Animated Firefly Novelty Device
An indoor-outdoor novelty device which simulates the flight and illumination patterns of real fireflies in dark conditions. The device provides the illusion of a flying illuminated firefly, appearing and disappearing at pseudorandom positions. This behavior provides a realistic firefly effect especially when multiple devices are present. This effect is due to the unique configuration of this device under microcontroller control. The device may be configured as completely self-contained, self-operating and self-charging; not requiring user intervention for daily operation and can be located indoors or outdoors.
Latest Patents:
This application claims the benefit of provisional patent application No. 62/748,414 filed Oct. 20, 2018 and is incorporated by reference in its entirety herein.
BACKGROUND OF THE INVENTIONThere are a few thousand species of Lampyridae (fireflies) in the world. They vary in their flashing pattern and color. The color varies, most peaking between 530 nanometers to 620 nanometers (green to yellow-orange) with group patterns appearing random or in sequence with each other. The period of illumination is very brief; on the order of 50 to 1000 milliseconds. In order to mimic a Lampryridae, you need to simulate the correct amount of illumination, period of illumination, color and position (movement).
U.S. Pat. Nos. 3,736,683; 3,494,058; and U.S. Pat. No. 3,477,157 to Paquette is an advertising display comprised of a flashing light attached to an elongated, flexible, elastic member or wand.
U.S. Pat. No. 4,570,924 to Connelly is an illusion device that places on an illusionist's finger or thumb a circuit board attached to a stiff but resilient wire with a flashing light source. The performer movement produces motion.
U.S. Pat. No. 6,851,208 to Carter incorporates a motor driven fan mounted to swing freely at the distal end of the first depending flexible line segment. The fan induces thrust in the direction normal to the line segment. A LED is attached to the second distal end of the line segment. The result is that the thrust of the fan provides motion and the rotation of the LED will cause the light to appear to flash on and off as the LED body eclipses the light transmitting opening.
U.S. Pat. No. 7,212,932 to Taylor is an electronic circuit and program to control LED devices to mimic Lampyridae illumination.
U.S. Pat. No. 8,206,007 to Lynn incorporates a flexible wand that is attached to an eccentrically weighted motor that causes vibration. At one end of an extension to the wand or alternatively the motor housing, hangs with a cable with a cluster of multi-color LEDs.
U.S. Pat. No. 8,594,959 to Schaal is an electronic circuit and program to control a LED that is encapsulated in a small plastic housing.
U.S. Pat. No. 8,928,227 to Padula is an electronic circuit powered by a solar cell and battery to power a LED.
The prior art does not simulate both the flight and illumination patterns of real fireflies in a device that can be self-contained, self-powered, and self-operated. Prior art methods require correct placement of the device and limits the placement of the observer as to not destroy the affect. Fans need to be hidden from view and can generate noise. The placement of some devices is limited by requiring overhead or elevated objects to mount to.
SUMMARY OF THE INVENTIONThe present invention generally discloses a device which simulates a flying bioluminescence organism using a rod with an illuminated tip extending from an enclosure that contains a motor for producing rod motion and a microcontroller for controlling motion and illumination.
AdvantagesThe present disclosure can provide a number of advantages depending on the particular aspect, embodiment, and/or configuration. Several advantages of the present disclosure are: the device mimics real fireflies thru the pseudorandom period of illumination, non-illumination, motion, position and velocity. The device can be placed indoors or outdoors. The thin rod is not perceivable in low light thereby resulting in a point of light that appears to float in mid-air. The illuminated tip motion can be pseudorandomly positioned with pseudorandom velocity within a 360 degree upper hemispherical area. The enclosure can be made water-resistant and be placed anywhere indoors or outdoors on horizontal surface as well as staked. By virtue of having its own power-source and programmable operation it has the ability to operate for years without human intervention. The user can adjust the period of illumination and motion with a programmable button. Several devices can be placed in proximity to each other and optionally programmed so that no two devices will have the same behavior.
