ALL-IN ONE SYRINGE ASSEMBLY FOR BLOOD DRAWS AND MEDICINE DELIVERY TO PATIENTS
A syringe assembly includes (i) a syringe with a cylindrical body, luer tip at a first end, finger grip at a second end and a cannula extending from the luer tip into the cylindrical body, and (ii) a plunger unit having an adapter portion, receiving cavity, finger grip and piston. A channel extends the length of the adapter portion to receive the cannula in one end and a variety of connectors, valves and/or syringes in a second end. The end of the channel accessible in the receiving cavity mates with or engages any number of commercially available valves, connectors and/or syringes while the luer tip similarly connects to any number of valves, catheters, connectors, etc., depending on the task being undertaken with the syringe assembly.
This application is a division of and claims priority to U.S. patent application Ser. No. 16/872,265 filed May 11, 2020 which claims priority to U.S. Provisional Application No. 62/845,767 filed May 9, 2019, and U.S. Provisional Application No. 62/909,669, filed Oct. 2, 2019 the contents of each incorporated herein by reference.
FIELD OF THE INVENTIONThe embodiments of the present invention relate generally to medical syringe assembly for withdrawing fluid from a patient and injecting medicines into a patient whereby the syringe is configured to (i) minimize contamination and hemolysis in the fluids; (ii) reduce time needed to undertake tasks; and (iii) reduce items needed to undertake tasks.
BACKGROUNDBlood samples for testing may be collected from patients using many devices. Many such collections currently utilize a syringe including a cylindrical body and a plunger assembly. The cylindrical body has an interior wall, an open proximal end, a closed distal end, and a distal opening through the distal end. A hypodermic needle or indwelling catheter may be provided on, or attached to, the distal end communicating with the distal opening.
Unfortunately, the current syringes having cylindrical bodies and plunger assemblies suffer from drawbacks, including unsatisfactory (i) connector performance and adaptability; (ii) cannula position and attachment; (iii) plunger design; and (iv) related design shortcomings.
Thus, it would be advantageous to develop a syringe having a cylindrical body and a plunger assembly which overcomes the noted drawbacks. Furthermore, it would be advantageous to develop such a syringe that can be pre-filled with a medicine or flush as needed.
SUMMARYThe embodiments of the present invention first include a syringe having a generally cylindrical body with a first end for mating to a connector and a second, spaced open end for receipt of a plunger unit. A finger grip extends radially outward from the second open end. In one embodiment, the finger grip is a pair of oppositely extending flanges formed integrally with the syringe. A cannula extends from the first end to a point within the cylindrical body near the second open end.
The embodiments of the present invention next include a plunger unit adapted to slidably insert into the cylindrical body of the syringe. An adapter portion of the plunger unit is slidably disposed in the cylindrical body of the syringe. A piston on the end of the adapter portion of the plunger unit sealably engages an interior wall of the cylindrical body thereby defining a dynamic fluid chamber between an aft surface of the piston and an inner surface of the first end of the cylindrical body. A channel in the adapter portion of the plunger unit receives the second end of the cannula. A second portion of the plunger unit comprises a receiving cavity. In one embodiment, the receiving cavity is a generally cylindrical body extending from, and integral with, the adapter portion of the plunger unit. A finger grip may extend radially outward from an open end of the receiving cavity. In one embodiment, the diameter of the receiving cavity is greater than the diameter of the syringe so as to receive numerous different devices including vacutainers.
A needle-free valve is positioned partially within the plunger unit channel and extends into the receiving cavity. The needle-free valve serves to seal the channel from the retrograde flow of air and may engage a specimen tube, syringe or other device. The valve may take on many forms and purposes as detailed below.
As configured, the adapter portion of the plunger unit is free to move within the cylindrical body of the syringe as guided by the piston and cannula. Friction created by the piston engaging the cylindrical body of the syringe provides slight resistance against movement of the plunger unit and maintains the plunger unit in place when no external force is applied. Locking mechanisms may be incorporated to lock the plunger unit relative to the syringe into which it is inserted.
