MEDICAL RECORD MANAGEMENT BASED ON HUB-AND-SPOKE SYSTEM
Systems and methods may include determining, by the server computing system associated with a first healthcare network, patient identification data associated with a patient being treated by a healthcare provider of the first healthcare network, the patient identification data including at least facial recognition data associated with the patient; requesting, by the server computing associated with the first healthcare network, for health records of the patient from a plurality of healthcare networks, the requesting generated based on the patient identification data; combining, by the server computing system associated with the first healthcare network, the health records of the patient received from the plurality of healthcare networks to generate a combined health record of the patient; and transmitting, by the server computing system associated with the first healthcare network, the combined health record of the patient to a computer system associated with the healthcare provider.
An Application Data Sheet is filed concurrently with this specification as part of the present application. Each application that the present application claims benefit of or priority to as identified in the concurrently filed Application Data Sheet is incorporated by reference herein in its entirety and for all purposes.
COPYRIGHT NOTICEA portion of the disclosure of this patent document contains material which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.
TECHNICAL FIELDThe present disclosure relates generally to data processing and more specifically relates to management of patient records associated with healthcare networks.
BACKGROUNDThe subject matter discussed in the background section should not be assumed to be prior art merely as a result of its mention in the background section. Similarly, a problem mentioned in the background section or associated with the subject matter of the background section should not be assumed to have been previously recognized in the prior art.
Medical histories are important diagnostic tools in the emergency setting. One of the common problems when treating a patient in an emergency situation when the patient has not been treated by a healthcare provider before is the inability for the patient to provide complete information about the patient's medical history. Covid-19 is an example of such an emergency situation, especially when a patient is an elderly or someone from out of the area. Without the healthcare provider having the medical history, a patient may be at risk while being treated by the healthcare provider.
The included drawings are for illustrative purposes and serve only to provide examples of possible structures and process operations for the disclosed techniques. These drawings in no way limit any changes in form and detail that may be made to implementations by one skilled in the art without departing from the spirit and scope of the disclosure.
Some implementations may include systems and methods for providing combined electronic health records (EHRs) for patients using EHRs associated with a plurality of healthcare networks. Each of the EHRs associated with the plurality of healthcare networks may not be designed to have similar frameworks even though they may be designed to serve the same purpose of storing EHRs for the patients. Because of the difference in the frameworks of the EHRs, it may be difficult for the different healthcare networks to share their EHRs efficiently. Some implementations may use one or more of facial recognition data, voice recognition data and fingerprint data as patient identification data to enable the healthcare networks to share the EHRs of the patients.
In a recent report from the University of California San Francisco analyzing how hospitals are sharing or not sharing with other healthcare providers outside of their system, more than 95% of the nation's nearly 6,000 hospitals have an electronic health records system, but less than one-third or 29.7% are sharing, sending and receiving electronic patient records with different outside provider groups. With the current situation with Corvid-19, being able to access the electronic health records of patients with minimal delay regardless of which healthcare networks the patients are associated with may be an important factor in saving their lives.
Examples of systems and methods associated with providing combined EHRs stored by different healthcare networks will be described with reference to some implementations. These examples are being provided solely to add context and aid in the understanding of the present disclosure. It will thus be apparent to one skilled in the art that the techniques described herein may be practiced without some or all of these specific details. In other instances, well known process operations have not been described in detail in order to avoid unnecessarily obscuring the present disclosure. Other applications are possible, such that the following examples should not be taken as definitive or limiting either in scope or setting.
In the following detailed description, references are made to the accompanying drawings, which form a part of the description and in which are shown, by way of illustration, some implementations. Although these implementations are described in sufficient detail to enable one skilled in the art to practice the disclosure, it is understood that these examples are not limiting, such that other implementations may be used and changes may be made without departing from the spirit and scope of the disclosure.
As used herein, the term “multi-tenant database system” refers to those systems in which various elements of hardware and software of the database system may be shared by one or more customers. For example, a given application server may simultaneously process requests for a great number of customers, and a given database table may store rows for a potentially much greater number of customers.
The described subject matter may be implemented in the context of any computer-implemented system, such as a software-based system, a database system, a multi-tenant environment, or the like. Moreover, the described subject matter may be implemented in connection with two or more separate and distinct computer-implemented systems that cooperate and communicate with one another. One or more examples may be implemented in numerous ways, including as a process, an apparatus, a system, a device, a method, a computer readable medium such as a computer readable storage medium containing computer readable instructions or computer program code, or as a computer program product comprising a computer usable medium having a computer readable program code embodied therein.
The disclosed implementations may include a computer-implemented method to provide combined EHRs for patients. The method may include determining, by the server computing system associated with a first healthcare network, patient identification data associated with a patient being treated by a healthcare provider of the first healthcare network; requesting, by the server computing associated with the first healthcare network, for electronic health records (EHRs) of the patient from a plurality of healthcare networks, the requesting generated based on the patient identification data of the patient; combining, by the server computing system associated with the first healthcare network, the EHRs of the patient received from the plurality of healthcare networks to generate a combined EHR for the patient; and transmitting, by the server computing system associated with the first healthcare network, the combined EHR for the patient to a computer system associated with the healthcare provider.
