COOLER CONTAINER
A storage container having a basin defining an interior space, and comprising two or more partition walls; a freezer partition wall defining a freezer compartment, a chill partition wall defining a chilled compartment, a cooling chamber being defined between said partition walls, wherein each of said partition walls are configured, when a cooling medium is received within said cooling chamber, for allowing airflow therethrough to its respective compartment, thereby maintaining a temperature difference between said freezer compartment and chilled compartment.
Latest Keter Plastic Ltd. Patents:
The presently disclosed subject matter relates to storage containers, and in particular to containers configured for keeping items stored therewithin at low temperatures.
BACKGROUND ARTReferences considered to be relevant as background to the presently disclosed subject matter are listed below:
-
- U.S. Pat. No. 3,971,231
- US2017307278
- JP2005104567
Acknowledgement of the above references herein is not to be inferred as meaning that these are in any way relevant to the patentability of the presently disclosed subject matter.
BACKGROUNDU.S. Pat. No. 3,971,231 discloses a refrigerator incorporating an insulated cabinet having an access opening and a door normally closing said opening with at least one dry ice carrier removably disposed in said cabinet in alignment with said access opening. Said dry ice carrier takes the form of a container having a solid side and a perforated side and of a size and shape enabling the dry ice carrier to be positioned at one side of said insulated cabinet or transversely thereof as desired.
US2017307278 discloses a delivery container suitable to deliver multiple items that require storage at different temperatures for the duration of the delivery. The delivery container may be a cube or a rectangular prism constructed of an insulating material. The delivery organization may position a central panel in the delivery container to separate two compartments of the delivery container, each compartment to be cooled to a different temperature than the other. The delivery organization determines an appropriate coolant for each compartment based on heat transfer requirements of the compartment and positions the coolant in the bottom of each respective compartment. A panel is placed over each coolant and the items are placed in the appropriate compartments of the delivery container. A top panel is positioned on the delivery container to seal the delivery container.
JP2005104567 discloses a cold-keeping container comprising a container main body which can be divided into two or more divisions having different cold-keeping temperatures, and a lid body. The thickness of either one or all of the side wall and the bottom surface of the container main body of the lower-temperature side division, and the lid body is made larger. At the same time, the cold-keeping container is constituted in such a manner that a bulkhead for dividing the container into the lower-temperature side division and the higher-temperature side division may be provided. In addition, the bulkhead is made attachable to and detachable from the container main body of the cold-keeping container having multiple divisions while being the cold-keeping container comprising the container main body which can be divided into two or more divisions having different cold-keeping temperatures, and the lid body.
General DescriptionAccording to the present disclosure there is a storage container configured with at least two thermally insulated compartments with a cooling chamber disposed between said compartments, wherein partition walls of said cooling chamber are configured for admitting controlled airflow between said cooling chamber and the compartments.
The disclosure is directed to a storage container having a basin defining an interior space, and comprising two or more partition walls; a freezer partition wall defining a freezer compartment, a chill partition wall defining a chilled compartment, a cooling chamber being defined between said partition walls, wherein each of said partition walls are configured, when a cooling medium is received within said cooling chamber, for allowing airflow therethrough to its respective compartment, thereby maintaining a temperature difference between said freezer compartment and chilled compartment.
The term cooling chamber can is interchangeable used and understood as cooling compartment.
According to a specific configuration of the disclosure the storage container is configured for receiving within a housing container, said housing container configured with solid side walls and a lid, and wherein said lid admits access to removable covers of the storage container.
According to a specific configuration, there is a storage container having a basin defining a thermally insulated interior space, and comprising a freezer compartment and a chilled compartment with a cooling chamber disposed intermediate said freezer compartment and said chilled compartment, and an ambient compartment neighboring said chilled compartment with an ambient partition wall disposed therebetween; wherein the cooling chamber comprises a freezer partition wall facing the freezer compartment and a chill partition wall facing the chilled compartment, wherein said freezer partition wall and said chill partition wall are configured, when a cooling medium is received within said cooling chamber, for allowing directional airflow therethrough to its respective compartment, thereby maintaining a temperature difference between said freezer compartment and said chilled compartment.
The cooling chamber is configured for receiving cooling medium therein, wherein when received within the cooling chamber, said cooling medium disperses cold air flow through refrigerator apertures configured at the freezer partition wall and at the chill partition wall.