Other variations, embodiments and features of the present invention will become evident from the following detailed description, drawings and claims.
For the purposes of promoting an understanding of the principles in accordance with the embodiments of the present invention, reference will now be made to the embodiments illustrated in the drawings and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended. Any alterations and further modifications of the inventive feature illustrated herein, and any additional applications of the principles of the invention as illustrated herein, which would normally occur to one skilled in the relevant art and having possession of this disclosure, are to be considered within the scope of the invention claimed.
The individual parts of the syringe assembly may be fabricated of any suitable materials including but not limited to polymers, alloys, metals, composites and combinations thereof. The individual parts of the syringe assembly may be fabricated using any suitable manufacturing techniques, including but not limited to molding, casting, additive printing, forming and combinations thereof.
As shown in
In one embodiment, piston 220 is fabricated of Santoprene 8281-55MED or similar material to create enough seal with the inner surface of the cylindrical body of the syringe 105 preventing push back of fluid.
In one embodiment, the cannula 120 is recessed rearward of the opening in the luer tip 110. The recess provides the syringe assembly 100 compatibility with certain connectors, namely needlefree connectors, luer-activated valves and IV connectors which may have an internal spike or similar projection intended to insert into the luer tip 110 for functionality. Examples are the Clave® or MicroClave® made by ICU Medical, Inc., Invision Plus® made by Rymed and OneLink® made by Baxter. Such devices connect to various peripherally inserted central catheters, central lines and peripheral lines. By recessing the carmula 120, space is available to accommodate the spike or similar projection in the luer tip 110. In one embodiment, the cannula 120 is recessed between about 0.15 inches to about 0.35 inches from the opening 111 in the luer tip 110.
The cannula 120 has a cross-section smaller than the opening 110 at the tip thereby allowing fluid to flow between the outer surface of the cannula 120 and the inner surface of the opening into the fluid chamber 130 defined by an aft surface of the piston 220 and an inner surface of the luer end of the syringe 105. In one embodiment, the cannula 120 is secured to the luer tip 110 via one or more flanges, struts, wings, beveled flange, net fit or other mechanical structures (not shown) extending between the inner surface of the luer tip 110 and the outer surface of the cannula 120. The one or more flanges, struts or other mechanical structures should not impede the flow of fluids extending between the inner surface of the luer tip 110 and the outer surface of the cannula 120. In another embodiment, the cannula 120 is secured to the luer tip 110 using self-curing adhesives, UV curing, thermal bonding or may be molded in place, insert molded or over molded or otherwise bonded. Those skilled in the art will recognize that the cannula 120 may be attached to the inner surface of the luer tip 110 using any means available as long it does not interfere with the operation of the syringe assembly 100 as described herein. As used herein, “secured” does not equate to unmovable, as a certain amount of over pressure can cause the cannula 120 to dislodge from the luer tip.
In one embodiment, the syringe 105 incorporates a luer tip 110 is fabricated to comply with ISO Luer Standard 80369-7. ISO 80369-7 is specifically for small-bore connectors intended to be used as intravascular connections in intravascular applications or hypodermic connections in hypodermic applications of medical devices and related accessories such as syringe 105. The luer tip 110 and thread is configured to cooperate with connectors having center post designs and locking and non-locking cannula adaptors.
In one embodiment, the syringe of the various syringe assemblies may be pre-filled with a flush, medicament or other fluid. In such an embodiment, the dimensions of side ports 123-1 and 123-2 as shown in
In another embodiment, as shown in exaggerated fashion in
The embodiments of the present invention facilitate a series of methods. A first method detailed in flow chart 900 of
A second method detailed in flow chart 1000 of
The versatility of the syringe assembly according to the embodiments of the present invention permits aspiration and administration with any needleless connector and any closed system transfer device utilizing male/female components thus bypassing steps that are subject to user variances and exposure to a growing list of hazardous drugs. The syringe assemblies according to the embodiments of the present invention are ideal for handling hazardous drugs because the syringe assemblies are compatible with all needleless connectors, all female luer hubs (e.g., peripheral IV catheters, single, double and triple lumen lines, stopcocks and manifolds, T-connectors, etc.), needle free connectors, intravenous push of hazardous drugs, syringes containing a hazardous drug with a closed system transfer device can be safely disconnected from a mating needleless connector allowing a flush to be connected for a complete intravenous drug push.