The disclosed implementations may include a system for providing combined EHRs for patients. The system may comprise a database system implemented using a server computing system, the server computing system configurable to cause determining, by the server computing system associated with a first healthcare network, patient identification data associated with a patient being treated by a healthcare provider of the first healthcare network; requesting, by the server computing associated with the first healthcare network, for electronic health records (EHRs) of the patient from a plurality of healthcare networks, the requesting generated based on the patient identification data of the patient; combining, by the server computing system associated with the first healthcare network, the EHRs of the patient received from the plurality of healthcare networks to generate a combined EHR for the patient; and transmitting, by the server computing system associated with the first healthcare network, the combined EHR for the patient to a computer system associated with the healthcare provider.
The disclosed implementations may include a computer program product comprising computer-readable program code to be executed by one or more processors of a server computing system when retrieved from a non-transitory computer-readable medium, the program code including instructions to determine, by the server computing system associated with a first healthcare network, patient identification data associated with a patient being treated by a healthcare provider of the first healthcare network; request, by the server computing associated with the first healthcare network, for electronic health records (EHRs) of the patient from a plurality of healthcare networks, the requesting generated based on the patient identification data of the patient; combine, by the server computing system associated with the first healthcare network, the EHRs of the patient received from the plurality of healthcare networks to generate a combined EHR for the patient; and transmit, by the server computing system associated with the first healthcare network, the combined EHR for the patient to a computer system associated with the healthcare provider.
While one or more implementations and techniques are described with reference to providing combined EHRs for patients implemented in a system having an application server providing a front end for an on-demand database service capable of supporting multiple tenants, the one or more implementations and techniques are not limited to multi-tenant databases nor deployment on application servers. Implementations may be practiced using other database architectures, i.e., ORACLE®, DB2® by IBM and the like without departing from the scope of the claimed subject matter. Further, some implementations may include using Hardware Security Module (HSM), a physical computing device that safeguards and manages digital keys for strong authentication, including, for example, the keys used to encrypt secrets associated with the data elements stored in the data stores. It may be noted that the term “data store” may refer to source control systems, file storage, virtual file systems, non-relational databases (such as NoSQL), etc.
Any of the above implementations may be used alone or together with one another in any combination. The one or more implementations encompassed within this specification may also include examples that are only partially mentioned or alluded to or are not mentioned or alluded to at all in this brief summary or in the abstract. Although various implementations may have been motivated by various deficiencies with the prior art, which may be discussed or alluded to in one or more places in the specification, the implementations do not necessarily address any of these deficiencies. In other words, different implementations may address different deficiencies that may be discussed in the specification. Some implementations may only partially address some deficiencies or just one deficiency that may be discussed in the specification, and some implementations may not address any of these deficiencies.
Some implementations may be described in the general context of computing system executable instructions, such as program modules, being executed by a computer. Generally, program modules include routines, programs, objects, components, data structures, etc. that performs particular tasks or implement particular abstract data types. Those skilled in the art can implement the description and/or figures herein as computer-executable instructions, which can be embodied on any form of computing machine program product discussed below.
Some implementations may also be practiced in distributed computing environments where tasks are performed by remote processing devices that are linked through a communications network. In a distributed computing environment, program modules may be located in both local and remote computer storage media including memory storage devices.
Referring to
The computing system 110 typically includes a variety of computer program product. Computer program product can be any available media that can be accessed by computing system 110 and includes both volatile and nonvolatile media, removable and non-removable media. By way of example, and not limitation, computer program product may store information such as computer readable instructions, data structures, program modules or other data. Computer storage media include, but are not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by computing system 110. Communication media typically embodies computer readable instructions, data structures, or program modules.
The system memory 130 may include computer storage media in the form of volatile and/or nonvolatile memory such as read only memory (ROM) 131 and random access memory (RAM) 132. A basic input/output system (BIOS) 133, containing the basic routines that help to transfer information between elements within computing system 110, such as during start-up, is typically stored in ROM 131. RAM 132 typically contains data and/or program modules that are immediately accessible to and/or presently being operated on by processing unit 120. By way of example, and not limitation,
The computing system 110 may also include other removable/non-removable volatile/nonvolatile computer storage media. By way of example only,
The drives and their associated computer storage media discussed above and illustrated in
A user may enter commands and information into the computing system 110 through input devices such as a keyboard 162, a microphone 163, and a pointing device 161, such as a mouse, trackball or touch pad or touch screen. Other input devices (not shown) may include a joystick, game pad, scanner, or the like. These and other input devices are often connected to the processing unit 120 through a user input interface 160 that is coupled with the system bus 121, but may be connected by other interface and bus structures, such as a parallel port, game port or a universal serial bus (USB). A monitor 191 or other type of display device is also connected to the system bus 121 via an interface, such as a video interface 190. In addition to the monitor, computers may also include other peripheral output devices such as speakers 197 and printer 196, which may be connected through an output peripheral interface 190.
The computing system 110 may operate in a networked environment using logical connections to one or more remote computers, such as a remote computer 180. The remote computer 180 may be a personal computer, a hand-held device, a server, a router, a network PC, a peer device or other common network node, and typically includes many or all of the elements described above relative to the computing system 110. The logical connections depicted in
When used in a LAN networking environment, the computing system 110 may be connected to the LAN 171 through a network interface or adapter 170. When used in a WAN networking environment, the computing system 110 typically includes a modem 172 or other means for establishing communications over the WAN 173, such as the Internet. The modem 172, which may be internal or external, may be connected to the system bus 121 via the user-input interface 160, or other appropriate mechanism. In a networked environment, program modules depicted relative to the computing system 110, or portions thereof, may be stored in a remote memory storage device. By way of example, and not limitation,
It should be noted that some implementations may be carried out on a computing system such as that described with respect to
Another device that may be coupled with the system bus 121 is a power supply such as a battery or a Direct Current (DC) power supply) and Alternating Current (AC) adapter circuit. The DC power supply may be a battery, a fuel cell, or similar DC power source needs to be recharged on a periodic basis. The communication module (or modem) 172 may employ a Wireless Application Protocol (WAP) to establish a wireless communication channel. The communication module 172 may implement a wireless networking standard such as Institute of Electrical and Electronics Engineers (IEEE) 802.11 standard, IEEE std. 802.11-1999, published by IEEE in 1999.
