LAMINATING SYSTEM WITH CODED FILM CARTRIDGE
A dual roll laminating film cartridge includes a body defining a first end supporting first ends of first and second rolls of continuous translucent laminating film. The body further defines a second end supporting second ends of the first and second rolls, wherein facing surfaces of the films extended from the first and second rolls in an advancing direction are coated with a heat-activated adhesive. A bridge extends between the first and second ends of the body at a position between the first and second rolls, the bridge defining an article chute for the reception of articles to be laminated by the films of the first and second rolls. The cartridge further includes a code indicative of one or more characteristics of the film of the first and second rolls, the code comprising a predetermined flag pattern of coding tabs that project outward from the body.
This application is a continuation of and claims the benefit of priority to U.S. patent application Ser. No. 16/172,103, filed Oct. 26, 2018, now U.S. Pat. No. 10,953,646, the entire contents of which are incorporated by reference herein.
BACKGROUNDThe present disclosure relates to laminating systems for laminating paper, cards, photos, or the like within a pair of transparent films by applying pressure and heat. Such machines are provided with adjustable settings for ensuring acceptable lamination results with a variety of different films having different specifications such as thickness, which may require different settings. This not only provides an opportunity for error in setup and poor results, but can be burdensome where the user(s) may need to switch among film types for various jobs.
SUMMARYIn one aspect, the invention provides a dual roll laminating film cartridge that includes a body defining a first end supporting a first end of a first roll of continuous translucent laminating film and a first end of a second roll of continuous translucent laminating film. The body further defines a second end supporting a second end of the first roll and a second end of the second roll, wherein facing surfaces of the films extended from the first and second rolls in an advancing direction are coated with a heat-activated adhesive. A bridge extends between the first and second ends of the body at a position between the first and second rolls, the bridge defining an article chute for the reception of articles to be laminated by the films of the first and second rolls. The cartridge further includes a code indicative of one or more characteristics of the film of the first and second rolls, the code comprising a predetermined flag pattern of coding tabs that project outward from the body.
In another aspect, the invention provides a laminating machine including a cartridge receptacle, a cartridge identification sensor, an article tray, a set of heat rollers, a set of pull rollers, an auto-feeder, a cutter assembly, and a controller. The cartridge receptacle is provided for receiving any one of a plurality of unique dual roll laminating film cartridges. The cartridge identification sensor is exposed to the cartridge receptacle and operable to identify a particular one of the plurality of unique dual roll laminating film cartridges by detecting a predetermined flag pattern of coding tabs at a plurality of predetermined positions with respect to the cartridge receptacle. The article tray is in communication with an inlet slot of the laminating machine. The set of heat rollers is heated by a heater and positioned in a downstream direction from the cartridge receptacle. The set of pull rollers is driven by a main motor and positioned downstream of the set of heat rollers. The auto-feeder is positioned in an upstream direction from the cartridge receptacle, the auto-feeder including a set of feed rollers operable by a feed motor to engage an article from the article tray and advance the article toward the set of heat rollers. The cutter assembly is operable to sever the laminated article from the remaining film of the dual roll laminating film cartridge following passage through the laminating section. The controller is provided in communication with a memory to receive a signal from the cartridge identification sensor and programmed to set operational parameters of one or both of the heater and the main motor in correspondence with a profile saved in the memory and pre-selected for the laminating film type of the particular one of the plurality of dual roll laminating film cartridges, the profile being one of a plurality of profiles saved in the memory, each of the plurality of profiles corresponding to laminating film type.
Other aspects of the disclosure will become apparent by consideration of the detailed description and accompanying drawings.
Before any embodiments of the disclosure are explained in detail, it is to be understood that the disclosure is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The disclosure is capable of other embodiments and of being practiced or of being carried out in various ways.
