COMPOSITIONS AND METHODS FOR MODULATING CGRP SIGNALING TO REGULATE INTESTINAL INNATE LYMPHOID CELLS

The present invention provides novel compositions and methods based on the discovery of the mechanisms and gene expression programs associated with homeostatic ILC2s and proinflammatory ILC2s that drive tissue inflammation. Immune signaling abnormalities in the small intestine can trigger chronic type 2 inflammation. Applicants analyzed 58,067 immune cells from the mouse small intestine by single-cell RNA-seq at steady state and after induction of a type 2 inflammatory reaction to ovalbumin. Cell type composition and cell programs shifted in response to inflammation, especially in ILC2s. A key transcript in the inflammation-induced program in intestinal KLRG1+ILC2s was exon 5 of Calca, encoding the alpha-calcitonin gene-related peptide (a-CGRP). a-CGRP antagonized IL-25-induced activation of intestinal ILC2s and reduced their frequency in an ovalbumin reaction model. α-CGRP activated a cAMP response, which suppressed ILC2 proliferation. In homeostasis, α-CGRP was expressed by two subsets of ChAT+ enteric neurons, and genetic perturbation of α-CGRP increased the proportion of intestinal ILC2s and of Tuft cells. The results demonstrate that a-CGRP-mediated neuronal signaling suppresses ILC2 expansion and maintains type 2 immunity homeostasis.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 62/818,404, filed Mar. 14, 2019. The entire contents of the above-identified application are hereby fully incorporated herein by reference.

REFERENCE TO AN ELECTRONIC SEQUENCE LISTING

The contents of the electronic sequence listing (BROD_4040_ST25.txt”; Size is 9,000 Kilobytes and it was created on Mar. 13, 2020) is herein incorporated by reference in its entirety.

TECHNICAL FIELD

The subject matter disclosed herein is generally directed to compositions and methods for modulating intestinal ILC2 cells and responses by targeting CGRP signaling.

BACKGROUND

The immune system in the small intestine is comprised of a complex network of innate and adaptive components that sense and respond antigens from the diet, commensal microbiota and pathogens. Dysregulated immune reactions often lead to chronic inflammatory responses, including type 2 inflammation (Gieseck et al., 2018; Hammad and Lambrecht, 2015; Pulendran and Artis, 2012), which in turn plays a key underlying role in several unrelenting inflammatory diseases, including food allergy (Locksley, 2010; Tordesillas et al., 2017).

Type 2 inflammation is characterized by the production of the cytokines interleukin-4 (IL-4), IL-5, IL-13 and IgE antibody, and tightly regulated and coordinated responses across cell types, including T helper 2 (Th2) cells, B cells, dendritic cells (DCs) and mast cells. In particular, ILC2s have emerged as key regulators of tissue homeostasis and type 2 inflammation (Artis and Spits, 2015; Kotas and Locksley, 2018), and form the prominent source of type 2 cytokines at its early stages (Molofsky et al., 2015; Neill et al., 2010; Price et al., 2010). While the core transcriptional program of ILCs maintains their cellular identity and homeostatic type 2 cytokine competency (Ricardo-Gonzalez et al., 2018), their activity in the intestines is shaped by tissue-specific signals, including activation by IL-25 produced by Tuft cells (von Moltke et al., 2016), and suppression by micronutrients (Spencer et al., 2014).

Despite these substantial advances, our understanding of cellular participants in type 2 inflammation, the mechanisms that maintain homeostasis and induce inflammation, and which additional cell types, besides immune cells, may participate in this cellular circuit in the small intestines is incomplete. Single-cell RNA-seq (scRNA-seq) can dissect cellular diversity on a large scale (Tanay and Regev, 2017; Wagner et al., 2016) and identify cell states of individual cell types in response to different stimuli (Bielecki et al., 2018; Haber et al., 2017). For example, scRNA-seq of lung ILCs recently revealed that neuronal-derived Neuromedin U (NMU) amplifies ILC2 activity in allergic inflammation (Wallrapp et al., 2017), and the same neuron-immune circuit was also shown to induce activation of ILC2s in the small intestine (Cardoso et al., 2017; Klose et al., 2017). Given the increased prevalence and epidemic rise in allergy and asthma in the last two decades, identifying the molecular pathways that regulate ILC2s during allergic responses is an important area of inquiry.

Citation or identification of any document in this application is not an admission that such document is available as prior art to the present invention.

SUMMARY

In one aspect, the present invention provides for a method of maintaining or inducing homeostasis of intestinal ILC2 cells in a subject at risk for or having aberrant activation and expansion of the intestinal ILC2 cells comprising administering CGRP to the subject. In certain embodiments, the aberrant activation and expansion of the intestinal ILC2 cells is induced by IL-25. In certain embodiments, the CGRP is administered intravenously, intraperitoneally, intragastrically, or orally. In certain embodiments, the subject has an allergy or history of allergic symptoms. In certain embodiments, the allergy is a food allergy. In certain embodiments, the allergy is caused by an allergen that induces epithelial cells in the gut to release IL-25. In certain embodiments, CGRP is administered after the subject has contacted or ingested an allergen. In certain embodiments, the CGRP is administered before an inflammatory response. In certain embodiments, CGRP is administered upon detecting an inflammatory response. In certain embodiments, the subject does not have an infection, such as a helminth infection. In certain embodiments, the method further comprises administering to the gut of the subject one or more agents capable of modulating expression, activity or function of one or more genes selected from the group consisting of: Gpr65, Pdcd1, Crem, Egln3, Adora2a, Rgs2, Gna15, Adrb2, Gadd45a, Areg, Hif1a, Dusp1, Pde4b, Cdkn1a, Akap12 and Il5. In certain embodiments, CGRP induces expression of Gpr65, Pdcd1, Crem, Egln3, Adora2a, Rgs2, Gna15, Adrb2, Gadd45a, Areg, Hif1a, Dusp1, Pde4b, Cdkn1a, Akap12 and Il5 to maintain homeostasis of intestinal ILC2 cells. Thus, in intestinal ILC2s, treatment with CGRP increases the expression of one or more of Gpr65, Pdcd1, Crem, Egln3, Adora2a, Rgs2, Gna15, Adrb2, Gadd45a, Areg, Hif1a, Dusp1, Pde4b, Cdkn1a, Akap12 and Il5, and a combination treatment may provide for prevention of aberrant intestinal ILC2 inflammatory responses. In certain embodiments, the method comprises activating a cAMP response module, wherein the cAMP module comprises one or more genes selected from the group consisting of Adrb2, Adora2a, Pde4b, Akap12, Areg, Crem and Il5. In certain embodiments, the one or more agents comprises an adenylate cyclase activator. In certain embodiments, the agent is forskolin. In certain embodiments, the one or more agents comprises an agonist of PD-1. In certain embodiments, the one or more agents comprises an agonist of GPR65.

In another aspect, the present invention provides for a method of maintaining or inducing homeostasis of intestinal ILC2 cells in a subject at risk for or having aberrant activation and expansion of the intestinal ILC2 cells comprising administering to the gut of the subject one or more agents capable of modulating expression, activity or function of one or more genes selected from the group consisting of Gpr65, Pdcd1, Crem, Egln3, Adora2a, Rgs2, Gna15, Adrb2, Gadd45a, Areg, Hif1a, Dusp1, Pde4b, Cdkn1a, Akap12 and Il5. In certain embodiments, CGRP induces expression of Gpr65, Pdcd1, Crem, Egln3, Adora2a, Rgs2, Gna15, Adrb2, Gadd45a, Areg, Hif1a, Dusp1, Pde4b, Cdkn1a, Akap12 and Il5 to maintain homeostasis of intestinal ILC2 cells. Thus, in intestinal ILC2s, increasing the expression, activity or function of one or more of Gpr65, Pdcd1, Crem, Egln3, Adora2a, Rgs2, Gna15, Adrb2, Gadd45a, Areg, Hif1a, Dusp1, Pde4b, Cdkn1a, Akap12 and Il5 may provide for prevention of aberrant intestinal ILC2 inflammatory responses. In certain embodiments, the method comprises activating a cAMP response module, wherein the cAMP module comprises one or more genes selected from the group consisting of Adrb2, Adora2a, Pde4b, Akap12, Areg, Crem and Il5. In certain embodiments, the one or more agents comprises an adenylate cyclase activator. In certain embodiments, the agent is forskolin. In certain embodiments, the one or more agents comprises an agonist of PD-1. In certain embodiments, the one or more agents comprises an agonist of GPR65. In certain embodiments, the subject has an allergy or history of allergic symptoms. In certain embodiments, the allergy is a food allergy. In certain embodiments, the allergy is caused by an allergen that induces epithelial cells in the gut to release IL-25. In certain embodiments, the subject does not have an infection, such as a helminth infection.

In another aspect, the present invention provides for a method of modulating an ILC2 inflammatory response comprising administering to a population of cells comprising ILC2s, mast cells, Th2 cells and/or fibroblasts one or more agents capable of modulating expression, activity or function of one or more biological programs characterized by ILC Topic 2, myeloid cell Topic 1, T cell Topic 5 or stromal cell Topic 4, wherein ILC Topic 2 comprises one or more genes or polypeptides selected from the group consisting of Calca, Hs3st1, Areg, Il13, Il4, Ccl1, Hes1, Il17rb, Lgals7, Homer2, Il5, Gata3, Deptor, Ptpn13, Ly6a, Hba-a1, Kcnn4, Ccr4, Rxrg, Sub1, 1700061F12Rik, Cntnap2, AA467197, Ptgir, Il10, Nfkb1, Lmo4, Pparg, Plaur, Il9r, Serpine1, Scel, Bmp7, Neb, Sox8, Lpcat2, Samsn1, Alox5, Gpr65, Abhd17c, Gm20186, Gm973, Epas1, Ccr8, D430036J16Rik, Cd6, Stxbp6, 9230102O04Rik, Furin and Klf5, wherein myeloid cell Topic 1 comprises one or more genes or polypeptides selected from the group consisting of Cpa3, Cma1, Mcpt4, Tpsb2, Fcer1a, Hs3st1, Gata2, Cited4, Cyp11a1, Tph1, Furin, Rab27b, Slc45a3, Ccl1, Il13, Il1rl1, Itga2b, Cited2, Fam110c, Creb3l1, Rgs13, Tpsab1, Cyp26a1, Serpinb1a, Slc18a2, Gmpr, Rprm, Ero1l, Il4, Cd200r3, Glul, Kit, Lat, Alox5, Gchfr, mt-Atp6, Lat2, Prss34, Poln, Klk8, 4932438H23Rik, Slc6a13, Avil, Socs2, Smco4, Ier3, Lxn, Gpr171, Adk and Gata1, wherein T cell Topic 5 comprises one or more genes or polypeptides selected from the group consisting of 1700061F12Rik, Il13, Scin, Lgmn, Hlf, Smco4, Npnt, Il17rb, Deptor, Gata3, Gm2a, Il6, Il17a, Ltb4r1, Fgl2, Areg, Fbxl21, AA467197, Il1rl1, Me1, Gm5544, Tmem159, Rasgrp4, 1700012B07Rik, 1700113H08Rik, St6galnac5, Il4, Chdh, Slco2b1, Ccr9, Epas1, Grp, Lztfl1, Gm10369, Kif19a, Tenm4, Serpinf1, Gnb2, Ubox5, Plcl1, Rab31, Ffar2, Slx1b, Asb2, Zfp85, Tmsb4x, Hdc, Pxdc1, Heatr1 and Lgals7, wherein stromal cell Topic 4 comprises one or more genes or polypeptides selected from the group consisting of Ccl21a, Cxcl13, Clu, Ccl19, Acta2, Mfge8, Apoe, Tagln, Cxcl1, Cilp, Ccl2, Il33, Cxcl12, Actg2, Serpina3n, Ccl7, Bst1, Serpina1a, Fmod, Grem1, Serpina1b, Slc36a2, Cnn1, Myh11, Art2b, Actc1, AI838599, Serpina1c, Cr2, Gxylt2, Crym, Dclk1, Serpina1d, Myl9, Parm1, Gm16685, Postn, Chrdl1, Colq, Csn2, Prss12, H2-M2, Trf, Sostdc1, Dsc3, Ctgf, Thbs4, Pcdh15, Rtn4r and A230065H16Rik. In certain embodiments, the one or more biological programs are suppressed, whereby an ILC2 inflammatory response is decreased. In certain embodiments, the one or more agents modulate the expression, activity or function of one or more genes or polypeptides in ILC Topic 2, myeloid cell Topic 1, T cell Topic 5 or stromal cell Topic 4. In certain embodiments, the population of cells is present in the gut of a subject in need thereof. In certain embodiments, the population of cells is an in vitro population of cells. In certain embodiments, the population of cells is an intestinal organoid.

In certain embodiments, the one or more agents comprise an antibody, small molecule, small molecule degrader, genetic modifying agent, antibody-like protein scaffold, aptamer, protein, or any combination thereof. In certain embodiments, the genetic modifying agent comprises a CRISPR system, RNAi system, a zinc finger nuclease system, a TALE, or a meganuclease. In certain embodiments, the CRISPR system is a Class I or Class II CRISPR system. In certain embodiments, the Class II system comprises a Class 2, Type II Cas polypeptide. In certain embodiments, the Type II Cas is a Cas9. In certain embodiments, the Class II system comprises a Class 2, Type V Cas polypeptide. In certain embodiments, the Type V Cas is Cas12a or Cas12b. In certain embodiments, the Class II system comprises a Class 2, Type VI Cas polypeptide. In certain embodiments, the Type VI Cas is Cas13a, Cas13b, Cas13c or Cas13d. In certain embodiments, the CRISPR system comprises a dCas fused or otherwise linked to a nucleotide deaminase. In certain embodiments, the nucleotide deaminase is a cytidine deaminase or an adenosine deaminase. In certain embodiments, the dCas is a dCas9, dCas12, or dCas13.

In another aspect, the present invention provides for a method of quantitating a type 2 immune response comprising determining the ILC2 frequency, wherein increased frequency of ILC2s as compared to a control frequency is associated with an increased type 2 immune response. In certain embodiments, the method further comprises determining the frequency of one or more cells selected from the group consisting of mast cells, macrophages, neutrophils, and CD11b+CD103+ dendritic cells, wherein increased frequency of mast cells, macrophages and/or neutrophils, and/or decreased frequency of CD11b+CD103+ dendritic cells as compared to a control frequency is associated with an increased type 2 immune response.

In another aspect, the present invention provides for a method of quantitating a type 2 immune response comprising determining the expression of one or more genes selected from Table 3 or determining the frequency of the cell types expressing the one or more genes selected from Table 3, wherein changes in expression or frequency according to Table 3 is associated with an increased type 2 immune response. In certain embodiments, the method comprises determining the expression of: one or more genes in ILC2s selected from the group consisting of: Hes1, Il13, Lif, Areg and Il4; one or more genes in mast cells selected from the group consisting of: Mcpt4, Tph1, Mcpt1, Cma1, and Furin; one or more genes in macrophages selected from the group consisting of: Irf7, Isg15, Irf8, Irf1, Ccl7, Ccl2, Cxcl12, Pf4 and Ccl24; and/or one or more genes in plasma cells selected from the group consisting of: Ifi27, Ifitm3, Ifnar1, Ighg1 and Ighe, wherein increased or decreased expression in the cell type according to FIG. 9B or 9C is associated with an increased type 2 immune response.

In another aspect, the present invention provides for a method of quantitating a type 2 immune response comprising determining the frequency of IL-33+PDPN+ fibroblasts in a subject having an allergy, wherein increased frequency of IL-33+PDPN+ fibroblasts is associated with an increased type 2 immune response.

In certain embodiments, CGRP is a polypeptide comprising the amino acid sequence of SEQ ID NO: 1. In certain embodiments, the CGRP sequence is modified to increase stability of the polypeptide. In certain embodiments, the intestinal ILCs are KLRGHi ST2 ILCs.

In another aspect, the present invention provides for a method of quantitating a type 2 immune response, comprising detecting a type 2 immune response in a subject in need thereof, wherein when an increased type 2 immune response is detected, the subject is treated according to any embodiment herein.

In certain embodiments, the methods described herein are used to treat IBD. In certain embodiments, IBD comprises a disease selected from the group consisting of ulcerative colitis (UC), Crohn's Disease, collagenous colitis, lymphocytic colitis, ischemic colitis, diversion colitis, Behcet's syndrome, infective colitis, indeterminate colitis, and other disorders characterized by inflammation of the mucosal layer of the large intestine or colon.

In another aspect, the present invention provides for a method of screening for one or more agents capable of modulating an ILC2 immune response comprising administering to a population of cells comprising ILC2s, mast cells, Th2 cells and/or fibroblasts one or more agents; and detecting expression, activity or function of one or more biological programs characterized by ILC Topic 2, myeloid cell Topic 1, T cell Topic 5 or stromal cell Topic 4, wherein ILC Topic 2 comprises one or more genes or polypeptides selected from the group consisting of Calca, Hs3st1, Areg, Il13, Il4, Ccl1, Hes1, Il17rb, Lgals7, Homer2, Il5, Gata3, Deptor, Ptpn13, Ly6a, Hba-a1, Kcnn4, Ccr4, Rxrg, Sub1, 1700061F12Rik, Cntnap2, AA467197, Ptgir, Il10, Nfkb1, Lmo4, Pparg, Plaur, Il9r, Serpine1, Scel, Bmp7, Neb, Sox8, Lpcat2, Samsn1, Alox5, Gpr65, Abhd17c, Gm20186, Gm973, Epas1, Ccr8, D430036J16Rik, Cd6, Stxbp6, 9230102O04Rik, Furin and Klf5, wherein myeloid cell Topic 1 comprises one or more genes or polypeptides selected from the group consisting of Cpa3, Cma1, Mcpt4, Tpsb2, Fcer1a, Hs3st1, Gata2, Cited4, Cyp11a1, Tph1, Furin, Rab27b, Slc45a3, Ccl1, Il13, Il1rl1, Itga2b, Cited2, Fam110c, Creb3l1, Rgs13, Tpsab1, Cyp26a1, Serpinb1a, Slc18a2, Gmpr, Rprm, Ero1l, Il4, Cd200r3, Glul, Kit, Lat, Alox5, Gchfr, mt-Atp6, Lat2, Prss34, Poln, Klk8, 4932438H23Rik, Slc6a13, Avil, Socs2, Smco4, Ier3, Lxn, Gpr171, Adk and Gata1, wherein T cell Topic 5 comprises one or more genes or polypeptides selected from the group consisting of: 1700061F12Rik, Il13, Scin, Lgmn, Hlf, Smco4, Npnt, Il17rb, Deptor, Gata3, Gm2a, Il6, Il17a, Ltb4r1, Fgl2, Areg, Fbxl21, AA467197, 1r11, Me1, Gm5544, Tmem159, Rasgrp4, 1700012B07Rik, 1700113H08Rik, St6galnac5, Il4, Chdh, Slco2b1, Ccr9, Epas1, Grp, Lztfl1, Gm10369, Kif19a, Tenm4, Serpinf1, Gnb2, Ubox5, Plcl1, Rab31, Ffar2, Slx1b, Asb2, Zfp85, Tmsb4x, Hdc, Pxdc1, Heatr1 and Lgals7, wherein stromal cell Topic 4 comprises one or more genes or polypeptides selected from the group consisting of Ccl21a, Cxcl13, Clu, Ccl19, Acta2, Mfge8, Apoe, Tagln, Cxcl1, Cilp, Ccl2, Il33, Cxcl12, Actg2, Serpina3n, Ccl7, Bst1, Serpina1a, Fmod, Grem1, Serpina1b, Slc36a2, Cnn1, Myh11, Art2b, Actc1, AI838599, Serpina1c, Cr2, Gxylt2, Crym, Dclk1, Serpina1d, Myl9, Parm1, Gm16685, Postn, Chrdl1, Colq, Csn2, Prss12, H2-M2, Trf, Sostdc1, Dsc3, Ctgf, Thbs4, Pcdh15, Rtn4r and A230065H16Rik.

These and other aspects, objects, features, and advantages of the example embodiments will become apparent to those having ordinary skill in the art upon consideration of the following detailed description of illustrated example embodiments.

BRIEF DESCRIPTION OF THE DRAWINGS

An understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention may be utilized, and the accompanying drawings of which:

FIG. 1—A single-cell expression atlas of intestinal immune cells. (A) Overview. The lamina propria (LP) and Peyer's patch (PP) regions of the small intestine were harvested from mice in homeostasis (“healthy”) or after induction of a type 2 inflammatory reaction to ovalbumin (OVA) (“inflamed”) (left). After enzymatic tissue dissociation, immune cells were captured by fluorescence-activated cell sorting (FACS) (middle) and analyzed by droplet-based 3′scRNA-seq (right). (B) Cell subsets in the intestinal immune cell atlas. scvis learned two-dimensional (2D) representation of 58,067 cell profiles (dots) from both PP and LP regions, shaded and numbered by cluster membership. Clustered are rank ordered by size (from the largest of 7194, cluster 1, to the smallest of 17, cluster 46). DZ, dark zone; LZ, light zone; DN, double negative; C1, cluster 1; C2, cluster 2. (C) Differentially expressed genes. For representative differentially expressed genes (rows) across clusters (columns), shown is the fraction of cells in the cluster that express a gene (dot size) and the z-score of the mean expression of that gene in the cluster (shading; z-score of average log2(TPM+1)). (D) Tissue distribution of non-T and non-B immune cells in homeostasis. Proportion (y axis) of each cell type in LP (triangle) and PP (black circle) regions. Points: independent experiments; Box and-whisker plots show the median, quartiles, and range. *p<4.8×10−3, **p<3.8×10−6, ***p<4.3×10−7, Wald test. (E) LTi cells are enriched in PP regions. Shown is flow cytometry analysis gated on CD45+Lin CD90.2+IL7R+RORγt+ cells. Left: Numbers adjacent to outlined areas indicate percent ILC3 (left) or LTi cells (right). Right: Summary of results. n=3 mice, mean and SEM; ***p<0.001, Fisher's exact test.

FIG. 2—Increased ILC2 proportions and changes in ILC2 programs are key features in OVA-induced type 2 inflammation. (A-D) Increased ILC2 and mast cell frequencies are prominent features in type 2 inflammation. (A) A 2D embedding as in FIG. 1B, where each cell profile (dot) is shaded by whether it was obtained in homeostatic or OVA-induced inflammatory conditions. (B) Distribution of cell type proportions (y axis) for each non-T and non-B cell subset (x axis) in homeostatic (left bar) or inflammatory (right bar) conditions. Points: independent experiments. Box and-whisker plots show the median, quartiles, and range. *p<1.3×10−2, **p<4.5×10−4, ***p<6.1×10−8, Wald test. (C and D) Flow cytometry analysis of frequencies of mast cells (C, gated on CD45+Lin) and ILC2s (D, gated on CD45+Lin CD90.2+IL7R+) in mice treated with PBS (black) or OVA (grey). Left: representative FACS plots; Right: summary of results. Points: individual mice; data are from two independent experiments. mean and SEM; **p<0.01, Student's t test. (E) ILC2s and mast cells show the most prominent changes in expression programs in type 2 inflammation. Number of genes significantly induced (black) or inhibited (grey) (|fold change|≥2, FDR<0.05, expressed at least in 25% of cells at the up-regulation side; shaded bar) by OVA-induced type 2 inflammation in each cell subset (column) from the LP or PP regions (label on left).

FIG. 3—Topic modeling of cell type-specific programs in response to intestinal type 2. inflammation predicts Calca as a top gene in ILC2s (A-E) Inflammation associated programs in specific cell subsets. Shown are some of the topics that have differential scores between steady state (PBS) and inflammatory conditions (OVA) for myeloid cells (A), ILCs (B), T cells (C, D) or stromal cells (E). Left: Bar plot shows the score (x axis) of top ranked genes for this topic (y axis). Top right: a portion of the 2D embedding in FIG. 1B, showing only cells from the noted subset cells, shaded by the topic's weight in the cell (top right). Bottom right: empirical cumulative density function (y axis) of topic weights (x axis) for cells from mice treated with PBS (black curve) or OVA (grey curve). p values: Mann-Whitney U test. (F) Increased number of IL-33+PDPN+ fibroblasts in inflammation. Left: Representative IF images of small intestines from mice at steady state (PBS) or inflammatory (OVA) conditions. Arrow, IL-33+PDPN+ fibroblasts; Scale bars, 50 Right: Quantified cell densities. Points: individual mice; data are from two independent experiments. mean and SEM, **p<0.01, Student's t test.

FIG. 4—α-CGRP suppresses IL-25-induced activation and expansion of intestinal KLRG1+ ILC2s in vitro. (A) Cells expressing Calca gene. 2D embedding as in FIG. 1B where cells (dots) are colored by relative expression of Calca (log2(TPM+1)). (B) α-CGRP exon specifically induced in inflammation. Expression level (y axis, Quantitative PCR normalized to Gapdh) of α-CGRP exon of Calca gene, Calcrl, and Ramp1 in intestinal KLRG1+ ILC2s isolated from control (black) or OVA-treated (grey) mice. Points: individual experiment; mean and SEM, *p<0.01, **p<0.01, Student's t test. (C and D) α-CGRP co-treatment abrogates most of the IL-25 induced response in ILC2s in vitro. (C) Expression (shaded bar, Z score) of genes (rows) significantly induced in ILC2s (Fold change≥2, FDR<0.05) by IL-25 compared to control, across different conditions (columns). (D) Box and whisker (min to max) plot of the average Z scores (y axis) of the IL-25-induced genes in (C). ***false discovery rate [FDR]<0.001, Student's t test. (E) α-CGRP suppresses IL-25-induced proliferation of ILC2s. Left: Distribution of number of cell divisions (y axis, % of maximum observed number) monitored by flow cytometry in KLRG1+ILC2s labeled with CellTrace Violet and stimulated with IL-25 or IL-25 plus α-CGRP for 60 hours. Right: Percent of dividing cells (y axis) in each treatment (x axis). Points: individual experiments. mean and SEM, *p<0.05, Student's t test.

FIG. 5—α-CGRP antagonizes expansion of intestinal KLRG1+ ILC2s in vivo. (A) Experimental design. Mice were intraperitoneally injected with vehicle, IL-25 or IL-25 and α-CGRP daily for two days. (B) α-CGRP co-treatment antagonizes CD3KLRG1+ ILC2 expansion in vivo. Representative IF images of CD3KLRG1+ ILC2 (arrows) in small intestines of mice treated as in A. Scale bars, 100 Data are representative of three mice in each condition. (C-E) α-CGRP antagonizes the expansion of ST2KLRG1+ ILC2s specifically. (C) Flow cytometry analysis of ILC2s in mLNs cells gated on CD45+LinCD90.2+IL7R+ from mice treated as in (A). (D) Frequency (y axis) of ST2KLRG1+ ILC2s in total CD45+ cells in mLNs of mice treated as in A. Points: individual mice. Data from three independent experiments. mean and SEM, *FDR<0.05, ***FDR<0.001, Student's t test. (E) Frequency (y axis) of ST2+ ILC2s in total CD45+ cells in mLNs of mice treated as in A. Point: individual mice. Data are from three independent experiments. mean and SEM, ns: FDR>0.05, *FDR<0.05, **FDR<0.01, Student's t test. (F and G) α-CGRP treatment antagonizes intestinal ILC2 expansion following OVA intraperitoneal sensitization experiment. (F) Experimental overview. (G) Percent of GATA3+ ILC2 (y axis) in total CD45+ cells in the small intestine of mice treated as in F. Point: individual mice. Data are from three independent experiments. mean and SEM, *p<0.05, Student's t test.

FIG. 6—α-CGRP is produced by ChAT+ enteric neurons in steady state and maintains KLRG1+ ILC2 homeostasis in vivo. (A and B) ChAT+ enteric neurons express α-CGRP. (A) t-SNE plot of 1105 enteric neuron profiles from Wnt1-Cre:R26Tomato mice (Zeisel et al., 2018), where each neuron (dot) is numbered by cluster assignment. (B) Distribution of expression levels (y axis, log2(TPM+1)) of Nmu, Calca, Calcb and Calcrl gene in the enteric neurons in each cluster in A (x axis). (C) co-localization of ChAT and CGRP in the small intestines. Representative IF images of the small intestines of wild type mice. Scale bar, 50 Data are representative of three mice. (D) Expression program induced by α-CGRP in ILC2s in vitro. Relative expression (rowwise Z score of log2(FPKM+1)) of genes (rows) significantly induced or suppressed by α-CGRP stimulation (|Fold change|≥2, FDR<0.05), across conditions (columns). Key genes are highlighted. (E) α-CGRP in ILC2s in vitro reprograms chromatin accessibility especially at loci of a cAMP response module. Left: Chromatin accessibility (log2(#cuts+1), Methods) of loci (rows) with differential accessibility in ILC2s treated by α-CGRP vs. control in vitro. Right: Statistical significance (x axis, −log10(q-value)) of molecular functions (y axis) whose associated genes are enriched in proximity to these differentially accessible ATAC-Seq peaks. Dashed line: qvalue=0.01. (F and G) Foskolin suppresses ILC2 proliferation but does not impact cell viability. (F) Left: Distribution of number of cell divisions (y axis, % of maximum observed number) monitored by flow cytometry in KLRG1+ ILC2s labeled with CellTrace Violet and stimulated with IL-25 and DMSO or forskolin for 40 hours. Right: Percent of divided cells (y axis) in each treatment (x axis). Points: individual experiments. mean and SEM, ***p<0.001, Student's t test. (G) Left: Cell viability monitored by flow cytometry in cells in F stained with 7AAD. Right: Percent of live (7AAD) cells (y axis) in each treatment (x axis). Points: individual experiments. mean and SEM, NS: p>0.05, Student's t test. (H) Adenylate cyclase inhibitor (SQ22, 536) treatment partially rescues α-CGRP inhibition of ILC2 proliferation. Percent of divided cells (y axis) assayed as in F, in ILC2s treated in vivo with IL-25 and DMSO alone (black) or with α-CGRP (grey) or α-CGRP+Forskolin (dark grey). Points: individual experiments. mean and SEM, **p<0.01,*** p<0.001, Student's t test. (I and J) α-CGRP KO affects ILC2 expansion in vivo. (I) Left: Flow cytometry analysis of intestinal KLRG1+ cells among cells gated on CD45+Lin CD90.2+IL7R+ in α-CGRP WT and KO mice in homeostasis. Right: Percentage of KLRG1+ILC2s (y axis) in α-CGRP WT and KO mice. Points: individual mice. Data from three independent experiments. mean and SEM, **p<0.01, Student's t test. (J) Left: Representative IF images of tuft cells (arrows) in the small intestine of α-CGRP WT or KO mice. Scale bars, 50 Right: Density of tuft cells (y axis, number per mm2) in WT and KO. Points: individual mice. Data are from the independent experiments. mean and SEM, *p<0.05, Student's t test.

FIG. 7—A model of neuronal signals orchestrating ILC2 responses. Intestinal ILC2s sense different neuropeptides, including NMU, epinephrine (EPI) and CGRP from enteric neurons via expressing corresponding GPCRs. The amplifier NMUR1 signals through Gαq/11 and inhibits cAMP level, whereas the negative regulators CRLR and β2AR are coupled with Gαs protein that results in cAMP accumulation. cAMP suppresses expansion of ILC2s but increases IL-5 expression. Thus, selective activation of different subgroups of a subunits of G proteins coupled with variable concentration of cAMP might be utilized by ILC2s to fine-turn the response to neuronal signaling.

FIG. 8—FACS, single-cell expression and IF staining analysis of intestinal immune cells, related to FIG. 1. (A) Experimental overview. (B) Depletion of common cell types by FACS. Shown are representative FACS plots for sorting lgDlow cells (left) or CD3CD19 cells (right) from PP and LP regions. CD45 cells were not included in LP. (C) An LP and PP cell atlas. A 2D embedding as in FIG. 1B, but showing separately only the 36,797 cells from PP regions (left) or the 21,270 cells from LP (right). (D) Cluster quality measures. Top: Distribution of number of UMIs (y axis, log10-transformed) in both LP and PP cells in each cluster from FIG. 1B (x axis). Bottom: distribution of doublet scores (y axis, Methods) of only PP cells in each cluster from FIG. 1B (x axis). (E) Clusters of specific cell types in the atlas. A 2D embedding as in FIG. 1B, but showing separately only the cells in each cell lineage or group as labeled. (F) Differentially expressed genes between ILC3 and LTi. Fraction of cells in the cluster that express a gene (dot size) and the z-score of the mean expression of that gene in those cells that express it in the cluster (shading; z-score of average log2(TPM+1)). (G) Tissue distribution of B (left) and T (right) cells between LP and PP in homeostasis. Proportion (y axis) of each cell type (x axis) in LP (triangle) and PP (black circle) regions. Points: independent experiments; Box-and-whisker plots show the median, quartiles, and range. *p<6×10−05, **p<4×10−10, ***p<2.5×10−153 Wald test. (H) Differential distribution of plasma cells and GC B cells. Representative IF image of the small intestines of wild type mice. Dashed line: PP region; Small dashed region: GC area; arrow: CD138+ plasma cell; scale bar, 100 μm. Data are representative of three mice.

FIG. 9—Cell proportions in T and B cells, and gene expression in ILC2s, mast cells, macrophages and plasma cells in OVA-induced type 2 inflammation, related to FIG. 2. (A) Distribution of cell type proportions (y axis) in B cells (left) and T cells in homeostatic (black) or inflammatory (grey) conditions. Points: independent experiments. Box-and-whisker plots show the median, quartiles, and range. (B) Differentially expressed genes in ILC2s, mast cells, macrophages and plasma cells. Shown are genes repressed (left of zero) or induced (right of zero) (|fold change|≥2, FDR<0.05, likelihood ratio test, frequency of expressing cells ≥25% at the up-regulation side) by the inflammation in each labeled cell type. Dots: genes, with key ones labeled. (C) Distribution of expression levels (y axis, log2(TPM+1)) of Igh genes (labeled) in plasma cells in homeostatic (left) or inflammatory (right) conditions. *p<2.8×10−5, **p<2.9×10−13, ***p<1.5×10−107, likelihood ratio test.

FIG. 10—Topic modeling on T cells, B cells, DCs, ILCs, myeloid cells and stromal cells, and co-expression of CCL21 and IL-33 in PDPN+ stromal cells in the small intestine, related to FIG. 3. (A-F) Biological programs in each cell subset revealed by topic modeling. Shown are topics in T cells (A), B cells (B), ILCs (C), myeloid cells (D), DCs (E) and stromal cells (F). Top (A-D) and left (E and F): a portion of the 2D embedding in FIG. 1B, showing only cells from the noted subset cells, shaded by the topic's weight in the cell. Bottom (A-D) and right (E and F): empirical cumulative density function (y axis) of topic weights (x axis) for cells from mice treated with PBS (black curve) or OVA (grey curve). p values: Mann-Whitney U test. (G) co-localization of CCL21 and IL-33 in subsets of PDPN+ stromal cells (arrow) in the small intestines. Representative IF images of the small intestines of wild type mice. Scale bars, 50 μm. Data are representative of three mice.

FIG. 11—Expression of Calca, Calcrl, Ramp1 and Il5 genes in intestinal KLRG1+ ILC2s in homeostatic and inflammatory conditions, related to FIG. 4. (A) Distribution of expression levels (y axis, log2(TPM+1)) of Calca (top), Calcrl (middle), Ramp1 (bottom) in each cell types (x axis) in mice treated with PBS (black) or OVA (grey). ILC2s are highlighted. *P<0.05, **P<2.3×10−06, likelihood ratio test. (B) Expression level (y axis, Quantitative PCR normalized to Gapdh) of CT exon of Calca gene in intestinal KLRG1+ ILC2s isolated from PBS or OVA-treated mice. Points: individual experiment; mean and SEM, NS: p>0.05, Student's t test. (C) α-CGRP promotes Il5 expression in intestinal ILC2s. Shown are Z scores of Il5 gene in FIG. 4C. Points: individual sample; mean and SEM, *FDR<0.05, **FDR<0.01, ***FDR<0.001, Student's t test.

FIG. 12—α-CGRP suppress expansion of intestinal KLRG1+ ILC2s in two in vivo models, related to FIG. 5. (A) α-CGRP co-treatment antagonizes CD3KLRG1+ ILC2 expansion in vivo. Representative IF images of CD3KLRG1+ ILC2 (arrows) in small intestines of mice treated as in FIG. 5A. Scale bars, 200 Data are representative of three mice in each condition. (B) α-CGRP suppresses the expansion of ST2KLRG1+ ILC2s in mLNs. Quantification of frequency (y axis) of ST2KLRG1+ ILC2s in FIG. 5C. Points: individual mice. Data from three independent experiments. mean and SEM, *FDR<0.05, ***FDR<0.001, Student's t test. (C, D) α-CGRP treatment antagonizes intestinal ILC2 expansion in OVA-induced inflammation model. (C) Flow cytometry analysis of ILC2s (gated on CD45+Lin CD90.2+IL7R+) in the small intestines in mice treated as in FIG. 5F. (D) Percent of GATA3+ ILC2 (y axis) in all ILCs in the small intestine of mice in (C). Points: individual mice. Data from three independent experiments. mean and SEM, **p<0.01, Student's t test.

FIG. 13—scRNA-seq analysis of intestinal epithelium and enteric neurons, and ATAC-seq analysis of intestinal ILC2s, related to FIG. 6. (A) Undetectable expression of Calca and Calcrl in epithelium of wild type mice (Haber et al, 2017). Distribution of expression levels (y axis, log2(TPM+1)) of Calca (top), Ramp1 (middle), Calcrl (bottom) in each epithelial cell type as labeled. (B) Marker genes of each enteric neuron clusters. Heatmap showing relative expression (Z score of log2(TPM+1)) of top 5 marker genes (row) of each cluster (column) in FIG. 6A. (C) Distribution of expression levels (y axis, log2(TPM+1)) of Chat, Gal, Il13ra1, Il4ra and Tslp gene in each cluster (x axis) in FIG. 6A. (D) Interaction between ChAT-expressing neuron fibers and CD3KLRG1+ ILC2s (arrow) in the small intestines. Representative IF images of the small intestines of wild type mice. Scale bar, 25 Data are representative of three mice.

The figures herein are for illustrative purposes only and are not necessarily drawn to scale.

DETAILED DESCRIPTION OF THE EXAMPLE EMBODIMENTS General Definitions

Unless defined otherwise, technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure pertains. Definitions of common terms and techniques in molecular biology may be found in Molecular Cloning: A Laboratory Manual, 2nd edition (1989) (Sambrook, Fritsch, and Maniatis); Molecular Cloning: A Laboratory Manual, 4th edition (2012) (Green and Sambrook); Current Protocols in Molecular Biology (1987) (F. M. Ausubel et al. eds.); the series Methods in Enzymology (Academic Press, Inc.): PCR 2: A Practical Approach (1995) (M. J. MacPherson, B. D. Hames, and G. R. Taylor eds.): Antibodies, A Laboratory Manual (1988) (Harlow and Lane, eds.): Antibodies A Laboraotry Manual, 2nd edition 2013 (E. A. Greenfield ed.); Animal Cell Culture (1987) (R. I. Freshney, ed.); Benjamin Lewin, Genes IX, published by Jones and Bartlet, 2008 (ISBN 0763752223); Kendrew et al. (eds.), The Encyclopedia of Molecular Biology, published by Blackwell Science Ltd., 1994 (ISBN 0632021829); Robert A. Meyers (ed.), Molecular Biology and Biotechnology: a Comprehensive Desk Reference, published by VCH Publishers, Inc., 1995 (ISBN 9780471185710); Singleton et al., Dictionary of Microbiology and Molecular Biology 2nd ed., J. Wiley & Sons (New York, N.Y. 1994), March, Advanced Organic Chemistry Reactions, Mechanisms and Structure 4th ed., John Wiley & Sons (New York, N.Y. 1992); and Marten H. Hofker and Jan van Deursen, Transgenic Mouse Methods and Protocols, 2nd edition (2011).

As used herein, the singular forms “a”, “an”, and “the” include both singular and plural referents unless the context clearly dictates otherwise.

The term “optional” or “optionally” means that the subsequent described event, circumstance or substituent may or may not occur and that the description includes instances where the event or circumstance occurs and instances where it does not.

The recitation of numerical ranges by endpoints includes all numbers and fractions subsumed within the respective ranges, as well as the recited endpoints.

The terms “about” or “approximately” as used herein when referring to a measurable value such as a parameter, an amount, a temporal duration, and the like, are meant to encompass variations of and from the specified value, such as variations of +/−10% or less, +/−5% or less, +/−1% or less, and +/−0.1% or less of and from the specified value, insofar such variations are appropriate to perform in the disclosed invention. It is to be understood that the value to which the modifier “about” or “approximately” refers is itself also specifically, and preferably, disclosed.

