CREATING AN ABSTRACT CONCEPT MULTI-DISCIPLINED LEARNING TOOL
A method for execution by a computing entity to create a multi-disciplined learning tool regarding an abstract environment topic includes creating first-passes of a first and second learning objects for first and second pieces of information regarding the abstract environment topic to include first and second sets of knowledge bullet-points regarding the first and second pieces of information. The method further includes obtaining a synthetic asset based on the first and second set of knowledge bullet-points. The method further includes creating second-passes of the first and second learning objects to further include first and second descriptive assets regarding the first and second pieces of information based on the first and second sets of knowledge bullet-points and the synthetic asset. The method further includes linking the second-passes of the first and second learning objects together to form at least a portion of the multi-disciplined learning tool.
Latest Enduvo, Inc. Patents:
The present U.S. Utility Patent Application claims priority pursuant to 35 U.S.C. § 119(e) to U.S. Provisional Application No. 62/978,114, entitled “ESTABLISHING A LESSON PACKAGE,” filed Feb. 18, 2020, which is hereby incorporated herein by reference in its entirety and made part of the present U.S. Utility Patent Application for all purposes.
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENTNot Applicable.
INCORPORATION-BY-REFERENCE OF MATERIAL SUBMITTED ON A COMPACT DISCNot Applicable.
BACKGROUND OF THE INVENTION Technical Field of the InventionThis invention relates generally to computer systems and more particularly to computer systems providing educational, training, and entertainment content.
Description of Related ArtComputer systems communicate data, process data, and/or store data. Such computer systems include computing devices that range from wireless smart phones, laptops, tablets, personal computers (PC), work stations, personal three-dimensional (3-D) content viewers, and video game devices, to data centers where data servers store and provide access to digital content. Some digital content is utilized to facilitate education, training, and entertainment. Examples of visual content includes electronic books, reference materials, training manuals, classroom coursework, lecture notes, research papers, images, video clips, sensor data, reports, etc.
A variety of educational systems utilize educational tools and techniques. For example, an educator delivers educational content to students via an education tool of a recorded lecture that has built-in feedback prompts (e.g., questions, verification of viewing, etc.). The educator assess a degree of understanding of the educational content and/or overall competence level of a student from responses to the feedback prompts.
BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING(S)
The places 22 includes any area. Examples of places 22 includes a room, an outdoor space, a neighborhood, a city, etc. The objects 24 includes things within the places. Examples of objects 24 includes people, equipment, furniture, personal items, tools, and representations of information (i.e., video recordings, audio recordings, captured text, etc.). The instructors includes any entity (e.g., human or human proxy) imparting knowledge. The learners includes entities trying to gain knowledge and may temporarily serve as an instructor.
In an example of operation of the computing system 10, the experience creation module 30 receives environment sensor information 38 from the environment sensor module 14 based on environment attributes 36 from the real world environment 12. The environment sensor information 38 includes time-based information (e.g., static snapshot, continuous streaming) from environment attributes 36 including XYZ position information, place information, and object information (i.e., background, foreground, instructor, learner, etc.). The XYZ position information includes portrayal in a world space industry standard format (e.g., with reference to an absolute position).
The environment attributes 36 includes detectable measures of the real-world environment 12 to facilitate generation of a multi-dimensional (e.g., including time) representation of the real-world environment 12 in a virtual reality and/or augmented reality environment. For example, the environment sensor module 14 produces environment sensor information 38 associated with a medical examination room and a subject human patient (e.g., an MRI). The environment sensor module 14 is discussed in greater detail with reference to
Having received the environment sensor information 38, the experience creation module 30 accesses the environment model database 16 to recover modeled environment information 40. The modeled environment information 40 includes a synthetic representation of numerous environments (e.g., model places and objects). For example, the modeled environment information 40 includes a 3-D representation of a typical human circulatory system. The models include those that are associated with certain licensing requirements (e.g., copyrights, etc.).
Having received the modeled environment information 40, the experience creation module 30 receives instructor information 44 from the human interface module 18, where the human interface module 18 receives human input/output (I/O) 42 from instructor 26-1. The instructor information 44 includes a representation of an essence of communication with a participant instructor. The human I/O 42 includes detectable fundamental forms of communication with humans or human proxies. The human interface module 18 is discussed in greater detail with reference to
Having received the instructor information 44, the experience creation module 30 interprets the instructor information 44 to identify aspects of a learning experience. A learning experience includes numerous aspects of an encounter between one or more learners and an imparting of knowledge within a representation of a learning environment that includes a place, multiple objects, and one or more instructors. The learning experience further includes an instruction portion (e.g., acts to impart knowledge) and an assessment portion (e.g., further acts and/or receiving of learner input) to determine a level of comprehension of the knowledge by the one or more learners. The learning experience still further includes scoring of the level of comprehension and tallying multiple learning experiences to facilitate higher-level competency accreditations (e.g., certificates, degrees, licenses, training credits, experiences completed successfully, etc.).
As an example of the interpreting of the instructor information 44, the experience creation module 30 identifies a set of concepts that the instructor desires to impart upon a learner and a set of comprehension verifying questions and associated correct answers. The experience creation module 30 further identifies step-by-step instructor annotations associated with the various objects within the environment of the learning experience for the instruction portion and the assessment portion. For example, the experience creation module 30 identifies positions held by the instructor 26-1 as the instructor narrates a set of concepts associated with the subject patient circulatory system. As a further example, the experience creation module 30 identifies circulatory system questions and correct answers posed by the instructor associated with the narrative.
Having interpreted the instructor information 44, the experience creation module 30 renders the environment sensor information 38, the modeled environment information 40, and the instructor information 44 to produce learning assets information 48 for storage in the learning assets database 34. The learning assets information 48 includes all things associated with the learning experience to facilitate subsequent recreation. Examples includes the environment, places, objects, instructors, learners, assets, recorded instruction information, learning evaluation information, etc.
Execution of a learning experience for the one or more learners includes a variety of approaches. A first approach includes the experience execution module 32 recovering the learning assets information 48 from the learning assets database 34, rendering the learning experience as learner information 46, and outputting the learner information 46 via the human interface module 18 as further human I/O 42 to one or more of the learners 28-1 through 28-N. The learner information 46 includes information to be sent to the one or more learners and information received from the one or more learners. For example, the experience execution module 32 outputs learner information 46 associated with the instruction portion for the learner 28-1 and collects learner information 46 from the learner 28-1 that includes submitted assessment answers in response to assessment questions of the assessment portion communicated as further learner information 46 for the learner 28-1.
A second approach includes the experience execution module 32 rendering the learner information 46 as a combination of live streaming of environment sensor information 38 from the real-world environment 12 along with an augmented reality overlay based on recovered learning asset information 48. For example, a real world subject human patient in a medical examination room is live streamed as the environment sensor information 38 in combination with a prerecorded instruction portion from the instructor 26-1.
Computing devices include portable computing devices and fixed computing devices. Examples of portable computing devices include an embedded controller, a smart sensor, a social networking device, a gaming device, a smart phone, a laptop computer, a tablet computer, a video game controller, and/or any other portable device that includes a computing core. Examples of fixed computing devices includes a personal computer, a computer server, a cable set-top box, a fixed display device, an appliance, and industrial controller, a video game counsel, a home entertainment controller, a critical infrastructure controller, and/or any type of home, office or cloud computing equipment that includes a computing core.
The computing core 52-1 includes a video graphics module 54, one or more processing modules 50-1 through 50-N, a memory controller 56, one or more main memories 58-1 through 58-N (e.g., RAM), one or more input/output (I/O) device interface modules 62, an input/output (I/O) controller 60, and a peripheral interface 64. A processing module is as defined at the end of the detailed description.