The syringe assemblies according to the embodiments of the present invention (i) may be used with all needle free connectors, catheters and closed system transfer devices; (ii) provide single access that prevents design related contamination of the needle free connector known to increase with multiple accesses (can help hospitals achieve optimal central line associated blood stream infection; (iii) validate patency during hazardous drug administration; and (iv) prevent hazardous drug exposure by eliminating intravenous push administration of hazardous drugs that require immediate flush to ensure complete dose is flushed and line is clear of blood.
Single access minimizes potential contamination to the internal structure of the valve resulting in multiple changes or risks to central line associated blood stream infection rates which affect hospital CMS reimbursement. The current procedure comprises (i) disinfect; (ii) access with flush syringe; (iii) de-access; (iv) disinfect; (v) attach medication; (vi) detach; (vii) disinfect; (viii) attach flush; (ix) detach disinfect; (x) attach lock and (xi) detach. With current invention the procedure comprises: (i) disinfect; (ii) attach; (iii) utilize as needed and (iv) detach.
Moreover, the instant syringe assemblies accommodate administration of hazardous drugs in compliance with USP800 regulations because it is compatible with all needleless connector components and any female luer hubs, needle free connectors and closed system transfer devices may be added for safe transport, patency check and intravenous push of hazardous drugs, syringes containing hazardous drugs with a closed system transfer device can be safely disconnected from mating needleless connector, flush syringe can then be applied for complete delivery of intravenous push medication and safe removal of the syringe system.
A third method detailed in flow chart 1100 of
A fourth method detailed in flow chart 1200 of
In one embodiment of the present invention, the syringe assembly is manufactured by first assembling the syringe, plunger unit and piston into a unit and then mechanically inserting the cannula into place through the piston at a first end and proximate a syringe tip opening at a second end. Such a process is more efficient and creates a more stable product.
The embodiments of the present invention serve to minimize contamination risks by using a closed vascular system. Such systems minimize the potential for cross-contamination and touch-contamination (e.g., human factor during access/de-access) and potential contamination to the internal structure of the valve (e.g., design flaws). The rates associated with such contamination affects hospital CMS reimbursement. By utilizing the pre-filling feature (saline or other fluid) of the embodiments of the present invention, multiple accesses and/or steps to disinfect the valve can be eliminated. By reducing access and de-access steps, exposure of the threads and internal compartments is eliminated making a single disinfection adequate prior to line procedures. This is accomplished because the syringe luer remains engaged and allows the flush solution to expel the blood from the valve prior to removal of the syringe. This eliminates the opening and reinsertion of a flush syringe thus preventing the blood and particulate from finding its way into the nooks and crannies of the mating valve on either a peripheral or central line. This will greatly reduce blood borne pathogen exposure and reduce the potential for BSI's/CLBSI's.
In one embodiment, the syringe of the embodiments of the present invention are compatible with culture bottle and sterile collection devices that effectively remove potentially contaminated skin flora in a waste cavity. In other words, routine blood collection can be standardized to include a culture specimen with the syringe as detailed herein.
In an embodiment having an interface for receipt of a vacutainer in the receiving cavity, the rubber seal or condom which prevents the flow of air into the needle of a multi-sample luer adapter is modified such that the rubber seal includes a thicker wall near the base or a skirt to provide an improved air tight seal.
In another embodiment, as shown in
Although the invention has been described in detail with reference to several embodiments, additional variations and modifications exist within the scope and spirit of the invention as described and defined in the following claims.