According to an aspect of the disclosure there is a cooler container assembly comprising a housing container and a storage container configurable for receiving within the housing container, wherein said housing container is configured with solid side walls and a lid; said storage container having a basin defining an interior space, and comprising two or more partition walls; a freezer partition wall defining a freezer compartment, a chill partition wall defining a chilled compartment, a cooling chamber being defined between said partition walls, wherein each of said partition walls are configured, when a cooling medium is received within said cooling chamber, for allowing airflow therethrough to its respective compartment, thereby maintaining a temperature difference between said freezer compartment and chilled compartment, and where the lid admits access to the removable covers of the storage container.
According to an embodiment of the disclosure, the storage container is composed of external walls comprising a base member, a right side wall, a left side wall, a front wall a back wall, at least one removable cover, wherein said external walls and said at least one removable cover and said partition walls are made of a thermally insulating material. According to a specific embodiment of the disclosure, the base member, and the walls of the storage container and at least the freezer partition wall and the chill partition wall are configured for foolproof assembly, such that they can be assembled only at a pre-designed configuration.
Another aspect of the disclosure is directed to a cooler container kit comprising a housing container configured with solid side walls and a lid, and said a elements for assembling a storage container snugly receivable with said housing container, said storage container comprising a freezer partition wall, a chill partition wall, a cooling chamber for receiving a cooling medium, said partition walls configured for allowing airflow therethrough to neighboring compartment, thereby maintaining a temperature difference between a freezer compartment and a chilled compartment, and where the lid admits access to the removable covers of the storage container.
Any one or more of the following features, designs and configurations, can be associated with a cooler container, according to any of its embodiments, at any one or more of the following features, separately or in various combinations thereof:
-
- The housing container can be made of rigid material e.g. Polypropylene;
- At least some of the walls of the housing container can be made of multi-layer, reinforced boards;
- Portions of the housing container can be reinforced by metal bars;
- The housing container can be a closable and lockable container;
- The housing container can be configured with a locking mechanism for admitting authorized opening thereof;
- The locking mechanism can be a smart lock;
- The locking mechanism can be remotely controlled;
- The external walls and said at least one removable cover and said partition walls are made of a thermally insulating material such as expanded polypropylene (EPP);
- The storage container is configured for foolproof assembly, and wherein visible indicia is provided for confirming correct assembly;
- At and assembled position the storage container fits tight within the housing container;
- The cooling chamber comprises a top cover extending over at least a portion of a cooling chamber space, defined between the freezer partition wall, and the chill partition wall and a cooling medium support within said cooling chamber;
- The top cover of the cooling chamber can be configured with a child-proof arrangement, so as to prevent or reduce the likelihood of a child displacing the top cover between an open position at which the top cover can be opened to facilitate access into cooling chamber space, and a closed position;
- the interior space is accessible through a top opening or an opening at any one of upwardly extending walls of the storage container;
- The child-proof arrangement of the top cover can be a sliding path configured at an inside face of the front wall and the back wall of the storage container;
- The cooling medium can be one or more packs of dried ice;
- The cooling medium can be ice;
- The cooling medium can be an active cooling unit articulated to a power source;
- The cooling medium support within the cooling chamber can extend spaced apart from the base member of the storage container;
- The cooling chamber can be configured with one or two lateral flow paths, extending between a bottom space below the cooling medium support, and a top portion, above the cooling medium support;
- A space below the cooling medium support can be configured with air flow apertures, facilitating air flow between the freezer compartment and the chilled compartment;
- The refrigerator apertures configured at the freezer partition wall and at the chill partition wall are shaped and sized for child safety, such that a child can not introduce fingers through said refrigerator apertures;
- The refrigerator apertures are throughgoing slots;
- At least some of the refrigerator apertures are throughgoing with a frustoconical cross section, wherein refrigerator apertures at the freezer partition wall have a wide opening at a low temperature zone and a narrow opening at a high temperature zone;
- The frustoconical cross section shape of the refrigerator apertures is configured for air circulation, wherein cold airflow takes place in direction from a narrow opening towards a wider opening;
- When a cooling medium is received within the cooling chamber the cooling chamber is a lower-most, sub-zero temperature zone (T° Cc); the freezer compartment is configured as a sub-zero temperature zone (T° Fc); the chilled compartment is configured as a chilled temperature zone (T° CHc); and the ambient compartment is configured as an ambient temperature zone (T° Ac); wherein T° Cc<T° Fc<T° CHc<T° Ac;
- According to a particular example, the freezer compartment is configured for holding a temperature (T ° Fc) of about (−16° C.) for about 6 hours;
