Automatic Weapon Subsystem to Assist in Tracking and Eliminating Targets through Recognition and Munitions Selection
An automated weapons system is comprised of: a sensing subsystem; a munitions subsystem; a targeting subsystem; a computational subsystem; positioning apparatus; and, a firing subsystem. The sensing subsystem provides target data for at least one acquired target, responsive to at least one sensor. The munitions subsystem, provides selection of one from up to a plurality of types of said munitions as available as a selected munition. The targeting subsystem, is responsive to the target data to provide recognition of a type of target, for each said acquired target. The computational subsystem, selects a chosen target from the acquired targets, based on the type of the selected munition. The positioning apparatus adjusts the aim of the selected munition so that it will hit the chosen target. And, the firing subsystem fires the selected munitions through a barrel at the chosen target. In one embodiment, there are a plurality of the sensors, wherein the system acquires target data from at least one of the plurality of the sensors, for at least one target as said acquired target. The targeting subsystem recognizes the type of target responsive to analyzing the target data to provide recognition of each said acquired target.
The success of traditional human transported weapons to hit intended targets has been dependent upon an individual warfighter's ability and skill to aim and control the weapon. Much training and practice is required to enable a warfighter to be skilled at marksmanship. Historically, a human transported weapon's accuracy has been limited to the operator's skill, as well as environmental factors that may obscure or complicate the shot. Because skill is involved with hitting a target with a human transported weapon, many of the shots will miss the intended target, placing a requirement of having a large supply of munitions available in a firelight. This places a burden to resupply the warfighter in the field, as well as for the warfighter to carry more munitions into a battle, which is extra weight, as well as extra cost. Further, the selection and loading of what type of munitions to use against a given target has been a time-consuming manual process, and often time is of the essence.
Utilizing the present invention enhances a warfighter's skill at being able to accurately hit an intended target, and further, assists the warfighter in target and munitions selection. This invention allows any soldiers, even a warfighter with minimal training and experience, to perform with the skill and accuracy of an expert marksman, compensating for one or more of errors in aiming, environmental factors such as distance, wind, lighting or motion, along with other extenuating factors: weather (such as rain or fog) countermeasures (such as smoke) and other factors that might otherwise interfere with making an accurate shot. Another valuable aspect of this invention is to improve the probability of hitting a target that would otherwise be missed due to movement, inaccurate aim, obscured vision, or simply a difficult shot.
SUMMARY OF THE INVENTIONAn automated weapon system [preferably a human transported weapon] is comprised of a barrel, a targeting subsystem, a computational subsystem, a positioning subsystem, and, a firing subsystem. The barrel is utilized for propelling a fired munitions as aimed towards an area of sighting. The targeting subsystem identifies a chosen target in the area of sighting. The computational subsystem, responsive to the targeting subsystem, determines where the chosen target is and where the barrel needs to be aimed so that the munitions will strike the chosen target. The positioning subsystem adjusts the aim of the munitions responsive to the computational subsystem. The firing subsystem, fires the munitions at the chosen target responsive to the positioning subsystem. In one embodiment, the system is further comprised of an additional linked automated weapon having a separate barrel, separate munitions, a separate positioning subsystem, and a separate firing subsystem. The computational subsystem determines the positioning of the separate barrel to shoot the separate munitions to strike the chosen target. The additional linked automated weapon can be mounted on a stationary mount or mounted on a movable mount. In one embodiment, there is means for selecting at least one of the human transported weapon and the additional linked automated weapon, as selected and enabled to shoot the munitions at the firing time. In one embodiment, the human transported weapon is one of a plurality of weapons subsystems, and, wherein at least one of the plurality of the weapons subsystems is selected to take a best shot. In another embodiment, a respective best shot is taken by each of at least two of said plurality of weapons subsystems.
While this invention is susceptible of embodiment in many different forms, there is shown in the figures, and will be described herein in detail, specific embodiments thereof with the understanding that the present disclosure is to be considered as an exemplification of the principles of the invention and is not intended to limit the invention to the specific embodiments illustrated herein.
