.4668 −0.6301 0.6115
20 −0.4672 0.1244 −0.6301 0.6115
21 −0.4672 −0.1244 −0.6301 0.6115
22 0.4838 0.1766 −0.5388 0.5125
23 −0.0890 0.5073 −0.5388 0.5125
24 0.4838 −0.1766 −0.5388 0.5125
25 −0.3948 0.3307 −0.5388 0.5125
26 −0.0890 −0.5073 −0.5388 0.5125
27 −0.3948 −0.3307 −0.5388 0.5125
28 0.5858 0.0000 −0.4610 0.5125
29 −0.2929 0.5073 −0.4610 0.5125
30 −0.2929 −0.5073 −0.4610 0.5125
31 0.3139 0.5437 −0.4864 0.6115
32 0.3139 −0.5437 −0.4864 0.6115
33 −0.6278 0.0000 −0.4864 0.6114
34 0.5130 0.3974 −0.4589 0.6127
35 0.0876 0.6430 −0.4589 0.6127
36 0.5130 −0.3974 −0.4589 0.6127
37 −0.6006 0.2456 −0.4589 0.6127
38 0.0876 −0.6430 −0.4589 0.6127
39 −0.6006 −0.2456 −0.4589 0.6127
40 0.6611 0.2116 −0.3857 0.6114
41 −0.1473 0.6784 −0.3858 0.6115
42 0.6612 −0.2116 −0.3857 0.6115
43 −0.5138 0.4668 −0.3857 0.6115
44 −0.1473 −0.6784 −0.3857 0.6115
45 −0.5138 −0.4668 −0.3857 0.6115
46 0.4350 0.5351 −0.2829 0.5125
47 0.2460 0.6442 −0.2829 0.5125
48 0.4350 −0.5351 −0.2829 0.5125
49 0.2460 −0.6442 −0.2829 0.5125
50 −0.6809 0.1091 −0.2829 0.5125
51 −0.6809 −0.1091 −0.2829 0.5125
52 0.7424 0.0000 −0.2836 0.6127
53 −0.3712 0.6430 −0.2836 0.6127
54 −0.3712 −0.6430 −0.2836 0.6127
55 0.6337 0.4129 −0.2421 0.6115
56 0.0407 0.7553 −0.2421 0.6115
57 0.6337 −0.4129 −0.2421 0.6115
58 −0.6745 0.3423 −0.2421 0.6115
59 0.0408 −0.7553 −0.2421 0.6115
60 −0.6745 −0.3423 −0.2421 0.6115
61 0.3123 0.5409 −0.1193 0.2902
62 0.3123 −0.5409 −0.1193 0.2902
63 −0.6246 0.0000 −0.1193 0.2902
64 0.7500 0.2116 −0.1533 0.6115
65 0.7500 −0.2116 −0.1533 0.6115
66 −0.1917 0.7553 −0.1533 0.6115
67 −0.5582 0.5437 −0.1533 0.6115
68 −0.1917 −0.7553 −0.1533 0.6115
69 −0.5582 −0.5437 −0.1533 0.6115
70 0.5128 0.5351 −0.0791 0.5125
71 0.2070 0.7117 −0.0791 0.5125
72 0.5128 −0.5351 −0.0791 0.5125
73 0.2070 −0.7117 −0.0791 0.5125
74 −0.7198 0.1766 −0.0791 0.5125
75 −0.7198 −0.1766 −0.0791 0.5125
76 0.7439 0.0000 −0.0469 0.5125
77 −0.3720 0.6442 −0.0469 0.5125
78 −0.3720 −0.6442 −0.0469 0.5125
79 0.6883 0.3974 0.0000 0.6127
80 0.0000 0.7948 0.0000 0.6127
81 0.6883 −0.3974 0.0000 0.6127
82 −0.6883 0.3974 0.0000 0.6127
83 0.0000 −0.7948 0.0000 0.6127
84 −0.6883 −0.3974 0.0000 0.6127
85 0.3720 0.6442 0.0469 0.5125
86 0.3720 −0.6442 0.0469 0.5125
87 −0.7439 0.0000 0.0469 0.5125
88 0.7198 0.1766 0.0791 0.5125
89 0.7198 −0.1766 0.0791 0.5125
90 −0.2070 0.7117 0.0791 0.5125
91 −0.5128 0.5351 0.0791 0.5125
92 −0.2070 −0.7117 0.0791 0.5125
93 −0.5128 −0.5351 0.0791 0.5125
94 0.5582 0.5437 0.1533 0.6115
95 0.1917 0.7553 0.1533 0.6115
96 0.5582 −0.5437 0.1533 0.6115
97 0.1917 −0.7553 0.1533 0.6115
98 −0.7500 0.2116 0.1533 0.6115
99 −0.7500 −0.2116 0.1533 0.6115
100 0.6246 0.0000 0.1193 0.2902
101 −0.3123 0.5409 0.1193 0.2902
102 −0.3123 −0.5409 0.1193 0.2902
103 0.6745 0.3423 0.2421 0.6115
104 −0.0408 0.7553 0.2421 0.6115
105 0.6745 −0.3423 0.2421 0.6115
106 −0.6337 0.4129 0.2421 0.6115
107 −0.0407 −0.7553 0.2421 0.6115
108 −0.6337 −0.4129 0.2421 0.6115
109 0.3712 0.6430 0.2836 0.6127
110 0.3712 −0.6430 0.2836 0.6127
111 −0.7424 0.0000 0.2836 0.6127
112 0.6809 0.1091 0.2829 0.5125
113 0.6809 −0.1091 0.2829 0.5125
114 −0.2460 0.6442 0.2829 0.5125
115 −0.4350 0.5351 0.2829 0.5125
116 −0.2460 −0.6442 0.2829 0.5125
117 −0.4350 −0.5351 0.2829 0.5125
118 0.5138 0.4668 0.3857 0.6115
119 0.1473 0.6784 0.3857 0.6115
120 0.5138 −0.4668 0.3857 0.6115
121 −0.6612 0.2116 0.3857 0.6115
122 0.1473 −0.6784 0.3858 0.6115
123 −0.6611 −0.2116 0.3857 0.6114
124 0.6006 0.2456 0.4589 0.6127
125 −0.0876 0.6430 0.4589 0.6127
126 0.6006 −0.2456 0.4589 0.6127
127 −0.5130 0.3974 0.4589 0.6127
128 −0.0876 −0.6430 0.4589 0.6127
129 −0.5130 −0.3974 0.4589 0.6127
130 0.6278 0.0000 0.4864 0.6114
131 −0.3139 0.5437 0.4864 0.6115
132 −0.3139 −0.5437 0.4864 0.6115
133 0.2929 0.5073 0.4610 0.5125
134 0.2929 −0.5073 0.4610 0.5125
135 −0.5858 0.0000 0.4610 0.5125
136 0.3948 0.3307 0.5388 0.5125
137 0.0890 0.5073 0.5388 0.5125
138 0.3948 −0.3307 0.5388 0.5125
139 −0.4838 0.1766 0.5388 0.5125
140 0.0890 −0.5073 0.5388 0.5125
141 −0.4838 −0.1766 0.5388 0.5125
142 0.4672 0.1244 0.6301 0.6115
143 0.4672 −0.1244 0.6301 0.6115
144 −0.1258 0.4668 0.6301 0.6115
145 −0.3413 0.3423 0.6301 0.6115
146 −0.1258 −0.4668 0.6301 0.6115
147 −0.3413 −0.3423 0.6301 0.6115
148 0.1930 0.3343 0.5053 0.2902
149 0.1930 −0.3343 0.5053 0.2902
150 −0.3860 0.0000 0.5053 0.2902
151 0.2539 0.2216 0.6648 0.5125
152 0.0649 0.3307 0.6648 0.5125
153 0.2539 −0.2216 0.6648 0.5125
154 −0.3189 0.1091 0.6648 0.5125
155 0.0649 −0.3307 0.6648 0.5125
156 −0.3189 −0.1091 0.6648 0.5125
157 0.2836 0.0000 0.7424 0.6127
158 −0.1418 0.2456 0.7424 0.6127
159 −0.1418 −0.2456 0.7424 0.6127
160 0.0718 0.1244 0.7811 0.6115
161 0.0718 −0.1244 0.7811 0.6115
162 −0.1437 0.0000 0.7810 0.6114
TABLE 4
Vertex x/D y/D z/D Face Group of vertices
1 0.0304 0.0117 0.4989 1 204 276 384 312 216
2 0.0304 −0.0117 −0.4989 2 205 277 385 313 217
3 −0.0304 −0.0117 0.4989 3 206 278 386 314 218
4 −0.0304 0.0117 −0.4989 4 207 279 387 315 219
5 0.4989 0.0304 0.0117 5 208 280 388 317 221
6 0.4989 −0.0304 −0.0117 6 209 281 389 316 220
7 −0.4989 −0.0304 0.0117 7 210 282 390 319 223