The memory module 102 includes a memory interface module 70 and one or more memory devices, including flash memory devices 92, hard drive (HD) memory 94, solid state (SS) memory 96, and cloud memory 98. The cloud memory 98 includes an on-line storage system and an on-line backup system.
The I/O module 104 includes a network interface module 72, a peripheral device interface module 68, and a universal serial bus (USB) interface module 66. Each of the I/O device interface module 62, the peripheral interface 64, the memory interface module 70, the network interface module 72, the peripheral device interface module 68, and the USB interface modules 66 includes a combination of hardware (e.g., connectors, wiring, etc.) and operational instructions stored on memory (e.g., driver software) that are executed by one or more of the processing modules 50-1 through 50-N and/or a processing circuit within the particular module.
The I/O module 104 further includes one or more wireless location modems 84 (e.g., global positioning satellite (GPS), Wi-Fi, angle of arrival, time difference of arrival, signal strength, dedicated wireless location, etc.) and one or more wireless communication modems 86 (e.g., a cellular network transceiver, a wireless data network transceiver, a Wi-Fi transceiver, a Bluetooth transceiver, a 315 MHz transceiver, a zig bee transceiver, a 60 GHz transceiver, etc.). The I/O module 104 further includes a telco interface 108 (e.g., to interface to a public switched telephone network), a wired local area network (LAN) 88 (e.g., optical, electrical), and a wired wide area network (WAN) 90 (e.g., optical, electrical). The I/O module 104 further includes one or more peripheral devices (e.g., peripheral devices 1-P) and one or more universal serial bus (USB) devices (USB devices 1-U). In other embodiments, the computing device 100 may include more or less devices and modules than shown in this example embodiment.
The set of sensors further includes a scanning sensor 130 (e.g., CAT scan, MRI, x-ray, ultrasound, radio scatter, particle detector, laser measure, further radar) and a temperature sensor 132 (e.g., thermometer, thermal coupler). The set of sensors further includes a humidity sensor 134 (resistance based, capacitance based) and an altitude sensor 136 (e.g., pressure based, GPS-based, laser-based).
The set of sensors further includes a biosensor 138 (e.g., enzyme, immuno, microbial) and a chemical sensor 140 (e.g., mass spectrometer, gas, polymer). The set of sensors further includes a magnetic sensor 142 (e.g., Hall effect, piezo electric, coil, magnetic tunnel junction) and any generic sensor 144 (e.g., including a hybrid combination of two or more of the other sensors).
In response to the human output 162, the human interface module 18 receives human input 164 from the instructor 26-1. For example, the human input 164 includes pointer movement information and human speech associated with a lesson. The human interface module 18 transforms the human input 164 into instructor input information 166. The instructor input information 166 includes one or more of representations of instructor interactions with objects within the environment and explicit evaluation information (e.g., questions to test for comprehension level, and correct answers to the questions).
Having received the instructor input information 166, the experience creation module 30 renders a representation of the instructor input information 166 within the environment utilizing the objects of the modeled environment information 40 to produce learning asset information 48 for storage in the learnings assets database 34. Subsequent access of the learning assets information 48 facilitates a learning experience.
The virtual place 168 includes a representation of an environment (e.g., a place) over a series of time intervals (e.g., time 0-N). The environment includes a plurality of objects 24-1 through 24-N. At each time reference, the positions of the objects can change in accordance with the learning experience. For example, the instructor 26-1 of
As learners access the learning experience during execution, the ordering may be accessed in different ways to suit the needs of the unique learner based on one or more of preferences, experience, previously demonstrated comprehension levels, etc. For example, a particular learner may skip over lesson 1 of module 1 and go right to lesson 2 of module 1 when having previously demonstrated competency of the concepts associated with lesson 1.
Each learning objective includes indexing information, environment information, asset information, instructor interaction information, and assessment information. The index information includes one or more of categorization information, topics list, instructor identification, author identification, identification of copyrighted materials, keywords, concept titles, prerequisites for access, and links to related learning objectives.
The environment information includes one or more of structure information, environment model information, background information, identifiers of places, and categories of environments. The asset information includes one or more of object identifiers, object information (e.g., modeling information), asset ownership information, asset type descriptors (e.g., 2-D, 3-D). Examples include models of physical objects, stored media such as videos, scans, images, digital representations of text, digital audio, and graphics.
The instructor interaction information includes representations of instructor annotations, actions, motions, gestures, expressions, eye movement information, facial expression information, speech, and speech inflections. The content associated with the instructor interaction information includes overview information, speaker notes, actions associated with assessment information, (e.g., pointing to questions, revealing answers to the questions, motioning related to posing questions) and conditional learning objective execution ordering information (e.g., if the learner does this then take this path, otherwise take another path).
The assessment information includes a summary of desired knowledge to impart, specific questions for a learner, correct answers to the specific questions, multiple-choice question sets, and scoring information associated with writing answers. The assessment information further includes historical interactions by other learners with the learning objective (e.g., where did previous learners look most often within the environment of the learning objective, etc.), historical responses to previous comprehension evaluations, and actions to facilitate when a learner responds with a correct or incorrect answer (e.g., motion stimulus to activate upon an incorrect answer to increase a human stress level).
The human interface module 18 transforms the learner output information 172 into human output 162 for conveyance of the learner output information 172 to the learner 28-1. For example, the human interface module 18 facilitates displaying a 3-D image of the virtual environment to the learner 28-1.
The human interface module 18 transforms human input 164 from the learner 28-1 to produce learner input information 174. The learner input information 174 includes representations of learner interactions with objects within the virtual place (e.g., answering comprehension level evaluation questions).
The experience execution module 32 updates the representation of the virtual place by modifying the learner output information 172 based on the learner input information 174 so that the learner 28-1 enjoys representations of interactions caused by the learner within the virtual environment. The experience execution module 32 evaluates the learner input information 174 with regards to evaluation information of the learning objectives to evaluate a comprehension level by the learner 28-1 with regards to the set of learning objectives of the lesson.
The learner 28-1 experiences a unique viewpoint of the environment and gains knowledge from accessing (e.g., playing) the learning experience. The learner 28-1 further manipulates objects within the environment to support learning and assessment of comprehension of objectives of the learning experience.
In an example of operation,
The learning path structure information 190 includes attributes of the learning path and the learning objective information 192 includes a summary of desired knowledge to impart. The updated learning path information 196 is generated to include modifications to the learning path information 194 in accordance with the learning path structure information 190 in the learning objective information 192.
The asset module 182 determines a collection of common assets for each lesson of the learning path. For example, the asset module 182 receives supporting asset information 198 (e.g., representation information of objects in the virtual space) and modeled asset information 200 from the environment model database 16 to produce lesson asset information 202. The modeled asset information 200 includes representations of an environment to support the updated learning path information 196 (e.g., modeled places and modeled objects) and the lesson asset information 202 includes a representation of the environment, learning path, the objectives, and the desired knowledge to impart.
The instruction module 184 receives instructor input information 166 from the instructor in response to the instructor output information 160. The instructor input information 166 includes interactions from the instructor to facilitate imparting of the knowledge (e.g., instructor annotations, pointer movements, highlighting, text notes, and speech) and testing of comprehension of the knowledge (e.g., valuation information such as questions and correct answers). The instruction module 184 obtains assessment information (e.g., comprehension test points, questions, correct answers to the questions) for each learning objective based on the lesson asset information 202 and produces instruction information 204 (e.g., representation of instructor interactions with objects within the virtual place, evaluation information).
The lesson generation module 186 outputs the rendering as a lesson package 206 for storage in the learning assets database 34. The lesson package 206 includes everything required to replay the lesson for a subsequent learner (e.g., representation of the environment, the objects, the interactions of the instructor during both the instruction and evaluation portions, questions to test comprehension, correct answers to the questions, a scoring approach for evaluating comprehension, all of the learning objective information associated with each learning objective of the lesson).