This invention relates to improved accuracy weaponry, and providing new capabilities for human transported weapons. This invention improves accuracy over existing weapons including, but not limited to by scanning the target field with sensors, selecting a desired target (this can be by one of many means such as: nearest target, most dangerous target, the target closest to the center of the target field, etc.), identifying the type of target, selecting an appropriate round of ammunition for the target (if desired), enhancing the aim of the weapon using feedback from the targeting system by providing a correction factor from where the weapon is aimed and where the selected target is, determining if the selected target should be fired at (inhibiting friendly fire situations), and then firing at the target with the corrected aim applied. This improves the miss to hit ratio, and can also further provide selection of target appropriate ammunition for the selected target.
As illustrated in the Figures herein, an Automated Weapons System is comprised of a targeting subsystem, a computational subsystem, and a barrel with repositioning means. The targeting subsystem can utilize a variety of sensors to detect, identify, categorize, and track targets. A target can then be selected, and the barrel can be repositioned to an angle appropriate for a firing solution to strike the selected target. In one embodiment, a munition is selected for a respective selected target and/or based upon the respective munitions availability.
In one embodiment, the computational subsystem allows for the generation of an error factor resulting from a first shot from the AWS, which can be utilized to correct aim for subsequent munition firing.
In another embodiment, the automated weapons technology can be used to prevent hunting (and other) accidents because the target type can be identified. This invention can be used to prevent hunting (and other) accidents, by detecting the difference between a game animal and a human hunter. Having the weapons system identify another hunter (human) would inhibit the firing means, thus avoiding hunting accidents.
In another embodiment, not only the type of target, but specific targets can be identified. For example, a police officer's weapon could be trained to know what the officer (and/or other officers) looked like, and inhibit firing at that officer, so that the officer's weapon could not be used against the officer (or against other officers).
In yet another embodiment, with hand held weapons where the accuracy is dependent upon the stability of the user holding the weapon, the automated weapons system can provide a means to ‘correct’ for instabilities and inaccuracies in aiming to allow for automated correction of the ‘barrel’ (and/or for instructions to the user) to correct for said instabilities and inaccuracies in aiming and movement of the barrel.
This invention also relates to mobile war-fighting technology, and more particularly to enhanced weapon accuracy technology, especially for hand held weapons.
A plethora of targeting sensors allows a wide spectrum of sensing beyond the visible spectrum, such as IR, SPI (Spacial Phased Imaging), UV (ULTRAVIOLET), X-Ray, Microwave, Thermal, 3D sensor, Visible light, Radar, Sonar, LIDAR, etc. [For further examples, see the catalog on “Image Sensors”, from Hamamaatsu, December, 2011).] Targeting sensors allow shooting at targets through fog, smoke, rain, and other vision obstructing conditions. This effectively provides an ‘all weather/all conditions’ targeting system. The sensors can also be used to identify not only a target, but the type of target. One means of doing this utilizes neural net pattern recognition means to identify the type of target (person, animal, tank, etc.)
Neural nets can be used both to identify targets, and to compute firing solutions. Alternatively, or additionally, traditional computing means, can be employed in the targeting subsystem for identifying and selecting targets. Neural nets can be used to both reduce the power used, and reduce the compute time for identifying and selecting a target.
There is literature teaching the use of neural nets in the use of target identification and tracking. For example, IBM has been working on a new hybrid technology of blending traditional computing architectures with neural nets to achieve a ‘best of both worlds’ processing system. This system could be utilized in the targeting subsystem for identifying targets, tracking targets and computing firing solutions.
This enhanced targeting and aiming system of the present invention can be applied to many different types of ‘pointing’ weapons: ballistic (gun), laser, particle, rail gun, etc.
This present invention also provides for correcting an error in aim adjustment as between where the weapon is aimed, providing a correction factor to the nearest target. Applying that correction factor by means of automated pointing adjustment can be applied to a wide range of weapons. Thus, the weapons aim can be automated in accordance with the present invention.
