Lighting Assembly with LEDs and Optical Elements
A lighting apparatus includes a circuit board and light emitting diodes (LEDs) attached to the circuit board. The LEDs are arranged in an array of row and columns and are attached to the circuit board are arranged in a single plane. A support substrate supports the circuit board. Optical elements are configured to redirect light from the plurality of LEDs. Each optical element is substantially the same as all other optical elements. Each LED is associated with a single optical element and each optical element is associated with a single LED. The lighting apparatus is configured to direct light away from the circuit board so that the light is directed so as to illuminate a substantially rectangular area that is off-center relative to the light assembly. The substantially rectangular area has an edge that is at least 14 feet in length.
This is a continuation of U.S. patent application Ser. No. 16/750,361, filed Jan. 23, 2020, which is a continuation of U.S. patent application Ser. No. 16/459,127, filed Jul. 1, 2019, which is a continuation of U.S. patent application Ser. No. 15/939,565, filed Mar. 29, 2018, which is a continuation of U.S. patent application Ser. No. 15/676,823, filed Aug. 14, 2017, which is a continuation of U.S. patent application Ser. No. 15/162,278, filed May 23, 2016, which is a continuation of U.S. patent application Ser. No. 14/992,680, filed Jan. 11, 2016, which is a continuation of U.S. patent application Ser. No. 14/635,907, filed Mar. 2, 2015, which is a continuation of U.S. patent application Ser. No. 13/836,517, filed Mar. 15, 2013, which claims the benefit of U.S. Provisional Application No. 61/677,346, filed on Jul. 30, 2012, which applications are hereby incorporated herein by reference.
The following patents and applications are related:
-
- U.S. Pat. Appl. No. 61/677,340, filed Jul. 20, 2012 (now expired)
- U.S. Pat. Appl. No. 61/677,346, filed Jul. 30, 2012 (now expired)
- U.S. Pat. Appl. No. 61/677,352, filed Jul. 30, 2012 (now expired)
- U.S. patent application Ser. No. 13/836,517, filed Mar. 15, 2013 (now U.S. Pat. No. 8,974,077)
- U.S. patent application Ser. No. 13/836,612, filed Mar. 15, 2013 (now U.S. Pat. No. 8,870,410)
- U.S. patent application Ser. No. 13/836,710, filed Mar. 15, 2013 (now U.S. Pat. No. 9,062,873)
- U.S. patent application Ser. No. 14/137,306, filed Dec. 30, 2013 (now U.S. Pat. No. 8,985,806)
- U.S. patent application Ser. No. 14/137,343, filed Dec. 20, 2013 (now U.S. Pat. No. 8,870,413)
- U.S. patent application Ser. No. 14/137,380, filed Dec. 20, 2013 (now U.S. Pat. No. 9,068,738)
- U.S. patent application Ser. No. 14/630,500, filed Feb. 24, 2015 (now U.S. Pat. No. 9,812,043))
- U.S. patent application Ser. No. 14/635,907, filed Mar. 2, 2015 (now U.S. Pat. No. 9,234,642)
- U.S. patent application Ser. No. 14/706,634, filed May 7, 2015 (now U.S. Pat. No. 9,212,803)
- U.S. patent application Ser. No. 14/968,520, filed Dec. 14, 2015 (now U.S. Pat. No. 9,589,488)
- U.S. patent application Ser. No. 14/992,680, filed Jan. 11, 2016 (now U.S. Pat. No. 9,349,307)
- U.S. patent application Ser. No. 15/162,278, filed May 23, 2016 (now U.S. Pat. No. 9,734,737)
- U.S. patent application Ser. No. 15/208,483, filed Jul. 12, 2016 (now U.S. Pat. No. 9,514,663)
- U.S. patent application Ser. No. 15/208,521, filed Jul. 12, 2016 (now U.S. Pat. No. 9,524,661)
- U.S. patent application Ser. No. 15/216,562, filed Jul. 21, 2016 (now U.S. Pat. No. 9,659,511)
- U.S. patent application Ser. No. 15/216,595, filed Jul. 21, 2016 (now U.S. Pat. No. 9,542,870)
- U.S. patent application Ser. No. 15/413,277, filed Jan. 23, 2017 (now U.S. Pat. No. 9,734,738)
- U.S. patent application Ser. No. 15/413,306, filed Jan. 23, 2017 (now U.S. Pat. No. 9,732,932)
- U.S. patent application Ser. No. 15/429,320, filed Feb. 10, 2017 (now U.S. Pat. No. 9,685,102)
- U.S. patent application Ser. No. 15/627,089, filed Jun. 19, 2017 (now U.S. Pat. No. 10,410,551)
- U.S. patent application Ser. No. 15/676,823, filed Aug. 14, 2017 (now U.S. Pat. No. 9,947,248)
- U.S. patent application Ser. No. 15/939,565, filed Mar. 29, 2018 (now U.S. Pat. No. 10,339,841)
- U.S. patent application Ser. No. 15/969,511 filed May 2, 2018 (now U.S. Pat. No. 10,223,946)
- U.S. patent application Ser. No. 15/969,392, filed May 2, 2018
- U.S. patent application Ser. No. 16/241,067, filed Jan. 7, 2019 (now U.S. Pat. No. 10,460,624)
- U.S. patent application Ser. No. 16/459,127, filed Jul. 1, 2019
The following disclosure relates to lighting systems and, more particularly, to lighting systems using light emitting diodes to externally illuminate signs.
