MEDICAL EXAMINATION SYSTEM ENABLING INTERCHANGEABLE OPERATING MODES
An examination system having separate enabled interchangeable operating modes includes at least one medical device having a housing retaining an optical system. The examination system further includes an adapter that is configured for aligning a plurality of disparate smart devices with the optical system of the medical device when the adapter is attached to the medical device, thereby enabling multiple operating modes without modification to the device. In at least one version, common engagement features are provided on a plurality of medical devices to permit the adapter and an attached smart device to be used therewith interchangeably.
This application is a continuation of U.S. Ser. No. 15/495,065, filed Apr. 24, 2017, and entitled: Medical Examination System Enabling Interchangeable Operating Modes, which claims priority under relevant portions of 35 U.S.C. § 119 to U.S. Ser. No. 62/327,154, filed Apr. 25, 2016, and entitled: Medical Examination System Enabling Interchangeable Operating Modes. The entire contents of each application are herein incorporated by reference.
TECHNICAL FIELDThis application is generally directed to the field of diagnostic medicine and more specifically to a system having at least one stand-alone medical examination or diagnostic device, in which the device can assume or be configured to assume separate interchangeable operating modes. These modes can include a visual mode as well as an electronic viewing mode using an attached smart device. An adapter attached to the at least one medical examination or diagnostic device is configured to support and align one or one of a plurality of disparate smart devices relative to the optical axis of the medical device(s).
BACKGROUNDHand-held diagnostic devices are well known in the medical field for purposes of conducting a patient examination, e.g., a wellness examination that would be typically conducted by a primary physician, physician's assistant (PA) or other health care provider, clinician, or caregiver. To that end, a number of disparate devices are routinely used for examining specific medical targets of interest, such as the eyes (ophthalmoscope), ears (otoscope), nose (rhinoscope), skin (dermatoscope), vagina (vagiscope and colposcope), anus (anoscope) and the like.
Some or all of these medical diagnostic instruments may include optical versions having an eyepiece disposed at one end of an instrument housing. Alternatively, electronic versions are also known having an electronic imager that captures a digital image of the intended medical target. More recently, so-called “smart devices”, (e.g., smart phones, tablets and the like), have been incorporated for use with a medical examination or diagnostic device. One such example is the iExaminer® ophthalmoscope, which is manufactured and sold by Welch Allyn, Inc. of Skaneateles Falls, N.Y. Features relating to use of a smart device with a medical examination or diagnostic device herein are more completely described in greater detail in U.S. Pat. No. 8,944,596 B2 and U.S. Patent Application Publication No. 2015/0103317A1, the entire contents of each being herein incorporated by reference.
Reference is herein made to
A supporting fixture 20 fixedly secured to the proximal end 18 of the instrument housing 14 is configured to support an attached smart device 32. More specifically, the supporting fixture 20 is defined by a frame-like structure having an open top or upper end as well as a pair of parallel channels or slots 24 that are disposed along opposing lateral sides, enabling a specific smart device 32 (e.g., an iphone 4.0) to be releasably attached. The supporting fixture 20 further includes a cylindrically shaped nose section (not shown) made from a flexible material that is configured to fully cover the eyepiece of the ophthalmoscope 10. When the smart phone 32 is attached, the supporting fixture 20 retains the smart device 32 in a single defined position that provides the necessary alignment for the optics of the smart device 32 relative to the contained optical system (not shown) of the ophthalmoscope 10.
In use, the display of the attached smart device 32 is used to provide digital images of an intended medical target and in which a phone application stored into the memory of the smart phone 32 enables the instrument to be operated by a user. The supporting fixture 20 enables the optics of the smart phone 32 to be specifically aligned with the optical system of the ophthalmoscope 10, when the smart device 32 is attached thereto. A shortcoming of this system is that the supporting fixture 20 is only configured to adequately retain the specific smart device 32. Other smart devices cannot be similarly supported.
The foregoing is significant because alignment between the optics of an attached smart device and the optical system of a stand-alone medical diagnostic or examination device is critical to performance. Additionally, there is a general and pervasive need in the field of medical diagnostics to enable or provide medical examination or diagnostic devices with the capability of assuming a plurality of operating modes, as needed, so as to provide greater versatility.
BRIEF DESCRIPTIONTherefore and according to one aspect, there is provided a medical examination system comprising a medical device including a housing having an optical system within an interior of the housing. The optical system is defined by an optical axis and configured to operate in an optical viewing mode using an eyepiece. The system further comprises an adapter for aligning a digital camera of a smart device with the optical system of the medical device to enable a separate electronic operating mode, each of the adapter and the medical device having complementary features to permit attachment of the adapter to the medical device, the adapter having at least one feature configured to permit each of a plurality of different sized smart devices to be attached to the adapter and in alignment with the optical system of the medical device when the adapter is attached thereto.
