CUTBACK TRAINING DEVICE
A training device may include a plurality of elongate shafts and at least one hinge structure interconnecting a pair of elongate shafts of the plurality of elongate shafts. The at least one hinge structure may be configured to allow a user to pivot the pair of elongate shafts relative to each other to select a desired angle between the pair of elongate shafts. In various embodiments, the at least one hinge structure comprises a hinge mechanism configured to be adjustable in discrete angle increments. Generally, the training device may be utilized in multiple configurations and may be adjusted and deployed in multiple different patterns to facilitate variable training exercises
This application claims priority to and the benefit of U.S. Provisional Patent Application No. 63/017,838 entitled “CUTBACK TRAINING DEVICE” filed on Apr. 30, 2020, which is incorporated herein by reference.
FIELDThis invention relates to fitness devices and more particularly relates to a fitness device configured to facilitate athletic training.
BACKGROUNDVarious fitness regimes or athletic training programs involve a person performing drills around a pattern of cones or other ground markers. To improve agility, footwork, speed, and/or explosiveness, athletes may run patterns around or through a series of ground markers. However, conventional ground markers, such as cones, flags, painted lines, etc., have various shortcomings. For example, conventional ground markers may not allow for a trainer and/or an athlete to consistently, repeatedly, and/or accurately reproduce a desired pattern for drills. Further, if multiple instances of a specific pattern are to be employed, for example by a coaching staff training many individuals, it may be difficult to ensure the patterns are consistent for each instance. In other words, conventional ground markers have various inadequacies or deficiencies, especially pertaining to ease-of-use, repeatability, consistency, etc.
SUMMARYThe subject matter of the present disclosure has been developed in response to the present state of the art, and in particular, in response to the problems and needs in the art that have not yet been fully solved by currently available ground markers or similar training devices. Accordingly, the present disclosure has been developed to provide a fitness device that overcomes many or all of the above-discussed shortcomings in the art, in accordance with various embodiments.
Disclosed herein, according to various embodiments, is a training device that includes a plurality of elongate shafts and at least one hinge structure interconnecting a pair of elongate shafts of the plurality of elongate shafts. In various embodiments, the at least one hinge structure is configured to allow a user to pivot the pair of elongate shafts relative to each other to select a desired angle between the pair of elongate shafts.
In various embodiments, the at least one hinge structure comprises a hinge mechanism configured to be adjustable in discrete angle increments. In various embodiments, the at least one hinge structure comprise three slots for three different elongate shafts. In various embodiments, the three slots comprise a first slot, a second slot, and a third slot, wherein the first slot and the second slot are pivotably coupled together via a hinge mechanism. In various embodiments, the third slot comprises an opening channel along a lateral side, wherein the third slot is configured to allow reversible lateral insertion of an end of an elongate shaft of the plurality of elongate shafts via the opening channel. The elongate shaft may be detachably retained within the third slot via an interference fit.
Also disclosed herein, according to various embodiments, is a training device comprising three elongate shafts and two hinge structures. That is, the three elongate shafts may be a first elongate shaft, a second elongate shaft, and a third elongate shaft. The first elongate shaft may include a first longitudinal end and a second longitudinal end opposite the first longitudinal end, the second elongate shaft may include a third longitudinal end and a fourth longitudinal end opposite the third longitudinal end, and the third elongate shaft may include a fifth longitudinal end and a sixth longitudinal end opposite the fifth longitudinal end. The two hinge structures may be a first hinge structure and a second hinge structure, and each of the hinge structures may comprise a body defining a first slot, a second slot, and a third slot. In various embodiments, the first longitudinal end of the first elongate shaft is detachably coupleable with the third slot of the second hinge structure, the second longitudinal end of the first elongate shaft is coupled within the first slot of the first hinge structure, the third longitudinal end of the second elongate shaft is coupled within the second slot of the first hinge structure, the fourth longitudinal end of the second elongate shaft is coupled within the second slot of the second hinge structure, the fifth longitudinal end of the third elongate shaft is coupled within the first slot of the second hinge structure, and the sixth longitudinal end of the third elongate shaft is detachably coupleable with the third slot of the first hinge structure.