In one embodiment of the present invention, a targeting system selects a nearest target in a field of view. The targeting system computes a difference between where the weapon is aimed and where the nearest target is located to generate targeting correction information. The direction the weapon is aimed is adjusted based on the targeting correction information provided.
Alternatively, the targeting system can identify and lock onto a selected type of target, and then aim the weapon to fire a selected munitions at that selected type of target.
This invention also relates to enhanced weapon accuracy, and providing new features for hand held weapons to the mobile warfighter, this provides accuracy, while:
-
- 1. Not requiring the skill of becoming a marksmanship from human training, by using a deterministic automated mechanical solution (every warfighter becomes a marksman by using this weapon).
- 2. Improving the hit to miss ratio using computer aided targeting (thus, reducing the need for the warfighter to carry burdensome amounts of ammunition).
- 3. Using existing ammunition (not requiring complicated and expensive smart munitions).
- 4. Increasing the versatility of the weapon by automatically choosing the munitions fired based on the target type that is acquired (i.e. The weapon selects the type of munition fired based on the type of target identified).
- 5. Automatically selecting a ‘best’ target from the field of view of the weapon (i.e. The weapon chooses the best available target based on selectable algorithms, including ‘nearest’ target in the direction of the barrel if the weapon is not directly aimed at a target).
As illustrated in
The target field/area of sighting 230 is scanned by sensors 204 for potential targets 270, Some of these multiple sensors 204 can include, but are not limited to IR (infrared), spatial phase imaging, laser, optical, LIDAR (laser imaging detection and ranging), etc. There is no restriction as to the type of sensors 204 that can be used in the weapons system 200. Each additional sensor 204 adds more information to determine the type of target and target selection of the selected target 220.
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated and discussed in
In one embodiment, once a target 220 is selected, the computing means 250 determines an error correction (218) from where the “weapons barrel” 210 is aimed, to where the target 220 will be. This can also include compensation for environmental, motion and other factors that can affect the shot. In some embodiments, at the time of firing, the computing means 250 supplies an error or “correction” signal 218 to actuators 280 to move the weapons “barrel” 210.
In another embodiment, the Automated Weapon System 200 is activated when an accelerometer 290 detects that the weapon 200 is raised.
The type(s) of sensors 204 that can be used for this automated weapon system 200 are similar to sensors used for autonomous vehicles. [For examples of sensors for autonomous vehicles, see (https://www.sensorsmag.com/components/optical-sensors-are-a-key-technology-for-autonomous-car).]
In another embodiment, a “best shot” can be selected based on a mode of weapon operation. A mode of weapon operation as discussed herein, can be selected based on mission objectives. A manual mode embodiment enables the user to “force” on the weapon, a preferred mode of weapon operation. This can override an otherwise automated setting, while still allowing the automated setting of the automated weapon to assist (such as with target selection). For example, a war fighter (operator) can select “High Explosives” as the munitions, while still allowing the automatic selecting of targets (of any type of target) and providing correction to hit those targets.
In another embodiment of a fully automatic mode of operation, a war fighter can pull the trigger and sweep the weapon across a field of targets. At the time of firing for each munition, a target (e.g. a best target) is selected. In some embodiments, a best munition for the selected target is selected/prepared, and in other embodiments, the correction factor 218 (firing solution) for that target 220 is computed and applied, and then the weapon fires. Then the automated weapon system 200 proceeds to select a next available target, repeating the process as needed.
The present invention's enhanced targeting and aiming system (and methodology) can be applied to many different types of ranged weapon systems including but not limited to: projectile (firearms, railguns, etc.), directed energy (laser, plasma, microwave, sonic etc.), and non-lethal (rubber-bullets, paintballs, pepper balls, etc.), handheld and otherwise.