8 −0.4989 0.0304 −0.0117 8 211 283 391 318 222
9 0.0117 0.4989 0.0304 9 212 284 392 322 226
10 0.0117 −0.4989 −0.0304 10 213 285 393 323 227
11 −0.0117 −0.4989 0.0304 11 214 286 394 320 224
12 −0.0117 0.4989 −0.0304 12 215 287 395 321 225
13 0.0804 −0.0287 0.4926 13 108 50 24 72 132 156
14 0.0804 0.0287 −0.4926 14 108 156 264 360 302 194
15 −0.0804 0.0287 0.4926 15 108 194 182 98 38 50
16 −0.0804 −0.0287 −0.4926 16 109 49 27 75 135 159
17 0.4926 −0.0804 0.0287 17 109 159 267 363 301 193
18 0.4926 0.0804 −0.0287 18 109 193 181 97 37 49
19 −0.4926 0.0804 0.0287 19 110 48 26 74 134 158
20 −0.4926 −0.0804 −0.0287 20 110 158 266 362 300 192
21 0.0287 −0.4926 0.0804 21 110 192 180 96 36 48
22 0.0287 0.4926 −0.0804 22 111 51 25 73 133 157
23 −0.0287 0.4926 0.0804 23 111 157 265 361 303 195
24 −0.0287 −0.4926 −0.0804 24 111 195 183 99 39 51
25 0.0406 0.0756 0.4926 25 112 52 28 76 136 160
26 0.0406 −0.0756 −0.4926 26 112 160 268 364 304 196
27 −0.0406 −0.0756 0.4926 27 112 196 184 100 40 52
28 −0.0406 0.0756 −0.4926 28 113 53 29 77 137 161
29 0.4926 0.0406 0.0756 29 113 161 269 365 305 197
30 0.4926 −0.0406 −0.0756 30 113 197 185 101 41 53
31 −0.4926 −0.0406 0.0756 31 114 54 30 78 138 162
32 −0.4926 0.0406 −0.0756 32 114 162 270 366 306 198
33 0.0756 0.4926 0.0406 33 114 198 186 102 42 54
34 0.0756 −0.4926 −0.0406 34 115 55 31 79 139 163
35 −0.0756 −0.4926 0.0406 35 115 163 271 367 307 199
36 −0.0756 0.4926 −0.0406 36 115 199 187 103 43 55
37 0.0708 −0.0922 0.4863 37 116 57 32 80 140 164
38 0.0708 0.0922 −0.4863 38 116 164 272 368 309 201
39 −0.0708 0.0922 0.4863 39 116 201 189 105 45 57
40 −0.0708 −0.0922 −0.4863 40 117 56 33 81 141 165
41 0.4863 −0.0708 0.0922 41 117 165 273 369 308 200
42 0.4863 0.0708 −0.0922 42 117 200 188 104 44 56
43 −0.4863 0.0708 0.0922 43 118 58 35 83 143 167
44 −0.4863 −0.0708 −0.0922 44 118 167 275 371 310 202
45 0.0922 −0.4863 0.0708 45 118 202 190 106 46 58
46 0.0922 0.4863 −0.0708 46 119 59 34 82 142 166
47 −0.0922 0.4863 0.0708 47 119 166 274 370 311 203
48 −0.0922 −0.4863 −0.0708 48 119 203 191 107 47 59
49 0.0102 −0.1163 0.4862 49 612 588 456 468 600 592
50 0.0102 0.1163 −0.4862 50 612 592 460 472 604 596
51 −0.0102 0.1163 0.4862 51 612 596 464 476 608 588
52 −0.0102 −0.1163 −0.4862 52 613 577 565 549 489 585
53 0.4862 −0.0102 0.1163 53 613 585 573 545 485 581
54 0.4862 0.0102 −0.1163 54 613 581 569 541 481 577
55 −0.4862 0.0102 0.1163 55 614 576 564 548 488 584
56 −0.4862 −0.0102 −0.1163 56 614 584 572 544 484 580
57 0.1163 −0.4862 0.0102 57 614 580 568 540 480 576
58 0.1163 0.4862 −0.0102 58 615 589 457 469 601 593
59 −0.1163 0.4862 0.0102 59 615 593 461 473 605 597
60 −0.1163 −0.4862 −0.0102 60 615 597 465 477 609 589
61 0.1376 −0.0055 0.4807 61 616 578 566 550 490 586
62 0.1376 0.0055 −0.4807 62 616 586 574 546 486 582
63 −0.1376 0.0055 0.4807 63 616 582 570 542 482 578
64 −0.1376 −0.0055 −0.4807 64 617 591 459 471 603 595
65 0.4807 −0.1376 0.0055 65 617 595 463 475 607 599
66 0.4807 0.1376 −0.0055 66 617 599 467 479 611 591
67 −0.4807 0.1376 0.0055 67 618 590 458 470 602 594
68 −0.4807 −0.1376 −0.0055 68 618 594 462 474 606 598
69 0.0055 −0.4807 0.1376 69 618 598 466 478 610 590
70 0.0055 0.4807 −0.1376 70 619 579 567 551 491 587
71 −0.0055 0.4807 0.1376 71 619 587 575 547 487 583
72 −0.0055 −0.4807 −0.1376 72 619 583 571 543 483 579
73 0.1006 0.0965 0.4802 73 12 0 2 26 48 36
74 0.1006 −0.0965 −0.4802 74 13 1 3 27 49 37
75 −0.1006 −0.0965 0.4802 75 14 2 0 24 50 38
76 −0.1006 0.0965 −0.4802 76 15 3 1 25 51 39
77 0.4802 0.1006 0.0965 77 16 5 4 28 52 40
78 0.4802 −0.1006 −0.0965 78 17 4 5 29 53 41
79 −0.4802 −0.1006 0.0965 79 18 7 6 30 54 42
80 −0.4802 0.1006 −0.0965 80 19 6 7 31 55 43
81 0.0965 0.4802 0.1006 81 20 10 9 33 56 44
82 0.0965 −0.4802 −0.1006 82 21 11 8 32 57 45
83 −0.0965 −0.4802 0.1006 83 22 8 11 35 58 46
84 −0.0965 0.4802 −0.1006 84 23 9 10 34 59 47
85 0.1473 0.0548 0.4747 85 132 228 348 396 264 156
86 0.1473 −0.0548 −0.4747 86 133 229 349 397 265 157
87 −0.1473 −0.0548 0.4747 87 134 230 350 398 266 158
88 −0.1473 0.0548 −0.4747 88 135 231 351 399 267 159
89 0.4747 0.1473 0.0548 89 136 232 352 400 268 160
90 0.4747 −0.1473 −0.0548 90 137 233 353 401 269 161
91 −0.4747 −0.1473 0.0548 91 138 234 354 402 270 162
92 −0.4747 0.1473 −0.0548 92 139 235 355 403 271 163
93 0.0548 0.4747 0.1473 93 140 236 356 404 272 164
94 0.0548 −0.4747 −0.1473 94 141 237 357 405 273 165
95 −0.0548 −0.4747 0.1473 95 142 238 358 406 274 166
96 −0.0548 0.4747 −0.1473 96 143 239 359 407 275 167
97 0.1206 −0.1289 0.4678 97 180 192 300 432 420 288
98 0.1206 0.1289 −0.4678 98 181 193 301 433 421 289
99 −0.1206 0.1289 0.4678 99 182 194 302 434 422 290
100 −0.1206 −0.1289 −0.4678 100 183 195 303 435 423 291
101 0.4678 −0.1206 0.1289 101 184 196 304 436 424 292
102 0.4678 0.1206 −0.1289 102 185 197 305 437 425 293
103 −0.4678 0.1206 0.1289 103 186 198 306 438 426 294
104 −0.4678 −0.1206 −0.1289 104 187 199 307 439 427 295
105 0.1289 −0.4678 0.1206 105 188 200 308 440 428 296
106 0.1289 0.4678 −0.1206 106 189 201 309 441 429 297
107 −0.1289 0.4678 0.1206 107 190 202 310 442 430 298
108 −0.1289 −0.4678 −0.1206 108 191 203 311 443 431 299