- According to a particular example, the chilled compartment is configured for holding a temperature (T ° CHc) of between about (0° C.) to (5° C.) for about 6 hours;
- The ambient compartment is configured for maintaining a steady temperature (T ° Ac), insulated from ambient temperature, for about 6 hours;
- The ambient partition wall can be configured with throughgoing apertures configured for air circulation between the chilled compartment and the ambient compartment;
- The apertures extending through the ambient partition wall can be configured at a top portion of the ambient partition wall;
- The apertures extending through the ambient partition wall can have a uniform cross section;
- An opening of the refrigerator apertures, at one or both of the freezer partition wall and the chill partition wall, at an inside face thereof of the cooling chamber space, and/or at an inside face of the freezer compartment and at an inside face the chilled compartment, respectively, can be spaced from a surface of the respective wall surface, thereby facilitating air flow albeit an obstacle disposed in front of the opening;
- The cooling medium support within said cooling chamber can be configured with refrigerator apertures extending between the cooling chamber space towards the space below the cooling medium support, facilitating air flow in direction from the cooling chamber space towards said space below the cooling medium support;
- The interior space can be coverable by one or more removable covers, each cover configured for removable covering one or more of the thermally insulated compartments and the cooling chamber;
- According to a particular example, a first removable cover is configured over the freezer compartment and over the chilled compartment, with the cooling chamber disposed intermediate, and a second removable cover is configured over the ambient compartment;
- The storage container can comprise one or more removable covers for covering any one or more of the freezer compartment and the chilled compartment and the cooling chamber and the ambient compartment;
- A bottom face of the one or more removable covers is configured with a position rim for positioning within a top portion of the interior space;
- The position rim can be configured with a tapering cross-section;
- A top face of the one or more removable covers is configured with indicia representing the compartment below;
- The housing container can be configured with a lid support mechanism, configured for supporting the lid at an open position;
- The walls of the container can be assembled over the base member at a preset arrangement, by a foolproof arrangement, wherein mating edges of the walls and the base member comprise one or more projections configured at one or both of the walls and the base member, and the other one or both of the walls and the base member comprises respective indentions, in register with the projections and configured for unidirectional true positioning of said walls over the base member;
- Any one or more of the front wall and the back wall and the base member of the storage container can be configured with a foolproof assembly arrangement, configured for unidirectional, true positioning, of the cooling chamber within the interior space;
- A top face of the base member of the storage container can be configured with depressions and/or projections disposed in register with opposite ones of depressions and/or projections configured at a bottom edge of a partition wall;
- One or both of the front wall and the back wall of the storage container can be configured with recesses, each configured for selectively receiving therein a designated partition wall;
- Any one or more of the partition walls can be configured at a bottom edge thereof with depressions and/or projections disposed in register with opposite ones of depressions and/or projections configured at a bottom edge of the base wall;
- Any one or more of the partition walls can be configured at one or both side edges thereof with lateral projections configured for selectively receiving within a designated recesses configured at a front wall and a back wall of the storage container;
- The storage container can be configured as a readily knock-down assembly;
- The storage container can be configured with temperature measuring and temperature indicators, for indicating and possibly alerting regarding temperature within the compartments
- The partition walls can be made of thermally insulating material;
- The thickness of the partition walls depends of thermal properties thereof.
In order to better understand the subject matter that is disclosed herein and to exemplify how it may be carried out in practice, embodiments will now be described, by way of non-limiting example only, with reference to the accompanying drawings, in which:
With reference to the annexed drawings, there is illustrated in
With Further reference to
A lid 38 is pivotally secured to the back wall 35 by a hinge system 29 (
With further attention
The storage container 24 is a knock-down structure, wherein it is easily and readily erected or disassembled. However, it is appreciated that the b is a foolproof configuration, wherein it can be assembled only at a particular configuration, in conformity with compartments therein, as will become apparent hereinafter. For making sure that the storage container 24 is properly assembled/erected, the base 50 is configured with several upward extending projections 64 and depressions 66. Respectively, the right side wall 52, left side wall 54, front wall 56 and the back wall 58 are configured, in register with the projections 64 and depressions 66, with downward facing projections 68 and depressions 70, whereby the walls (right side wall 52, left side wall 54, front wall 56 and the back wall 58) can be assembled to the base only at a predesign arrangement, namely the walls cannot be mistakeably replaced with one another. For that purpose, visible indicia can be provided too (apart for the must-match geometry, which by itself is visible too).