The targeting system 201b utilizes a sensing means (i.e. sensors) 204b providing sensing of potential targets 220a through environment. The sensing means 204b senses through environment 214b by means of at least one of: visible spectrum, and sensing other than just the visible spectrum, comprising at least one of IR, Spatial Phased Imaging, ULTRAVIOLET, X-Ray, Microwave, Thermal, 3D sensor, Visible light, Radar, Sonar, and LIDAR surveying technology that measures distance by illuminating a target with a laser light.
As illustrated in
In an alternate embodiment, as illustrated in
As illustrated in
A user/operator holds the human transported automatic weapons system 410.
The user then aims the weapon towards potential targets (or target) 420, initiating the targeting subsystem 300 to provide two options:
-
- 1. 430 The weapon 400 selects at least one target 350 in the area of sighting 430, or
- 2. 440 The user/operator selects the target 350 via the display 306 in the area of sighting 330
Depending on the selected option, the weapon then determines what adjustment of aim is needed to strike the target 450.
400 Using the computational subsystem logic 460 the weapon computes the difference between the aim to strike the target and the aim of the barrel, providing two options:
-
- 1. 470 The user can fire the weapon by pulling the trigger to activate the trigger signal, or
- 2. 480 The weapon is fired remotely by a remote device activating the trigger signal
490 The weapon 100 further adjusts the barrel aim responsive to a computed difference between the target aim and the barrel aim. The weapon 300 then releases munitions (499) now aimed to hit the target.
In another embodiment, as illustrated in
In one embodiment, target selection can be based upon a level of potential threats list.
In another embodiment, target selection is limited to targets within a range of barrel correction to assure the munition can hit a selected target.
A variety of means can be used to select a target, including but not limited to:
-
- the target closest to aim of weapon (or center of the field of sensor)
- the most lethal or threatening target
- the deadliest target
- the nearest target
- etc. . . .
- the best shot (easiest to hit)
- most effective (target which is most susceptible to weapon)
- by type of target
- Armor
- Human
- Bunker
- etc.
- By type of munitions available
Subsequently, the chosen target is tracked to determine where the projectile needs to be aimed to strike the chosen target when fired by the automated weapon system 100.
In one embodiment, as illustrated in
Referring to
The targeting subsystem is responsive to sensors 714 which can be used to identify a target and to identify the type of target by coupling the sensors 704 to a neural net pattern recognition means 701 that can identify the type of target (i.e. person, animal, tank, vehicle, etc.). One way this can be done is using a 1024 Neuron Semiconductor Chip CM1K from Cognimem (http://www.digikey.com/en/product-highlight/c/cognimem/1024-neuron-semiconductor-chip-cm1k). Cognimem's system can take sensor data fed to their neural net ASIC, which can be sensor data processed as discussed herein, to process the sensor data to both identify and track a target.
In a preferred embodiment, the present invention's weapon system is comprised of sensors coupled with a computing means to control adjustment of an aiming means. In one embodiment, this mechanism is a barrel portion of the weapons system that guides a munition towards an intended target, so as to achieve a hit on said target.
In another embodiment, correction of aim after a first shot is provided by generating an error correction and applying it to the barrel through the positioning means.
Sensor data 704 is evaluated by a computing means 740. In one embodiment, the computing means 740 includes neural net processing. Neural nets 700 can operate directly on the sensor data 704 producing outputs including, but not limited to, ‘target selection’, ‘target priority’, ‘target tracking data’, etc.
In another embodiment, neural nets 701 are used to increase speed [reduce the compute time] needed for identifying and selecting a target and to reduce power. In one embodiment, specific targets 702, (by type or by ID specifically) can be identified as potential threats or not. Targets that are not threats or identified as “friendly” are then removed from potential threats lists.