As used herein, a “biological sample” may contain whole cells and/or live cells and/or cell debris. The biological sample may contain (or be derived from) a “bodily fluid”. The present invention encompasses embodiments wherein the bodily fluid is selected from amniotic fluid, aqueous humour, vitreous humour, bile, blood serum, breast milk, cerebrospinal fluid, cerumen (earwax), chyle, chyme, endolymph, perilymph, exudates, feces, female ejaculate, gastric acid, gastric juice, lymph, mucus (including nasal drainage and phlegm), pericardial fluid, peritoneal fluid, pleural fluid, pus, rheum, saliva, sebum (skin oil), semen, sputum, synovial fluid, sweat, tears, urine, vaginal secretion, vomit and mixtures of one or more thereof. Biological samples include cell cultures, bodily fluids, cell cultures from bodily fluids. Bodily fluids may be obtained from a mammal organism, for example by puncture, or other collecting or sampling procedures.

The terms “subject,” “individual,” and “patient” are used interchangeably herein to refer to a vertebrate, preferably a mammal, more preferably a human. Mammals include, but are not limited to, murines, simians, humans, farm animals, sport animals, and pets. Tissues, cells and their progeny of a biological entity obtained in vivo or cultured in vitro are also encompassed.

Various embodiments are described hereinafter. It should be noted that the specific embodiments are not intended as an exhaustive description or as a limitation to the broader aspects discussed herein. One aspect described in conjunction with a particular embodiment is not necessarily limited to that embodiment and can be practiced with any other embodiment(s). Reference throughout this specification to “one embodiment”, “an embodiment,” “an example embodiment,” means that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, appearances of the phrases “in one embodiment,” “in an embodiment,” or “an example embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment, but may. Furthermore, the particular features, structures or characteristics may be combined in any suitable manner, as would be apparent to a person skilled in the art from this disclosure, in one or more embodiments. Furthermore, while some embodiments described herein include some but not other features included in other embodiments, combinations of features of different embodiments are meant to be within the scope of the invention. For example, in the appended claims, any of the claimed embodiments can be used in any combination.

Reference is made to International Application Nos. PCT/US2018/024082, published as WO 2018/175924A1 on Sep. 27, 2018, and PCT/US2019/030911, published as WO2019/213660A2 on Nov. 7, 2019. Reference is also made to Xu et al., Transcriptional Atlas of Intestinal Immune Cells Reveals that Neuropeptide α-CGRP Modulates Group 2 Innate Lymphoid Cell Responses. Immunity. 2019 Oct. 15; 51(4):696-708.e9.

All publications, published patent documents, and patent applications cited herein are hereby incorporated by reference to the same extent as though each individual publication, published patent document, or patent application was specifically and individually indicated as being incorporated by reference.

Overview

Embodiments disclosed herein provide methods and compositions for modulating an innate immune response, in particular an innate lymphoid cell class 2 innate immune response by modulating activity of CGRP signaling. Embodiments disclosed herein also provide for methods of monitoring an innate lymphoid cell class 2 innate immune response in response to disease or treatment.

It is an objective of the present invention to identify molecular cues that modulate ILC2 responses to alarmins (e.g., for therapeutic applications). It is an objective of the present invention to modulate ILC2 immune responses and cell states using CGRP either alone or in combination with other treatments. It is another objective to modulate ILC2 immune responses using CGRP in combination with agents currently in use for the modulation of immune responses or associated with regulation of immune responses.

Signaling abnormalities in immune responses in the small intestine can trigger chronic type 2 inflammation, involving interaction of multiple immune cell types. Here, Applicants combine scRNA-seq with physiological and genetic perturbations to dissect the cellular circuit of type 2 intestinal inflammation. To systematically characterize this response, Applicants analyzed 58,067 immune cells from the mouse small intestine by single-cell RNA-seq (scRNA-seq) at steady state and after induction of a type 2 inflammatory reaction to ovalbumin (OVA). Specifically, to uncover key responding cellular components, Applicants profiled individual immune cells in the lamina propria (LP) and Peyer's patches (PPs), regions of the small intestine enriched for immune cells, in homeostasis and in an intestinal type 2 inflammatory model. Analysis revealed broad shifts in both cell type composition and cell programs in response to the inflammation, especially in ILC2s. Among the key transcripts associated with an inflammation-induced program in intestinal KLRG1+ ILC2s was exon 5 of Calca, which encodes the alpha-calcitonin gene-related peptide (α-CGRP). Specifically, computational analysis showed that both cell compositions and cell programs shifted in response to inflammation, in particular the prominent induction of α-CGRP transcription in ILC2s. α-CGRP antagonized IL-25-induced activation of intestinal KLRG1+ILC2s and reduced ILC2 frequency in an OVA reaction model. In inflammatory conditions, α-CGRP suppressed activation of ILC2s, but induced IL-5 expression. In vivo stimulation with α-CGRP alone induced the expression of a cyclic AMP (cAMP) response gene module and suppressed cell proliferation. In homeostasis in vivo, α-CGRP was predominantly expressed by two subsets of ChAT+ enteric neurons, and genetic perturbation of α-CGRP increased the proportion of intestinal KLRG1+ ILC2s and the number of Tuft cells. Embodiments disclosed herein provide methods for targeting α-CGRP-mediated neuronal signaling for suppressing ILC2 expansion and maintaining homeostasis of the type 2 immune machinery.

The discovery presented herein highlights the importance of neuro-immune crosstalk in allergic inflammatory responses at mucosal surfaces. Moreover, Applicants have discovered novel regulatory mechanisms for modulating the balance between tissue protective ILCs and tissue inflammatory cells. In certain embodiments, the methods and compositions described herein may be used to shift the balance of ILC2 responses in order to treat inflammatory allergic diseases and cancer.

Expression Signatures

In certain example embodiments, the therapeutic, diagnostic, and screening methods disclosed herein target, detect, or otherwise make use of one or more biomarkers of an expression signature. As used herein, the term “biomarker” can refer to a gene, an mRNA, cDNA, an antisense transcript, a miRNA, a polypeptide, a protein, a protein fragment, or any other nucleic acid sequence or polypeptide sequence that indicates either gene expression levels or protein production levels. Accordingly, it should be understood that reference to a “signature” in the context of those embodiments may encompass any biomarker or biomarkers whose expression profile or whose occurrence is associated with a specific cell type, subtype, or cell state of a specific cell type or subtype within a population of cells (e.g., inflammatory or homeostatic ILC2 cells) or a specific biological program. As used herein the term “module” or “biological program” can be used interchangeably with “expression program” and refers to a set of biomarkers that share a role in a biological function (e.g., an activation program, cell differentiation program, proliferation program). Biological programs can include a pattern of biomarker expression that result in a corresponding physiological event or phenotypic trait. Biological programs can include up to several hundred biomarkers that are expressed in a spatially and temporally controlled fashion. Expression of individual biomarkers can be shared between biological programs. Expression of individual biomarkers can be shared among different single cell types; however, expression of a biological program may be cell type specific or temporally specific (e.g., the biological program is expressed in a cell type at a specific time). Expression of a biological program may be regulated by a master switch, such as a nuclear receptor or transcription factor. As used herein, the term “topic” refers to a biological program as determined by topic modeling. Topics are described further herein. The biological program (topic) can be modeled as a distribution over expressed biomarkers.

In certain embodiments, the expression of the signatures disclosed herein (e.g., inflammatory, homeostatic or CGRP signature) is dependent on epigenetic modification of the biomarkers or regulatory elements associated with the signatures (e.g., chromatin modifications or chromatin accessibility). Thus, in certain embodiments, use of signature biomarkers includes epigenetic modifications of the biomarkers that may be detected or modulated. As used herein, the terms “signature”, “expression profile”, or “expression program” may be used interchangeably (e.g., expression of genes, expression of gene products or polypeptides). It is to be understood that also when referring to proteins (e.g. differentially expressed proteins), such may fall within the definition of “gene” signature. Levels of expression or activity may be compared between different cells in order to characterize or identify, for instance, signatures specific for cell (sub)populations. Increased or decreased expression or activity or prevalence of signature biomarkers may be compared between different cells in order to characterize or identify for instance specific cell (sub)populations. The detection of a signature in single cells may be used to identify and quantitate for instance specific cell (sub)populations. A signature may include a biomarker whose expression or occurrence is specific to a cell (sub)population, such that expression or occurrence is exclusive to the cell (sub)population. An expression signature as used herein, may thus refer to any set of up- and/or down-regulated biomarkers that are representative of a cell type or subtype. An expression signature as used herein, may also refer to any set of up- and/or down-regulated biomarkers between different cells or cell (sub)populations derived from a gene-expression profile. For example, an expression signature may comprise a list of biomarkers differentially expressed in a distinction of interest.

The signature according to certain embodiments of the present invention may comprise or consist of one or more biomarkers, such as for instance 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more. In certain embodiments, the signature may comprise or consist of two or more biomarkers, such as for instance 2, 3, 4, 5, 6, 7, 8, 9, 10 or more. In certain embodiments, the signature may comprise or consist of three or more biomarkers, such as for instance 3, 4, 5, 6, 7, 8, 9, 10 or more. In certain embodiments, the signature may comprise or consist of four or more biomarkers, such as for instance 4, 5, 6, 7, 8, 9, 10 or more. In certain embodiments, the signature may comprise or consist of five or more biomarkers, such as for instance 5, 6, 7, 8, 9, 10 or more. In certain embodiments, the signature may comprise or consist of six or more biomarkers for instance 6, 7, 8, 9, 10 or more. In certain embodiments, the signature may comprise or consist of seven or more biomarkers, such as for instance 7, 8, 9, 10 or more. In certain embodiments, the signature may comprise or consist of eight or more biomarkers, such as for instance 8, 9, 10 or more. In certain embodiments, the signature may comprise or consist of nine or more biomarkers, such as for instance 9, 10 or more. In certain embodiments, the signature may comprise or consist of ten or more biomarkers, such as for instance 10, 11, 12, 13, 14, 15, or more. It is to be understood that a signature according to the invention may for instance also include different types of biomarkers combined (e.g. genes and proteins).

In certain embodiments, a signature is characterized as being specific for a particular cell or cell (sub)population if it is upregulated or only present, detected or detectable in that particular cell or cell (sub)population, or alternatively is downregulated or only absent, or undetectable in that particular cell or cell (sub)population. In this context, a signature consists of one or more differentially expressed genes/proteins or differential epigenetic elements when comparing different cells or cell (sub)populations, including comparing different immune cells or immune cell (sub)populations (e.g., ILC2 cells), as well as comparing immune cells or immune cell (sub)populations with other immune cells or immune cell (sub)populations. It is to be understood that “differentially expressed” biomarkers include biomarkers which are up- or down-regulated as well as biomarkers which are turned on or off. When referring to up- or down-regulation, in certain embodiments, such up- or down-regulation is preferably at least two-fold, such as two-fold, three-fold, four-fold, five-fold, or more, such as for instance at least ten-fold, at least 20-fold, at least 30-fold, at least 40-fold, at least 50-fold, or more. Alternatively, or in addition, differential expression may be determined based on common statistical tests, as is known in the art. Differential expression of biomarkers may also be determined by comparing expression of biomarkers in a population of cells or in a single cell. In certain embodiments, expression of one or more biomarkers is mutually exclusive in cells having a different cell state or subtype (e.g., two genes are not expressed at the same time). In certain embodiments, a specific signature may have one or more biomarkers upregulated or downregulated as compared to other biomarkers in the signature within a single cell (see, e.g., FIG. 6D). Thus a cell type or subtype can be determined by determining the pattern of expression in a single cell.

As discussed herein, differentially expressed biomarkers may be differentially expressed on a single cell level, or may be differentially expressed on a cell population level. Preferably, the differentially expressed biomarkers as discussed herein, such as constituting the expression signatures as discussed herein, when as to the cell population level, refer to biomarkers that are differentially expressed in all or substantially all cells of the population (such as at least 80%, preferably at least 90%, such as at least 95% of the individual cells). This allows one to define a particular subpopulation of cells. As referred to herein, a “subpopulation” of cells preferably refers to a particular subset of cells of a particular cell type (e.g., ILC2) which can be distinguished or are uniquely identifiable and set apart from other cells of this cell type. The cell subpopulation may be phenotypically characterized, and is preferably characterized by the signature as discussed herein. A cell (sub)population as referred to herein may constitute of a (sub)population of cells of a particular cell type characterized by a specific cell state.

When referring to induction, or alternatively suppression of a particular signature, preferable is meant induction or alternatively suppression (or upregulation or downregulation) of at least one biomarker of the signature, such as for instance at least two, at least three, at least four, at least five, at least six, or all biomarkers of the signature.

Example gene signatures and topics are further described below.

IL-25 Inflammatory ILC2 Gene Signature

In certain embodiments, an IL-25 inflammatory ILC2 gene signature (e.g., IL-25 induced genes; or signature of differentially expressed genes between ILC2s treated with IL-25 and IL-25+CGRP; or IL-25 induced genes that can be modulated by CGRP) comprises one or more biomarkers selected from Table A.

TABLE A I15 Furin Gem Nr4a1 Ptgs2 Il9 Irf4 Nfkbiz Tph1 Ccr4 Thbd Gadd45g Egr2 Ntn1 Prelp Il6 Flt4 Pecam1 Myc Fxyd6 Pcl13 Timp3 Csf2 Reln Pim2 Gpr97 Aqp1 Cntf Mmrn1 Ptger2 Mras Prss23 Emcn Cldn5 Adam8 Lyve1 Il13 Sdpr Gstm1 Lcn2 Gm1987

In one example embodiment, the IL-25 inflammatory ICL2 signature consists of the biomarkers Il5, Furin, Gem, Nr4a1, Ptgs2, Il9, Irf4, Nfkbiz, Tph1, Ccr4, Thbd, Gadd45g, Egr2, Ntn1, Prelp, Il6, Flt4, Pecam1, Myc, Fxyd6, Bcl3, Timp3, Csf2, Reln, Pim2, Gpr97, Aqp1, Cntf, Mmrn1, Ptger2, Mras, Prss23, Emcn, Cldn5, Adam8, Lyve1, Il13, Sdpr, Gstm1, Lcn2 and Gm1987 (see, FIG. 4C). In certain embodiments, IL-25 induces an inflammatory gene signature and this signature can be modulated (e.g., reversed or partially reversed) by treatment with CGRP.

In one example embodiment the IL-25 Inflammatory ILC2 signature comprises Il5 and at least N additional biomarker from Table A, wherein N equals 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or 51.

In another example embodiment the IL-25 Inflammatory ILC2 signature comprises Furin and at least one of N additional biomarkers from Table A, wherein N equals 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or 51.

In another example embodiment the IL-25 Inflammatory ILC2 signature comprises Gem and at least one of N additional biomarkers from Table A, wherein N equals 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or 51.

In another example embodiment the IL-25 Inflammatory ILC2 signature comprises Nr4a1 and at least N additional biomarkers from Table A, wherein N equals 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or 51.

In another example embodiment the IL-25 Inflammatory ILC2 signature comprises Ptgs2 and at least N additional biomarkers from Table A, wherein N equals 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or 51.

In another example embodiment the IL-25 Inflammatory ILC2 signature comprises 119 and at least N additional biomarkers from Table A, wherein N equals 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or 51.

In another example embodiment the IL-25 Inflammatory ILC2 signature comprises Irf4 and at least N additional biomarkers from Table A, wherein N equals 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or 51.

In another example embodiment the IL-25 Inflammatory ILC2 signature comprises Nfkbiz and at least N additional biomarkers from Table A, wherein N equals 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or 51.

In another example embodiment the IL-25 Inflammatory ILC2 signature comprises Tph1 and at least N additional biomarkers from Table A, wherein N equals 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or 51.

In another example embodiment the IL-25 Inflammatory ILC2 signature comprises Ccr4 and at least N additional biomarkers from Table A, wherein N equals 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or 51.

In another example embodiment the IL-25 Inflammatory ILC2 signature comprises Thbd and at least N additional biomarkers from Table A, wherein N equals 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or 51.

In another example embodiment the IL-25 Inflammatory ILC2 signature comprises Gadd45g and at least N additional biomarkers from Table A, wherein N equals 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or 51.

In another example embodiment the IL-25 Inflammatory ILC2 signature comprises Egr2 and at least N additional biomarkers from Table A, wherein N equals 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or 51.

In another example embodiment the IL-25 Inflammatory ILC2 signature comprises Ntn1 and at least N additional biomarkers from Table A, wherein N equals 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or 51.

In another example embodiment the IL-25 Inflammatory ILC2 signature comprises Prelp and at least N additional biomarkers from Table A, wherein N equals 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or 51.

In another example embodiment the IL-25 Inflammatory ILC2 signature comprises Il6 and at least N additional biomarkers from Table A, wherein N equals 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or 51.

In another example embodiment the IL-25 Inflammatory ILC2 signature comprises Flt4 and at least N additional biomarkers from Table A, wherein N equals 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or 51.

In another example embodiment the IL-25 Inflammatory ILC2 signature comprises Pecam1 and at least N additional biomarkers from Table A, wherein N equals 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or 51.

In another example embodiment the IL-25 Inflammatory ILC2 signature comprises Myc and at least N additional biomarkers from Table A, wherein N equals 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or 51.

In another example embodiment the IL-25 Inflammatory ILC2 signature comprises Fxyd6 and at least N additional biomarkers from Table A, wherein N equals 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or 51.

In another example embodiment the IL-25 Inflammatory ILC2 signature comprises Pcl13 and at least N additional biomarkers from Table A, wherein N equals 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or 51.

In another example embodiment the IL-25 Inflammatory ILC2 signature comprises Timp3 and at least N additional biomarkers from Table A, wherein N equals 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or 51.

In another example embodiment the IL-25 Inflammatory ILC2 signature comprises Csf2 and at least N additional biomarkers from Table A, wherein N equals 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or 51.

In another example embodiment the IL-25 Inflammatory ILC2 signature comprises Reln and at least N additional biomarkers from Table A, wherein N equals 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or 51.

In another example embodiment the IL-25 Inflammatory ILC2 signature comprises Pim2 and at least N additional biomarkers from Table A, wherein N equals 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or 51.

In another example embodiment the IL-25 Inflammatory ILC2 signature comprises Gpr97 and at least N additional biomarkers from Table A, wherein N equals 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or 51.

In another example embodiment the IL-25 Inflammatory ILC2 signature comprises Aqp1 and at least N additional biomarkers from Table A, wherein N equals 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or 51.

In another example embodiment the IL-25 Inflammatory ILC2 signature comprises Cntf and at least N additional biomarkers from Table A, wherein N equals 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or 51.

In another example embodiment the IL-25 Inflammatory ILC2 signature comprises Mmrn1 and at least N additional biomarkers from Table A, wherein N equals 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or 51.

In another example embodiment the IL-25 Inflammatory ILC2 signature comprises Ptger2 and at least N additional biomarkers from Table A, wherein N equals 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or 51.

In another example embodiment the IL-25 Inflammatory ILC2 signature comprises Mras and at least N additional biomarkers from Table A, wherein N equals 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or 51.

In another example embodiment the IL-25 Inflammatory ILC2 signature comprises Prss23 and at least N additional biomarkers from Table A, wherein N equals 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or 51.

In another example embodiment the IL-25 Inflammatory ILC2 signature comprises Emcn and at least N additional biomarkers from Table A, wherein N equals 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or 51.

In another example embodiment the IL-25 Inflammatory ILC2 signature comprises Cldn5 and at least N additional biomarkers from Table A, wherein N equals 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or 51.

In another example embodiment the IL-25 Inflammatory ILC2 signature comprises Adam8 and at least N additional biomarkers from Table A, wherein N equals 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or 51.

In another example embodiment the IL-25 Inflammatory ILC2 signature comprises Lyve1 and at least N additional biomarkers from Table A, wherein N equals 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or 51.

In another example embodiment the IL-25 Inflammatory ILC2 signature comprises Il13 and at least N additional biomarkers from Table A, wherein N equals 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or 51.

In another example embodiment the IL-25 Inflammatory ILC2 signature comprises Sdpr and at least N additional biomarkers from Table A, wherein N equals 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or 51.

In another example embodiment the IL-25 Inflammatory ILC2 signature comprises Gstm1 and at least N additional biomarkers from Table A, wherein N equals 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or 51.

In another example embodiment the IL-25 Inflammatory ILC2 signature comprises Lcn2 and at least N additional biomarkers from Table A, wherein N equals 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or 51.

In another example embodiment the IL-25 Inflammatory ILC2 signature comprises Gm1987 and at least N additional biomarkers from Table A, wherein N equals 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or 51.

ILC2 Signature (Topic 2)

In certain embodiments, an ILC2 expression signature (Topic 2) comprises one or more biomarkers selected from Table B.

TABLE B Calca Hs3st1 Areg Il13 Il4 Ccl1 Hes1 Il17rb Lgals7 Homer2 Il5 Gata3 Deptor Ptpn13 Ly6a Hba-a1 Kcnn4 Ccr4 Rxrg Sub1 1700061F12Rik Cntnap2 AA467197 Ptgir Il10 Nfkb1 Lmo4 Pparg Plaur Il9r Serpine1 Scel Bmp7 Neb Sox8 Lpcat2 Samsn1 Alox5 Gpr65 Abhd17c Gm20186 Gm973 Epas1 Ccr8 D430036J16Rik Cd6 Stxbp6 9230102O04Rik Furin Klf5.

In one example embodiment, the ILC2 signature consists of Calca, Hs3st1, Areg, Il13, Il4, Ccl1, Hes1, Il17rb, Lgals7, Homer2, Il5, Gata3, Deptor, Ptpn13, Ly6a, Hba-a1, Kcnn4, Ccr4, Rxrg, Sub1, 1700061F12Rik, Cntnap2, AA467197, Ptgir, Il10, Nfkb1, Lmo4, Pparg, Plaur, Il9r, Serpine1, Scel, Bmp7, Neb, Sox8, Lpcat2, Samsn1, Alox5, Gpr65, Abhd17c, Gm20186, Gm973, Epas1, Ccr8, D430036J16Rik, Cd6, Stxbp6, 9230102O04Rik.

In another example embodiment, the ILC2 signature comprises one gene from Table B and at least N additional biomarkers selected from Table B (e.g., Calca and one or more additional genes from Table B), wherein N is equal to 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50.

Myeloid Cell Signature (Topic 1)

In certain embodiments, myeloid cell signature (Topic 1) comprises one or more genes or polypeptides selected from the group consisting of: Cpa3, Cma1, Mcpt4, Tpsb2, Fcer1a, Hs3st1, Gata2, Cited4, Cyp11a1, Tph1, Furin, Rab27b, Slc45a3, Ccl1, Il13, Il1rl1, Itga2b, Cited2, Fam110c, Creb3l1, Rgs13, Tpsab1, Cyp26a1, Serpinb1a, Slc18a2, Gmpr, Rprm, Ero1l, Il4, Cd200r3, Glul, Kit, Lat, Alox5, Gchfr, mt-Atp6, Lat2, Prss34 Poln, Klk8, 4932438H23Rik, Slc6a13, Avil, Socs2, Smco4, Ier3, Lxn, Gpr171, Adk and Gata1.

In another example embodiment, the myeloid cell signature comprises one gene from topic 1 and at least N additional biomarkers selected from topic 1 (e.g., Cpa3 and one or more additional genes), wherein N is equal to 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50.

T Cell Signature (Topic 5)

In one example embodiment, T cell signature (Topic 5) comprises one or more genes or polypeptides selected from the group consisting of: 1700061F12Rik, Il13, Scin, Lgmn, Hlf, Smco4, Npnt, Il17rb, Deptor, Gata3, Gm2a, Il6, Il17a, Ltb4r1, Fgl2, Areg, Fbxl21, AA467197, Il1rl1, Me1, Gm5544, Tmem159, Rasgrp4, 1700012B07Rik, 1700113H08Rik, St6galnac5, Il4, Chdh, Slco2b1, Ccr9, Epas1, Grp, Lztfl1, Gm10369, Kif19a, Tenm4, Serpinf1, Gnb2, Ubox5, Plcl1, Rab31, Ffar2, Slx1b, Asb2, Zfp85, Tmsb4x, Hdc, Pxdc1, Heatr1 and Lgals7.

In another example embodiment, the T cell signature comprises one gene from topic 5 and at least N additional biomarkers selected from topic 5 (e.g., 1700061F12Rik and one or more additional genes), wherein N is equal to 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50.

Stromal Cell Signature (Topic 4)

In one example embodiment, a stromal cell signature (Topic 4) comprises one or more genes or polypeptides selected from the group consisting of: Ccl21a, Cxcl13, Clu, Ccl19, Acta2, Mfge8, Apoe, Tagln, Cxcl1, Cilp, Ccl2, Il33, Cxcl12, Actg2, Serpina3n, Ccl7, Bst1, Serpina1a, Fmod, Grem1, Serpina1b, Slc36a2, Cnn1, Myh11, Art2b, Actc1, AI838599, Serpina1c, Cr2, Gxylt2, Crym, Dclk1, Serpina1d, Myl9, Parm1, Gm16685, Postn, Chrdl1, Colq, Csn2, Prss12, H2-M2, Trf, Sostdc1, Dsc3, Ctgf, Thbs4, Pcdh15, Rtn4r and A230065H16Rik.

In another example embodiment, the stromal cell signature comprises one gene from topic 4 and at least N additional biomarkers selected from topic 4 (e.g., Ccl21a and one or more additional genes), wherein N is equal to 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50.

CGRP Signature

In certain embodiments, treatment of ILC2s with CGRP alone provides for a CGRP gene signature comprising one or more genes selected from the group consisting of: Gpr65, Pdcd1, Crem, Egln3, Adora2a, Rgs2, Gna15, Adrb2, Gadd45a, Areg, Hif1a, Dusp1, Pde4b, Cdkn1a, Akap12 and Il5 (see, FIG. 6D showing all genes differentially expressed upon CGRP treatment). In certain embodiments, this signature can be used to monitor an immune response or monitor a response to a treatment (e.g., CGRP). In certain embodiments, a shift to higher expression of the signature indicates that the treatment is reducing an inflammatory response or maintaining homeostasis.

In another example embodiment the CGRP signature comprises Gpr65 and at least N additional biomarkers from FIG. 6D, wherein N equals 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or up to 150 genes shown in FIG. 6D.

In another example embodiment the CGRP signature comprises Pdcd1 and at least N additional biomarkers from FIG. 6D, wherein N equals 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or up to 150 genes shown in FIG. 6D.

In another example embodiment the CGRP signature comprises Crem and at least N additional biomarkers from FIG. 6D, wherein N equals 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or up to 150 genes shown in FIG. 6D.

In another example embodiment the CGRP signature comprises Egln3 and at least N additional biomarkers from FIG. 6D, wherein N equals 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or up to 150 genes shown in FIG. 6D.

In another example embodiment the CGRP signature comprises Adora2a and at least N additional biomarkers from FIG. 6D, wherein N equals 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or up to 150 genes shown in FIG. 6D.

In another example embodiment the CGRP signature comprises Rgs2 and at least N additional biomarkers from FIG. 6D, wherein N equals 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or up to 150 genes shown in FIG. 6D.

In another example embodiment the CGRP signature comprises Gna15 and at least N additional biomarkers from FIG. 6D, wherein N equals 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or up to 150 genes shown in FIG. 6D.

In another example embodiment the CGRP signature comprises Adrb2 and at least N additional biomarkers from FIG. 6D, wherein N equals 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or up to 150 genes shown in FIG. 6D.

In another example embodiment the CGRP signature comprises Gadd45a and at least N additional biomarkers from FIG. 6D, wherein N equals 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or up to 150 genes shown in FIG. 6D.

In another example embodiment the CGRP signature comprises Areg and at least N additional biomarkers from FIG. 6D, wherein N equals 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or up to 150 genes shown in FIG. 6D.

In another example embodiment the CGRP signature comprises Hif1a and at least N additional biomarkers from FIG. 6D, wherein N equals 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or up to 150 genes shown in FIG. 6D.

In another example embodiment the CGRP signature comprises Dusp1 and at least N additional biomarkers from FIG. 6D, wherein N equals 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or up to 150 genes shown in FIG. 6D.

In another example embodiment the CGRP signature comprises Pde4b and at least N additional biomarkers from FIG. 6D, wherein N equals 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or up to 150 genes shown in FIG. 6D.

In another example embodiment the CGRP signature comprises Cdkn1a and at least N additional biomarkers from FIG. 6D, wherein N equals 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or up to 150 genes shown in FIG. 6D.

In another example embodiment the CGRP signature comprises Akap12 and at least N additional biomarkers from FIG. 6D, wherein N equals 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or up to 150 genes shown in FIG. 6D.

In another example embodiment the CGRP signature comprises Il5 and at least N additional biomarkers from FIG. 6D, wherein N equals 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or up to 150 genes shown in FIG. 6D.

Methods of Maintaining or Inducing Homeostasis of Intestinal ILC2 Cells

The following section provides multiple example embodiments for maintaining or inducing homeostasis of intestinal ILC2 cells. The methods may be administered to subjects at risk for having aberrant activation and or expansion of intestinal ILC2 cells. Thus, the embodiments may be used to prevent and/or treat diseases and disorders characterized by aberrant activation or expansion of intestinal ILC 2 cells.

Modulations of CGRP

In one aspect, methods of maintaining or inducing homeostasis of intestinal ILC2 cells may comprise administering a CGRP, or functional domain thereof, to a subject in need thereof. In certain example embodiments, a subject in need thereof may be a subject at risk for or having aberrant activation and expansion of intestinal ICL2 cells. Examples of diseases or disorders characterized by aberrant activation and expansion of intestinal ILC2 cells include, but are not limited to allergies (e.g., food allergies). As used herein “maintaining” means that if ILC2s are at homeostasis they are maintained in that current state and do not become inflammatory. As used herein “inducing homeostasis” means increasing the amount of homeostatic ILC2s or switching inflammatory ILC2s to homeostatic ILC2s.

The CGRP protein (also known as: Calcitonin Related Polypeptide Alpha, Calcitonin, Calcitonin Gene-Related Peptide 1, Calcitonin Gene-Related Peptide I, Alpha-Type CGRP, Calcitonin 1, CGRP-I, CALC1, Calcitonin/Calcitonin-Related Polypeptide, Alpha, Katacalcin, CGRP1, CGRP, PCT, CT and KC) (HUGO Gene Nomenclature Committee ID NO. HGNC:10489) may be any α-CGRP or β-CGRP, their functional variants, functional fragments or any mammalian orthologues thereof. In certain example embodiments, CGRP also includes peptides having undergone post-translational modifications, such as peptides having covalent attachment of glycosyl groups, acetyl groups, phosphate groups, lipid groups, and the like.

The human peptide α-CGRP (UniProtKB/Swiss-Prot ref: P06881.3) is encoded by the human gene CALCA (NCBI ref: NG_015960.1, NP_001029125.1) and has the sequence: Ala-Cys-Asp-Thr-Ala-Thr-Cys-Val-Thr-His-Arg-Leu-Ala-Gly-Leu-Leu-Ser-Arg-Ser-Gly-Gly-Val-Val-Lys-Asn-Asn-Phe-Val-Pro-Thr-Asn-Val-Gly-Ser- Lys-Ala-Phe-NH2 (SEQ ID NO: 1). In certain example embodiments, the CGRP to be administered is human α-CGRP. In certain example embodiments, the human α-CGRP to be administered is SEQ ID NO: 1 or a functional variant or fragment thereof.

The human peptide β-CGRP (UniProtKB/Swiss-Protref.: P10092.1) is encoded by the human gene CALCB (NCBI ref: NM_000728.4, NP_000719.1), and has the sequence: Ala-Cys-Asn-Thr-Ala-Thr-Cys-Val-Thr-His-Arg-Leu-Ala-Gly-Leu-Leu-Ser-Arg-Ser-Gly-Gly-Met-Val-Lys-Ser-Asn-Phe-Val-Pro-Thr-Asn-Val-Gly-Ser-Lys- Ala-Phe-NH2 (SEQ ID NO: 2). In certain example embodiments, the CGRP to be administered is human β-CGRP. In certain example embodiments, the human α-CGRP to be administered is SEQ ID NO: 2 or a functional variant or fragment thereof.

The gene name Areg or AREG may refer to the Amphiregulin gene or polypeptide according to NCBI Reference Sequence accession numbers NM_009704.4 or NM_001657.3. The gene name Calca or CALCA may refer to the Calcitonin/calcitonin-related polypeptide, alpha gene or polypeptide according to NCBI Reference Sequence accession numbers NM_001033954.3, NM_007587.2, NM_001033952.2, NM_001033953.2 or NM_001741.2. The gene name Ramp1 or RAMP1 may refer to the Receptor (calcitonin) activity modifying protein 1 gene or polypeptide according to NCBI Reference Sequence accession numbers NM_016894.3, NM_001168392.1, or NM_005855.3.

By functional variant or fragment of CGRP, it is herein referred to peptides which peptide sequence differ from the amino acid sequence of wild type CGRP, but that generally retains all the biological activity of CGRP. In certain embodiments, functional variants of CGRP are ligands binding to and activating the CGRP receptor. Functional variants may also include modified peptides, fusion proteins (e.g., fused to another protein, polypeptide or the like, such as an immunoglobulin or a fragment thereof), or peptides having non-natural amino acids. Functional variants may have an extended residence time in body fluids. In certain embodiments, a variant of CGRP has at least 80, 85, 90, 95, 99% of the biological activity of CGRP. In certain embodiments, a variant of α-CGRP has at least 80, 85, 90, 95, 99% of the biological activity of α-CGRP. In certain embodiments, a variant of β-CGRP has at least 80, 85, 90, 95, 99% of the biological activity of β-CGRP. Preferably, a functional variant of α-CGRP has at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 96%, at least 97%, at least 98%, at least 99% sequence identity with α-CGRP. Preferably, a functional variant of β-CGRP has at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 96%, at least 97%, at least 98%, at least 99% sequence identity with β-CGRP.

As used herein, the term “functional fragments” refers to a specific peptide that has a biological activity of interest, which peptide sequence is a part of the peptide sequence of the reference peptide, and that can be of any length, provided the biological activity of peptide of reference is retained by said fragment.

Modulation Using a CGRP Receptor Agonist

In another aspect, methods of maintaining or inducing homeostasis of intestinal ILC2 cells may comprise administering a CGRP receptor agonist, or functional domain thereof, to a subject in need thereof. In certain example embodiments, a subject in need thereof may be a subject at risk for or having aberrant activation and expansion of intestinal ICL2 cells.

CGRP receptors have been described as heterodimeric molecules formed of the calcitonin receptor-like receptor (CRLR), linked to RAMP1 (CALCRL). RAMP1 is a transmembrane domain protein of the RAMP family, which further comprises RAMP2 and RAMP3. Several types of receptors are known that can be activated by CGRP: CGRP receptor (formed of CRLR and of RAMP1), AM2 receptor (formed of CRLR and of RAMP3), and AMY1 and AMY3 receptors (formed of the calcitonin receptor and of RAMP1 and RAMP3, respectively). The CGRP receptors can therefore be distinguished from the AM2, AMY1 and AMY3 receptors by the nature of the transmembrane domain of the RAMP family interacting with CRLR.

As used herein, “CGRP receptor”, refers to a protein receptor comprising the CRLR protein Ref NCBI: NP_005786.1), bound to the protein Receptor Activity Modifying Protein 1 (RAMP1) (Ref NCBI: NP_005846.1). Thus, CGRP receptors do not comprise the CRLR protein bound to RAMP2 or RAMP3.

Modulation of One or More Biomarkers of an ILC2 Expression Signature

In certain embodiments, a method of maintaining or inducing homeostasis of intestinal ILC2 cells comprises administering or more agents capable of modulating expression, activity, or function of one or more biomarkers of the IL-25 inflammatory ILC2 gene signature defined in Table A. In another example embodiment, a method of maintaining or inducing homeostasis of intestinal ILC2 cells comprises administering or more agents capable of modulating expression, activity, or function of one or more biomarkers of the IL-25 inflammatory ILC2 gene signature defined at any one of [0058] to [0098].

Modulation of a CGRP Signature

In certain embodiments, a method of maintaining of inducing homeostasis of intestinal ILC2 cells comprises administering one or more agents capable of modulating expression, activity, or function of one or more biomarkers of the CGRP signature defined at any one of [0109] to [0124].

Modulation of Cell-Type Specific Biological Programs

In another aspect, embodiments disclosed herein provide a method of modulating an ILC2 inflammatory response comprising administering to a population of cells comprising ILC2s, mast cells, Th2 cells and/or fibroblasts one or more agents capable of modulating expression, activity of one or more signatures as defined in in any one of [0099] to [0107].

In one example embodiment, the method comprises administering to a population of cells comprising ILC2s, mast cells, Th2 cells and/or fibroblasts one or more agents capable of modulating expression, activity of one or more biological programs characterized by ILC Topic 2, wherein ILC Topic 2 comprises one or more genes or polypeptides selected from the group consisting of: Calca, Hs3st1, Areg, Il13, Il4, Ccl1, Hes1, Il17rb, Lgals7, Homer2, Il5, Gata3, Deptor, Ptpn13, Ly6a, Hba-a1, Kcnn4, Ccr4, Rxrg, Sub1, 1700061F12Rik, Cntnap2, AA467197, Ptgir, Il10, Nfkb1, Lmo4, Pparg, Plaur, Il9r, Serpine1, Scel, Bmp7, Neb, Sox8, Lpcat2, Samsn1, Alox5, Gpr65, Abhd17c, Gm20186, Gm973, Epas1, Ccr8, D430036J16Rik, Cd6, Stxbp6, 9230102O04Rik, Furin and Klf5.

In one example embodiment, the method comprises administering to a population of cells comprising ILC2s, mast cells, Th2 cells and/or fibroblasts one or more agents capable of modulating expression, activity of one or more biological programs characterized by myeloid cell Topic 1, wherein myeloid cell Topic 1 comprises one or more genes or polypeptides selected from the group consisting of: Cpa3, Cma1, Mcpt4, Tpsb2, Fcer1a, Hs3st1, Gata2, Cited4, Cyp11a1, Tph1, Furin, Rab27b, Slc45a3, Ccl1, Il13, Il1rl1, Itga2b, Cited2, Fam110c, Creb3l1, Rgs13, Tpsab1, Cyp26a1, Serpinb1a, Slc18a2, Gmpr, Rprm, Ero1l, Il4, Cd200r3, Glul, Kit, Lat, Alox5, Gchfr, mt-Atp6, Lat2, Prss34, Poln, Klk8, 4932438H23Rik, Slc6a13, Avil, Socs2, Smco4, Ier3, Lxn, Gpr171, Adk and Gata1.

In one example embodiment, the method comprises administering to a population of cells comprising ILC2s, mast cells, Th2 cells and/or fibroblasts one or more agents capable of modulating expression, activity of one or more biological programs characterized by T Cell Topic 5, wherein T cell Topic 5 comprises one or more genes or polypeptides selected from the group consisting of: 1700061F12Rik, Il13, Scin, Lgmn, Hlf, Smco4, Npnt, Il17rb, Deptor, Gata3, Gm2a, Il6, Il17a, Ltb4r1, Fgl2, Areg, Fbxl21, AA467197, Il1rl1, Me1, Gm5544, Tmem159, Rasgrp4, 1700012B07Rik, 1700113H08Rik, St6galnac5, Il4, Chdh, Slco2b1, Ccr9, Epas1, Grp, Lztfl1, Gm10369, Kif19a, Tenm4, Serpinf1, Gnb2, Ubox5, Plcl1, Rab31, Ffar2, Slx1b, Asb2, Zfp85, Tmsb4x, Hdc, Pxdc1, Heatr1 and Lgals7.

In one example embodiment, the method comprises administering to a population of cells comprising ILC2s, mast cells, Th2 cells and/or fibroblasts one or more agents capable of modulating expression, activity of one or more biological programs characterized by stromal cell Topic 4, wherein stromal cell Topic 4 comprises one or more genes or polypeptides selected from the group consisting of: Ccl21a, Cxcl13, Clu, Ccl19, Acta2, Mfge8, Apoe, Tagln, Cxcl1, Cilp, Ccl2, Il33, Cxcl12, Actg2, Serpina3n, Ccl7, Bst1, Serpina1a, Fmod, Grem1, Serpina1b, Slc36a2, Cnn1, Myh11, Art2b, Actc1, AI838599, Serpina1c, Cr2, Gxylt2, Crym, Dclk1, Serpina1d, Myl9, Parm1, Gm16685, Postn, Chrdl1, Colq, Csn2, Prss12, H2-M2, Trf, Sostdc1, Dsc3, Ctgf, Thbs4, Pcdh15, Rtn4r and A230065H16Rik.