According to at least one version, an aligning mechanism includes at least one interface plate interconnecting the smart device and the medical examination device. In an embodiment, the at least one interface plate can be secured, such as adhesively, to the housing of the smart device and in which the medical examination device is releasably attached to the secured at least one interface plate. A mount or alignment assembly or fixture can be provided in order to initially position the at least one interface plate relative to the smart device and in a predetermined location, the adapter having an portion configured to engage the at least one interface plate. Preferably, the interface plate is metal and the portion of the adapter includes at least one magnet for releasably securing the interface plate specifically thereon.
The medical device can include a proximal end having a device receiving portion that is configured to releasably engage a device connection portion of the adapter wherein the adapter includes an opening that is aligned with the camera aperture of the digital camera of the smart device when the smart device is attached via the at least one interface plate. The opening of the adapter is aligned with the viewing axis of the medical device when the adapter is attached to the medical device.
According to at least one version, the adapter includes a lever configured for releasing the adapter from the medical device. Additionally, the device connection portion of the adapter can include a spring-loaded pin that is movable into and out of a defined recess sized to engage the proximal receiving portion of the medical device, wherein the lever is movable to a position to release the pin and assist in releasing the adapter from the medical device.
When attached, the adapter can be moved to a plurality of mounting positions relative to the viewing or optical axis of the medical device. Moreover, the adapter positions the smart device at the convergence point of the eyepiece, thereby placing the smart device in the same position as the viewer's eye in the viewing mode.
A plurality of different medical examination or diagnostic devices can be provided, each of the medical devices having a proximal receiving portion that is configured for engaging the device connection portion of the adapter.
According to another aspect, there is provided an adapter configured for attachment to at least one medical device, the adapter comprising a support surface configured to retain one of a plurality of different sized smart devices. The support surface includes a portion that receives an alignment feature of each smart device to align the camera aperture of an attached smart device with a formed opening. Each of the plurality of smart devices includes a digital camera wherein the adapter, when attached, is configured to align the digital camera with the optical system of a medical examination device. The adapter further comprises a device connection portion configured for engaging a proximal receiving portion of a medical device such that, when attached, the opening of the adapter is aligned with the optical axis of the medical device.
The adapter can include at least one feature for enabling release of the adapter from the medical device such as a lever. In one version, the lever is configured to cooperate with a spring loaded pin of the proximal receiving portion of the medical device.
According to one version, the portion of the support surface includes at least one magnet for engaging the alignment feature of the smart device.
According to yet another aspect, there is provided a medical device comprising a housing, an optical system disposed within the housing including an eyepiece enabling an optical viewing mode; and a proximal receiving portion configured for engaging an adapter retaining a smart device to enable the medical device to assume an electronic imaging mode.
According to one version, the proximal receiving portion retains a set of eyepiece optics. The proximal receiving portion can be defined in at least one embodiment as a cylindrical section having a channel and a lipped portion configured for releasably engaging a device connection portion of the adapter supporting the smart device.
The medical device can be at least one of a plurality of disparate medical diagnostic instruments including at least one from the group consisting essentially of dermatoscopes, otoscopes, ophthalmoscopes, colposcopes, rhinoscopes, each of the instruments being configured to engage the adapter.
According to yet another aspect, a medical instrument examining system comprises a first medical examination device having a distal end, a proximal end and an optical system aligned along an optical axis and a second medical examination device having a distal end, a proximal end and an optical system aligned along an optical axis. Each of the first and second medical examination devices has a proximal receiving portion configured for releasably engaging a device connection portion of the adapter and in which the adapter includes an opening that is aligned with the optical axis of the first and second medical examination device when the adapter.
The adapter includes a supporting member configured to retain a smart device having a camera, the adapter being configured for retaining the smart device such that the camera of the smart device is automatically aligned with the opening of the adapter and the optical axis of the first and second medical examination devices.
One advantage realized by the herein described medical examination system is greater versatility by permitting interchangeable attachment of an eyepiece and an electronic device, such as a smart device, with at least one stand-alone medical examination device. In the inventive system, for example, a number of smart devices can be separably attached and aligned with the optics contained within at least one or more discrete stand-alone medical devices using a generic adapter and an interface that permits the adapter to be connected without modification to a number of medical devices.
Another advantage provided by the herein described system is that either minor or no modifications are required to enable the interchangeable operating modes and in which the adapter used enables repeatable alignment between the optical elements of the stand-alone medical device and the eyepiece or smart device.
These and other features and advantages will be readily apparent from the following Detailed Description, which should be read in conjunction with the accompanying drawings.