The method continues at step 222 where the processing module determines lesson asset information based on the updated learning path information, supporting asset information, and modeled asset information. For example, the processing module combines assets of the supporting asset information (e.g., received from an instructor) with assets and a place of the modeled asset information in accordance with the updated learning path information to produce the lesson asset information. The processing module selects assets as appropriate for each learning objective (e.g., to facilitate the imparting of knowledge based on a predetermination and/or historical results).
The method continues at step 224 where the processing module obtains instructor input information. For example, the processing module outputs a representation of the lesson asset information as instructor output information and captures instructor input information for each lesson in response to the instructor output information. Further obtain asset information for each learning objective (e.g., extract from the instructor input information).
The method continues at step 226 where the processing module generates instruction information based on the instructor input information. For example, the processing module combines instructor gestures and further environment manipulations based on the assessment information to produce the instruction information.
The method continues at step 228 where the processing module renders, for each lesson, a multidimensional representation of environment and objects of the lesson asset information utilizing the instruction information to produce a lesson package. For example, the processing module generates the multidimensional representation of the environment that includes the objects and the instructor interactions of the instruction information to produce the lesson package. For instance, the processing module includes a 3-D rendering of a place, background objects, recorded objects, and the instructor in a relative position XYZ world space over time.
The method continues at step 230 where the processing module facilitates storage of the lesson package. For example, the processing module indexes the one or more lesson packages of the one or more lessons of the learning path to produce indexing information (e.g., title, author, instructor identifier, topic area, etc.). The processing module stores the indexed lesson package as learning asset information in a learning assets database.
The method described above in conjunction with the processing module can alternatively be performed by other modules of the computing system 10 of
Each piece of information is to impart additional knowledge related to the topic. The additional knowledge of the piece of information includes a characterization of learnable material by most learners in just a few minutes. As a specific example, the first piece of information includes “4 cycle engine intake cycles” when the topic includes “how a 4 cycle engine works.”
Each of the knowledge bullet-points are to impart knowledge associated with the associated piece of information in a logical (e.g., sequential) and knowledge building fashion. As a specific example, the experience creation module 30 creates the first set of knowledge bullet-points 702-1 based on instructor input to include a first bullet point “intake stroke: intake valve opens, air/fuel mixture pulled into cylinder by piston” and a second bullet point “compression stroke: intake valve closes, piston compresses air/fuel mixture in cylinder” when the first piece of information includes the “4 cycle engine intake cycles.”
The obtaining of the illustrative assets 704 includes a variety of approaches. A first approach includes interpreting instructor input information to identify the illustrative asset. For example, the experience creation module 30 interprets instructor input information to identify a cylinder asset.
A second approach includes identifying a first object of the first and second set of knowledge bullet-points as an illustrative asset. For example, the experience creation module 30 identifies the piston object from both the first and second set of knowledge bullet-points.
A third approach includes determining the illustrative assets 704 based on the first object of the first and second set of knowledge bullet-points. For example, the experience creation module 30 accesses the environment model database 16 to extract information about an asset from one or more of supporting asset information 198 and modeled asset information 200 for a sparkplug when interpreting the first and second set of knowledge bullet-points.
The creating the second-pass of the first learning object 700-1 includes generating a representation of the illustrative assets 704 based on a first knowledge bullet-point of the first set of knowledge bullet-points 702-1. For example, the experience creation module 30 renders 3-D frames of a 3-D model of the cylinder, the piston, the spark plug, the intake valve, and the exhaust valve in motion when performing the intake stroke where the intake valve opens and the air/fuel mixture is pulled into the cylinder by the piston.
The creating of the second-pass of the first learning object 700-1 further includes generating the first descriptive assets 706-1 utilizing the representation of the illustrative assets 704. For example, the experience creation module 30 renders 3-D frames of the 3-D models of the various engine parts without necessarily illustrating the first set of knowledge bullet-points 702-1.
In an embodiment where the experience creation module 30 generates the representation of the illustrative assets 704, the experience creation module 30 outputs the representation of the illustrative asset 704 as instructor output information 160 to an instructor. For example, the 3-D model of the cylinder and associated parts.
The experience creation module 30 receives instructor input information 166 in response to the instructor output information 160. For example, the instructor input information 166 includes instructor annotations to help explain the intake stroke (e.g., instructor speech, instructor pointer motions). The experience creation module 30 interprets the instructor input information 166 to produce the first descriptive assets 706-1. For example, the renderings of the engine parts include the intake stroke as annotated by the instructor.
In an embodiment, the linking of the second-passes of the first and second learning objects 700-1 and 700-2 together to form the at least the portion of the multi-disciplined learning tool includes generating index information for the second-passes of first and second learning objects to indicate sharing of the illustrative asset 704. For example, the experience creation module 30 generates the index information to identify the first learning object 700-1 and the second learning object 700-2 as related to the same topic.
The linking further includes facilitating storage of the index information and the first and second learning objects 700-1 and 700-2 in the learning assets database 34 to enable subsequent utilization of the multi-disciplined learning tool. For example, the experience creation module 30 aggregates the first learning object 700-1, the second learning object 700-2, and the index information to produce the lesson package 206 for storage in the learning assets database 34.
The method described above with reference to
The first lesson asset information 202-1 is regarding the first topic that includes operation of a piston within a cylinder of an engine. The first lesson asset information 202-1 includes a first learning object 700-1 and a second learning object 700-2. The first learning object 700-1 includes a first set of knowledge bullet-points 702-1 for a first piece of information regarding the first topic. For example, the first piece of information regarding the first topic includes piston and valve operation during intake and compression strokes of the engine.
The second learning object 700-2 includes a second set of knowledge bullet-points 702-2 for a second piece of information regarding the first topic. For example, the second piece of information regarding the first topic includes piston and valve operation during power and exhaust strokes of the engine.
The first learning object 700-1 and the second learning object 700-2 further include a first lesson illustrative asset 704-1 that depicts an aspect regarding the first topic pertaining to the first and second pieces of information. For example, first lesson illustrative assets 704-1 includes those assets associated with the first learning object 700-1 and the second learning object 700-2, where at least one asset is common to both the first and second learning objects. For instance, first lesson illustrative assets 704-1 includes assets for a cylinder, a piston, a spark plug, and intake valve, and exhaust valve, and a connecting rod.
The first learning object 700-1 further includes a first descriptive asset 706-1 regarding the first piece of information based on the first set of knowledge bullet-points 702-1 and the first lesson illustrative asset 704-1. For example, first descriptive assets 706-1 illustrate the operation of the piston and valves of the engine for the intake and compression strokes to illustrate the first set of knowledge bullet points 702-1 utilizing the first lesson illustrative assets 704-1.
The second learning object 700-2 further includes a second descriptive asset 706-2 regarding the second piece of information based on the second set of knowledge bullet-points 702-2 and the first lesson illustrative asset 704-1. For example, second descriptive assets 706-2 illustrate the operation of the piston and valves of the engine for the power and exhaust strokes to illustrate the second set of knowledge bullet-points 702-2 utilizing the first lesson illustrative assets 704-1.
Having obtained the first lesson asset information 202-1 regarding the first topic, in a second step of the example method for creating the lesson package for the multi-disciplined learning tool regarding the first and second topics, the experience creation module 30 obtains second lesson asset information 202-2 regarding the second topic. The experience creation module 30 obtains the second lesson asset information 202-2 regarding the second topic by at least one of generating the second lesson asset information 202-2 and extracting the second lesson asset information 202-2 from the lesson package 206-1 recovered from the learning assets database 34.
As an example of generating the second lesson asset information 202-2, the experience creation module 30 generates the third learning object 700-3 and the fourth learning object 700-4 based on the first learning object 700-1 and the second learning object 700-2, where the aspect regarding the second topic is associated with the aspect regarding the first topic. For example, the experience creation module 30 generates the third learning object 700-3 and the fourth learning object 700-4 to further illustrate operation of the engine with regards to the connecting rod and a crank, where the connecting rod is common to the third and fourth learning objects and to the first and second learning objects.