109 0.0000 0.1784 0.4671 109 336 288 420 564 576 480
110 0.0000 0.1784 −0.4671 110 337 289 421 565 577 481
111 0.0000 −0.1784 0.4671 111 338 290 422 566 578 482
112 0.0000 −0.1784 −0.4671 112 339 291 423 567 579 483
113 0.4671 0.0000 0.1784 113 340 292 424 568 580 484
114 0.4671 0.0000 −0.1784 114 341 293 425 569 581 485
115 −0.4671 0.0000 0.1784 115 342 294 426 570 582 486
116 −0.4671 0.0000 −0.1784 116 343 295 427 571 583 487
117 0.1784 0.4671 0.0000 117 344 296 428 572 584 488
118 0.1784 −0.4671 0.0000 118 345 297 429 573 585 489
119 −0.1784 0.4671 0.0000 119 346 298 430 574 586 490
120 −0.1784 −0.4671 0.0000 120 347 299 431 575 587 491
121 0.1827 −0.0417 0.4636 121 456 588 608 516 396 348
122 0.1827 0.0417 −0.4636 122 457 589 609 517 397 349
123 −0.1827 0.0417 0.4636 123 458 590 610 518 398 350
124 −0.1827 −0.0417 −0.4636 124 459 591 611 519 399 351
125 0.4636 −0.1827 0.0417 125 460 592 600 520 400 352
126 0.4636 0.1827 −0.0417 126 461 593 601 521 401 353
127 −0.4636 0.1827 0.0417 127 462 594 602 522 402 354
128 −0.4636 −0.1827 −0.0417 128 463 595 603 523 403 355
129 0.0417 −0.4636 0.1827 129 464 596 604 524 404 356
130 0.0417 0.4636 −0.1827 130 465 597 605 525 405 357
131 −0.0417 0.4636 0.1827 131 466 598 606 526 406 358
132 −0.0417 −0.4636 −0.1827 132 467 599 607 527 407 359
133 0.1111 0.1573 0.4614 133 12 60 84 72 24 0
134 0.1111 −0.1573 −0.4614 134 13 61 85 73 25 1
135 −0.1111 −0.1573 0.4614 135 14 62 86 74 26 2
136 −0.1111 0.1573 −0.4614 136 15 63 87 75 27 3
137 0.4614 0.1111 0.1573 137 16 64 89 77 29 5
138 0.4614 −0.1111 −0.1573 138 17 65 88 76 28 4
139 −0.4614 −0.1111 0.1573 139 18 66 91 79 31 7
140 −0.4614 0.1111 −0.1573 140 19 67 90 78 30 6
141 0.1573 0.4614 0.1111 141 20 68 94 82 34 10
142 0.1573 −0.4614 −0.1111 142 21 69 95 83 35 11
143 −0.1573 −0.4614 0.1111 143 22 70 92 80 32 8
144 −0.1573 0.4614 −0.1111 144 23 71 93 81 33 9
145 0.1760 −0.1012 0.4569 145 96 180 288 336 252 144
146 0.1760 0.1012 −0.4569 146 97 181 289 337 253 145
147 −0.1760 0.1012 0.4569 147 98 182 290 338 254 146
148 −0.1760 −0.1012 −0.4569 148 99 183 291 339 255 147
149 0.4569 −0.1760 0.1012 149 100 184 292 340 256 148
150 0.4569 0.1760 −0.1012 150 101 185 293 341 257 149
151 −0.4569 0.1760 0.1012 151 102 186 294 342 258 150
152 −0.4569 −0.1760 −0.1012 152 103 187 295 343 259 151
153 0.1012 −0.4569 0.1760 153 104 188 296 344 260 152
154 0.1012 0.4569 −0.1760 154 105 189 297 345 261 153
155 −0.1012 0.4569 0.1760 155 106 190 298 346 262 154
156 −0.1012 −0.4569 −0.1760 156 107 191 299 347 263 155
157 0.0612 0.1989 0.4546 157 228 240 372 468 456 348
158 0.0612 −0.1989 −0.4546 158 229 241 373 469 457 349
159 −0.0612 −0.1989 0.4546 159 230 242 374 470 458 350
160 −0.0612 0.1989 −0.4546 160 231 243 375 471 459 351
161 0.4546 0.0612 0.1989 161 232 244 376 472 460 352
162 0.4546 −0.0612 −0.1989 162 233 245 377 473 461 353
163 −0.4546 −0.0612 0.1989 163 234 246 378 474 462 354
164 −0.4546 0.0612 −0.1989 164 235 247 379 475 463 355
165 0.1989 0.4546 0.0612 165 236 248 380 476 464 356
166 0.1989 −0.4546 −0.0612 166 237 249 381 477 465 357
167 −0.1989 −0.4546 0.0612 167 238 250 382 478 466 358
168 −0.1989 0.4546 −0.0612 168 239 251 383 479 467 359
169 0.2009 0.0711 0.4523 169 264 396 516 536 504 360
170 0.2009 −0.0711 −0.4523 170 265 397 517 537 505 361
171 −0.2009 −0.0711 0.4523 171 266 398 518 538 506 362
172 −0.2009 0.0711 −0.4523 172 267 399 519 539 507 363
173 0.4523 0.2009 0.0711 173 268 400 520 528 508 364
174 0.4523 −0.2009 −0.0711 174 269 401 521 529 509 365
175 −0.4523 −0.2009 0.0711 175 270 402 522 530 510 366
176 −0.4523 0.2009 −0.0711 176 271 403 523 531 511 367
177 0.0711 0.4523 0.2009 177 272 404 524 532 512 368
178 0.0711 −0.4523 −0.2009 178 273 405 525 533 513 369
179 −0.0711 −0.4523 0.2009 179 274 406 526 534 514 370
180 −0.0711 0.4523 −0.2009 180 275 407 527 535 515 371
181 0.1113 −0.1901 0.4489 181 432 560 452 548 564 420
182 0.1113 0.1901 −0.4489 182 433 561 453 549 565 421
183 −0.1113 0.1901 0.4489 183 434 562 454 550 566 422
184 −0.1113 −0.1901 −0.4489 184 435 563 455 551 567 423
185 0.4489 −0.1113 0.1901 185 436 552 444 540 568 424
186 0.4489 0.1113 −0.1901 186 437 553 445 541 569 425
187 −0.4489 0.1113 0.1901 187 438 554 446 542 570 426
188 −0.4489 −0.1113 −0.1901 188 439 555 447 543 571 427
189 0.1901 −0.4489 0.1113 189 440 556 448 544 572 428
190 0.1901 0.4489 −0.1113 190 441 557 449 545 573 429
191 −0.1901 0.4489 0.1113 191 442 558 450 546 574 430
192 −0.1901 −0.4489 −0.1113 192 443 559 451 547 575 431
193 0.0510 −0.2154 0.4483 193 12 36 96 144 120 60
194 0.0510 0.2154 −0.4483 194 13 37 97 145 121 61
195 −0.0510 0.2154 0.4483 195 14 38 98 146 122 62
196 −0.0510 −0.2154 −0.4483 196 15 39 99 147 123 63
197 0.4483 −0.0510 0.2154 197 16 40 100 148 124 64
198 0.4483 0.0510 −0.2154 198 17 41 101 149 125 65
199 −0.4483 0.0510 0.2154 199 18 42 102 150 126 66
200 −0.4483 −0.0510 −0.2154 200 19 43 103 151 127 67
201 0.2154 −0.4483 0.0510 201 20 44 104 152 128 68
202 0.2154 0.4483 −0.0510 202 21 45 105 153 129 69
203 −0.2154 0.4483 0.0510 203 22 46 106 154 130 70
204 −0.2154 −0.4483 −0.0510 204 23 47 107 155 131 71