Various features and advantages of the present invention will become more apparent when taken in conjunction with the following description and drawings wherein identical reference numerals have been used, where possible, to designate identical features that are common to the figures, and wherein:
The following description relates to certain embodiments of a medical examination system that includes at least one stand-alone medical diagnostic or examination device that is configured for operation in a number (at least two (2)) of interchangeable operating modes. In at least one version, an adapter is configured to generically support one of a plurality of smart devices, such as smart phones, in which the generic adapter is further configured to be attached to one of a plurality of disparate medical examination devices. In another version, a plurality of medical devices are configured with a common or generic interface enabling a smart device to be used interchangeably with the medical devices.
For purposes of explanation, the specific medical examination or diagnostic devices described in the following embodiments include otoscopes for examining the ears of a patient and ophthalmoscopes for examining aspects of the eyes of a patient. However, it will be readily apparent that the concepts discussed herein are further applicable to a varied number of other stand-alone medical diagnostic or examination instruments or devices, such as but not limited to dermatoscopes, vagiscopes, colposcopes, and anoscopes, among other devices capable of viewing of a medical target of interest.
In addition, the following description utilizes a number of terms for the purpose of providing an adequate or suitable frame of reference in relation to the accompanying drawings. These terms, which may include “inner”, “outer”, “external”, “internal”, “distal”, “proximal”, “above”, “below”, “top”, “bottom” and the like should not be interpreted as necessarily limiting the intended scope of the invention, including the claims, unless so specifically indicated.
As used herein, the term “smart device” refers to any apparatus or device that is mobile and connected to other devices via wireless protocols or networks under IEEE 802.11 including but not limited to WiFi, Bluetooth, 3G and the like. The smart device as defined herein includes at least one electronic imaging device (e.g., a digital camera) and related optics, memory and a microprocessor capable of running application software, which may include but is not limited to smart phones and tablets.
As used herein, the term “stand-alone medical diagnostic or examination device” refers to an instrument used to view a medical target of interest of a patient which includes an optical system and optionally includes an illumination system. Examples of these devices may include but are not limited to otoscopes, ophthalmoscopes, dermatoscopes, vagiscopes and anoscopes for viewing a medical target of interest.
A system according to several embodiments is described herein and defined by at least one stand-alone medical diagnostic or examination device that can be used interchangeably using an interface that enables an optical mode as well as an electronic imaging mode. As discussed herein, each of the optical system of the medical device(s) and the camera of the smart device can be repeatably and reliably aligned to enable dual functionalities without significant modification to the stand alone diagnostic or examination device.
With reference to
The interface plate 104 according to this specific embodiment is a substantially planar section made preferably from metal and including a through hole 105 and a slot 107, each aligned and spaced from one another. According to this embodiment, an upper side 106 of the interface plate 104 includes an adhesive layer to enable securement to the front facing surface 144 of a smart device 140 as shown in
As shown in these figures, the smart device 140 is activated by the user and an application stored into memory on the smart device 140 is configured to provide a target on the display 144, including a cross hair or other aiming means (e.g., a target 148) in order to verify that the optical target 118 is centered on the display 144. Once the target 148 is centered on the display 144 of the smart device 140, and as shown in
With reference to
According to this version, the rear or proximal facing side surface 176 of the instrument housing 164 includes a pair of spaced magnets 180. When assembled and as shown in
It will be understood that variations of the alignment fixture are also contemplated given the need determined by Applicants to precisely and very accurately align the interface plate properly onto a smart device for the herein described examination system. For example and as shown in
According to this embodiment, the alignment fixture 100A includes respective x-axis and y-axis adjustment assemblies 130A and 134A that include respective spring-loaded adjustment or support blocks 138A and 139A, each set orthogonally to one another on the top of the planar support surface 109A. Respective x-axis and y-axis screw adjustment members 137A and 141A, according to this embodiment, are fixedly and threadingly disposed within the center of a corresponding beam-like member 143A and 145A in spaced parallel relation to the spring-loaded adjustment blocks 138A and 139A. Each of the beam-like members 143A, 145A further include a recessed interior portion 146A and 147A, respectively, that is sized to be placed onto and cover a lateral edge of a smart device (e.g., smart phone 140A) that is introduced onto the fixture 100A. When mounted, the relative position of the smart phone 140A can be laterally shifted wherein vertical movement is restricted by the beam-like members 143A, 145A, as well as the lateral support surface 109A of the alignment fixture 100A.
When the camera of the smart phone 140A is activated, an alignment application stored by the phone memory is programmed to display a set of cross hairs or other suitable target 148A. The smart phone 140A is then placed on the planar support surface 109A with the display side facing upwardly and the camera of the smart phone 140A aligned with a pinhole 111A,
The smart phone 140A is initially set with lateral edges of the smart phone 140A being placed against the spring-loaded support blocks 138A and 139A. The screw adjustment members 137A, 141A and the beam-like members 143A, 145A are retracted sufficiently to allow the smart phone 140A to be initially positioned onto the planar support surface 109A. Once crudely positioned and aligned, the x-axis and y-axis adjustment members 130A, 134A are then moved into position using the screw adjustment members 137A, 141A with the beam-like members 143A, 145A, and more specifically the interior recessed portions 146A and 147A covering and engaging the lateral edges of the smart phone 140A. Fine adjustments can then be made against the bias of the spring loaded support blocks 138A, 139A to accurately center the image 149A of the optical target 118A on the display 144A and more specifically the cross hairs (target 148A) as needed, until the image 149A of an optical target 119A disposed beneath the planar support surface 109A is centered on the display 144A, and more specifically within the defined cross hairs 148A.