The second lesson asset information 202-2 is regarding the second topic that includes operation of the connecting rod and a crank of the engine. The second lesson asset information 202-2 includes a third learning object 700-3 and a fourth learning object 700-4. The third learning object 700-3 includes a third set of knowledge bullet-points points 702-3 for a third piece of information regarding the second topic. For example, the third piece of information regarding the second topic includes connecting rod and crank operation during the intake and compression strokes of the engine.
The fourth learning object 700-4 includes a fourth set of knowledge bullet-points 702-4 for a fourth piece of information regarding the second topic. For example, the fourth piece of information regarding the second topic includes connecting rod and crank operation during the power and exhaust strokes of the engine.
The third learning object 700-3 and the fourth learning object 700-4 further include a second lesson illustrative asset 704-2 that depicts an aspect regarding the second topic pertaining to the third and fourth pieces of information. For example, second lesson illustrative assets 704-2 includes those assets associated with the third learning object 700-3 and the fourth learning object 700-4, where at least one asset is common to both the third and fourth learning objects. For instance, second lesson illustrative assets 704-2 includes assets for the connecting rod and crank.
The third learning object 700-3 further includes a third descriptive asset 706-3 regarding the third piece of information based on the third set of knowledge bullet-points 702-3 and the second lesson illustrative asset 704-2. For example, third descriptive assets 706-3 illustrate the operation of the connecting rod and crank of the engine for the intake and compression strokes to illustrate the third set of knowledge bullet-points 702-3 utilizing the second lesson illustrative assets 704-2.
The fourth learning object 700-4 further includes a fourth descriptive asset 706-4 regarding the fourth piece of information based on the fourth set of knowledge bullet-points 702-4 and the second lesson illustrative asset 704-2. For example, fourth descriptive assets 706-4 illustrate the operation of the connecting rod and crank of the engine for the power and exhaust strokes to illustrate the fourth set of knowledge bullet-points 702-4 utilizing the second lesson illustrative assets 704-2.
A first sub-step includes establishing the set of common lesson illustrative assets 802 to include the first and second lesson illustrative assets. For example, the experience creation module 30 imports the first lesson illustrative asset 704-1 (e.g., just one asset such as the piston) and the second lesson illustrative asset 704-2 (e.g., just another one such as the connecting rod) to produce the common lesson illustrative asset 802. A second sub-step includes updating the set of common lesson illustrative assets 802 to further include another illustrative asset associated with the first lesson illustrative asset 704-1. For example, the experience creation module 30 imports all remaining assets of the first lesson illustrative assets 704-1 (e.g., cylinder, spark plug, intake valve, exhaust valve, and connecting rod).
A third sub-step of the generating of the set of common lesson illustrative assets 802 includes updating the set of common lesson illustrative assets 802 to further include yet another illustrative asset associated with the second lesson illustrative asset 704-2. For example, the experience creation module 30 imports all remaining assets of the second lesson illustrative assets 704-2 (e.g., the crank).
When the set of common lesson illustrative assets 802 includes a redundant lesson illustrative asset (e.g., the connecting rod), the generating of the set of common lesson illustrative assets 802 further includes a fourth sub-step that includes updating the set of common lesson illustrative assets 802 to eliminate the redundant lesson illustrative asset. For example, the experience creation module 30 eliminates redundant assets for the connecting rod.
The generating of the combined lesson asset information 800 regarding the first and second topics includes establishing the combined lesson asset information 800 to include the first learning object 700-1, the second learning object 700-2, the third learning object 700-3, and the fourth learning object 700-4.
A second step of the variety of steps includes generating a sixth learning object 700-6 to include the second and fourth learning objects. The sixth learning object 700-6 includes the second set of knowledge bullet-points 702-2 and the fourth set of knowledge bullet-points points 7 2-4.
A third step of the variety of steps includes generating a fifth descriptive asset 706-5 for the fifth learning object 700-5 based on the first set of knowledge bullet-points 702-1, the third set of knowledge bullet-points points 702-3, and the set of common lesson illustrative assets 802. For example, the experience creation module 30 generates the fifth descriptive asset 706-5 to illustrate the operation of the engine including all of the assets for the intake and compression strokes.
A fourth step of the variety of steps includes generating a sixth descriptive asset 706-6 for the sixth learning object 700-6 based on the second set of knowledge bullet-points 702-2, the fourth set of knowledge bullet-points 702-4, and the set of common lesson illustrative assets 802. For example, the experience creation module 30 generates the sixth descriptive asset 706-6 to illustrate the operation of the engine including all of the assets for the power and exhaust strokes.
Having generated the combined lesson asset information 800, in a fifth step of the in a second step of the example method for creating the lesson package for the multi-disciplined learning tool regarding the first and second topics, the experience creation module 30 links the combined lesson asset information 800 and the set of common lesson illustrative assets 802 to form at least a portion of the multi-disciplined learning tool. For example, the experience creation module 30 aggregates the combined lesson asset information 800 and the set of common lesson illustrative assets 802 to produce a lesson package 206 for storage in the learning assets database 34.
The method described above in conjunction with the processing module can alternatively be performed by other modules of the computing system 10 of
During the step of identifying which of the knowledge bullet-points compared to those stored in learning objects of the learning assets database 34, the learning path module 180 may identify knowledge bullet-points that do not favorably map to those stored in the learning assets database 34. Such orphaned knowledge bullet-points will require further steps for support as discussed below.
The method described above in conjunction with the processing module can alternatively be performed by other modules of the computing system 10 of
The method described above in conjunction with the processing module can alternatively be performed by other modules of the computing system 10 of
Having obtained the environment sensor information, in a second step the experience creation module 30 generates measured illustrative assets based on the environment sensor information. For example, the asset module 182 generates the measured illustrative assets 860 based the environment sensor information 150 that pertains to the cylinder wall of an actual engine.
Having obtained the modeled environment information 40, in a fifth step the experience creation module 30 generates engineered illustrative assets based on the modeled environment information 40. For example, the asset module 182 generates the engineered illustrative assets 862 to include the new model of the new piston.
The method described above in conjunction with the processing module can alternatively be performed by other modules of the computing system 10 of
Having determined the knowledge bullet-points, in a second step the experience creation module obtains learning objects for the knowledge bullet-points. For example, the learning path module 180 compares the knowledge bullet-points to knowledge bullet-points extracted from learning path information 194 recovered from the learning assets database 34 to identify learning objects already available from the learning assets database 34. For instance, the learning path module 180 identifies learning objects 850-1, 850-2, and 850-4 that include knowledge bullet-points that compare favorably to the knowledge bullet-points determined in the preceding step and forwards the learning objects to the asset module 182.
Having obtained the modeled environment information 40, in a fourth step the asset module 182 extracts additional objects to produce updated illustrative assets 870. For example, the asset module 182 extracts the model of the newer version of the product from the modeled environment information 40 and replaces an older version of the product in the illustrative assets 704 with the model of the newer version of the product to produce the updated illustrative assets 870.
The method described above in conjunction with the processing module can alternatively be performed by other modules of the computing system 10 of
The first learning object 750-1 includes a first set of knowledge bullet-points 752-1 for a first piece of information regarding the topic. The second learning object 750-2 includes a second set of knowledge bullet-points 752-2 for a second piece of information regarding the topic. The first learning object 750-1 and the second learning object 750-2 further include at least one illustrative asset 754 that depicts an aspect regarding the topic pertaining to the first and second pieces of information.
The first learning object 750-1 further includes a first descriptive asset 756-1 regarding the first piece of information based on the first set of knowledge bullet-points 752-1 and the illustrative asset 754. The second learning object further includes a second descriptive asset 756-2 regarding the second piece of information based on the second set of knowledge bullet-points 752-2 and the illustrative asset 754.
