AUTONOMOUS DOWNHOLE TOOL
An autonomous tool includes a tool body and turbine wheels coupled to the tool body. Each turbine wheel is retractable into the tool body and extendable out of the tool body. When the turbine wheels are extended out of the tool body, the axial axes of the turbine wheels can be positioned parallel to the axial axis of the tool body, allowing generation of mechanical energy from a fluid stream moving along the tool body, or positioned perpendicular to the axial axis of tool body, allowing the turbine wheels to roll along a tubular wall. Electrical generators are mechanically coupled to the turbine wheels to convert the mechanical energy produced by the turbine wheels into electrical energy. An energy storage stores the electrical energy for use by components of the tool.
Latest SAUDI ARABIAN OIL COMPANY Patents:
- Interactive core description assistant using virtual reality
- Method and apparatus for a well vibrator tool
- Electrolyte structure for a high-temperature, high-pressure lithium battery
- Method to test exploration well's hydrocarbon potential while drilling
- Systems and methods for flow rate validation in a well system
In the oil and gas industry, a completed well means that the well has produced or is ready to produce fluids from a subsurface reservoir. Typically, a production tubing is installed in the well to convey reservoir fluids from the well to the surface. After a well has been completed, various operations may be performed in the well that require running a tool through the production tubing and into the well using a wireline or coiled tubing. If the well has a horizontal lateral section, a tractor may be needed to pull the tool along the horizontal lateral section. Examples of operations that may be performed periodically in a completed well are production logging and well stimulation. Production logging is performed to obtain a production profile of a given formation interval and is important to monitoring well production profile over time. Well stimulation is performed to remove mineral and composite deposits in the well or in the formation near the well that may hinder well productivity or injectivity. The current practice of running tools downhole in order to perform these operations usually means that well production is interrupted during these operations, which adds to production cost, not to mention the health, safety, and environmental risks involved in frequently accessing a producing well.
SUMMARYIn a first summary example, an autonomous downhole tool includes a tool body having an axial axis and a plurality of turbine wheels coupled to the tool body. Each turbine wheel is movable separately to each of a first position in which the turbine wheel is retracted inside the tool body, a second position in which the turbine wheel is extended out of the tool body and an axial axis of the turbine wheel is parallel to the axial axis of the tool body, and a third position in which the turbine wheel is extended out of the tool body and the axial axis of the turbine wheel is perpendicular to the axial axis of the tool body. The apparatus includes a plurality of electrical generators mechanically coupled to the plurality of turbine wheels. The electrical generators convert mechanical energy produced by the turbine wheels to electrical energy. The autonomous downhole tool includes an energy storage electrically coupled to the electrical generators to store the electrical energy.
The autonomous downhole tool may include a fishing neck that is coupled to an end of the tool body. The fishing neck may be engageable by a downhole fishing tool for retrieval of the tool from a wellbore. The autonomous downhole tool may include at least one communication device coupled to the tool body for wireless communication. The autonomous downhole tool may include at least one wellbore operation tool coupled to the tool body. The wellbore operation tool may be selected from a production logging tool and a wellbore stimulation tool. The autonomous downhole tool may include a plurality of mechanisms operable to position the turbine wheels at each of the first position, the second position, and the third position. Each of the mechanisms may be coupled between a respective one of the turbine wheels and the tool body. Each of the mechanisms may include a mechanical arm having two arm parts coupled together by a rotary joint. Alternatively, each of the mechanisms may include a robot manipulator.
In a second summary example, a system includes a well penetrating a subsurface region, a tubing disposed in the well for transport of a fluid stream between the subsurface region and a surface region, and a downhole tool disposed in the well and further down the well than a bottom end of the tubing. The downhole tool includes a plurality of turbine wheels that are each movable separately to each of a first position in which the turbine wheel is retracted inside a tool body, a second position in which the turbine wheel is oriented to produce mechanical energy from the fluid stream, and a third position in which the turbine wheel is oriented to roll along an inner surface of the well.