The above procedure can also detect misalignment and tolerancing issues of the smart device 140A and permit the image 149A of the optical target 118A to be as effectively and accurately centered relative to the cross hairs 148A on the display 144A as possible. Such tolerancing and misalignment issues are minor for typical use of the smart device, but are magnified when used for purposes of optically aligning to a medical diagnostic or examination device. Once centered, the shelf retaining the at least one interface plate can be pressed upwardly into contact with the front facing side of the smart device 140A, adhesively and reliably securing the at least one interface plate.
It will be understood that the alignment fixture 100A can be easily modified to accept smart devices having different configurations and footprints to permit optical alignment and placement of an interface plate(s) as herein described.
When attached in the manner shown herein, the optical parameters of the entire assembly can be calibrated using a calibration target 198, such as shown in
It should be understood that the number and location of interface plates used for alignment to a stand-alone medical device can be suitably varied provided that the interface plate(s) accurately align a mounted smart device and more specifically the contained optics of the attached smart device with the optical system of the medical diagnostic or examination device. One alternative embodiment is shown in
To assemble, each of the first and second interface plates 204, 208 are placed within the retaining slots on the top surface of the alignment fixture with the camera of the smart device 220 being aimed at the optical target and viewed using a cross hair or similar aiming means provided on the display of the smart device 220 using an application stored within the smart device 220. When the camera of the smart device 220 is properly aimed such that the optical target is centered on the cross hairs provided on the display, the smart device 220 can then be brought into contact with the top surface of the alignment fixture in which each of the facing sides of the interface plates 204 and 208 include an exposed adhesive layer in order to secure same to the smart device 220.
The smart device 220 can then be removed from the alignment fixture and secured to the rear facing side or surface 207 of the medical examination device 200, which according to this embodiment is an otoscope. In at least one version, the rear facing side 207 of the medical examination device 200 includes a pair of magnets 214, 217 spaced from one another that receive the smart device 220 and more specifically the interface plates 204, 208, the latter being positioned to ensure the attached smart device 220, and more specifically the camera of the smart device 220, is aligned properly with the optical system of the examination device 200.
With reference to
First and as shown in
The eyepiece 320, according to this specific embodiment. further includes an external focusing knob 328 disposed on the housing 324, that when rotated, is configured to axially shift the position of the contained optical element, as needed. When coupled to the stand-alone medical device 300, the external focusing knob 328 can be accessed by the user and rotated to permit adjustments to be made optically while the magnetic interface 309 continues to maintain support and optical alignment of the eyepiece 320 with the optics of the stand-alone medical device 300.
As shown in
Still further and with reference to
It should be noted that the design of the medical examination device can be suitably altered to better accommodate an attached and optically aligned smart device for purposes of operation. For example and according to
In each of the latter examples, an eyepiece 320 and a smart device 360 can be interchangeably used in connection with either medical examination device 500, 600. The eyepiece 320 is releasably attached by engagement of the distal end of the eyepiece housing 324 with a magnetic interface 509, 609 formed about the periphery of the proximal optics opening of the device 500, 600. The smart device 360 is interchangeably mounted using at least one interface plate (not shown in these views) using a technique that is similar to that described in
In accordance with another embodiment and with reference to
As further shown in
When attached, the smart device 750, including the display 754, is situated substantially above the instrument 700 as is depicted in
The above described adapter 720 can be utilized with other stand-alone medical diagnostic or examination devices. For the sake of clarity, similar parts are herein labeled with the same reference numbers. With reference to
The adapter 720 is attached to the instrument 800 to permit interchangeability between instruments and operating modes (between an optical viewing mode using the eyepiece 810 and an electronic viewing mode using an attached smart device 750). As previously discussed, the adapter 720 includes a distal engaging portion 724 and a proximal supporting portion 728. The distal engaging portion 724 includes a pair of resilient fingers 732 that are configured to engage a recessed slot or slotted portion 813 provided in an upper surface of the instrument head 808. The proximal supporting portion 728 is defined by a vertical support surface including a recessed slot (not shown) that receives an interface plate attached, adhesively or otherwise, to the distal or front facing side of the smart device 750 preferably in the manner previously described. The adapter 720 further includes a cylindrically shaped connector portion 758 in a lower portion of the adapter 720 that is sized to engage the eyepiece 810 of the ophthalmoscope 800 or other medical stand-alone device and in which a gusset 727 engages a top portion of the instrument head 808 to optionally provide additional support and stability.