Claims
1. A syringe assembly comprising:
- a syringe having a tapered body with a luer at a first end, said luer having an exit opening, said taper from smaller to larger towards said luer;
- a plunger unit including an adapter portion and a receiving cavity, a first end of said adapter portion retaining a piston, said plunger unit insertable into a second end of said syringe and slidable within said cylindrical body during which said piston creates a fluid seal with an interior surface of said cylindrical body, said adapter portion including a channel extending along its length to an opening at a bottom of said receiving cavity for insertion of an intermediary connector or valve, said piston configured to frictionally interact with an inner surface of said cylindrical body to create a vacuum therewithin and prevent said plunger unit from disengaging said tapered body of said syringe; and
- a cannula secured at one end within said luer and extending into said piston and extendable into said channel as said plunger unit is inserted farther into said syringe.
2. The syringe assembly of claim 1 wherein said taper acts as a lock to maintain said plunger unit from disengaging from said syringe body.
3. The syringe assembly of claim 2 wherein said taper acts to prevent said piston from exiting said syringe body thereby locking said plunger unit in place.
4. The syringe assembly of claim 1 wherein said tapered body is cylindrical and said piston is circular.
5. A syringe assembly comprising:
- a syringe having a cylindrical body with a luer at a first end, said luer having an exit opening;
- a plunger unit including an adapter portion and a receiving cavity, a first end of said adapter portion retaining a piston, said plunger unit insertable into a second end of said syringe and slidable within said cylindrical body during which said piston creates a fluid seal with an interior surface of said cylindrical body, said adapter portion including a channel extending along its length to an opening at a bottom of said receiving cavity for insertion of an intermediary connector or valve, said piston dimensioned to frictionally interact with an inner surface of said cylindrical body to create a vacuum therewithin and prevent said plunger unit from being pulled from said cylindrical body of said syringe; and
- a cannula secured at one end within said luer and extending into said piston and extendable into said channel as said plunger unit is inserted farther into said syringe.
6. The syringe assembly of claim 5 wherein said cylindrical body is tapered from smaller to larger towards said luer.
7. The syringe assembly of claim 6 wherein said tapered cylindrical body and said piston act as a lock to maintain said plunger unit from disengaging from said syringe body.
8. The syringe assembly of claim 6 wherein said taper acts to prevent said piston from exiting said cylindrical body thereby locking said plunger unit in place.
9. The syringe assembly of claim 5 wherein said tapered body is cylindrical and said piston is circular.
10. A syringe assembly comprising:
- a syringe having a tapered body with a luer at a first end, said luer having an exit opening, said taper from smaller to larger towards said luer;
- a plunger unit including an adapter portion and a receiving cavity, a first end of said adapter portion retaining a piston, said plunger unit insertable into a second end of said syringe and slidable within said cylindrical body during which said piston creates a fluid seal with an interior surface of said cylindrical body, said adapter portion including a channel extending along its length to an opening at a bottom of said receiving cavity for insertion of an intermediary connector or valve, said piston configured to frictionally interact with an inner surface of said cylindrical body to prevent said plunger unit from disengaging said tapered body of said syringe; and
- a cannula secured at one end within said luer and extending into said piston and extendable into said channel as said plunger unit is inserted farther into said syringe.
11. The syringe assembly of claim 10 wherein said taper acts as a lock to maintain said plunger unit from disengaging from said syringe body.
12. The syringe assembly of claim 11 wherein said taper acts to prevent said piston from exiting said syringe body thereby locking said plunger unit in place.
13. The syringe assembly of claim 10 wherein said tapered body is cylindrical and said piston is circular.
Type: Application
Filed: Dec 8, 2020
Publication Date: Nov 11, 2021
Inventors: Michael Brewer (Irvine, CA), Robert Fortune (Claremont, CA), Bill Phillips (Irvine, CA)
Application Number: 17/115,749