In various embodiments, the first hinge structure and the second hinge structure are configured to allow a user to pivot the elongate shafts relative to each other to select a desired angle between pairs of elongate shafts. In various embodiments, the first hinge structure and the second hinge structure each comprises a first hinge mechanism between the first slot and the second slot.
The forgoing features and elements may be combined in various combinations without exclusivity, unless expressly indicated herein otherwise. These features and elements as well as the operation of the disclosed embodiments will become more apparent in light of the following description and accompanying drawings.
In order that the advantages of the disclosure will be readily understood, a more particular description of the disclosure briefly described above will be rendered by reference to specific embodiments that are illustrated in the appended drawings. Thus, although the subject matter of the present disclosure is particularly pointed out and distinctly claimed in the concluding portion of the specification, a more complete understanding of the present disclosure, may best be obtained by referring to the detailed description and claims when considered in connection with the drawing figures. Understanding that these drawings depict only typical embodiments of the disclosure and are not therefore to be considered to be limiting of its scope, the subject matter of the present application will be described and explained with additional specificity and detail through the use of the accompanying drawings, in which:
The detailed description of exemplary embodiments herein makes reference to the accompanying drawings, which show exemplary embodiments by way of illustration. While these exemplary embodiments are described in sufficient detail to enable those skilled in the art to practice the disclosure, it should be understood that other embodiments may be realized and that logical changes and adaptations in design and construction may be made in accordance with this disclosure and the teachings herein without departing from the spirit and scope of the disclosure. Thus, the detailed description herein is presented for purposes of illustration only and not of limitation.
As used herein, the terms “including,” “comprising,” “having,” and variations thereof mean “including but not limited to” unless expressly specified otherwise. Accordingly, the terms “including,” “comprising,” “having,” and variations thereof are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. An enumerated listing of items does not imply that any or all of the items are mutually exclusive and/or mutually inclusive, unless expressly specified otherwise.
Further, in the detailed description herein, references to “one embodiment,” “an embodiment,” “various embodiments,” etc., indicate that the embodiment described may include a particular feature, structure, or characteristic, but every embodiment may not necessarily include the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Thus, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described. Similarly, the use of the term “implementation” means an implementation having a particular feature, structure, or characteristic described in connection with one or more embodiments of the present disclosure. Absent an express correlation to indicate otherwise, an implementation may be associated with one or more embodiments. After reading the description, it will be apparent to one skilled in the relevant art(s) how to implement the disclosure in alternative embodiments.
In various embodiments, and with reference to
In various embodiments, the objective of the training device is to help athletes and other users agility, footwork, speed, and/or explosiveness, and to improve overall athletic performance and improve athletic mobility. Indeed, the training device may provide many opportunities and techniques for athletes and coaches to enhance and train. The training device may be referred to herein as a “stick system” or a “stick device.” Generally, the training device may be utilized in multiple configurations and may be adjusted and deployed in multiple different patterns to facilitate variable training exercises, as described in greater detail below.
Generally, the training device, according to various embodiments and with reference to
Each hinge structure 120 may be disposed between adjacent elongate shafts to facilitate relative rotation of the adjacent elongate shafts. In various embodiments, the pivoting/rotation is limited to a single plane, thus allowing the elongate shafts to remain substantially flat on the ground without extending upward off the surface, thus preventing injury to users.
In various embodiments, and with reference to
In various embodiments, the third slot 123 is configured to detachably retain the end of the third elongate shaft 110C. That is, the third slot 123 may only partially extend around the end of the third elongate shaft 110C (i.e., the third slot does not completely circumferentially surround the end of the third elongate shaft 110C), thus allowing the end of the third elongate shaft 110C to rotate away from the hinge structure 120. In various embodiments, the third elongate shaft 110C may be configured to be detachably retained within the third slot 123 via an interference/friction fit. In various embodiments, at least the portion of the hinge structure 120 that defines the third slot 123 may be made from a resiliently flexible material that is configured to elastically deform to allow lateral/rotating insertion of the third elongate shaft through an opening channel.