205 0.2287 −0.0184 0.4443 205 72 84 168 240 228 132
206 0.2287 0.0184 −0.4443 206 73 85 169 241 229 133
207 −0.2287 0.0184 0.4443 207 74 86 170 242 230 134
208 −0.2287 −0.0184 −0.4443 208 75 87 171 243 231 135
209 0.4443 −0.2287 0.0184 209 76 88 172 244 232 136
210 0.4443 0.2287 −0.0184 210 77 89 173 245 233 137
211 −0.4443 0.2287 0.0184 211 78 90 174 246 234 138
212 −0.4443 −0.2287 −0.0184 212 79 91 175 247 235 139
213 0.0184 −0.4443 0.2287 213 80 92 176 248 236 140
214 0.0184 0.4443 −0.2287 214 81 93 177 249 237 141
215 −0.0184 0.4443 0.2287 215 82 94 178 250 238 142
216 −0.0184 −0.4443 −0.2287 216 83 95 179 251 239 143
217 0.2367 0.0315 0.4393 217 252 336 480 540 444 324
218 0.2367 −0.0315 −0.4393 218 253 337 481 541 445 325
219 −0.2367 −0.0315 0.4393 219 254 338 482 542 446 326
220 −0.2367 0.0315 −0.4393 220 255 339 483 543 447 327
221 0.4393 0.2367 0.0315 221 256 340 484 544 448 328
222 0.4393 −0.2367 −0.0315 222 257 341 485 545 449 329
223 −0.4393 −0.2367 0.0315 223 258 342 486 546 450 330
224 −0.4393 0.2367 −0.0315 224 259 343 487 547 451 331
225 0.0315 0.4393 0.2367 225 260 344 488 548 452 332
226 0.0315 −0.4393 −0.2367 226 261 345 489 549 453 333
227 −0.0315 −0.4393 0.2367 227 262 346 490 550 454 334
228 −0.0315 0.4393 −0.2367 228 263 347 491 551 455 335
229 0.1692 0.1724 0.4378 229 300 362 506 500 560 432
230 0.1692 −0.1724 −0.4378 230 301 363 507 501 561 433
231 −0.1692 −0.1724 0.4378 231 302 360 504 502 562 434
232 −0.1692 0.1724 −0.4378 232 303 361 505 503 563 435
233 0.4378 0.1692 0.1724 233 304 364 508 492 552 436
234 0.4378 −0.1692 −0.1724 234 305 365 509 493 553 437
235 −0.4378 −0.1692 0.1724 235 306 366 510 494 554 438
236 −0.4378 0.1692 −0.1724 236 307 367 511 495 555 439
237 0.1724 0.4378 0.1692 237 308 369 513 496 556 440
238 0.1724 −0.4378 −0.1692 238 309 368 512 497 557 441
239 −0.1724 −0.4378 0.1692 239 310 371 515 498 558 442
240 −0.1724 0.4378 −0.1692 240 311 370 514 499 559 443
241 0.2129 0.1273 0.4341 241 372 408 528 520 600 468
242 0.2129 −0.1273 −0.4341 242 373 409 529 521 601 469
243 −0.2129 −0.1273 0.4341 243 374 410 530 522 602 470
244 −0.2129 0.1273 −0.4341 244 375 411 531 523 603 471
245 0.4341 0.2129 0.1273 245 376 412 532 524 604 472
246 0.4341 −0.2129 −0.1273 246 377 413 533 525 605 473
247 −0.4341 −0.2129 0.1273 247 378 414 534 526 606 474
248 −0.4341 0.2129 −0.1273 248 379 415 535 527 607 475
249 0.1273 0.4341 0.2129 249 380 416 536 516 608 476
250 0.1273 −0.4341 −0.2129 250 381 417 537 517 609 477
251 −0.1273 −0.4341 0.2129 251 382 418 538 518 610 478
252 −0.1273 0.4341 −0.2129 252 383 419 539 519 611 479
253 0.2218 −0.1307 0.4286 253 60 120 204 216 168 84
254 0.2218 0.1307 −0.4286 254 61 121 205 217 169 85
255 −0.2218 0.1307 0.4286 255 62 122 206 218 170 86
256 −0.2218 −0.1307 −0.4286 256 63 123 207 219 171 87
257 0.4286 −0.2218 0.1307 257 64 124 208 221 173 89
258 0.4286 0.2218 −0.1307 258 65 125 209 220 172 88
259 −0.4286 0.2218 0.1307 259 66 126 210 223 175 91
260 −0.4286 −0.2218 −0.1307 260 67 127 211 222 174 90
261 0.1307 −0.4286 0.2218 261 68 128 212 226 178 94
262 0.1307 0.4286 −0.2218 262 69 129 213 227 179 95
263 −0.1307 0.4286 0.2218 263 70 130 214 224 176 92
264 −0.1307 −0.4286 −0.2218 264 71 131 215 225 177 93
265 0.0707 0.2558 0.4238 265 144 252 324 276 204 120
266 0.0707 −0.2558 −0.4238 266 145 253 325 277 205 121
267 −0.0707 −0.2558 0.4238 267 146 254 326 278 206 122
268 −0.0707 0.2558 −0.4238 268 147 255 327 279 207 123
269 0.4238 0.0707 0.2558 269 148 256 328 280 208 124
270 0.4238 −0.0707 −0.2558 270 149 257 329 281 209 125
271 −0.4238 −0.0707 0.2558 271 150 258 330 282 210 126
272 −0.4238 0.0707 −0.2558 272 151 259 331 283 211 127
273 0.2558 0.4238 0.0707 273 152 260 332 284 212 128
274 0.2558 −0.4238 −0.0707 274 153 261 333 285 213 129
275 −0.2558 −0.4238 0.0707 275 154 262 334 286 214 130
276 −0.2558 0.4238 −0.0707 276 155 263 335 287 215 131
277 0.2665 −0.0428 0.4209 277 240 168 216 312 408 372
278 0.2665 0.0428 −0.4209 278 241 169 217 313 409 373
279 −0.2665 0.0428 0.4209 279 242 170 218 314 410 374
280 −0.2665 −0.0428 −0.4209 280 243 171 219 315 411 375
281 0.4209 −0.2665 0.0428 281 244 172 220 316 412 376
282 0.4209 0.2665 −0.0428 282 245 173 221 317 413 377
283 −0.4209 0.2665 0.0428 283 246 174 222 318 414 378
284 −0.4209 −0.2665 −0.0428 284 247 175 223 319 415 379
285 0.0428 −0.4209 0.2665 285 248 176 224 320 416 380
286 0.0428 0.4209 −0.2665 286 249 177 225 321 417 381
287 −0.0428 0.4209 0.2665 287 250 178 226 322 418 382
288 −0.0428 −0.4209 −0.2665 288 251 179 227 323 419 383
289 0.1599 −0.2213 0.4189 289 444 552 492 384 276 324
290 0.1599 0.2213 −0.4189 290 445 553 493 385 277 325
291 −0.1599 0.2213 0.4189 291 446 554 494 386 278 326
292 −0.1599 −0.2213 −0.4189 292 447 555 495 387 279 327
293 0.4189 −0.1599 0.2213 293 448 556 496 388 280 328
294 0.4189 0.1599 −0.2213 294 449 557 497 389 281 329
295 −0.4189 0.1599 0.2213 295 450 558 498 390 282 330
296 −0.4189 −0.1599 −0.2213 296 451 559 499 391 283 331
297 0.2213 −0.4189 0.1599 297 452 560 500 392 284 332
298 0.2213 0.4189 −0.1599 298 453 561 501 393 285 333
299 −0.2213 0.4189 0.1599 299 454 562 502 394 286 334