With reference to
Yet another embodiment of a medical instrument assembly or system is illustrated in
Within the interior of the otoscope 1000 is a light source (not shown) such as an incandescent lamp or at least one LED, which is disposed in a lower portion of the instrument head 1010. A bundle of optical fibers (not shown) are coupled to the light source and directed as a ringlet at the distal end of the conical insertion portion in order to effectively illuminate the target of interest. The handle 1008 includes an interior compartment that retains at least one battery (not shown) for energizing the light source. A series of optical elements are disposed within the interior of the instrument head 1010 and aligned along an optical axis with a separate optical train being provided within the confines of an eyepiece 1024, the latter being releasably attached to the otoscope 1000 in order to create an optical viewing mode.
According to this embodiment an adapter 1020, which is provided at a proximal end of the otoscope 1000, permits attachment of the eyepiece 1024. The adapter 1020 includes a set of magnets (not shown) that permits releasable and interchangeable attachment of the eyepiece 1024 or a smart device 1050, as described below. As noted, the eyepiece 1024 includes an interior retaining a series of optical elements that are suitably aligned with optical elements provided in the interior of the instrument head 1010. According to this specific embodiment, the eyepiece 1024 is defined by a housing 1027 that is coextensive with the handle 1008 of the otoscope 1000, including a substantially planar distal facing surface 1029.
With further reference to
According to this embodiment, the adapter 1020 is supported for pivotal movement from the rear receiving slot 1036 of the device housing 1004 about the optical axis of the device 1000. This pivotability permits the attached smart device 1050 to assume a plurality of adjustable mounting orientations enabling the position of the smart device 1050 to be changed selectively. Advantageously, this latter feature permits enhanced operation and versatility.
In terms of operation, the herein described system can be used initially in an optical viewing mode as depicted in
In either operational mode, the user inserts the speculum tip element 1014 a predetermined distance into the outer ear of a patient and the image of the intended target, as illuminated by the contained light source is viewed or transmitted directly along the optical axis to either the eyepiece 1024 or the smart device 1050 for viewing on the display 1054,
Another medical examination system is depicted in
As in the prior otoscopic version, the adapter 1120 is defined by a planar section 1122 which is disposed within a rear receiving slot of the device housing 1104. This planar section 1122 includes a proximal or rear face surface 1126 having at least one recessed slot (not shown) that permits the selective engagement of a smart device 1050. In accordance with prior embodiments discussed, such as depicted in
According to this embodiment, the adapter 1120 is supported for pivotal movement from the rear receiving slot 1136 of the device housing 1104 about the optical axis of the device 1100. The adapter 1120 includes a distal engagement portion (not shown) that is disposed over a proximally extending end (not shown) of the instrument head 1110 in overlaying relation. This pivotability feature permits the attached smart device 1050 to assume a plurality of adjustable mounting orientations about the optical axis wherein the position of the smart device 1050 can be changed selectively upon attachment to the adapter 1120 without otherwise disturbing optical alignment. For example, the engagement portion can include at least one or more detents (not shown) to provide specific mounting orientations (e.g., each 90 degrees to create four (4) mounting orientations). Advantageously, this latter feature permits enhanced operation and versatility.
With reference to
When attached, the necked portion can be slidingly engaged within the defined channel with the proximal lip being retained within the channel. In at least one variation, the channel and the proximal lip are configured to permit the adapter (and attached smart device) to assume a plurality of mounting orientations, such as shown in
With reference to
According to this embodiment, the device connection portion 1512 is defined by an outer surface 1515 which is parallel to the front facing surface 1507 with a shaped recess 1530 formed between the surfaces 1507, 1515 that is configured for releasable engagement with a proximal receiving portion 1564,
The design of the adapter 1500 enables a plurality of smart devices, such as smart phones, each being different in terms of overall footprint to be releasably attached in a specific orientation. As noted and for locating the smart phone according to this version, an interface plate such as previously described above is placed specifically on the front facing side of the smart device 1550 before releasably securing the smart device 1550 to the rear facing side 1509 of the adapter 1500. When attached in this manner, the camera aperture 1554 of the smart device 1550 is aligned with the through opening 1519 of the adapter 1550.
Referring to
In operation and when the adapter 1500 is not attached, the medical device 1560 can be used in an optical viewing mode to view the target of interest through the proximal end, which includes a brow rest 1590. The medical device 1560 can be alternatively used in an electronic imaging mode when the adapter 1500 is attached in which the aperture 1554 of the attached smart device 1550 is aligned with regard to the convergence point of the optics of the medical device 1560 such that the smart device 1550 receives a focused image of the medical target of interest. According to this embodiment, the adapter 1500 enables the attachment of one of a plurality of disparate smart devices and in which the attached smart device 1550 is fully aligned with the optical system of the medical device 1560. Each of the above operating modes can be realized without modification to the medical device 1560 by the inclusion or removal of the adapter 1500. That is, no additional optical module is required.