The downhole tool may include a plurality of electrical generators. Each electrical generator may be mechanically coupled to one of the turbine wheels to convert the mechanical energy produced by the turbine wheel to electrical energy. The downhole tool may include an energy storage electrically coupled to the electrical generators to store the electrical energy. The downhole tool may include one or more wireless communication devices. The system may include a control system disposed at the surface region and in communication with the downhole tool through the wireless communication device(s). The downhole tool may include at least one tool to perform an operation in the well. The at least one tool may be selected from a production tool and a well stimulation tool. The downhole tool may include a plurality of mechanisms operable to position the turbine wheels at each of the first position, the second position, and the third position. Each of the mechanisms may be coupled between a respective one of the turbine wheels and the tool body.
In a third summary example, a method includes deploying a downhole tool into a well and leaving the downhole tool in the well with an axial axis of a tool body of the downhole tool aligned with a fluid flow direction in the well. The method includes transporting a fluid stream between the well and a surface region along the fluid flow direction. The method includes positioning the downhole tool in a first mode at one or more times during transporting the fluid stream by moving a plurality of turbine wheels of the downhole tool relative to the tool body and into a position and an orientation in which the fluid stream passes through the turbine wheels. The method includes positioning the downhole tool in a second mode at one or more times during transporting the fluid stream by moving the plurality of turbine wheels of the downhole tool relative to the tool body and into a position and an orientation in which the downhole tool is transportable along the well by rolling of the turbine wheels.
The acts of positioning the downhole tool in the first mode and positioning the downhole tool in the second mode may include receiving a command to switch a mode of the downhole tool from the surface region. The method may include detecting that a power level in an energy storage of the downhole tool is below a threshold prior to positioning the downhole tool in the first mode. The act of moving the plurality of turbine wheels of the downhole tool relative to the tool body during positioning the downhole tool in the first mode or the second mode may include moving the plurality of wheels from a retracted position inside the tool body to an extended position outside of the tool body. The method may include at least one of performing production logging and well stimulation while the downhole tool is in the second mode.
The foregoing general description and the following detailed description are exemplary of the invention and are intended to provide an overview or framework for understanding the nature of the invention as it is claimed. The accompanying drawings are included to provide further understanding of the invention and are incorporated in and constitute a part of the specification. The drawings illustrate various embodiments of the invention and together with the description serve to explain the principles and operation of the invention.
The following is a description of the figures in the accompanying drawings. In the drawings, identical reference numbers identify similar elements or acts. The sizes and relative positions of elements in the drawings are not necessarily drawn to scale. For example, the shapes of various elements and angles are not necessarily drawn to scale, and some of these elements may be arbitrarily enlarged and positioned to improve drawing legibility. Further, the particular shapes of the elements as drawn are not necessarily intended to convey any information regarding the actual shape of the particular elements and have been solely selected for ease of recognition in the drawing.
In the following detailed description, certain specific details are set forth in order to provide a thorough understanding of various disclosed implementations and embodiments. However, one skilled in the relevant art will recognize that implementations and embodiments may be practiced without one or more of these specific details, or with other methods, components, materials, and so forth. In other instances, related well known features or processes have not been shown or described in detail to avoid unnecessarily obscuring the implementations and embodiments. For the sake of continuity, and in the interest of conciseness, same or similar reference characters may be used for same or similar objects in multiple figures.
Each turbine unit 155 includes components to harvest energy from fluid flow and enable transport of the autonomous downhole tool along an inner surface of a wellbore, which may be a surface of an open hole or a surface of a wellbore tubular lining the wellbore. Power management unit 165 includes components to store energy received from turbine units 155 and to distribute the stored energy to various components of the tool, such as operation tool 180, communication unit 175, and actuators in turbine units 155. Communication unit 175 includes components to send and receive wireless communication. Operation tool 180 performs an operation in a wellbore. For example, operation tool 180 may be a logging tool, such as a production logging tool, or a stimulation tool, such as a high power ultrasonic tool to perform wellbore descaling or near-wellbore stimulation. Operation tool 180 may further include tools for in-situ measurements of stress state/conditions and/or rock geomechanical properties, such as pressuremeter testing tool and scratch testing tool. Autonomous downhole tool 100 may have more than one operation tool.