Examples of mobile computing systems may be a laptop computer, a tablet computer, a Netbook, a smart phone, a personal digital assistant, or other similar device with on board processing power and wireless communications ability that is powered by a Direct Current (DC) power source that supplies DC voltage to the mobile computing system and that is solely within the mobile computing system and needs to be recharged on a periodic basis, such as a fuel cell or a battery.
Each of the computing systems 290 and 291 may include an application module such as module 208 or 214. For example, a user may use the computing system 290 and the application module 208 to connect to and communicate with the server computing system 255 and log into application 257 (e.g., a Salesforce.com® application).
For some implementations, one of the computing systems 290 and 291 may be used by an administrator associated with a healthcare system to initiate the process of obtaining a combined EHR for a patient. The administrator may be associated with a healthcare system 305 (shown in
For some implementations, the healthcare system 305 may be configured to cause performing operations related to managing available physical resources and physical capacities such as equipments and beds 335. For some implementations, the healthcare system 305 may be configured to cause performing operations related to managing available human resources or human capacities such as treating specialists 325 and supporting staff 330. For some implementations, the healthcare system 305 may be configured to cause performing operations related to patient outreach which may include communicating with the patients 320 to let them know that the hospitals or medical providers are open for business again and will be rebooking or rescheduling them and guide them through a scheduling process for return appointments. This may be performed by the customer outreach and patient appointment scheduling module 340. For some implementations, the healthcare system 305 may be configured to cause operations related to billing, finance or insurance payment 310 to process billing and to determine margin and revenue mix, collect payments for treatments provided to the plurality of patients 320. This may include operations related to completing insurance forms, filling out forms related to the intake processes, etc.
For some implementations, the healthcare system 305 may be configured to cause accessing an electronic health record (EHR) 315 to access patient health records for the plurality of patients 320. The EHR 315 may also be referred to as electronic medical record (EMR). The EHR 315 may be configured to store patient health records of patients associated with the healthcare system 305. For example, a patient health record may include information about a patient's most current health condition as well as information about past health condition. For some implementations, a patient health record may include information about past surgeries, type of treatments received, immunization dates, allergies, radiology images, laboratory and test results, hospital stay, past appointments, and insurance coverage information when applicable. For some implementations, a patient health record may also include characteristic information about a patient including, for example, age, racial background, education background, gender, employment information and current contact information including mailing address, telephone number and email address.
For some implementations, when there is a shared health event such as, for example, a pandemic, the healthcare system 305 may be configured to cause receiving shared health event update 345 from one or more of local, national and international health organization such as, for example, Center for Disease Control (CDC) and World Health Organization (WHO). For example, the shared health event update 345 may include information about the different reopening phases associated with the shared health event.
It may be noticed that, since the reopening phases may be different for different areas (e.g., New York vs. California), it is possible that the timing of the reopening phases are also different. For example, while the state of New York may start the reopening phase 3 on Aug. 15, 2020, the state of California may start the reopening phase 3 on Jul. 15, 2020. It may also be noticed that the difference in the phases may be based on the difference in population density. For example, an area that has a large population may be associated with the reopening phases that may span over a longer time period as compared to an area of similar size but with a smaller population. The reopening phases may also vary based on availability of vaccine. For example, in an area where the vaccine is very accessible, the reopening phases may be more aggressive than an area where accessing the vaccine is difficult or not easily accessible.
For some implementations, a risk level may be associated with each reopening phase for a geographical area. The risk level may decrease as more safety measures such as, for example, social distancing requirements, mask requirements, etc. are put in place and practiced by members of the geographical area. For example, there may be a higher risk of being exposed to Covid-19 during reopening phase 1 of California than during the reopening phase 3 of California. For some implementations, the risk level associated with the reopening phases of a shared health event (e.g., Covid-19) may be considered in scheduling the plurality of patients for return appointments. For example, less patients may be scheduled for return appointment during reopening phase 1 in California, and more patients may be scheduled for return appointments during reopening phase 3 in California. As another example, patients with serious underlying condition such as heart disease may be less likely to be scheduled for a return appointment during the reopening phase 1 in California, but more likely to be scheduled for a return appointment during the reopening phase 3 in California.
For some implementations, a current reopening phase may be rolled back due to change to the shared health event, and the rescheduling of the patients for the return appointments may reflect the rolled back reopening phase. For example, the change in the shared health event may reflect a situation when the shared health event may become worse when it was expected to be better, and a current reopening phase (e.g., phase 3) may revert back to a previous reopening phase (e.g., phase 2) instead of the next reopening phase (e.g., phase 4). As the spread of Covid-19 continues to increase in the second wave during late 2020, the number of people getting infected continues to increase. This increase may cause more people to be admitted to the hospitals for treatments, and the need to have their medical records available becomes more apparent when the patients are unable to provide such information.