- 1. Enclosure
- 2. Wire rod
- 3. Illuminated tip
- 4. Ground stake
- 5. MODE button
- 6. LED1
- 7. Ground wire
- 8. Clear Rod
- 9. Connector
- 10. Pendulum
- 11. Pendulum opening
- 12. Stationary pin
- 13. Flexible wire
- 14. Magnet
- 15. O-ring
- 16. Electromagnetic coil
- 17. Microcontroller
- 18. Circuit board
- 19. LED2
- 20. Switch
- 21. Rechargeable battery
- 22. Solar cell
- 23. Solenoid
- 24. Solenoid plunger
- 25. Stationary pivot
- 26. Triangular platform
- 27. Servomotor 1
- 28. Servomotor 1 armature
- 29. Servomotor 2
- 30. Servomotor 2 armature
- 31. R4 47 ohm resistor
- 32. R5 150 ohm resistor
- 33. R3 150 ohm resistor
- 34. R6 100K ohm resistor
- 35. R1 7.5K ohm resistor
- 36. R2 1M ohm resistor
- 37. U1 transistor
- 38. Schottky diode
A magnet 14 is shown fastened to the pendulum with electromagnetic coil 16 positioned below magnet 14. The current of electromagnetic coil 16 is controlled by microcontroller 17. The microcontroller 17, along with other discrete components, are mounted on a circuit board 18. When the electromagnetic coil 16 is not energized, the weight of magnet causes pendulum 10 to center over electromagnetic coil 16 and wire rod 2 is vertical. When current is applied to the electromagnetic coil 16 opposing magnetic fields cause magnet 14 to be deflected away from the center position.
Because the current that energizes the electromagnetic coil 16 is modulated (turned on and off) by the microcontroller 17 at pseudorandom intervals, the wire rod 2 swings in multiple pseudorandom positions within a circular 360-degree upper hemisphere field. Additionally, inertia of the wire rod 2 extends movement and motion even after electromagnetic coil is not energized adding fluidly to the motion of the wire rod 2.
A flexible wire pair 13 is connected to a two-pin connector 9 and routed to the circuit board 18. In addition to controlling the electromagnetic coil 16, the microcontroller 17 also controls the pseudorandom illumination of LED1 6 and synchronizes the timing of its illumination with the energizing of the electromagnetic coil 16, thus resulting in the LED1 6 always being illuminated while in motion.
The pseudorandom motion of wire rod 2 with illumination of LED1 6 create the appearance of a brief point of light appearing in one position and then disappearing in another position as if it were flying. The microcontroller 17 is programmable to simulate the behavioral pattern of real fireflies both in their movement (flight) and their momentary illumination.
An internal rechargeable battery 21 is positioned at the bottom of the housing powering the device. The rechargeable battery 21 is charged in the daylight hours by an integrated solar cell 22.
In
This embodiment is constructed in such a way that water can enter from the pendulum opening 11 of the device where the pendulum 10 protrudes. An inner chamber is positioned within the enclosure that is sealed off from water with an O-ring 15. Within this inner chamber is positioned the electromagnetic coil 16, circuit board 18 and rechargeable battery 21.
Both servomotor 1 27 and servomotor 2 29 are controlled by the microcontroller 17 attached to the circuit board 18. When one or both servomotor 1 27 (X axis) and servomotor 2 29 (Y axis) are energized, each can rotate their axis plus or minus 90 degrees from vertical. As a result the position of the rod assembly tip (where the illuminated tip 3 is located) can be positioned at any three dimensional point in a 360-degree upper hemispherical area. The combination of X axis and Y axis rotation creates potentially millions of pseudorandom flying patterns that vary in both their position and velocity of movement.
Again referring to
R3 33, R4 31 and R5 32 are current limiting resistors for LED1 6 and LED2 19 respectively. IC1 17 takes input from SW1 20 and outputs a response to LED2 19 thereby giving feedback to the user. IC1 17 sends a momentary PWM (pulse width modulated) voltage to LED1 6 to control its fade up and down rate as well as duration of full brightness. C1 9 connector is connected to LED1 6 described in
The rechargeable battery 21 is charged in the daylight hours by means of CELL 22, a solar cell. D1 38 a Schottky diode limits any reverse voltage from VCC getting back to CELL 22 which would prematurely drain the rechargeable battery 21. Finally, CELL 22 is connected to an input pin on the IC1 17 in which microcontroller monitors the voltage of the CELL 22 to determine whether it is dark or light (night time or daytime).