Autonomous downhole tool 100 may include a fishing neck 150 attached to an end of elongated body 102. In the oilfield, a fishing neck provides a surface for a fishing tool to engage when retrieving a fish from a wellbore—a fish is an item left in a wellbore. For the autonomous downhole tool, fishing neck 150 may be selected to be engaged by a specific type of fishing tool, such as a catch-type tool, e.g., overshot or spear, or a screw-in tool. However, autonomous downhole tool 100 is not limited to any particular type of fishing tool and fishing neck. In general, it suffices that after leaving autonomous downhole tool 100 in a wellbore, autonomous downhole tool 100 can be retrieved using a conventional fishing operation.
Autonomous downhole tool 100 may be deployed into wellbore 105 on the end of a wireline or coiled tubing. When autonomous downhole tool 100 is at the desired location in wellbore 105, the conveying wireline or coiled tubing can be disconnected from autonomous downhole tool 100 and retrieved to the surface, leaving autonomous downhole tool 100 in wellbore 105 as shown. Autonomous downhole tool 100 is shown in horizontal lateral section 130. However, autonomous downhole tool 100 is well-suited for operating in vertical, slanted, and horizontal wells and may be in a section of a well that is not horizontal, e.g., if the well is a vertical or slanted well. Fishing neck 150 will allow autonomous downhole tool 100 to be retrieved at a later time using a conventional fishing operation. The overall diameter of autonomous downhole tool 100 is smallest when autonomous downhole tool 100 is in an INACTIVE mode as shown in
Each turbine unit 155 of autonomous downhole tool 100 includes a plurality of turbine generators 185. In the INACTIVE mode of autonomous downhole tool 100 shown in
Returning to
Signal processing circuit 167 generally includes a processor and memory. Signal processing circuit 167 may be, for example, CMOS-based, microcontroller based, digital signal processor, DSP-based, field programmable gate array (FGPA)-based, application-specific integrated circuit (ASIC)-based, complex programmable logic device (CPLD), or a system-on-chip (SoC). Signal processing circuit 167 is in communication with communication unit 175, operation tool 180, and any controllable actuators 186 in mechanisms that position turbine generators relative to a tool body. Examples of controllable actuators 186 may be motors 234 in
Autonomous downhole tool 100 may be initially in the INACTIVE mode when deployed into a wellbore as shown in
When it is desired to perform an operation procedure, e.g., logging or stimulation, using operation tool 180, control system 170 may send a request to signal processing circuit 167 to switch the autonomous downhole tool to the OPERATION MODE. Switching the tool to the OPERATION MODE may include extending turbine generators 185 out of the tool body (if the tool is currently in the INACTIVE mode) and rotating the turbine wheels to an orientation in which the turbine wheels can roll along the wellbore or a wellbore tubular installed in the wellbore. If the power level becomes low during the OPERATION mode, the signal processing circuit may switch the autonomous downhole tool to the RECHARGE mode to generate electricity and then return the autonomous downhole tool to the OPERATION mode. Operation tool 180 may send data to control system 170 via communication unit 175 and signal processing circuit 167. Alternatively, a data collection device may be periodically deployed into the wellbore to collect data from the operation tool wirelessly.
Because autonomous downhole tool has its own self-generating power source, it can be deployed into the wellbore and left in the wellbore for long periods of time. In all the different modes of the tool, fluid can flow past the tool, which means that well production or injection can continue while autonomous downhole tool is in the wellbore and in any of the modes of the tool. Since the autonomous downhole tool is already in the wellbore, performing production logging or stimulation or in-situ measurements becomes as simple as sending a command to the tool to perform the operation. This allows production logging and stimulation to be performed more frequently, which may result in better control of production from the well.
The detailed description along with the summary and abstract are not intended to be exhaustive or to limit the embodiments to the precise forms described. Although specific embodiments, implementations, and examples are described herein for illustrative purposes, various equivalent modifications can be made without departing from the spirit and scope of the disclosure, as will be recognized by those skilled in the relevant art.
Claims
1. An apparatus comprising:
- a tool body having an axial axis;
- a plurality of turbine wheels coupled to the tool body, each turbine wheel movable separately to each of a first position in which the turbine wheel is retracted inside the tool body, a second position in which the turbine wheel is extended out of the tool body and an axial axis of the turbine wheel is parallel to the axial axis of the tool body, and a third position in which the turbine wheel is extended out of the tool body and the axial axis of the turbine wheel is perpendicular to the axial axis of the tool body; and
- a plurality of electrical generators mechanically coupled to the plurality of turbine wheels, the plurality of electrical generators to convert mechanical energy produced by the plurality of turbine wheels to electrical energy; and
- an energy storage electrically coupled to the plurality of electrical generators to store the electrical energy.