In various embodiments, the training device 100 includes two hinge structures 120A, 120B and three elongate shafts 110A, 110B, 110C (e.g., see
In various embodiments, multiple instances of the training device 100 may be utilized to create a larger pattern. In various embodiments, and with specific reference to
With the use of a low profile/flat based design (configured to pivot/hinge within a single plane), the training device may be deployed on almost ground surface (grass, dirt, concrete, etc.) without the concern of it rolling when fully extended/deployed. The training device may be designed able to fold completely back on itself (e.g., the collapsed configuration shown in
Benefits, other advantages, and solutions to problems have been described herein with regard to specific embodiments. However, the benefits, advantages, solutions to problems, and any elements that may cause any benefit, advantage, or solution to occur or become more pronounced are not to be construed as critical, required, or essential features or elements of the disclosure.
Reference throughout this specification to features, advantages, or similar language does not imply that all of the features and advantages that may be realized with the present disclosure should be or are in any single embodiment of the invention. Rather, language referring to the features and advantages is understood to mean that a specific feature, advantage, or characteristic described in connection with an embodiment is included in at least one embodiment of the subject matter disclosed herein. Thus, discussion of the features and advantages, and similar language, throughout this specification may, but do not necessarily, refer to the same embodiment.
Furthermore, the described features, advantages, and characteristics of the disclosure may be combined in any suitable manner in one or more embodiments. One skilled in the relevant art will recognize that the subject matter of the present application may be practiced without one or more of the specific features or advantages of a particular embodiment. In other instances, additional features and advantages may be recognized in certain embodiments that may not be present in all embodiments of the disclosure. Further, in some instances, well-known structures, materials, or operations are not shown or described in detail to avoid obscuring aspects of the subject matter of the present disclosure. No claim element is intended to invoke 35 U.S.C. 112(f) unless the element is expressly recited using the phrase “means for.”
The scope of the disclosure is to be limited by nothing other than the appended claims, in which reference to an element in the singular is not intended to mean “one and only one” unless explicitly so stated, but rather “one or more.” It is to be understood that unless specifically stated otherwise, references to “a,” “an,” and/or “the” may include one or more than one and that reference to an item in the singular may also include the item in the plural. Further, the term “plurality” can be defined as “at least two.” As used herein, the phrase “at least one of”, when used with a list of items, means different combinations of one or more of the listed items may be used and only one of the items in the list may be needed. The item may be a particular object, thing, or category. Moreover, where a phrase similar to “at least one of A, B, and C” is used in the claims, it is intended that the phrase be interpreted to mean that A alone may be present in an embodiment, B alone may be present in an embodiment, C alone may be present in an embodiment, or that any combination of the elements A, B and C may be present in a single embodiment; for example, A and B, A and C, B and C, or A, B, and C. In some cases, “at least one of item A, item B, and item C” may mean, for example, without limitation, two of item A, one of item B, and ten of item C; four of item B and seven of item C; or some other suitable combination.
All ranges and ratio limits disclosed herein may be combined. Unless otherwise indicated, the terms “first,” “second,” etc. are used herein merely as labels, and are not intended to impose ordinal, positional, or hierarchical requirements on the items to which these terms refer. Moreover, reference to, e.g., a “second” item does not require or preclude the existence of, e.g., a “first” or lower-numbered item, and/or, e.g., a “third” or higher-numbered item.
Different cross-hatching may be used throughout the figures to denote different parts but not necessarily to denote the same or different materials. Surface shading lines may be used throughout the figures to denote different parts or areas but not necessarily to denote the same or different materials. In some cases, reference coordinates may be specific to each figure.
Furthermore, the connecting lines shown in the various figures contained herein are intended to represent exemplary functional relationships and/or physical couplings between the various elements. It should be noted that many alternative or additional functional relationships or physical connections may be present in a practical system.
Any reference to attached, fixed, connected or the like may include permanent, removable, temporary, partial, full and/or any other possible attachment option. Additionally, any reference to without contact (or similar phrases) may also include reduced contact or minimal contact. In the above description, certain terms may be used such as “up,” “down,” “upper,” “lower,” “horizontal,” “vertical,” “left,” “right,” and the like. These terms are used, where applicable, to provide some clarity of description when dealing with relative relationships. But, these terms are not intended to imply absolute relationships, positions, and/or orientations. For example, with respect to an object, an “upper” surface can become a “lower” surface simply by turning the object over. Nevertheless, it is still the same object.