The deriving the first set of knowledge test-points 760-1 for the first learning object 750-1 based on the first set of knowledge bullet-points 752-1 includes a variety of one or more sub-steps. A first sub-step includes interpreting a first knowledge bullet-point of the first set of knowledge bullet-points 752-1 in accordance with the illustrative asset 754 and the first descriptive asset 756-1 of the first learning object 750-1 to produce a first knowledge test-point of the first set of knowledge test-points 760-1. For example, the experience creation module 30 derives a first question to include what are the steps of the intake stroke and derives a first answer to include the intake valve opens and air/fuel mixture is pulled into the cylinder by the piston based on the first set of knowledge bullet-points 752-1.
A second sub-step includes interpreting a second knowledge bullet-point of the first set of knowledge bullet-points 752-1 in accordance with the illustrative asset 754 and the first descriptive asset 756-1 of the first learning object 750-1 to produce a second knowledge test-point of the first set of knowledge test-points 760-1. For example, the experience creation module 30 derives a second question to include what are the steps of the compression stroke and derives a second answer to include the intake valve closes and the piston compresses the air/fuel mixture in the cylinder based on the first set of knowledge bullet-points 752-1.
A third sub-step includes interpreting instructor input information to identify a third knowledge test-point of the first set of knowledge test-points 760-1. For example, the experience creation module 30 obtains instructor input information that includes a third question and a third answer associated with the intake and/or compression strokes of the engine.
Having derived the first set of knowledge test-points 760-1, in a third step of the example method of operation of the modifying of the lesson package, the experience creation module 30 derive a second set of knowledge test-points 760-2 for the second learning object 750-2 regarding the topic based on the second set of knowledge bullet-points 752-2. The deriving the second set of knowledge test-points 760-2 for the second learning object 750-2 based on the second set of knowledge bullet-points 752-2 includes a variety of sub-steps.
A first sub-step includes the experience creation module 30 interpreting a first knowledge bullet-point of the second set of knowledge bullet-points 752-2 in accordance with the illustrative asset 754 and the second descriptive asset 756-2 of the second learning object 750-2 to produce a first knowledge test-point of the second set of knowledge test-points 760-2. For example, the experience creation module 30 generates another first question to include what are the steps of power stroke and generates another first answer to include the spark plug ignites the air/fuel mixture pushing the piston.
A second sub-step includes the experience creation module 30 interpreting a second knowledge bullet-point of the second set of knowledge bullet-points 752-2 in accordance with the illustrative asset 754 and the second descriptive asset 756-2 of the second learning object 750-2 to produce a second knowledge test-point of the second set of knowledge test-points 760-2. For example, the experience creation module 30 generates another second question to include what are the steps of the exhaust stroke and generates another second answer to include the exhaust valve opens and piston pushes exhaust out of the cylinder followed by the exhaust valve closing.
A third sub-step includes the experience creation module 30 interpreting instructor input information to identify a third knowledge test-point of the second set of knowledge test-points 760-2. For example, the experience creation module 30 obtains instructor input information that includes a third question and a third answer associated with the power and/or exhaust strokes of the engine.
The generating the first knowledge assessment asset 762-1 for the first learning object 750-1 regarding the topic based on the first set of knowledge test-points 760-1, the illustrative asset 754, and the first descriptive asset 756-1 of the first learning object 750-1 includes a variety of sub-steps. A first sub-step includes generating a first representation of the illustrative asset 754 based on a first knowledge test-point of the first set of knowledge test-points 760-1. For example, rendering a view of the cylinder during the intake stroke.
A second sub-step includes generating a first representation of the first descriptive asset 756-1 of the first learning object 750-1 based on the first knowledge test-point of the first set of knowledge test-points 760-1. For example, rendering a sequence of movement of the piston during the intake stroke.
A third sub-step includes generating a first portion of the first knowledge assessment asset 762-1 utilizing the first representation of the illustrative asset and the first representation of the first descriptive asset. For example, rendering a sequence of movement of the piston moving through the cylinder during the intake stroke.
A fourth sub-step includes outputting the first portion of the first knowledge assessment asset 762-1 as instructor output information. For example, outputting the rendering of the sequence of movement of the piston moving through the cylinder during the intake stroke.
A fifth sub-step includes receiving instructor input information in response to the instructor output information. For example, obtaining instructor input information with regards to the intake stroke.
A sixth sub-step includes interpreting the instructor input information to update the first portion of the first knowledge assessment asset. For example, modifying the first portion of the first knowledge assessment asset 762-1 to include an instructor annotation with regards to the intake stroke.
Having generated the first knowledge assessment asset 762-1, in a fifth step of the example method of operation to modify the lesson package, the experience creation module 30 generates at least one second knowledge assessment asset 762-2 for the second learning object 750-2 regarding the topic based on the second set of knowledge test-points 760-2, the illustrative asset 754, and the second descriptive asset 756 7 2 of the second learning object 750-2. The generating the second knowledge assessment asset 762-2 for the second learning object 750-2 regarding the topic based on the second set of knowledge test-points 760-2, the illustrative asset 754, and the second descriptive asset 756-2 of the second learning object 750-2 includes a variety of one or more sub-steps.
A first sub-step includes generating a first representation of the illustrative asset 754 based on a first knowledge test-point of the second set of knowledge test-points 760-2. For example, rendering a view of the cylinder during the power stroke.
A second sub-step includes generating a first representation of the second descriptive asset 756-2 of the second learning object 750-2 based on the first knowledge test-point of the second set of knowledge test-points 760-2. For example, rendering a sequence of movement of the piston during the power stroke.
A third sub-step includes generating a first portion of the second knowledge assessment asset 762-2 utilizing the first representation of the illustrative asset and the first representation of the second descriptive asset. For example, rendering a sequence of movement of the piston moving through the cylinder during the power stroke.
A fourth sub-step includes outputting the first portion of the second knowledge assessment asset 762-2 as instructor output information. For example, outputting the rendering of the sequence of movement of the piston moving through the cylinder during the power stroke.
A fifth sub-step includes receiving instructor input information in response to the instructor output information. For example, obtaining instructor input information with regards to the power stroke.
A sixth sub-step includes interpreting the instructor input information to update the first portion of the second knowledge assessment asset. For example, modifying the first portion of the second knowledge assessment asset 762-2 to include in instructor annotation with regards to the power stroke.
Having produced the first and second knowledge assessment assets 762-1 and 762-2, in a sixth step of the example method of operation to modify the lesson package, the experience creation module 30 updates the first and second learning objects 750-1 and 750-2. For example, the experience creation module 30 updates the first learning object 750-1 to include the first set of knowledge test-points 760-1 and the first knowledge assessment asset 762-1 for the first learning object 750-1 to produce an updated first learning object. As another example, the experience creation module 30 updates the second learning object 750-2 to include the second set of knowledge test-points 760-2 and the second knowledge assessment asset 762-2 for the second learning object 750-2 to produce an updated second learning object.
Having updated the first and second learning objects, in a seventh step of the example method of operation to modify the lesson package, the experience creation module 40 links the updated first learning object and the updated second learning object together to form a modified multi-disciplined learning tool. For example, the experience creation module 30 stores the first learning object 750-1 and the second learning object 750-2 as assessment information 252 in the learning assets database 34.
The method described above in conjunction with the processing module can alternatively be performed by other modules of the computing system 10 of
The experience creation module 30 updates each of the learning objects to include assessment results based on the learning assessment results information 334. For example, the experience creation module 30 updates the learning object 880-1 with first assessment results 764-1 pertaining to the learning object 880-1 from the learning assessment results information 334.