In certain example embodiments, the agent suppresses one of the above biological programs, whereby an ILC2 inflammatory response is decreased. The one or more agents may comprise agent(s) that modulate the expression, activity or function of one or more genes of or polypeptides in ILC Topic 2, myeloid cell Topic 1, T cell Topic 5 or stromal cell Topic 4.

In certain example embodiments, the population of cells is in vivo. In certain embodiments, the in vivo population is present in the gut of a subject. In other example embodiments, the population of cell is an in vitro or ex vivo population of cells. In certain other example embodiments, the population of cells is an intestinal organoid.

Modulation and Modulating Agents

As used herein, “modulating” or “to modulate” generally means either reducing or inhibiting the expression or activity of, or alternatively increasing the expression or activity of a target or antigen (e.g., CGRP). In particular, “modulating” or “to modulate” can mean either reducing or inhibiting the activity of, or alternatively increasing a (relevant or intended) biological activity of, a target or antigen as measured using a suitable in vitro, cellular or in vivo assay (which will usually depend on the target involved), by at least 5%, at least 10%, at least 25%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, or more, compared to activity of the target in the same assay under the same conditions but without the presence of an agent. An “increase” or “decrease” refers to a statistically significant increase or decrease respectively. For the avoidance of doubt, an increase or decrease will be at least 10% relative to a reference, such as at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, at least 97%, at least 98%, or more, up to and including at least 100% or more, in the case of an increase, for example, at least 2-fold, at least 3-fold, at least 4-fold, at least 5-fold, at least 6-fold, at least 7-fold, at least 8-fold, at least 9-fold, at least 10-fold, at least 50-fold, at least 100-fold, or more. “Modulating” can also involve effecting a change (which can either be an increase or a decrease) in affinity, avidity, specificity and/or selectivity of a target or antigen, such as CGRP. “Modulating” can also mean effecting a change with respect to one or more biological or physiological mechanisms, effects, responses, functions, pathways or activities in which the target or antigen (or in which its substrate(s), ligand(s) or pathway(s) are involved, such as its signaling pathway or metabolic pathway and their associated biological or physiological effects) is involved. Again, as will be clear to the skilled person, such an action as an agonist or an antagonist can be determined in any suitable manner and/or using any suitable assay known or described herein (e.g., in vitro or cellular assay), depending on the target or antigen involved.

Modulating can, for example, also involve allosteric modulation of the target and/or reducing or inhibiting the binding of the target to one of its substrates or ligands and/or competing with a natural ligand, substrate for binding to the target. Modulating can also involve activating the target or the mechanism or pathway in which it is involved. Modulating can for example also involve effecting a change in respect of the folding or conformation of the target, or in respect of the ability of the target to fold, to change its conformation (for example, upon binding of a ligand), to associate with other (sub)units, or to disassociate. Modulating can for example also involve effecting a change in the ability of the target to signal, phosphorylate, dephosphorylate, and the like.

As used herein, an “agent” can refer to a protein-binding agent that permits modulation of activity of proteins or disrupts interactions of proteins and other biomolecules, such as but not limited to disrupting protein-protein interaction, ligand-receptor interaction, or protein-nucleic acid interaction. Agents can also refer to DNA targeting or RNA targeting agents. Agents can also refer to a protein, such as CGRP. Agents may include a fragment, derivative and analog of an active agent. The terms “fragment,” “derivative” and “analog” when referring to polypeptides as used herein refers to polypeptides which either retain substantially the same biological function or activity as such polypeptides. An analog includes a proprotein which can be activated by cleavage of the proprotein portion to produce an active mature polypeptide. Such agents include, but are not limited to, antibodies (“antibodies” includes antigen-binding portions of antibodies such as epitope- or antigen-binding peptides, paratopes, functional CDRs; recombinant antibodies; chimeric antibodies; humanized antibodies; nanobodies; tribodies; midibodies; or antigen-binding derivatives, analogs, variants, portions, or fragments thereof), protein-binding agents, nucleic acid molecules, small molecules, recombinant protein, peptides, aptamers, avimers and protein-binding derivatives, portions or fragments thereof. An “agent” as used herein, may also refer to an agent that inhibits expression of a gene, such as but not limited to a DNA targeting agent (e.g., CRISPR system, TALE, Zinc finger protein) or RNA targeting agent (e.g., inhibitory nucleic acid molecules such as RNAi, miRNA, ribozyme).

In certain embodiments, the agent modulates CGRP signaling. In certain embodiments, the agent is an agonist or antagonist of CGRP receptor activity. The term “agonist of the CGRP receptor” may refer to a compound that binds to a CGRP receptor and activates said CGRP receptor (see, e.g., US Patent Publication No. 2016-0106813A1).

In certain embodiments, administration of CGRP provokes migraine attacks due to its vasodilation properties, which are associated with dilation of both the middle meningeal artery (MMA), a major artery that supplies blood to a membrane (dura) that envelops the brain, and the middle cerebral artery (MCA) (see, e.g., Silberstein et al., Fremanezumab for the Preventive Treatment of Chronic Migraine, N Engl J Med 2017; 377:2113-22). Several approaches are possible to diminish the potential side-effects of the compounds of the invention. These side-effects can be diminished by following a specific treatment scheme, more precisely by making sure that the consecutive administrations are separated by enough time without CGRP and/or agonist of the CGRP receptor treatment. In a particular embodiment, the consecutive administrations of CGRP and/or agonist of the CGRP receptor are separated by at least 1 day, preferably 2 days, yet preferably 5 days.

The composition of the invention can also advantageously be formulated in order to release CGRP and/or agonist of the CGRP receptor in the subject in a timely controlled fashion. In a particular embodiment, the composition of the invention is formulated for controlled release of CGRP and/or agonist of the CGRP receptor.

In certain embodiments, the agent is capable of inhibiting the CGRP receptor or blocking CGRP receptor interaction with CGRP. Such agents may also be referred to as CGRP receptor antagonists. In certain embodiments, CGRP receptor or CGRP expression is inhibited, e.g., by a DNA targeting agent (e.g., CRISPR system, TALE, Zinc finger protein) or an RNA targeting agent (e.g., inhibitory nucleic acid molecules). In some embodiments, CGRP receptor activity is inhibited. Such inhibition includes, e.g., reducing the expression of its ligand, CGRP, or by blocking the interaction of CGRP receptor with CGRP. In certain embodiments, the antagonist is an antibody or fragment thereof. In certain embodiments, the antibody is specific for CGRP or CGRP receptor.

The agents of the present invention may be modified, such that they acquire advantageous properties for therapeutic use (e.g., stability and specificity), but maintain their biological activity (see, also administration).

It is well known that the properties of certain proteins can be modulated by attachment of polyethylene glycol (PEG) polymers, which increases the hydrodynamic volume of the protein and thereby slows its clearance by kidney filtration. (See, e.g., Clark et al., J. Biol. Chem. 271: 21969-21977 (1996)). Therefore, it is envisioned that certain agents can be PEGylated (e.g., on peptide residues) to provide enhanced therapeutic benefits such as, for example, increased efficacy by extending half-life in vivo. In certain embodiments, PEGylation of the agents may be used to extend the serum half-life of the agents (e.g., CGRP) and allow for particular agents to be capable of crossing the blood-brain barrier. Thus, in one embodiment, PEGylating CGRP or the CGRP receptor agonists or antagonists improve the pharmacokinetics and pharmacodynamics of the CGRP receptor agonists or antagonists.

In regards to peptide PEGylation methods, reference is made to Lu et al., Int. J. Pept. Protein Res. 43: 127-38 (1994); Lu et al., Pept. Res. 6: 140-6 (1993); Felix et al., Int. J. Pept. Protein Res. 46: 253-64 (1995); Gaertner et al., Bioconjug. Chem. 7: 38-44 (1996); Tsutsumi et al., Thromb. Haemost. 77: 168-73 (1997); Francis et al., hit. J. Hematol. 68: 1-18 (1998); Roberts et al., J. Pharm. Sci. 87: 1440-45 (1998); and Tan et al., Protein Expr. Purif. 12: 45-52 (1998). Polyethylene glycol or PEG is meant to encompass any of the forms of PEG that have been used to derivatize other proteins, including, but not limited to, mono-(C1-10) alkoxy or aryloxy-polyethylene glycol. Suitable PEG moieties include, for example, 40 kDa methoxy poly(ethylene glycol) propionaldehyde (Dow, Midland, Mich.); 60 kDa methoxy poly(ethylene glycol) propionaldehyde (Dow, Midland, Mich.); 40 kDa methoxy poly(ethylene glycol) maleimido-propionamide (Dow, Midland, Mich.); 31 kDa alpha-methyl-w-(3-oxopropoxy), polyoxyethylene (NOF Corporation, Tokyo); mPEG2-NHS-40k (Nektar); mPEG2-MAL-40k (Nektar), SUNBRIGHT GL2-400MA ((PEG)240 kDa) (NOF Corporation, Tokyo), SUNBRIGHT ME-200MA (PEG20 kDa) (NOF Corporation, Tokyo). The PEG groups are generally attached to the peptide (e.g., CGRP) via acylation or alkylation through a reactive group on the PEG moiety (for example, a maleimide, an aldehyde, amino, thiol, or ester group) to a reactive group on the peptide (for example, an aldehyde, amino, thiol, a maleimide, or ester group).

The PEG molecule(s) may be covalently attached to any Lys, Cys, or K(CO(CH2)2SH) residues at any position in a peptide. In certain embodiments, the CGRP receptor agonists described herein can be PEGylated directly to any amino acid at the N-terminus by way of the N-terminal amino group. A “linker arm” may be added to a peptide to facilitate PEGylation. PEGylation at the thiol side-chain of cysteine has been widely reported (see, e.g., Caliceti & Veronese, Adv. Drug Deliv. Rev. 55: 1261-77 (2003)). If there is no cysteine residue in the peptide, a cysteine residue can be introduced through substitution or by adding a cysteine to the N-terminal amino acid. In certain embodiments, CGRP receptor agonists are PEGylated through the side chains of a cysteine residue added to the N-terminal amino acid.

In exemplary embodiments, the PEG molecule(s) may be covalently attached to an amide group in the C-terminus of a peptide, such as in the CGRP receptor agonist. In preferred embodiments, there is at least one PEG molecule covalently attached to the CGRP receptor agonist. In certain embodiments, the PEG molecule used in modifying an agent of the present invention is branched while in other embodiments, the PEG molecule may be linear. In particular aspects, the PEG molecule is between 1 kDa and 100 kDa in molecular weight. In further aspects, the PEG molecule is selected from 10, 20, 30, 40, 50, 60, and 80 kDa. In further still aspects, it is selected from 20, 40, or 60 kDa. Where there are two PEG molecules covalently attached to the agent of the present invention, each is 1 to 40 kDa and in particular aspects, they have molecular weights of 20 and 20 kDa, 10 and 30 kDa, 30 and 30 kDa, 20 and 40 kDa, or 40 and 40 kDa. In particular aspects, the agent (e.g., CGRP receptor agonists or antagonists) contain mPEG-cysteine. The mPEG in mPEG-cysteine can have various molecular weights. The range of the molecular weight is preferably 5 kDa to 200 kDa, more preferably 5 kDa to 100 kDa, and further preferably 20 kDa to 60 kDA. The mPEG can be linear or branched.

In particular embodiments, the agents (e.g., CGRP, or CGRP agonist or antagonists) include a protecting group covalently joined to the N-terminal amino group. In exemplary embodiments, a protecting group covalently joined to the N-terminal amino group of the CGRP receptor agonists reduces the reactivity of the amino terminus under in vivo conditions. Amino protecting groups include —C1-10 alkyl, —C1-10 substituted alkyl, —C2-10 alkenyl, —C2-10 substituted alkenyl, aryl, —C1-6 alkyl aryl, —C(O)—(CH2)1-6-COOH, —C(O)—C1-6 alkyl, —C(O)-aryl, —C(O)—O—C1-6 alkyl, or —C(O)—O-aryl. In particular embodiments, the amino terminus protecting group is selected from the group consisting of acetyl, propyl, succinyl, benzyl, benzyloxycarbonyl, and t-butyloxycarbonyl. In other embodiments, deamination of the N-terminal amino acid is another modification that may be used for reducing the reactivity of the amino terminus under in vivo conditions.

Chemically modified compositions of the agents (e.g., CGRP, or CGRP receptor agonists or antagonists) wherein the agent is linked to a polymer are also included within the scope of the present invention. The polymer selected is usually modified to have a single reactive group, such as an active ester for acylation or an aldehyde for alkylation, so that the degree of polymerization may be controlled. Included within the scope of polymers is a mixture of polymers. Preferably, for therapeutic use of the end-product preparation, the polymer will be pharmaceutically acceptable. The polymer or mixture thereof may include but is not limited to polyethylene glycol (PEG), monomethoxy-polyethylene glycol, dextran, cellulose, or other carbohydrate-based polymers, poly-(N-vinyl pyrrolidone) polyethylene glycol, propylene glycol homopolymers, a polypropylene oxide/ethylene oxide co-polymer, polyoxyethylated polyols (for example, glycerol), and polyvinyl alcohol.

In other embodiments, the agents (e.g., CGRP receptor agonists or antagonists) are modified by PEGylation, cholesterylation, or palmitoylation. The modification can be to any amino acid residue. In preferred embodiments, the modification is to the N-terminal amino acid of the agent (e.g., CGRP receptor agonist or antagonists), either directly to the N-terminal amino acid or by way coupling to the thiol group of a cysteine residue added to the N-terminus or a linker added to the N-terminus such as trimesoyl tris(3,5-dibromosalicylate (Ttds). In certain embodiments, the N-terminus of the agent (e.g., CGRP receptor agonist or antagonist) comprises a cysteine residue to which a protecting group is coupled to the N-terminal amino group of the cysteine residue and the cysteine thiolate group is derivatized with N-ethylmaleimide, PEG group, cholesterol group, or palmitoyl group. In other embodiments, an acetylated cysteine residue is added to the N-terminus of the agents, and the thiol group of the cysteine is derivatized with N-ethylmaleimide, PEG group, cholesterol group, or palmitoyl group. In certain embodiments, the agent of the present invention is a conjugate. In certain embodiments, the agent of the present invention (e.g., CGRP receptor agonists or antagonists) is a polypeptide consisting of an amino acid sequence which is bound with a methoxypolyethylene glycol(s) via a linker.

Substitutions of amino acids may be used to modify an agent of the present invention. The phrase “substitution of amino acids” as used herein encompasses substitution of amino acids that are the result of both conservative and non-conservative substitutions. Conservative substitutions are the replacement of an amino acid residue by another similar residue in a polypeptide. Typical but not limiting conservative substitutions are the replacements, for one another, among the aliphatic amino acids Ala, Val, Leu and Ile; interchange of Ser and Thr containing hydroxy residues, interchange of the acidic residues Asp and Glu, interchange between the amide-containing residues Asn and Gln, interchange of the basic residues Lys and Arg, interchange of the aromatic residues Phe and Tyr, and interchange of the small-sized amino acids Ala, Ser, Thr, Met, and Gly. Non-conservative substitutions are the replacement, in a polypeptide, of an amino acid residue by another residue which is not biologically similar. For example, the replacement of an amino acid residue with another residue that has a substantially different charge, a substantially different hydrophobicity, or a substantially different spatial configuration.

In certain embodiments, the present invention provides for one or more therapeutic agents. In certain embodiments, the one or more agents comprises a small molecule inhibitor, small molecule degrader (e.g., PROTAC), genetic modifying agent, antibody, antibody fragment, antibody-like protein scaffold, aptamer, protein, or any combination thereof.

The terms “therapeutic agent”, “therapeutic capable agent” or “treatment agent” are used interchangeably and refer to a molecule or compound that confers some beneficial effect upon administration to a subject. The beneficial effect includes enablement of diagnostic determinations; amelioration of a disease, symptom, disorder, or pathological condition; reducing or preventing the onset of a disease, symptom, disorder or condition; and generally counteracting a disease, symptom, disorder or pathological condition.

As used herein, “treatment” or “treating,” or “palliating” or “ameliorating” are used interchangeably. These terms refer to an approach for obtaining beneficial or desired results including but not limited to a therapeutic benefit and/or a prophylactic benefit. By therapeutic benefit is meant any therapeutically relevant improvement in or effect on one or more diseases, conditions, or symptoms under treatment. For prophylactic benefit, the compositions may be administered to a subject at risk of developing a particular disease, condition, or symptom, or to a subject reporting one or more of the physiological symptoms of a disease, even though the disease, condition, or symptom may not have yet been manifested. As used herein “treating” includes ameliorating, curing, preventing it from becoming worse, slowing the rate of progression, or preventing the disorder from re-occurring (i.e., to prevent a relapse). In certain embodiments, the present invention provides for one or more therapeutic agents against combinations of targets identified. Targeting the identified combinations may provide for enhanced or otherwise previously unknown activity in the treatment of disease.

Small Molecules

In certain embodiments, the one or more agents is a small molecule. The term “small molecule” refers to compounds, preferably organic compounds, with a size comparable to those organic molecules generally used in pharmaceuticals. The term excludes biological macromolecules (e.g., proteins, peptides, nucleic acids, etc.). Preferred small organic molecules range in size up to about 5000 Da, e.g., up to about 4000, preferably up to 3000 Da, more preferably up to 2000 Da, even more preferably up to about 1000 Da, e.g., up to about 900, 800, 700, 600 or up to about 500 Da. In certain embodiments, the small molecule may act as an antagonist or agonist (e.g., blocking a binding site or activating a receptor by binding to a ligand binding site).

One type of small molecule applicable to the present invention is a degrader molecule. Proteolysis Targeting Chimera (PROTAC) technology is a rapidly emerging alternative therapeutic strategy with the potential to address many of the challenges currently faced in modern drug development programs. PROTAC technology employs small molecules that recruit target proteins for ubiquitination and removal by the proteasome (see, e.g., Zhou et al., Discovery of a Small-Molecule Degrader of Bromodomain and Extra-Terminal (BET) Proteins with Picomolar Cellular Potencies and Capable of Achieving Tumor Regression. J. Med. Chem. 2018, 61, 462-481; Bondeson and Crews, Targeted Protein Degradation by Small Molecules, Annu Rev Pharmacol Toxicol. 2017 Jan. 6; 57: 107-123; and Lai et al., Modular PROTAC Design for the Degradation of Oncogenic BCR-ABL Angew Chem Int Ed Engl. 2016 Jan. 11; 55(2): 807-810).

In certain embodiments, combinations of targets are modulated (e.g., CGRP and one or more targets related to a gene signature gene). In certain embodiments, an agent against one of the targets in a combination may already be known or used clinically. In certain embodiments, targeting the combination may require less of the agent as compared to the current standard of care and provide for less toxicity and improved treatment.

GPR65

In certain example embodiments, the agent is an agent that modulates GPR65, also known as T cell death-associated gene 8 (TDAG8) is a G protein-coupled receptor (GPCR) protein that in humans is encoded by the GPR65 gene. GPR65 senses extracellular pH. It was found that cAMP levels increased when GPR65 was stimulated by pH values less than pH 7.2. Recent studies disclose that TDAG8 (GPR65) inhibits intestinal inflammation in the dss-induced experimental colitis mouse model (Sanderlin, et al., 2018, TDAG8 (GPR65) Inhibits Intestinal Inflammation in the DSS-Induced Experimental Colitis Mouse Model, bioRxiv 496315; doi.org/10.1101/496315). TDAG8-null mice showed exacerbation of intestinal inflammation and fibrosis. id. Aberrant TDAG8 function is associated with IBD development and progression (Jostins, et al., Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491: 119-124, 2012; and Lassen, et al., Genetic Coding Variant in GPR65 Alters Lysosomal pH and Links Lysosomal Dysfunction with Colitis Risk. Immunity, 2016). Applicants have shown for the first time that CGRP induces expression of GPR65 in ILC2s and suppresses type 2 inflammation-induced activation and expansion of intestinal ILC2s through activation of a cAMP response module. In certain embodiments, combination treatment with GPR65 agonists and agonists of CGRP signaling (e.g., CGRP) can be used in the treatment of or prevention of ILC2 inflammatory responses.

A GPR65 agonist, BTB09089 ((3-[(2,4-dichlorobenzyl)thio]-1,6-dimethyl-5,6-dihydro-1H-pyridazino[4,5-e][1,3,4]thiadiazin-5-one), has been developed and recently investigated for anti-inflammatory properties. In one study, BTB09089 was shown to activate TDAG8 in vitro (Onozawa, et al., Activation of T cell death associated gene 8 regulates the cytokine production of T cells and macrophages in vitro. Eur J Pharmacol 683: 325-331, 2012). An additional study has shown in vivo efficacy of BTB09089 using an ischemic stroke murine disease model (Ma et al., TDAG8 activation attenuates cerebral ischaemia-reperfusion injury via Akt signalling in rats. Exp Neurol 293: 115-123, 2017). In certain embodiments, CGRP is administered in combination with BTB09089 or similar molecules (see, e.g., pubchem.ncbi.nlm.nih.gov/compound/2801217). Additionally, allosteric agonists and negative allosteric modulators (NAMs) for GPR65 applicable to the present invention have been identified (ZINC62678696) (see, e.g., Huang, et al., Allosteric ligands for the pharmacologically dark receptors GPR68 and GPR65, Nature. 2015 Nov. 26; 527(7579): 477-483).

PDCD1

PDCD1 is the human gene encoding the immune checkpoint protein PD-1. Immune checkpoints are regulators of the immune system. These pathways are crucial for self-tolerance, which prevents the immune system from attacking cells indiscriminately. Modulating immune checkpoint activity in response to upregulation by CGRP may reduce an ILC2 inflammatory response or maintain homeostasis. In certain embodiments, a combination treatment may include CGRP and a checkpoint agonist. Checkpoint proteins may include TIM3, CTLA4, or PD-1. Immune checkpoint agonists may activate checkpoint signaling, for example, by binding to the checkpoint protein. The agonists may include a ligand (e.g., PD-L1). PD-1 agonist antibodies that mimic PD-1 ligand (PD-L1) have been described (see, e.g., US20170088618A1; WO2018053405A1). Such agonist antibodies against any receptor described herein are applicable to the present invention.

Adenylate Cyclase Activators

In certain embodiments, the one or more modulating agents comprises an adenylate cyclase activator. The adenylate cyclase activator may be forskolin, Other non-limiting examples of adenylate cyclase activators applicable to present invention include forskolin derivatives, an extract of Coleus forskohlii having adenylate cyclase activator activity, carbacyclin, isoproterenol, prostaglandin D2, prostaglandin Ei and prostaglandin I2 (prostacyclin). As used herein, “Forskolin” refers to a labdane diterpene that is produced by the Indian Coleus plant (Coleus forskohlii, aka Plectranthus barbatus). Forskolin is commonly used to raise levels of cyclic AMP (cAMP) in the study and research of cell physiology. A number of structural variants of forskolin are known in the art and may be referred to herein as forskolin derivatives, for example those described in Kokic, Curr Med Chem Cardiovasc Hematol Agents. 2005 October; 3(4):333-9; Gao et al, Mini Rev Med Chem. 2005 June; 5(6):545-53; Head, Altern Med Rev. 2001 April; 6(2): 141-66; Zidek, Eur Cytokine Netw. 2001 March; 12(1):22-32; Ong et al., Acta Pharmacol Sin. 2000 February; 21(2):111-23; Chen et al., Lab Invest. 1998 February; 78(2):165-74; Milligan et al., Receptors Channels. 1997; 5(3-4):209-13; Sulakhe et al. Mol Cell Biochem. 1995 August-September; 149-150:103-26; Ehlert et al., Life Sci. 1995; 56(11-12):965-71; and Farah et al., Annu Rev Pharmacol Toxicol. 1984; 24:275-328. Preparation, including solubilization, and use of forskolin and related compounds including forskolin derivatives, are described in, e.g., U.S. Pat. No. 6,960,300 and in Chen et al., 2009 J. Nat. Prod. 72:769. Adenylate cyclase activators may also include those disclosed in U.S. Pat. No. 6,333,354.

Antibodies

The term “antibody” (e.g., anti-CGRP or anti-CGRP receptor antibody) is used interchangeably with the term “immunoglobulin” herein, and includes intact antibodies, fragments of antibodies, e.g., Fab, F(ab′)2 fragments, and intact antibodies and fragments that have been mutated either in their constant and/or variable region (e.g., mutations to produce chimeric, partially humanized, or fully humanized antibodies, as well as to produce antibodies with a desired trait, e.g., enhanced binding and/or reduced FcR binding). The term “fragment” refers to a part or portion of an antibody or antibody chain comprising fewer amino acid residues than an intact or complete antibody or antibody chain. Fragments can be obtained via chemical or enzymatic treatment of an intact or complete antibody or antibody chain. Fragments can also be obtained by recombinant means. Exemplary fragments include Fab, Fab′, F(ab′)2, Fabc, Fd, dAb, VHH and scFv and/or Fv fragments.

As used herein, a preparation of antibody protein having less than about 50% of non-antibody protein (also referred to herein as a “contaminating protein”), or of chemical precursors, is considered to be “substantially free.” 40%, 30%, 20%, 10% and more preferably 5% (by dry weight), of non-antibody protein, or of chemical precursors is considered to be substantially free. When the antibody protein or biologically active portion thereof is recombinantly produced, it is also preferably substantially free of culture medium, i.e., culture medium represents less than about 30%, preferably less than about 20%, more preferably less than about 10%, and most preferably less than about 5% of the volume or mass of the protein preparation.

The term “antigen-binding fragment” refers to a polypeptide fragment of an immunoglobulin or antibody that binds antigen or competes with intact antibody (i.e., with the intact antibody from which they were derived) for antigen binding (i.e., specific binding). As such these antibodies or fragments thereof are included in the scope of the invention, provided that the antibody or fragment binds specifically to a target molecule.

It is intended that the term “antibody” encompass any Ig class or any Ig subclass (e.g. the IgG1, IgG2, IgG3, and IgG4 subclassess of IgG) obtained from any source (e.g., humans and non-human primates, and in rodents, lagomorphs, caprines, bovines, equines, ovines, etc.).

The term “Ig class” or “immunoglobulin class”, as used herein, refers to the five classes of immunoglobulin that have been identified in humans and higher mammals, IgG, IgM, IgA, IgD, and IgE. The term “Ig subclass” refers to the two subclasses of IgM (H and L), three subclasses of IgA (IgA1, IgA2, and secretory IgA), and four subclasses of IgG (IgG1, IgG2, IgG3, and IgG4) that have been identified in humans and higher mammals. The antibodies can exist in monomeric or polymeric form; for example, lgM antibodies exist in pentameric form, and IgA antibodies exist in monomeric, dimeric or multimeric form.

The term “IgG subclass” refers to the four subclasses of immunoglobulin class IgG-IgG1, IgG2, IgG3, and IgG4 that have been identified in humans and higher mammals by the heavy chains of the immunoglobulins, V1-γ4, respectively. The term “single-chain immunoglobulin” or “single-chain antibody” (used interchangeably herein) refers to a protein having a two-polypeptide chain structure consisting of a heavy and a light chain, said chains being stabilized, for example, by interchain peptide linkers, which has the ability to specifically bind antigen. The term “domain” refers to a globular region of a heavy or light chain polypeptide comprising peptide loops (e.g., comprising 3 to 4 peptide loops) stabilized, for example, by β pleated sheet and/or intrachain disulfide bond. Domains are further referred to herein as “constant” or “variable”, based on the relative lack of sequence variation within the domains of various class members in the case of a “constant” domain, or the significant variation within the domains of various class members in the case of a “variable” domain. Antibody or polypeptide “domains” are often referred to interchangeably in the art as antibody or polypeptide “regions”. The “constant” domains of an antibody light chain are referred to interchangeably as “light chain constant regions”, “light chain constant domains”, “CL” regions or “CL” domains. The “constant” domains of an antibody heavy chain are referred to interchangeably as “heavy chain constant regions”, “heavy chain constant domains”, “CH” regions or “CH” domains). The “variable” domains of an antibody light chain are referred to interchangeably as “light chain variable regions”, “light chain variable domains”, “VL” regions or “VL” domains). The “variable” domains of an antibody heavy chain are referred to interchangeably as “heavy chain constant regions”, “heavy chain constant domains”, “VH” regions or “VH” domains).

The term “region” can also refer to a part or portion of an antibody chain or antibody chain domain (e.g., a part or portion of a heavy or light chain or a part or portion of a constant or variable domain, as defined herein), as well as more discrete parts or portions of said chains or domains. For example, light and heavy chains or light and heavy chain variable domains include “complementarity determining regions” or “CDRs” interspersed among “framework regions” or “FRs”, as defined herein.

The term “conformation” refers to the tertiary structure of a protein or polypeptide (e.g., an antibody, antibody chain, domain or region thereof). For example, the phrase “light (or heavy) chain conformation” refers to the tertiary structure of a light (or heavy) chain variable region, and the phrase “antibody conformation” or “antibody fragment conformation” refers to the tertiary structure of an antibody or fragment thereof.

The term “antibody-like protein scaffolds” or “engineered protein scaffolds” broadly encompasses proteinaceous non-immunoglobulin specific-binding agents, typically obtained by combinatorial engineering (such as site-directed random mutagenesis in combination with phage display or other molecular selection techniques). Usually, such scaffolds are derived from robust and small soluble monomeric proteins (such as Kunitz inhibitors or lipocalins) or from a stably folded extra-membrane domain of a cell surface receptor (such as protein A, fibronectin or the ankyrin repeat).

Such scaffolds have been extensively reviewed in Binz et al. (Engineering novel binding proteins from nonimmunoglobulin domains. Nat Biotechnol 2005, 23:1257-1268), Gebauer and Skerra (Engineered protein scaffolds as next-generation antibody therapeutics. Curr Opin Chem Biol. 2009, 13:245-55), Gill and Damle (Biopharmaceutical drug discovery using novel protein scaffolds. Curr Opin Biotechnol 2006, 17:653-658), Skerra (Engineered protein scaffolds for molecular recognition. J Mol Recognit 2000, 13:167-187), and Skerra (Alternative non-antibody scaffolds for molecular recognition. Curr Opin Biotechnol 2007, 18:295-304), and include without limitation affibodies, based on the Z-domain of staphylococcal protein A, a three-helix bundle of 58 residues providing an interface on two of its alpha-helices (Nygren, Alternative binding proteins: Affibody binding proteins developed from a small three-helix bundle scaffold. FEBS J 2008, 275:2668-2676); engineered Kunitz domains based on a small (ca. 58 residues) and robust, disulphide-crosslinked serine protease inhibitor, typically of human origin (e.g. LACI-D1), which can be engineered for different protease specificities (Nixon and Wood, Engineered protein inhibitors of proteases. Curr Opin Drug Discov Dev 2006, 9:261-268); monobodies or adnectins based on the 10th extracellular domain of human fibronectin III (10Fn3), which adopts an Ig-like beta-sandwich fold (94 residues) with 2-3 exposed loops, but lacks the central disulphide bridge (Koide and Koide, Monobodies: antibody mimics based on the scaffold of the fibronectin type III domain. Methods Mol Biol 2007, 352:95-109); anticalins derived from the lipocalins, a diverse family of eight-stranded beta-barrel proteins (ca. 180 residues) that naturally form binding sites for small ligands by means of four structurally variable loops at the open end, which are abundant in humans, insects, and many other organisms (Skerra, Alternative binding proteins: Anticalins-harnessing the structural plasticity of the lipocalin ligand pocket to engineer novel binding activities. FEBS J 2008, 275:2677-2683); DARPins, designed ankyrin repeat domains (166 residues), which provide a rigid interface arising from typically three repeated beta-turns (Stumpp et al., DARPins: a new generation of protein therapeutics. Drug Discov Today 2008, 13:695-701); avimers (multimerized LDLR-A module) (Silverman et al., Multivalent avimer proteins evolved by exon shuffling of a family of human receptor domains. Nat Biotechnol 2005, 23:1556-1561); and cysteine-rich knottin peptides (Kolmar, Alternative binding proteins: biological activity and therapeutic potential of cystine-knot miniproteins. FEBS J 2008, 275:2684-2690).

“Specific binding” of an antibody means that the antibody exhibits appreciable affinity for a particular antigen or epitope and, generally, does not exhibit significant cross reactivity. “Appreciable” binding includes binding with an affinity of at least 25 μM. Antibodies with affinities greater than 1×107 M−1 (or a dissociation coefficient of 1 μM or less or a dissociation coefficient of 1 nm or less) typically bind with correspondingly greater specificity. Values intermediate of those set forth herein are also intended to be within the scope of the present invention and antibodies of the invention bind with a range of affinities, for example, 100 nM or less, 75 nM or less, 50 nM or less, 25 nM or less, for example 10 nM or less, 5 nM or less, 1 nM or less, or in embodiments 500 pM or less, 100 pM or less, 50 pM or less or 25 pM or less. An antibody that “does not exhibit significant crossreactivity” is one that will not appreciably bind to an entity other than its target (e.g., a different epitope or a different molecule). For example, an antibody that specifically binds to a target molecule will appreciably bind the target molecule but will not significantly react with non-target molecules or peptides. An antibody specific for a particular epitope will, for example, not significantly crossreact with remote epitopes on the same protein or peptide. Specific binding can be determined according to any art-recognized means for determining such binding. Preferably, specific binding is determined according to Scatchard analysis and/or competitive binding assays.

As used herein, the term “affinity” refers to the strength of the binding of a single antigen-combining site with an antigenic determinant. Affinity depends on the closeness of stereochemical fit between antibody combining sites and antigen determinants, on the size of the area of contact between them, on the distribution of charged and hydrophobic groups, etc. Antibody affinity can be measured by equilibrium dialysis or by the kinetic BIACORE™ method. The dissociation constant, Kd, and the association constant, Ka, are quantitative measures of affinity.

As used herein, the term “monoclonal antibody” refers to an antibody derived from a clonal population of antibody-producing cells (e.g., B lymphocytes or B cells) which is homogeneous in structure and antigen specificity. The term “polyclonal antibody” refers to a plurality of antibodies originating from different clonal populations of antibody-producing cells which are heterogeneous in their structure and epitope specificity but which recognize a common antigen. Monoclonal and polyclonal antibodies may exist within bodily fluids, as crude preparations, or may be purified, as described herein.

The term “binding portion” of an antibody (or “antibody portion”) includes one or more complete domains, e.g., a pair of complete domains, as well as fragments of an antibody that retain the ability to specifically bind to a target molecule. It has been shown that the binding function of an antibody can be performed by fragments of a full-length antibody. Binding fragments are produced by recombinant DNA techniques, or by enzymatic or chemical cleavage of intact immunoglobulins. Binding fragments include Fab, Fab′, F(ab′)2, Fabc, Fd, dAb, Fv, single chains, single-chain antibodies, e.g., scFv, and single domain antibodies.

“Humanized” forms of non-human (e.g., murine) antibodies are chimeric antibodies that contain minimal sequence derived from non-human immunoglobulin. For the most part, humanized antibodies are human immunoglobulins (recipient antibody) in which residues from a hypervariable region of the recipient are replaced by residues from a hypervariable region of a non-human species (donor antibody) such as mouse, rat, rabbit or nonhuman primate having the desired specificity, affinity, and capacity. In some instances, FR residues of the human immunoglobulin are replaced by corresponding non-human residues. Furthermore, humanized antibodies may comprise residues that are not found in the recipient antibody or in the donor antibody. These modifications are made to further refine antibody performance. In general, the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the hypervariable regions correspond to those of a non-human immunoglobulin and all or substantially all of the FR regions are those of a human immunoglobulin sequence. The humanized antibody optionally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin.

Examples of portions of antibodies or epitope-binding proteins encompassed by the present definition include: (i) the Fab fragment, having VL, CL, VH and CH1 domains; (ii) the Fab′ fragment, which is a Fab fragment having one or more cysteine residues at the C-terminus of the CH1 domain; (iii) the Fd fragment having VH and CH1 domains; (iv) the Fd′ fragment having VH and CH1 domains and one or more cysteine residues at the C-terminus of the CHI domain; (v) the Fv fragment having the VL and VH domains of a single arm of an antibody; (vi) the dAb fragment (Ward et al., 341 Nature 544 (1989)) which consists of a VH domain or a VL domain that binds antigen; (vii) isolated CDR regions or isolated CDR regions presented in a functional framework; (viii) F(ab′)2 fragments which are bivalent fragments including two Fab′ fragments linked by a disulphide bridge at the hinge region; (ix) single chain antibody molecules (e.g., single chain Fv; scFv) (Bird et al., 242 Science 423 (1988); and Huston et al., 85 PNAS 5879 (1988)); (x) “diabodies” with two antigen binding sites, comprising a heavy chain variable domain (VH) connected to a light chain variable domain (VL) in the same polypeptide chain (see, e.g., EP 404,097; International Patent Publication No. WO 93/11161; Hollinger et al., 90 PNAS 6444 (1993)); (xi) “linear antibodies” comprising a pair of tandem Fd segments (VH-Ch1-VH-Ch1) which, together with complementary light chain polypeptides, form a pair of antigen binding regions (Zapata et al., Protein Eng. 8(10):1057-62 (1995); and U.S. Pat. No. 5,641,870).

As used herein, a “blocking” antibody or an antibody “antagonist” is one which inhibits or reduces biological activity of the antigen(s) it binds. For example, an antagonist antibody may bind CGRP receptor or CGRP and inhibit the ability to suppress an ILC class 2 inflammatory response. In certain embodiments, the blocking antibodies or antagonist antibodies or portions thereof described herein completely inhibit the biological activity of the antigen(s).

Antibodies may act as agonists or antagonists of the recognized polypeptides. For example, the present invention includes antibodies which disrupt receptor/ligand interactions either partially or fully. The invention features both receptor-specific antibodies and ligand-specific antibodies. The invention also features receptor-specific antibodies which do not prevent ligand binding but prevent receptor activation. Receptor activation (i.e., signaling) may be determined by techniques described herein or otherwise known in the art. For example, receptor activation can be determined by detecting the phosphorylation (e.g., tyrosine or serine/threonine) of the receptor or of one of its down-stream substrates by immunoprecipitation followed by western blot analysis. In specific embodiments, antibodies are provided that inhibit ligand activity or receptor activity by at least 95%, at least 90%, at least 85%, at least 80%, at least 75%, at least 70%, at least 60%, or at least 50% of the activity in absence of the antibody.

The invention also features receptor-specific antibodies which both prevent ligand binding and receptor activation as well as antibodies that recognize the receptor-ligand complex. Likewise, encompassed by the invention are neutralizing antibodies which bind the ligand and prevent binding of the ligand to the receptor, as well as antibodies which bind the ligand, thereby preventing receptor activation, but do not prevent the ligand from binding the receptor. Further included in the invention are antibodies which activate the receptor. These antibodies may act as receptor agonists, i.e., potentiate or activate either all or a subset of the biological activities of the ligand-mediated receptor activation, for example, by inducing dimerization of the receptor. The antibodies may be specified as agonists, antagonists or inverse agonists for biological activities comprising the specific biological activities of the peptides disclosed herein. The antibody agonists and antagonists can be made using methods known in the art. See, e.g., International Patent Publication No. WO 96/40281; U.S. Pat. No. 5,811,097; Deng et al., Blood 92(6):1981-1988 (1998); Chen et al., Cancer Res. 58(16):3668-3678 (1998); Harrop et al., J. Immunol. 161(4):1786-1794 (1998); Zhu et al., Cancer Res. 58(15):3209-3214 (1998); Yoon et al., J. Immunol. 160(7):3170-3179 (1998); Prat et al., J. Cell. Sci. III (Pt2):237-247 (1998); Pitard et al., J. Immunol. Methods 205(2):177-190 (1997); Liautard et al., Cytokine 9(4):233-241 (1997); Carlson et al., J. Biol. Chem. 272(17):11295-11301 (1997); Taryman et al., Neuron 14(4):755-762 (1995); Muller et al., Structure 6(9):1153-1167 (1998); Bartunek et al., Cytokine 8(1):14-20 (1996).

The antibodies as defined for the present invention include derivatives that are modified, i.e., by the covalent attachment of any type of molecule to the antibody such that covalent attachment does not prevent the antibody from generating an anti-idiotypic response. For example, but not by way of limitation, the antibody derivatives include antibodies that have been modified, e.g., by glycosylation, acetylation, pegylation, phosphylation, amidation, derivatization by known protecting/blocking groups, proteolytic cleavage, linkage to a cellular ligand or other protein, etc. Any of numerous chemical modifications may be carried out by known techniques, including, but not limited to specific chemical cleavage, acetylation, formylation, metabolic synthesis of tunicamycin, etc. Additionally, the derivative may contain one or more non-classical amino acids.