Articulating the walls (right side wall 52, left side wall 54, front wall 56 and the back wall 58) over the base 50 gives rise to a basin defining a thermally insulated interior space 69.
The storage container 24 is configured with several partition walls, also made of a thermally insulating material, dividing the space 69 into several compartments/chambers, namely a cooling chamber 76, a freezer compartment 78, a chilled compartment 80 and an ambient compartment 82.
The cooling chamber 76 is defined between a freezer partition wall 86 (extending between the cooling chamber 76 and the freezer compartment 78) and a chill partition wall 88 (extending between the cooling chamber 76 and the chilled compartment 80), and wherein the chilled compartment 80 is partitioned from the ambient compartment 82 by an ambient partition wall 92. The arrangement is such that the compartments 78, 80 and 82 are disposed at fixed locations with respect to one another, with the cooling chamber 76 disposed between the freezer compartment 78 and the chilled compartment 80. However, if desired, the ambient partition wall 92 can be removed, thereby increasing the space of the chilled compartment.
The chambers/compartments too are configured for foolproof assembly, so as to make sure that the partition walls are properly assembled, in compliance with thermal and airflow considerations, as will be explained herein after in detail. For that purpose, an arrangement is provided such that the walls of the container 20, and the partition walls within the container, can be assembled at a predefined position only.
As can be seen, best in
In order to assure that each of the freezer partition wall 86, chill partition wall 88 and ambient partition wall 92 is unequivocally assembled at the right location within the basin of the container 20, at a correct orientation, each of said partition walls 86, 88 and 92 is configured at its bottom edge with a projecting ridge (120, 122 and 123, respectively), wherein each of these ridges corresponds with one of the respective recesses 102, 104 and 106 as far as cross section and length. Furthermore, each of the partition walls 86, 88 and 92 is configured at its respective side edges with a laterally projecting rib 129, 132 and 134 (
The combination of the unique configurations of recesses and ridges, and recesses and ribs, respectively, makes sure that the partition walls 86, 88 and 92 can be assembled at the correct location and at the correct orientation, which true positioning has significant meaning as far as air flow and air circulation within the space 70 (i.e. between the compartments 78, 80 and 82) as will be explained herein below.
The cooling chamber 76 is a space extending between the freezer partition wall 86 and the chill partition wall 88, said walls being spaced apart at a set distance (by their fixed positioning to the front and back wall and the base, as mentioned hereinabove), with a cooling medium support 121 disposed about mid-height of the cooling chamber 76, with two side walls 124 giving rise tighter to a cooling medium receiving space configured for receiving a commercially available dry ice pack, or any other cooling medium such as ice and the like. It is noted that each of the two side walls 124 is configured at a top portion thereof with an opening 128, to be discussed hereinafter, and further wherein said side walls 124 extend inwards from side edges of the partition walls 86 and 88, giving rise to lateral flow paths 130, also to be discussed hereinafter.
Furthermore, the freezer partition wall 86 is configured at a top portion thereof, with a plurality of refrigerator apertures in the form of thronging longitudinal slots 132. It is apparent the refrigerator apertures 132 extend above the cooling medium support 121 and between the side walls 124. The refrigerator apertures 132 are of uniform cross section and are child-safe, i.e. being sufficiently small to prevent a child for sticking his fingers therethrough. Similarly, the chill partition wall 88 is configured at a top portion thereof, with a plurality of refrigerator apertures, in the form of thronging longitudinal slots 136, however disposed in two rows, above one another, and extending at different heights. The refrigerator apertures 136 too, extend above the cooling medium support 121 and between the side walls 124, and are of uniform cross section and are child-safe, i.e. being sufficiently small to prevent a child for sticking his fingers therethrough. It is appreciated that the total section area of refrigerator apertures 136 is smaller than the total section area of refrigerator apertures 132.