As illustrated in
The barrel 802 is responsive to the computational subsystem 840 and provides adjustment by the positioning means 804. The positioning means 804 can be mechanical, semi-automatic, and/or automatic and can utilize actuators of varying types (i.e. electrical, thermal, magnetic, mechanical, pneumatic). The barrel 802 can refer to the exiting path for a multitude of weapons systems, including but not limited to: projectile (firearms, rail-guns, etc.), directed energy (laser, plasma, microwave, sonic etc.), and non-lethal (rubber-bullets, paintballs, pepper-balls, etc.). This embodiment of system 800 can be applied to human transported automated weapon systems 100, mobile automated weapon systems [such as drones (air, ground, etc.)], and traditional mounted weapons. A major benefit of the present invention is that it can utilize preexisting munition packages and as such, does not require changes to the munitions supply chain.
As illustrated,
-
- a) At time 1, 910, the aim of the first shot 902 is fired, and the trajectory is such that the target 936 was missed.
- b) At some later time 2, 920, the system computes an error correction 906, based on the sensor 104 feedback on the current position of the target 136 and the sensor 104 feedback on the location (error correction, 906) that resulted from aim of the first shot 902.
- c) At a later time 3, 930, the computed error correction 906 is applied to generate a control signal to cause the barrel 920 to be adjusted 908.
As illustrated in
In accordance with another embodiment of the present invention as illustrated in
The targeting subsystem 1002 selects a selected target 220 from a plurality of identified targets in the area of sighting 230.
-
- antipersonnel munitions 1103 for human combatants 1104
- armor piercing munitions 1105 for armor targets 1106
- high explosive munitions 1107 for structures (buildings), or bunkers 1108
- etc.
In accordance with one aspect of the present invention, the automatic munitions selection can be overridden and manually selected. For example, a manual selection of high explosive munitions 1109 can be chosen for human targets 1110. Range 1112 can also be calculated by manually selecting a tracer round 1111 to acquire data to improve accuracy of the shot of the munitions.
As illustrated in
As illustrated in
Once the target 120 is selected, computing means 400 determine the error correction from where the “barrel” 102 is aimed, to where the target will be. This can include compensation for environmental, motion, and other factors that can affect the shot.
At time of firing, the computing means 400 supplies “correction” signals to actuators to direct the weapon “barrel” 102 to a designated spot 1816/1818 on the target. The designated spot 1816/1818 on the target 120 can be selected to inflict damage ranging from lethal 1816 to stun 1818 (incapacitate).
At time of firing, or at time of ‘new target acquisition, the computing means 400 also selects the appropriate munitions 202 per the type of target selected. Appropriate munitions 1104 could account for armor piercing for armored targets, anti-personal for humans, high explosive for structures, etc.
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
In
In another embodiment, as illustrated in
If the selected target is not valid, then a no shoot scenario 1408 is activated. The no shoot scenario 1408 can be as simple as an alert delivered to the user, or the automated weapons system 100 can inhibit the activation of a firing sequence.
In an alternative embodiment, the no shoot scenario can prevent mass shootings at designated targets (target types), such as human 1465, or shootings for all target types 1102, to inhibit firing of the weapon.
In another embodiment, the target type 1102 (from
In another embodiment, in a law enforcement situation, police 1428 can utilize the Automated Weapons System 100 to determine if a selected target is a civilian 1432 or is another policeman officer 1428, rather than a suspect 1430, to inhibit firing as appropriate.
In addition, in a military situation 1416, soldiers can identify who is an enemy 1418 or who is friendly 1420. Similarly, for a terrorist situation 1422 (left column of table), the automated weapon system 100 distinguishes whether to shoot a terrorist 1424 (middle column of table), and avoids shooting hostages 1426 (right column of table).
Since the selected target type 1102 can be identified (friend, foe, animal, vehicle, etc.) indicating if the target is valid 1406 can prevent hunting accidents and friendly fire.
The user can then specify what type of munitions 1101 (e.g. anti-personal, armor piercing, etc.) to use for the selected valid target 1410. Thus, the automated weapon system can determine the difference between: a game animal 1412 and another hunter 1412, or between an ally 1420 and an enemy combatant 1418, or between a truck and a tank 1106 (armored), etc. which provides the ability for the user (or automated weapon system 100) to respond accordingly.