Simple binding assays can be used to screen for or detect agents that bind to a target protein, or disrupt the interaction between proteins (e.g., a receptor and a ligand). Because certain targets of the present invention are transmembrane proteins, assays that use the soluble forms of these proteins rather than full-length protein can be used, in some embodiments. Soluble forms include, for example, those lacking the transmembrane domain and/or those comprising the IgV domain or fragments thereof which retain their ability to bind their cognate binding partners. Further, agents that inhibit or enhance protein interactions for use in the compositions and methods described herein, can include recombinant peptido-mimetics.

Detection methods useful in screening assays include antibody-based methods, detection of a reporter moiety, detection of cytokines as described herein, and detection of a gene signature as described herein.

Another variation of assays to determine binding of a receptor protein to a ligand protein is through the use of affinity biosensor methods. Such methods may be based on the piezoelectric effect, electrochemistry, or optical methods, such as ellipsometry, optical wave guidance, and surface plasmon resonance (SPR).

The disclosure also encompasses nucleic acid molecules, in particular those that inhibit CGRP receptor or CGRP. Exemplary nucleic acid molecules include aptamers, siRNA, artificial microRNA, interfering RNA or RNAi, dsRNA, ribozymes, antisense oligonucleotides, and DNA expression cassettes encoding said nucleic acid molecules. Preferably, the nucleic acid molecule is an antisense oligonucleotide. Antisense oligonucleotides (ASO) generally inhibit their target by binding target mRNA and sterically blocking expression by obstructing the ribosome. ASOs can also inhibit their target by binding target mRNA thus forming a DNA-RNA hybrid that can be a substance for RNase H. Preferred ASOs include Locked Nucleic Acid (LNA), Peptide Nucleic Acid (PNA), and morpholinos Preferably, the nucleic acid molecule is an RNAi molecule, i.e., RNA interference molecule. Preferred RNAi molecules include siRNA, shRNA, and artificial miRNA. The design and production of siRNA molecules is well known to one of skill in the art (e.g., Hajeri P B, Singh S K. Drug Discov Today. 2009 14(17-18):851-8). The nucleic acid molecule inhibitors may be chemically synthesized and provided directly to cells of interest. The nucleic acid compound may be provided to a cell as part of a gene delivery vehicle. Such a vehicle is preferably a liposome or a viral gene delivery vehicle.

Genetic Modifying Agents

In certain embodiments, the one or more modulating agents may be a genetic modifying agent. The genetic modifying agent may comprise a CRISPR system, a zinc finger nuclease system, a TALEN, a meganuclease or RNAi system. The genetic modifying agent preferably modulates expression of Gpr65, Pdcd1, Crem, Egln3, Adora2a, Rgs2, Gna15, Adrb2, Gadd45a, Areg, Hif1a, Dusp1, Pde4b, Cdkn1a, Akap12 and Il5, preferably, GPR65 and/or PD-1 (e.g., guide sequences designed to target the genes). In certain embodiments, CGRP induces expression of Gpr65, Pdcd1, Crem, Egln3, Adora2a, Rgs2, Gna15, Adrb2, Gadd45a, Areg, Hif1a, Dusp1, Pde4b, Cdkn1a, Akap12 and Il5 to maintain homeostasis of intestinal ILC2 cells. The genetic modifying agent also preferably modulates expression of a cAMP response module, wherein the cAMP module comprises one or more genes selected from the group consisting of: Adrb2, Adora2a, Pde4b, Akap12, Areg, Crem and Il5. The genetic modifying agent also preferably modulates expression of one or more genes in one or more biological programs characterized by ILC Topic 2, myeloid cell Topic 1, T cell Topic 5 or stromal cell Topic 4, wherein ILC Topic 2 comprises one or more genes or polypeptides selected from the group consisting of: Calca, Hs3st1, Areg, Il13, Il4, Ccl1, Hes1, Il17rb, Lgals7, Homer2, Il5, Gata3, Deptor, Ptpn13, Ly6a, Hba-a1, Kcnn4, Ccr4, Rxrg, Sub1, 1700061F12Rik, Cntnap2, AA467197, Ptgir, Il10, Nfkb1, Lmo4, Pparg, Plaur, Il9r, Serpine1, Scel, Bmp7, Neb, Sox8, Lpcat2, Samsn1, Alox5, Gpr65, Abhd17c, Gm20186, Gm973, Epas1, Ccr8, D430036J16Rik, Cd6, Stxbp6, 9230102O04Rik, Furin and Klf5, wherein myeloid cell Topic 1 comprises one or more genes or polypeptides selected from the group consisting of: Cpa3, Cma1, Mcpt4, Tpsb2, Fcer1a, Hs3st1, Gata2, Cited4, Cyp11a1, Tph1, Furin, Rab27b, Slc45a3, Ccl1, Il13, Il1rl1, Itga2b, Cited2, Fam110c, Creb3l1, Rgs13, Tpsab1, Cyp26a1, Serpinb1a, Slc18a2, Gmpr, Rprm, Ero1l, Il4, Cd200r3, Glul, Kit, Lat, Alox5, Gchfr, mt-Atp6, Lat2, Prss34, Poln, Klk8, 4932438H23Rik, Slc6a13, Avil, Socs2, Smco4, Ier3, Lxn, Gpr171, Adk and Gata1, wherein T cell Topic 5 comprises one or more genes or polypeptides selected from the group consisting of: 1700061F12Rik, Il13, Scin, Lgmn, Hlf, Smco4, Npnt, Il17rb, Deptor, Gata3, Gm2a, Il6, Il17a, Ltb4r1, Fgl2, Areg, Fbxl21, AA467197, Il1rl1, Me1, Gm5544, Tmem159, Rasgrp4, 1700012B07Rik, 1700113H08Rik, St6galnac5, Il4, Chdh, Slco2b1, Ccr9, Epas1, Grp, Lztfl1, Gm10369, Kif19a, Tenm4, Serpinf1, Gnb2, Ubox5, Plcl1, Rab31, Ffar2, Slx1b, Asb2, Zfp85, Tmsb4x, Hdc, Pxdc1, Heatr1 and Lgals7, wherein stromal cell Topic 4 comprises one or more genes or polypeptides selected from the group consisting of: Ccl21a, Cxcl13, Clu, Ccl19, Acta2, Mfge8, Apoe, Tagln, Cxcl1, Cilp, Ccl2, Il33, Cxcl12, Actg2, Serpina3n, Ccl7, Bst1, Serpina1a, Fmod, Grem1, Serpina1b, Slc36a2, Cnn1, Myh11, Art2b, Actc1, AI838599, Serpina1c, Cr2, Gxylt2, Crym, Dclk1, Serpina1d, Myl9, Parm1, Gm16685, Postn, Chrdl1, Colq, Csn2, Prss12, H2-M2, Trf, Sostdc1, Dsc3, Ctgf, Thbs4, Pcdh15, Rtn4r and A230065H16Rik. In certain embodiments, the one or more biological programs are suppressed, whereby an ILC2 inflammatory response is decreased.

CRISPR-Cas Modification

In some embodiments, a polynucleotide of the present invention described elsewhere herein can be modified using a CRISPR-Cas and/or Cas-based system.

In general, a CRISPR-Cas or CRISPR system as used in herein and in documents, such as International Patent Publication No. WO 2014/093622 (PCT/US2013/074667), refers collectively to transcripts and other elements involved in the expression of or directing the activity of CRISPR-associated (“Cas”) genes, including sequences encoding a Cas gene, a tracr (trans-activating CRISPR) sequence (e.g. tracrRNA or an active partial tracrRNA), a tracr-mate sequence (encompassing a “direct repeat” and a tracrRNA-processed partial direct repeat in the context of an endogenous CRISPR system), a guide sequence (also referred to as a “spacer” in the context of an endogenous CRISPR system), or “RNA(s)” as that term is herein used (e.g., RNA(s) to guide Cas, such as Cas9, e.g. CRISPR RNA and transactivating (tracr) RNA or a single guide RNA (sgRNA) (chimeric RNA)) or other sequences and transcripts from a CRISPR locus. In general, a CRISPR system is characterized by elements that promote the formation of a CRISPR complex at the site of a target sequence (also referred to as a protospacer in the context of an endogenous CRISPR system). See, e.g, Shmakov et al. (2015) “Discovery and Functional Characterization of Diverse Class 2 CRISPR-Cas Systems”, Molecular Cell, DOI: dx.doi.org/10.1016/j.molcel.2015.10.008.

CRISPR-Cas systems can generally fall into two classes based on their architectures of their effector molecules, which are each further subdivided by type and subtype. The two class are Class 1 and Class 2. Class 1 CRISPR-Cas systems have effector modules composed of multiple Cas proteins, some of which form crRNA-binding complexes, while Class 2 CRISPR-Cas systems include a single, multi-domain crRNA-binding protein.

In some embodiments, the CRISPR-Cas system that can be used to modify a polynucleotide of the present invention described herein can be a Class 1 CRISPR-Cas system. In some embodiments, the CRISPR-Cas system that can be used to modify a polynucleotide of the present invention described herein can be a Class 2 CRISPR-Cas system.

Class 1 CRISPR-Cas Systems

In some embodiments, the CRISPR-Cas system that can be used to modify a polynucleotide of the present invention described herein can be a Class 1 CRISPR-Cas system. Class 1 CRISPR-Cas systems are divided into types I, II, and IV. Makarova et al. 2020. Nat. Rev. 18: 67-83., particularly as described in FIG. 1. Type I CRISPR-Cas systems are divided into 9 subtypes (I-A, I-B, I-C, I-D, I-E, I-F1, I-F2, I-F3, and IG). Makarova et al., 2020. Class 1, Type I CRISPR-Cas systems can contain a Cas3 protein that can have helicase activity. Type III CRISPR-Cas systems are divided into 6 subtypes (III-A, III-B, III-E, and III-F). Type III CRISPR-Cas systems can contain a Cas10 that can include an RNA recognition motif called Palm and a cyclase domain that can cleave polynucleotides. Makarova et al., 2020. Type IV CRISPR-Cas systems are divided into 3 subtypes. (IV-A, IV-B, and IV-C). Makarova et al., 2020. Class 1 systems also include CRISPR-Cas variants, including Type I-A, I-B, I-E, I-F and I-U variants, which can include variants carried by transposons and plasmids, including versions of subtype I-F encoded by a large family of Tn7-like transposon and smaller groups of Tn7-like transposons that encode similarly degraded subtype I-B systems. Peters et al., PNAS 114 (35) (2017); DOI: 10.1073/pnas.1709035114; see also, Makarova et al. 2018. The CRISPR Journal, v. 1, n5, FIG. 5.

The Class 1 systems typically use a multi-protein effector complex, which can, in some embodiments, include ancillary proteins, such as one or more proteins in a complex referred to as a CRISPR-associated complex for antiviral defense (Cascade), one or more adaptation proteins (e.g., Cas1, Cas2, RNA nuclease), and/or one or more accessory proteins (e.g., Cas 4, DNA nuclease), CRISPR associated Rossman fold (CARF) domain containing proteins, and/or RNA transcriptase.

The backbone of the Class 1 CRISPR-Cas system effector complexes can be formed by RNA recognition motif domain-containing protein(s) of the repeat-associated mysterious proteins (RAMPs) family subunits (e.g., Cas 5, Cas6, and/or Cas7). RAMP proteins are characterized by having one or more RNA recognition motif domains. In some embodiments, multiple copies of RAMPs can be present. In some embodiments, the Class I CRISPR-Cas system can include 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 or more Cas5, Cas6, and/or Cas 7 proteins. In some embodiments, the Cas6 protein is an RNAse, which can be responsible for pre-crRNA processing. When present in a Class 1 CRISPR-Cas system, Cas6 can be optionally physically associated with the effector complex.

Class 1 CRISPR-Cas system effector complexes can, in some embodiments, also include a large subunit. The large subunit can be composed of or include a Cas8 and/or Cas10 protein. See, e.g., FIGS. 1 and 2. Koonin E V, Makarova K S. 2019. Phil. Trans. R. Soc. B 374: 20180087, DOI: 10.1098/rstb.2018.0087 and Makarova et al. 2020.

Class 1 CRISPR-Cas system effector complexes can, in some embodiments, include a small subunit (for example, Cash 1). See, e.g., FIGS. 1 and 2. Koonin E V, Makarova K S. 2019 Origins and Evolution of CRISPR-Cas systems. Phil. Trans. R. Soc. B 374: 20180087, DOI: 10.1098/rstb.2018.0087.

In some embodiments, the Class 1 CRISPR-Cas system can be a Type I CRISPR-Cas system. In some embodiments, the Type I CRISPR-Cas system can be a subtype I-A CRISPR-Cas system. In some embodiments, the Type I CRISPR-Cas system can be a subtype I-B CRISPR-Cas system. In some embodiments, the Type I CRISPR-Cas system can be a subtype I-C CRISPR-Cas system. In some embodiments, the Type I CRISPR-Cas system can be a subtype I-D CRISPR-Cas system. In some embodiments, the Type I CRISPR-Cas system can be a subtype I-E CRISPR-Cas system. In some embodiments, the Type I CRISPR-Cas system can be a subtype I-F1 CRISPR-Cas system. In some embodiments, the Type I CRISPR-Cas system can be a subtype I-F2 CRISPR-Cas system. In some embodiments, the Type I CRISPR-Cas system can be a subtype I-F3 CRISPR-Cas system. In some embodiments, the Type I CRISPR-Cas system can be a subtype I-G CRISPR-Cas system. In some embodiments, the Type I CRISPR-Cas system can be a CRISPR Cas variant, such as a Type I-A, I-B, I-E, I-F and I-U variants, which can include variants carried by transposons and plasmids, including versions of subtype I-F encoded by a large family of Tn7-like transposon and smaller groups of Tn7-like transposons that encode similarly degraded subtype I-B systems as previously described.

In some embodiments, the Class 1 CRISPR-Cas system can be a Type III CRISPR-Cas system. In some embodiments, the Type III CRISPR-Cas system can be a subtype III-A CRISPR-Cas system. In some embodiments, the Type III CRISPR-Cas system can be a subtype III-B CRISPR-Cas system. In some embodiments, the Type III CRISPR-Cas system can be a subtype III-C CRISPR-Cas system. In some embodiments, the Type III CRISPR-Cas system can be a subtype III-D CRISPR-Cas system. In some embodiments, the Type III CRISPR-Cas system can be a subtype III-E CRISPR-Cas system. In some embodiments, the Type III CRISPR-Cas system can be a subtype III-F CRISPR-Cas system.

In some embodiments, the Class 1 CRISPR-Cas system can be a Type IV CRISPR-Cas-system. In some embodiments, the Type IV CRISPR-Cas system can be a subtype IV-A CRISPR-Cas system. In some embodiments, the Type IV CRISPR-Cas system can be a subtype IV-B CRISPR-Cas system. In some embodiments, the Type IV CRISPR-Cas system can be a subtype IV-C CRISPR-Cas system.

The effector complex of a Class 1 CRISPR-Cas system can, in some embodiments, include a Cas3 protein that is optionally fused to a Cas2 protein, a Cas4, a Cas5, a Cash, a Cas7, a Cas8, a Cas10, a Cas11, or a combination thereof. In some embodiments, the effector complex of a Class 1 CRISPR-Cas system can have multiple copies, such as 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, or 14, of any one or more Cas proteins.

Class 2 CRISPR-Cas Systems

The compositions, systems, and methods described in greater detail elsewhere herein can be designed and adapted for use with Class 2 CRISPR-Cas systems. Thus, in some embodiments, the CRISPR-Cas system is a Class 2 CRISPR-Cas system. Class 2 systems are distinguished from Class 1 systems in that they have a single, large, multi-domain effector protein. In certain example embodiments, the Class 2 system can be a Type II, Type V, or Type VI system, which are described in Makarova et al. “Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants” Nature Reviews Microbiology, 18:67-81 (February 2020), incorporated herein by reference. Each type of Class 2 system is further divided into subtypes. See Markova et al. 2020, particularly at Figure. 2. Class 2, Type II systems can be divided into 4 subtypes: II-A, II-B, II-C1, and II-C2. Class 2, Type V systems can be divided into 17 subtypes: V-A, V-B1, V-B2, V-C, V-D, V-E, V-F1, V-F1(V-U3), V-F2, V-F3, V-G, V-H, V-I, V-K (V-U5), V-U1, V-U2, and V-U4. Class 2, Type IV systems can be divided into 5 subtypes: VI-A, VI-B1, VI-B2, VI-C, and VI-D.

The distinguishing feature of these types is that their effector complexes consist of a single, large, multi-domain protein. Type V systems differ from Type II effectors (e.g., Cas9), which contain two nuclear domains that are each responsible for the cleavage of one strand of the target DNA, with the HNH nuclease inserted inside the Ruv-C like nuclease domain sequence. The Type V systems (e.g., Cas12) only contain a RuvC-like nuclease domain that cleaves both strands. Type VI (Cas13) are unrelated to the effectors of Type II and V systems and contain two HEPN domains and target RNA. Cas13 proteins also display collateral activity that is triggered by target recognition. Some Type V systems have also been found to possess this collateral activity with two single-stranded DNA in in vitro contexts.

In some embodiments, the Class 2 system is a Type II system. In some embodiments, the Type II CRISPR-Cas system is a II-A CRISPR-Cas system. In some embodiments, the Type II CRISPR-Cas system is a II-B CRISPR-Cas system. In some embodiments, the Type II CRISPR-Cas system is a II-C1 CRISPR-Cas system. In some embodiments, the Type II CRISPR-Cas system is a II-C2 CRISPR-Cas system. In some embodiments, the Type II system is a Cas9 system. In some embodiments, the Type II system includes a Cas9.

In some embodiments, the Class 2 system is a Type V system. In some embodiments, the Type V CRISPR-Cas system is a V-A CRISPR-Cas system. In some embodiments, the Type V CRISPR-Cas system is a V-B1 CRISPR-Cas system. In some embodiments, the Type V CRISPR-Cas system is a V-B2 CRISPR-Cas system. In some embodiments, the Type V CRISPR-Cas system is a V-C CRISPR-Cas system. In some embodiments, the Type V CRISPR-Cas system is a V-D CRISPR-Cas system. In some embodiments, the Type V CRISPR-Cas system is a V-E CRISPR-Cas system. In some embodiments, the Type V CRISPR-Cas system is a V-F1 CRISPR-Cas system. In some embodiments, the Type V CRISPR-Cas system is a V-F1 (V-U3) CRISPR-Cas system. In some embodiments, the Type V CRISPR-Cas system is a V-F2 CRISPR-Cas system. In some embodiments, the Type V CRISPR-Cas system is a V-F3 CRISPR-Cas system. In some embodiments, the Type V CRISPR-Cas system is a V-G CRISPR-Cas system. In some embodiments, the Type V CRISPR-Cas system is a V-H CRISPR-Cas system. In some embodiments, the Type V CRISPR-Cas system is a V-I CRISPR-Cas system. In some embodiments, the Type V CRISPR-Cas system is a V-K (V-U5) CRISPR-Cas system. In some embodiments, the Type V CRISPR-Cas system is a V-U1 CRISPR-Cas system. In some embodiments, the Type V CRISPR-Cas system is a V-U2 CRISPR-Cas system. In some embodiments, the Type V CRISPR-Cas system is a V-U4 CRISPR-Cas system. In some embodiments, the Type V CRISPR-Cas system includes a Cas12a (Cpf1), Cas12b (C2c1), Cas12c (C2c3), CasX, and/or Cas14.

In some embodiments the Class 2 system is a Type VI system. In some embodiments, the Type VI CRISPR-Cas system is a VI-A CRISPR-Cas system. In some embodiments, the Type VI CRISPR-Cas system is a VI-B1 CRISPR-Cas system. In some embodiments, the Type VI CRISPR-Cas system is a VI-B2 CRISPR-Cas system. In some embodiments, the Type VI CRISPR-Cas system is a VI-C CRISPR-Cas system. In some embodiments, the Type VI CRISPR-Cas system is a VI-D CRISPR-Cas system. In some embodiments, the Type VI CRISPR-Cas system includes a Cas13a (C2c2), Cas13b (Group 29/30), Cas13c, and/or Cas13d.

Specialized Cas-Based Systems

In some embodiments, the system is a Cas-based system that is capable of performing a specialized function or activity. For example, the Cas protein may be fused, operably coupled to, or otherwise associated with one or more functionals domains. In certain example embodiments, the Cas protein may be a catalytically dead Cas protein (“dCas”) and/or have nickase activity. A nickase is a Cas protein that cuts only one strand of a double stranded target. In such embodiments, the dCas or nickase provide a sequence specific targeting functionality that delivers the functional domain to or proximate a target sequence. Example functional domains that may be fused to, operably coupled to, or otherwise associated with a Cas protein can be or include, but are not limited to a nuclear localization signal (NLS) domain, a nuclear export signal (NES) domain, a translational activation domain, a transcriptional activation domain (e.g. VP64, p65, MyoD1, HSF1, RTA, and SETT/9), a translation initiation domain, a transcriptional repression domain (e.g., a KRAB domain, NuE domain, NcoR domain, and a SID domain such as a SID4X domain), a nuclease domain (e.g., Fold), a histone modification domain (e.g., a histone acetyltransferase), a light inducible/controllable domain, a chemically inducible/controllable domain, a transposase domain, a homologous recombination machinery domain, a recombinase domain, an integrase domain, and combinations thereof. Methods for generating catalytically dead Cas9 or a nickase Cas9 (WO 2014/204725, Ran et al. Cell. 2013 Sep. 12; 154(6):1380-1389), Cas12 (Liu et al. Nature Communications, 8, 2095 (2017), and Cas13 (WO 2019/005884, WO2019/060746) are known in the art and incorporated herein by reference.

In some embodiments, the functional domains can have one or more of the following activities: methylase activity, demethylase activity, translation activation activity, translation initiation activity, translation repression activity, transcription activation activity, transcription repression activity, transcription release factor activity, histone modification activity, nuclease activity, single-strand RNA cleavage activity, double-strand RNA cleavage activity, single-strand DNA cleavage activity, double-strand DNA cleavage activity, molecular switch activity, chemical inducibility, light inducibility, and nucleic acid binding activity. In some embodiments, the one or more functional domains may comprise epitope tags or reporters. Non-limiting examples of epitope tags include histidine (His) tags, V5 tags, FLAG tags, influenza hemagglutinin (HA) tags, Myc tags, VSV-G tags, and thioredoxin (Trx) tags. Examples of reporters include, but are not limited to, glutathione-S-transferase (GST), horseradish peroxidase (HRP), chloramphenicol acetyltransferase (CAT) beta-galactosidase, beta-glucuronidase, luciferase, green fluorescent protein (GFP), HcRed, DsRed, cyan fluorescent protein (CFP), yellow fluorescent protein (YFP), and auto-fluorescent proteins including blue fluorescent protein (BFP).

The one or more functional domain(s) may be positioned at, near, and/or in proximity to a terminus of the effector protein (e.g., a Cas protein). In embodiments having two or more functional domains, each of the two can be positioned at or near or in proximity to a terminus of the effector protein (e.g., a Cas protein). In some embodiments, such as those where the functional domain is operably coupled to the effector protein, the one or more functional domains can be tethered or linked via a suitable linker (including, but not limited to, GlySer linkers) to the effector protein (e.g., a Cas protein). When there is more than one functional domain, the functional domains can be same or different. In some embodiments, all the functional domains are the same. In some embodiments, all of the functional domains are different from each other. In some embodiments, at least two of the functional domains are different from each other. In some embodiments, at least two of the functional domains are the same as each other.

Other suitable functional domains can be found, for example, in International Application Publication No. WO 2019/018423.

Split CRISPR-Cas Systems

In some embodiments, the CRISPR-Cas system is a split CRISPR-Cas system. See e.g., Zetche et al., 2015. Nat. Biotechnol. 33(2): 139-142 and WO 2019/018423, the compositions and techniques of which can be used in and/or adapted for use with the present invention. Split CRISPR-Cas proteins are set forth herein and in documents incorporated herein by reference in further detail herein. In certain embodiments, each part of a split CRISPR protein are attached to a member of a specific binding pair, and when bound with each other, the members of the specific binding pair maintain the parts of the CRISPR protein in proximity. In certain embodiments, each part of a split CRISPR protein is associated with an inducible binding pair. An inducible binding pair is one which is capable of being switched “on” or “off” by a protein or small molecule that binds to both members of the inducible binding pair. In some embodiments, CRISPR proteins may preferably split between domains, leaving domains intact. In particular embodiments, said Cas split domains (e.g., RuvC and HNH domains in the case of Cas9) can be simultaneously or sequentially introduced into the cell such that said split Cas domain(s) process the target nucleic acid sequence in the algae cell. The reduced size of the split Cas compared to the wild type Cas allows other methods of delivery of the systems to the cells, such as the use of cell penetrating peptides as described herein.

DNA and RNA Base Editing

In some embodiments, a polynucleotide of the present invention described elsewhere herein can be modified using a base editing system. In some embodiments, a Cas protein is connected or fused to a nucleotide deaminase. Thus, in some embodiments the Cas-based system can be a base editing system. As used herein “base editing” refers generally to the process of polynucleotide modification via a CRISPR-Cas-based or Cas-based system that does not include excising nucleotides to make the modification. Base editing can convert base pairs at precise locations without generating excess undesired editing byproducts that can be made using traditional CRISPR-Cas systems.

In certain example embodiments, the nucleotide deaminase may be a DNA base editor used in combination with a DNA binding Cas protein such as, but not limited to, Class 2 Type II and Type V systems. Two classes of DNA base editors are generally known: cytosine base editors (CBEs) and adenine base editors (ABEs). CBEs convert a C•G base pair into a T•A base pair (Komor et al. 2016. Nature. 533:420-424; Nishida et al. 2016. Science. 353; and Li et al. Nat. Biotech. 36:324-327) and ABEs convert an A•T base pair to a G•C base pair. Collectively, CBEs and ABEs can mediate all four possible transition mutations (C to T, A to G, T to C, and G to A). Rees and Liu. 2018. Nat. Rev. Genet. 19(12): 770-788, particularly at FIGS. 1b, 2a-2c, 3a-3f, and Table 1. In some embodiments, the base editing system includes a CBE and/or an ABE. In some embodiments, a polynucleotide of the present invention described elsewhere herein can be modified using a base editing system. Rees and Liu. 2018. Nat. Rev. Gent. 19(12):770-788. Base editors also generally do not need a DNA donor template and/or rely on homology-directed repair. Komor et al. 2016. Nature. 533:420-424; Nishida et al. 2016. Science. 353; and Gaudeli et al. 2017. Nature. 551:464-471. Upon binding to a target locus in the DNA, base pairing between the guide RNA of the system and the target DNA strand leads to displacement of a small segment of ssDNA in an “R-loop”. Nishimasu et al. Cell. 156:935-949. DNA bases within the ssDNA bubble are modified by the enzyme component, such as a deaminase. In some systems, the catalytically disabled Cas protein can be a variant or modified Cas can have nickase functionality and can generate a nick in the non-edited DNA strand to induce cells to repair the non-edited strand using the edited strand as a template. Komor et al. 2016. Nature. 533:420-424; Nishida et al. 2016. Science. 353; and Gaudeli et al. 2017. Nature. 551:464-471.

Other Example Type V base editing systems are described in WO 2018/213708, WO 2018/213726, PCT/US2018/067207, PCT/US2018/067225, and PCT/US2018/067307 which are incorporated by referenced herein.

In certain example embodiments, the base editing system may be a RNA base editing system. As with DNA base editors, a nucleotide deaminase capable of converting nucleotide bases may be fused to a Cas protein. However, in these embodiments, the Cas protein will need to be capable of binding RNA. Example RNA binding Cas proteins include, but are not limited to, RNA-binding Cas9s such as Francisella novicida Cas9 (“FnCas9”), and Class 2 Type VI Cas systems. The nucleotide deaminase may be a cytidine deaminase or an adenosine deaminase, or an adenosine deaminase engineered to have cytidine deaminase activity. In certain example embodiments, the RNA based editor may be used to delete or introduce a post-translation modification site in the expressed mRNA. In contrast to DNA base editors, whose edits are permanent in the modified cell, RNA base editors can provide edits where finer temporal control may be needed, for example in modulating a particular immune response. Example Type VI RNA-base editing systems are described in Cox et al. 2017. Science 358: 1019-1027, WO 2019/005884, WO 2019/005886, WO 2019/071048, PCT/US20018/05179, PCT/US2018/067207, which are incorporated herein by reference. An example FnCas9 system that may be adapted for RNA base editing purposes is described in WO 2016/106236, which is incorporated herein by reference.

An example method for delivery of base-editing systems, including use of a split-intein approach to divide CBE and ABE into reconstituble halves, is described in Levy et al. Nature Biomedical Engineering doi.org/10.1038/s41441-019-0505-5 (2019), which is incorporated herein by reference.

Prime Editors

In some embodiments, a polynucleotide of the present invention described elsewhere herein can be modified using a prime editing system See e.g. Anzalone et al. 2019. Nature. 576: 149-157. Like base editing systems, prime editing systems can be capable of targeted modification of a polynucleotide without generating double stranded breaks and does not require donor templates. Further prime editing systems can be capable of all 12 possible combination swaps. Prime editing can operate via a “search-and-replace” methodology and can mediate targeted insertions, deletions, all 12 possible base-to-base conversion, and combinations thereof. Generally, a prime editing system, as exemplified by PE1, PE2, and PE3 (Id.), can include a reverse transcriptase fused or otherwise coupled or associated with an RNA-programmable nickase, and a prime-editing extended guide RNA (pegRNA) to facility direct copying of genetic information from the extension on the pegRNA into the target polynucleotide. Embodiments that can be used with the present invention include these and variants thereof. Prime editing can have the advantage of lower off-target activity than traditional CRIPSR-Cas systems along with few byproducts and greater or similar efficiency as compared to traditional CRISPR-Cas systems.

In some embodiments, the prime editing guide molecule can specify both the target polynucleotide information (e.g. sequence) and contain a new polynucleotide cargo that replaces target polynucleotides. To initiate transfer from the guide molecule to the target polynucleotide, the PE system can nick the target polynucleotide at a target side to expose a 3′hydroxyl group, which can prime reverse transcription of an edit-encoding extension region of the guide molecule (e.g. a prime editing guide molecule or peg guide molecule) directly into the target site in the target polynucleotide. See e.g. Anzalone et al. 2019. Nature. 576: 149-157, particularly at FIGS. 1b, 1c, related discussion, and Supplementary discussion.

In some embodiments, a prime editing system can be composed of a Cas polypeptide having nickase activity, a reverse transcriptase, and a guide molecule. The Cas polypeptide can lack nuclease activity. The guide molecule can include a target binding sequence as well as a primer binding sequence and a template containing the edited polynucleotide sequence. The guide molecule, Cas polypeptide, and/or reverse transcriptase can be coupled together or otherwise associate with each other to form an effector complex and edit a target sequence. In some embodiments, the Cas polypeptide is a Class 2, Type V Cas polypeptide. In some embodiments, the Cas polypeptide is a Cas9 polypeptide (e.g. is a Cas9 nickase). In some embodiments, the Cas polypeptide is fused to the reverse transcriptase. In some embodiments, the Cas polypeptide is linked to the reverse transcriptase.

In some embodiments, the prime editing system can be a PE1 system or variant thereof, a PE2 system or variant thereof, or a PE3 (e.g. PE3, PE3b) system. See e.g., Anzalone et al. 2019. Nature. 576: 149-157, particularly at pgs. 2-3, FIGS. 2a, 3a-3f, 4a-4b, Extended data FIGS. 3a-3b, 4,

The peg guide molecule can be about 10 to about 200 or more nucleotides in length, such as 10 to/or 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, or 200 or more nucleotides in length. Optimization of the peg guide molecule can be accomplished as described in Anzalone et al. 2019. Nature. 576: 149-157, particularly at pg. 3, FIG. 2a-2b, and Extended Data FIGS. 5a-c.

CRISPR Associated Transposase (CAST) Systems

In some embodiments, a polynucleotide of the present invention described elsewhere herein can be modified using a CRISPR Associated Transposase (“CAST”) system. CAST system can include a Cas protein that is catalytically inactive, or engineered to be catalytically active, and further comprises a transposase (or subunits thereof) that catalyze RNA-guided DNA transposition. Such systems are able to insert DNA sequences at a target site in a DNA molecule without relying on host cell repair machinery. CAST systems can be Class1 or Class 2 CAST systems. An example Class 1 system is described in Klompe et al. Nature, doi:10.1038/s41586-019-1323, which is in incorporated herein by reference. An example Class 2 system is described in Strecker et al. Science. 10/1126/science. aax9181 (2019), and PCT/US2019/066835 which are incorporated herein by reference.

Guide Molecules

The CRISPR-Cas or Cas-Based system described herein can, in some embodiments, include one or more guide molecules. The terms guide molecule, guide sequence and guide polynucleotide, refer to polynucleotides capable of guiding Cas to a target genomic locus and are used interchangeably as in foregoing cited documents such as WO 2014/093622 (PCT/US2013/074667). In general, a guide sequence is any polynucleotide sequence having sufficient complementarity with a target polynucleotide sequence to hybridize with the target sequence and direct sequence-specific binding of a CRISPR complex to the target sequence. The guide molecule can be a polynucleotide.

The ability of a guide sequence (within a nucleic acid-targeting guide RNA) to direct sequence-specific binding of a nucleic acid-targeting complex to a target nucleic acid sequence may be assessed by any suitable assay. For example, the components of a nucleic acid-targeting CRISPR system sufficient to form a nucleic acid-targeting complex, including the guide sequence to be tested, may be provided to a host cell having the corresponding target nucleic acid sequence, such as by transfection with vectors encoding the components of the nucleic acid-targeting complex, followed by an assessment of preferential targeting (e.g., cleavage) within the target nucleic acid sequence, such as by Surveyor assay (Qui et al. 2004. BioTechniques. 36(4)702-707). Similarly, cleavage of a target nucleic acid sequence may be evaluated in a test tube by providing the target nucleic acid sequence, components of a nucleic acid-targeting complex, including the guide sequence to be tested and a control guide sequence different from the test guide sequence, and comparing binding or rate of cleavage at the target sequence between the test and control guide sequence reactions. Other assays are possible and will occur to those skilled in the art.

In some embodiments, the guide molecule is an RNA. The guide molecule(s) (also referred to interchangeably herein as guide polynucleotide and guide sequence) that are included in the CRISPR-Cas or Cas based system can be any polynucleotide sequence having sufficient complementarity with a target nucleic acid sequence to hybridize with the target nucleic acid sequence and direct sequence-specific binding of a nucleic acid-targeting complex to the target nucleic acid sequence. In some embodiments, the degree of complementarity, when optimally aligned using a suitable alignment algorithm, can be about or more than about 50%, 60%, 75%, 80%, 85%, 90%, 95%, 97.5%, 99%, or more. Optimal alignment may be determined with the use of any suitable algorithm for aligning sequences, non-limiting examples of which include the Smith-Waterman algorithm, the Needleman-Wunsch algorithm, algorithms based on the Burrows-Wheeler Transform (e.g., the Burrows Wheeler Aligner), ClustalW, Clustal X, BLAT, Novoalign (Novocraft Technologies; available at www.novocraft.com), ELAND (Illumina, San Diego, Calif.), SOAP (available at soap.genomics.org.cn), and Maq (available at maq.sourceforge.net).

A guide sequence, and hence a nucleic acid-targeting guide may be selected to target any target nucleic acid sequence. The target sequence may be DNA. The target sequence may be any RNA sequence. In some embodiments, the target sequence may be a sequence within an RNA molecule selected from the group consisting of messenger RNA (mRNA), pre-mRNA, ribosomal RNA (rRNA), transfer RNA (tRNA), micro-RNA (miRNA), small interfering RNA (siRNA), small nuclear RNA (snRNA), small nucleolar RNA (snoRNA), double stranded RNA (dsRNA), non-coding RNA (ncRNA), long non-coding RNA (lncRNA), and small cytoplasmatic RNA (scRNA). In some preferred embodiments, the target sequence may be a sequence within an RNA molecule selected from the group consisting of mRNA, pre-mRNA, and rRNA. In some preferred embodiments, the target sequence may be a sequence within an RNA molecule selected from the group consisting of ncRNA, and lncRNA. In some more preferred embodiments, the target sequence may be a sequence within an mRNA molecule or a pre-mRNA molecule.

In some embodiments, a nucleic acid-targeting guide is selected to reduce the degree secondary structure within the nucleic acid-targeting guide. In some embodiments, about or less than about 75%, 50%, 40%, 30%, 25%, 20%, 15%, 10%, 5%, 1%, or fewer of the nucleotides of the nucleic acid-targeting guide participate in self-complementary base pairing when optimally folded. Optimal folding may be determined by any suitable polynucleotide folding algorithm. Some programs are based on calculating the minimal Gibbs free energy. An example of one such algorithm is mFold, as described by Zuker and Stiegler (Nucleic Acids Res. 9 (1981), 133-148). Another example folding algorithm is the online webserver RNAfold, developed at Institute for Theoretical Chemistry at the University of Vienna, using the centroid structure prediction algorithm (see e.g., A. R. Gruber et al., 2008, Cell 106(1): 23-24; and P A Carr and G M Church, 2009, Nature Biotechnology 27(12): 1151-62).

In certain embodiments, a guide RNA or crRNA may comprise, consist essentially of, or consist of a direct repeat (DR) sequence and a guide sequence or spacer sequence. In certain embodiments, the guide RNA or crRNA may comprise, consist essentially of, or consist of a direct repeat sequence fused or linked to a guide sequence or spacer sequence. In certain embodiments, the direct repeat sequence may be located upstream (i.e., 5′) from the guide sequence or spacer sequence. In other embodiments, the direct repeat sequence may be located downstream (i.e., 3′) from the guide sequence or spacer sequence.

In certain embodiments, the crRNA comprises a stem loop, preferably a single stem loop. In certain embodiments, the direct repeat sequence forms a stem loop, preferably a single stem loop.

In certain embodiments, the spacer length of the guide RNA is from 15 to 35 nt. In certain embodiments, the spacer length of the guide RNA is at least 15 nucleotides. In certain embodiments, the spacer length is from 15 to 17 nt, e.g., 15, 16, or 17 nt, from 17 to 20 nt, e.g., 17, 18, 19, or 20 nt, from 20 to 24 nt, e.g., 20, 21, 22, 23, or 24 nt, from 23 to 25 nt, e.g., 23, 24, or 25 nt, from 24 to 27 nt, e.g., 24, 25, 26, or 27 nt, from 27 to 30 nt, e.g., 27, 28, 29, or 30 nt, from 30 to 35 nt, e.g., 30, 31, 32, 33, 34, or 35 nt, or 35 nt or longer.

The “tracrRNA” sequence or analogous terms includes any polynucleotide sequence that has sufficient complementarity with a crRNA sequence to hybridize. In some embodiments, the degree of complementarity between the tracrRNA sequence and crRNA sequence along the length of the shorter of the two when optimally aligned is about or more than about 25%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 97.5%, 99%, or higher. In some embodiments, the tracr sequence is about or more than about 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 40, 50, or more nucleotides in length. In some embodiments, the tracr sequence and crRNA sequence are contained within a single transcript, such that hybridization between the two produces a transcript having a secondary structure, such as a hairpin.

In general, degree of complementarity is with reference to the optimal alignment of the sca sequence and tracr sequence, along the length of the shorter of the two sequences. Optimal alignment may be determined by any suitable alignment algorithm, and may further account for secondary structures, such as self-complementarity within either the sca sequence or tracr sequence. In some embodiments, the degree of complementarity between the tracr sequence and sca sequence along the length of the shorter of the two when optimally aligned is about or more than about 25%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 97.5%, 99%, or higher.

In some embodiments, the degree of complementarity between a guide sequence and its corresponding target sequence can be about or more than about 50%, 60%, 75%, 80%, 85%, 90%, 95%, 97.5%, 99%, or 100%; a guide or RNA or sgRNA can be about or more than about 5, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 75, or more nucleotides in length; or guide or RNA or sgRNA can be less than about 75, 50, 45, 40, 35, 30, 25, 20, 15, 12, or fewer nucleotides in length; and tracr RNA can be 30 or 50 nucleotides in length. In some embodiments, the degree of complementarity between a guide sequence and its corresponding target sequence is greater than 94.5% or 95% or 95.5% or 96% or 96.5% or 97% or 97.5% or 98% or 98.5% or 99% or 99.5% or 99.9%, or 100%. Off target is less than 100% or 99.9% or 99.5% or 99% or 99% or 98.5% or 98% or 97.5% or 97% or 96.5% or 96% or 95.5% or 95% or 94.5% or 94% or 93% or 92% or 91% or 90% or 89% or 88% or 87% or 86% or 85% or 84% or 83% or 82% or 81% or 80% complementarity between the sequence and the guide, with it advantageous that off target is 100% or 99.9% or 99.5% or 99% or 99% or 98.5% or 98% or 97.5% or 97% or 96.5% or 96% or 95.5% or 95% or 94.5% complementarity between the sequence and the guide.