For some implementations, consent may need to be provided by a patient in order for the health record of the patient to be obtained from the different healthcare networks. For some implementations, the consent of the patient may need to be provided to a healthcare network in order to retrieve the health record of the patient from the EHR associated with the healthcare network. It may be possible that none or only a few of the healthcare networks have any health records of the patient.
Being able to access the health records of a patient from different healthcare systems in a timely manner may enable the treating physicians to develop a more complete treatment plan for a patient that they may not have seen before but they have to treat because of an emergency situation such as, for example, the Covid-19 situation. For some implementations, the different healthcare systems may participate in a health record sharing network where the participants may allow other participants to access their health records using the hub and spoke arrangement described with
At block 710, the electronic health records (EHRs) of the patient may be obtained from a plurality of healthcare networks based on the patient identification data. Consent from the patient may be provided to obtain the EHRs from the plurality of healthcare networks. At block 715, the EHRs obtained from the plurality of healthcare networks may be combined to generate a combined EHR for the patient. At block 720, the combined EHRs for the patient may be communicated to a computer system associated with a healthcare provider.
As shown in
Moreover, one or more of the devices in the on-demand service environment 800 may be implemented on the same physical device or on different hardware. Some devices may be implemented using hardware or a combination of hardware and software. Thus, terms such as “data processing apparatus,” “machine,” “server” and “device” as used herein are not limited to a single hardware device, but rather include any hardware and software configured to provide the described functionality.
The cloud 804 is intended to refer to a data network or plurality of data networks, often including the Internet. Client machines located in the cloud 804 may communicate with the on-demand service environment to access services provided by the on-demand service environment. For example, client machines may access the on-demand service environment to retrieve, store, edit, and/or process information.
In some implementations, the edge routers 808 and 812 route packets between the cloud 804 and other components of the on-demand service environment 800. The edge routers 808 and 812 may employ the Border Gateway Protocol (BGP). The BGP is the core routing protocol of the Internet. The edge routers 808 and 812 may maintain a table of IP networks or ‘prefixes’ which designate network reachability among autonomous systems on the Internet.
In one or more implementations, the firewall 816 may protect the inner components of the on-demand service environment 800 from Internet traffic. The firewall 816 may block, permit, or deny access to the inner components of the on-demand service environment 800 based upon a set of rules and other criteria. The firewall 816 may act as one or more of a packet filter, an application gateway, a stateful filter, a proxy server, or any other type of firewall.
In some implementations, the core switches 820 and 824 are high-capacity switches that transfer packets within the on-demand service environment 800. The core switches 820 and 824 may be configured as network bridges that quickly route data between different components within the on-demand service environment. In some implementations, the use of two or more core switches 820 and 824 may provide redundancy and/or reduced latency.
In some implementations, the pods 840 and 844 may perform the core data processing and service functions provided by the on-demand service environment. Each pod may include various types of hardware and/or software computing resources. An example of the pod architecture is discussed in greater detail with reference to
In some implementations, communication between the pods 840 and 844 may be conducted via the pod switches 832 and 836. The pod switches 832 and 836 may facilitate communication between the pods 840 and 844 and client machines located in the cloud 804, for example via core switches 820 and 824. Also, the pod switches 832 and 836 may facilitate communication between the pods 840 and 844 and the database storage 856.
In some implementations, the load balancer 828 may distribute workload between the pods 840 and 844. Balancing the on-demand service requests between the pods may assist in improving the use of resources, increasing throughput, reducing response times, and/or reducing overhead. The load balancer 828 may include multilayer switches to analyze and forward traffic.
In some implementations, access to the database storage 856 may be guarded by a database firewall 848. The database firewall 848 may act as a computer application firewall operating at the database application layer of a protocol stack. The database firewall 848 may protect the database storage 856 from application attacks such as structure query language (SQL) injection, database rootkits, and unauthorized information disclosure.
In some implementations, the database firewall 848 may include a host using one or more forms of reverse proxy services to proxy traffic before passing it to a gateway router. The database firewall 848 may inspect the contents of database traffic and block certain content or database requests. The database firewall 848 may work on the SQL application level atop the TCP/IP stack, managing applications' connection to the database or SQL management interfaces as well as intercepting and enforcing packets traveling to or from a database network or application interface.
In some implementations, communication with the database storage system 856 may be conducted via the database switch 852. The multi-tenant database system 856 may include more than one hardware and/or software components for handling database queries. Accordingly, the database switch 852 may direct database queries transmitted by other components of the on-demand service environment (e.g., the pods 840 and 844) to the correct components within the database storage system 856. In some implementations, the database storage system 856 is an on-demand database system shared by many different organizations. The on-demand database system may employ a multi-tenant approach, a virtualized approach, or any other type of database approach. An on-demand database system is discussed in greater detail with reference to
In some implementations, the application servers 888 may include a hardware and/or software framework dedicated to the execution of procedures (e.g., programs, routines, scripts) for supporting the construction of applications provided by the on-demand service environment 800 via the pod 844. Some such procedures may include operations for providing the services described herein. The content batch servers 864 may request internal to the pod. These requests may be long-running and/or not tied to a particular customer. For example, the content batch servers 864 may handle requests related to log mining, cleanup work, and maintenance tasks.
The content search servers 868 may provide query and indexer functions. For example, the functions provided by the content search servers 868 may allow users to search through content stored in the on-demand service environment. The Fileforce servers 886 may manage requests information stored in the Fileforce storage 898. The Fileforce storage 898 may store information such as documents, images, and basic large objects (BLOBs). By managing requests for information using the Fileforce servers 886, the image footprint on the database may be reduced.