300 −0.2213 −0.4189 −0.1599 300 455 563 503 395 287 335
301 0.0403 −0.2720 0.4176 301 504 536 416 320 394 502
302 0.0403 0.2720 −0.4176 302 505 537 417 321 395 503
303 −0.0403 0.2720 0.4176 303 506 538 418 322 392 500
304 −0.0403 −0.2720 −0.4176 304 507 539 419 323 393 501
305 0.4176 −0.0403 0.2720 305 508 528 408 312 384 492
306 0.4176 0.0403 −0.2720 306 509 529 409 313 385 493
307 −0.4176 0.0403 0.2720 307 510 530 410 314 386 494
308 −0.4176 −0.0403 −0.2720 308 511 531 411 315 387 495
309 0.2720 −0.4176 0.0403 309 512 532 412 316 389 497
310 0.2720 0.4176 −0.0403 310 513 533 413 317 388 496
311 −0.2720 0.4176 0.0403 311 514 534 414 318 391 499
312 −0.2720 −0.4176 −0.0403 312 515 535 415 319 390 498
313 0.2795 0.0379 0.4128
314 0.2795 −0.0379 −0.4128
315 −0.2795 −0.0379 0.4128
316 −0.2795 0.0379 −0.4128
317 0.4128 0.2795 0.0379
318 0.4128 −0.2795 −0.0379
319 −0.4128 −0.2795 0.0379
320 −0.4128 0.2795 −0.0379
321 0.0379 0.4128 0.2795
322 0.0379 −0.4128 −0.2795
323 −0.0379 −0.4128 0.2795
324 −0.0379 0.4128 −0.2795
325 0.2683 −0.0968 0.4106
326 0.2683 0.0968 −0.4106
327 −0.2683 0.0968 0.4106
328 −0.2683 −0.0968 −0.4106
329 0.4106 −0.2683 0.0968
330 0.4106 0.2683 −0.0968
331 −0.4106 0.2683 0.0968
332 −0.4106 −0.2683 −0.0968
333 0.0968 −0.4106 0.2683
334 0.0968 0.4106 −0.2683
335 −0.0968 0.4106 0.2683
336 −0.0968 −0.4106 −0.2683
337 0.2157 −0.1901 0.4091
338 0.2157 0.1901 −0.4091
339 −0.2157 0.1901 0.4091
340 −0.2157 −0.1901 −0.4091
341 0.4091 −0.2157 0.1901
342 0.4091 0.2157 −0.1901
343 −0.4091 0.2157 0.1901
344 −0.4091 −0.2157 −0.1901
345 0.1901 −0.4091 0.2157
346 0.1901 0.4091 −0.2157
347 −0.1901 0.4091 0.2157
348 −0.1901 −0.4091 −0.2157
349 0.1788 0.2285 0.4072
350 0.1788 −0.2285 −0.4072
351 −0.1788 −0.2285 0.4072
352 −0.1788 0.2285 −0.4072
353 0.4072 0.1788 0.2285
354 0.4072 −0.1788 −0.2285
355 −0.4072 −0.1788 0.2285
356 −0.4072 0.1788 −0.2285
357 0.2285 0.4072 0.1788
358 0.2285 −0.4072 −0.1788
359 −0.2285 −0.4072 0.1788
360 −0.2285 0.4072 −0.1788
361 0.0200 0.2917 0.4056
362 0.0200 −0.2917 −0.4056
363 −0.0200 −0.2917 0.4056
364 −0.0200 0.2917 −0.4056
365 0.4056 0.0200 0.2917
366 0.4056 −0.0200 −0.2917
367 −0.4056 −0.0200 0.2917
368 −0.4056 0.0200 −0.2917
369 0.2917 0.4056 0.0200
370 0.2917 −0.4056 −0.0200
371 −0.2917 −0.4056 0.0200
372 −0.2917 0.4056 −0.0200
373 0.2647 0.1351 0.4021
374 0.2647 −0.1351 −0.4021
375 −0.2647 −0.1351 0.4021
376 −0.2647 0.1351 −0.4021
377 0.4021 0.2647 0.1351
378 0.4021 −0.2647 −0.1351
379 −0.4021 −0.2647 0.1351
380 −0.4021 0.2647 −0.1351
381 0.1351 0.4021 0.2647
382 0.1351 −0.4021 −0.2647
383 −0.1351 −0.4021 0.2647
384 −0.1351 0.4021 −0.2647
385 0.2980 −0.0080 0.4014
386 0.2980 0.0080 −0.4014
387 −0.2980 0.0080 0.4014
388 −0.2980 −0.0080 −0.4014
389 0.4014 −0.2980 0.0080
390 0.4014 0.2980 −0.0080
391 −0.4014 0.2980 0.0080
392 −0.4014 −0.2980 −0.0080
393 0.0080 −0.4014 0.2980
394 0.0080 0.4014 −0.2980
395 −0.0080 0.4014 0.2980
396 −0.0080 −0.4014 −0.2980
397 0.1296 0.2704 0.4001
398 0.1296 −0.2704 −0.4001
399 −0.1296 −0.2704 0.4001
400 −0.1296 0.2704 −0.4001
401 0.4001 0.1296 0.2704
402 0.4001 −0.1296 −0.2704
403 −0.4001 −0.1296 0.2704
404 −0.4001 0.1296 −0.2704
405 0.2704 0.4001 0.1296
406 0.2704 −0.4001 −0.1296
407 −0.2704 −0.4001 0.1296
408 −0.2704 0.4001 −0.1296
409 0.2977 0.0856 0.3925
410 0.2977 −0.0856 −0.3925
411 −0.2977 −0.0856 0.3925
412 −0.2977 0.0856 −0.3925
413 0.3925 0.2977 0.0856
414 0.3925 −0.2977 −0.0856
415 −0.3925 −0.2977 0.0856
416 −0.3925 0.2977 −0.0856
417 0.0856 0.3925 0.2977
418 0.0856 −0.3925 −0.2977
419 −0.0856 −0.3925 0.2977
420 −0.0856 0.3925 −0.2977
421 0.1484 −0.2776 0.3884
422 0.1484 0.2776 −0.3884
423 −0.1484 0.2776 0.3884
424 −0.1484 −0.2776 −0.3884
425 0.3884 −0.1484 0.2776
426 0.3884 0.1484 −0.2776
427 −0.3884 0.1484 0.2776
428 −0.3884 −0.1484 −0.2776
429 0.2776 −0.3884 0.1484
430 0.2776 0.3884 −0.1484
431 −0.2776 0.3884 0.1484
432 −0.2776 −0.3884 −0.1484
433 0.0888 −0.3025 0.3881
434 0.0888 0.3025 −0.3881
435 −0.0888 0.3025 0.3881
436 −0.0888 −0.3025 −0.3881
437 0.3881 −0.0888 0.3025
438 0.3881 0.0888 −0.3025
439 −0.3881 0.0888 0.3025
440 −0.3881 −0.0888 −0.3025
441 0.3025 −0.3881 0.0888
442 0.3025 0.3881 −0.0888
443 −0.3025 0.3881 0.0888
444 −0.3025 −0.3881 −0.0888
445 0.3111 −0.1174 0.3734
446 0.3111 0.1174 −0.3734
447 −0.3111 0.1174 0.3734
448 −0.3111 −0.1174 −0.3734
449 0.3734 −0.3111 0.1174
450 0.3734 0.3111 −0.1174
451 −0.3734 0.3111 0.1174
452 −0.3734 −0.3111 −0.1174
453 0.1174 −0.3734 0.3111
454 0.1174 0.3734 −0.3111
455 −0.1174 0.3734 0.3111
456 −0.1174 −0.3734 −0.3111
457 0.2337 0.2368 0.3732
458 0.2337 −0.2368 −0.3732
459 −0.2337 −0.2368 0.3732
460 −0.2337 0.2368 −0.3732
461 0.3732 0.2337 0.2368
462 0.3732 −0.2337 −0.2368
463 −0.3732 −0.2337 0.2368
464 −0.3732 0.2337 −0.2368
465 0.2368 0.3732 0.2337
466 0.2368 −0.3732 −0.2337
467 −0.2368 −0.3732 0.2337
468 −0.2368 0.3732 −0.2337
469 0.2768 0.1885 0.3713
470 0.2768 −0.1885 −0.3713
471 −0.2768 −0.1885 0.3713
472 −0.2768 0.1885 −0.3713
473 0.3713 0.2768 0.1885
474 0.3713 −0.2768 −0.1885
475 −0.3713 −0.2768 0.1885
476 −0.3713 0.2768 −0.1885
477 0.1885 0.3713 0.2768