2. The apparatus of claim 1, further comprising a fishing neck coupled to an end of the tool body, the fishing neck engageable by a downhole fishing tool for retrieval of the apparatus from a wellbore.
3. The apparatus of claim 1, further comprising at least one communication device coupled to the tool body for wireless communication.
4. The apparatus of claim 1, further comprising at least one wellbore operation tool coupled to the tool body.
5. The apparatus of claim 4, wherein the at least one wellbore operation tool is selected from a production logging tool and a wellbore stimulation tool.
6. The apparatus of claim 1, further comprising a plurality of mechanisms operable to position the turbine wheels at each of the first position, the second position, and the third position, each of the mechanisms coupled between a respective one of the turbine wheels and the tool body.
7. The apparatus of claim 6, wherein each of the mechanisms comprises a mechanical arm having two arm parts coupled together by a rotary joint.
8. The apparatus of claim 6, wherein each of the mechanisms comprises a robot manipulator.
9. A system comprising:
- a well penetrating a subsurface;
- a tubing disposed in the well for transport of a fluid stream between the subsurface region and a surface region; and
- a downhole tool disposed in the well and further down the well than a bottom end of the tubing, the downhole tool comprising a plurality of turbine wheels that are each movable separately to each of a first position in which the turbine wheel is retracted inside a tool body, a second position in which the turbine wheel is oriented to produce mechanical energy from the fluid stream, and a third position in which the turbine wheel is oriented to roll along an inner surface of the well.
10. The system of claim 9, wherein the downhole tool further comprises a plurality of electrical generators, each electrical generator mechanically coupled to one of the plurality of turbine wheels, the electrical generators to convert the mechanical energy produced by the turbine wheels to electrical energy.
11. The system of claim 10, wherein the downhole tool further comprises an energy storage electrically coupled to the electrical generators to store the electrical energy.
12. The system of claim 11, wherein the downhole tool further comprises one or more wireless communication devices.
13. The system of claim 12, further comprising a control system disposed at the surface region and in communication with the downhole tool through the one or more wireless communication devices.
14. The system of claim 13, wherein the downhole tool further comprises at least one tool to perform an operation in the well, the at least one tool selected from a production tool and a well stimulation tool.
15. The system of claim 14, wherein the downhole tool further comprises a plurality of mechanisms operable to position the turbine wheels at each of the first position, the second position, and the third position, each of the mechanisms coupled between a respective one of the turbine wheels and the tool body.
16. A method comprising:
- deploying a downhole tool into a well and leaving the downhole tool in the well with an axial axis of a tool body of the downhole tool aligned with a fluid flow direction in the well;
- transporting a fluid stream between the well and a surface region along the fluid flow direction;
- positioning the downhole tool in a first mode at one or more times during transporting the fluid stream by moving a plurality of turbine wheels of the downhole tool relative to the tool body and into a position and an orientation in which the fluid stream passes through the turbine wheels; and
- positioning the downhole tool in a second mode at one or more times during transporting the fluid stream by moving the plurality of turbine wheels of the downhole tool relative to the tool body and into a position and an orientation in which the downhole tool is transportable along the well by rolling of the turbine wheels.
17. The method of claim 16, wherein positioning the downhole tool in the first mode and positioning the downhole tool in the second mode comprise receiving a command to switch a mode of the downhole tool from the surface region.
18. The method of claim 16, further comprising detecting that a power level in an energy storage of the downhole tool is below a threshold prior to positioning the downhole tool in the first mode.
19. The method of claim 16, wherein moving the plurality of turbine wheels of the downhole tool relative to the tool body during positioning the downhole tool in the first mode or the second mode comprises moving the plurality of wheels from a retracted position inside the tool body to an extended position outside of the tool body.
20. The method of claim 16, further comprising at least one of performing production logging and well stimulation while the downhole tool is in the second mode.
Type: Application
Filed: Jul 30, 2020
Publication Date: Feb 3, 2022
Applicant: SAUDI ARABIAN OIL COMPANY (Dhahran)
Inventor: Murtadha J. AlTammar (Dhahran)
Application Number: 16/942,994