The query servers 882 may be used to retrieve information from one or more file systems. For example, the query system 872 may receive requests for information from the app servers 888 and then transmit information queries to the NFS 896 located outside the pod. The pod 844 may share a database instance 890 configured as a multi-tenant environment in which different organizations share access to the same database. Additionally, services rendered by the pod 844 may require various hardware and/or software resources. In some implementations, the ACS servers 880 may control access to data, hardware resources, or software resources.
In some implementations, the batch servers 884 may process batch jobs, which are used to run tasks at specified times. Thus, the batch servers 884 may transmit instructions to other servers, such as the app servers 888, to trigger the batch jobs. For some implementations, the QFS 892 may be an open source file system available from Sun Microsystems® of Santa Clara, Calif. The QFS may serve as a rapid-access file system for storing and accessing information available within the pod 844. The QFS 892 may support some volume management capabilities, allowing many disks to be grouped together into a file system. File system metadata can be kept on a separate set of disks, which may be useful for streaming applications where long disk seeks cannot be tolerated. Thus, the QFS system may communicate with one or more content search servers 868 and/or indexers 894 to identify, retrieve, move, and/or update data stored in the network file systems 896 and/or other storage systems.
In some implementations, one or more query servers 882 may communicate with the NFS 896 to retrieve and/or update information stored outside of the pod 844. The NFS 896 may allow servers located in the pod 844 to access information to access files over a network in a manner similar to how local storage is accessed. In some implementations, queries from the query servers 882 may be transmitted to the NFS 896 via the load balancer 820, which may distribute resource requests over various resources available in the on-demand service environment. The NFS 896 may also communicate with the QFS 892 to update the information stored on the NFS 896 and/or to provide information to the QFS 892 for use by servers located within the pod 844.
In some implementations, the pod may include one or more database instances 890. The database instance 890 may transmit information to the QFS 892. When information is transmitted to the QFS, it may be available for use by servers within the pod 844 without requiring an additional database call. In some implementations, database information may be transmitted to the indexer 894. Indexer 894 may provide an index of information available in the database 890 and/or QFS 892. The index information may be provided to Fileforce servers 886 and/or the QFS 892.
An on-demand database service, such as system 916, is a database system that is made available to outside users that do not need to necessarily be concerned with building and/or maintaining the database system, but instead may be available for their use when the users need the database system (e.g., on the demand of the users). Some on-demand database services may store information from one or more tenants stored into tables of a common database image to form a multi-tenant database system (MTS). Accordingly, “on-demand database service 916” and “system 916” will be used interchangeably herein. A database image may include one or more database objects. A relational database management system (RDBMS) or the equivalent may execute storage and retrieval of information against the database object(s). Application platform 918 may be a framework that allows the applications of system 916 to run, such as the hardware and/or software, e.g., the operating system. In an implementation, on-demand database service 916 may include an application platform 918 that enables creation, managing and executing one or more applications developed by the provider of the on-demand database service, users accessing the on-demand database service via user systems 912, or third party application developers accessing the on-demand database service via user systems 912.
One arrangement for elements of system 916 is shown in
The users of user systems 912 may differ in their respective capacities, and the capacity of a particular user system 912 might be entirely determined by permissions (permission levels) for the current user. For example, where a call center agent is using a particular user system 912 to interact with system 916, the user system 912 has the capacities allotted to that call center agent. However, while an administrator is using that user system to interact with system 916, that user system has the capacities allotted to that administrator. In systems with a hierarchical role model, users at one permission level may have access to applications, data, and database information accessible by a lower permission level user, but may not have access to certain applications, database information, and data accessible by a user at a higher permission level. Thus, different users may have different capabilities with regard to accessing and modifying application and database information, depending on a user's security or permission level.
Network 914 is any network or combination of networks of devices that communicate with one another. For example, network 914 can be any one or any combination of a LAN (local area network), WAN (wide area network), telephone network, wireless network, point-to-point network, star network, token ring network, hub network, or other appropriate configuration. As the most common type of computer network in current use is a TCP/IP (Transfer Control Protocol and Internet Protocol) network (e.g., the Internet), that network will be used in many of the examples herein. However, it should be understood that the networks used in some implementations are not so limited, although TCP/IP is a frequently implemented protocol.
User systems 912 might communicate with system 916 using TCP/IP and, at a higher network level, use other common Internet protocols to communicate, such as HTTP, FTP, AFS, WAP, etc. In an example where HTTP is used, user system 912 might include an HTTP client commonly referred to as a “browser” for sending and receiving HTTP messages to and from an HTTP server at system 916. Such an HTTP server might be implemented as the sole network interface between system 916 and network 914, but other techniques might be used as well or instead. In some implementations, the interface between system 916 and network 914 includes load sharing functionality, such as round-robin HTTP request distributors to balance loads and distribute incoming HTTP requests evenly over a plurality of servers. At least as for the users that are accessing that server, each of the plurality of servers has access to the MTS' data; however, other alternative configurations may be used instead.
In some implementations, system 916, shown in
Each user system 912 could include a desktop personal computer, workstation, laptop, PDA, cell phone, or any wireless access protocol (WAP) enabled device or any other computing system capable of interfacing directly or indirectly to the Internet or other network connection. User system 912 typically runs an HTTP client, e.g., a browsing program, such as Microsoft's Internet Explorer® browser, Mozilla's Firefox® browser, Opera's browser, or a WAP-enabled browser in the case of a cell phone, PDA or other wireless device, or the like, allowing a user (e.g., subscriber of the multi-tenant database system) of user system 912 to access, process and view information, pages and applications available to it from system 916 over network 914.