The freezer partition wall 86 is configured at a bottom portion thereof (below the cooling medium support 121), with a plurality of air circulation apertures 140, wherein said apertures are frustoconical, having a wider base at a face of the freezer partition wall 86 facing the freezer compartment 78, and a narrower base at a face of the freezer partition wall 86 facing the cooling chamber 76.
The chill partition wall 88 is configured at a bottom portion thereof (cooling medium support 121), with a plurality of air circulation apertures 144, wherein said apertures are frustoconical, and disposed at an opposite orientation of apertures 140 i.e., having a wider base at a face of the chill partition wall 88 facing the chilled compartment 80, and a narrower base at a face of the chill partition wall 88 facing the cooling chamber 76. Furthermore, the apertures 144 are smaller and fewer than apertures 140, wherein a total section area of the apertures 144 is smaller than section area of the apertures 140, to be discussed herein below.
It is further noted that the apertures 140 and 144 extend over longitudinal depressions 146 and 148, respectively. The arrangement is such that even at the event that an item (i.e. groceries) bear against the wall surface, the respective apertures remain open for air flow therethrough.
Turning now to ambient partition wall 92, it is configured at a top portion thereof with two thoroughgoing cylindrical apertures 150 (
As noted, for example in
At the closed position, the top cover 170 rests over a top edge of the freezer partition wall 86 and the chill partition wall 88. The arrangement is such that removing of the top cover 170 can be facilitated upon first sliding it towards the chilled compartment 80 (rightwards), so as to disengage from arresting block 174, and only thereafter can the top cover 170 be removed upwards.
Two removable covers 180 and 182 are provided, also made of high thermal insulating material, such as boards of EPP. The covers are each configured with a downward facing chamfered rim 184 and 186 respectively, wherein cover 180 is configured for bearing over top edges of the back wall 58, left side wall 54 and front wall 56, covering the freezer compartment 78, cooling chamber 76 (with the top cover 170 in place) and the chilled compartment 80, wherein the chamfered rim 184 bears against corresponding chamfered seats at the top portion of the respective walls. The cover 182 is configured for bearing over top edges of the back wall 58, right side wall 52 and front wall 56, covering only the ambient compartment 82, wherein the chamfered rim 186 bears against corresponding chamfered seats at the top portion of the respective walls.
Turning now to
Then, left side wall 54 is placed flush against the left side wall 32 of the housing container 22 and articulated to the base 50 such that projections 68 and depressions 70 at the bottom edge of the left side wall 54 engage the projections 64 and depressions 66, at the foolproof manner (
Then, ambient partition wall 92 is slidably introduced into the space 69, all the way done, with laterally projecting ribs 132 snugly received within vertical slots 114 at the front wall 56 and the back wall 58, until and the downward projecting ridge 123 is well received within corresponding respective recess 106 at the base 50 (
Similarly, freezer partition wall 86 is placed into the uniquely dedicated slot system within space 69, giving rise to the ambient compartment 78 (
Then, the two side walls 124 of the cooling chamber 76 and the cooling medium support 121 are attached to one another to form a sub-assembly 125 (
It is appreciated that the cooler container assembly 20, and in particular storage container 24, is knocked down, i.e. disassembled at a reverse sequence of operations.
It is seen in the drawings that the walls and removable covers are configured with visible indicia, which in the present example reads ‘Frozen’, ‘Cold’ and ‘Ambient’, said indicia aiding in assembly as well as in use of the cooler container assembly 20.
Turning now to
The basin space 240 of the storage container 224 is configured with an ambient partition wall 244 giving rise to an ambient compartment 246, a chill partition wall 250 and a freezer partition wall 254 defining between them a cooling chamber 260, and chilled chamber 162 between the chill partition wall 250 and the ambient partition wall 244, and a freezer compartment 266 between side wall 226 and freezer partition wall 254.
The ambient partition wall 244 is configured at a top portion thereof with several throughgoing air circulation apertures 270, which unlike the previous example have a tapering cross section, with a wider section at the ambient chamber facing side, thereby encouraging cool air flow from the cooling chamber 260 into the ambient compartment 246.