In some embodiments according to the invention, the guide RNA (capable of guiding Cas to a target locus) may comprise (1) a guide sequence capable of hybridizing to a genomic target locus in the eukaryotic cell; (2) a tracr sequence; and (3) a tracr mate sequence. All (1) to (3) may reside in a single RNA, i.e., an sgRNA (arranged in a 5′ to 3′ orientation), or the tracr RNA may be a different RNA than the RNA containing the guide and tracr sequence. The tracr hybridizes to the tracr mate sequence and directs the CRISPR/Cas complex to the target sequence. Where the tracr RNA is on a different RNA than the RNA containing the guide and tracr sequence, the length of each RNA may be optimized to be shortened from their respective native lengths, and each may be independently chemically modified to protect from degradation by cellular RNase or otherwise increase stability.

Many modifications to guide sequences are known in the art and are further contemplated within the context of this invention. Various modifications may be used to increase the specificity of binding to the target sequence and/or increase the activity of the Cas protein and/or reduce off-target effects. Example guide sequence modifications are described in PCT US2019/045582, specifically paragraphs [0178]-[0333]. which is incorporated herein by reference.

Target Sequences, PAMs, and PFSs Target Sequences

In the context of formation of a CRISPR complex, “target sequence” refers to a sequence to which a guide sequence is designed to have complementarity, where hybridization between a target sequence and a guide sequence promotes the formation of a CRISPR complex. A target sequence may comprise RNA polynucleotides. The term “target RNA” refers to an RNA polynucleotide being or comprising the target sequence. In other words, the target polynucleotide can be a polynucleotide or a part of a polynucleotide to which a part of the guide sequence is designed to have complementarity with and to which the effector function mediated by the complex comprising the CRISPR effector protein and a guide molecule is to be directed. In some embodiments, a target sequence is located in the nucleus or cytoplasm of a cell.

The guide sequence can specifically bind a target sequence in a target polynucleotide. The target polynucleotide may be DNA. The target polynucleotide may be RNA. The target polynucleotide can have one or more (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, etc. or more) target sequences. The target polynucleotide can be on a vector. The target polynucleotide can be genomic DNA. The target polynucleotide can be episomal. Other forms of the target polynucleotide are described elsewhere herein.

The target sequence may be DNA. The target sequence may be any RNA sequence. In some embodiments, the target sequence may be a sequence within an RNA molecule selected from the group consisting of messenger RNA (mRNA), pre-mRNA, ribosomal RNA (rRNA), transfer RNA (tRNA), micro-RNA (miRNA), small interfering RNA (siRNA), small nuclear RNA (snRNA), small nucleolar RNA (snoRNA), double stranded RNA (dsRNA), non-coding RNA (ncRNA), long non-coding RNA (lncRNA), and small cytoplasmatic RNA (scRNA). In some preferred embodiments, the target sequence (also referred to herein as a target polynucleotide) may be a sequence within an RNA molecule selected from the group consisting of mRNA, pre-mRNA, and rRNA. In some preferred embodiments, the target sequence may be a sequence within an RNA molecule selected from the group consisting of ncRNA, and lncRNA. In some more preferred embodiments, the target sequence may be a sequence within an mRNA molecule or a pre-mRNA molecule.

PAM and PFS Elements

PAM elements are sequences that can be recognized and bound by Cas proteins. Cas proteins/effector complexes can then unwind the dsDNA at a position adjacent to the PAM element. It will be appreciated that Cas proteins and systems that include them that target RNA do not require PAM sequences (Marraffini et al. 2010. Nature. 463:568-571). Instead, many rely on PFSs, which are discussed elsewhere herein. In certain embodiments, the target sequence should be associated with a PAM (protospacer adjacent motif) or PFS (protospacer flanking sequence or site), that is, a short sequence recognized by the CRISPR complex. Depending on the nature of the CRISPR-Cas protein, the target sequence should be selected, such that its complementary sequence in the DNA duplex (also referred to herein as the non-target sequence) is upstream or downstream of the PAM. In the embodiments, the complementary sequence of the target sequence is downstream or 3′ of the PAM or upstream or 5′ of the PAM. The precise sequence and length requirements for the PAM differ depending on the Cas protein used, but PAMs are typically 2-5 base pair sequences adjacent the protospacer (that is, the target sequence). Examples of the natural PAM sequences for different Cas proteins are provided herein below and the skilled person will be able to identify further PAM sequences for use with a given Cas protein.

The ability to recognize different PAM sequences depends on the Cas polypeptide(s) included in the system. See e.g., Gleditzsch et al. 2019. RNA Biology. 16(4):504-517. Table 3 below (from Gleditzsch et al.) shows several Cas polypeptides and the PAM sequence they recognize.

TABLE 3 Example PAM Sequences Cas Protein PAM Sequence SpCas9 NGG/NRG SaCas9 NGRRT or NGRRN NmeCas9 NNNNGATT CjCas9 NNNNRYAC StCas9 NNAGAAW Cas12a (Cpf1) (including LbCpf1 TTTV and AsCpf1) Cas12b (C2c1) TTT, TTA, and TTC Cas12c (C2c3) TA Cas12d (CasY) TA Cas12e (CasX) 5′-TTCN-3′

In a preferred embodiment, the CRISPR effector protein may recognize a 3′ PAM. In certain embodiments, the CRISPR effector protein may recognize a 3′ PAM which is 5′H, wherein H is A, C or U.

Further, engineering of the PAM Interacting (PI) domain on the Cas protein may allow programing of PAM specificity, improve target site recognition fidelity, and increase the versatility of the CRISPR-Cas protein, for example as described for Cas9 in Kleinstiver B P et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature. 2015 Jul. 23; 523(7561):481-5. doi: 10.1038/nature14592. As further detailed herein, the skilled person will understand that Cas13 proteins may be modified analogously. Gao et al, “Engineered Cpf1 Enzymes with Altered PAM Specificities,” bioRxiv 091611; doi: http://dx.doi.org/10.1101/091611 (Dec. 4, 2016). Doench et al. created a pool of sgRNAs, tiling across all possible target sites of a panel of six endogenous mouse and three endogenous human genes and quantitatively assessed their ability to produce null alleles of their target gene by antibody staining and flow cytometry. The authors showed that optimization of the PAM improved activity and also provided an on-line tool for designing sgRNAs.

PAM sequences can be identified in a polynucleotide using an appropriate design tool, which are commercially available as well as online. Such freely available tools include, but are not limited to, CRISPRFinder and CRISPRTarget. Mojica et al. 2009. Microbiol. 155(Pt. 3):733-740; Atschul et al. 1990. J. Mol. Biol. 215:403-410; Biswass et al. 2013 RNA Biol. 10:817-827; and Grissa et al. 2007. Nucleic Acid Res. 35:W52-57. Experimental approaches to PAM identification can include, but are not limited to, plasmid depletion assays (Jiang et al. 2013. Nat. Biotechnol. 31:233-239; Esvelt et al. 2013. Nat. Methods. 10:1116-1121; Kleinstiver et al. 2015. Nature. 523:481-485), screened by a high-throughput in vivo model called PAM-SCNAR (Pattanayak et al. 2013. Nat. Biotechnol. 31:839-843 and Leenay et al. 2016. Mol. Cell. 16:253), and negative screening (Zetsche et al. 2015. Cell. 163:759-771).

As previously mentioned, CRISPR-Cas systems that target RNA do not typically rely on PAM sequences. Instead such systems typically recognize protospacer flanking sites (PFSs) instead of PAMs Thus, Type VI CRISPR-Cas systems typically recognize protospacer flanking sites (PFSs) instead of PAMs. PFSs represents an analogue to PAMs for RNA targets. Type VI CRISPR-Cas systems employ a Cas13. Some Cas13 proteins analyzed to date, such as Cas13a (C2c2) identified from Leptotrichia shahii (LShCAs13a) have a specific discrimination against G at the 3′ end of the target RNA. The presence of a C at the corresponding crRNA repeat site can indicate that nucleotide pairing at this position is rejected. However, some Cas13 proteins (e.g., LwaCAs13a and PspCas13b) do not seem to have a PFS preference. See e.g., Gleditzsch et al. 2019. RNA Biology. 16(4):504-517.

Some Type VI proteins, such as subtype B, have 5′-recognition of D (G, T, A) and a 3′-motif requirement of NAN or NNA. One example is the Cas13b protein identified in Bergeyella zoohelcum (BzCas13b). See e.g., Gleditzsch et al. 2019. RNA Biology. 16(4):504-517.

Overall Type VI CRISPR-Cas systems appear to have less restrictive rules for substrate (e.g., target sequence) recognition than those that target DNA (e.g., Type V and type II).

Zinc Finger Nucleases

In some embodiments, the target polynucleotide is modified using a Zinc Finger nuclease or system thereof. One type of programmable DNA-binding domain is provided by artificial zinc-finger (ZF) technology, which involves arrays of ZF modules to target new DNA-binding sites in the genome. Each finger module in a ZF array targets three DNA bases. A customized array of individual zinc finger domains is assembled into a ZF protein (ZFP). ZFPs can comprise a functional domain. The first synthetic zinc finger nucleases (ZFNs) were developed by fusing a ZF protein to the catalytic domain of the Type IIS restriction enzyme FokI. (Kim, Y. G. et al., 1994, Chimeric restriction endonuclease, Proc. Natl. Acad. Sci. U.S.A. 91, 883-887; Kim, Y. G. et al., 1996, Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc. Natl. Acad. Sci. U.S.A. 93, 1156-1160). Increased cleavage specificity can be attained with decreased off target activity by use of paired ZFN heterodimers, each targeting different nucleotide sequences separated by a short spacer. (Doyon, Y. et al., 2011, Enhancing zinc-finger-nuclease activity with improved obligate heterodimeric architectures. Nat. Methods 8, 74-79). ZFPs can also be designed as transcription activators and repressors and have been used to target many genes in a wide variety of organisms. Exemplary methods of genome editing using ZFNs can be found for example in U.S. Pat. Nos. 6,534,261, 6,607,882, 6,746,838, 6,794,136, 6,824,978, 6,866,997, 6,933,113, 6,979,539, 7,013,219, 7,030,215, 7,220,719, 7,241,573, 7,241,574, 7,585,849, 7,595,376, 6,903,185, and 6,479,626, all of which are specifically incorporated by reference.

Sequences Related to Nucleus Targeting and Transportation

In some embodiments, one or more components (e.g., the Cas protein and/or deaminase) in the composition for engineering cells may comprise one or more sequences related to nucleus targeting and transportation. Such sequence may facilitate the one or more components in the composition for targeting a sequence within a cell. In order to improve targeting of the CRISPR-Cas protein and/or the nucleotide deaminase protein or catalytic domain thereof used in the methods of the present disclosure to the nucleus, it may be advantageous to provide one or both of these components with one or more nuclear localization sequences (NLSs).

In some embodiments, the NLSs used in the context of the present disclosure are heterologous to the proteins. Non-limiting examples of NLSs include an NLS sequence derived from: the NLS of the SV40 virus large T-antigen, having the amino acid sequence PKKKRKV (SEQ ID No. 3) or PKKKRKVEAS (SEQ ID No. 4); the NLS from nucleoplasmin (e.g., the nucleoplasmin bipartite NLS with the sequence KRPAATKKAGQAKKKK (SEQ ID No. 5)); the c-myc NLS having the amino acid sequence PAAKRVKLD (SEQ ID No. 6) or RQRRNELKRSP (SEQ ID No. 7); the hRNPA1 M9 NLS having the sequence NQSSNFGPMKGGNFGGRSSGPYGGGGQYFAKPRNQGGY (SEQ ID No. 8); the sequence RMRIZFKNKGKDTAELRRRRVEVSVELRKAKKDEQILKRRNV (SEQ ID No. 9) of the IBB domain from importin-alpha; the sequences VSRKRPRP (SEQ ID No. 10) and PPKKARED (SEQ ID No. 11) of the myoma T protein; the sequence PQPKKKPL (SEQ ID No. 12) of human p53; the sequence SALIKKKKKMAP (SEQ ID No. 13) of mouse c-abl IV; the sequences DRLRR (SEQ ID No. 14) and PKQKKRK (SEQ ID No. 15) of the influenza virus NS1; the sequence RKLKKKIKKL (SEQ ID No. 16) of the Hepatitis virus delta antigen; the sequence REKKKFLKRR (SEQ ID No. 17) of the mouse Mx1 protein; the sequence KRKGDEVDGVDEVAKKKSKK (SEQ ID No. 18) of the human poly(ADP-ribose) polymerase; and the sequence RKCLQAGMNLEARKTKK (SEQ ID No. 19) of the steroid hormone receptors (human) glucocorticoid. In general, the one or more NLSs are of sufficient strength to drive accumulation of the DNA-targeting Cas protein in a detectable amount in the nucleus of a eukaryotic cell. In general, strength of nuclear localization activity may derive from the number of NLSs in the CRISPR-Cas protein, the particular NLS(s) used, or a combination of these factors. Detection of accumulation in the nucleus may be performed by any suitable technique. For example, a detectable marker may be fused to the nucleic acid-targeting protein, such that location within a cell may be visualized, such as in combination with a means for detecting the location of the nucleus (e.g., a stain specific for the nucleus such as DAPI). Cell nuclei may also be isolated from cells, the contents of which may then be analyzed by any suitable process for detecting protein, such as immunohistochemistry, Western blot, or enzyme activity assay. Accumulation in the nucleus may also be determined indirectly, such as by an assay for the effect of nucleic acid-targeting complex formation (e.g., assay for deaminase activity) at the target sequence, or assay for altered gene expression activity affected by DNA-targeting complex formation and/or DNA-targeting), as compared to a control not exposed to the CRISPR-Cas protein and deaminase protein, or exposed to a CRISPR-Cas and/or deaminase protein lacking the one or more NLSs.

The CRISPR-Cas and/or nucleotide deaminase proteins may be provided with 1 or more, such as with, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more heterologous NLSs. In some embodiments, the proteins comprises about or more than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more NLSs at or near the amino-terminus, about or more than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more NLSs at or near the carboxy-terminus, or a combination of these (e.g., zero or at least one or more NLS at the amino-terminus and zero or at one or more NLS at the carboxy terminus). When more than one NLS is present, each may be selected independently of the others, such that a single NLS may be present in more than one copy and/or in combination with one or more other NLSs present in one or more copies. In some embodiments, an NLS is considered near the N- or C-terminus when the nearest amino acid of the NLS is within about 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 40, 50, or more amino acids along the polypeptide chain from the N- or C-terminus. In preferred embodiments of the CRISPR-Cas proteins, an NLS attached to the C-terminal of the protein.

In certain embodiments, the CRISPR-Cas protein and the deaminase protein are delivered to the cell or expressed within the cell as separate proteins. In these embodiments, each of the CRISPR-Cas and deaminase protein can be provided with one or more NLSs as described herein. In certain embodiments, the CRISPR-Cas and deaminase proteins are delivered to the cell or expressed with the cell as a fusion protein. In these embodiments one or both of the CRISPR-Cas and deaminase protein is provided with one or more NLSs. Where the nucleotide deaminase is fused to an adaptor protein (such as MS2) as described above, the one or more NLS can be provided on the adaptor protein, provided that this does not interfere with aptamer binding. In particular embodiments, the one or more NLS sequences may also function as linker sequences between the nucleotide deaminase and the CRISPR-Cas protein.

In certain embodiments, guides of the disclosure comprise specific binding sites (e.g. aptamers) for adapter proteins, which may be linked to or fused to an nucleotide deaminase or catalytic domain thereof. When such a guide forms a CRISPR complex (e.g., CRISPR-Cas protein binding to guide and target) the adapter proteins bind and, the nucleotide deaminase or catalytic domain thereof associated with the adapter protein is positioned in a spatial orientation which is advantageous for the attributed function to be effective.

The skilled person will understand that modifications to the guide which allow for binding of the adapter+nucleotide deaminase, but not proper positioning of the adapter+nucleotide deaminase (e.g. due to steric hindrance within the three dimensional structure of the CRISPR complex) are modifications which are not intended. The one or more modified guide may be modified at the tetra loop, the stem loop 1, stem loop 2, or stem loop 3, as described herein, preferably at either the tetra loop or stem loop 2, and in some cases at both the tetra loop and stem loop 2.

In some embodiments, a component (e.g., the dead Cas protein, the nucleotide deaminase protein or catalytic domain thereof, or a combination thereof) in the systems may comprise one or more nuclear export signals (NES), one or more nuclear localization signals (NLS), or any combinations thereof. In some cases, the NES may be an HIV Rev NES. In certain cases, the NES may be MAPK NES. When the component is a protein, the NES or NLS may be at the C terminus of component. Alternatively or additionally, the NES or NLS may be at the N terminus of component. In some examples, the Cas protein and optionally said nucleotide deaminase protein or catalytic domain thereof comprise one or more heterologous nuclear export signal(s) (NES(s)) or nuclear localization signal(s) (NLS(s)), preferably an HIV Rev NES or MAPK NES, preferably C-terminal.

Templates

In some embodiments, the composition for engineering cells comprise a template, e.g., a recombination template. A template may be a component of another vector as described herein, contained in a separate vector, or provided as a separate polynucleotide. In some embodiments, a recombination template is designed to serve as a template in homologous recombination, such as within or near a target sequence nicked or cleaved by a nucleic acid-targeting effector protein as a part of a nucleic acid-targeting complex.

In an embodiment, the template nucleic acid alters the sequence of the target position. In an embodiment, the template nucleic acid results in the incorporation of a modified, or non-naturally occurring base into the target nucleic acid.

The template sequence may undergo a breakage mediated or catalyzed recombination with the target sequence. In an embodiment, the template nucleic acid may include sequence that corresponds to a site on the target sequence that is cleaved by a Cas protein mediated cleavage event. In an embodiment, the template nucleic acid may include sequence that corresponds to both, a first site on the target sequence that is cleaved in a first Cas protein mediated event, and a second site on the target sequence that is cleaved in a second Cas protein mediated event.

In certain embodiments, the template nucleic acid can include sequence which results in an alteration in the coding sequence of a translated sequence, e.g., one which results in the substitution of one amino acid for another in a protein product, e.g., transforming a mutant allele into a wild type allele, transforming a wild type allele into a mutant allele, and/or introducing a stop codon, insertion of an amino acid residue, deletion of an amino acid residue, or a nonsense mutation. In certain embodiments, the template nucleic acid can include sequence which results in an alteration in a non-coding sequence, e.g., an alteration in an exon or in a 5′ or 3′ non-translated or non-transcribed region. Such alterations include an alteration in a control element, e.g., a promoter, enhancer, and an alteration in a cis-acting or trans-acting control element.

A template nucleic acid having homology with a target position in a target gene may be used to alter the structure of a target sequence. The template sequence may be used to alter an unwanted structure, e.g., an unwanted or mutant nucleotide. The template nucleic acid may include sequence which, when integrated, results in: decreasing the activity of a positive control element; increasing the activity of a positive control element; decreasing the activity of a negative control element; increasing the activity of a negative control element; decreasing the expression of a gene; increasing the expression of a gene; increasing resistance to a disorder or disease; increasing resistance to viral entry; correcting a mutation or altering an unwanted amino acid residue conferring, increasing, abolishing or decreasing a biological property of a gene product, e.g., increasing the enzymatic activity of an enzyme, or increasing the ability of a gene product to interact with another molecule.

The template nucleic acid may include sequence which results in: a change in sequence of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 or more nucleotides of the target sequence.

A template polynucleotide may be of any suitable length, such as about or more than about 10, 15, 20, 25, 50, 75, 100, 150, 200, 500, 1000, or more nucleotides in length. In an embodiment, the template nucleic acid may be 20+/−10, 30+/−10, 40+/−10, 50+/−10, 60+/−10, 70+/−10, 80+/−10, 90+/−10, 100+/−10, 1 10+/−10, 120+/−10, 130+/−10, 140+/−10, 150+/−10, 160+/−10, 170+/−10, 1 80+/−10, 190+/−10, 200+/−10, 210+/−10, of 220+/−10 nucleotides in length. In an embodiment, the template nucleic acid may be 30+/−20, 40+/−20, 50+/−20, 60+/−20, 70+/−20, 80+/−20, 90+/−20, 100+/−20, 1 10+/−20, 120+/−20, 130+/−20, 140+/−20, I 50+/−20, 160+/−20, 170+/−20, 180+/−20, 190+/−20, 200+/−20, 210+/−20, of 220+/−20 nucleotides in length. In an embodiment, the template nucleic acid is 10 to 1,000, 20 to 900, 30 to 800, 40 to 700, 50 to 600, 50 to 500, 50 to 400, 50 to 300, 50 to 200, or 50 to 100 nucleotides in length.

In some embodiments, the template polynucleotide is complementary to a portion of a polynucleotide comprising the target sequence. When optimally aligned, a template polynucleotide might overlap with one or more nucleotides of a target sequences (e.g. about or more than about 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100 or more nucleotides). In some embodiments, when a template sequence and a polynucleotide comprising a target sequence are optimally aligned, the nearest nucleotide of the template polynucleotide is within about 1, 5, 10, 15, 20, 25, 50, 75, 100, 200, 300, 400, 500, 1000, 5000, 10000, or more nucleotides from the target sequence.

The exogenous polynucleotide template comprises a sequence to be integrated (e.g., a mutated gene). The sequence for integration may be a sequence endogenous or exogenous to the cell. Examples of a sequence to be integrated include polynucleotides encoding a protein or a non-coding RNA (e.g., a microRNA). Thus, the sequence for integration may be operably linked to an appropriate control sequence or sequences. Alternatively, the sequence to be integrated may provide a regulatory function.

An upstream or downstream sequence may comprise from about 20 bp to about 2500 bp, for example, about 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2100, 2200, 2300, 2400, or 2500 bp. In some methods, the exemplary upstream or downstream sequence have about 200 bp to about 2000 bp, about 600 bp to about 1000 bp, or more particularly about 700 bp to about 1000.

An upstream or downstream sequence may comprise from about 20 bp to about 2500 bp, for example, about 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2100, 2200, 2300, 2400, or 2500 bp. In some methods, the exemplary upstream or downstream sequence have about 200 bp to about 2000 bp, about 600 bp to about 1000 bp, or more particularly about 700 bp to about 1000

In certain embodiments, one or both homology arms may be shortened to avoid including certain sequence repeat elements. For example, a 5′ homology arm may be shortened to avoid a sequence repeat element. In other embodiments, a 3′ homology arm may be shortened to avoid a sequence repeat element. In some embodiments, both the 5′ and the 3′ homology arms may be shortened to avoid including certain sequence repeat elements.

In some methods, the exogenous polynucleotide template may further comprise a marker. Such a marker may make it easy to screen for targeted integrations. Examples of suitable markers include restriction sites, fluorescent proteins, or selectable markers. The exogenous polynucleotide template of the disclosure can be constructed using recombinant techniques (see, for example, Sambrook et al., 2001 and Ausubel et al., 1996).

In certain embodiments, a template nucleic acid for correcting a mutation may designed for use as a single-stranded oligonucleotide. When using a single-stranded oligonucleotide, 5′ and 3′ homology arms may range up to about 200 base pairs (bp) in length, e.g., at least 25, 50, 75, 100, 125, 150, 175, or 200 bp in length.

Suzuki et al. describe in vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration (2016, Nature 540:144-149).

TALE Nucleases

In some embodiments, a TALE nuclease or TALE nuclease system can be used to modify a target polynucleotide. In some embodiments, the methods provided herein use isolated, non-naturally occurring, recombinant or engineered DNA binding proteins that comprise TALE monomers or TALE monomers or half monomers as a part of their organizational structure that enable the targeting of nucleic acid sequences with improved efficiency and expanded specificity.

Naturally occurring TALEs or “wild type TALEs” are nucleic acid binding proteins secreted by numerous species of proteobacteria. TALE polypeptides contain a nucleic acid binding domain composed of tandem repeats of highly conserved monomer polypeptides that are predominantly 33, 34 or 35 amino acids in length and that differ from each other mainly in amino acid positions 12 and 13. In advantageous embodiments the nucleic acid is DNA. As used herein, the term “polypeptide monomers”, “TALE monomers” or “monomers” will be used to refer to the highly conserved repetitive polypeptide sequences within the TALE nucleic acid binding domain and the term “repeat variable di-residues” or “RVD” will be used to refer to the highly variable amino acids at positions 12 and 13 of the polypeptide monomers. As provided throughout the disclosure, the amino acid residues of the RVD are depicted using the IUPAC single letter code for amino acids. A general representation of a TALE monomer which is comprised within the DNA binding domain is X1-11-(X12X13)-X14-33 or 34 or 35, where the subscript indicates the amino acid position and X represents any amino acid. X12X13 indicate the RVDs. In some polypeptide monomers, the variable amino acid at position 13 is missing or absent and in such monomers, the RVD consists of a single amino acid. In such cases the RVD may be alternatively represented as X*, where X represents X12 and (*) indicates that X13 is absent. The DNA binding domain comprises several repeats of TALE monomers and this may be represented as (X1-11-(X12X13)-X14-33 or 34 or 35)z, where in an advantageous embodiment, z is at least 5 to 40. In a further advantageous embodiment, z is at least 10 to 26.

The TALE monomers can have a nucleotide binding affinity that is determined by the identity of the amino acids in its RVD. For example, polypeptide monomers with an RVD of NI can preferentially bind to adenine (A), monomers with an RVD of NG can preferentially bind to thymine (T), monomers with an RVD of HD can preferentially bind to cytosine (C) and monomers with an RVD of NN can preferentially bind to both adenine (A) and guanine (G). In some embodiments, monomers with an RVD of IG can preferentially bind to T. Thus, the number and order of the polypeptide monomer repeats in the nucleic acid binding domain of a TALE determines its nucleic acid target specificity. In some embodiments, monomers with an RVD of NS can recognize all four base pairs and can bind to A, T, G or C. The structure and function of TALEs is further described in, for example, Moscou et al., Science 326:1501 (2009); Boch et al., Science 326:1509-1512 (2009); and Zhang et al., Nature Biotechnology 29:149-153 (2011).

The polypeptides used in methods of the invention can be isolated, non-naturally occurring, recombinant or engineered nucleic acid-binding proteins that have nucleic acid or DNA binding regions containing polypeptide monomer repeats that are designed to target specific nucleic acid sequences.

As described herein, polypeptide monomers having an RVD of HN or NH preferentially bind to guanine and thereby allow the generation of TALE polypeptides with high binding specificity for guanine containing target nucleic acid sequences. In some embodiments, polypeptide monomers having RVDs RN, NN, NK, SN, NH, KN, HN, NQ, HH, RG, KH, RH and SS can preferentially bind to guanine. In some embodiments, polypeptide monomers having RVDs RN, NK, NQ, HH, KH, RH, SS and SN can preferentially bind to guanine and can thus allow the generation of TALE polypeptides with high binding specificity for guanine containing target nucleic acid sequences. In some embodiments, polypeptide monomers having RVDs HH, KH, NH, NK, NQ, RH, RN and SS can preferentially bind to guanine and thereby allow the generation of TALE polypeptides with high binding specificity for guanine containing target nucleic acid sequences. In some embodiments, the RVDs that have high binding specificity for guanine are RN, NH RH and KH. Furthermore, polypeptide monomers having an RVD of NV can preferentially bind to adenine and guanine. In some embodiments, monomers having RVDs of H*, HA, KA, N*, NA, NC, NS, RA, and S* bind to adenine, guanine, cytosine and thymine with comparable affinity.

The predetermined N-terminal to C-terminal order of the one or more polypeptide monomers of the nucleic acid or DNA binding domain determines the corresponding predetermined target nucleic acid sequence to which the polypeptides of the invention will bind. As used herein the monomers and at least one or more half monomers are “specifically ordered to target” the genomic locus or gene of interest. In plant genomes, the natural TALE-binding sites always begin with a thymine (T), which may be specified by a cryptic signal within the non-repetitive N-terminus of the TALE polypeptide; in some cases, this region may be referred to as repeat 0. In animal genomes, TALE binding sites do not necessarily have to begin with a thymine (T) and polypeptides of the invention may target DNA sequences that begin with T, A, G or C. The tandem repeat of TALE monomers always ends with a half-length repeat or a stretch of sequence that may share identity with only the first 20 amino acids of a repetitive full-length TALE monomer and this half repeat may be referred to as a half-monomer. Therefore, it follows that the length of the nucleic acid or DNA being targeted is equal to the number of full monomers plus two.

As described in Zhang et al., Nature Biotechnology 29:149-153 (2011), TALE polypeptide binding efficiency may be increased by including amino acid sequences from the “capping regions” that are directly N-terminal or C-terminal of the DNA binding region of naturally occurring TALEs into the engineered TALEs at positions N-terminal or C-terminal of the engineered TALE DNA binding region. Thus, in certain embodiments, the TALE polypeptides described herein further comprise an N-terminal capping region and/or a C-terminal capping region.

An exemplary amino acid sequence of a N-terminal capping region is:

(SEQ ID NO: 20) MDPIRSRTPSPARELLSGPQPDGVQPTADRGVSPPAGGP LDGLPARRTMSRTRLPSPPAPSPAFSADSFSDLLRQFDPSLFNTS LFDSLPPFGAHHTEAATGEWDEVQSGLRAADAPPPTMRVAVTA ARPPRAKPAPRRRAAQPSDASPAAQVDLRTLGYSQQQQEKIKP KVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVAVKYQD MIAALPEATHEAIVGVGKQWSGARALEALLTVAGELRGPPLQL DTGQLLKIAKRGGVTAVEAVHAWRNALTGAPLN

An exemplary amino acid sequence of a C-terminal capping region is:

(SEQ ID NO: 21) RPALESIVAQLSRPDPALAALTNDHLVALACLGGRPAL DAVKKGLPHAPALIKRTNRRIPERTSHRVADHAQVVRVLGFFQ CHSHPAQAFDDAMTQFGMSRHGLLQLFRRVGVTELEARSGTLP PASQRWDRILQASGMKRAKPSPTSTQTPDQASLHAFADSLERD LDAPSPMHEGDQTRAS 

As used herein the predetermined “N-terminus” to “C terminus” orientation of the N-terminal capping region, the DNA binding domain comprising the repeat TALE monomers and the C-terminal capping region provide structural basis for the organization of different domains in the d-TALEs or polypeptides of the invention.

The entire N-terminal and/or C-terminal capping regions are not necessary to enhance the binding activity of the DNA binding region. Therefore, in certain embodiments, fragments of the N-terminal and/or C-terminal capping regions are included in the TALE polypeptides described herein.

In certain embodiments, the TALE polypeptides described herein contain a N-terminal capping region fragment that included at least 10, 20, 30, 40, 50, 54, 60, 70, 80, 87, 90, 94, 100, 102, 110, 117, 120, 130, 140, 147, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260 or 270 amino acids of an N-terminal capping region. In certain embodiments, the N-terminal capping region fragment amino acids are of the C-terminus (the DNA-binding region proximal end) of an N-terminal capping region. As described in Zhang et al., Nature Biotechnology 29:149-153 (2011), N-terminal capping region fragments that include the C-terminal 240 amino acids enhance binding activity equal to the full length capping region, while fragments that include the C-terminal 147 amino acids retain greater than 80% of the efficacy of the full length capping region, and fragments that include the C-terminal 117 amino acids retain greater than 50% of the activity of the full-length capping region.

In some embodiments, the TALE polypeptides described herein contain a C-terminal capping region fragment that included at least 6, 10, 20, 30, 37, 40, 50, 60, 68, 70, 80, 90, 100, 110, 120, 127, 130, 140, 150, 155, 160, 170, 180 amino acids of a C-terminal capping region. In certain embodiments, the C-terminal capping region fragment amino acids are of the N-terminus (the DNA-binding region proximal end) of a C-terminal capping region. As described in Zhang et al., Nature Biotechnology 29:149-153 (2011), C-terminal capping region fragments that include the C-terminal 68 amino acids enhance binding activity equal to the full-length capping region, while fragments that include the C-terminal 20 amino acids retain greater than 50% of the efficacy of the full-length capping region.

In certain embodiments, the capping regions of the TALE polypeptides described herein do not need to have identical sequences to the capping region sequences provided herein. Thus, in some embodiments, the capping region of the TALE polypeptides described herein have sequences that are at least 50%, 60%, 70%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical or share identity to the capping region amino acid sequences provided herein. Sequence identity is related to sequence homology. Homology comparisons may be conducted by eye, or more usually, with the aid of readily available sequence comparison programs. These commercially available computer programs may calculate percent (%) homology between two or more sequences and may also calculate the sequence identity shared by two or more amino acid or nucleic acid sequences. In some preferred embodiments, the capping region of the TALE polypeptides described herein have sequences that are at least 95% identical or share identity to the capping region amino acid sequences provided herein.

Sequence homologies can be generated by any of a number of computer programs known in the art, which include but are not limited to BLAST or FASTA. Suitable computer programs for carrying out alignments like the GCG Wisconsin Bestfit package may also be used. Once the software has produced an optimal alignment, it is possible to calculate % homology, preferably % sequence identity. The software typically does this as part of the sequence comparison and generates a numerical result.

In some embodiments described herein, the TALE polypeptides of the invention include a nucleic acid binding domain linked to the one or more effector domains. The terms “effector domain” or “regulatory and functional domain” refer to a polypeptide sequence that has an activity other than binding to the nucleic acid sequence recognized by the nucleic acid binding domain. By combining a nucleic acid binding domain with one or more effector domains, the polypeptides of the invention may be used to target the one or more functions or activities mediated by the effector domain to a particular target DNA sequence to which the nucleic acid binding domain specifically binds.

In some embodiments of the TALE polypeptides described herein, the activity mediated by the effector domain is a biological activity. For example, in some embodiments the effector domain is a transcriptional inhibitor (i.e., a repressor domain), such as an mSin interaction domain (SID). SID4X domain or a Kruppel-associated box (KRAB) or fragments of the KRAB domain. In some embodiments the effector domain is an enhancer of transcription (i.e. an activation domain), such as the VP16, VP64 or p65 activation domain. In some embodiments, the nucleic acid binding is linked, for example, with an effector domain that includes but is not limited to a transposase, integrase, recombinase, resolvase, invertase, protease, DNA methyltransferase, DNA demethylase, histone acetylase, histone deacetylase, nuclease, transcriptional repressor, transcriptional activator, transcription factor recruiting, protein nuclear-localization signal or cellular uptake signal.

In some embodiments, the effector domain is a protein domain which exhibits activities which include but are not limited to transposase activity, integrase activity, recombinase activity, resolvase activity, invertase activity, protease activity, DNA methyltransferase activity, DNA demethylase activity, histone acetylase activity, histone deacetylase activity, nuclease activity, nuclear-localization signaling activity, transcriptional repressor activity, transcriptional activator activity, transcription factor recruiting activity, or cellular uptake signaling activity. Other preferred embodiments of the invention may include any combination of the activities described herein.

Meganucleases

In some embodiments, a meganuclease or system thereof can be used to modify a target polynucleotide. Meganucleases, which are endodeoxyribonucleases characterized by a large recognition site (double-stranded DNA sequences of 12 to 40 base pairs). Exemplary methods for using meganucleases can be found in U.S. Pat. Nos. 8,163,514, 8,133,697, 8,021,867, 8,119,361, 8,119,381, 8,124,369, and 8,129,134, which are specifically incorporated by reference.

RNAi

In certain embodiments, the genetic modifying agent is RNAi (e.g., shRNA). As used herein, “gene silencing” or “gene silenced” in reference to an activity of an RNAi molecule, for example a siRNA or miRNA refers to a decrease in the mRNA level in a cell for a target gene by at least about 5%, about 10%, about 20%, about 30%, about 40%, about 50%, about 60%, about 70%, about 80%, about 90%, about 95%, about 99%, about 100% of the mRNA level found in the cell without the presence of the miRNA or RNA interference molecule. In one preferred embodiment, the mRNA levels are decreased by at least about 70%, about 80%, about 90%, about 95%, about 99%, about 100%.

As used herein, the term “RNAi” refers to any type of interfering RNA, including but not limited to, siRNAi, shRNAi, endogenous microRNA and artificial microRNA. For instance, it includes sequences previously identified as siRNA, regardless of the mechanism of down-stream processing of the RNA (i.e. although siRNAs are believed to have a specific method of in vivo processing resulting in the cleavage of mRNA, such sequences can be incorporated into the vectors in the context of the flanking sequences described herein). The term “RNAi” can include both gene silencing RNAi molecules, and also RNAi effector molecules which activate the expression of a gene.

As used herein, a “siRNA” refers to a nucleic acid that forms a double stranded RNA, which double stranded RNA has the ability to reduce or inhibit expression of a gene or target gene when the siRNA is present or expressed in the same cell as the target gene. The double stranded RNA siRNA can be formed by the complementary strands. In one embodiment, a siRNA refers to a nucleic acid that can form a double stranded siRNA. The sequence of the siRNA can correspond to the full-length target gene, or a subsequence thereof. Typically, the siRNA is at least about 15-50 nucleotides in length (e.g., each complementary sequence of the double stranded siRNA is about 15-50 nucleotides in length, and the double stranded siRNA is about 15-50 base pairs in length, preferably about 19-30 base nucleotides, preferably about 20-25 nucleotides in length, e.g., 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 nucleotides in length).

As used herein “shRNA” or “small hairpin RNA” (also called stem loop) is a type of siRNA. In one embodiment, these shRNAs are composed of a short, e.g. about 19 to about 25 nucleotide, antisense strand, followed by a nucleotide loop of about 5 to about 9 nucleotides, and the analogous sense strand. Alternatively, the sense strand can precede the nucleotide loop structure and the antisense strand can follow.

The terms “microRNA” or “miRNA” are used interchangeably herein are endogenous RNAs, some of which are known to regulate the expression of protein-coding genes at the posttranscriptional level. Endogenous microRNAs are small RNAs naturally present in the genome that are capable of modulating the productive utilization of mRNA. The term artificial microRNA includes any type of RNA sequence, other than endogenous microRNA, which is capable of modulating the productive utilization of mRNA. MicroRNA sequences have been described in publications such as Lim, et al., Genes & Development, 17, p. 991-1008 (2003), Lim et al Science 299, 1540 (2003), Lee and Ambros Science, 294, 862 (2001), Lau et al., Science 294, 858-861 (2001), Lagos-Quintana et al, Current Biology, 12, 735-739 (2002), Lagos Quintana et al, Science 294, 853-857 (2001), and Lagos-Quintana et al, RNA, 9, 175-179 (2003), which are incorporated by reference. Multiple microRNAs can also be incorporated into a precursor molecule. Furthermore, miRNA-like stem-loops can be expressed in cells as a vehicle to deliver artificial miRNAs and short interfering RNAs (siRNAs) for the purpose of modulating the expression of endogenous genes through the miRNA and or RNAi pathways.

As used herein, “double stranded RNA” or “dsRNA” refers to RNA molecules that are comprised of two strands. Double-stranded molecules include those comprised of a single RNA molecule that doubles back on itself to form a two-stranded structure. For example, the stem loop structure of the progenitor molecules from which the single-stranded miRNA is derived, called the pre-miRNA (Bartel et al. 2004. Cell 1 16:281-297), comprises a dsRNA molecule.

Diseases

It will be understood by the skilled person that treating as referred to herein encompasses enhancing treatment, or improving treatment efficacy. Treatment may include inhibition of an inflammatory response, enhancing an immune response, tumor regression as well as inhibition of tumor growth, metastasis or tumor cell proliferation, or inhibition or reduction of otherwise deleterious effects associated with the tumor.

Efficaciousness of treatment is determined in association with any known method for diagnosing or treating the particular disease. The invention comprehends a treatment method comprising any one of the methods or uses herein discussed.

The phrase “therapeutically effective amount” as used herein refers to a sufficient amount of a drug, agent, or compound to provide a desired therapeutic effect.

As used herein “patient” refers to any human being receiving or who may receive medical treatment and is used interchangeably herein with the term “subject”.

Therapy or treatment according to the invention may be performed alone or in conjunction with another therapy, and may be provided at home, the doctor's office, a clinic, a hospital's outpatient department, or a hospital. Treatment generally begins at a hospital so that the doctor can observe the therapy's effects closely and make any adjustments that are needed. The duration of the therapy depends on the age and condition of the patient, the stage of the cancer, and how the patient responds to the treatment. Additionally, a person having a greater risk of developing an inflammatory response (e.g., a person who is genetically predisposed or predisposed to allergies or a person having a disease characterized by episodes of inflammation) may receive prophylactic treatment to inhibit or delay symptoms of the disease.