In addition to being configured to receive one of a plurality of different smart devices, the herein described adapter 1500 can be used with a plurality of disparate medical diagnostic instruments, each having a proximal end and receiving portion as described for purposes of attachment. These instruments can include, but are not limited to a ophthalmoscope, an otoscope, a colposcope, a dermatoscope, a rhinoscope, an anoscope or other hand-held medical examination device. For example and in a wellness examination, the adapter 1500 (and attached smart device 1550) can be interchangeably used with an otoscope and an ophthalmoscope for viewing the ears and the eyes, respectively, using the display of the connected smart device 1550. It will be understood, however, that the connective features of this embodiment is an example wherein other suitable configurations are possible for enabling the above-described functions.
With reference to
In certain ophthalmoscopes, optical adjustments can be accomplished in the removable eyepiece of the instrument. For purposes of interchangeability and additional operating modes for the herein described examination system and when a smart device was used in the combination with the ophthalmoscope during tests, it was determined that the device needed a focus range of about +/−10 diopters to accommodate all patients, while the imaging system of known smart devices typically only had a focus range of about +/−3 diopters. Based on the foregoing, it was concluded that there is a need to move the focus adjustment to the patient end (distal) of the instrument to permit focusing in both operational modes of the system; that is either with or without a smart device being attached.
By optionally making the objective lens 1230 axially movable according to this embodiment, an increased focus range can be achieved. In this configuration, the autofocus function of the attached smart device should be disabled. The optical system of the instrument 1200 and more specifically the contained objective lens 1230 can be optionally adjustable according to one version using a focusing mechanism, such as a focusing knob (not shown) provided on the instrument head. Details relating to one example of a focusing mechanism for use in a medical examination device is more completely described in U.S. Pat. No. 7,399,275, previously incorporated by reference. The focusable objective lens can according to one embodiment be adjusted +/−20 diopters, or minimally +/−10 diopters.
In lieu of the smart device, an optical layout is presented in
Similar arrangements can be provided in another medical examination or diagnostic device. Referring to
As shown in
With additional reference to
With reference to
The proximal end 1416 of the herein described instrument 1400 can include an interface that permits the attachment of an adapter, such as previously described with regard to
- 10 stand-alone medical diagnostic or examination device (ophthalmoscope)
- 14 instrument housing
- 16 distal end
- 18 proximal end
- 20 frame or supporting structure
- 24 parallel channels or slots
- 32 smart device
- 100 alignment fixture
- 100A alignment fixture
- 104 interface plate
- 105 hole, interface plate
- 106 upper side, interface plate
- 107 slot, interface plate
- 108 raised platform
- 109A planar support surface
- 110A slot
- 111A pinhole
- 112 upper or top surface
- 116 legs
- 117 support flange
- 118 optical target
- 118A optical target
- 120 elongate slot
- 130A x-axis adjustment assembly
- 134A y-axis adjustment assembly
- 137A screw adjustment member
- 138A spring-loaded adjustment or support block
- 139A spring-loaded adjustment or support block
- 140 smart device
- 140A smart device
- 141A screw adjustment member
- 143A beam-like member
- 144 display
- 144A display
- 145A beam-like member
- 146 camera, smart device
- 148 target
- 148A target
- 149A image of optical target
- 160 otoscope
- 164 housing
- 169 rear or proximal opening
- 176 rear or proximal facing surface
- 180 spaced magnets
- 198 calibration target
- 200 stand-alone medical examination device
- 204 first interface plate
- 207 rear facing side, medical device
- 208 second interface plate
- 214 magnet
- 216 facing surface
- 217 magnet
- 220 smart device
- 223 front facing surface
- 300 medical diagnostic or examination device
- 303 distal end, device
- 305 back or proximal surface
- 309 magnetic interface
- 311 magnet
- 320 eyepiece
- 324 housing, eyepiece
- 326 proximal end, eyepiece
- 328 focusing knob, eyepiece
- 360 smart device
- 364 display, smart device
- 400 medical diagnostic or examination device
- 403 distal end, device
- 405 back or proximal surface, device
- 409 magnetic interface