The targeting subsystem 1404 is responsive to sensors 104 which can be used to identify a target 120, and to identify the type of target 1460 by way of coupling the sensors 104 to a neural net pattern recognition means 701 that can identify the type of target (i.e. person, animal, tank, vehicle, etc.). As discussed earlier herein, one way this can be done is using a 1024 Neuron Semiconductor Chip CM1K from Cognimem (http://www.digikey.com/en/product-highlight/c/cognimem/1024-neuron-semiconductor-chip-cm1k). Cognimem's system can take sensor data fed to their neural net ASIC, which can be sensor data processed as discussed herein, to process the sensor data to both identify and track a target.
As illustrated in
In one embodiment, as illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
In one embodiment, as illustrated in
From the foregoing, it will be observed that numerous variations and modifications may be effected without departing from the spirit and scope of the invention. It is to be understood that no limitation with respect to the specific apparatus illustrated herein is intended or should be inferred. It is intended to cover by the appended claims, all such modifications as fall within the scope of the claims.
Claims
1. An automated weapons system, comprising:
- a sensing subsystem for providing target data for at least one acquired target, responsive to at least one sensor;
- a munitions subsystem, providing selection of one from up to a plurality of types of said munitions as available as a selected munition;
- a targeting subsystem, responsive to the target data to provide recognition of a type of target, for each said acquired target;
- a computational subsystem, for selecting a chosen target from the acquired targets, based on the type of the selected munition;
- positioning apparatus for adjusting the aim of the selected munition so that it will hit the chosen target; and,
- a firing subsystem for firing the selected munitions through a barrel at the chosen target.
2. The system as in claim 1,
- wherein there are a plurality of the sensors;
- wherein the system acquires target data from at least one of the plurality of the sensors, for at least one target as said acquired target;
- wherein the targeting subsystem recognizes the type of target responsive to analyzing the target data to provide recognition of each said acquired target;
- wherein the automated weapons system has up to a plurality of types of munitions available;
- wherein the computational subsystem chooses the chosen target from the acquired targets based on current availability of the types of munitions available at the automated weapon system and chooses a selected munition for the chosen target from the types of the munitions available;
- wherein the positioning means adjusts the aim of the weapon so that the selected munition will hit the selected target; and,
- wherein the firing subsystem then fires the selected munition at the chosen target.
3. The system as in claim 1,
- wherein the computational subsystem determines where the munitions needs to be aimed to strike the chosen target, and utilizes a tracking subsystem that finds and identifies all said targets within the area of sighting, selects one said target as the chosen target and tracks the chosen target thereafter, and,
- wherein the aim of the munitions is adjusted in accordance with the tracking.
4. The system as in claim 1, further comprising:
- detection logic detecting a no-shoot situation prior to the firing of the munitions;
- inhibit logic preventing the firing logic from firing the munitions, responsive to the detection logic detecting a no-shoot situation.
5. The system as in claim 1,
- wherein the positioning means adjusts the aim responsive to at least one of: movement of the chosen target, user movement of the barrel, characteristics of the selected type of munition, characteristics of wind, characteristics of temperature, characteristics of humidity, distance, and, elevation.
6. The system as in claim 1,
- wherein the positioning means adjusts movement of the barrel responsive to actuators mounted to the barrel.
7. The system as in claim 1,
- wherein each said target, including the chosen target, is associated with one of a plurality of types of targets;
- wherein there are a plurality of types of munitions;
- wherein each said type of target has an associated said type of munitions;
- wherein the targeting subsystem selects as an appropriate said type of munitions, the associated type of munitions for the type of target associated with the chosen target;
- wherein the appropriate said type of munitions is loaded responsive to the targeting subsystem; and,
- wherein the appropriate said type of munitions is fired at the chosen target.