Each user system 912 also typically includes one or more user interface devices, such as a keyboard, a mouse, trackball, touch pad, touch screen, pen or the like, for interacting with a graphical user interface (GUI) provided by the browser on a display (e.g., a monitor screen, LCD display, etc.) in conjunction with pages, forms, applications and other information provided by system 916 or other systems or servers. For example, the user interface device can be used to access data and applications hosted by system 916, and to perform searches on stored data, and otherwise allow a user to interact with various GUI pages that may be presented to a user. As discussed above, implementations are suitable for use with the Internet, which refers to a specific global internetwork of networks. However, it should be understood that other networks can be used instead of the Internet, such as an intranet, an extranet, a virtual private network (VPN), a non-TCP/IP based network, any LAN or WAN or the like.
According to some implementations, each user system 912 and all of its components are operator configurable using applications, such as a browser, including computer code run using a central processing unit such as an Intel Pentium® processor or the like. Similarly, system 916 (and additional instances of an MTS, where more than one is present) and all of their components might be operator configurable using application(s) including computer code to run using a central processing unit such as processor system 917, which may include an Intel Pentium® processor or the like, and/or multiple processor units.
A computer program product implementation includes a machine-readable storage medium (media) having instructions stored thereon/in which can be used to program a computer to perform any of the processes of the implementations described herein. Computer code for operating and configuring system 916 to intercommunicate and to process web pages, applications and other data and media content as described herein are preferably downloaded and stored on a hard disk, but the entire program code, or portions thereof, may also be stored in any other volatile or non-volatile memory medium or device, such as a ROM or RAM, or provided on any media capable of storing program code, such as any type of rotating media including floppy disks, optical discs, digital versatile disk (DVD), compact disk (CD), microdrive, and magneto-optical disks, and magnetic or optical cards, nanosystems (including molecular memory ICs), or any type of media or device suitable for storing instructions and/or data. Additionally, the entire program code, or portions thereof, may be transmitted and downloaded from a software source over a transmission medium, e.g., over the Internet, or from another server, or transmitted over any other conventional network connection (e.g., extranet, VPN, LAN, etc.) using any communication medium and protocols (e.g., TCP/IP, HTTP, HTTPS, Ethernet, etc.). It will also be appreciated that computer code for carrying out disclosed operations can be implemented in any programming language that can be executed on a client system and/or server or server system such as, for example, C, C++, HTML, any other markup language, Java™, JavaScript®, ActiveX®, any other scripting language, such as VBScript, and many other programming languages as are well known may be used. (Java™ is a trademark of Sun Microsystems®, Inc.).
According to some implementations, each system 916 is configured to provide web pages, forms, applications, data and media content to user (client) systems 912 to support the access by user systems 912 as tenants of system 916. As such, system 916 provides security mechanisms to keep each tenant's data separate unless the data is shared. If more than one MTS is used, they may be located in close proximity to one another (e.g., in a server farm located in a single building or campus), or they may be distributed at locations remote from one another (e.g., one or more servers located in city A and one or more servers located in city B). As used herein, each MTS could include logically and/or physically connected servers distributed locally or across one or more geographic locations. Additionally, the term “server” is meant to include a computing system, including processing hardware and process space(s), and an associated storage system and database application (e.g., OODBMS or RDBMS) as is well known in the art.
It should also be understood that “server system” and “server” are often used interchangeably herein. Similarly, the database object described herein can be implemented as single databases, a distributed database, a collection of distributed databases, a database with redundant online or offline backups or other redundancies, etc., and might include a distributed database or storage network and associated processing intelligence.
User system 912, network 914, system 916, tenant data storage 922, and system data storage 924 were discussed above in
Application platform 918 includes an application setup mechanism 1038 that supports application developers' creation and management of applications, which may be saved as metadata into tenant data storage 922 by save routines 1036 for execution by subscribers as tenant process spaces 1004 managed by tenant management process 1010 for example. Invocations to such applications may be coded using PL/SOQL 34 that provides a programming language style interface extension to API 1032. A detailed description of some PL/SOQL language implementations is discussed in commonly assigned U.S. Pat. No. 7,730,478, titled METHOD AND SYSTEM FOR ALLOWING ACCESS TO DEVELOPED APPLICATIONS VIA A MULTI-TENANT ON-DEMAND DATABASE SERVICE, by Craig Weissman, filed Sep. 21, 2007, which is hereby incorporated by reference in its entirety and for all purposes. Invocations to applications may be detected by system processes, which manage retrieving application metadata 1016 for the subscriber making the invocation and executing the metadata as an application in a virtual machine.
Each application server 1000 may be communicably coupled to database systems, e.g., having access to system data 925 and tenant data 923, via a different network connection. For example, one application server 10001 might be coupled via the network 914 (e.g., the Internet), another application server 1000N-1 might be coupled via a direct network link, and another application server 1000N might be coupled by yet a different network connection. Transfer Control Protocol and Internet Protocol (TCP/IP) are typical protocols for communicating between application servers 1000 and the database system. However, other transport protocols may be used to optimize the system depending on the network interconnect used.