478 0.1885 −0.3713 −0.2768
479 −0.1885 −0.3713 0.2768
480 −0.1885 0.3713 −0.2768
481 0.2603 −0.2143 0.3692
482 0.2603 0.2143 −0.3692
483 −0.2603 0.2143 0.3692
484 −0.2603 −0.2143 −0.3692
485 0.3692 −0.2603 0.2143
486 0.3692 0.2603 −0.2143
487 −0.3692 0.2603 0.2143
488 −0.3692 −0.2603 −0.2143
489 0.2143 −0.3692 0.2603
490 0.2143 0.3692 −0.2603
491 −0.2143 0.3692 0.2603
492 −0.2143 −0.3692 −0.2603
493 0.3394 −0.0182 0.3667
494 0.3394 0.0182 −0.3667
495 −0.3394 0.0182 0.3667
496 −0.3394 −0.0182 −0.3667
497 0.3667 −0.3394 0.0182
498 0.3667 0.3394 −0.0182
499 −0.3667 0.3394 0.0182
500 −0.3667 −0.3394 −0.0182
501 0.0182 −0.3667 0.3394
502 0.0182 0.3667 −0.3394
503 −0.0182 0.3667 0.3394
504 −0.0182 −0.3667 −0.3394
505 0.0287 0.3396 0.3659
506 0.0287 −0.3396 −0.3659
507 −0.0287 −0.3396 0.3659
508 −0.0287 0.3396 −0.3659
509 0.3659 0.0287 0.3396
510 0.3659 −0.0287 −0.3396
511 −0.3659 −0.0287 0.3396
512 −0.3659 0.0287 −0.3396
513 0.3396 0.3659 0.0287
514 0.3396 −0.3659 −0.0287
515 −0.3396 −0.3659 0.0287
516 −0.3396 0.3659 −0.0287
517 0.1352 0.3203 0.3593
518 0.1352 −0.3203 −0.3593
519 −0.1352 −0.3203 0.3593
520 −0.1352 0.3203 −0.3593
521 0.3593 0.1352 0.3203
522 0.3593 −0.1352 −0.3203
523 −0.3593 −0.1352 0.3203
524 −0.3593 0.1352 −0.3203
525 0.3203 0.3593 0.1352
526 0.3203 −0.3593 −0.1352
527 −0.3203 −0.3593 0.1352
528 −0.3203 0.3593 −0.1352
529 0.3436 0.0842 0.3533
530 0.3436 −0.0842 −0.3533
531 −0.3436 −0.0842 0.3533
532 −0.3436 0.0842 −0.3533
533 0.3533 0.3436 0.0842
534 0.3533 −0.3436 −0.0842
535 −0.3533 −0.3436 0.0842
536 −0.3533 0.3436 −0.0842
537 0.0842 0.3533 0.3436
538 0.0842 −0.3533 −0.3436
539 −0.0842 −0.3533 0.3436
540 −0.0842 0.3533 −0.3436
541 0.3091 −0.1762 0.3513
542 0.3091 0.1762 −0.3513
543 −0.3091 0.1762 0.3513
544 −0.3091 −0.1762 −0.3513
545 0.3513 −0.3091 0.1762
546 0.3513 0.3091 −0.1762
547 −0.3513 0.3091 0.1762
548 −0.3513 −0.3091 −0.1762
549 0.1762 −0.3513 0.3091
550 0.1762 0.3513 −0.3091
551 −0.1762 0.3513 0.3091
552 −0.1762 −0.3513 −0.3091
553 0.3491 −0.0753 0.3499
554 0.3491 0.0753 −0.3499
555 −0.3491 0.0753 0.3499
556 −0.3491 −0.0753 −0.3499
557 0.3499 −0.3491 0.0753
558 0.3499 0.3491 −0.0753
559 −0.3499 0.3491 0.0753
560 −0.3499 −0.3491 −0.0753
561 0.0753 −0.3499 0.3491
562 0.0753 0.3499 −0.3491
563 −0.0753 0.3499 0.3491
564 −0.0753 −0.3499 −0.3491
565 0.1931 −0.3025 0.3481
566 0.1931 0.3025 −0.3481
567 −0.1931 0.3025 0.3481
568 −0.1931 −0.3025 −0.3481
569 0.3481 −0.1931 0.3025
570 0.3481 0.1931 −0.3025
571 −0.3481 0.1931 0.3025
572 −0.3481 −0.1931 −0.3025
573 0.3025 −0.3481 0.1931
574 0.3025 0.3481 −0.1931
575 −0.3025 0.3481 0.1931
576 −0.3025 −0.3481 −0.1931
577 0.2495 −0.2708 0.3383
578 0.2495 0.2708 −0.3383
579 −0.2495 0.2708 0.3383
580 −0.2495 −0.2708 −0.3383
581 0.3383 −0.2495 0.2708
582 0.3383 0.2495 −0.2708
583 −0.3383 0.2495 0.2708
584 −0.3383 −0.2495 −0.2708
585 0.2708 −0.3383 0.2495
586 0.2708 0.3383 −0.2495
587 −0.2708 0.3383 0.2495
588 −0.2708 −0.3383 −0.2495
589 0.2392 0.2873 0.3320
590 0.2392 −0.2873 −0.3320
591 −0.2392 −0.2873 0.3320
592 −0.2392 0.2873 −0.3320
593 0.3320 0.2392 0.2873
594 0.3320 −0.2392 −0.2873
595 −0.3320 −0.2392 0.2873
596 −0.3320 0.2392 −0.2873
597 0.2873 0.3320 0.2392
598 0.2873 −0.3320 −0.2392
599 −0.2873 −0.3320 0.2392
600 −0.2873 0.3320 −0.2392
601 0.3254 0.1894 0.3289
602 0.3254 −0.1894 −0.3289
603 −0.3254 −0.1894 0.3289
604 −0.3254 0.1894 −0.3289
605 0.3289 0.3254 0.1894
606 0.3289 −0.3254 −0.1894
607 −0.3289 −0.3254 0.1894
608 −0.3289 0.3254 −0.1894
609 0.1894 0.3289 0.3254
610 0.1894 −0.3289 −0.3254
611 −0.1894 −0.3289 0.3254
612 −0.1894 0.3289 −0.3254
613 0.2887 0.2887 0.2887
614 0.2887 0.2887 −0.2887
615 0.2887 −0.2887 0.2887
616 0.2887 −0.2887 −0.2887
617 −0.2887 0.2887 0.2887
618 −0.2887 0.2887 −0.2887
619 −0.2887 −0.2887 0.2887
620 −0.2887 −0.2887 −0.2887
TABLE 5
Sphere x/D y/D z/D d/D
1 0.3189 0.0000 0.5160 0.2254
2 0.3189 0.0000 −0.5160 0.2254
3 −0.3189 0.0000 0.5160 0.2254
4 −0.3189 0.0000 −0.5160 0.2254
5 0.5160 −0.3189 0.0000 0.2254
6 0.5160 0.3189 0.0000 0.2254
7 −0.5160 0.3189 0.0000 0.2254
8 −0.5160 −0.3189 0.0000 0.2254
9 0.0000 −0.5160 0.3189 0.2254
10 0.0000 0.5160 −0.3189 0.2254
11 0.0000 0.5160 0.3189 0.2254
12 0.0000 −0.5160 −0.3189 0.2254
13 0.0794 0.2166 0.7473 0.5800
14 0.0159 0.3710 0.6884 0.5800
15 −0.0954 0.2425 0.7375 0.5800
16 −0.0794 0.2166 −0.7473 0.5800
17 −0.0159 0.3710 −0.6884 0.5800
18 0.0954 0.2425 −0.7375 0.5800
19 −0.0794 −0.2166 0.7473 0.5800
20 −0.0159 −0.3710 0.6884 0.5800
21 0.0954 −0.2425 0.7375 0.5800
22 0.0794 −0.2166 −0.7473 0.5800
23 0.0159 −0.3710 −0.6884 0.5800
24 −0.0954 −0.2425 −0.7375 0.5800
25 0.7473 0.0794 0.2166 0.5800
26 0.6884 0.0159 0.3710 0.5800
27 0.7375 −0.0954 0.2425 0.5800
28 0.7473 −0.0794 −0.2166 0.5800
29 0.6884 −0.0159 −0.3710 0.5800
30 0.7375 0.0954 −0.2425 0.5800
31 −0.7473 −0.0794 0.2166 0.5800
32 −0.6884 −0.0159 0.3710 0.5800
33 −0.7375 0.0954 0.2425 0.5800
34 −0.7473 0.0794 −0.2166 0.5800
35 −0.6884 0.0159 −0.3710 0.5800
36 −0.7375 −0.0954 −0.2425 0.5800
37 0.2166 0.7473 0.0794 0.5800
38 0.3710 0.6884 0.0159 0.5800
39 0.2425 0.7375 −0.0954 0.5800
40 0.2166 −0.7473 −0.0794 0.5800