8. The system as in claim 1,
- wherein the locking onto is responsive to the determining where the munitions needs to be aimed to strike the chosen target, and utilizes a tracking subsystem that finds and identifies targets within the area of sighting, selects one said target as the chosen target and tracks the chosen target thereafter,
- wherein the aim of the munitions is adjusted in accordance with the tracking.
9. The system as in claim 1,
- wherein potential said selected targets are comprised of a human target and a non-human target;
- the system further comprising: means for identifying a target type for the selected target as one of said non-human target and said human target; and
- means for not allowing selection of the non-human target as the selected target.
10. The system as in claim 1,
- wherein there are potential said selected targets comprised of a human target and a nonhuman target;
- the system further comprising: means for identifying the selected target as one of the non-human target and the human target; and
- means for not allowing selection of the human target as the selected target.
11. The system as in claim 1, further comprising:
- means for determining if said selected target is a human target, and if said selected target is a human target then comparing said selected target to identified human targets comprising at least a first set of said identified human targets; and,
- means for enabling firing for the selected target if it is within said first set of said identified human targets.
12. The system as in claim 1,
- wherein if said selected target is a human target then said selected target is compared to identified human targets comprising at least a first set of said identified human targets,
- wherein firing is disabled for the selected target being within the first set of said identified human targets.
13. A method of operating an automated weapon system, the method comprising:
- providing target data for at least one acquired target from up to a plurality of said acquired targets, responsive to at least one sensor;
- providing selection of a selected munition, from one up to a plurality of types of munitions as available;
- providing recognition of a type of target, for each said acquired target;
- selecting a selected target from the acquired targets, based at least in part on the types of said munitions available;
- selecting as a selected said munition, the type of munition that is effective for said selected target;
- adjusting the aim of the selected munition so that it will hit the selected target; and,
- firing the selected munition at the selected target.
14. The method as in claim 13, further comprising:
- acquiring target data from a plurality of sensors, each for at least one said target as said acquired target;
- recognizing the type of target for each said acquired target responsive to analyzing the target data to provide recognition of each said acquired target;
- identifying current availability of a plurality of types of said munitions available to select from;
- selecting the chosen target from the acquired targets based on the current availability of the types of munitions;
- choosing a selected munition for the chosen target from the types of the munitions available;
- adjusting the aim of the weapon so that the selected munition will hit the selected target; and,
- firing the selected munition at the chosen target.
15. The method as in claim 13, further comprising:
- utilizing a tracking subsystem that finds and identifies targets within the area of sighting, for determining where the munitions needs to be aimed to strike the selected target;
- selecting one said target as the selected target; and,
- tracking the selected target thereafter,
- wherein the aim of the munitions is adjusted in accordance with the tracking.
16. The method as in claim 9, further comprising:
- detecting a no-shoot situation prior to the firing of the munitions, and
- preventing the firing of the munitions responsive to detecting the no-shoot situation.
17. The method as in claim 13, further comprising:
- adjusting the aim responsive to at least one of: movement of the chosen target, user movement of the barrel, characteristics of the selected type of munition, characteristics of wind, characteristics of temperature, characteristics of humidity, distance, and, elevation.
18. The method as in claim 13, further comprising:
- adjusting movement of the barrel responsive to actuators mounted to the barrel.
19. The method as in claim 13,
- wherein there are a plurality of types of munitions available;
- wherein each of said targets is associated with one of a plurality of types of targets,
- wherein each said type of target has an associated said type of munition;
- the method further comprising:
- selecting the associated type of munitions for the type of target associated with the selected target;
- loading the appropriate said type of munitions responsive to the type of the selected target; and,
- firing the appropriate munitions from said automated weapon system.
20. The method as in claim 9, further comprising:
- identifying a plurality of said targets within the area of sighting;
- selecting one said target as the selected target;
- tracking the selected target thereafter; and,
- determining where the munitions needs to be aimed to strike the selected target;
- wherein the aim of the munitions is adjusted in accordance with the tracking.
