Pump Device
A centrifugal pump includes a motor portion including a rotor rotatably disposed in a rotor chamber and includes a pump portion including an impeller rotatably disposed in a pump chamber. The impeller is coupled to the rotor. The centrifugal pump also includes a casing that separates the rotor chamber from the pump chamber, and a bearing that rotatably supports a rotor shaft of the rotor and to which grease is supplied is provided. Two communication holes extend through the casing and provide fluid communication between the rotor chamber and the pump chamber.
Latest AISAN KOGYO KABUSHIKI KAISHA Patents:
This application is a 35 U.S.C. § 371 U.S. National Stage Entry application claiming priority to PCT Patent Application No. PCT/JP2019/036338 filed Sep. 17, 2019, which claims priority to Japanese Patent Application No. 2018-178686 filed Sep. 25, 2018, each of which is hereby incorporated herein by reference in its entirety for all purposes.
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENTNot applicable.
BACKGROUNDThe present disclosure relates generally to pump devices, and more particularly, to pump devices for pumping gas.
Japanese Unexamined Patent Publication No. 2012-17712 discloses a conventional pump device for pumping gas. The pump device comprises a motor portion with a rotor rotatably disposed in a rotor chamber. The pump device also includes a pump portion with an impeller rotatably disposed in a pump chamber and coupled to the rotor.
BRIEF SUMMARYAn object to be solved by the present disclosure is to provide a pump device configured to suppress grease loss from the bearing with a simple and inexpensive configuration.
Another object to be solved by the present disclosure is to provide a pump device configured to improve the drainage property of the pump chamber, thereby reducing the likelihood of impeller malfunction due to freezing.
The above-mentioned objects can be achieved by embodiments described herein.
A first embodiment of the present disclosure is a pump device for pumping a gas. The pump device comprises a motor portion including a rotor rotatably disposed in a rotor chamber and a pump portion including an impeller rotatably disposed in a pump chamber and coupled to the rotor. A bearing rotatably supports a rotor shaft of the rotor and is injected with a grease. The bearing is provided in a partition wall separating the rotor chamber from the pump chamber. At least two breathing passages that interconnect the rotor chamber and the pump chamber are formed in the partition wall.
According to the first embodiment, a circulation flow passage flows from the pump chamber to the rotor chamber and back to the pump chamber, and is formed by at least two breathing passages provided in the partition wall separating the rotor chamber from the pump chamber. Since gas flows preferentially through the circulation flow passage that bypasses the bearing, grease loss from the bearing may be suppressed. Also, unlike the pump device according to Japanese Unexamined Patent Publication No. 2012-17712, since a suction device is not required, grease loss from the bearing may be suppressed with a simple and inexpensive configuration.
A second embodiment of the present disclosure is a pump device for pumping a gas. The pump device comprises a motor portion including a rotor rotatably disposed in a rotor chamber, and a pump portion including an impeller rotatably disposed in a pump chamber and coupled to the rotor. A discharge port of the pump chamber is positioned on a lower side of the pump chamber in a vehicle mounted state. The bottom surface of the downstream end of the discharge port is positioned lower than the bottom surface of the upstream end of the discharge port.
According to the second embodiment, a liquid in the pump chamber is configured to be discharged from the discharge port by naturally flowing downwardly. Therefore, the drainage performance of the pump chamber is improved. Additionally, the likelihood of malfunction of the impeller due to freezing may be suppressed.
According embodiments of pump devices of the present disclosure, grease loss from the bearing can be suppressed with a simple and inexpensive configuration.
According to embodiments of pump devices of the present disclosure, the drainage performance of the pump chamber may be improved and a malfunction of the impeller due to freezing can be suppressed.
In Japanese Unexamined Patent Publication No. 2012-17712, a bearing comprising a ball bearing, which rotatably supports the rotor shaft, is provided in a partition wall separating the rotor chamber from the pump chamber. Lubricating grease is supplied into the bearing. A communication hole in the partition wall interconnects the rotor chamber and the pump chamber. A flow of gas from the pump chamber to the inside of the rotor chamber via the communication hole is generated by the operation of a suction device that reduces pressure inside of the rotor chamber. This allows for the suppression of grease loss. Inclusion of the suction device increases costs, however, if the suction device is omitted, a circulation flow passage from the pump chamber to the rotor chamber and back to the pump chamber is formed by a communication gap between the bearing members and the communication hole in the partition wall. The circulation flow passage may enhance the likelihood of grease loss when gas passes through the bearing.