- 412 magnet
- 500 medical diagnostic or examination device
- 503 distal end, device
- 504 body or housing
- 505 back or proximal surface, device
- 508 handle
- 509 magnetic interface
- 510 instrument head
- 511 magnet
- 600 medical diagnostic or examination device
- 603 distal end, device
- 604 body or housing
- 605 back or proximal surface, device
- 608 handle
- 609 magnetic interface
- 610 instrument head
- 611 magnet
- 700 otoscope
- 704 handle portion
- 706 upper necked portion
- 708 instrument head
- 710 eyepiece
- 711 distal end
- 712 conical insertion portion
- 713 slotted portion or slot
- 720 adapter
- 724 distal engaging portion
- 727 gusset
- 728 proximal supporting portion
- 732 resilient fingers
- 736 recessed slot
- 738 interface plate
- 740 through opening
- 750 smart device
- 754 display
- 758 connector or connector portion
- 800 ophthalmoscope
- 804 handle portion
- 806 necked portion
- 808 instrument head
- 810 eyepiece
- 813 slot or slotted portion
- 920 adapter
- 924 distal engaging portion
- 928 proximal supporting portion
- 929 open end
- 930 guide rails
- 932 resilient fingers
- 958 connector or connector portion
- 1000 otoscope
- 23063301.1
- 1004 housing
- 1008 handle
- 1010 instrument head
- 1012 distal end
- 1014 speculum tip element
- 1015 actuator knob
- 1020 adapter
- 1022 planar section, adapter
- 1024 eyepiece
- 1026 proximal facing or face surface
- 1027 housing, eyepiece
- 1029 distal facing surface, eyepiece
- 1036 slot, receiving
- 1050 smart device
- 1054 display
- 1100 ophthalmoscope
- 1104 housing
- 1108 handle portion
- 1110 instrument head
- 1112 distal end
- 1116 elastomeric eye cup
- 1120 adapter
- 1122 planar section
- 1124 eyepiece
- 1126 rear facing surface, adapter
- 1136 rear slot
- 1200 ophthalmoscope
- 1206 handle portion
- 1210 instrument head
- 1211 distal end
- 23063301.1
- 1213 proximal end
- 1220 adapter
- 1226 distal facing or face surface, adapter
- 1228 proximal facing surface, adapter
- 1230 objective lens
- 1234 beam splitter
- 1238 focusing/imaging lenses
- 1244 optical axis
- 1248 image sensor
- 1260 light source
- 1264 condenser lens
- 1268 illumination axis
- 1270 fixation lights
- 1280 eye, patient
- 1284 image sensor
- 1284 eyepiece
- 1288 fixed lenses
- 1292 aperture stop
- 1296 doctor's eye
- 1300 otoscope
- 1306 handle portion
- 1310 instrument head
- 1311 distal end
- 1313 proximal end
- 1320 adapter
- 1326 distal facing surface
- 1328 proximal facing surface
- 1332 distal lens
- 1336 speculum
- 1338 plano window
- 23063301.1
- 1342 field stop
- 1346 focusable objective lens
- 1348 second lens
- 1350 optical axis
- 1354 smart device
- 1362 doctor's eye
- 1364 fixed eyepiece lenses
- 1368 aperture stop
- 1400 ophthalmoscope
- 1406 handle portion
- 1409 upper necked portion
- 1410 instrument head
- 1412 distal end
- 1415 light source
- 1416 proximal end
- 1417 optical elements
- 1419 optical elements
- 1420 aperture wheel
- 1424 diopter wheel
- 1426 lipped portion
- 1430 channel
- 1431 rear wall, instrument head
- 1500 adapter
- 1504 supporting member or body
- 1507 forward or front facing side, adapter
- 1509 rear facing side, adapter
- 1511 magnets
- 1512 device connection portion
- 1515 outer surface
- 1517 cutout portion, outer surface
- 23063301.1
- 1519 through opening, supporting member
- 1520 center portion
- 1524 release lever
- 1530 shaped recess
- 1540 spring-loaded pin
- 1544 stop
- 1550 smart device
- 1554 aperture, camera
- 1560 medical examination device
- 1564 proximal receiving portion
- 1568 housing, device
- 1572 channel
- 1575 outer ringed portion
- 1580 eyepiece lens
- 1582 eyepiece lens
- 1590 browrest
- 1600 medical examination device
- 1604 proximal end
- 1608 shoulder, annular
- 1612 channel
- 1616 interior
- 1620 optical element
- 1624 seal
- 1628 opening, end
- 1700 medical examination device
- 1704 proximal end
- 1708 shoulder, annular
- 1712 channel
- 1716 interior
- 1720 optical element
- 1722 optical element
- 1726 opening, end
- 1800 mount
- 1804 support surface
- 1808 slots
The invention is inclusive of combinations of the aspects described herein. References to “a particular aspect” (or “embodiment” or “version”) and the like refer to features that are present in at least one aspect of the invention. Separate references to “an aspect” or “particular aspects” or the like do not necessarily refer to the same aspect or aspects; however, such aspects are not mutually exclusive, unless so indicated or as are readily apparent to one of skill in the art. The use of singular or plural in referring to “method” or “methods” and the like is not limiting. The word “or” is used in this disclosure in a non-exclusive sense, unless otherwise explicitly noted.