The method described above in conjunction with the processing module can alternatively be performed by other modules of the computing system 10 of
The requirements generally relate to aspects of an indexing approach to identify learning objects stored in the learning assets database 34. The aspects of the indexing includes topic, sequencing, learning effectiveness level, difficulty level, degree or certificate requirement, content relevant to an interest, instructor rating, and source content rating. For instance, the learning path module 180 generates learning object requirements A-E.
The method described above in conjunction with the processing module can alternatively be performed by other modules of the computing system 10 of
The instance experience module 290 generates learner output information 172 for the first portion of the lesson package based on the instruction information 204 and the baseline environment and object information 292. The learner output information 172 includes a representation of a virtual place with objects, instructor interactions, and learner interactions from a perspective of the learner. The learner output information 172 further includes representations of the instruction information (e.g., instructor annotations).
Having captured the learner feedback, in a third step the experience execution module 32 captures a representation of learner physical actions to further provide the assessment. For example, the learning assessment module 330 receives environment sensor information 150 from the environment sensor module 14 based on inputs from the learner 28-1 to the motion sensor 126 and the position sensor 128. For instance, the environment sensor module 14 generates the environment sensor information 150 based on detecting physical manipulation of real-world objects by the student (e.g., tool position, a bat position, a golf club position, etc.).
The learning assessment results information 334 includes one or more of a learner identity, a learning object identifier, a lesson identifier, and raw learner interaction information (e.g., a timestamp recording of all learner interactions like points, speech, input text, settings, viewpoints, etc.). The learning assessment results information 334 further includes summarized learner interaction information (e.g., average, mins, maxes of raw interaction information, time spent looking at each view of a learning object, how fast answers are provided, number of wrong answers, number of right answers, etc.).
The method described above in conjunction with the processing module can alternatively be performed by other modules of the computing system 10 of
The creating of the first-pass of the first learning object includes generating a first set of knowledge bullet-points. The creating further includes recovering the first set of knowledge bullet-points from the learning assets database 34. For example, the experience creation module 30 recovers abstract environment points 833 (e.g., associated with software training) from the learning assets database 34 with regards to the abstract environment of software to generate the first set of knowledge bullet-points 832-1 of the first learning object 830-1. For instance, the bullet-points describe a software DO loop, which includes statements “do B” and “repeat when A true.”
Having created the first-pass of the first learning object, in a second step of the example method of operation the experience creation module 30 creates a first-pass of a second learning object for a second piece of information regarding the abstract environment topic. For example, the experience creation module 30 extracts statements “B=load data” and “A=data container not full” from the abstract environment bullet-points 833 associated with software training to produce a second set of knowledge bullet-points 832-2 of second learning object 830-2.
The obtaining of the synthetic assets 834 includes a series of sub-steps. A first sub-set includes identifying the abstractive aspect regarding the abstract environment topic based on the first and second pieces of information. For example, the experience creation module 30 utilizes the first and second pieces of information to recover modeled asset information 200 from the environment model database 16. The experience creation module 30 interprets the modeled asset information 200 to produce the abstractive aspect that includes a fluid control valve combination with a fluid container when the first and second pieces of information pertain to software that loads data until a data container is full.
A second sub-step includes generating the synthetic asset to represent the first and second set of knowledge bullet-points in accordance with the abstractive aspect regarding the abstract environment topic. For example, the experience creation module 30 utilizes the fluid control valve combination with the fluid container to render the synthetic assets 834 to depict loading data (e.g., “do B, B=load data”), control valve open (e.g., “do B”), control valve closed (e.g., “repeat when A true”), data in data container (e.g., “B=load data”), data container not full (e.g., “A=data container not full”), data container full (e.g., “falsehood of A=data container not full”), and control valve closed (e.g., to “end when A false”).
The obtaining further includes recovering the synthetic assets 834 directly from the environment model database 16. For example, the experience creation module 30 extracts the synthetic assets 834 from one or more of supporting asset information 198 and modeled asset information 200 from the environment model database 16. For instance, the experience creation module 30 produces the synthetic assets 834 to include animations that represent the loading of data, the data in the data container, the data container not full, the data container full, etc.
A first sub-step of the creating the second-pass of the first learning object includes generating a representation of the synthetic asset based on a first knowledge bullet-point of the first set of knowledge bullet-points. For example, the experience creation module 30 renders a representation of the open control valve.
A second sub-step of the creating the second-pass of the first learning object includes generating the first descriptive asset utilizing the representation of the synthetic asset. For example, the experience creation module 30 renders an aggregate representation of the data, the loading of the data, the open control valve, the data container, and the data container not full to represent the software statement “DO B when A true.”
A third sub-step of the creating the second-pass of the first learning object includes outputting the representation of the synthetic asset as instructor output information. For example, the experience creation module 30 outputs the rendering of the representation of the open control valve.
A fourth sub-step of the creating the second-pass of the first learning object includes receiving instructor input information in response to the instructor output information. For example, the experience creation module 30 receives the instructor input information that includes guidance with regards to aggregating the multiple representations.
A fifth sub-step of the creating the second-pass of the first learning object includes interpreting the instructor input information to produce the first descriptive asset. For example, the experience creation module 30 interprets the guidance with regards to aggregating the multiple representations to affect the generating of the first descriptive asset.
Having created the first descriptive assets, in a fifth step of the example method, the experience creation module 30 creates a second pass of the second learning object to further include a second descriptive asset, of second descriptive assets 836-2, regarding the second piece of information based on the second set of knowledge bullet-points 832-2 and the synthetic asset 834. For example, the experience creation module 30 aggregates the representations of the data, the loading of the data, the control valve closed, the data container, and the data container full to represent stop doing B when A not true utilizing artifacts of software “B =load data and A =data container not full” associated with the software statement “DO B while A true.”
A first sub-step of the linking includes generating index information for the second-passes of first and second learning objects to indicate sharing of the synthetic asset. For example, the experience creation module 30 generates the index information to identify the first learning object 830-1 and the second learning object 830-2 as related to the same topic abstract environment.
A second sub-step of the linking includes facilitating storage of the index information and the first and second learning objects 830-1 and 830-2 in the learning assets database 34 to enable subsequent utilization of the multi-disciplined learning tool. For example, the experience creation module 30 aggregates the first learning object 830-1, the second learning object 830-2, and the index information to produce lesson package 206 for storage in the learning assets database 34.
The method described above in conjunction with the processing module can alternatively be performed by other modules of the computing system 10 of
The asset module 182 receives supporting asset information 198 and recovers modeled asset information 200 from the environment model database 16 to produce the lesson asset information 202 further based on the updated learning path information 196. The learning asset information 202 represents information of the environment to support the updated learning path and objects within the environment.
Having captured instructor feedback, in a fourth step the experience creation module captures a representation of instructor physical actions to further produce instruction information. For example, the instruction module 184 receives environment sensor information 150 from the environment sensor module 14. The environment sensor module 14 detects physical manipulation of real world objects by the instructor 26-1 via the motion sensor 126 and position sensor 128 to produce the environment sensor information 150. The physical manipulations includes detecting a tool position, detecting a pointer position, detecting where a hand is, detecting a facial expression, detecting where a finger is pointing, detecting where eyes are looking, detecting feet position, etc.
Having received the environment sensor information 150 and the instructor input information 166, the instruction module 184 generates instruction information 204 based on the environment sensor information 150 and the instructor input information 166. The instruction information 204 includes a representation of instructor interactions with objects within the virtual environment and the composite evaluation information.
The method described above in conjunction with the processing module can alternatively be performed by other modules of the computing system 10 of
It is noted that terminologies as may be used herein such as bit stream, stream, signal sequence, etc. (or their equivalents) have been used interchangeably to describe digital information whose content corresponds to any of a number of desired types (e.g., data, video, speech, audio, etc. any of which may generally be referred to as ‘data’).