Referring to
If it is dark as determined by block 44, the program then proceeds to block 45 to determine if the period of the illuminated tip and motor mechanism is set to HI activity or LOW activity. Hi activity means that the illumination of LED1 6 will pseudorandomly appear more often and LOW activity means less often. If block 45 is set to HI it directs the program to block 47 which assigns a new pseudorandom generated value within a limited range for the next time the program loops that results in a more frequently appearing LED1 6. If the Activity MODE 45 is set to LOW block 46 assigns a new pseudorandom generated value within a limited range for the next time the program loops, that results in a less frequently appearing LED1 6. Block 48 runs the subroutine for the illumination and motion of the device (refer to
When the surrounding ambient light becomes dark, the device turns itself on automatically. In pseudorandom intervals between two seconds and twenty seconds, the illuminated tip 3 will light and fade to full brightness and hold full brightness for a pseudorandom number of milliseconds while moving thru the air in a pseudorandom trajectory and velocity and then its brightness will fade to zero brightness. The pseudorandom appearance of the illumination tip 3, pseudorandom motion and velocity occur throughout an approximate four hour period and then the device shuts itself off (when set to Auto MODE). If the user wishes to extend the four hour period they can depress the MODE button 5 to the ON position and the device will operate whenever darkness exists. The next day, when there is daylight, the integrated solar cell 22 will charge the rechargeable battery 21 while there is daylight and will be ready to operate again upon the next period of darkness.
As will be apparent to those skilled in the art, there are other circuits and structures beyond and/or in addition to those explicitly described herein which will serve to implement the mechanism of the present invention. Although the above description enables the embodiments described herein, these specifics are not intended to restrict the invention, which should only be limited as defined by the following claims.
Claims
1. A device which simulates a flying bioluminescence organism comprising:
- a rod with an illuminated tip extending from an enclosure;
- a motor contained in said enclosure adapted to produce motion of said rod; and
- a microcontroller controlling motion and illumination control.
2. The device of claim 1, wherein said motor comprises:
- a pendulum;
- a magnet attached to said pendulum; and
- an electromagnetic coil.
3. The device of claim 1, wherein said microcontroller controls one or more of illumination, non-illumination, motion, pseudorandom position, and pseudorandom velocity.
4. The device of claim 3, wherein said pseudorandom position and said pseudorandom velocity are within a 360 degree upper hemispherical area for said illuminated tip.
5. The device of claim 1, wherein said rod is detachable.
6. The device of claim 1, wherein said microcontroller is programmed to such that no two device's period of illumination, position, and velocity are substantially the same.
7. The device of claim 1, wherein said illuminated tip is not illuminated when at rest.
8. The device of claim 1, wherein said enclosure includes water-resistant materials and seals.
9. The device of claim 1, wherein said enclosure includes a removable ground stake.
10. The device of claim 1, wherein said enclosure includes a switch connected to said microcontroller adapted to set different device operations.
11. The device of claim 10, wherein said device operations are one or more of motion, illumination, velocity, sleep time, power on, and power off.
12. The device of claim 1, further comprising a renewable energy source mounted to said enclosure.
13. The device of claim 12, wherein said renewable energy source is connected to said microcontroller adapted to set different device operations.
14. The device of claim 12, wherein said renewable energy source charges a rechargeable battery.
15. The device of claim 12, wherein said renewable energy source is a solar cell.
16. The device of claim 1, wherein said motor includes an assembly of three solenoids mounted to a tilting platform.
17. The device of claim 16, wherein each said solenoid is positioned 120 degrees apart from each other.
18. The device of claim 1, wherein said motor includes a first servomotor and a second servomotor connected to said first servomotor.
Type: Application
Filed: Aug 12, 2019
Publication Date: Jan 6, 2022
Patent Grant number: 11412587
Applicant: (San Jose, CA)
Inventor: Mark Biasotti (San Jose, CA)
Application Number: 16/538,782