The disclosure provides CGRP or derivatives thereof, or an agonist of the CGRP receptor for treating disease. A skilled person can readily determine diseases that can be treated by reducing an ILC2 inflammatory response. ILC2 cells and ILC2 inflammatory responses have been associated with allergic asthma, therapy resistant-asthma, steroid-resistant severe allergic airway inflammation, systemic steroid-dependent severe eosinophilic asthma, chronic rhino-sinusitis (CRS), atopic dermatitis, food allergies, persistence of chronic airway inflammation, and primary eosinophilic gastrointestinal disorders (EGIDs), including but not limited to eosinophilic esophagitis (EoE), eosinophilic gastritis, eosinophilic gastroenteritis, and eosinophilic colitis (see, e.g., Van Rijt et al., Type 2 innate lymphoid cells: at the cross-roads in allergic asthma, Seminars in Immunopathology July 2016, Volume 38, Issue 4, pp 483-496; Rivas et al., IL-4 production by group 2 innate lymphoid cells promotes food allergy by blocking regulatory T-cell function, J Allergy Clin Immunol. 2016 September; 138(3):801-811.e9; and Morita, Hideaki et al. Innate lymphoid cells in allergic and nonallergic inflammation, Journal of Allergy and Clinical Immunology, Volume 138, Issue 5, 1253-1264). Asthma is characterized by recurrent episodes of wheezing, shortness of breath, chest tightness, and coughing. Sputum may be produced from the lung by coughing but is often hard to bring up. During recovery from an attack, it may appear pus-like due to high levels of eosinophils. Symptoms are usually worse at night and in the early morning or in response to exercise or cold air. Some people with asthma rarely experience symptoms, usually in response to triggers, whereas others may have marked and persistent symptoms. CRS is characterized by inflammation of the mucosal surfaces of the nose and para-nasal sinuses, and it often coexists with allergic asthma. Atopic dermatitis is a chronic inflammatory skin disease that is characterized by eosinophilic infiltration and high serum IgE levels. Similar to allergic asthma and CRS, atopic dermatitis has been associated with increased expression of TSLP, IL-25, and IL-33 in the skin. Primary eosinophilic gastrointestinal disorders (EGIDs), including eosinophilic esophagitis (EoE), eosinophilic gastritis, eosinophilic gastroenteritis, and eosinophilic colitisare disorders that exhibit eosinophil-rich inflammation in the gastrointestinal tract in the absence of known causes for eosinophilia such as parasite infection and drug reaction. Not being bound by a theory, corticosteroids suppress TH2 cells, but not ILC2s and cannot be used to modulate ILC2 inflammatory responses. Applicants have discovered factors that balance homeostatic and pathological pro-inflammatory ILC2 responses. In certain embodiments, modulation of these factors, as described herein, may be used to treat the diseases described. In preferred embodiments, CGRP signaling is modulated. In certain embodiments, the treatment can maintain homeostasis of intestinal KLRGHi ST2ILC2s and prevent their migration to peripheral sites (e.g., lungs) (see, Huang et al., 2017).

In certain embodiments an ILC2 mediated disease or disorder that can be treated by reducing an ILC2 inflammatory response or maintaining ILC2 homeostasis may be any inflammatory disease or disorder such as, but not limited to, asthma, allergy, allergic rhinitis, allergic airway inflammation, atopic dermatitis (AD), chronic obstructive pulmonary disease (COPD), inflammatory bowel disease (IBD), multiple sclerosis, arthritis, psoriasis, eosinophilic esophagitis, eosinophilic pneumonia, eosinophilic psoriasis, hypereosinophilic syndrome, graft-versus-host disease, uveitis, cardiovascular disease, pain, multiple sclerosis, lupus, vasculitis, chronic idiopathic urticaria and Eosinophilic Granulomatosis with Polyangiitis (Churg-Strauss Syndrome).

The asthma may be allergic asthma, non-allergic asthma, severe refractory asthma, asthma exacerbations, viral-induced asthma or viral-induced asthma exacerbations, steroid resistant asthma, steroid sensitive asthma, eosinophilic asthma or non-eosinophilic asthma and other related disorders characterized by airway inflammation or airway hyperresponsiveness (AHR).

The COPD may be a disease or disorder associated in part with, or caused by, cigarette smoke, air pollution, occupational chemicals, allergy or airway hyperresponsiveness.

The allergy may be associated with foods, pollen, mold, dust mites, animals, or animal dander.

The IBD may be ulcerative colitis (UC), Crohn's Disease, collagenous colitis, lymphocytic colitis, ischemic colitis, diversion colitis, Behcet's syndrome, infective colitis, indeterminate colitis, and other disorders characterized by inflammation of the mucosal layer of the large intestine or colon.

The arthritis may be selected from the group consisting of osteoarthritis, rheumatoid arthritis and psoriatic arthritis.

The disclosure also provides methods for enhancing an ILC2 type response and treating disease. In certain embodiments, tissue inflammatory ILC2s are switched to activated, tissue protective ILC2s. ILC2 cells have been shown to promote an eosinophil cytotoxic response, antitumor response and metastasis suppression (Ikutani et al., Identification of Innate IL-5-Producing Cells and Their Role in Lung Eosinophil Regulation and Antitumor Immunity, J Immunol 2012; 188:703-713). Specifically, innate IL-5-producing cells were increased in response to tumor invasion, and their regulation of eosinophils was critical to suppress tumor metastasis. Thus, in one embodiment induction of an ILC2 inflammatory response may be used in treating cancer. In other embodiments, the cancer is resistant to therapies targeting the adaptive immune system (see e.g., Rooney et al., Molecular and genetic properties of tumors associated with local immune cytolytic activity, Cell. 2015 January 15; 160(1-2): 48-61). In one embodiment, modulation of CGRP signaling is used for inducing an inflammatory immune response state for the treatment of a subpopulation of tumor cells that are linked to resistance to targeted therapies and progressive tumor growth. Not being bound by a theory, in cases where tumors are resistant to therapies targeting the adaptive immune system, treatments targeting the innate immune system may be therapeutically effective in treating the tumor.

The cancer may include, without limitation, liquid tumors such as leukemia (e.g., acute leukemia, acute lymphocytic leukemia, acute myelocytic leukemia, acute myeloblastic leukemia, acute promyelocytic leukemia, acute myelomonocytic leukemia, acute monocytic leukemia, acute erythroleukemia, chronic leukemia, chronic myelocytic leukemia, chronic lymphocytic leukemia), polycythemia vera, lymphoma (e.g., Hodgkin's disease, non-Hodgkin's disease), Waldenstrom's macroglobulinemia, heavy chain disease, or multiple myeloma.

The cancer may include, without limitation, solid tumors such as sarcomas and carcinomas. Examples of solid tumors include, but are not limited to fibrosarcoma, myxosarcoma, liposarcoma, chondrosarcoma, osteogenic sarcoma, chordoma, angiosarcoma, endotheliosarcoma, lymphangiosarcoma, lymphangioendotheliosarcoma, synovioma, mesothelioma, Ewing's tumor, leiomyosarcoma, rhabdomyosarcoma, squamous cell carcinoma, basal cell carcinoma, adenocarcinoma, sweat gland carcinoma, sebaceous gland carcinoma, papillary carcinoma, papillary adenocarcinomas, cystadenocarcinoma, medullary carcinoma, epithelial carcinoma, bronchogenic carcinoma, hepatoma, colorectal cancer (e.g., colon cancer, rectal cancer), anal cancer, pancreatic cancer (e.g., pancreatic adenocarcinoma, islet cell carcinoma, neuroendocrine tumors), breast cancer (e.g., ductal carcinoma, lobular carcinoma, inflammatory breast cancer, clear cell carcinoma, mucinous carcinoma), ovarian carcinoma (e.g., ovarian epithelial carcinoma or surface epithelial-stromal tumour including serous tumour, endometrioid tumor and mucinous cystadenocarcinoma, sex-cord-stromal tumor), prostate cancer, liver and bile duct carcinoma (e.g., hepatocelluar carcinoma, cholangiocarcinoma, hemangioma), choriocarcinoma, seminoma, embryonal carcinoma, kidney cancer (e.g., renal cell carcinoma, clear cell carcinoma, Wilm's tumor, nephroblastoma), cervical cancer, uterine cancer (e.g., endometrial adenocarcinoma, uterine papillary serous carcinoma, uterine clear-cell carcinoma, uterine sarcomas and leiomyosarcomas, mixed mullerian tumors), testicular cancer, germ cell tumor, lung cancer (e.g., lung adenocarcinoma, squamous cell carcinoma, large cell carcinoma, bronchioloalveolar carcinoma, non-small-cell carcinoma, small cell carcinoma, mesothelioma), bladder carcinoma, signet ring cell carcinoma, cancer of the head and neck (e.g., squamous cell carcinomas), esophageal carcinoma (e.g., esophageal adenocarcinoma), tumors of the brain (e.g., glioma, glioblastoma, medullablastoma, astrocytoma, medulloblastoma, craniopharyngioma, ependymoma, pinealoma, hemangioblastoma, acoustic neuroma, oligodenroglioma, schwannoma, meningioma), neuroblastoma, retinoblastoma, neuroendocrine tumor, melanoma, cancer of the stomach (e.g., stomach adenocarcinoma, gastrointestinal stromal tumor), or carcinoids. Lymphoproliferative disorders are also considered to be proliferative diseases.

Administration

In certain embodiments, proteins are administered to a subject in need thereof (e.g., CGRP, antibodies). Delivery of therapeutic proteins can be performed according to any method known in the art (see, e.g., Pisal et al., DELIVERY OF THERAPEUTIC PROTEINS, J Pharm Sci. 2010 June; 99(6): 2557-2575; and Cleland et al., Emerging protein delivery methods, Curr Opin Biotechnol. 2001 April; 12(2):212-9.

It will be appreciated that administration of therapeutic entities in accordance with the invention will be administered with suitable carriers, excipients, and other agents that are incorporated into formulations to provide improved transfer, delivery, tolerance, and the like. A multitude of appropriate formulations can be found in the formulary known to all pharmaceutical chemists: Remington's Pharmaceutical Sciences (15th ed, Mack Publishing Company, Easton, Pa. (1975)), particularly Chapter 87 by Blaug, Seymour, therein. These formulations include, for example, powders, pastes, ointments, jellies, waxes, oils, lipids, lipid (cationic or anionic) containing vesicles (such as Lipofectin™), DNA conjugates, anhydrous absorption pastes, oil-in-water and water-in-oil emulsions, emulsions carbowax (polyethylene glycols of various molecular weights), semi-solid gels, and semi-solid mixtures containing carbowax. Any of the foregoing mixtures may be appropriate in treatments and therapies in accordance with the present invention, provided that the active ingredient in the formulation is not inactivated by the formulation and the formulation is physiologically compatible and tolerable with the route of administration. See also Baldrick P. “Pharmaceutical excipient development: the need for preclinical guidance.” Regul. Toxicol Pharmacol. 32(2):210-8 (2000), Wang W. “Lyophilization and development of solid protein pharmaceuticals.” Int. J. Pharm. 203(1-2):1-60 (2000), Charman W N “Lipids, lipophilic drugs, and oral drug delivery-some emerging concepts.” J Pharm Sci. 89(8):967-78 (2000), Powell et al. “Compendium of excipients for parenteral formulations” PDA J Pharm Sci Technol. 52:238-311 (1998) and the citations therein for additional information related to formulations, excipients and carriers well known to pharmaceutical chemists.

The medicaments of the invention are prepared in a manner known to those skilled in the art, for example, by means of conventional dissolving, lyophilizing, mixing, granulating or confectioning processes. Methods well known in the art for making formulations are found, for example, in Remington: The Science and Practice of Pharmacy, 20th ed., ed. A. R. Gennaro, 2000, Lippincott Williams & Wilkins, Philadelphia, and Encyclopedia of Pharmaceutical Technology, eds. J. Swarbrick and J. C. Boylan, 1988-1999, Marcel Dekker, New York.

Administration of medicaments of the invention may be by any suitable means that results in a compound concentration that is effective for treating or inhibiting (e.g., by delaying) the development of a disease. The compound is admixed with a suitable carrier substance, e.g., a pharmaceutically acceptable excipient that preserves the therapeutic properties of the compound with which it is administered. One exemplary pharmaceutically acceptable excipient is physiological saline. The suitable carrier substance is generally present in an amount of 1-95% by weight of the total weight of the medicament. The medicament may be provided in a dosage form that is suitable for administration. Thus, the medicament may be in form of, e.g., tablets, capsules, pills, powders, granulates, suspensions, emulsions, solutions, gels including hydrogels, pastes, ointments, creams, plasters, drenches, delivery devices, injectables, implants, sprays, or aerosols.

The agents disclosed herein (e.g., CGRP, CGRP receptor agonists or antagonists) may be used in a pharmaceutical composition when combined with a pharmaceutically acceptable carrier. Such compositions comprise a therapeutically-effective amount of the agent and a pharmaceutically acceptable carrier. Such a composition may also further comprise (in addition to an agent and a carrier) diluents, fillers, salts, buffers, stabilizers, solubilizers, and other materials well known in the art. Compositions comprising the agent can be administered in the form of salts provided the salts are pharmaceutically acceptable. Salts may be prepared using standard procedures known to those skilled in the art of synthetic organic chemistry.

The term “pharmaceutically acceptable salts” refers to salts prepared from pharmaceutically acceptable non-toxic bases or acids including inorganic or organic bases and inorganic or organic acids. Salts derived from inorganic bases include aluminum, ammonium, calcium, copper, ferric, ferrous, lithium, magnesium, manganic salts, manganous, potassium, sodium, zinc, and the like. Particularly preferred are the ammonium, calcium, magnesium, potassium, and sodium salts. Salts derived from pharmaceutically acceptable organic non-toxic bases include salts of primary, secondary, and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines, and basic ion exchange resins, such as arginine, betaine, caffeine, choline, N,N′-dibenzylethylenediamine, diethylamine, 2-diethylaminoethanol, 2-dimethylaminoethanol, ethanolamine, ethylenediamine, N-ethyl-morpholine, N-ethylpiperidine, glucamine, glucosamine, histidine, hydrabamine, isopropylamine, lysine, methylglucamine, morpholine, piperazine, piperidine, polyamine resins, procaine, purines, theobromine, triethylamine, trimethylamine, tripropylamine, tromethamine, and the like. The term “pharmaceutically acceptable salt” further includes all acceptable salts such as acetate, lactobionate, benzenesulfonate, laurate, benzoate, malate, bicarbonate, maleate, bisulfate, mandelate, bitartrate, mesylate, borate, methylbromide, bromide, methylnitrate, calcium edetate, methyl sulfate, camsylate, mucate, carbonate, napsylate, chloride, nitrate, clavulanate, N-methylglucamine, citrate, ammonium salt, dihydrochloride, oleate, edetate, oxalate, edisylate, pamoate (embonate), estolate, palmitate, esylate, pantothenate, fumarate, phosphate/diphosphate, gluceptate, polygalacturonate, gluconate, salicylate, glutamate, stearate, glycollylarsanilate, sulfate, hexylresorcinate, subacetate, hydrabamine, succinate, hydrobromide, tannate, hydrochloride, tartrate, hydroxynaphthoate, teoclate, iodide, tosylate, isothionate, triethiodide, lactate, panoate, valerate, and the like which can be used as a dosage form for modifying the solubility or hydrolysis characteristics or can be used in sustained release or pro-drug formulations. It will be understood that, as used herein, references to specific agents (e.g., CGRP receptor agonists or antagonists), also include the pharmaceutically acceptable salts thereof.

Methods of administrating the pharmacological compositions, including CGRP, agonists, antagonists, antibodies or fragments thereof, to an individual include, but are not limited to, intradermal, intrathecal, intramuscular, intraperitoneal, intravenous, subcutaneous, intranasal, epidural, by inhalation, and oral routes. In preferred embodiments, CGRP protein is administered intraperitoneally as described in the examples. The compositions can be administered by any convenient route, for example by infusion or bolus injection, by absorption through epithelial or mucocutaneous linings (for example, oral mucosa, rectal and intestinal mucosa, and the like), ocular, and the like and can be administered together with other biologically-active agents. Administration can be systemic or local. In addition, it may be advantageous to administer the composition into the central nervous system by any suitable route, including intraventricular and intrathecal injection. Pulmonary administration may also be employed by use of an inhaler or nebulizer, and formulation with an aerosolizing agent. It may also be desirable to administer the agent locally to the area in need of treatment; this may be achieved by, for example, and not by way of limitation, local infusion during surgery, topical application, by injection, by means of a catheter, by means of a suppository, or by means of an implant.

Various delivery systems are known and can be used to administer the pharmacological compositions including, but not limited to, encapsulation in liposomes, microparticles, microcapsules; minicells; polymers; capsules; tablets; and the like. In one embodiment, the agent may be delivered in a vesicle, in particular a liposome. In a liposome, the agent is combined, in addition to other pharmaceutically acceptable carriers, with amphipathic agents such as lipids which exist in aggregated form as micelles, insoluble monolayers, liquid crystals, or lamellar layers in aqueous solution. Suitable lipids for liposomal formulation include, without limitation, monoglycerides, diglycerides, sulfatides, lysolecithin, phospholipids, saponin, bile acids, and the like. Preparation of such liposomal formulations is within the level of skill in the art, as disclosed, for example, in U.S. Pat. Nos. 4,837,028 and 4,737,323. In yet another embodiment, the pharmacological compositions can be delivered in a controlled release system including, but not limited to: a delivery pump (See, for example, Saudek, et al., New Engl. J. Med. 321: 574 (1989) and a semi-permeable polymeric material (See, for example, Howard, et al., J. Neurosurg. 71: 105 (1989)). Additionally, the controlled release system can be placed in proximity of the therapeutic target (e.g., a tumor), thus requiring only a fraction of the systemic dose. See, for example, Goodson, In: Medical Applications of Controlled Release, 1984. (CRC Press, Boca Raton, Fla.).

The amount of the agents (e.g., CGRP, CGRP receptor agonist) which will be effective in the treatment of a particular disorder or condition will depend on the nature of the disorder or condition, and may be determined by standard clinical techniques by those of skill within the art. In addition, in vitro assays may optionally be employed to help identify optimal dosage ranges. The precise dose to be employed in the formulation will also depend on the route of administration, and the overall seriousness of the disease or disorder, and should be decided according to the judgment of the practitioner and each patient's circumstances. Ultimately, the attending physician will decide the amount of the agent with which to treat each individual patient. In certain embodiments, the attending physician will administer low doses of the agent and observe the patient's response. Larger doses of the agent may be administered until the optimal therapeutic effect is obtained for the patient, and at that point the dosage is not increased further. In general, the daily dose range lie within the range of from about 0.001 mg to about 100 mg per kg body weight of a mammal, preferably 0.01 mg to about 50 mg per kg, and most preferably 0.1 to 10 mg per kg, in single or divided doses. On the other hand, it may be necessary to use dosages outside these limits in some cases. In certain embodiments, suitable dosage ranges for intravenous administration of the agent (e.g., intraperitoneal CGRP administration) are generally about 0.1-500 micrograms (μg) of active compound per kilogram (Kg) body weight, preferably about 0.1-0.5 μg/kg. Suitable dosage ranges for intranasal administration are generally about 0.01 pg/kg body weight to 1 mg/kg body weight. In certain embodiments, a composition containing an agent of the present invention is subcutaneously injected in adult patients with dose ranges of approximately 5 to 5000 μg/human and preferably approximately 5 to 500 μg/human as a single dose. It is desirable to administer this dosage 1 to 3 times daily. Effective doses may be extrapolated from dose-response curves derived from in vitro or animal model test systems. Suppositories generally contain active ingredient in the range of 0.5% to 10% by weight; oral formulations preferably contain 10% to 95% active ingredient. Ultimately the attending physician will decide on the appropriate duration of therapy using compositions of the present invention. Dosage will also vary according to the age, weight and response of the individual patient.

Methods for administering antibodies for therapeutic use is well known to one skilled in the art. In certain embodiments, small particle aerosols of antibodies or fragments thereof may be administered (see e.g., Piazza et al., J. Infect. Dis., Vol. 166, pp. 1422-1424, 1992; and Brown, Aerosol Science and Technology, Vol. 24, pp. 45-56, 1996). In certain embodiments, antibodies (e.g., anti-CGRP receptor or anti-CGRP antibodies) are administered in metered-dose propellant driven aerosols. In preferred embodiments, antibodies are used as agonists to depress inflammatory diseases or allergen-induced asthmatic responses. In certain embodiments, antibodies may be administered in liposomes, i.e., immunoliposomes (see, e.g., Maruyama et al., Biochim. Biophys. Acta, Vol. 1234, pp. 74-80, 1995). In certain embodiments, immunoconjugates, immunoliposomes or immunomicrospheres containing an agent of the present invention is administered by inhalation.

In certain embodiments, antibodies may be topically administered to mucosa, such as the oropharynx, nasal cavity, respiratory tract, gastrointestinal tract, eye such as the conjunctival mucosa, vagina, urogenital mucosa, or for dermal application. In certain embodiments, antibodies are administered to the nasal, bronchial or pulmonary mucosa. In order to obtain optimal delivery of the antibodies to the pulmonary cavity in particular, it may be advantageous to add a surfactant such as a phosphoglyceride, e.g. phosphatidylcholine, and/or a hydrophilic or hydrophobic complex of a positively or negatively charged excipient and a charged antibody of the opposite charge.

Other excipients suitable for pharmaceutical compositions intended for delivery of antibodies to the respiratory tract mucosa may be a) carbohydrates, e.g., monosaccharides such as fructose, galactose, glucose. D-mannose, sorbiose, and the like; disaccharides, such as lactose, trehalose, cellobiose, and the like; cyclodextrins, such as 2-hydroxypropyl-β-cyclodextrin; and polysaccharides, such as raffinose, maltodextrins, dextrans, and the like; b) amino acids, such as glycine, arginine, aspartic acid, glutamic acid, cysteine, lysine and the like; c) organic salts prepared from organic acids and bases, such as sodium citrate, sodium ascorbate, magnesium gluconate, sodium gluconate, tromethamine hydrochloride, and the like: d) peptides and proteins, such as aspartame, human serum albumin, gelatin, and the like; e) alditols, such mannitol, xylitol, and the like, and f) polycationic polymers, such as chitosan or a chitosan salt or derivative.

For dermal application, the antibodies of the present invention may suitably be formulated with one or more of the following excipients: solvents, buffering agents, preservatives, humectants, chelating agents, antioxidants, stabilizers, emulsifying agents, suspending agents, gel-forming agents, ointment bases, penetration enhancers, and skin protective agents.

Examples of solvents are water, alcohols, vegetable or marine oils (e.g. edible oils like almond oil, castor oil, cacao butter, coconut oil, corn oil, cottonseed oil, linseed oil, olive oil, palm oil, peanut oil, poppy seed oil, rapeseed oil, sesame oil, soybean oil, sunflower oil, and tea seed oil), mineral oils, fatty oils, liquid paraffin, polyethylene glycols, propylene glycols, glycerol, liquid polyalkylsiloxanes, and mixtures thereof.

Examples of buffering agents are citric acid, acetic acid, tartaric acid, lactic acid, hydrogenphosphoric acid, diethyl amine etc. Suitable examples of preservatives for use in compositions are parabenes, such as methyl, ethyl, propyl p-hydroxybenzoate, butylparaben, isobutylparaben, isopropylparaben, potassium sorbate, sorbic acid, benzoic acid, methyl benzoate, phenoxyethanol, bronopol, bronidox, MDM hydantoin, iodopropynyl butylcarbamate, EDTA, benzalconium chloride, and benzylalcohol, or mixtures of preservatives.

Examples of humectants are glycerin, propylene glycol, sorbitol, lactic acid, urea, and mixtures thereof.

Examples of antioxidants are butylated hydroxy anisole (BHA), ascorbic acid and derivatives thereof, tocopherol and derivatives thereof, cysteine, and mixtures thereof.

Examples of emulsifying agents are naturally occurring gums, e.g., gum acacia or gum tragacanth; naturally occurring phosphatides, e.g., soybean lecithin, sorbitan monooleate derivatives: wool fats; wool alcohols; sorbitan esters; monoglycerides; fatty alcohols; fatty acid esters (e.g,. triglycerides of fatty acids); and mixtures thereof.

Examples of suspending agents are celluloses and cellulose derivatives such as, e.g., carboxymethyl cellulose, hydroxyethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, carraghenan, acacia gum, arabic gum, tragacanth, and mixtures thereof.

Examples of gel bases, viscosity-increasing agents or components which are able to take up exudate from a wound are liquid paraffin, polyethylene, fatty oils, colloidal silica or aluminum, zinc soaps, glycerol, propylene glycol, tragacanth, carboxyvinyl polymers, magnesium-aluminum silicates, Carbopol®, hydrophilic polymers such as, e.g. starch or cellulose derivatives such as, e.g., carboxymethylcellulose, hydroxyethylcellulose and other cellulose derivatives, water-swellable hydrocolloids, carragenans, hyaluronates (e.g., hyaluronate gel optionally containing sodium chloride), and alginates including propylene glycol alginate.

Examples of ointment bases are e.g. beeswax, paraffin, cetanol, cetyl palmitate, vegetable oils, sorbitan esters of fatty acids (Span), polyethylene glycols, and condensation products between sorbitan esters of fatty acids and ethylene oxide, e.g. polyoxyethylene sorbitan monooleate (Tween).

Examples of hydrophobic or water-emulsifying ointment bases are paraffins, vegetable oils, animal fats, synthetic glycerides, waxes, lanolin, and liquid polyalkylsiloxanes. Examples of hydrophilic ointment bases are solid macrogols (polyethylene glycols). Other examples of ointment bases are triethanolamine soaps, sulphated fatty alcohol and polysorbates.

Examples of other excipients are polymers such as carmelose, sodium carmelose, hydroxypropylmethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, pectin, xanthan gum, locust bean gum, acacia gum, gelatin, carbomer, emulsifiers like vitamin E, glyceryl stearates, cetanyl glucoside, collagen, carrageenan, hyaluronates and alginates and chitosans.

The dose of antibody required in humans to be effective in the treatment or prevention of allergic inflammation differs with the type and severity of the allergic condition to be treated, the type of allergen, the age and condition of the patient, etc. Typical doses of antibody to be administered are in the range of 1 μg to 1 g, preferably 1-1000 more preferably 2-500, even more preferably 5-50, most preferably 10-20 μg per unit dosage form. In certain embodiments, infusion of antibodies of the present invention may range from 10-500 mg/m2.

The one or more therapeutic molecules may be expressed from one or more polynucleotide sequences on one or more vectors (e.g., CGRP, genetic modifying agent). The invention comprehends such polynucleotide molecule(s), for instance such polynucleotide molecules operably configured to express the protein and/or the nucleic acid component(s), as well as such vector(s). Regulatory elements may comprise inducible promotors. Polynucleotides and/or vector systems may comprise inducible systems. For example, the expression of the polynucleotides may be regulated by a tetracycline/doxycycline controlled inducible promoter. In certain embodiments, the vectors are tissue specific. The vector may include a tissue specific regulatory element or be a tissue specific vector (e.g., viral vector).

In general, and throughout this specification, the term “vector” refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. Vectors include, but are not limited to, nucleic acid molecules that are single-stranded, double-stranded, or partially double-stranded; nucleic acid molecules that comprise one or more free ends, no free ends (e.g., circular); nucleic acid molecules that comprise DNA, RNA, or both; and other varieties of polynucleotides known in the art. One type of vector is a “plasmid,” which refers to a circular double stranded DNA loop into which additional DNA segments can be inserted, such as by standard molecular cloning techniques. Another type of vector is a viral vector, wherein virally-derived DNA or RNA sequences are present in the vector for packaging into a virus (e.g., retroviruses, replication defective retroviruses, adenoviruses, replication defective adenoviruses, and adeno-associated viruses). Viral vectors also include polynucleotides carried by a virus for transfection into a host cell. Certain vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian vectors). Other vectors (e.g., non-episomal mammalian vectors) are integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome. Moreover, certain vectors are capable of directing the expression of genes to which they are operatively-linked. Such vectors are referred to herein as “expression vectors.” Vectors for and that result in expression in a eukaryotic cell can be referred to herein as “eukaryotic expression vectors.” Common expression vectors of utility in recombinant DNA techniques are often in the form of plasmids. The vectors used herein may include viral vectors or plasmids. In preferred embodiments, viral vectors are used. In more preferred embodiments, lentiviral vectors are used.

In certain embodiments, the vectors used can include a detectable or selectable marker used to select for cells that were transfected or transduced. Selection can use FACS or any cell sorting method. Cells can be selected for by use of a drug resistance marker. In certain embodiments, the detectable marker is a fluorescent protein such as green fluorescent protein (GFP), enhanced green fluorescent protein (EGFP), red fluorescent protein (RFP), blue fluorescent protein (BFP), cyan fluorescent protein (CFP), yellow fluorescent protein (YFP), miRFP (e.g., miRFP670, see, e.g., Shcherbakova, et al., Nat Commun. 2016; 7: 12405), mCherry, tdTomato, DsRed-Monomer, DsRed-Express, DSRed-Express2, DsRed2, AsRed2, mStrawberry, mPlum, mRaspberry, HcRedl, E2-Crimson, mOrange, mOrange2, mBanana, ZsYellowl, TagBFP, mTagBFP2, Azurite, EBFP2, mKalamal, Sirius, Sapphire, T-Sapphire, ECFP, Cerulean, SCFP3A, mTurquoise, mTurquoise2, monomelic Midoriishi-Cyan, TagCFP, niTFPl, Emerald, Superfolder GFP, Monomeric Azami Green, TagGFP2, mUKG, mWasabi, Clover, mNeonGreen, Citrine, Venus, SYFP2, TagYFP, Monomeric Kusabira-Orange, mKOk, mK02, mTangerine, mApple, mRuby, mRuby2, HcRed-Tandem, mKate2, mNeptune, NiFP, mkeima Red, LSS-mKatel, LSS-mKate2, mBeRFP, PA-GFP, PAmCherryl, PATagRFP, TagRFP6457, IFP1.2, iRFP, Kaede (green), Kaede (red), KikGRl (green), KikGRl (red), PS-CFP2, mEos2 (green), mEos2 (red), mEos3.2 (green), mEos3.2 (red), PSmOrange, Dronpa, Dendra2, Timer, AmCyanl, or a combination thereof. In certain embodiments, the detectable marker is a cell surface marker. In other instances, the cell surface marker is a marker not normally expressed on the cells, such as a truncated nerve growth factor receptor (tNGFR), a truncated epidermal growth factor receptor (tEGFR), CD8, truncated CD8, CD19, truncated CD19, a variant thereof, a fragment thereof, a derivative thereof, or a combination thereof. Selectable markers are known in the art and enable selecting for cells having the barcode integrated. Examples of selectable markers include, but are not limited to, antibiotic resistance genes, such as beta-lactamase, neo, FabI, URA3, cam, tet, blasticidin, hyg, puromycin and the like. A selectable marker useful in accordance with the invention may be any selectable marker appropriate for use in a eukaryotic cell, such as a mammalian cell, or more specifically a human cell. One of skill in the art will understand and be able to identify and use selectable markers in accordance with the invention.

The invention also provides a delivery system comprising one or more vectors or one or more polynucleotide molecules, the one or more vectors or polynucleotide molecules comprising one or more polynucleotide molecules encoding components of a non-naturally occurring or engineered composition which is a composition having the characteristics as discussed herein or defined in any of the herein described methods.

The invention also provides a non-naturally occurring or engineered composition, or one or more polynucleotides encoding components of said composition, or delivery systems comprising one or more polynucleotides encoding components of said composition for use in a therapeutic method of treatment. The therapeutic method of treatment may comprise gene or genome editing, or gene therapy.

Delivery vehicles, vectors, particles, nanoparticles, formulations and components thereof for expression of one or more elements of a nucleic acid-targeting system are as used in the foregoing documents, such as WO 2014/093622 (PCT/US2013/074667). In some embodiments, a vector comprises one or more insertion sites, such as a restriction endonuclease recognition sequence (also referred to as a “cloning site”). In some embodiments, one or more insertion sites (e.g., about or more than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more insertion sites) are located upstream and/or downstream of one or more sequence elements of one or more vectors.

The invention also provides an expression vector comprising any of the above-described polynucleotide molecules. The invention also provides such polynucleotide molecule(s), for instance such polynucleotide molecules operably configured to express the protein and/or the nucleic acid component(s), as well as such vector(s).

In practicing any of the methods disclosed herein, a suitable vector can be introduced to a cell or an embryo via one or more methods known in the art, including without limitation, microinjection, electroporation, sonoporation, biolistics, calcium phosphate-mediated transfection, cationic transfection, liposome transfection, dendrimer transfection, heat shock transfection, nucleofection transfection, magnetofection, lipofection, impalefection, optical transfection, proprietary agent-enhanced uptake of nucleic acids, and delivery via liposomes, immunoliposomes, virosomes, or artificial virions. In some methods, the vector is introduced into an embryo by microinjection. The vector or vectors may be microinjected into the nucleus or the cytoplasm of the embryo. In some methods, the vector or vectors may be introduced into a cell by nucleofection.

There are a variety of techniques available for introducing nucleic acids into viable cells. The techniques vary depending upon whether the nucleic acid is transferred into cultured cells in vitro, or in vivo in the cells of the intended host. Techniques suitable for the transfer of nucleic acid into mammalian cells in vitro include the use of liposomes, electroporation, microinjection, cell fusion, DEAE-dextran, the calcium phosphate precipitation method, etc. The currently preferred in vivo gene transfer techniques include transfection with viral (typically retroviral) vectors and viral coat protein-liposome mediated transfection.

In another aspect, provided is a pharmaceutical pack or kit, comprising one or more containers filled with one or more of the ingredients of the pharmaceutical compositions and CGRP receptor agonists or antagonists (e.g., CGRP).

Diagnostic and Screening Methods

The invention provides biomarkers (e.g., phenotype specific or cell type) for the identification, diagnosis, prognosis and manipulation of cell properties, for use in a variety of diagnostic and/or therapeutic indications. Biomarkers in the context of the present invention encompasses, without limitation nucleic acids, proteins, reaction products, and metabolites, together with their polymorphisms, mutations, variants, modifications, subunits, fragments, and other analytes or sample-derived measures. In certain embodiments, biomarkers include the signature genes or signature gene products, and/or cells as described herein.

Biomarkers are useful in methods of diagnosing, prognosing and/or staging an immune response in a subject by detecting a first level of expression, activity and/or function of one or more biomarker and comparing the detected level to a control of level wherein a difference in the detected level and the control level indicates that the presence of an immune response in the subject.

The terms “diagnosis” and “monitoring” are commonplace and well-understood in medical practice. By means of further explanation and without limitation the term “diagnosis” generally refers to the process or act of recognising, deciding on or concluding on a disease or condition in a subject on the basis of symptoms and signs and/or from results of various diagnostic procedures (such as, for example, from knowing the presence, absence and/or quantity of one or more biomarkers characteristic of the diagnosed disease or condition).

The terms “prognosing” or “prognosis” generally refer to an anticipation on the progression of a disease or condition and the prospect (e.g., the probability, duration, and/or extent) of recovery. A good prognosis of the diseases or conditions taught herein may generally encompass anticipation of a satisfactory partial or complete recovery from the diseases or conditions, preferably within an acceptable time period. A good prognosis of such may more commonly encompass anticipation of not further worsening or aggravating of such, preferably within a given time period. A poor prognosis of the diseases or conditions as taught herein may generally encompass anticipation of a substandard recovery and/or unsatisfactorily slow recovery, or to substantially no recovery or even further worsening of such.

The biomarkers of the present invention are useful in methods of identifying patient populations at risk or suffering from an immune response based on a detected level of expression, activity and/or function of one or more biomarkers. These biomarkers are also useful in monitoring subjects undergoing treatments and therapies for suitable or aberrant response(s) to determine efficaciousness of the treatment or therapy and for selecting or modifying therapies and treatments that would be efficacious in treating, delaying the progression of or otherwise ameliorating a symptom. The biomarkers provided herein are useful for selecting a group of patients at a specific state of a disease with accuracy that facilitates selection of treatments.

The term “monitoring” generally refers to the follow-up of a disease or a condition in a subject for any changes which may occur over time.

The terms also encompass prediction of a disease. The terms “predicting” or “prediction” generally refer to an advance declaration, indication or foretelling of a disease or condition in a subject not (yet) having said disease or condition. For example, a prediction of a disease or condition in a subject may indicate a probability, chance or risk that the subject will develop said disease or condition, for example within a certain time period or by a certain age. Said probability, chance or risk may be indicated inter alia as an absolute value, range or statistics, or may be indicated relative to a suitable control subject or subject population (such as, e.g., relative to a general, normal or healthy subject or subject population). Hence, the probability, chance or risk that a subject will develop a disease or condition may be advantageously indicated as increased or decreased, or as fold-increased or fold-decreased relative to a suitable control subject or subject population. As used herein, the term “prediction” of the conditions or diseases as taught herein in a subject may also particularly mean that the subject has a ‘positive’ prediction of such, i.e., that the subject is at risk of having such (e.g., the risk is significantly increased vis-á-vis a control subject or subject population). The term “prediction of no” diseases or conditions as taught herein as described herein in a subject may particularly mean that the subject has a ‘negative’ prediction of such, i.e., that the subject's risk of having such is not significantly increased vis-á-vis a control subject or subject population.

Suitably, an altered quantity or phenotype of the immune cells in the subject compared to a control subject having normal immune status or not having a disease comprising an immune component indicates that the subject has an impaired immune status or has a disease comprising an immune component or would benefit from an immune therapy.

Hence, the methods may rely on comparing the quantity of immune cell populations, biomarkers, or gene or gene product signatures measured in samples from patients with reference values, wherein said reference values represent known predictions, diagnoses and/or prognoses of diseases or conditions as taught herein.

For example, distinct reference values may represent the prediction of a risk (e.g., an abnormally elevated risk) of having a given disease or condition as taught herein vs. the prediction of no or normal risk of having said disease or condition. In another example, distinct reference values may represent predictions of differing degrees of risk of having such disease or condition.

In a further example, distinct reference values can represent the diagnosis of a given disease or condition as taught herein vs. the diagnosis of no such disease or condition (such as, e.g., the diagnosis of healthy, or recovered from said disease or condition, etc.). In another example, distinct reference values may represent the diagnosis of such disease or condition of varying severity.

In yet another example, distinct reference values may represent a good prognosis for a given disease or condition as taught herein vs. a poor prognosis for said disease or condition. In a further example, distinct reference values may represent varyingly favourable or unfavourable prognoses for such disease or condition.

Such comparison may generally include any means to determine the presence or absence of at least one difference and optionally of the size of such difference between values being compared. A comparison may include a visual inspection, an arithmetical or statistical comparison of measurements. Such statistical comparisons include, but are not limited to, applying a rule.

Reference values may be established according to known procedures previously employed for other cell populations, biomarkers and gene or gene product signatures. For example, a reference value may be established in an individual or a population of individuals characterised by a particular diagnosis, prediction and/or prognosis of said disease or condition (i.e., for whom said diagnosis, prediction and/or prognosis of the disease or condition holds true). Such population may comprise without limitation 2 or more, 10 or more, 100 or more, or even several hundred or more individuals.

A “deviation” of a first value from a second value may generally encompass any direction (e.g., increase: first value>second value; or decrease: first value<second value) and any extent of alteration.

For example, a deviation may encompass a decrease in a first value by, without limitation, at least about 10% (about 0.9-fold or less), or by at least about 20% (about 0.8-fold or less), or by at least about 30% (about 0.7-fold or less), or by at least about 40% (about 0.6-fold or less), or by at least about 50% (about 0.5-fold or less), or by at least about 60% (about 0.4-fold or less), or by at least about 70% (about 0.3-fold or less), or by at least about 80% (about 0.2-fold or less), or by at least about 90% (about 0.1-fold or less), relative to a second value with which a comparison is being made.

For example, a deviation may encompass an increase of a first value by, without limitation, at least about 10% (about 1.1-fold or more), or by at least about 20% (about 1.2-fold or more), or by at least about 30% (about 1.3-fold or more), or by at least about 40% (about 1.4-fold or more), or by at least about 50% (about 1.5-fold or more), or by at least about 60% (about 1.6-fold or more), or by at least about 70% (about 1.7-fold or more), or by at least about 80% (about 1.8-fold or more), or by at least about 90% (about 1.9-fold or more), or by at least about 100% (about 2-fold or more), or by at least about 150% (about 2.5-fold or more), or by at least about 200% (about 3-fold or more), or by at least about 500% (about 6-fold or more), or by at least about 700% (about 8-fold or more), or like, relative to a second value with which a comparison is being made.