Yet a difference resides in the cooling chamber 260 lacking a cooling medium support, such that the entire cooling chamber 260 can accommodate a cooling medium.
Claims
1. A storage container comprising:
- a bin;
- a bin lid, the bin lid rotatably affixed to the bin;
- a first partition, wherein the first partition extends from a front inner surface to a rear inner surface;
- wherein the first partition includes a lower portion comprising a freezer compartment divider and an upper portion comprising a dry ice compartment; and a second partition, wherein the second partition extends from a front inner of the bin surface to a rear inner surface of the bin.
2. The container of claim 1, wherein the dry ice compartment comprises a base panel, a refrigerated side panel, a freezer side panel, and, a dry ice compartment lid.
3. The container of claim 2, wherein the dry ice compartment lid is affixed to the refrigerated side panel and freezer side panel via a hinge.
4. The container of claim 2, wherein the freezer side panel and the refrigerated side panel have unequal ventages.
5. The container of claim 2, wherein the refrigerated side panel comprises: a plurality of indentations formed therein; and a plurality of openings formed therein.
6. The container of claim 5, wherein each opening of the plurality of openings includes a first portion within an indentation from the plurality of indentations, and a second portion outside of the indentation.
7. The container of claim 5, wherein each indentation from the plurality of indentations has a depth ranging from 5 millimeters to 10 millimeters.
8. The container of claim 5, wherein each opening from the plurality of openings is circular.
9. The container of claim 8, wherein each opening has a diameter ranging from three centimeters to four centimeters.
10. The container of claim 2, wherein the freezer side panel comprises a plurality of indentations formed therein, a plurality of small openings formed therein, and a plurality of large openings formed therein.
11. The container of claim 10, wherein each large opening of the plurality of large openings includes a first portion within an indentation from the plurality of indentations, and a second portion outside of the indentation.
12. The container of claim 11, wherein a first subset of the small openings are partial indented section small openings, and wherein a second subset of the small openings are non-indented section openings.
13. The container of claim 10, wherein each small opening from the plurality of small openings is circular.
14. The container of claim 13, wherein each small opening has a diameter ranging from three centimeters to four centimeters.
15. The container of claim 14, wherein each large opening from the plurality of large openings is circular.
16. The container of claim 15, wherein each large opening has a diameter ranging from five centimeters to seven centimeters.
17. The container of claim 1, wherein the bin is comprised of expanded polypropylene (EPP).
18. The container of claim 1, wherein the bin comprises a floor, and a plurality of ridges disposed on the floor.
19. The container of claim 1, further comprising a dry ice sleeve disposed on a lateral interior freezer surface of the bin.
20. A storage container comprising:
- a bin;
- a bin lid, the bin lid rotatably affixed to the bin;
- wherein the bin comprises a floor;
- a plurality of ridges disposed on the floor, wherein each ridge of the plurality of ridges has a height ranging from ten millimeters to 50 millimeters;
- a dry ice sleeve disposed on a lateral interior freezer surface of the bin;
- a first partition, wherein the first partition extends from a front inner surface of the bin to a rear inner surface of the bin;
- wherein the first partition includes a lower portion comprising a freezer compartment divider and an upper portion comprising a dry ice compartment;
- a second partition, wherein the second partition extends from a front inner surface to a rear inner surface;
- wherein the dry ice compartment comprises a base panel, a refrigerated side panel, a freezer side panel, and, a dry ice compartment lid;
- wherein the freezer side panel and the refrigerated side panel have unequal ventages;
- wherein the refrigerated side panel comprises:
- a plurality of indentations formed therein; and
- a plurality of small openings formed therein, and wherein each small opening of the plurality of small openings includes a first portion within an indentation from the plurality of indentations, and a second portion outside of the indentation;
- wherein the freezer side panel comprises:
- a plurality of indentations formed therein;
- a plurality of small openings formed therein;
- and a plurality of large openings formed therein;
- wherein a first subset of the small openings are partial indented section small openings; and
- wherein a second subset of the small openings are non-indented section small openings.
Type: Application
Filed: Aug 30, 2021
Publication Date: Mar 3, 2022
Applicant: Keter Plastic Ltd. (Herzliya)
Inventors: Adva LAZAR (D.N. Oshrat), Shimrit WEISS (D.N. Emek HaMaayanot)
Application Number: 17/446,377