21. The method as in claim 13,
- wherein potential said selected targets are comprised of a human target and a non-human target;
- the method further comprising: identifying a target type for the selected target as one of said non-human target and said human target; and
- not allowing selection of the non-human target as the selected target.
22. The method as in claim 13,
- wherein there are potential said selected targets comprised of a human target and a nonhuman target;
- the method further comprising: identifying the selected target as one of the non-human target and the human target; and
- not allowing selection of the human target as the selected target.
23. The method as in claim 13, further comprising:
- determining if said selected target is a human target, and if said selected target is a human target then comparing said selected target to identified human targets comprising at least a first set of said identified human targets; and,
- enabling firing for the selected target if it is within said first set of said identified human targets.
24. The method as in claim 13,
- wherein if said selected target is a human target then said selected target is compared to identified human targets comprising at least a first set of said identified human targets,
- wherein firing is disabled for the selected target being within the first set of said identified human targets.
25. An automated weapon system, comprising:
- a sensing subsystem providing target data for at least one acquired target, responsive to at least one sensor;
- a munitions subsystem providing selection of one from up to a plurality of types of said munition as available;
- a targeting subsystem providing recognition of a type of target, for each said acquired target;
- a computational subsystem for selecting a selected target from the acquired targets, based at least in part on the types of said munitions available; and, for selecting as a selected munition, the type of said munition that is available and that is determined effective for said selected target;
- position means adjusting the aim of the selected munition so that it will hit the selected target; and,
- a firing subsystem, firing the selected munitions through a barrel at the selected target.
26. The system as in claim 25,
- wherein the sensing subsystem provides means for acquiring target data from each of a plurality of sensors for at least one target as said acquired target;
- wherein the targeting subsystem provides means for recognizing the type of target responsive to analyzing the target data to provide recognition of each said acquired target;
- wherein there are a plurality of types of munitions available to select from;
- wherein the computational subsystem provides means for selecting the selected target from the acquired targets based on current availability of the types of munitions available and provides means for choosing a selected munition for the selected target from the types of the munitions available;
- wherein the position means adjusts the aim of the weapon so that the selected munition will hit the selected target; and,
- wherein the firing subsystem then fires the selected munition at the selected target.
27. The system as in claim 25, further comprising:
- means for determining where the selected munition needs to be aimed to strike the selected target, responsive to tracking up to a plurality of said targets within the area of sighting, and for selecting one said target as the selected target;
- wherein the aim of the munitions is adjusted in accordance with the tracking.
28. The system as in claim 25, further comprising:
- means for preventing the firing of the munitions responsive to detecting a no-shoot situation prior to the firing of the munitions
29. The system as in claim 25, further comprising:
- wherein the position means provides for adjusting the aim responsive to at least one of:
- movement of the selected target, user movement of the barrel, characteristics of the selected type of munition, characteristics of wind, characteristics of temperature, characteristics of humidity, distance, and elevation.
30. The system as in claim 25,
- wherein the adjusting the aim adjusts movement of the barrel responsive to actuators mounted to the barrel.
31. The system as in claim 25, the system further comprising:
- wherein there are a plurality of types of munition;
- wherein each of said targets is associated with one of a plurality of types of targets,
- where each said type of target has an associated said type of munitions;
- means for selecting of the associated type of munition for the type of target associated with the selected target as an appropriate said type of munition;
- means for loading said appropriate said type of munition responsive to the type of selected target; and,
- wherein the appropriate said type of munition is fired from said automated weapon system.
32. The system as in claim 25, further comprising:
- aiming logic, determining where the munitions needs to be aimed to strike the selected target;
- a tracking subsystem that finds and identifies said targets within the area of sighting, selects one said target as the selected target, and tracks the selected target thereafter; and,
- wherein the aim of the munitions is adjusted responsive to the tracking subsystem.
Type: Application
Filed: Jun 10, 2020
Publication Date: Dec 16, 2021
Inventors: Brett C. Bilbrey (Sunnyvale, CA), David H. Sitrick (Pacific Palisades, CA)
Application Number: 16/897,769