SUMMARYThe present invention, in one aspect thereof, comprises a back panel for use in a light emitting diode (LED) lighting assembly. An extruded substrate formed of a thermally conductive material is provided, the substrate having a plurality of fins extending from a first side of the substrate, each of the fins having a substantially rectangular shape oriented so that a longitudinal axis of the fin is substantially parallel to a longitudinal axis of the substrate. At least some of the fins include a hole formed through the fin to enable heated air to rise through the fins. A plurality of LEDs are mounted on a second side of the substrate, and oriented in a longitudinal orientation with the fins oriented parallel to the bottom edge of a surface to be illuminated, such that heat rises perpendicular to the surface of the fin.
For a more complete understanding, reference is now made to the following description taken in conjunction with the accompanying drawings in which:
Billboards, such as those commonly used for advertising in cities and along roads, often have a picture and/or text that must be externally illuminated to be visible in low-light conditions. As technology has advanced and introduced new lighting devices such as the light emitting diode (LED), such advances have been applied to billboards. However, current lighting designs have limitations and improvements are needed. Although billboards are used herein for purposes of example, it is understood that the present disclosure may be applied to lighting for any type of sign that is externally illuminated.
Referring to
One or more lighting assemblies no may be coupled to the walkway 108 (e.g., to a safety rail or to the walkway itself) and/or to another structural member of the billboard 100 to illuminate some or all of the surface 102 in low light conditions. The lighting assembly 110 may be mounted at or near a top edge 112 of the billboard 100, a bottom edge 114 of the billboard 100, a right edge 116 of the billboard 100, and/or a bottom edge 118 of the billboard 100. The lighting assembly 110 may be centered (e.g., located in approximately the center of the billboard 100) or off center as illustrated in
With additional reference to
One problem with current lighting technology is that it can be difficult to direct light only onto the surface 102 and even more difficult to do so evenly. This may be due partly to the placement of the lighting assembly 110, as shown in
In addition to the difficulties of evenly illuminating the surface 102, the use of LEDs in an exterior lighting environment involves issues such as heat dissipation and protecting the LEDs against environmental conditions such as moisture. The presence of moving mechanical features such as fans that may be used to provide increased airflow for cooling may create additional reliability problems. Due to the difficulty and expense of replacing and/or repairing the lighting assembly 110 in combination with the desire to provide consistent lighting while minimizing downtime, such issues should be addressed in a manner that enhances reliability and uptime.
Referring to
It is understood that any of the back panel 202, light panel 204, and optics panel 206 may actually be two or more physical substrates rather than a single panel as illustrated in
Referring to
The front surface 302 provides a mounting surface for the light panel 204. In some embodiments, the front surface 302 of the panel 202 may include one or more protrusions 314a and 314b that are substantially parallel to the top edge 306. The protrusions 314a and 314b may be configured to protect the light panel 204 from moisture. Although only two protrusions 314a and 314b are illustrated, it is understood that a single protrusion may be provided or three or more protrusions may be provided. Furthermore, such protrusions may vary in length, shape (e.g., may have angled or curved surfaces), orientation, and/or location on the front surface 302.
Referring specifically to
Referring specifically to
Referring to
The PCB 402 may include one or more strings of LEDs 416, with multiple LEDs 416 in a string. For example, a string may include eight LEDs 416 and each PCB 402 may include two strings for a total of sixteen LEDs 416. In this configuration, a light panel 204 having eight PCBs 402 would include ninety-six LEDs 416. It is understood that although the PCBs 402 are shown as being substantially identical, they may be different in terms of size, shape, and other factors for a single light panel 204.