Preferably, a deviation may refer to a statistically significant observed alteration. For example, a deviation may refer to an observed alteration which falls outside of error margins of reference values in a given population (as expressed, for example, by standard deviation or standard error, or by a predetermined multiple thereof, e.g., ±1×SD or ±2×SD or ±3×SD, or ±1×SE or ±2×SE or ±3×SE). Deviation may also refer to a value falling outside of a reference range defined by values in a given population (for example, outside of a range which comprises ≥40%, ≥50%, ≥60%, ≥70%, ≥75% or ≥80% or ≥85% or ≥90% or ≥95% or even ≥100% of values in said population).

In a further embodiment, a deviation may be concluded if an observed alteration is beyond a given threshold or cut-off. Such threshold or cut-off may be selected as generally known in the art to provide for a chosen sensitivity and/or specificity of the prediction methods, e.g., sensitivity and/or specificity of at least 50%, or at least 60%, or at least 70%, or at least 80%, or at least 85%, or at least 90%, or at least 95%.

For example, receiver-operating characteristic (ROC) curve analysis can be used to select an optimal cut-off value of the quantity of a given immune cell population, biomarker or gene or gene product signatures, for clinical use of the present diagnostic tests, based on acceptable sensitivity and specificity, or related performance measures which are well-known per se, such as positive predictive value (PPV), negative predictive value (NPV), positive likelihood ratio (LR+), negative likelihood ratio (LR-), Youden index, or similar.

In one embodiment, the signature genes, biomarkers, and/or cells may be detected or isolated by immunofluorescence, immunohistochemistry (IHC), fluorescence activated cell sorting (FACS), mass spectrometry (MS), mass cytometry (CyTOF), RNA-seq, single cell RNA-seq (described further herein), quantitative RT-PCR, single cell qPCR, FISH, RNA-FISH, MERFISH (multiplex (in situ) RNA FISH) and/or by in situ hybridization. Other methods including absorbance assays and colorimetric assays are known in the art and may be used herein. detection may comprise primers and/or probes or fluorescently bar-coded oligonucleotide probes for hybridization to RNA (see e.g., Geiss G K, et al., Direct multiplexed measurement of gene expression with color-coded probe pairs. Nat Biotechnol. 2008 March; 26(3):317-25).

In certain embodiments, diseases related to ILC2 responses as described further herein are diagnosed, prognosed, or monitored. For example, a tissue sample may be obtained and analyzed for specific cell markers (IHC) or specific transcripts (e.g., RNA-FISH). Tissue samples for diagnosis, prognosis or detecting may be obtained by endoscopy. In one embodiment, a sample may be obtained by endoscopy and analyzed b FACS. As used herein, “endoscopy” refers to a procedure that uses an endoscope to examine the interior of a hollow organ or cavity of the body. The endoscope may include a camera and a light source. The endoscope may include tools for dissection or for obtaining a biological sample. A cutting tool can be attached to the end of the endoscope, and the apparatus can then be used to perform surgery. Applications of endoscopy that can be used with the present invention include, but are not limited to examination of the oesophagus, stomach and duodenum (esophagogastroduodenoscopy); small intestine (enteroscopy); large intestine/colon (colonoscopy, sigmoidoscopy); bile duct; rectum (rectoscopy) and anus (anoscopy), both also referred to as (proctoscopy); respiratory tract; nose (rhinoscopy); lower respiratory tract (bronchoscopy); ear (otoscope); urinary tract (cystoscopy); female reproductive system (gynoscopy); cervix (colposcopy); uterus (hysteroscopy); fallopian tubes (falloposcopy); normally closed body cavities (through a small incision); abdominal or pelvic cavity (laparoscopy); interior of a joint (arthroscopy); or organs of the chest (thoracoscopy and mediastinoscopy).

In certain embodiments, the method provides for treating a patient with CGRP, wherein the patient is suffering from a disease related to ILC2 inflammatory responses (e.g., allergy), the method comprising the steps of determining whether the patient expresses a gene signature, biological program or marker gene as described herein; obtaining or having obtained a biological sample from the patient; and performing or having performed an assay as described herein on the biological sample to determine if the patient expresses the gene signature, biological program or marker gene; and if the patient has an ILC2 inflammatory gene signature, biological program or marker gene, then administering CGRP to the patient in an amount sufficient to shift the phenotype to a homeostatic phenotype, and if the patient does not have an ILC2 inflammatory gene signature, biological program or marker gene, then not administering CGRP to the patient, wherein a risk of having inflammatory symptoms is increased if the patient has an ILC2 inflammatory gene signature, biological program or marker gene.

The present invention also may comprise a kit with a detection reagent that binds to one or more biomarkers or can be used to detect one or more biomarkers.

Methods of Quantitating a Type 2 Immune Response

In certain embodiments, a method of quantitating a type 2 immune response comprises determining the ILC2 frequency, wherein increased frequency of ILC2s as compared to a control frequency is associated with an increased type 2 immune response. As used herein, “frequency” refers to the rate of cells in a given sample. For example, frequency=the number of a cell type divided by the total number of all cell types in a sample. In certain embodiments, flow cytometry techniques are used to determine the frequency (e.g., FACS). The frequency may be in relation to all cells, all immune cells or all ILC cells in a population of cells obtained from a subject. In certain embodiments, the method further comprises determining the frequency of one or more cells selected from the group consisting of: mast cells, macrophages, neutrophils, and CD11b+CD103+ dendritic cells, wherein increased frequency of mast cells, macrophages and/or neutrophils, and/or decreased frequency of CD11b+CD103+ dendritic cells as compared to a control frequency is associated with an increased type 2 immune response. The frequency may be in relation to all cells, all immune cells or all ILC cells in a population of cells obtained from a subject. In certain embodiments, the method is a diagnostic method for determining an immune response in a subject in need thereof. In certain embodiments, a subject is monitored during treatment of an aberrant immune response.

In certain embodiments, a method of quantitating a type 2 immune response comprises determining the expression of one or more genes selected from Table 3 or determining the frequency of the cell types expressing the one or more genes selected from Table 3, wherein changes in expression or frequency according to Table 3 is associated with an increased type 2 immune response.

In certain embodiments, the method comprises determining expression of one or more genes selected from Srgn, Hes1, Sla, Ppp1r15a, Furin, Actg1, Il13, Hspa8, Lilr4b, 4930523C07Rik and Dnaja1 in LP cluster 12.

In certain embodiments, the method comprises determining expression of one or more genes selected from Sla, Jund, Klf4 and Dusp1 in LP cluster 15.

In certain embodiments, the method comprises determining expression of one or more genes selected from Txnip, Mcpt1, Igkv1-135, Mcpt2, Ighg1, Igkv12-44, Ifi2712a, Ubald2, Cacna1s, Sepp1, Pdia6, Rilpl2, Iglc2, Dusp5, Fosb, Serp1, Grasp, Ccr10, Ddit4, Malat1, Pim1, Hsp90b1, Trf, Ifi27, Odd and Xbp1 in LP cluster 20.

In certain embodiments, the method comprises determining expression of one or more genes selected from Btg2, Junb, Ubb, Dusp1, Bcl2, Pnrc1, Pim1, Jund, Actg1, Btg1 and Irf7 in LP cluster 3.

In certain embodiments, the method comprises determining expression of one or more genes selected from Jun, Zfp3612, Fos, Neat1 and Irf7 in LP cluster 6.

In certain embodiments, the method comprises determining expression of one or more genes selected from Tsc22d3, Wdr89, Txnip, Uba52, Ddit4, Bcl2, Cd74 and Jund in PP cluster 1.

In certain embodiments, the method comprises determining expression of one or more genes selected from Zfp3612, Tsc22d3 in PP cluster 2.

In certain embodiments, the method comprises determining expression of one or more genes selected from Jund, Id2, Pim1, Nfkbia, Klf4, Tgif1, Hk2, Junb, Gimap1 and Dusp5 in PP cluster 3.

In certain embodiments, the method comprises determining expression of one or more genes selected from Jund, Klf4, Junb, Lmna, Ncoa7, Dusp1 and Pim1 in PP cluster 4.

In certain embodiments, the method comprises determining expression of one or more genes selected from Tsc22d3 in PP cluster 5.

In certain embodiments, the method comprises determining expression of one or more genes selected from Mcpt1 and Defa24 in PP cluster 6.

In certain embodiments, the method comprises determining expression of one or more genes selected from Jund in PP cluster 8.

In certain embodiments, the method comprises determining expression of one or more genes selected from Igha in PP cluster 9.

MS Methods

Biomarker detection may also be evaluated using mass spectrometry methods. A variety of configurations of mass spectrometers can be used to detect biomarker values. Several types of mass spectrometers are available or can be produced with various configurations. In general, a mass spectrometer has the following major components: a sample inlet, an ion source, a mass analyzer, a detector, a vacuum system, and instrument-control system, and a data system. Difference in the sample inlet, ion source, and mass analyzer generally define the type of instrument and its capabilities. For example, an inlet can be a capillary-column liquid chromatography source or can be a direct probe or stage such as used in matrix-assisted laser desorption. Common ion sources are, for example, electrospray, including nanospray and microspray or matrix-assisted laser desorption. Common mass analyzers include a quadrupole mass filter, ion trap mass analyzer and time-of-flight mass analyzer. Additional mass spectrometry methods are well known in the art (see Burlingame et al., Anal. Chem. 70:647 R-716R (1998); Kinter and Sherman, New York (2000)).

Protein biomarkers and biomarker values can be detected and measured by any of the following: electrospray ionization mass spectrometry (ESI-MS), ESI-MS/MS, ESI-MS/(MS)n, matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS), surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF-MS), desorption/ionization on silicon (DIOS), secondary ion mass spectrometry (SIMS), quadrupole time-of-flight (Q-TOF), tandem time-of-flight (TOF/TOF) technology, called ultraflex III

TOF/TOF, atmospheric pressure chemical ionization mass spectrometry (APCI-MS), APCI-MS/MS, APCI-(MS).sup.N, atmospheric pressure photoionization mass spectrometry (APPI-MS), APPI-MS/MS, and APPI-(MS).sup.N, quadrupole mass spectrometry, Fourier transform mass spectrometry (FTMS), quantitative mass spectrometry, and ion trap mass spectrometry.

Sample preparation strategies are used to label and enrich samples before mass spectroscopic characterization of protein biomarkers and determination biomarker values. Labeling methods include but are not limited to isobaric tag for relative and absolute quantitation (iTRAQ) and stable isotope labeling with amino acids in cell culture (SILAC). Capture reagents used to selectively enrich samples for candidate biomarker proteins prior to mass spectroscopic analysis include but are not limited to aptamers, antibodies, nucleic acid probes, chimeras, small molecules, an F(ab′)2 fragment, a single chain antibody fragment, an Fv fragment, a single chain Fv fragment, a nucleic acid, a lectin, a ligand-binding receptor, affybodies, nanobodies, ankyrins, domain antibodies, alternative antibody scaffolds (e.g. diabodies etc) imprinted polymers, avimers, peptidomimetics, peptoids, peptide nucleic acids, threose nucleic acid, a hormone receptor, a cytokine receptor, and synthetic receptors, and modifications and fragments of these.

Immunoassays

Immunoassay methods are based on the reaction of an antibody to its corresponding target or analyte and can detect the analyte in a sample depending on the specific assay format. To improve specificity and sensitivity of an assay method based on immunoreactivity, monoclonal antibodies are often used because of their specific epitope recognition. Polyclonal antibodies have also been successfully used in various immunoassays because of their increased affinity for the target as compared to monoclonal antibodies Immunoassays have been designed for use with a wide range of biological sample matrices Immunoassay formats have been designed to provide qualitative, semi-quantitative, and quantitative results.

Quantitative results may be generated through the use of a standard curve created with known concentrations of the specific analyte to be detected. The response or signal from an unknown sample is plotted onto the standard curve, and a quantity or value corresponding to the target in the unknown sample is established.

Numerous immunoassay formats have been designed. ELISA or EIA can be quantitative for the detection of an analyte/biomarker. This method relies on attachment of a label to either the analyte or the antibody and the label component includes, either directly or indirectly, an enzyme. ELISA tests may be formatted for direct, indirect, competitive, or sandwich detection of the analyte. Other methods rely on labels such as, for example, radioisotopes (I125) or fluorescence. Additional techniques include, for example, agglutination, nephelometry, turbidimetry, Western blot, immunoprecipitation, immunocytochemistry, immunohistochemistry, flow cytometry, Luminex assay, and others (see ImmunoAssay: A Practical Guide, edited by Brian Law, published by Taylor & Francis, Ltd., 2005 edition).

Exemplary assay formats include enzyme-linked immunosorbent assay (ELISA), radioimmunoassay, fluorescent, chemiluminescence, and fluorescence resonance energy transfer (FRET) or time resolved-FRET (TR-FRET) immunoassays. Examples of procedures for detecting biomarkers include biomarker immunoprecipitation followed by quantitative methods that allow size and peptide level discrimination, such as gel electrophoresis, capillary electrophoresis, planar electrochromatography, and the like.

Methods of detecting and/or quantifying a detectable label or signal generating material depend on the nature of the label. The products of reactions catalyzed by appropriate enzymes (where the detectable label is an enzyme; see above) can be, without limitation, fluorescent, luminescent, or radioactive or they may absorb visible or ultraviolet light. Examples of detectors suitable for detecting such detectable labels include, without limitation, x-ray film, radioactivity counters, scintillation counters, spectrophotometers, colorimeters, fluorometers, luminometers, and densitometers.

Any of the methods for detection can be performed in any format that allows for any suitable preparation, processing, and analysis of the reactions. This can be, for example, in multi-well assay plates (e.g., 96 wells or 384 wells) or using any suitable array or microarray. Stock solutions for various agents can be made manually or robotically, and all subsequent pipetting, diluting, mixing, distribution, washing, incubating, sample readout, data collection and analysis can be done robotically using commercially available analysis software, robotics, and detection instrumentation capable of detecting a detectable label.

Hybridization Assays

Such applications are hybridization assays in which a nucleic acid that displays “probe” nucleic acids for each of the genes to be assayed/profiled in the profile to be generated is employed.

In these assays, a sample of target nucleic acids is first prepared from the initial nucleic acid sample being assayed, where preparation may include labeling of the target nucleic acids with a label, e.g., a member of a signal producing system. Following target nucleic acid sample preparation, the sample is contacted with the array under hybridization conditions, whereby complexes are formed between target nucleic acids that are complementary to probe sequences attached to the array surface. The presence of hybridized complexes is then detected, either qualitatively or quantitatively. Specific hybridization technology which may be practiced to generate the expression profiles employed in the subject methods includes the technology described in U.S. Pat. Nos. 5,143,854; 5,288,644; 5,324,633; 5,432,049; 5,470,710; 5,492,806; 5,503,980; 5,510,270; 5,525,464; 5,547,839; 5,580,732; 5,661,028; 5,800,992, the disclosures of which are herein incorporated by reference, as well as International Patent Publication Nos. WO 95/21265, WO 96/31622, WO 97/10365, and WO 97/27317; European Patent Application Nos. EP 373203; and EP 785280. In these methods, an array of “probe” nucleic acids that includes a probe for each of the biomarkers whose expression is being assayed is contacted with target nucleic acids as described above. Contact is carried out under hybridization conditions, e.g., stringent hybridization conditions as described above, and unbound nucleic acid is then removed. The resultant pattern of hybridized nucleic acids provides information regarding expression for each of the biomarkers that have been probed, where the expression information is in terms of whether or not the gene is expressed and, typically, at what level, where the expression data, i.e., expression profile, may be both qualitative and quantitative.

Optimal hybridization conditions will depend on the length (e.g., oligomer vs. polynucleotide greater than 200 bases) and type (e.g., RNA, DNA, PNA) of labeled probe and immobilized polynucleotide or oligonucleotide. General parameters for specific (i.e., stringent) hybridization conditions for nucleic acids are described in Sambrook et al., supra, and in Ausubel et al., “Current Protocols in Molecular Biology”, Greene Publishing and Wiley-interscience, NY (1987), which is incorporated in its entirety for all purposes. When the cDNA microarrays are used, typical hybridization conditions are hybridization in 5×SSC plus 0.2% SDS at 65 C for 4 hours followed by washes at 25° C. in low stringency wash buffer (1×SSC plus 0.2% SDS) followed by 10 minutes at 25° C. in high stringency wash buffer (0.1SSC plus 0.2% SDS) (see Shena et al., Proc. Natl. Acad. Sci. USA, Vol. 93, p. 10614 (1996)). Useful hybridization conditions are also provided in, e.g., Tijessen, Hybridization With Nucleic Acid Probes”, Elsevier Science Publishers B.V. (1993) and Kricka, “Nonisotopic DNA Probe Techniques”, Academic Press, San Diego, Calif. (1992).

Sequencing and Single Cell Sequencing

In certain embodiments, the invention involves targeted nucleic acid profiling (e.g., sequencing, quantitative reverse transcription polymerase chain reaction, and the like) (see e.g., Geiss G K, et al., Direct multiplexed measurement of gene expression with color-coded probe pairs. Nat Biotechnol. 2008 March; 26(3):317-25). In certain embodiments, a target nucleic acid molecule (e.g., RNA molecule), may be sequenced by any method known in the art, for example, methods of high-throughput sequencing, also known as next generation sequencing or deep sequencing. A nucleic acid target molecule labeled with a barcode (for example, an origin-specific barcode) can be sequenced with the barcode to produce a single read and/or contig containing the sequence, or portions thereof, of both the target molecule and the barcode. Exemplary next generation sequencing technologies include, for example, Illumina sequencing, Ion Torrent sequencing, 454 sequencing, SOLiD sequencing, and nanopore sequencing amongst others.

In certain embodiments, the invention involves single cell RNA sequencing (see, e.g., Kalisky, T., Blainey, P. & Quake, S. R. Genomic Analysis at the Single-Cell Level. Annual review of genetics 45, 431-445, (2011); Kalisky, T. & Quake, S. R. Single-cell genomics. Nature Methods 8, 311-314 (2011); Islam, S. et al. Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. Genome Research, (2011); Tang, F. et al. RNA-Seq analysis to capture the transcriptome landscape of a single cell. Nature Protocols 5, 516-535, (2010); Tang, F. et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nature Methods 6, 377-382, (2009); Ramskold, D. et al. Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nature Biotechnology 30, 777-782, (2012); and Hashimshony, T., Wagner, F., Sher, N. & Yanai, I. CEL-Seq: Single-Cell RNA-Seq by Multiplexed Linear Amplification. Cell Reports, Cell Reports, Volume 2, Issue 3, p 666-673, 2012).

In certain embodiments, the invention involves plate based single cell RNA sequencing (see, e.g., Picelli, S. et al., 2014, “Full-length RNA-seq from single cells using Smart-seq2” Nature protocols 9, 171-181, doi:10.1038/nprot.2014.006).

In certain embodiments, the invention involves high-throughput single-cell RNA-seq. In this regard reference is made to Macosko et al., 2015, “Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets” Cell 161, 1202-1214; International patent application number PCT/US2015/049178, published as WO2016/040476 on Mar. 17, 2016; Klein et al., 2015, “Droplet Barcoding for Single-Cell Transcriptomics Applied to Embryonic Stem Cells” Cell 161, 1187-1201; International patent application number PCT/US2016/027734, published as WO2016168584A1 on Oct. 20, 2016; Zheng, et al., 2016, “Haplotyping germline and cancer genomes with high-throughput linked-read sequencing” Nature Biotechnology 34, 303-311; Zheng, et al., 2017, “Massively parallel digital transcriptional profiling of single cells” Nat. Commun. 8, 14049 doi: 10.1038/ncomms14049; International patent publication number WO2014210353A2; Zilionis, et al., 2017, “Single-cell barcoding and sequencing using droplet microfluidics” Nat Protoc. January; 12(1):44-73; Cao et al., 2017, “Comprehensive single cell transcriptional profiling of a multicellular organism by combinatorial indexing” bioRxiv preprint first posted online Feb. 2, 2017, doi: dx.doi.org/10.1101/104844; Rosenberg et al., 2017, “Scaling single cell transcriptomics through split pool barcoding” bioRxiv preprint first posted online Feb. 2, 2017, doi: dx.doi.org/10.1101/105163; Rosenberg et al., “Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding” Science 15 Mar. 2018; Vitak, et al., “Sequencing thousands of single-cell genomes with combinatorial indexing” Nature Methods, 14(3):302-308, 2017; Cao, et al., Comprehensive single-cell transcriptional profiling of a multicellular organism. Science, 357(6352):661-667, 2017; and Gierahn et al., “Seq-Well: portable, low-cost RNA sequencing of single cells at high throughput” Nature Methods 14, 395-398 (2017), all the contents and disclosure of each of which are herein incorporated by reference in their entirety.

In certain embodiments, the invention involves single nucleus RNA sequencing. In this regard reference is made to Swiech et al., 2014, “In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9” Nature Biotechnology Vol. 33, pp. 102-106; Habib et al., 2016, “Div-Seq: Single-nucleus RNA-Seq reveals dynamics of rare adult newborn neurons” Science, Vol. 353, Issue 6302, pp. 925-928; Habib et al., 2017, “Massively parallel single-nucleus RNA-seq with DroNc-seq” Nat Methods. 2017 October; 14(10):955-958; and International patent application number PCT/US2016/059239, published as WO2017164936 on Sep. 28, 2017, which are herein incorporated by reference in their entirety.

In certain embodiments, the invention involves the Assay for Transposase Accessible Chromatin using sequencing (ATAC-seq) as described. (see, e.g., Buenrostro, et al., Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nature methods 2013; 10 (12): 1213-1218; Buenrostro et al., Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523, 486-490 (2015); Cusanovich, D. A., Daza, R., Adey, A., Pliner, H., Christiansen, L., Gunderson, K. L., Steemers, F. J., Trapnell, C. & Shendure, J. Multiplex single-cell profiling of chromatin accessibility by combinatorial cellular indexing. Science. 2015 May 22; 348(6237):910-4. doi: 10.1126/science.aab1601. Epub 2015 May 7; US Patent Publication Nos. US 2016-0208323 A1 and US 2016-0060691A1; and International Patent Publication No. WO 2017/156336A1).

Methods of Screening

A further aspect of the invention relates to a method for identifying an agent capable of modulating one or more phenotypic aspects of a cell or cell population as disclosed herein, comprising: a) applying a candidate agent to the cell or cell population; b) detecting modulation of one or more phenotypic aspects of the cell or cell population by the candidate agent, thereby identifying the agent. The phenotypic aspects of the cell or cell population that is modulated may be a gene signature or biological program specific to a cell type or cell phenotype or phenotype specific to a population of cells (e.g., an ILC2 immune response phenotype). In certain embodiments, steps can include administering candidate modulating agents to cells, detecting identified cell (sub)populations for changes in signatures, or identifying relative changes in cell (sub) populations which may comprise detecting relative abundance of particular gene signatures.

The term “modulate” broadly denotes a qualitative and/or quantitative alteration, change or variation in that which is being modulated. Where modulation can be assessed quantitatively—for example, where modulation comprises or consists of a change in a quantifiable variable such as a quantifiable property of a cell or where a quantifiable variable provides a suitable surrogate for the modulation—modulation specifically encompasses both increase (e.g., activation) or decrease (e.g., inhibition) in the measured variable. The term encompasses any extent of such modulation, e.g., any extent of such increase or decrease, and may more particularly refer to statistically significant increase or decrease in the measured variable. By means of example, modulation may encompass an increase in the value of the measured variable by at least about 10%, e.g., by at least about 20%, preferably by at least about 30%, e.g., by at least about 40%, more preferably by at least about 50%, e.g., by at least about 75%, even more preferably by at least about 100%, e.g., by at least about 150%, 200%, 250%, 300%, 400% or by at least about 500%, compared to a reference situation without said modulation; or modulation may encompass a decrease or reduction in the value of the measured variable by at least about 10%, e.g., by at least about 20%, by at least about 30%, e.g., by at least about 40%, by at least about 50%, e.g., by at least about 60%, by at least about 70%, e.g., by at least about 80%, by at least about 90%, e.g., by at least about 95%, such as by at least about 96%, 97%, 98%, 99% or even by 100%, compared to a reference situation without said modulation. Preferably, modulation may be specific or selective, hence, one or more desired phenotypic aspects of an immune cell or immune cell population may be modulated without substantially altering other (unintended, undesired) phenotypic aspect(s).

The term “agent” broadly encompasses any condition, substance or agent capable of modulating one or more phenotypic aspects of a cell or cell population as disclosed herein. Such conditions, substances or agents may be of physical, chemical, biochemical and/or biological nature. The term “candidate agent” refers to any condition, substance or agent that is being examined for the ability to modulate one or more phenotypic aspects of a cell or cell population as disclosed herein in a method comprising applying the candidate agent to the cell or cell population (e.g., exposing the cell or cell population to the candidate agent or contacting the cell or cell population with the candidate agent) and observing whether the desired modulation takes place.

Agents may include any potential class of biologically active conditions, substances or agents, such as for instance antibodies, proteins, peptides, nucleic acids, oligonucleotides, small molecules, or combinations thereof, as described herein.

The methods of phenotypic analysis can be utilized for evaluating environmental stress and/or state, for screening of chemical libraries, and to screen or identify structural, synthetic, genomic, and/or organism and species variations. For example, a culture of cells, can be exposed to an environmental stress, such as but not limited to heat shock, osmolarity, hypoxia, cold, oxidative stress, radiation, starvation, a chemical (for example a therapeutic agent or potential therapeutic agent) and the like. After the stress is applied, a representative sample can be subjected to analysis, for example at various time points, and compared to a control, such as a sample from an organism or cell, for example a cell from an organism, or a standard value. By exposing cells, or fractions thereof, tissues, or even whole animals, to different members of the chemical libraries, and performing the methods described herein, different members of a chemical library can be screened for their effect on immune phenotypes thereof simultaneously in a relatively short amount of time, for example using a high throughput method.

Aspects of the present disclosure relate to the correlation of an agent with the spatial proximity and/or epigenetic profile of the nucleic acids in a sample of cells. In some embodiments, the disclosed methods can be used to screen chemical libraries for agents that modulate chromatin architecture epigenetic profiles, and/or relationships thereof.

In some embodiments, screening of test agents involves testing a combinatorial library containing a large number of potential modulator compounds. A combinatorial chemical library may be a collection of diverse chemical compounds generated by either chemical synthesis or biological synthesis, by combining a number of chemical “building blocks” such as reagents. For example, a linear combinatorial chemical library, such as a polypeptide library, is formed by combining a set of chemical building blocks (amino acids) in every possible way for a given compound length (for example the number of amino acids in a polypeptide compound). Millions of chemical compounds can be synthesized through such combinatorial mixing of chemical building blocks.

In certain embodiments, the present invention provides for gene signature screening. The concept of signature screening was introduced by Stegmaier et al. (Gene expression-based high-throughput screening (GE-HTS) and application to leukemia differentiation. Nature Genet. 36, 257-263 (2004)), who realized that if a gene-expression signature was the proxy for a phenotype of interest, it could be used to find small molecules that effect that phenotype without knowledge of a validated drug target. The signatures or biological programs of the present invention may be used to screen for drugs that reduce the signature or biological program in cells as described herein. The signature or biological program may be used for GE-HTS. In certain embodiments, pharmacological screens may be used to identify drugs that are selectively toxic to cells having a signature.

The Connectivity Map (cmap) is a collection of genome-wide transcriptional expression data from cultured human cells treated with bioactive small molecules and simple pattern-matching algorithms that together enable the discovery of functional connections between drugs, genes and diseases through the transitory feature of common gene-expression changes (see, Lamb et al., The Connectivity Map: Using Gene-Expression Signatures to Connect Small Molecules, Genes, and Disease. Science 29 Sep. 2006: Vol. 313, Issue 5795, pp. 1929-1935, DOI: 10.1126/science.1132939; and Lamb, J., The Connectivity Map: a new tool for biomedical research. Nature Reviews Cancer January 2007: Vol. 7, pp. 54-60). In certain embodiments, Cmap can be used to screen for small molecules capable of modulating a signature or biological program of the present invention in silico.

The invention is further described in the following examples, which do not limit the scope of the invention described in the claims.

EXAMPLES Example 1—an Atlas of Mouse Small Intestinal Immune Cells at Homeostasis and in Type 2 Inflammation

To comprehensively characterize small intestinal immune cells, Applicants generated scRNA-Seq profiles for 58,067 immune cells collected from lamina propria (LP) and Peyer's patch (PP) regions at steady state and after induction of a type 2 inflammatory reaction to ovalbumin (OVA) (Brandt et al., 2003) (FIGS. 1A and 8A). To ensure sufficient representation of rare cells, Applicants combined a normalization strategy—removing by flow sorting either a portion of IgD+ naïve B cells, which are the most abundant cell type in PPs, or all CD19+ and CD3+ T cells (FIG. 8B, Methods)—with profiling of a sufficiently large number of cells number (P>0.99 to recover at least 15 cells from each cluster, Methods) by massively parallel scRNA-seq (Haber et al., 2017) (Methods). Applicants obtained 36,797 and 21,270 high quality cells passing initial filtering (Methods) from PP and LP regions, respectively.

Overall, Applicants annotated 27 cell subsets across the two compartments, spanning T cells, B cells, ILCs, dendritic cells (DCs), myeloid cells and stromal cells, in frequencies ranging from 0.07% to 14%. Briefly, Applicants first partitioned the cells from the PP regions by unsupervised clustering (Methods) into 46 clusters, retained the 97% of cells that were robustly assigned cell identities in each cluster (Methods), assigned the cells from the LP regions to the 46 clusters using a classifier (Methods), and visualized the data with scvis (Ding et al., 2018), a deep generative model-based method (FIGS. 1B and 8C, Methods). Next, Applicants identified genes that were differentially expressed between the cells in each cluster and the remaining cells (Table 1, Methods), as well as between pairs of clusters (Table 2), to elucidate identities of similar cell types/states. Applicants excluded from downstream analysis clusters mostly consisting of contaminants from epithelium, likely doublets, or cells with a small number of Unique Molecular Identifiers (UMIs) (FIGS. 1C and 8D), or lacking distinct markers (Methods). Altogether, Applicants retained 27 clusters spanning 85% of the cells and each associated with distinct marker genes (FIG. 8E, Methods).

Importantly, known distinct cell types with highly similar expression profiles were correctly distinguished by the analysis. For example, NKp46+ILC3s and CCR6+ lymphoid tissue inducer (LTi) cells were recovered as separate clusters, even though they both require RORγt controlled expression programs for their fate determination (Robinette et al., 2015). Nevertheless, LTi cells were distinguished by significantly higher expression levels of MHCII antigen presentation modules (FIG. 8F, adjusted P<0.05, likelihood ratio test), whose expression on ILCs has been shown to regulate intestinal homeostasis (Hepworth et al., 2013).

The atlas highlighted expected differences in cellular composition between the LP and PP regions (FIGS. 1D and 8G). For example, resting and IgDGL7+ germinal center (GC) B cells were exclusively found in PPs (FIG. 8G). Conversely, although CD138+ antibody producing plasma cells differentiate from GC B cells, they were predominantly found in LP samples (FIG. 8G) and confirmed in LP regions in situ (FIG. 8H), highlighting their potential requirement for antibody secretion adjacent to microbes and other antigens in the intestinal mucosa. In another example, LTi cells were significantly enriched (adjusted P=4.75*10−3, Wald test) in PP vs. LP regions (FIG. 1D), which Applicants confirmed by flow cytometry (FIG. 1E, P<0.001, Fisher's exact test). The LTi cell distribution is consistent with their critical function in supporting lymphoid tissue development. ILC1s and Natural Killer (NK) cells were also significantly enriched in PP regions (FIG. 1D, adjusted P=4.29*10−7 and P=1.19*10−17, respectively, Wald test), suggesting they have unique functions in PPs. Indeed, NK cells suppress affinity maturation of GC B cells (Rydyznski et al., 2018), which probably requires their localization in B cell follicles.

Example 2—Increase in ILC2 Proportions and Changes in their Expression Programs are Prominent Features of OVA-Induced Type 2 Inflammation

Cell composition was remodeled in type 2 inflammation (FIGS. 2A, B and 9A), highlighting both known and unique responses. Mast cell expansion, a well-established feature of allergic reactions (Brandt et al., 2003), was observed in OVA-treated mice (adjusted P=1.03*10−11, Wald test, FIG. 2B) and validated by flow cytometry (FIG. 2C, P=0.005, t-test). Applicants also observed a significant increase in ILC2 frequency in mice with type 2 immune reactions to OVA (FIG. 2B, P=1.22*10−2, Wald test), which Applicants validated by flow cytometry (FIG. 2D, P=0.009, t-test), highlighting their importance in this allergic inflammatory model (Burton et al., 2018). Macrophage and neutrophil frequencies also increased significantly in OVA-treated mice (P=3.87*10−3 and P=4.15*10−3, respectively, Wald test), reflecting immune cell infiltration. CD11b+CD103+ DCs, one of four different populations of DCs in the intestine (Mowat and Agace, 2014), were the most significantly reduced by OVA-induced inflammation (P=6.04*10−8, Wald test), suggesting that they were likely involved in the maintenance of gut homeostasis, and suppressed in the type 2 inflammatory condition.

The impact of type 2 inflammation on cell intrinsic expression changes was primarily centered in mast cells and ILC2s in both LP and PP regions (FIG. 2E and Table 3). Genes associated with cell type-specific activation were induced in mast cells (e.g., Mcpt1, Mcpt4) and ILC2s (e.g., Il13, Il4) (FIG. 9B), suggesting an activation phenotype in both cell types. In addition, Ighg1 and Ighe expression in plasma cells was significantly increased (P=1.45*10−107 and 2.86*10−13, respectively; likelihood ratio test) after the induction of allergic inflammation (FIG. 9C), consistent with the fact that IL-4 induces class-switch recombination of immunoglobulin heavy (Ig) chain towards IgG1 and IgE (Manis et al., 2002). Additionally, genes involved in the type 1 interferon pathway, such as Irf1 and Isg15 in macrophages and Ifnar1 and Ifitm3 in plasma cells, were suppressed during type 2 inflammation (FIG. 9B), providing potential mechanistic explanations for the dampened antiviral immunity in allergic inflammation (Kloepfer et al., 2012; Rowe and Gill, 2015).

Example 3—Topic Models Identify Cell Type-Specific Programs that are Increased with Inflammation in Mast Cells, ILC2s, Th2 Cells and Fibroblast Subsets

To identify more nuanced changes in expression programs in response to type 2 inflammation, Applicants relied on topic modeling using Latent Dirichlet Allocations (Blei et al., 2003), which has recently been applied to scRNA-seq data (Bielecki et al., 2018; duVerle et al., 2016). Originally developed to discover key semantic topics reflected by the words used in a corpus of documents (Dumais et al., 1990), topic modeling can be used to explore gene programs (“topics”) in each cell (“document”) based on the distribution of genes (“words”) expressed in the cell. A gene can belong to multiple programs, and its relative relevance in the topic is reflected by a weight. A cell is then represented as a weighted mixture of topics, where the weights reflect the importance of the corresponding gene program in the cell. Applicants learned topic models for each cell lineage or group separately, and then searched for topics that were differentially weighted between homeostasis and inflammation in cells of the same type (Methods, Table 4, FIGS. 3A-E and 10A-F).

Topics specifically characterizing activation in mast cells and ILC2s increased in prominence following inflammation. Topic 1 (“mast cell activation program”), which was heavily weighted in the mast cell cluster among myeloid cells, was characterized by Cpa3 and Mcpt4 expression and significantly more prominent in mast cells from mice treated with OVA than controls (adjusted P=2.84*10−67, Mann-Whitney U test, FIG. 3A). Topic 2 (“ILC2 activation program”), which was heavily weighted in the ILC2 cluster, included type 2 genes such as Il13 and Il4. Topic 2 was significantly more prominent in ILC2s after induction of inflammation (adjusted P=8.01*10−12, Mann-Whitney U test, FIG. 3B). Consistent with the differential expression analysis, these two topics captured the major events induced by inflammation.

Programs related to inflammatory responses were also more heavily weighted in Th2 cells under inflammatory conditions, whereas those related to T regulatory cells were unchanged between inflammation and homeostasis. Specifically, topic 5 (“Th2 inflammatory program”), consisting of type 2 inflammatory genes, including Il13, Gata3, 116, Areg and Il1rl1, was present only in a subset of cells from the activated CD4+ T cell cluster that were likely type 2 T helper (TH2) cells (FIG. 3C). Topic 5 weights were significantly higher in cells from OVAtreated mice than from controls (adjusted P=2.73*10−5, Mann-Whitney U test, FIG. 3C). Topic 9 (“T regulatory program”), comprised of Foxp3, Lag3, Il10 and other Th regulatory genes, was present in a different subset of CD4+ T cells (FIG. 3D), but its weight showed only a minor change with inflammation (adjusted P=0.002, Mann-Whitney U test, FIG. 3D). This suggests that activation of type 2 inflammation in this model did not significantly interfere with the activity of regulatory T cells.

Topic 4 from stromal cells, defined by the expression of the type 2 inflammatory cytokine 1133 and key chemokines such as Ccl21a, was uniquely associated with fibroblasts and increased in weight with inflammation (FIG. 3E, adjusted P=2.69*10−5, Mann-Whitney U test). Applicants confirmed that IL-33 and CCL21 were co-expressed in PDPN+ stromal cells by immunofluorescence (FIG. 10G). Moreover, the number of IL-33+PDPN+ intestinal fibroblasts was significantly increased in mice under type 2 inflammation induced by OVA (FIG. 3F, P=0.002, t-test), indicating that stromal cell-derived IL-33 may play critical roles in promoting intestinal type 2 inflammation.

Example 4—Calca-Encoded α-CGRP Expression is a Key Feature of the ILC2 Activation Program Induced by Inflammation, but its Receptor is Repressed by Inflammation

Calca was the highest and most uniquely scoring gene in the ILC2 activation program (FIG. 3B) and Calca transcript levels were highest in ILC2s among all cell types in the dataset (FIGS. 4A and 11A). Exons 4 and 5 of Calca encode the neuropeptides calcitonin (CT) and α-CGRP, respectively, via alternative splicing (Amara et al., 1982). Quantitative PCR (qPCR) revealed that while CT-encoding exon 4 was expressed in intestinal KLRG1+ILC2s at steady state (FIG. 11B), α-CGRP-encoding exon 5 was detectable only following induction of a type 2 inflammatory reaction to OVA (P=0.01, t-test) (FIG. 4B). Conversely, the corresponding transcripts of α-CGRP receptor components—a G-protein-coupled receptor complex consisting of CRLR and RAMP1—were expressed in ILC2s at steady state (FIGS. 4B and 11A), but significantly repressed by type 2 inflammation (FIG. 4B, P=0.005 and 0.02 for Calcrl and Ramp 1, respectively, t-test). The Calcr transcript, encoding the CT receptor, was not detectable by either scRNA-seq or qPCR (data not shown). Taken together, these results are consistent with a negative feedback model, where signaling through α-CGRP to ILC2s suppresses its receptor's expression in the cells, and suggest that an α-CGRP-mediated signaling pathway may regulate ILC2 activity in type 2 immune responses.

Example 5—α-CGRP Suppresses Type 2 Inflammation-Induced Activation and Expansion of ILC2s In Vitro and In Vivo

To determine if α-CGRP can directly trigger signaling in ILC2s and impact their transcriptional states under inflammatory conditions, Applicants performed bulk RNA-seq of KLRG1+ ILC2s isolated from the small intestine and stimulated in vitro with IL-25 alone or together with α-CGRP. As expected, IL-25 alone induced the expected activation phenotype, including expression of type 2 cytokines, such as Il13 and Il5, and key mitotic genes, such as Myc (FIG. 4C). Strikingly, this IL-25-induced activation signature was significantly suppressed when cells were treated with both IL-25 and α-CGRP (FIG. 4C,D, adjusted P<0.001, t-test), with the exception of a few genes, notably Il5, which was further induced (FIGS. 4C and 11C). Moreover, α-CGRP co-treatment significantly suppressed IL-25-induced cell division (FIG. 4E, P=0.01, t-test). Thus, α-CGRP inhibits IL-25-induced proliferation and activation of intestinal KLRG1+ILC2s.