In Japanese Unexamined Patent Publication No. 2012-17712, it is not assumed that the pump device is mounted on a vehicle. Therefore, when the pump device is mounted on the vehicle, liquid, such as water generated due to dew condensation or the like, may remain in the pump chamber. This may cause the impeller to malfunction, for instance due to freezing.
Hereinafter, embodiments of the present disclosure will be described with reference to the drawings.
In a first embodiment, for example, a centrifugal pump used as a purge pump mounted on a vehicle such as an automobile will now be described. The purge pump can increase the flow rate of a purge gas flowing from a canister to an intake passage of an internal combustion engine (an engine).
As shown in
The first casing 18 and the second casing 20 may be fastened together by, for example, a plurality of screws. The second casing 20 and the third casing 22 may be fastened together by, for example, a plurality of screws. An O-ring (not shown) for sealing between the first casing 18 and the second casing 20 may be interposed therebetween. An O-ring (not shown) for sealing between the second casing 20 and the third casing 22 may be interposed therebetween. The first to third casings 18, 20, 22 may be made of, for example, resin.
The motor portion 14 can be a brushless motor including a stator 30 and a rotor 32. A motor casing defining a rotor chamber 34 has a hollow cylindrical shape and y is formed by the second casing 20 and the third casing 22. The third casing 22 includes a cylindrical wall part 36, a cylindrical extension part 37, and a rear end wall part 38. The cylindrical wall part 36 has a cylindrical shape and extends in the front-rear direction. The cylindrical extension part 37 extends backward from an inner periphery of the rear end of the cylindrical wall part 36. The rear wall part 38 closes the rear end opening of the cylindrical extension part 37. A stepped recessed 39 is formed on the inner periphery of the front-end of the cylindrical wall part 36. A retainer 40, which has a cylindrical shape and is made of metal, is positioned inside the extension cylinder part 37.
The stator 30 is embedded in the cylindrical wall part 36 by insert molding. The stator 30 may be completely covered with the resin the forms the cylinder wall part 36. The stator 30 may be provided with, for example, a stator core and a stator coil, and may be formed in an annular shape.
The second casing 20 generally has an annular plate shape. The second casing 20 includes a boss part 42 having a hollow cylindrical shape and being concentrically formed in the center part of the rear surface of the second casing 20. As shown in
An annular projection 46 extends circumferentially about the boss part 42 at a predetermined radial distance therefrom and is concentrically disposed on the rear surface of the second casing 20. The annular projection 46 may have a square cross section. The annular projection 46 is into the front end opening of the stepped recessed part 39 of the third casing 22.
As shown in
As shown in
As shown in
A control circuit (not shown) for controlling power supply to the stator 30 may be provided on the rear side of the third casing 22. An external connector connected to an external power source may be connected to a connector part (not shown) formed in the third casing 22. The motor portion 14 may be driven by electric power supplied from an external power source.
As shown in
The first casing 18 has a short cylindrical shape that opens the rear surface. An annular flow passage groove 69 is disposed along the outer periphery of the pump chamber 64 and is concentrically formed at the rear surface of the front wall of the first casing 18 (the surface on the pump chamber 64 side). The flow passage groove 69 has a substantially semicircular cross-sectional shape.
As shown in
As shown in
As shown in
As shown in
A front end of the rotor shaft 48 is fit into the cylindrical shaft part 79 of the impeller 62. Accordingly, the impeller 62 rotates integrally with the rotor 32. A slight gap may be set between the opposed surfaces of the substrate part 77 of the impeller 62 and the second casing 20.
The motor portion 14 may be driven by electric power supplied from an external power source. Then, the impeller 62 rotates together with the rotor 32, so that the purge gas can be taken in through the intake opening 67 and sent to the pump chamber 64. The purge gas may be pressurized by the rotation of the impeller 62, and then discharged from the discharge opening 75. In this way, purge gas may be pumped by the centrifugal pump 10.
As shown in
As shown in
According to the first embodiment, the circulation flow passage, which flows from the pump chamber 64 to the rotor chamber 34 and back to the pump chamber 64, is formed by both communication holes 81 in the second casing 20 partitioning the rotor chamber 34 and the pump chamber 64. That is, one of the communication holes 81 may serve as a flow passage from the pump chamber 64 to the rotor chamber 34, and the other communication hole 81 may serve as a flow passage from the rotor chamber 34 to the pump chamber 64. Therefore, since the gas flows preferentially through the circulation flow passage that bypasses the bearing 52, grease loss from the bearing 52 may be suppressed. Also, unlike the pump device according to Japanese Unexamined Patent Publication No. 2012-17712, since the suction device is not required, grease loss from the bearing 52 may be suppressed with a relatively simple and inexpensive configuration.