A housing 134 of the machine 100 (which is rendered phantom in
Turning briefly to
Turning to cartridge sensing, the machine 100 includes a low film sensor 180, which can be in the form of a photo sensor adapted to detect a diameter of a film roll 106 dropping below a threshold value. For example, a light path blocked by the sensor 180 when the film roll 106 is at or above the threshold can be detected by a receiver portion of the sensor 180 when the film roll 106 drops below the threshold. An alternate type of low film sensor 180′ is illustrated in
As mentioned above, the cartridge 104 is coded as a means to convey the film specification to the machine 100 via the sensors 184. The film specification refers to physical attributes of the film on the rolls 106 (e.g., film thicknesses and y-axis film width). The cartridge 104 is part of a family of similar cartridges 104 that vary by film specification. The family of cartridges 104 can vary exclusively by film specification and coding related to the film specification. Each cartridge 104 is coded by selectively-present projecting tabs 224 that interrupt respective light beams of the sensors 184 when present. The cartridge 104 includes a set of coding tabs 224 at each end, including a first set of coding tabs 224 outboard of the first ends of the film rolls 106 and a second set of coding tabs 224 outboard of the second ends of the film rolls 106. Each set of coding tabs 224 can include one, two, or more coding tabs. The sets of coding tabs 224 are positioned at the bottom ends, or cartridge feet, provided by the cartridge end plates 196. More particularly, the tabs 224 are positioned at the bottom ends of vertical rib portions 228 of the end plates 196 that extend downwardly from the ends of the handle 188. Each tab 224 projects outward from the outside of the end plate 196, for example parallel to the y-axis, so that the tabs 224 of the two sets extends away from each other. The tabs 224 can be positioned in a concavity or pocket 230 formed in the cartridge body 194, the concavity being formed for example between two walls 232 spaced in the direction of the x-axis.
All of the tabs 224 can be manufactured as integral portions of the body 194 (e.g., molded unitarily therewith). In fact, each and every cartridge 104 of the family, regardless of film specification, can be originally manufactured with a full set of the tabs 224 present or intact, including multiple tabs 224 at both ends. Each cartridge 104 may be subsequently coded by selective removal of a number of the tabs 224 (e.g., 0, 1, 2) from one or both sets. In some constructions, it may be desirable to use only codes that leave at least one tab 224 intact at each end of the cartridge 104 so that at least one sensor 184 at each end will positively detect the cartridge 104, regardless of the cartridge type, distinguishing the resulting signal from that of no cartridge being present. As illustrated, the coding tabs 224 in a given set are manufactured as frangible tab portions of a single, unitary projecting tab 236 on the cartridge body 194. For example, each coding tab 224 is integrally coupled to the unitary projecting tab 236 by at least one frangible section 240 having a weakened construction promoting separation from the unitary projecting tab 236. In other constructions, the coding tabs 224 may be independently coupled to the cartridge body 194 with frangible sections having a weakened construction. In accordance with the film specification of the film rolls 106 loaded into the cartridge body 194 at the time of manufacture, the cartridge manufacture may further include coding the cartridge 104 by selectively breaking off one or more of the coding tabs 224 at the frangible sections 240.