In the present example, the LEDs 416 are surface mounted, but it is understood that the LEDs 416 may be coupled to the panel 204 using through hole or another coupling process. The surface mounted configuration may ensure that a maximum surface area of each LED 416 is in contact with the PCB 402, which is in turn in contact with the back panel 202 responsible for heat dissipation. Each string of LEDs may receive a constant current with the current divided evenly among the LEDs 416.
Referring to
The lens panel 500 may include a beveled or angled top side 506 and/or bottom side 508 as illustrated in
The lens panel 500 may include multiple optical elements 514. A single optical element 514 may be provided for each LED 416, a single optical element 514 may be provided for multiple LEDs 416, and/or multiple optical elements 514 may be provided for a single LED 416. In some embodiments, the optical elements 514 may be provided by a single multi-layer optical element system provided by the lens panel 500.
In the present example, the optical elements 514 are configured so that the light emitted from each LED 416 is projected onto the entire surface 102 of the billboard 100. In other words, if all other LEDs 416 were switched off except for a single LED 416, the entire surface 102 would be illuminated at the level of illumination provided by the single LED 416. In one embodiment, the rectangular target area of the surface 102 would be evenly illuminated by the LED 416, while areas beyond the edges 112, 114, 116, and 118 would receive no illumination at all or at least a minimal amount of illumination from the LED 416. What is meant by “evenly” is that the illumination with a uniformity that achieves a 3:1 ratio of the average illumination to the minimum. Thus, by designing the lens in such a manner, when all LEDs are operating, the light form the collective thereof will illuminate the surface at the 3:1 ratio. When one or more LEDs fail, the overall illumination decreases, but the uniformity maintains the same uniformity. Also, as described hereinabove, the “surface” refers to the surface that is associated with a particular LED panel. It may be that an overall illuminated surface is segmented and multiple panels are provided, each associated with a particular segment.
In some embodiments, as shown in
Furthermore, in some embodiments as described above, each LED 416 of a single lighting assembly 110 may be configured via the optical elements 514 to illuminate the entire surface 102. In such embodiments, if one or more LEDs 416 or strings of LEDs fails, the remaining LEDs 416 will still illuminate the entire surface 102, although at a lesser intensity than when the failed LEDs 416 are functioning. This provides evenly distributed illumination when all LEDs 416 are functioning correctly, and continues to provide evenly distributed illumination when one or more LEDs are malfunctioning. Accordingly, the billboard 100 may be illuminated even when multiple LEDs 416 have malfunctioned and are providing no illumination at all due to the redundancy provided by configuration of the lighting assemblies 110.
It is understood that some embodiments may direct substantially all illumination from a lighting assembly 110 evenly across the surface 102 while some illumination is not evenly distributed. For example, substantially all LEDs 416 may be directed to each evenly illuminate the surface 102 with the exception of a relatively small number of LEDs 416. In such cases, the illumination provided by the remaining LED or LEDs 416 may be directed to one or more portions of the surface 102. If done properly, this may be accomplished while minimizing any noticeable unevenness in the overall illumination, even if one of the remaining LEDs 416 malfunctions. For example, the lighting assembly 110 may be configured to direct the illumination provided by one LED 416 to only the left half of the surface 102, while directing the illumination from another LED 416 to only the right half of the surface 102. The loss of one of these two LEDs may not noticeably impact the illumination of the surface 102. It is understood that such variations are within the scope of this disclosure.
In embodiments where the illumination is evenly distributed across the surface 102, it is understood that the optics panel 206 may be configured specifically for the light panel 204 and the surface 102. For example, assuming the surface 102 is forty-eight feet wide and sixteen feet high, the lens panel 500 of
Referring to
Although various attachment mechanisms (e.g., threaded screws, bolts, and/or other fasteners) may be used to coupled the lens panels and LED assemblies to the back panel 602, the present embodiment uses multiple threaded fasteners 605 (e.g., screws) that extend through the lens panels and the LED assemblies and engage threaded holes in the back panel 602.
The lighting assembly 600 is also illustrated with a mounting plate 606 that couples to the back panel 602 and to an adjustable mounting bracket 608. The adjustable mounting bracket 608 may be used to couple the lighting assembly 600 to a portion of the billboard 100 (
The location of the power supply may also be beneficial as snow not melted by the heat produced by the LED may be melted by heat produced by the power supply. This may aid in reducing snow buildup on the LEDs.