Additionally, instances in this specification where one element is “coupled” to another element can include direct and indirect coupling. Direct coupling can be defined as one element coupled to and in some contact with another element. Indirect coupling can be defined as coupling between two elements not in direct contact with each other, but having one or more additional elements between the coupled elements. Further, as used herein, securing one element to another element can include direct securing and indirect securing. Additionally, as used herein, “adjacent” does not necessarily denote contact. For example, one element can be adjacent another element without being in contact with that element.
The schematic flow chart diagrams included herein are generally set forth as logical flow chart diagrams. As such, the depicted order and labeled steps are indicative of one or more embodiments of the presented method. The steps recited in any of the method or process descriptions may be executed in any order and are not necessarily limited to the order presented. Furthermore, any reference to singular includes plural embodiments, and any reference to more than one component or step may include a singular embodiment or step. Elements and steps in the figures are illustrated for simplicity and clarity and have not necessarily been rendered according to any particular sequence. Other steps and methods may be conceived that are equivalent in function, logic, or effect to one or more steps, or portions thereof, of the illustrated method.
Additionally, the format and symbols employed are provided to explain the logical steps of the method and are understood not to limit the scope of the method. Although various arrow types and line types may be employed in the flow chart diagrams, they are understood not to limit the scope of the corresponding method. Indeed, some arrows or other connectors may be used to indicate only the logical flow of the method. For instance, an arrow may indicate a waiting or monitoring period of unspecified duration between enumerated steps of the depicted method. Additionally, the order in which a particular method occurs may or may not strictly adhere to the order of the corresponding steps shown. Furthermore, no element, component, or method step in the present disclosure is intended to be dedicated to the public regardless of whether the element, component, or method step is explicitly recited in the claims.
The subject matter of the present disclosure may be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects only as illustrative and not restrictive. The scope of the disclosure is, therefore, indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.
Claims
1. A training device comprising:
- a plurality of elongate shafts; and
- at least one hinge structure interconnecting a pair of elongate shafts of the plurality of elongate shafts;
- wherein the at least one hinge structure is configured to allow a user to pivot the pair of elongate shafts relative to each other to select a desired angle between the pair of elongate shafts.
2. The training device of claim 1, wherein the at least one hinge structure comprises a hinge mechanism configured to be adjustable in discrete angle increments.
3. The training device of claim 1, wherein the at least one hinge structure comprises three slots for three different elongate shafts.
4. The training device of claim 1, wherein the three slots comprise a first slot, a second slot, and a third slot, wherein the first slot and the second slot are pivotably coupled together via a hinge mechanism.
5. The training device of claim 4, wherein the third slot comprises an opening channel along a lateral side, wherein the third slot is configured to allow reversible lateral insertion of an end of an elongate shaft of the plurality of elongate shafts via the opening channel.
6. The training device of claim 5, wherein the elongate shaft is detachably retained within the third slot via an interference fit.
7. A training device comprising:
- a first elongate shaft comprising a first longitudinal end and a second longitudinal end opposite the first longitudinal end;
- a second elongate shaft comprising a third longitudinal end and a fourth longitudinal end opposite the third longitudinal end;
- a third elongate shaft comprising a fifth longitudinal end and a sixth longitudinal end opposite the fifth longitudinal end;
- a first hinge structure; and
- a second hinge structure, each of the first hinge structure and the second hinge structure comprising a body defining a first slot, a second slot, and a third slot;
- wherein: the first longitudinal end of the first elongate shaft is detachably coupleable with the third slot of the second hinge structure; the second longitudinal end of the first elongate shaft is coupled within the first slot of the first hinge structure; the third longitudinal end of the second elongate shaft is coupled within the second slot of the first hinge structure; the fourth longitudinal end of the second elongate shaft is coupled within the second slot of the second hinge structure; the fifth longitudinal end of the third elongate shaft is coupled within the first slot of the second hinge structure; and the sixth longitudinal end of the third elongate shaft is detachably. with the third slot of the first hinge structure.
8. The training device of claim 7, wherein the first hinge structure and the second hinge structure are configured to allow a user to pivot respective elongate shafts relative to each other to select a desired angle between pairs of elongate shafts.
9. The training device of claim 7, wherein the first hinge structure and the second hinge structure each comprises a first hinge mechanism between the first slot and the second slot.
Type: Application
Filed: Apr 28, 2021
Publication Date: Nov 4, 2021
Inventor: Jamal Willis (Eagle Mountain, UT)
Application Number: 17/243,342