Once the cartridge 104 is inserted and its code read by the sensors 184, the controller determines from the code how to configure the machine 100 according to the data in the memory. For example, the controller may set the power output to the heat rollers 110, and/or set a heat roller 110 set point temperature, to a distinct value based on a film characteristic (film thickness and/or adhesive type) that is conveyed via the code. In particular, the value set by the controller for heating may be higher for 4 mil film than for 3 mil film, and higher yet for 5 mil film. When the cartridge 104 is replaced by a cartridge 104 having a code for a different film characteristic, the controller will automatically change the heat setting accordingly to match the film characteristic so that user action to input the correct film type is not necessary. This is accomplished through various unique profiles saved in the memory and pre-selected for the unique laminating film types. Additionally, the saved profile corresponding to the cartridge code can be used by the controller in its control of the auto-feeder 114 and the cutter assembly 126. In particular, border control is automatically carried out through controller manipulation of the auto-feeder 114, the pull rollers 122, and the cutter assembly 126, e.g., for various standardized sheet dimensions. The machine 100 can thus be made universal for accommodating different types of standardized sheet dimensions used in different regions (e.g., North American legal or letter vs. ISO A3, A4, etc.). For example, A3 and A4 paper has a standardized dimension of 297 mm compared to North American letter sheets having an 11 inch (279.4 mm) dimension. Thus, cartridges 104 intended for use with A3 and A4 paper have film rolls 106 that are larger in the y-axis direction (i.e., “width” of the film web between cartridge ends, perpendicular to the total rolled length) than cartridges 104 intended for use with 8.5×11 inch paper. Accordingly, the controller will operate the auto-feeder 114 and the pull rollers 122 to set and maintain spacing of sequential sheets according to the film specification in order to provide x-axis spacing that further allows operation of the cutter mechanism 126 to automatically cut the film, without waste, to produce predetermined, even borders from the leading and trailing edges of the article to the edge of the film that are specific to the standardized sheet sizing corresponding to the cartridge 104.
As described above, the coding of the cartridges 104 can be operative to set multiple machine setup parameters (i.e., temperature setting and border setting). In other constructions, the machine 100 may be configured for only one or the other. However, it is further noted that additional setup parameters of the machine 100 can be enacted via the coded cartridges 104. These can include, without limitation, feed rate (i.e., speed of one or both motors 142, 160), and laminating pressure when equipped with a variable pressure mechanism. One or more of these alternate setup parameters may be used in lieu of or in addition to the temperature and border settings, such that any and all possible combinations are possible according to the intended usage of the machine 100 and compatible film types. Thus, by any one of these disclosed embodiments, the machine 100 is operable to set (and subsequently alter or re-set) one or more variable setup parameters for the laminating process by automatically distinguishing among different cartridges 104 containing different film types. As disclosed in the illustrated embodiment, the detection mechanism of the machine 100 includes effectively detecting a number of absent coding tabs 224 versus a number of present coding tabs 224, and furthermore, the discrete positions thereof (e.g., as a flag pattern wherein each intact coding tab 224 represents a flag). Though the machine setup parameters controlled by the identification of the coded cartridges 104 may refer to various auto-feed and/or auto-cut parameters for automatic lamination of article(s) from the feed tray 118, the same system operation may be utilized for configuring the machine 100 for manual lamination, e.g., with individual pouches that can be manually loaded with one or more articles by the user before being fed into the machine 100. This is in contrast to continuous roll lamination and does not require cutting to sever a film web from the roll. In fact, the cartridge 104 coded for enabling the machine 100 to perform manual lamination can be a dummy cartridge 104 having no film whatsoever. Thus, the cartridge 104 is merely a placeholder that is inserted into the machine 100 when lamination using pouches is desired by the user. Once the dummy cartridge 104 is in place, the user need not set any further parameters in some constructions, as the machine 100 is fully configured for proper pouch lamination operation.
A further interactive feature of the laminating system provided by the machine 100 in combination with the cartridge 104 is the detection of the end of film on the rolls 106. This is separate from and may be in addition to a general low film detection or warning that may be triggered by monitoring a diameter of at least one of the rolls 106. As such, an end of roll indicator 248 is embedded in the film or provided by a label thereon. In the illustrated construction of
Various features and advantages of the disclosure are set forth in the following claims.
Claims
1-18. (canceled)
19. A laminating film cartridge comprising:
- a roll of continuous translucent laminating film, wherein a surface of the film is coated with a heat-activated adhesive;
- a body defining a first end supporting a first end of the roll, the body further defining a second end supporting a second end of the roll; and
- a code indicative of one or more characteristics of the film of the roll, the code comprising a predetermined flag pattern established by the selective presence of coding tabs that project outward from the body along a plurality of prescribed positions arranged in a row.