With additional reference to
A back surface 706 includes multiple fins 708 that form a heat sink to aid in the dissipation of heat from the back panel 602. In the present example, the fins 708 are substantially rectangular in shape. In the present example, the back panel 602 is extruded and the fins 708 run parallel to the top edge with a longitudinal axis of each fin 708 being substantially parallel to a longitudinal axis of the back panel 602. Forming the fins 708 in a vertical manner is possible, but may increase the cost of the back panel 602 due to the extrusion process. As shown, the fins 708 may be substantially perpendicular to the back surface 706, and/or may be angled. In the present example, the fins 708 are angled such that near the top of the back panel 702, the fins 708 are angled towards the top.
Because the fins 708 are parallel to the top edge, heat may be trapped due to its inability to rise vertically. Accordingly, holes 710 may be present in some or all of the fins 708 (marked but not actually visible in the side view of
The back surface 706 may also include a groove 712 that is configured to receive a tongue of the mounting plate 606 in a tongue-in-groove manner.
With additional reference to
Referring specifically to
Referring also to
As shown in
Referring to
Although the preferred embodiment has been described in detail, it should be understood that various changes, substitutions and alterations can be made therein without departing from the spirit and scope of the invention as defined by the appended claims.
Claims
1. A lighting apparatus comprising:
- a circuit board; a plurality of light emitting diodes (LEDs) attached to the circuit board, the LEDs being arranged in an array of row and columns, wherein all of the LEDs attached to the circuit board are arranged in a single plane; a support substrate supporting the circuit board, the support structure made of a thermally conductive material and configured to dissipate heat during operation of the LEDs; and a plurality of optical elements configured to redirect light from the plurality of LEDs, each optical element being substantially the same as all other optical elements and configured to shape and direct light in a rectangular waveform, wherein each LED is associated with a single optical element and each optical element is associated with a single LED, wherein each optical element comprises a convex portion at least partially overlying the associated LED, and wherein the optical elements are part of an outer surface that forms an exposed surface of the lighting apparatus; wherein the lighting apparatus is configured so that when all of the LEDs are operating a substantially rectangular surface is illuminated with an illumination level and a uniformity; and wherein failure of one or more of the LEDs will cause the illumination level of light impinging the substantially rectangular surface to decrease while the uniformity of light impinging the substantially rectangular surface remains substantially the same.
2. The lighting apparatus of claim 1, further comprising an adjustable mount connected to the support structure, the adjustable mount having an angle of tilt that ranges between 0 degrees and 45 degrees
3. The lighting apparatus of claim 1, wherein the optical elements and the support structure are sealed to protect the LEDs from rainwater.
4. The lighting apparatus of claim 1, wherein the support structure is directly exposed to the outside atmosphere
5. The lighting apparatus of claim 1, wherein the optical elements are integrated into a single substrate so that all LEDs attached to the circuit board are between the single substrate and the circuit board.
6. The lighting apparatus of claim 1, wherein the optical elements are integrated into a light panel that comprises a plurality of substrates.
7. The lighting apparatus of claim 1, further comprising a 150 watt power supply electrically coupled to the LEDs.
8. The lighting apparatus of claim 1, further comprising a 120 watt power supply electrically coupled to the LEDs.
9. The lighting apparatus of claim 1, wherein each optical element comprises a first portion, a second portion and a third portion.
10. The lighting apparatus of claim 1, wherein each optical element includes a first portion and a second portion, the second portion intersects with the first portion in a region between the first portion and the second portion, wherein the first portion and the second portion are shaped so that at least one surface normal of the first portion intersects with at least one surface normal of the second portion.
11. The lighting apparatus of claim 10, wherein each optical element further includes a third portion that extends beyond the region between the first portion and the second portion in a direction away from the circuit board.
12. The lighting apparatus of claim 1, wherein each optical element of the plurality of optical elements includes a first portion, a second portion, and a third portion;
- wherein the first portion of each optical element is configured to redirect light from the associated LED in the first lateral direction;
- wherein the second portion of each optical element is configured to redirect light from the associated LED in the second lateral direction; and
- wherein the third portion of each optical element is configured to redirect light from the first and second portions in the third direction so that the light is directed asymmetrically in the third direction so as to illuminate the rectangular surface off-center relative to the lighting apparatus.
13. The lighting apparatus of claim 1, wherein the lighting apparatus is configured to illuminate the surface in a manner that does not create interference patterns or result in dead spots.
14. The lighting apparatus of claim 1, wherein the lighting apparatus is configured to illuminate the surface in a manner that avoids light pollution.