As may be used herein, the terms “substantially” and “approximately” provides an industry-accepted tolerance for its corresponding term and/or relativity between items. Such an industry-accepted tolerance ranges from less than one percent to fifty percent and corresponds to, but is not limited to, component values, integrated circuit process variations, temperature variations, rise and fall times, and/or thermal noise. Such relativity between items ranges from a difference of a few percent to magnitude differences. As may also be used herein, the term(s) “configured to”, “operably coupled to”, “coupled to”, and/or “coupling” includes direct coupling between items and/or indirect coupling between items via an intervening item (e.g., an item includes, but is not limited to, a component, an element, a circuit, and/or a module) where, for an example of indirect coupling, the intervening item does not modify the information of a signal but may adjust its current level, voltage level, and/or power level. As may further be used herein, inferred coupling (i.e., where one element is coupled to another element by inference) includes direct and indirect coupling between two items in the same manner as “coupled to”. As may even further be used herein, the term “configured to”, “operable to”, “coupled to”, or “operably coupled to” indicates that an item includes one or more of power connections, input(s), output(s), etc., to perform, when activated, one or more its corresponding functions and may further include inferred coupling to one or more other items. As may still further be used herein, the term “associated with”, includes direct and/or indirect coupling of separate items and/or one item being embedded within another item.
As may be used herein, the term “compares favorably”, indicates that a comparison between two or more items, signals, etc., provides a desired relationship. For example, when the desired relationship is that signal 1 has a greater magnitude than signal 2, a favorable comparison may be achieved when the magnitude of signal 1 is greater than that of signal 2 or when the magnitude of signal 2 is less than that of signal 1. As may be used herein, the term “compares unfavorably”, indicates that a comparison between two or more items, signals, etc., fails to provide the desired relationship.
As may be used herein, one or more claims may include, in a specific form of this generic form, the phrase “at least one of a, b, and c” or of this generic form “at least one of a, b, or c”, with more or less elements than “a”, “b”, and “c”. In either phrasing, the phrases are to be interpreted identically. In particular, “at least one of a, b, and c” is equivalent to “at least one of a, b, or c” and shall mean a, b, and/or c. As an example, it means: “a” only, “b” only, “c” only, “a” and “b”, “a” and “c”, “b” and “c”, and/or “a”, “b”, and “c”.
As may also be used herein, the terms “processing module”, “processing circuit”, “processor”, and/or “processing unit” may be a single processing device or a plurality of processing devices. Such a processing device may be a microprocessor, micro-controller, digital signal processor, microcomputer, central processing unit, field programmable gate array, programmable logic device, state machine, logic circuitry, analog circuitry, digital circuitry, and/or any device that manipulates signals (analog and/or digital) based on hard coding of the circuitry and/or operational instructions. The processing module, module, processing circuit, and/or processing unit may be, or further include, memory and/or an integrated memory element, which may be a single memory device, a plurality of memory devices, and/or embedded circuitry of another processing module, module, processing circuit, and/or processing unit. Such a memory device may be a read-only memory, random access memory, volatile memory, non-volatile memory, static memory, dynamic memory, flash memory, cache memory, and/or any device that stores digital information. Note that if the processing module, module, processing circuit, and/or processing unit includes more than one processing device, the processing devices may be centrally located (e.g., directly coupled together via a wired and/or wireless bus structure) or may be distributedly located (e.g., cloud computing via indirect coupling via a local area network and/or a wide area network). Further note that if the processing module, module, processing circuit, and/or processing unit implements one or more of its functions via a state machine, analog circuitry, digital circuitry, and/or logic circuitry, the memory and/or memory element storing the corresponding operational instructions may be embedded within, or external to, the circuitry comprising the state machine, analog circuitry, digital circuitry, and/or logic circuitry. Still further note that, the memory element may store, and the processing module, module, processing circuit, and/or processing unit executes, hard coded and/or operational instructions corresponding to at least some of the steps and/or functions illustrated in one or more of the Figures. Such a memory device or memory element can be included in an article of manufacture.
One or more embodiments have been described above with the aid of method steps illustrating the performance of specified functions and relationships thereof. The boundaries and sequence of these functional building blocks and method steps have been arbitrarily defined herein for convenience of description. Alternate boundaries and sequences can be defined so long as the specified functions and relationships are appropriately performed. Any such alternate boundaries or sequences are thus within the scope and spirit of the claims. Further, the boundaries of these functional building blocks have been arbitrarily defined for convenience of description. Alternate boundaries could be defined as long as the certain significant functions are appropriately performed. Similarly, flow diagram blocks may also have been arbitrarily defined herein to illustrate certain significant functionality.
To the extent used, the flow diagram block boundaries and sequence could have been defined otherwise and still perform the certain significant functionality. Such alternate definitions of both functional building blocks and flow diagram blocks and sequences are thus within the scope and spirit of the claims. One of average skill in the art will also recognize that the functional building blocks, and other illustrative blocks, modules and components herein, can be implemented as illustrated or by discrete components, application specific integrated circuits, processors executing appropriate software and the like or any combination thereof.
In addition, a flow diagram may include a “start” and/or “continue” indication. The “start” and “continue” indications reflect that the steps presented can optionally be incorporated in or otherwise used in conjunction with other routines. In this context, “start” indicates the beginning of the first step presented and may be preceded by other activities not specifically shown. Further, the “continue” indication reflects that the steps presented may be performed multiple times and/or may be succeeded by other activities not specifically shown. Further, while a flow diagram indicates a particular ordering of steps, other orderings are likewise possible provided that the principles of causality are maintained.
The one or more embodiments are used herein to illustrate one or more aspects, one or more features, one or more concepts, and/or one or more examples. A physical embodiment of an apparatus, an article of manufacture, a machine, and/or of a process may include one or more of the aspects, features, concepts, examples, etc. described with reference to one or more of the embodiments discussed herein. Further, from figure to figure, the embodiments may incorporate the same or similarly named functions, steps, modules, etc. that may use the same or different reference numbers and, as such, the functions, steps, modules, etc. may be the same or similar functions, steps, modules, etc. or different ones.
Unless specifically stated to the contra, signals to, from, and/or between elements in a figure of any of the figures presented herein may be analog or digital, continuous time or discrete time, and single-ended or differential. For instance, if a signal path is shown as a single-ended path, it also represents a differential signal path. Similarly, if a signal path is shown as a differential path, it also represents a single-ended signal path. While one or more particular architectures are described herein, other architectures can likewise be implemented that use one or more data buses not expressly shown, direct connectivity between elements, and/or indirect coupling between other elements as recognized by one of average skill in the art.
The term “module” is used in the description of one or more of the embodiments. A module implements one or more functions via a device such as a processor or other processing device or other hardware that may include or operate in association with a memory that stores operational instructions. A module may operate independently and/or in conjunction with software and/or firmware. As also used herein, a module may contain one or more sub-modules, each of which may be one or more modules.
As may further be used herein, a computer readable memory includes one or more memory elements. A memory element may be a separate memory device, multiple memory devices, or a set of memory locations within a memory device. Such a memory device may be a read-only memory, random access memory, volatile memory, non-volatile memory, static memory, dynamic memory, flash memory, cache memory, and/or any device that stores digital information. The memory device may be in a form a solid-state memory, a hard drive memory, cloud memory, thumb drive, server memory, computing device memory, and/or other physical medium for storing digital information.
While particular combinations of various functions and features of the one or more embodiments have been expressly described herein, other combinations of these features and functions are likewise possible. The present disclosure is not limited by the particular examples disclosed herein and expressly incorporates these other combinations.