41 0.3710 −0.6884 −0.0159 0.5800
42 0.2425 −0.7375 0.0954 0.5800
43 −0.2166 0.7473 −0.0794 0.5800
44 −0.3710 0.6884 −0.0159 0.5800
45 −0.2425 0.7375 0.0954 0.5800
46 −0.2166 −0.7473 0.0794 0.5800
47 −0.3710 −0.6884 0.0159 0.5800
48 −0.2425 −0.7375 −0.0954 0.5800
49 0.4459 0.3763 0.5208 0.5800
50 0.5208 0.4459 0.3763 0.5800
51 0.3763 0.5208 0.4459 0.5800
52 0.3665 0.5049 −0.4717 0.5800
53 0.5049 0.4717 −0.3665 0.5800
54 0.4717 0.3665 −0.5049 0.5800
55 0.3665 −0.5049 0.4717 0.5800
56 0.5049 −0.4717 0.3665 0.5800
57 0.4717 −0.3665 0.5049 0.5800
58 0.4459 −0.3763 −0.5208 0.5800
59 0.5208 −0.4459 −0.3763 0.5800
60 0.3763 −0.5208 −0.4459 0.5800
61 −0.3665 0.5049 0.4717 0.5800
62 −0.5049 0.4717 0.3665 0.5800
63 −0.4717 0.3665 0.5049 0.5800
64 −0.4459 0.3763 −0.5208 0.5800
65 −0.5208 0.4459 −0.3763 0.5800
66 −0.3763 0.5208 −0.4459 0.5800
67 −0.4459 −0.3763 0.5208 0.5800
68 −0.5208 −0.4459 0.3763 0.5800
69 −0.3763 −0.5208 0.4459 0.5800
70 −0.3665 −0.5049 −0.4717 0.5800
71 −0.5049 −0.4717 −0.3665 0.5800
72 −0.4717 −0.3665 −0.5049 0.5800
73 0.0315 −0.0822 0.7752 0.5761
74 0.0315 0.0822 −0.7752 0.5761
75 −0.0315 0.0822 0.7752 0.5761
76 −0.0315 −0.0822 −0.7752 0.5761
77 0.7752 −0.0315 0.0822 0.5761
78 0.7752 0.0315 −0.0822 0.5761
79 −0.7752 0.0315 0.0822 0.5761
80 −0.7752 −0.0315 −0.0822 0.5761
81 0.0822 −0.7752 0.0315 0.5761
82 0.0822 0.7752 −0.0315 0.5761
83 −0.0822 0.7752 0.0315 0.5761
84 −0.0822 −0.7752 −0.0315 0.5761
85 0.1888 0.3367 0.6780 0.5761
86 0.1888 −0.3367 −0.6780 0.5761
87 −0.1888 −0.3367 0.6780 0.5761
88 −0.1888 0.3367 −0.6780 0.5761
89 0.6780 0.1888 0.3367 0.5761
90 0.6780 −0.1888 −0.3367 0.5761
91 −0.6780 −0.1888 0.3367 0.5761
92 −0.6780 0.1888 −0.3367 0.5761
93 0.3367 0.6780 0.1888 0.5761
94 0.3367 −0.6780 −0.1888 0.5761
95 −0.3367 −0.6780 0.1888 0.5761
96 −0.3367 0.6780 −0.1888 0.5761
97 0.1573 −0.3877 0.6585 0.5761
98 0.1573 0.3877 −0.6585 0.5761
99 −0.1573 0.3877 0.6585 0.5761
100 −0.1573 −0.3877 −0.6585 0.5761
101 0.6585 −0.1573 0.3877 0.5761
102 0.6585 0.1573 −0.3877 0.5761
103 −0.6585 0.1573 0.3877 0.5761
104 −0.6585 −0.1573 −0.3877 0.5761
105 0.3877 −0.6585 0.1573 0.5761
106 0.3877 0.6585 −0.1573 0.5761
107 −0.3877 0.6585 0.1573 0.5761
108 −0.3877 −0.6585 −0.1573 0.5761
109 0.3218 −0.3875 0.5958 0.5761
110 0.3218 0.3875 −0.5958 0.5761
111 −0.3218 0.3875 0.5958 0.5761
112 −0.3218 −0.3875 −0.5958 0.5761
113 0.5958 −0.3218 0.3875 0.5761
114 0.5958 0.3218 −0.3875 0.5761
115 −0.5958 0.3218 0.3875 0.5761
116 −0.5958 −0.3218 −0.3875 0.5761
117 0.3875 −0.5958 0.3218 0.5761
118 0.3875 0.5958 −0.3218 0.5761
119 −0.3875 0.5958 0.3218 0.5761
120 −0.3875 −0.5958 −0.3218 0.5761
121 0.2903 0.4385 0.5763 0.5761
122 0.2903 −0.4385 −0.5763 0.5761
123 −0.2903 −0.4385 0.5763 0.5761
124 −0.2903 0.4385 −0.5763 0.5761
125 0.5763 0.2903 0.4385 0.5761
126 0.5763 −0.2903 −0.4385 0.5761
127 −0.5763 −0.2903 0.4385 0.5761
128 −0.5763 0.2903 −0.4385 0.5761
129 0.4385 0.5763 0.2903 0.5761
130 0.4385 −0.5763 −0.2903 0.5761
131 −0.4385 −0.5763 0.2903 0.5761
132 −0.4385 0.5763 −0.2903 0.5761
133 0.1373 0.0529 0.7524 0.5487
134 0.1373 −0.0529 −0.7524 0.5487
135 −0.1373 −0.0529 0.7524 0.5487
136 −0.1373 0.0529 −0.7524 0.5487
137 0.7524 −0.1373 −0.0529 0.5487
138 0.7524 0.1373 0.0529 0.5487
139 −0.7524 0.1373 −0.0529 0.5487
140 −0.7524 −0.1373 0.0529 0.5487
141 −0.0529 −0.7524 0.1373 0.5487
142 −0.0529 0.7524 −0.1373 0.5487
143 0.0529 0.7524 0.1373 0.5487
144 0.0529 −0.7524 −0.1373 0.5487
145 0.2584 −0.2488 0.6775 0.5487
146 0.2584 0.2488 −0.6775 0.5487
147 −0.2584 0.2488 0.6775 0.5487
148 −0.2584 −0.2488 −0.6775 0.5487
149 0.6775 −0.2584 0.2488 0.5487
150 0.6775 0.2584 −0.2488 0.5487
151 −0.6775 0.2584 0.2488 0.5487
152 −0.6775 −0.2584 −0.2488 0.5487
153 0.2488 −0.6775 0.2584 0.5487
154 0.2488 0.6775 −0.2584 0.5487
155 −0.2488 0.6775 0.2584 0.5487
156 −0.2488 −0.6775 −0.2584 0.5487
157 0.3439 0.2815 0.6247 0.5487
158 0.3439 −0.2815 −0.6247 0.5487
159 −0.3439 −0.2815 0.6247 0.5487
160 −0.3439 0.2815 −0.6247 0.5487
161 0.6247 0.3439 0.2815 0.5487
162 0.6247 −0.3439 −0.2815 0.5487
163 −0.6247 −0.3439 0.2815 0.5487
164 −0.6247 0.3439 −0.2815 0.5487
165 0.2815 0.6247 0.3439 0.5487
166 0.2815 −0.6247 −0.3439 0.5487
167 −0.2815 −0.6247 0.3439 0.5487
168 −0.2815 0.6247 −0.3439 0.5487
169 0.1211 0.4709 0.5927 0.5487
170 0.1211 −0.4709 −0.5927 0.5487
171 −0.1211 −0.4709 0.5927 0.5487
172 −0.1211 0.4709 −0.5927 0.5487
173 0.5927 0.1211 0.4709 0.5487
174 0.5927 −0.1211 −0.4709 0.5487
175 −0.5927 −0.1211 0.4709 0.5487
176 −0.5927 0.1211 −0.4709 0.5487
177 0.4709 0.5927 0.1211 0.5487
178 0.4709 −0.5927 −0.1211 0.5487
179 −0.4709 −0.5927 0.1211 0.5487
180 −0.4709 0.5927 −0.1211 0.5487
181 0.2066 −0.5036 0.5399 0.5487
182 0.2066 0.5036 −0.5399 0.5487
183 −0.2066 0.5036 0.5399 0.5487
184 −0.2066 −0.5036 −0.5399 0.5487
185 0.5399 −0.2066 0.5036 0.5487
186 0.5399 0.2066 −0.5036 0.5487
187 −0.5399 0.2066 0.5036 0.5487
188 −0.5399 −0.2066 −0.5036 0.5487
189 0.5036 −0.5399 0.2066 0.5487
190 0.5036 0.5399 −0.2066 0.5487
191 −0.5036 0.5399 0.2066 0.5487
192 −0.5036 −0.5399 −0.2066 0.5487
193 0.1942 −0.1019 0.7251 0.5304
194 0.1942 0.1019 −0.7251 0.5304