In certain implementations, each application server 1000 is configured to handle requests for any user associated with any organization that is a tenant. Because it is desirable to be able to add and remove application servers from the server pool at any time for any reason, there is preferably no server affinity for a user and/or organization to a specific application server 1000. In some implementations, therefore, an interface system implementing a load balancing function (e.g., an F5 Big-IP load balancer) is communicably coupled between the application servers 1000 and the user systems 912 to distribute requests to the application servers 1000. In some implementations, the load balancer uses a least connections algorithm to route user requests to the application servers 1000. Other examples of load balancing algorithms, such as round robin and observed response time, also can be used. For example, in certain implementations, three consecutive requests from the same user could hit three different application servers 1000, and three requests from different users could hit the same application server 1000. In this manner, system 916 is multi-tenant, wherein system 916 handles storage of, and access to, different objects, data and applications across disparate users and organizations.
As an example of storage, one tenant might be a company that employs a sales force where each call center agent uses system 916 to manage their sales process. Thus, a user might maintain contact data, leads data, customer follow-up data, performance data, goals and progress data, etc., all applicable to that user's personal sales process (e.g., in tenant data storage 922). In an example of a MTS arrangement, since all of the data and the applications to access, view, modify, report, transmit, calculate, etc., can be maintained and accessed by a user system having nothing more than network access, the user can manage his or her sales efforts and cycles from any of many different user systems. For example, if a call center agent is visiting a customer and the customer has Internet access in their lobby, the call center agent can obtain critical updates as to that customer while waiting for the customer to arrive in the lobby.
While each user's data might be separate from other users' data regardless of the employers of each user, some data might be organization-wide data shared or accessible by a plurality of users or all of the users for a given organization that is a tenant. Thus, there might be some data structures managed by system 916 that are allocated at the tenant level while other data structures might be managed at the user level. Because an MTS might support multiple tenants including possible competitors, the MTS should have security protocols that keep data, applications, and application use separate. Also, because many tenants may opt for access to an MTS rather than maintain their own system, redundancy, up-time, and backup are additional functions that may be implemented in the MTS. In addition to user-specific data and tenant specific data, system 916 might also maintain system level data usable by multiple tenants or other data. Such system level data might include industry reports, news, postings, and the like that are sharable among tenants.
In certain implementations, user systems 912 (which may be client machines/systems) communicate with application servers 1000 to request and update system-level and tenant-level data from system 916 that may require sending one or more queries to tenant data storage 922 and/or system data storage 924. System 916 (e.g., an application server 1000 in system 916) automatically generates one or more SQL statements (e.g., SQL queries) that are designed to access the desired information. System data storage 924 may generate query plans to access the requested data from the database.
Each database can generally be viewed as a collection of objects, such as a set of logical tables, containing data fitted into predefined categories. A “table” is one representation of a data object and may be used herein to simplify the conceptual description of objects and custom objects according to some implementations. It should be understood that “table” and “object” may be used interchangeably herein. Each table generally contains one or more data categories logically arranged as columns or fields in a viewable schema. Each row or record of a table contains an instance of data for each category defined by the fields. For example, a CRM database may include a table that describes a customer with fields for basic contact information such as name, address, phone number, fax number, etc. Another table might describe a purchase order, including fields for information such as customer, product, sale price, date, etc. In some multi-tenant database systems, standard entity tables might be provided for use by all tenants. For CRM database applications, such standard entities might include tables for account, contact, lead, and opportunity data, each containing pre-defined fields. It should be understood that the word “entity” may also be used interchangeably herein with “object” and “table”.
In some multi-tenant database systems, tenants may be allowed to create and store custom objects, or they may be allowed to customize standard entities or objects, for example by creating custom fields for standard objects, including custom index fields. U.S. Pat. No. 7,779,039, titled CUSTOM ENTITIES AND FIELDS IN A MULTI-TENANT DATABASE SYSTEM, by Weissman, et al., and which is hereby incorporated by reference in its entirety and for all purposes, teaches systems and methods for creating custom objects as well as customizing standard objects in a multi-tenant database system. In some implementations, for example, all custom entity data rows are stored in a single multi-tenant physical table, which may contain multiple logical tables per organization. In some implementations, multiple “tables” for a single customer may actually be stored in one large table and/or in the same table as the data of other customers.
These and other aspects of the disclosure may be implemented by various types of hardware, software, firmware, etc. For example, some features of the disclosure may be implemented, at least in part, by machine-program product that include program instructions, state information, etc., for performing various operations described herein. Examples of program instructions include both machine code, such as produced by a compiler, and files containing higher-level code that may be executed by the computer using an interpreter. Examples of machine-program product include, but are not limited to, magnetic media such as hard disks, floppy disks, and magnetic tape; optical media such as CD-ROM disks; magneto-optical media; and hardware devices that are specially configured to store and perform program instructions, such as read-only memory devices (“ROM”) and random access memory (“RAM”).
While one or more implementations and techniques are described with reference to an implementation in which a service cloud console is implemented in a system having an application server providing a front end for an on-demand database service capable of supporting multiple tenants, the one or more implementations and techniques are not limited to multi-tenant databases nor deployment on application servers. Implementations may be practiced using other database architectures, i.e., ORACLE®, DB2® by IBM and the like without departing from the scope of the implementations claimed.
Any of the above implementations may be used alone or together with one another in any combination. Although various implementations may have been motivated by various deficiencies with the prior art, which may be discussed or alluded to in one or more places in the specification, the implementations do not necessarily address any of these deficiencies. In other words, different implementations may address different deficiencies that may be discussed in the specification. Some implementations may only partially address some deficiencies or just one deficiency that may be discussed in the specification, and some implementations may not address any of these deficiencies.