Claims
1. A method for creating a multi-disciplined learning tool regarding an abstract environment topic, the method comprises:
- creating, by a computing entity, a first-pass of a first learning object for a first piece of information regarding the abstract environment topic to include a first set of knowledge bullet-points regarding the first piece of information;
- creating, by the computing entity, a first-pass of a second learning object for a second piece of information regarding the abstract environment topic to include a second set of knowledge bullet-points regarding the second piece of information;
- obtaining, by the computing entity, a synthetic asset based on the first and second set of knowledge bullet-points, wherein the synthetic asset depicts an abstractive aspect regarding the abstract environment topic pertaining to the first and second pieces of information;
- creating, by the computing entity, a second-pass of the first learning object to further include a first descriptive asset regarding the first piece of information based on the first set of knowledge bullet-points and the synthetic asset;
- creating, by the computing entity, a second-pass of the second learning object to further include a second descriptive asset regarding the second piece of information based on the second set of knowledge bullet-points and the synthetic asset; and
- linking, by the computing entity, the second-passes of the first and second learning objects together to form at least a portion of the multi-disciplined learning tool.
2. The method of claim 1, wherein the obtaining the synthetic asset comprises:
- identifying the abstractive aspect regarding the abstract environment topic based on the first and second pieces of information; and
- generating the synthetic asset to represent the first and second set of knowledge bullet-points in accordance with the abstractive aspect regarding the abstract environment topic.
3. The method of claim 1 further comprises:
- generating, by the computing entity, a representation of the first descriptive asset; and
- updating, by the computing entity, the first learning object with the representation of the first descriptive asset to produce the second-pass of the first learning object.
4. The method of claim 1, wherein the linking the second-passes of the first and second learning objects together to form the at least the portion of the multi-disciplined learning tool comprises:
- generating index information for the second-passes of first and second learning objects to indicate sharing of the synthetic asset; and
- facilitating storage of the index information and the first and second learning objects in a learning assets database to enable subsequent utilization of the multi-disciplined learning tool.
5. The method of claim 1, wherein the creating the second-pass of the first learning object comprises:
- generating a representation of the synthetic asset based on a first knowledge bullet-point of the first set of knowledge bullet-points.
6. The method of claim 5 further comprises one or more of:
- generating the first descriptive asset utilizing the representation of the synthetic asset;
- outputting the representation of the synthetic asset as instructor output information;
- receiving instructor input information in response to the instructor output information; and
- interpreting the instructor input information to produce the first descriptive asset.
7. A computing device comprises:
- an interface;
- a local memory; and
- a processing module operably coupled to the interface and the local memory, wherein the processing module functions to: create a first-pass of a first learning object for a first piece of information regarding an abstract environment topic to include a first set of knowledge bullet-points regarding the first piece of information; create a first-pass of a second learning object for a second piece of information regarding the abstract environment topic to include a second set of knowledge bullet-points regarding the second piece of information; obtain a synthetic asset based on the first and second set of knowledge bullet-points, wherein the synthetic asset depicts an abstractive aspect regarding the abstract environment topic pertaining to the first and second pieces of information; create a second-pass of the first learning object to further include a first descriptive asset regarding the first piece of information based on the first set of knowledge bullet-points and the synthetic asset; create a second-pass of the second learning object to further include a second descriptive asset regarding the second piece of information based on the second set of knowledge bullet-points and the synthetic asset; and link the second-passes of the first and second learning objects together to form at least a portion of a multi-disciplined learning tool.
8. The computing device of claim 7, wherein the processing module functions to obtain the synthetic asset by:
- identifying the abstractive aspect regarding the abstract environment topic based on the first and second pieces of information; and
- generating the synthetic asset to represent the first and second set of knowledge bullet-points in accordance with the abstractive aspect regarding the abstract environment topic.
9. The computing device of claim 7, wherein the processing module further functions to:
- generate a representation of the first descriptive asset; and
- update the first learning object with the representation of the first descriptive asset to produce the second-pass of the first learning object.
10. The computing device of claim 7, wherein the processing module functions to link the second-passes of the first and second learning objects together to form the at least the portion of the multi-disciplined learning tool by:
- generating index information for the second-passes of first and second learning objects to indicate sharing of the synthetic asset; and
- facilitating storage, via the interface, of the index information and the first and second learning objects in a learning assets database to enable subsequent utilization of the multi-disciplined learning tool.
11. The computing device of claim 7, wherein the processing module functions to create the second-pass of the first learning object by:
- generating a representation of the synthetic asset based on a first knowledge bullet-point of the first set of knowledge bullet-points.
12. The computing device of claim 11, wherein the processing module further functions to:
- generate the first descriptive asset utilizing the representation of the synthetic asset;
- output, via the interface, the representation of the synthetic asset as instructor output information;
- receive, via the interface, instructor input information in response to the instructor output information; and
- interpret the instructor input information to produce the first descriptive asset.
13. A computer readable memory comprises:
- a first memory element that stores operational instructions that, when executed by a processing module, causes the processing module to: create a first-pass of a first learning object for a first piece of information regarding an abstract environment topic to include a first set of knowledge bullet-points regarding the first piece of information; and create a first-pass of a second learning object for a second piece of information regarding the abstract environment topic to include a second set of knowledge bullet-points regarding the second piece of information;
- a second memory element that stores operational instructions that, when executed by the processing module, causes the processing module to: obtain a synthetic asset based on the first and second set of knowledge bullet-points, wherein the synthetic asset depicts an abstractive aspect regarding the abstract environment topic pertaining to the first and second pieces of information;
- a third memory element that stores operational instructions that, when executed by the processing module, causes the processing module to: create a second-pass of the first learning object to further include a first descriptive asset regarding the first piece of information based on the first set of knowledge bullet-points and the synthetic asset; and create a second-pass of the second learning object to further include a second descriptive asset regarding the second piece of information based on the second set of knowledge bullet-points and the synthetic asset; and
- a fourth memory element that stores operational instructions that, when executed by the processing module, causes the processing module to: link the second-passes of the first and second learning objects together to form at least a portion of a multi-disciplined learning tool.
14. The computer readable memory of claim 13, wherein the processing module functions to execute the operational instructions stored by the second memory element to cause the processing module to obtain the synthetic asset by:
- identifying the abstractive aspect regarding the abstract environment topic based on the first and second pieces of information; and
- generating the synthetic asset to represent the first and second set of knowledge bullet-points in accordance with the abstractive aspect regarding the abstract environment topic.
15. The computer readable memory of claim 13 further comprises:
- a fifth memory element that stores operational instructions that, when executed by the processing module, causes the processing module to: generate a representation of the first descriptive asset; and update the first learning object with the representation of the first descriptive asset to produce the second-pass of the first learning object.
16. The computer readable memory of claim 13, wherein the processing module functions to execute the operational instructions stored by the fourth memory element to cause the processing module to link the second-passes of the first and second learning objects together to form the at least the portion of the multi-disciplined learning tool by:
- generating index information for the second-passes of first and second learning objects to indicate sharing of the synthetic asset; and
- facilitating storage of the index information and the first and second learning objects in a learning assets database to enable subsequent utilization of the multi-disciplined learning tool.
17. The computer readable memory of claim 13, wherein the processing module functions to execute the operational instructions stored by the third memory element to cause the processing module to create the second-pass of the first learning object by:
- generating a representation of the synthetic asset based on a first knowledge bullet-point of the first set of knowledge bullet-points.
18. The computer readable memory of claim 17, wherein the processing module further functions to execute the operational instructions stored by the third memory element to cause the processing module to:
- generate the first descriptive asset utilizing the representation of the synthetic asset;
- output the representation of the synthetic asset as instructor output information;
- receive instructor input information in response to the instructor output information; and
- interpret the instructor input information to produce the first descriptive asset.
Type: Application
Filed: Nov 12, 2020
Publication Date: Aug 19, 2021
Applicant: Enduvo, Inc. (Peoria, IL)
Inventors: Matthew Bramlet (Peoria, IL), Justin Douglas Drawz (Chicago, IL), Steven J. Garrou (Wilmette, IL), Joseph Thomas Tieu (Tulsa, OK), Gary W. Grube (Barrington Hills, IL)
Application Number: 17/096,754