195 −0.1942 0.1019 0.7251 0.5304
196 −0.1942 −0.1019 −0.7251 0.5304
197 0.7251 −0.1942 0.1019 0.5304
198 0.7251 0.1942 −0.1019 0.5304
199 −0.7251 0.1942 0.1019 0.5304
200 −0.7251 −0.1942 −0.1019 0.5304
201 0.1019 −0.7251 0.1942 0.5304
202 0.1019 0.7251 −0.1942 0.5304
203 −0.1019 0.7251 0.1942 0.5304
204 −0.1019 −0.7251 −0.1942 0.5304
205 0.2387 0.1739 0.6976 0.5304
206 0.2387 −0.1739 −0.6976 0.5304
207 −0.2387 −0.1739 0.6976 0.5304
208 −0.2387 0.1739 −0.6976 0.5304
209 0.6976 0.2387 0.1739 0.5304
210 0.6976 −0.2387 −0.1739 0.5304
211 −0.6976 −0.2387 0.1739 0.5304
212 −0.6976 0.2387 −0.1739 0.5304
213 0.1739 0.6976 0.2387 0.5304
214 0.1739 −0.6976 −0.2387 0.5304
215 −0.1739 −0.6976 0.2387 0.5304
216 −0.1739 0.6976 −0.2387 0.5304
217 0.4037 −0.2369 0.5957 0.5304
218 0.4037 0.2369 −0.5957 0.5304
219 −0.4037 0.2369 0.5957 0.5304
220 −0.4037 −0.2369 −0.5957 0.5304
221 0.5957 −0.4037 0.2369 0.5304
222 0.5957 0.4037 −0.2369 0.5304
223 −0.5957 0.4037 0.2369 0.5304
224 −0.5957 −0.4037 −0.2369 0.5304
225 0.2369 −0.5957 0.4037 0.5304
226 0.2369 0.5957 −0.4037 0.5304
227 −0.2369 0.5957 0.4037 0.5304
228 −0.2369 −0.5957 −0.4037 0.5304
229 0.0445 −0.4882 0.5776 0.5304
230 0.0445 0.4882 −0.5776 0.5304
231 −0.0445 0.4882 0.5776 0.5304
232 −0.0445 −0.4882 −0.5776 0.5304
233 0.5776 −0.0445 0.4882 0.5304
234 0.5776 0.0445 −0.4882 0.5304
235 −0.5776 0.0445 0.4882 0.5304
236 −0.5776 −0.0445 −0.4882 0.5304
237 0.4882 −0.5776 0.0445 0.5304
238 0.4882 0.5776 −0.0445 0.5304
239 −0.4882 0.5776 0.0445 0.5304
240 −0.4882 −0.5776 −0.0445 0.5304
241 0.4757 0.2094 0.5512 0.5304
242 0.4757 −0.2094 −0.5512 0.5304
243 −0.4757 −0.2094 0.5512 0.5304
244 −0.4757 0.2094 −0.5512 0.5304
245 0.5512 0.4757 0.2094 0.5304
246 0.5512 −0.4757 −0.2094 0.5304
247 −0.5512 −0.4757 0.2094 0.5304
248 −0.5512 0.4757 −0.2094 0.5304
249 0.2094 0.5512 0.4757 0.5304
250 0.2094 −0.5512 −0.4757 0.5304
251 −0.2094 −0.5512 0.4757 0.5304
252 −0.2094 0.5512 −0.4757 0.5304
253 0.2679 0.0224 0.6585 0.4368
254 0.2679 −0.0224 −0.6585 0.4368
255 −0.2679 −0.0224 0.6585 0.4368
256 −0.2679 0.0224 −0.6585 0.4368
257 0.6585 −0.2679 −0.0224 0.4368
258 0.6585 0.2679 0.0224 0.4368
259 −0.6585 0.2679 −0.0224 0.4368
260 −0.6585 −0.2679 0.0224 0.4368
261 −0.0224 −0.6585 0.2679 0.4368
262 −0.0224 0.6585 −0.2679 0.4368
263 0.0224 0.6585 0.2679 0.4368
264 0.0224 −0.6585 −0.2679 0.4368
265 0.3193 −0.1056 0.6267 0.4368
266 0.3193 0.1056 −0.6267 0.4368
267 −0.3193 0.1056 0.6267 0.4368
268 −0.3193 −0.1056 −0.6267 0.4368
269 0.6267 −0.3193 0.1056 0.4368
270 0.6267 0.3193 −0.1056 0.4368
271 −0.6267 0.3193 0.1056 0.4368
272 −0.6267 −0.3193 −0.1056 0.4368
273 0.1056 −0.6267 0.3193 0.4368
274 0.1056 0.6267 −0.3193 0.4368
275 −0.1056 0.6267 0.3193 0.4368
276 −0.1056 −0.6267 −0.3193 0.4368
277 0.3556 0.1194 0.6043 0.4368
278 0.3556 −0.1194 −0.6043 0.4368
279 −0.3556 −0.1194 0.6043 0.4368
280 −0.3556 0.1194 −0.6043 0.4368
281 0.6043 0.3556 0.1194 0.4368
282 0.6043 −0.3556 −0.1194 0.4368
283 −0.6043 −0.3556 0.1194 0.4368
284 −0.6043 0.3556 −0.1194 0.4368
285 0.1194 0.6043 0.3556 0.4368
286 0.1194 −0.6043 −0.3556 0.4368
287 −0.1194 −0.6043 0.3556 0.4368
288 −0.1194 0.6043 −0.3556 0.4368
289 0.4387 −0.0877 0.5529 0.4368
290 0.4387 0.0877 −0.5529 0.4368
291 −0.4387 0.0877 0.5529 0.4368
292 −0.4387 −0.0877 −0.5529 0.4368
293 0.5529 −0.4387 0.0877 0.4368
294 0.5529 0.4387 −0.0877 0.4368
295 −0.5529 0.4387 0.0877 0.4368
296 −0.5529 −0.4387 −0.0877 0.4368
297 0.0877 −0.5529 0.4387 0.4368
298 0.0877 0.5529 −0.4387 0.4368
299 −0.0877 0.5529 0.4387 0.4368
300 −0.0877 −0.5529 −0.4387 0.4368
301 0.0514 0.5391 0.4611 0.4368
302 0.0514 −0.5391 −0.4611 0.4368
303 −0.0514 −0.5391 0.4611 0.4368
304 −0.0514 0.5391 −0.4611 0.4368
305 0.4611 0.0514 0.5391 0.4368
306 0.4611 −0.0514 −0.5391 0.4368
307 −0.4611 −0.0514 0.5391 0.4368
308 −0.4611 0.0514 −0.5391 0.4368
309 0.5391 0.4611 0.0514 0.4368
310 0.5391 −0.4611 −0.0514 0.4368
311 −0.5391 −0.4611 0.0514 0.4368
312 −0.5391 0.4611 −0.0514 0.4368
The foregoing description and drawings should be considered as illustrative only of the principles of the invention. The invention may be configured in a variety of shapes and sizes and is not intended to be limited by the embodiment shown. In addition, the statements made with respect to one embodiment apply to the other embodiments, unless otherwise specifically noted. For example, the statements regarding FIG. 2(a) with respect to size, shape and geometry apply equally to the embodiments of FIGS. 3, 7-9, 12. It is further understood that the description and scope of invention apply equally (though the descriptions have not been repeated) for each structure that is the same or similar between each of the various embodiment, and whether or not those structures have been assigned a similar reference numeral.
Numerous applications of the invention will readily occur to those skilled in the art. Therefore, it is not desired to limit the invention to the specific examples disclosed or the exact construction and operation shown and described. Rather, all suitable modifications and equivalents may be resorted to, falling within the scope of the invention.