20. The laminating film cartridge of claim 19, wherein the roll is a first roll, the laminating film cartridge further comprising:
- a second roll of continuous translucent laminating film, the second roll having a surface coated with a heat-activated adhesive, and configured to join with the surface of the first roll; and
- a bridge extending between the first and second ends of the body at a position between the first and second rolls, the bridge defining an article chute for the reception of articles to be laminated by the films of the first and second rolls.
21. The laminating film cartridge of claim 20, wherein the bridge is a separate piece from the body.
22. The laminating film cartridge of claim 21, wherein the bridge is made of a material having a flexural strength greater than a material of the body.
23. The laminating film cartridge of claim 21, wherein the bridge is secured to the body by a snap connection.
24. The laminating film cartridge of claim 19, further comprising a handle provided at a top edge of the cartridge.
25. The laminating film cartridge of claim 19, wherein the predetermined flag pattern is coded to identify a material thickness of the film of the roll.
26. The laminating film cartridge of claim 25, wherein the predetermined flag pattern is further coded to identify a film dimension perpendicular to a rolled length of film on the roll.
27. The laminating film cartridge of claim 19, wherein the predetermined flag pattern includes at least one coding tab on the first end of the body and at least one coding tab on the second end of the body.
28. The laminating film cartridge of claim 27, wherein the at least one coding tab on the first end of the body and the at least one coding tab on the second end of the body extend outward in opposite directions, outboard of the respective first and second ends of the roll.
29. The laminating film cartridge of claim 27, wherein the at least one coding tab on the first end of the body is positioned within a first concavity formed by a first pair of spaced walls, and wherein the at least one coding tab on the second end of the body is positioned within a second concavity formed by a second pair of spaced walls.
30. The laminating film cartridge of claim 19, wherein the body defines a first foot at a bottom of the first end and a second foot at a bottom of the second end, wherein the predetermined flag pattern is positioned adjacent the first and second feet.
31. The laminating film cartridge of claim 19, wherein the film of the roll includes an end of roll indicator embedded therein or provided by a label thereon.
32. The laminating film cartridge of claim 31, wherein the end of roll indicator is provided by a reflective sticker.
33. The laminating film cartridge of claim 19, wherein the body defines opposed end plates and a lower cross member spanning between lower ends of the end plates below the roll.
34. The laminating film cartridge of claim 19, further comprising a heat shield to block the roll from heat generated by a laminating machine in which the cartridge is used.
35. The laminating film cartridge of claim 19, wherein the coding tabs project outward from the body in a direction parallel to a longitudinal direction of the roll.
36. A laminating film cartridge comprising:
- a roll of continuous translucent laminating film, wherein a surface of the film is coated with a heat-activated adhesive;
- a body defining a first end supporting a first end of the roll, the body further defining a second end supporting a second end of the roll; and
- a code indicative of one or more characteristics of the film roll, the code comprising a predetermined flag pattern of coding tabs that project outward from the body,
- wherein the predetermined flag pattern of coding tabs includes frangible coding tabs for coding the cartridge by selectively being broken off or left in-tact.
37. The laminating film cartridge of claim 36, wherein the roll is a first roll, the laminating film cartridge further comprising:
- a second roll of continuous translucent laminating film, the second roll having a surface coated with a heat-activated adhesive, and configured to join with the surface of the first roll; and
- a bridge extending between the first and second ends of the body at a position between the first and second rolls, the bridge defining an article chute for the reception of articles to be laminated by the films of the first and second rolls.
38. The laminating film cartridge claim 36, wherein the predetermined flag pattern of coding tabs is coded to identify a material thickness of the film of the roll, a film dimension perpendicular to a rolled length of the film on the roll, or both.
Type: Application
Filed: Mar 19, 2021
Publication Date: Oct 7, 2021
Inventor: Aaron Melamed (Chicago, IL)
Application Number: 17/206,947