15. The lighting apparatus of claim 1, wherein the lighting apparatus is configured to evenly illuminate the surface.
16. The lighting apparatus of claim 15, wherein the lighting apparatus is configured to illuminate the surface with a 3:1 ratio of average illumination to minimum illumination.
17. The lighting apparatus of claim 16, wherein each LED is configured to illuminate the entire surface with a 3:1 ratio of average illumination to minimum illumination.
18. The lighting apparatus of claim 1, wherein the lighting apparatus is configured to illuminate a surface parallel to the circuit board.
19. A lighting apparatus comprising:
- a circuit board;
- a plurality of light emitting diodes (LEDs) attached to the circuit board, the LEDs being arranged in an array of row and columns, wherein all of the LEDs attached to the circuit board are arranged in a single plane;
- a heat sink thermally coupled to the circuit board, the heat sink made of a thermally conductive material and configured to dissipate heat during operation of the LEDs; and
- a plurality of optical elements configured to redirect light from the plurality of LEDs, each optical element being substantially the same as all other optical elements and configured to shape and direct light in a rectangular waveform, wherein each LED is associated with a single optical element and each optical element is associated with a single LED and wherein each optical element is configured to direct light from each LED away from the circuit board so as to illuminate a same substantially rectangular surface that is off-center relative to the lighting apparatus, the substantially rectangular surface having an edge that is at least 14 feet in length.
20. The lighting apparatus of claim 19, wherein the lighting apparatus is configured so that when all of the LEDs are operating, the substantially rectangular surface is illuminated with an illumination level and a uniformity, and wherein failure of one or more of the LEDs will cause the illumination level of light impinging the substantially rectangular surface to decrease while the uniformity of light impinging the substantially rectangular surface remains substantially the same.
21. The lighting apparatus of claim 19, wherein the optical elements are part of an outer surface that forms an exposed surface of the lighting apparatus.
22. The lighting apparatus of claim 19, wherein the optical elements are integrated into a single substrate so that all LEDs attached to the circuit board are between the single substrate and the circuit board.
23. The lighting apparatus of claim 19, wherein the lighting apparatus is configured to illuminate a surface parallel to the circuit board.
24. The lighting apparatus of claim 19, wherein the lighting apparatus is configured to illuminate the surface in a manner that does not create interference patterns or result in dead spots and in a manner that avoids light pollution.
25. The lighting apparatus of claim 19, wherein the length of the edge of the substantially rectangular surface is at least 24 feet.
26. The lighting apparatus of claim 19, wherein the lighting apparatus is configured to evenly illuminate the surface.
27. The lighting apparatus of claim 26, wherein the lighting apparatus is configured to illuminate the surface with a 3:1 ratio of average illumination to minimum illumination.
28. The lighting apparatus of claim 27, wherein each LED is configured to illuminate the entire surface with a 3:1 ratio of average illumination to minimum illumination.
29. A lighting apparatus comprising:
- a circuit board;
- a plurality of light emitting diodes (LEDs) attached to the circuit board, the LEDs being arranged in an array of row and columns, wherein all of the LEDs attached to the circuit board are arranged in a single plane;
- a heat sink thermally coupled to the circuit board, the heat sink made of a thermally conductive material and configured to dissipate heat during operation of the LEDs; and
- a plurality of optical elements configured to redirect light from the plurality of LEDs, each optical element being substantially the same as all other optical elements and configured to shape and direct light in a rectangular waveform;
- wherein each LED is associated with a single optical element and each optical element is associated with a single LED;
- wherein the lighting apparatus is configured so that when all of the LEDs are operating, a substantially rectangular surface is illuminated with an illumination level and a uniformity;
- wherein failure of one or more of the LEDs will cause the illumination level of light impinging the substantially rectangular surface to decrease while the uniformity of light impinging the substantially rectangular surface remains substantially the same;
- wherein the substantially rectangular surface has an edge that is at least 24 feet in length;
- wherein the lighting apparatus is configured to direct light away from the circuit board so that the light is directed so as to illuminate a substantially rectangular surface that is off-center relative to the light assembly;
- wherein the optical elements are part of an outer surface that forms an exposed surface of the lighting apparatus; and
- wherein light assembly is configured to illuminate a surface parallel to the circuit board.
Type: Application
Filed: Jan 11, 2021
Publication Date: Dec 9, 2021
Inventors: David Siucheong Auyeung (Carrollton, TX), William Y. Hall (Dallas, TX), Simon Magarill (Mountain View, CA)
Application Number: 17/146,203