The front-end openings 81a of both communication holes 81 are arranged at positions adjacent to each other. Therefore, the pressure difference between both communication holes 81 may be reduced, thereby offering the potential to further suppress the grease loss from the bearing 52.
The discharge opening 75 of the pump chamber 64 is disposed on the lower side (in the vertical direction) of the pump chamber 64 in the vehicle mounted state. The bottom surface of the downstream end 75b of the discharge opening 75 is disposed at a position lower than the bottom surface of the upstream end 75a of the discharge opening 75. Therefore, the liquid in the pump chamber 64 may be discharged from the discharge opening 75 by naturally flowing downward. As a result, the liquid discharge property of the pump chamber 64 may be improved, thereby suppressing the malfunction of the impeller 62 due to freezing.
The front end openings 81a of both communication holes 81 are disposed at a position higher than the rotor shaft 48. Therefore, liquid such as water generated by dew condensation or the like in the pump chamber 64 may be prevented from entering the rotor chamber 34 via the communication hole 81. As a result, deterioration of the durability of the motor portion 14 may be improved.
Since a second embodiment is a modification of the first embodiment, the modified parts will be described, and the substantially duplicate description will be omitted.
Since a third embodiment is a modification of the first embodiment, the modified parts will be described, and the substantially duplicate description will be omitted.
According to the third embodiment, the breathing passage 85 communicates with a portion of the pump chamber 64 on the lowest pressure side of the pump chamber 64. Further, the front end opening 81a of the communication hole 81 is also opened to the shaft hole 43 of the second casing 20 at the front side of the bearing 52.
Since a fourth embodiment is a modification of the third embodiment, the modified parts will be described, and the substantially duplicate description will be omitted.
When the opening areas of the communication hole 81 and the communication groove 87 are set to be the same or substantially the same, the system is effective at suppressing grease loss from the bearing 52. In another embodiment, the communication hole 81 may have the same configuration as the breathing passage 89.
Since a fifth embodiment is a modification of the first embodiment, the modified parts will be described, and the substantially duplicate description will be omitted.
Since a sixth embodiment is a modification of the first embodiment, the modified parts will be described, and the substantially duplicate description will be omitted.
According to the sixth embodiment, the surface tension of the liquid accumulated on the rear surface side of the impeller 62 at the lower end of the pump chamber 64 may be reduced due to the guide recess 92. Accordingly, the liquid may quickly and naturally flow down toward the discharge opening 75. As a result, the drainage performance of the pump chamber 64 may be further improved.
Since a seventh embodiment is a modification of the first embodiment, the modified parts will be described, and the substantially duplicate description will be omitted.
According to the seventh embodiment, the surface tension of the liquid accumulated at the rear surface of the impeller 62 at the lower end of the pump chamber 64 may be reduced due to the guide recess 95. Accordingly, the liquid may quickly and naturally flow down toward the discharge opening 75. As a result, the drainage performance of the pump chamber 64 may be further improved.
Since an eighth embodiment is a modification of the first embodiment, the modified parts will be described, and the substantially duplicate description will be omitted.
According to the eighth embodiment, the surface tension of the liquid accumulated at the rear surface of the impeller 62 at the lower end of the pump chamber 64 may be reduced due to the guide groove 100. Accordingly, the liquid may quickly and naturally flow down. Further, the liquid flowing down from the rear surface of the impeller 62 at the lower end of the pump chamber may be discharged to the discharge opening 75 or may accumulate in the liquid reservoir 102.
Since a ninth embodiment is a modification of the first embodiment, the modified parts will be described, and the substantially duplicate description will be omitted.
According to the ninth embodiment, the guide groove 100 is provided with the horizontal member 104 and the partition 106. Accordingly, a pressure drop from the pump chamber 64 to the liquid reservoir 102 may be suppressed. In other embodiments, the partitions 106 may be omitted.
The present disclosure is not limited to the above-described embodiments, and various modifications are possible within the scope of the present disclosure. For example, the pump device of the present disclosure may be applied to a pump device used for pumping a gas other than a purge gas such as air. The present disclosure may also be applied to a pump device other than a centrifugal pump. Further, the brushless motor of the motor portion 14 may be replaced with a bushed motor. The number of breathing passages may be increased to three or more. The shape and/or arrangement of the breathing passages may be modified as appropriate.