While various implementations have been described herein, it should be understood that they have been presented by way of example only, and not limitation. Thus, the breadth and scope of the present application should not be limited by any of the implementations described herein but should be defined only in accordance with the following and later-submitted claims and their equivalents.
Claims
1. A system for combining electronic health record associated with a plurality of healthcare networks, the system comprising:
- a database system implemented using a server computing system, the server computing system configurable to cause: determining, by the server computing system associated with a first healthcare network, patient identification data associated with a patient being treated by a healthcare provider of the first healthcare network, the patient identification data including at least facial recognition data associated with the patient; requesting, by the server computing associated with the first healthcare network, for health records of the patient from a plurality of healthcare networks, the requesting generated based on the patient identification data; combining, by the server computing system associated with the first healthcare network, the health records of the patient received from the plurality of healthcare networks to generate a combined health record of the patient; and transmitting, by the server computing system associated with the first healthcare network, the combined health record of the patient to a computer system associated with the healthcare provider.
2. The system of claim 1, wherein each of the plurality of healthcare networks is configured to store health records of its patients based on individual patient identification data.
3. The system of claim 2, wherein the requesting for the health records of the patient from the plurality of healthcare networks includes data related to a consent of the patient allowing each of the plurality of healthcare networks to share the health records of the patient with the first healthcare network.
4. The system of claim 3, wherein the requesting for the health records of the patient from the plurality of healthcare networks is performed by the server computing associated with the first healthcare network based on a hub-and-spoke arrangement using an application programming interface (API) associated with each of the plurality of healthcare networks.
5. The system of claim 4, wherein the requesting for the health records of the patient from the plurality of healthcare networks is performed based on the first healthcare network being not associated with a health record of the patient.
6. The system of claim 5, wherein the patient identification data associated with the patient further includes one or more of voice recognition data and fingerprint data.
7. The system of claim 6, wherein the combined health record of the patient is generated by grouping similar categories of the health records received from the plurality of the healthcare networks.
8. A computer program product for combining electronic health records (EHRs) associated with a plurality of healthcare networks comprising computer-readable program code to be executed by one or more processors when retrieved from a non-transitory computer-readable medium, the program code including instructions to:
- determine, by the server computing system associated with a first healthcare network, patient identification data associated with a patient being treated by a healthcare provider of the first healthcare network, the patient identification data including at least facial recognition data associated with the patient;
- request, by the server computing associated with the first healthcare network, for health records of the patient from a plurality of healthcare networks, the requesting generated based on the patient identification data;
- combine, by the server computing system associated with the first healthcare network, the health records of the patient received from the plurality of healthcare networks to generate a combined health record of the patient; and
- transmit, by the server computing system associated with the first healthcare network, the combined health record of the patient to a computer system associated with the healthcare provider.
9. The computer program product of claim 8, wherein each of the plurality of healthcare networks is configured to store health records of its patients based on individual patient identification data.
10. The computer program product of claim 9, wherein the requesting for the health records of the patient from the plurality of healthcare networks includes data related to a consent of the patient allowing each of the plurality of healthcare networks to share the health records of the patient with the first healthcare network.
11. The computer program product of claim 10, wherein the requesting for the health records of the patient from the plurality of healthcare networks is performed by the server computing associated with the first healthcare network based on a hub-and-spoke arrangement using an application programming interface (API) associated with each of the plurality of healthcare networks.
12. The computer program product of claim 11, wherein the requesting for the health records of the patient from the plurality of healthcare networks is performed based on the first healthcare network being not associated with a health record of the patient.
13. The computer program product of claim 12, wherein the patient identification data associated with the patient further includes one or more of voice recognition data and fingerprint data.
14. The computer program product of claim 13, wherein the combined health record for the patient is generated by grouping similar categories of the health records received from the plurality of the healthcare networks.
15. A computer-implemented method for combining electronic health records (EHRs) associated with a plurality of healthcare networks, the method comprising:
- determining, by the server computing system associated with a first healthcare network, patient identification data associated with a patient being treated by a healthcare provider of the first healthcare network, the patient identification data including at least facial recognition data associated with the patient;
- requesting, by the server computing associated with the first healthcare network, for health records of the patient from a plurality of healthcare networks, the requesting generated based on the patient identification data;
- combining, by the server computing system associated with the first healthcare network, the health records of the patient received from the plurality of healthcare networks to generate a combined health record of the patient; and
- transmitting, by the server computing system associated with the first healthcare network, the combined health record of the patient to a computer system associated with the healthcare provider.
16. The method of claim 15, wherein each of the plurality of healthcare networks is configured to store health records of its patients based on individual patient identification data.
17. The method of claim 16, wherein the requesting for the health records of the patient from the plurality of healthcare networks includes data related to a consent of the patient allowing each of the plurality of healthcare networks to share the health records of the patient with the first healthcare network.
18. The method of claim 17, wherein the requesting for the health records of the patient from the plurality of healthcare networks is performed by the server computing associated with the first healthcare network based on a hub-and-spoke arrangement using an application programming interface (API) associated with each of the plurality of healthcare networks.
19. The method of claim 18, wherein the requesting for the health records of the patient from the plurality of healthcare networks is performed based on the first healthcare network being not associated with a health record of the patient.
20. The method of claim 19, wherein the patient identification data associated with the patient further includes one or more of voice recognition data and fingerprint data.
Type: Application
Filed: Nov 30, 2020
Publication Date: Oct 14, 2021
Inventors: Nadeem Ahmed (Mississauga), Sameer K. Bhatia (Omaha, NE)
Application Number: 17/247,114