The invention has been described in detail with particular reference to certain preferred aspects thereof, but it will be understood that variations, combinations, and modifications can be effected by a person of ordinary skill in the art within the intended spirit and scope of the invention.
Claims
1. An adapter for interconnecting a smart device with a medical examination device, said adapter comprising:
- a distal connecting portion for enabling releasable attachment to a proximal end of the medical examination device;
- a proximal connecting portion configured to support the smart device, the smart device having an integrated camera and a display; and
- one or more interface plates secured to a front facing side of the smart device, wherein the proximal connecting portion is configured to engage the one or more attached interface plates such that the camera is aligned with an optical axis of the medical examination device upon attachment of the distal connecting portion to the proximal end of the medical examination device.
2. The adapter according to claim 1, in which the distal connecting portion includes an opening configured for alignment with the optical axis of the medical examination device when the adapter is attached to the medical examination device.
3. The adapter according to claim 1, further comprising a lever configured for releasing the adapter from the medical examination device.
4. The adapter according to claim 3, in which the distal connecting portion includes a spring-loaded pin that is movable into and out of a defined recess sized to engage the proximal end of the medical examination device, the lever being movable to a position enabling release of the adapter from the medical examination device.
5. The adapter according to claim 1, in which the adapter is rotatably movable to a plurality of mounting orientations about the optical axis when the distal connecting portion is attached to the proximal end of the medical examination device.
6. The adapter according to claim 1, in which the adapter is configured to position a camera aperture of the smart device at a convergence point of an optical system of the medical examination equivalent to that of a viewer's eye using an eyepiece of the medical examination device.
7. The adapter according to claim 1, in which the adapter is configured for releasable attachment to one or more of a group of medical examination devices, the group including an otoscope, an ophthalmoscope, a dermatoscope, a rhinoscope and a colposcope.
8. The adapter according to claim 1, wherein the one or more interface plates are made from a metal, wherein the adapter further comprises at least one magnet disposed on the proximal connecting portion for releasably securing the one or more interface plates.
9. The adapter according to claim 1, wherein the adapter is configured to support a selected one of a plurality of smart devices and optically align the camera of the selected smart device with the optical axis of the medical examination device upon attachment.
10. The adapter according to claim 1, wherein the distal connecting portion is configured for attachment to at least one of an otoscope and an ophthalmoscope.
11. An adapter comprising:
- a planar support surface configured to releasably retain a smart device, the smart device having an integrated camera and a display;
- a device connecting portion distally extending from the planar support surface and having a formed opening, the device connecting portion being configured for releasable attachment to a proximal end of a medical examination device; and
- one or more interface plates positioned on the smart device such that when the device connecting portion is attached to the proximal end of the medical examination device, the camera of the smart device is aligned with an optical axis of the medical examination device.
12. The adapter of claim 11, in which the device connecting portion is configured to enable a supported smart device to assume a plurality of rotatable mounting orientations about the optical axis of the medical examination device to which the adapter is attached.
13. The adapter according to claim 11, including a lever for releasing the adapter from the medical examination device.
14. The adapter according to claim 11, further comprising at least one magnet positioned on the planar support surface for engaging one or more of the interface plates.
15. A method for configuring a smart device for a medical examination of a patient, the smart device comprising a housing having an integrated camera and display, the method comprising:
- using an alignment device, positioning one or more interface plates on the smart device;
- securing the smart device to a proximal connecting portion of an adapter; and
- attaching a distal connecting portion of the adapter to a proximal end of the medical examination device, wherein the secured smart device is automatically aligned with an optical axis of the medical examination device.
16. The method according to claim 15, further comprising:
- positioning the smart device on a mounting surface of the alignment device;
- aligning the camera of the smart device with an optical target on the alignment device in which the optical target is centered in the display of the smart device; and
- attaching the one or more interface plates through one or more openings provided on the mounting surface of the alignment device.
17. The method according to claim 15, further comprising rotating the adapter about the optical axis of the medical examination device to enable the secured smart phone to assume one of a plurality of orientations.
18. The method according to claim 15, wherein the smart device is one of a plurality of disparately sized smart devices.
19. The method according to claim 15, wherein the medical examination device is one or more of a group of medical examination devices including an otoscope, an ophthalmoscope, a dermatoscope, a colposcope, and a rhinoscope.
20. The method according to claim 15, further comprising rotating the adapter relative to the medical examination device to enable the attached smart device to assume one of a plurality of rotational configurations.
Type: Application
Filed: Aug 3, 2021
Publication Date: Nov 25, 2021
Inventors: David G. Perkins (Tully, NY), Raymond A. Lia (Auburn, NY), Robert L. Vivenzio (Auburn, NY), John R. Strom (Moravia, NY), Ervin Goldfain (Syracuse, NY), Steven R. Slawson (Camillus, NY), Michael T. McMahon (Syracuse, NY)
Application Number: 17/392,643