In the present disclosure, various aspects and embodiments are disclosed. A first aspect is a pump device for pumping a gas. The pump device comprises a motor portion in which a rotor is provided in a rotor chamber in a rotatable manner, and a pump portion in which an impeller coupled to the rotor is provided in a pump chamber in a rotatable manner. A bearing, which rotatably supports a rotor shaft of the rotor and is injected with a grease, is provided in a partition wall separating the rotor chamber from the pump chamber. At least two breathing passages that interconnect the rotor chamber and the pump chamber are formed in the partition wall.
According to the first aspect, a circulation flow passage, which flows from the pump chamber to the rotor chamber and back to the pump chamber, is formed by the at least two breathing passages provided in the partition wall separating the rotor chamber from the pump chamber. Therefore, since a gas preferentially flows through the circulation flow passage that bypasses the bearing, grease loss from the bearing may be suppressed. Also, unlike the pump device according to Patent Document 1, since a suction device is not required, grease loss from the bearing may be suppressed with a simple and inexpensive configuration.
A second aspect is a pump device according to the first aspect, wherein openings at the pump chamber side of the at least two breathing passages may be arranged adjacent to each other.
According to the second aspect, a pressure difference between the at least two breathing passages may be reduced, thereby further suppressing the loss of grease from the bearing.
A third aspect is a pump device according to the first or second aspect, wherein the opening on the pump chamber side of at least one of the breathing passages may be open to a shaft hole. The rotor shaft penetrates the shaft hole and the shaft hole is positioned at the pump chamber side of the bearing.
According to the third aspect, at least one breathing passage may communicate with a position on a lowest pressure side of the pump chamber.
A fourth aspect is a pump device according to any one of the first to third aspects, wherein a discharge opening of the pump chamber may be arranged on a lower side of the pump chamber in a vertical direction of the pump chamber, the vertical direction corresponding to the pump device in a vehicle mounted state. The bottom surface of the downstream end of the discharge opening may be arranged at a position lower than the bottom surface of the upstream end of the discharge opening.
According to the fourth aspect, liquid in the pump chamber may be discharged from the discharge opening by naturally flowing down. As a result, the drainage property of the pump chamber may be improved, and the malfunction of the impeller due to freezing may be suppressed.
A fifth aspect is a pump device according to the fourth aspect, wherein the opening on the pump chamber side of the at least two breathing passages may be located at a position higher than the rotor shaft.
According to the fifth aspect, liquid in the pump chamber may be prevented from entering the rotor chamber via the breathing passages. Therefore, a decrease in durability of the motor portion may be improved.
A sixth aspect is a pump device for pumping gas, which may include a motor portion in which a rotor is provided in a rotor chamber in a rotatable manner, and a pump portion in which an impeller coupled to the rotor is provided in a pump chamber in a rotatable manner. A discharge port of the pump chamber is arranged on a lower side of the pump chamber in a vertical direction of the pump chamber, the vertical direction corresponding to the pump device being in a vehicle mounted state. The bottom surface of a downstream end of the discharge port is arranged at a position lower than the bottom surface of an upstream end of the discharge port.
According to the sixth aspect, a liquid in the pump chamber may be capable of being discharged from the discharge port by naturally flowing down. Therefore, drainage performance of the pump chamber can be improved, and malfunction of the impeller due to freezing may be suppressed.
A seventh aspect is a pump device according to the sixth aspect, wherein a guide recess, which guides a liquid at the rear surface of the impeller toward the discharge opening while enlarging a passage area at the rear surface of the impeller, may be formed at the lower end of the pump chamber.
According to the seventh aspect, the surface tension of the liquid accumulated at the rear surface side of the impeller at the lower end of the pump chamber may be reduced due to the guide recess. Accordingly, the liquid may quickly and naturally flow down toward the discharge port. As a result, the drainage performance of the pump chamber may be further improved.
An eighth aspect is a pump device according to the sixth aspect, wherein a liquid reservoir, which has a bottom lower than a bottom surface on the intake opening side of the discharge opening, may be formed at the lower end of the pump chamber.
According to the eighth aspect, the liquid flowing down at the rear surface side of the impeller at the lower end of the pump chamber may be discharged toward the discharge opening and/or may accumulate in the liquid reservoir.
While the embodiments of the disclosure have been described with reference to specific configurations, it will be apparent to those skilled in the art that many alternatives, modifications, and variations may be made without departing from the scope of the present disclosure. Accordingly, embodiments of the present disclosure are intended to embrace all such alternatives, modifications, and variations that may fall within the spirit and scope of the appended claims. Embodiments of the present disclosure should not be limited to the representative configurations, but may be modified, for example, as described below.
The various examples described above in detail with reference to the attached drawings are intended to be representative of the present disclosure, and are thus non-limiting embodiments. The detailed description is intended to teach a person of skill in the art to make, use, and/or practice various aspects of the present teachings, and thus does not limit the scope of the disclosure in any manner. Furthermore, each of the additional features and teachings disclosed above may be applied and/or used separately or with other features and teachings in any combination thereof, to provide an improved pump device, and/or methods of making and using the same.
Claims
1. A pump device for pumping a gas, comprising:
- a motor portion including a rotor chamber and a rotor rotatably disposed in the rotor chamber;
- a pump portion including a pump chamber and an impeller rotatably disposed in the pump chamber, wherein the impeller is coupled to the rotor and is configured to rotate with the rotor; and
- a bearing provided in a partition wall separating the rotor chamber from the pump chamber, wherein the bearing rotatably supports a rotor shaft of the rotor and is configured to be injected with grease;
- wherein a first breathing passage and a second breathing passage extend through the partition wall and provide fluid communication between.
2. The pump device of claim 1, wherein an opening on a pump chamber side of the first breathing passage is positioned adjacent to an opening of the second breathing passage on the pump chamber side.
3. The pump device of claim 1, wherein:
- an opening on a pump chamber side of the first breathing passage opens to a shaft hole through which the rotor shaft extends, and
- the opening of the first breathing passage on the pump chamber side opens on a pump chamber side of the bearing.
4. The pump device of claim 1, wherein:
- a discharge opening of the pump chamber is positioned on a lower side of the pump chamber in the vertical direction of the pump chamber when the pump device is in a vehicle mounted state, and
- a bottom surface of a downstream end of the discharge opening is positioned lower than a bottom surface of an upstream end of the discharge opening.
5. The pump device of claim 4, wherein an opening of the first breathing passage on a pump chamber side and an opening of the second breathing passage on the pump chamber side are positioned above the rotor shaft.
6. A pump device for pumping a gas, comprising:
- a motor portion including a rotor chamber and a rotor ratably disposed in rotor clamber; and
- a pump portion including a pump chamber and an impeller rotatably disposed in the pump chamber, wherein the impeller is coupled to the rotor and is configured to rotate with the rotor;
- wherein: a discharge opening of the pump chamber is positioned a lower side of the pump chamber in a vertical direction of the pump chamber in a vehicle mounted state, and a bottom surface of a downstream end of the discharge opening is positioned lower than a bottom surface of an upstream end of the discharge opening.
7. The pump device of claim 6, wherein a guide recess is formed at the lower end of the pump chamber, wherein the guide recess is configured to guide a liquid on the rear surface of the impeller toward the discharge opening while enlarging a passage area on the rear surface of the impeller.
8. The pump device of claim 6, wherein a liquid reservoir is formed at the lower end of the pump chamber, wherein the liquid reservoir has a bottom lower than an intake opening side of the bottom surface of the discharge opening.
9. The pump device of claim 1, wherein:
- the first breathing passage and the second breathing passage each have a first opening, and
- a distance between the first opening of the first breathing passage and a central axis of the rotor shaft is greater than a distance between the first opening of the second breathing passage and the central axis of the rotor shaft.
10. The pump device of claim 1, wherein the first breathing passage is configured to be in fluid communication with the second breathing passage when the rotator shaft is rotating.
11. The pump device of claim 1, wherein the first breathing passage and the second breathing passage are configured to circulate a circulation flow from the pump chamber to the rotor chamber via the first breathing passage, and then from the rotor chamber to the pump chamber via the second breathing passage.
Type: Application
Filed: Sep 17, 2019
Publication Date: Oct 21, 2021
Patent Grant number: 11655827
Applicant: AISAN KOGYO KABUSHIKI KAISHA (Obu-shi, Aichi-ken)
Inventors: Nobuhiro KATO (Tokai-shi, Aichi-ken), Takashige INAGAKI (Obu-shi, Aichi-ken), Keiji NAKAYA (Nisshin-shi, Aichi-ken), Hidemasa TORII (Anjo-shi, Aichi-ken)
Application Number: 17/273,254