Applicants next used an IL-25-induced in vivo activation model (Huang et al., 2015) (FIG. 5A) to show that α-CGRP suppresses expansion of ILC2s responding to inflammation. Intraperitoneal administration of α-CGRP impaired IL-25-induced expansion of KLRG1+ ILC2s (FIGS. 5B and 12A), consistent with the in vitro results. Recent work has shown that intestinal KLRG1+ ILC2s can migrate to mesenteric lymph nodes (mLNs) and other tissues during inflammation via sphingosine 1-phosphate (S1P)-mediated chemotaxis (Huang et al., 2018). To determine whether α-CGRP primarily impacts intestinal or mLN ILC2s, Applicants relied on the fact that intestinal GATA3+ ILC2s are generally phenotypically KLRG1+ST2 (data not shown), whereas mLN ILC2s are mainly ST2+ at steady state (FIG. 5C). IL-25 administration increased the frequency of both KLRG1+ST2 inflammatory ILC2s and ST2+ ILC2s in mLNs (FIGS. 5C-E and 12B). But co-administration with α-CGRP only reduced the frequency of KLRG1+ST2ILC2s (FIGS. 5C,D and 12B), which are cells that migrated from the small intestine to the mLNs, but not of ST2+ ILC2s (FIG. 5E). Thus, α-CGRP preferentially regulates the response of intestinal KLRG1+ST2 ILC2s. Furthermore, α-CGRP also significantly suppressed the expansion of intestinal ILC2s in a food allergy model (FIGS. 5F,G and 12C,D, P=0.02 for 5G, P=0.009 for S5D, t-test), where Applicants intragastrically administrated α-CGRP together with OVA into pre-sensitized mice. Taken together, α-CGRP antagonized expansion of intestinal KLRG1+ ILC2s in two different type 2 inflammatory models.

Example 6—at Homeostasis, α-CGRP is Predominantly Expressed In Vivo in Two Subsets of Chat+ Enteric Neurons

Without inflammation, intestinal KLRG1+ ILC2s expressed CGRP receptors (FIG. 4B), but not CGRP, leading us to search for neighboring cell type(s) which potentially produce CGRP at homeostasis. To this end, Applicants analyzed Calca gene expression across multiple intestinal scRNA-seq datasets, including the previous epithelial atlas for the mouse small intestine epithelium (Haber et al., 2017) (FIG. 13A), the intestinal immune atlas here (FIG. 1), and scRNA-Seq of enteric neurons from Wnt1-Cre:R26Tomato mice (Zeisel et al., 2018) (FIGS. 6A and 13B,C). Calca expression was only detected in two subsets of ChAT+ enteric neurons (FIGS. 6B and 13C). These ChAT+ enteric neurons also expressed (FIG. 6B): (1) the CGRP receptor genes, (2) the Calcb gene, encoding β-CGRP peptide, which differs in two amino acid from α-CGRP, but has not been substantially studied for its function in immune cells, and (3) the Nmu gene, which Applicants and others have shown amplifies the activity of ILC2s under type 2 inflammation in the lung and small intestine (Cardoso et al., 2017; Klose et al., 2017; Wallrapp et al., 2017).

Applicants confirmed by immunofluorescence staining that ChAT+ enteric neurons expressed CGRP (FIG. 6C), and that ILC2s contact with CGRP-expressing neurons at the steady state (FIG. 13D), consistent with previous reports that ILC2s are closely associated with neurons in the intestine (Klose et al., 2017). Thus, CGRP from these ChAT+ enteric neurons may regulate ILC2 homeostasis.

Example 7—α-CGRP Suppresses ILC2 Proliferation Through Activating a cAMP Response Module

The presence at homeostasis of α-CGRP receptors on ILC2s and α-CGRP's expression on ChAT+ intestinal neurons led Applicants to hypothesize that it has an effect on ILC2s during homeostasis. To test this hypothesis, Applicants next measured the expression profiles of intestinal KLRG1+ ILC2s stimulated in vitro by α-CGRP alone, and identified genes differentially expressed under this signal (FIG. 6D, Methods).

Analyzing the profiles suggested that α-CGRP activated a cAMP response module. First, α-CGRP stimulation induced expression of key genes involved in adenylate cyclase-mediated GPCR signaling, including Adrb2, Adora2a, Pde4b and Akap12 (FIG. 6D), as well as cAMP response genes, including Areg (Shao and Sheng, 2010), Crem, and Il5 (FIG. 6D). Indeed, previous studies showed that cAMP directly induces IL5 expression in ILC2s (Nussbaum et al., 2013). Consistently, ATAC-Seq profiling of ILC2s revealed that regions of increased chromatin accessibility following α-CGRP stimulation alone where enriched for gene loci involved in the adenylate cyclase pathway (FIG. 6E and Table 5).

Moreover, α-CGRP stimulation in vitro negatively regulated ILC2 proliferation, and this effect may be mediated by induction of genes involved in cell cycle arrest in the cAMP response module. In the KLRG1+ ILC2 cells, α-CGRP induced expression of genes involved in cell cycle arrest, such as Cdkn1a, Gadd45a and Akap12, as well as of key negative regulators of ILC2 expansion, Adrb2 and Pdcd1 (Moriyama et al., 2018; Taylor et al., 2017) (FIG. 6D). cAMP and its principal target, cAMP-dependent protein kinase (PKA), have been previously shown to suppress proliferation via negatively regulating mitogen-activated protein (MAP) kinase cascade in a cell context-dependent manner (Stork and Schmitt, 2002). Indeed, the adenylate cyclase activator forskolin, which increases intracellular cAMP levels (Rodriguez et al., 2013), suppressed the proliferation of ILC2s (FIG. 6F), but not their viability (FIG. 6G). Furthermore, treating ILC2s with an adenylate cyclase inhibitor (Klein et al., 2012) partially rescued the cell proliferation defect mediated by α-CGRP (FIG. 6H). Taken together, the data suggest that α-CGRP suppresses ILC2 proliferation via activating a cAMP response module.

Example 8—At Homeostasis, α-CGRP Maintains ILC2 and Type 2 Responses In Vivo

Finally, Applicants tested if α-CGRP-mediated signaling regulates homeostasis of intestinal KLRG1+ ILC2s at steady state in vivo, by analyzing α-CGRP exon knockout (α-CGRP KO) mice, in which the CT exon of Calca gene remains intact (Oh-hashi et al., 2001). The frequency of intestinal KLRG1+ILC2s was significantly increased in α-CGRP KO mice compared to wild type (WT) controls (P=0.002, t-test) (FIG. 6I). Type-2 cytokines promote differentiation of tuft cells (Biton et al., 2018; Gerbe et al., 2016; Howitt et al., 2016; von Moltke et al., 2016), and the number of tuft cells was indeed also significantly increased in α-CGRP KO mice (P=0.036, t-test) (FIG. 6J). Thus, α-CGRP-mediated signaling helped maintain the homeostasis of KLRG1+ ILC2s and type 2 immunity in the small intestine.

Example 9—Discussion

Here, Applicants collected and analyzed a scRNA-seq atlas of immune cells in the small intestine in homeostasis and during type 2 inflammation, uncovered dynamic responses in cell type specific programs that monitor and titrate mucosal responses, and identified α-CGRP as a key regulator impacting the frequency and activity of intestinal KLRG1+ ILC2s.

This work highlights a role for α-CGRP in regulating ILC2s at both homeostasis and during inflammation. Previous studies showed that CGRP signaling can generate both pro- and antiinflammatory immune responses, depending on cell type, tissue and experimental model (Assas et al., 2014). α-CGRP increases IL-5 expression in lung ILC2s co-stimulated with IL-33 (Sui et al., 2018). Mice with deficiency in CRLR in IL-5-expressing cells manifest a normal frequency of ST2+ILC2s in lungs exposed to house dust mite (HDM) (Sui et al., 2018), consistent with the finding that ST2+ ILC2s in mLNs are not significantly affected by α-CGRP administration. However, this work further reveals that α-CGRP reduced the expansion of intestinal ST2KLRG1+ ILC2s in two different inflammatory models. Although differences in cell states between lung ST2+ and intestinal ST2KLRG1+ ILC2s (Ricardo-Gonzalez et al., 2018) might contribute to their differential reactions to CGRP signaling, additional studies in animal models where CRLR is specifically-deleted in intestinal KLRG1+ ILC2s will be needed to elucidate the full molecular mechanism. In addition, it will be important to compare the effects of α-CGRP vs. β-CGRP binding to CRLR in ILC2s.

Applicants show that two subsets of ChAT+ enteric neurons are the predominant source of CGRP in the small intestine at steady state. In addition to multiple neuropeptides, these ChAT+ neurons also express Il13ra1 and Il4ra (FIG. 13C), which encode the components of the receptor complex for the type 2 cytokine IL-13. Thus, these ChAT+ neurons may be specialized for crosstalk with the immune system. Future studies will help determine if cytokine signaling from immune cells during inflammation further boosts the secretion of neuropeptides.

CGRP signaling is an additional key axis of neuro-immune interaction with implications for inflammation, including food allergy. Neuronal signals are emerging as important orchestrators of immune responses in the gastrointestinal tract (Chesne et al., 2018; Godinho-Silva et al., 2018; Veiga-Fernandes and Mucida, 2016). In particular, the nervous system has been shown to exercise dual functions to either activate or inhibit ILC2s via different GPCRs. While NMUR1 signaling amplifies ILC2 activation in the lung and intestines (Cardoso et al., 2017; Klose et al., 2017; Wallrapp et al., 2017), the β2-adrenergic receptor (β2AR) pathway negatively regulates ILC2 expansion (Moriyama et al., 2018).

Applicants thus propose a model for how ILC2s integrate and balance such diverse neural signaling cues, involving different Ga proteins and their downstream signaling (FIG. 7). In this model, the amplifier NMUR1 mainly signals through Gαq/11 and inhibits cAMP levels (Martinez and O'Driscoll, 2015), whereas the negative regulators CRLR and β2AR are both coupled with Gαs proteins that activate adenylate cyclase and the cAMP pathway (Chatterjee et al., 1993; Madamanchi, 2007). Intracellular cAMP accumulation induces expression of the cAMP response module including IL-5, but suppresses ILC2 proliferation. Thus, selective activation of different subgroups of a subunits of G proteins coupled with variable downstream effects, including the concentration of cAMP, might be utilized by ILC2s to fine-tune the response to neuronal signaling.

Collectively, this work underscores the importance of α-CGRP suppression of ILC2 activity, which may serve as a therapeutic target for treating diseases like food allergy. Since monoclonal antibodies against CGRP have been recently approved to treat migraine (Edvinsson, 2018), it will be important to monitor for the incidence of allergic diseases in treated patients. More broadly, this work provides a resource for understanding the intestinal immune system in response to type 2 inflammation in the context of each specific cell type. Further exploration of the atlas can lead to additional hypotheses on circuits within and between additional cell types that contribute to type 2 immune responses.

Example 10—Experimental Methods

Mice. BALB/cJ mice (Jax 000651) were obtained from the Jackson Laboratory. α-CGRP knock out mice (B6.12956-Calca<tm1Hku>) were kindly provided by Dr. Vijay K. Kuchroo (Brigham and Women's Hospital, Boston, Mass., USA). Mice were housed in specific pathogenfree conditions and were used and maintained in accordance with the Institutional Animal Care and Use Committee (IACUC) protocol #0055-05-15.

To induce allergic reaction to OVA, 6 to 7 weeks old mice were sensitized twice, two weeks apart, with 50 μg of OVA plus 1 mg of aluminum potassium sulfate adjuvant via intraperitoneal injection. Two weeks later, mice were orally administered with 50 mg of OVA on every other day for a total of five times. 1 μg of α-CGRP peptide was administered simultaneously when indicated. Mice were deprived of food for 3-4 hours in cages with wood chip bedding for limiting antigen degradation in the stomach before each intragastric challenge.

To activate ILC2s in vivo, 200 ng of IL-25 was intraperitoneally injected into 7-10 weeks old mice daily for two days. 1 μg α-CGRP was injected together as noted.

Isolation of cells from Peyer's patches (PPs). Peyer's patches (PPs) were carefully dissected from the small intestine under a stereo microscope using a fine scissor, pierced once with a fine forcep. Tissues were digested in freshly made digestion buffer (RPMI-1640 containing 100 μg/ml Liberase™ and 50 μg/ml DNase I at 37° C. on a roto-mixer. After 15 min, tissues were very gently mixed using a 1 ml pipette. The supernatant was collected and added to ice-cold MACS buffer (pH 7.4; PBS plus 2% FCS and 2 mM EDTA). Pre-warmed (37° C.) fresh digestion buffer was added to the remaining tissues. After rotation at 37° C. for 15 min, the mixture was vigorously mixed using a 1 ml pipette for 1 min. Supernatants from the two steps were combined and passed through 70 μm filters and stained for FACS (below).

Isolation of cells from the lamina propria (LP). The small intestines were opened longitudinally and washed in ice-cold PBS. For scRNA-seq, roughly 0.5 cm of fragments from each of the distal, middle and proximal regions without visible PPs were collected. Epithelial cells were dissociated by tissue rotation in pre-warmed (37° C.) PBS containing 10 mM EDTA at 37° C. for 15 min, followed by additional incubation on ice for 15 min. Tissues were then shaken vigorously. After washing twice with PBS containing 2% FCS, tissues were digested in pre-warned (37° C.) digestion buffer at 37° C. on a roto-mixer for 25 min. The supernatants were then passed through 70 μm filters and stained for FACS.

For experiments other than scRNA-seq, the entire small intestine was cut into 1 cm pieces after eliminating PPs. Epithelial cells dissociation was performed by stirring tissues in flasks containing PBS and 10 mM EDTA on a magnetic stirrer at 37° C. two times for 15 min. After vortex, the tissue was stirred in pre-warmed (37° C.) digestion buffer for 25 min at 37° C. The supernatant was passed through 100 μm filter. Leukocytes were further enriched by a 40%/70% Percoll gradient centrifugation before flow staining.

Flow cytometry and cell sorting. Cells were washed and suspended in MACS buffer (pH 7.4; PBS plus 2% FCS and 2 mM EDTA). Nonspecific antibody binding was blocked with CD16/CD32 (2.4G2) antibody for 15 min on ice. Cells were then stained with antibody cocktails for 30 min at 4° C. Lineage-positive cells were excluded for analyzing ILCs by staining for CD3ε (145-2C11), CD5 (53-7.3), CD19 (6D5), CD11b (M1/70), CD8 (53-6.7), CD11c (N418), Gr-1 (RB6-8C5), TCRγδ (eBioGL3 (GL-3, GL3)) and TCRβ (H57-597). To analyze mast cells, lineage-positive cells were excluded by staining for CD3ε, CD5, CD19, CD11c and SiglecF (E50-2440). For surface staining, antibodies for KLRG1 (2F1), CD45 (30-F11), CD127 (A7R34), CCR6 (29-2L17), NKp46 (29A1.4), CD90.2 (53-2.1), FcεRI (Mar-1), IgD (11-26c.2a) and ST2 (DJ8) were used. For intracellular staining, cells were fixed and permeabilized using the Foxp3 transcription factor staining buffer set, followed by staining with anti-GATA-3 (TWAJ) or anti-RORγt (B2D) antibodies. Dead cells were excluded with 7-AAD or Fixable Viability Dye eFluor 780. Flow cytometry was performed on Cytoflex (Beckman Coulter) and analyzed with FlowJo software. Sorting was performed with the SH800S Cell Sorter (Sony Biotechnology).

Droplet-based scRNA-seq. Single cells were captured via the GemCode Single Cell Platform using the GemCode Gel Bead, Chip and Library Kits (10× Genomics), according to the manufacturer's protocol. Briefly, flow-sorted cells were suspended in PBS containing 0.4% BSA, and loaded at 7,000 cells per channel. The cells were then partitioned into GemCode instrument, where individual cells were lysed and mixed with beads carrying unique barcodes in individual oil droplets. The products were subjected to reverse transcription, emulsion breaking, cDNA amplification, shearing, 5′ adaptor and sample index attachment. Libraries were sequenced on a HiSeq 2500 (Illumina).

Quantitative real-time PCR. RNA was isolated from 10,000 cells per sample using PicoPure RNA Isolation Kit, according to the manufacturer's protocol and reverse transcribed to cDNA with iScript cDNA Synthesis Kit. Gene expression was analyzed by quantitative real-time PCR on a ViiA7 System (Thermo Fisher Scientific) using iTaq™ Universal SYBR® Green Supermix with the indicated primers. Expression values were calculated relative to Gapdh detected in the same sample by qPCR.

ILC2 culture. Sort-purified intestinal KLRG1+ ILC2s were incubated in RPMI supplemented with 10% FCS, 10 mM Hepes, 1 mM sodium pyruvate, 10% FBS, 80 μm 2-mercaptoethanol, 2 mM glutamine, 100 U/ml penicillin, 100 m/ml streptomycin, 100 ng/ml IL-2 and 100 ng/ml IL-7 in 96-well round bottom plate at 37° C. and 5% CO2. If indicated, the culture was supplemented with 100 ng/ml IL-25. For the in vitro proliferation assay, cells from different mice were pooled and labeled with CellTrace Violet, and then cultured at 1,000-1,500 cells per well with 10 μg/ml α-CGRP for 60 hours. When indicated, 10 μM forskolin or 1 μM SQ 22, 536 in DMSO was supplied and cells were cultured for 40 hours. For bulk RNA-seq, cells from individual mice were stimulated at 200 cells per well with 0.4 μg/ml α-CGRP for 3 hours. For bulk ATAC-seq, cells were stimulated with 0.4 μg/ml α-CGRP for 2 hours.

Immunofluorescence staining and imaging. The small intestines were fixed in 2% PFA, embedded in O.C.T. Compound and sliced into 10 μm by frozen section. The slides were blocked with 0.1% Triton X-100, 2% FCS and donkey serum. The staining reagents incudes Alexa Fluor 594 anti-IgD (11-26.2a), Alexa Fluor 647 anti-CD138 (281-2), eFluor 450 anti EPCAM (G8.8), Alexa Fluor 594 anti-CD3ε (17A2), Alexa Fluor 488 anti-Podoplanin (eBio8.1.1 (8.1.1)), rat anti-CCL21/6 (59106), goat anti-IL-33 (polyclonal), hamster anti-KLRG1 (2F1), rat anti-CGRP (polyclonal), goat anti-ChAT (polyclonal), rabbit anti-DCAMKL1 (polyclonal), Alexa Fluor 647-donkey anti-goat IgG, Alexa Fluor 647 donkey anti-goat IgG, Cy™3 donkey anti-rat IgG, Alexa Fluor 488 goat antisyrian hamster IgG (H+L), Alexa Fluor 647 goat anti-rabbit IgG (H+L) and DAPI. Slides were mounted with the ProlongGold Antifade reagent and examined with a ZEISS LSM 710 upright microscope using ×10, ×20 air or ×60 oil immersion lens. The images were analyzed with ImageJ.

Bulk RNA-seq. 200 ILC2s from each condition were lysed in 10 ul TCL buffer plus 0.5% 2-Mercaptoethanol. Libraries were processed with SMART-Seq2 (Picelli et al., 2013) with at least three replicates per condition, and paired-end sequenced (75 bp×2) with a 75 cycle Nextseq 500 high output V2 kit.

Reads were aligned to the mouse reference genome (NCBI 38, mm10) using Bowtie (Langmead et al., 2009) with default parameters, and expression abundances were estimated using RSEM software (Li and Dewey, 2011). The differential gene expression analysis was performed with edgeR (Robinson et al., 2010) with default parameters.

Bulk ATAC-seq. ATAC-seq experiment was performed using a published protocol (Buenrostro et al., 2013) with minor modifications. Briefly, 2,000 cells in 5 μl PBS, 17.3 μl H2O and 25 μl of transposition buffer (66 mM Tris-acetate, 132 mM K-acetate, 20 mM Mg-acetate, 32% DMF, and 0.2% NP-40) were mixed and incubated at room temperature for 10 min. After adding 2.5 μl of Tn5 transposase to the reaction, the transposition was carried out at 37° C. for 30 min with gentle shaking at 300 rpm and then purified with Zymo DNA Clean and Concentrator (Zymo Research). The library was amplified for 11 cycles, purified with Zymo DNA clean (Zymo Research), and sequenced on an Illumina Next-seq platform using 75 cycle Nextseq 500 high output V2 kit (Read 1: 38 cycles, Index 1: 8 cycles, Index 2: 8 cycles, Read 2: 38 cycles).

The reads were trimmed and aligned to the mouse reference genome (mm9) with Bowtie2 aligner (Langmead and Salzberg, 2012) using the option-X2000. Then, Applicants discarded reads with alignment quality<Q30, improperly paired, mapped to the unmapped contigs, chrY, and mitochondria. Duplicates were removed using Picard tools (function MarkDuplicates, broadinstitute.github.io/picard/). MACSv2 peak caller (Zhang et al., 2008) (version: 2.1.1) was used to call accessible regions of open chromatin regions (ATAC-Seq peaks) with the following parameters (-nomodel -nolambda -keep-dup -call-summits). Peaks overlapping with ENCODE blacklisted regions were filtered out using BEDtools (function itersectBed). Peak summits were extended by ±250 bp, and fragment counts in peaks were calculated using chromVAR (Schep et al., 2017) (version: 1.1.1). Peaks were allocated to genes using GREAT (McLean et al., 2010) (version: 3.0.0) with “basal plus extension” association rule with default parameters. Functional enrichment analysis was performed using GREAT (version: 3.0.0).

Example 11—Computational Methods

scRNA-seq data QC and pre-processing. Reads were aligned to the mouse reference genome (NCBI 38, mm10) using Cell Ranger v2.1.1 (10× Genomics) to generate cell-gene count matrices. After removing cells with less than 500 UMIs and high mitochondrial RNA UMIs (more than four times of the median number of mitochondrial UMIs across cells), Applicants obtained 36,797 cells from PP regions (15,939 cells from OVA-allergic mice and 20,858 cells from controls), and 21,270 cells from LP (11,405 cells from OVA-allergic mice and 9,865 cells from controls). 19,221 genes were retained after filtering genes expressed in less than five cells.

Applicants expected batch effects in the data, because libraries were prepared and sequenced at different times, and because Applicants used two sorting strategies to remove either IgD+ Naive B cells or CD19+/CD3+ cells. Moreover, the number of recovered cells varied across experiments; for example, Applicants recovered 10,567, 6,439, 5,016, 4,571, and 10,204 cells from each of the five experiments for cells from PPs. Applicants explored several possibilities to address these confounders. Two recent methods have been developed to align scRNA-seq data from different batches (Butler et al., 2018; Haghverdi et al., 2018). However, a cell type must be shared by all datasets for Seurat's CCA approach to correctly align cells (Butler et al., 2018), which is not appropriate for this case. mnnCorrect (Haghverdi et al., 2018) can merge datasets with private (distinct) cell types, but in the datasets where there were dozens of cell types, mnnCorrect successfully merged only some of these clusters, and failed to align cells from other clusters. (More recent methods (Korsunsky et al., 2018; Lin et al., 2018; Stuart et al., 2018; Welch et al., 2018) might help merge cells from different experiments but were published when this analysis was long completed.)

Principal Component Analysis (PCA) is typically used to extract a small number of features (principal components (PCs)) from a normalized gene-cell count matrix. These feature vectors were used for clustering analysis or as inputs for visualization. Unfortunately, in the presence of batch effects, some of the top features typically captured batch effects (Chen et al., 2011). Therefore, batch effects could not be removed by discarding the features with small eigenvalues in PCA.

To help address these batch effects, Applicants took an alternative approach, where Applicants projected the scRNA-seq data to a reference dataset consisting of microarray measurements of immune cells from 276 samples (Heng et al., 2008). Specifically, Applicants first did PCA on the microarray data and extracted the first 101 eigenvectors. Applicants discarded the first eigenvector as the corresponding first PC was correlated with batch information in the microarray data. Applicants next projected the scRNA-seq data to the 100-dimensional space spanned by the eigenvectors (PCs 2-101) from the microarray data. The coordinates of cells in the 100-dimensional space were used for clustering and as inputs of scvis.

scRNA-seq clustering of PP cells. Applicants used the Louvain community detection algorithm (Blondel et al., 2008; Levine et al., 2015) to cluster cells from Peyer's patch regions. As the Louvain clustering algorithm tends to miss some small clusters, Applicants used densityCut (Ding et al., 2016) to find the likely cluster centers. For each center, Applicants changed the edge weights (w′) connecting the cluster center to its neighbors to (w′)=2 kw, where k is the number of nearest neighbors in the k-nearest neighbor (k-NN) graph, and w is the original edge weight of an edge. Louvain clustering on this edge re-weighed graph produced 46 clusters.

Next, Applicants assessed the robustness of the cell to cluster assignment. For each cluster and each batch, Applicants computed the ‘bulk’ gene expression profile of the cells from a given batch in the cluster. The ‘bulk’ gene expression profile for a set of cells is computed by first taking the sum of the gene expression vectors from these cells, where the gene expression vector of a cell was the raw UMI count vector, one element for a gene. The dimensionality of a gene expression vector was the number of genes. To make the bulk gene expression vectors from different sets of cells comparable, a bulk gene expression vector was normalized by dividing the total number of UMIs from all the cells used in computing that bulk gene expression vector, and further multiplying by 104 and finally taking the log transform (adding one before the log transformation to make all the elements of the bulk vector positive). Then, for each cell, Applicants computed its Pearson correlation coefficient with the “bulk” profile for each cluster. Applicants denote the maximum correlation between a cell x and the bulk profiles of cluster i (from different batches) as c′. If cell x is originally assigned to cluster j, and cj<0.9ck, then Applicants reassign cell x to cluster k. Only ˜0.26% (97 of 36,797) cells were re-assigned to clusters different from their original assignment. Applicants also tested whether two clusters should be merged, if there are no more than 10 significantly differentially expressed genes between them (with differential expression estimated with the Wilcoxon rank-sum test in the package Seurat (Butler et al., 2018)). However, none of the 46 clusters required merging by this criterion.

Clustering cross-validation of PP cells. Applicants performed a 10-fold cross validation analysis on the PP data to evaluate the quality of the clustering. Applicants partitioned the PP data into ten approximately equal size sets, and trained a knearest neighbor (k-NN) classifier (Applicants used a small k=11 as some clusters are small, e.g., 17 cells in cluster 46) on nine folds of data, leaving one fold of data for testing. Applicants repeated this training and testing scheme ten times such that all the data points were used for testing only once.

The k-NN classifiers had a high overall accuracy of 97.2%. Classification accuracy varied for cells from different clusters, with those from cluster 39 having the lowest accuracy of 65.6%. Cluster 39 consisted of a mixture of low-quality plasma B cells and cell doublets (macrophage and epithelial cell doublets). A subgroup of cells expressed plasma B cell marker genes, such as Jchain and Mzb1, but had a relatively small number of UMIs per cell compared to the cells from the plasma cell Cluster 20 (FIG. 8D). Some of these low-quality plasma B cells also had high mitochondrial UMI ratios. Another subset of cells in Cluster 39 expressed both epithelial cell markers (e.g., Epcam and Krt8) and macrophage marker genes (e.g., Lyz1 and Lyz2). These cells had a very large number of UMIs per cell (FIG. 8D) and likely represented potential macrophage and epithelial cell doublets. Notably, although the number of cells in each cluster was extremely unbalanced (e.g., 6,948 cells in cluster 1 but only 17 cells in cluster 46), the classification accuracies were largely uncorrelated with the number of cells in each cluster.

Cluster annotation and filtering of PP cells. Applicants next used MAST (Finak et al., 2015) to identify significantly up-regulated marker genes for each of the 46 clusters, accounting for batch (experimental dates) and the scaled number of detected genes in each cell as covariants (Soneson and Robinson, 2018). Based on known function of the marker genes, Applicants annotated 6 major cell lineages/groups: T cells, B cells, dendritic cells, ILCs, myeloid cells and stromal cells.

Applicants conservatively excluded from further analyses the smallest clusters (<0.05% of all cells) and several ambiguous clusters that Applicants could not confidently assign with cell identities. Applicants note that the small clusters may be biologically valid, but the small number of cells limits the ability to further study them here. For example, the top markers of cluster 45 (18 cells) included Dntt, Rag1, Chrna9, Tctex1d1, Arpp21, which are highly expressed in progenitors of T cells at the double-positive stage in Immgen (Heng et al., 2008; Painter et al., 2011). Cluster 46 (17 cells) may consist of lymph node lymphatic endothelial cells, as they expressed their known marker genes such as Lyve1, Prox1, and Cp. Experimental validations are required for confidently including them in the downstream analyses. Cells in Cluster 34 (100 cells) from PP, expressed both pDC and myeloid gene markers. Only two marker genes (Gtf2a1 and 2310001H17Rik) overlapped between Cluster 34, and either of its adjacent clusters in scvis, clusters 6 and 22 (FIG. 1B). Gtf2a1 was expressed lowly in about 25% of the cluster 34 cells and 2310001H17Rik was expressed in several other cell types, such as T cells and neutrophils. Applicants annotated cluster 34 as ‘Unresolved’. Cluster 18 and cluster 37 were also annotated as ‘Unresolved’ based on similar analysis. Cluster 40 cells expressed macrophages marker gene like Lyz2. Compared to the macrophage cluster (cluster 22), cluster 40 cells expressed higher level of C1qa, C1qb, and C1qc. However, Cluster 40 cells had less UMIs per cells (FIG. 8D) than Cluster 22 cells. Applicants also labeled Cluster 40 as ‘Unresolved’.

Applicants further removed clusters enriched for doublets. To this end, Applicants analyzed PP cells with Scrublet (Wolock et al., 2018), identifying clusters 29, 41, and 43 cells with high doublet scores, together accounting for 0.63% (232 of 36,797) of the PP cells. Cluster 42 cells also had high doublet scores, albeit lower than these other three clusters, and may be further potential doublets.

Clustering LP cells. Applicants used the 35,691 PP cells that were both confidently assigned to clusters in the crossvalidation above and had a k-NN probability greater than 0.5, to train a k-NN classifier (k=11), and used it to classify the 21,270 LP cells. The vast majority of LP cells (97.4%, 20,724/21,270) were assigned to 42 of the 46 clusters with k-NN probability greater than 0.5. Applicants refined the clustering as done for the Peyer's patch data but only for the cells with k-NN probabilities less than 0.5. This reassigned only 0.12% (26/21,270) cells. 34 of the 42 clusters had >15 cells. To find potential LP-specific clusters (cell types that were only observed in LP), Applicants concatenated the data from PPs and LP and then clustered the merged data. Of the clusters enriched in cells from LP (more than three times the number of cells from LP than PPs), two consisted of mast cells and three of plasma B cells. One of these clusters had cells with a low number of UMIs per cell without apparent marker genes. One LP-enriched cluster consisted of fibroblasts that expressed marker genes, such as Col15a1, Ecm1, and Col6a5.

Ten-fold cross validation of the 21,223 LP cells in 34 clusters with >15 cells showed 94.59% accuracy for all cells. Cells from three small clusters 5, 19, and 42 (32, 41, and 19 cells, respectively) had relatively low cross-validation accuracies of 0.41, 0.56, and 0.53, respectively. Overall, ˜93.70% (19,886/21,223) were assigned robustly (correctly classified in crossvalidation and with k-NN probabilities greater than 0.5).

Cellular composition changes. As different gating strategies (IgDlow or CD3CD19) directly influenced the frequencies of T and B cells, which subsequently affected the proportions of all other cell types, Applicants separately quantified cell compositions in B cells, T cells, and other non-TB cell types. In addition, for analyzing changes in the composition of B cell subsets, Applicants did not include cells from the experiments with CD3CD19 sorting.

Applicants used the negative binomial regression model with treatment (OVA or PBS) and spatial information (PP or LP) as covariates. The total number of analyzed cells (e.g., the total number of T cells when quantifying T cells variations) from each experiment was used as an offset variable. The P value for the significance of treatment (OVA) on a cell type was assessed using the Wald test on the regression coefficient. Applicants performed similar analyses to quantify cell composition changes between PPs and LP but only using cells in homeostasis. In addition, Applicants used spatial information (PP or LP) as a covariate and the total number of analyzed cells from each experiment as an offset variable. The P value for the significance of location information (LP) on a cell type was also assessed using the Wald test on the regression coefficient.

Cell sampling frequencies. To estimate the number of required cells such that Applicants have the power to recover rare cell types, Applicants used the online tool: http://satijalab.org/howmanycells. The method assumes that the probability of observing at least N cells of a cell type in a sample of size K can be modeled by the cumulative distribution function of a negative binomial NBcdf(K; N, p), where p is the relative abundance of this cell type.

Topic modeling. To help guide LDA to find the informative topics, Applicants learned multiple topic models for each subgroup of cells separately. (Applicants had found that topic modeling of all subsets together mostly identifies cell type programs; data not shown.) Specifically, Applicants used the FitGoM( ) function from the CountClust R package (Dey et al., 2017) to fit LDA topic models to the UMI counts (Bielecki et al., 2018) for cells belonging to each major identified cell type from the LP and PP regions. This resulted in 12 models, two for each of the following cell types: T cells (583 LP cells, 12,187 PP cells), DC cells (3,738 LP cells, 3,530 PP cells), B cells (5,648 LP cells, 7,376 cells), ILC cells (5,484 LP cells, 9,396 PP cells), myeloid cells (1,825 LP cells, 579 PP cells), and stromal cells (90 LP cells, 443 PP cells). Genes starting with ‘Rpl’ or ‘Rps’ were removed from the counts matrix prior to fitting the topic models, leaving a total of 19,108 genes included in each count matrix. The number of topics to fit and the tolerance value are required to run FitGoM( ) function. Thus, for each cell type and region, Applicants fit a range of K and then used compGoM( ) to compute the Bayesian Information Criterion (BIC) the estimated likelihood, from which Applicants calculated the Akaike Information Criterion (AIC). The final choice of K value was primarily guided by the BIC curve; Applicants aimed to choose a K at which the BIC was minimal, or decreasing less quickly. Applicants set the tolerance value to 0.1. The top genes to highlight for each topic were selected using the ExtractTopFeatures( ) function.

Statistical analysis. Mice from which Applicants failed to isolate a sufficient number of live cells for downstream analysis were excluded. Prism 7 (GraphPad Software) was used to perform two-tailed t-test and Fisher's exact test as indicated (except for RNA-seq data). P-values from multiple comparisons were adjusted in R.

Code availability. Code will be made available from bitbucket: bitbucket.org/jerry00/mouse_small_intestine_immune_cell_atlas/src/master/

Data availability. The data are deposited in the Gene Expression Omnibus (GEO; GSE124880, www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE124880, enter token ciczsgwmxhkptsl into the box), and the Single Cell Portal portals.broadinstitute.org/single cell/study/fasi-immune-mouse-small-intestine.

TABLE 1 Differential expression analysis between the cells in each cluster and the remaining cells in PP regions, related to FIG. 1. In certain embodiments, the genes can be used as markers for the cell types represented by each cluster. The table disclosed here represents only the genes with adjusted p values of 0 or less than or equal to 3.23E−267. percentage of percentage of expressing cells cluster expressiing cells in the LN (average p value, gene ID in the cluster remaining cells fold change) p value adjusted Igfbp4 1 0.632 0.098 1.05 0.0E+00 0.0E+00 Lef1 1 0.804 0.16 0.87 0.0E+00 0.0E+00 Cd3d 1 0.892 0.241 0.69 0.0E+00 0.0E+00 Trac 1 0.803 0.197 0.68 0.0E+00 0.0E+00 Ms4a4b 1 0.884 0.298 0.64 0.0E+00 0.0E+00 Trbc2 1 0.962 0.484 0.63 0.0E+00 0.0E+00 Cd3g 1 0.907 0.259 0.60 0.0E+00 0.0E+00 Cd3e 1 0.846 0.219 0.60 0.0E+00 0.0E+00 Ms4a6b 1 0.745 0.31 0.51 0.0E+00 0.0E+00 Lat 1 0.755 0.27 0.51 0.0E+00 0.0E+00 Dapl1 1 0.327 0.061 0.47 0.0E+00 0.0E+00 Klf2 1 0.91 0.57 0.45 0.0E+00 0.0E+00 Bcl2 1 0.744 0.487 0.43 0.0E+00 0.0E+00 S1pr1 1 0.469 0.113 0.39 0.0E+00 0.0E+00 Atp1b3 1 0.635 0.311 0.39 0.0E+00 0.0E+00 Cd2 1 0.651 0.262 0.37 0.0E+00 0.0E+00 Arl4c 1 0.48 0.153 0.37 0.0E+00 0.0E+00 Skap1 1 0.674 0.307 0.37 0.0E+00 0.0E+00 Bcl11b 1 0.456 0.119 0.35 0.0E+00 0.0E+00 Cd247 1 0.488 0.14 0.34 0.0E+00 0.0E+00 Ccr7 1 0.617 0.233 0.33 0.0E+00 0.0E+00 Fxyd5 1 0.9 0.633 0.33 0.0E+00 0.0E+00 Satb1 1 0.622 0.33 0.33 0.0E+00 0.0E+00 Pdlim4 1 0.295 0.026 0.32 0.0E+00 0.0E+00 Thy1 1 0.546 0.24 0.32 0.0E+00 0.0E+00 Dgka 1 0.439 0.137 0.31 0.0E+00 0.0E+00 Wdr89 1 0.958 0.84 0.31 0.0E+00 0.0E+00 Dusp10 1 0.36 0.167 0.31 0.0E+00 0.0E+00 Actn1 1 0.419 0.109 0.31 0.0E+00 0.0E+00 Cd27 1 0.632 0.308 0.30 0.0E+00 0.0E+00 Ccnd2 1 0.669 0.374 0.28 0.0E+00 0.0E+00 Lck 1 0.762 0.441 0.28 0.0E+00 0.0E+00 Pik3ip1 1 0.416 0.152 0.28 0.0E+00 0.0E+00 Ass1 1 0.394 0.108 0.28 0.0E+00 0.0E+00 Cd28 1 0.464 0.184 0.27 0.0E+00 0.0E+00 Npc2 1 0.878 0.57 0.27 0.0E+00 0.0E+00 Cd79a 2 0.995 0.186 1.37 0.0E+00 0.0E+00 Iglc2 2 0.897 0.165 1.26 0.0E+00 0.0E+00 Fcmr 2 0.817 0.1 1.19 0.0E+00 0.0E+00 Ighd 2 0.738 0.028 1.13 0.0E+00 0.0E+00 Ebf1 2 0.971 0.147 1.09 0.0E+00 0.0E+00 Apoe 2 0.618 0.196 1.05 0.0E+00 0.0E+00 H2-DMb2 2 0.966 0.234 0.97 0.0E+00 0.0E+00 Cd74 2 0.998 0.634 0.92 0.0E+00 0.0E+00 H2-Aa 2 0.994 0.44 0.88 0.0E+00 0.0E+00 Cd79b 2 0.952 0.234 0.87 0.0E+00 0.0E+00 Fcer2a 2 0.613 0.049 0.80 0.0E+00 0.0E+00 Ighm 2 0.923 0.379 0.77 0.0E+00 0.0E+00 H2-Eb1 2 0.989 0.397 0.72 0.0E+00 0.0E+00 Iglc3 2 0.886 0.213 0.72 0.0E+00 0.0E+00 Bank1 2 0.628 0.057 0.69 0.0E+00 0.0E+00 H2-Ab1 2 0.99 0.476 0.69 0.0E+00 0.0E+00 Cd72 2 0.628 0.17 0.63 0.0E+00 0.0E+00 Hvcn1 2 0.712 0.237 0.60 0.0E+00 0.0E+00 Cd83 2 0.735 0.25 0.58 0.0E+00 0.0E+00 Vpreb3 2 0.635 0.111 0.58 0.0E+00 0.0E+00 Tnfrsf13c 2 0.687 0.125 0.57 0.0E+00 0.0E+00 Cd37 2 0.902 0.551 0.56 0.0E+00 0.0E+00 Ms4a1 2 0.876 0.142 0.56 0.0E+00 0.0E+00 Mef2c 2 0.811 0.249 0.56 0.0E+00 0.0E+00 Snn 2 0.524 0.058 0.55 0.0E+00 0.0E+00 Cd52 2 0.991 0.862 0.54 0.0E+00 0.0E+00 Fcrl1 2 0.493 0.077 0.51 0.0E+00 0.0E+00 Capg 2 0.635 0.284 0.45 0.0E+00 0.0E+00 Ly6d 2 0.301 0.031 0.44 0.0E+00 0.0E+00 Ifi30 2 0.787 0.264 0.44 0.0E+00 0.0E+00 Scd1 2 0.404 0.039 0.43 0.0E+00 0.0E+00 Siglecg 2 0.569 0.151 0.42 0.0E+00 0.0E+00 H2-Ob 2 0.542 0.131 0.41 0.0E+00 0.0E+00 H2-Oa 2 0.545 0.185 0.40 0.0E+00 0.0E+00 Fcrla 2 0.535 0.137 0.40 0.0E+00 0.0E+00 Ly6e 2 0.673 0.332 0.39 0.0E+00 0.0E+00 Pou2f2 2 0.578 0.204 0.39 0.0E+00 0.0E+00 Cd19 2 0.496 0.098 0.38 0.0E+00 0.0E+00 Sapcd1 2 0.286 0.035 0.38 0.0E+00 0.0E+00 A530040E14Rik 2 0.395 0.099 0.38 0.0E+00 0.0E+00 Napsa 2 0.686 0.238 0.37 0.0E+00 0.0E+00 H2-DMa 2 0.768 0.3 0.36 0.0E+00 0.0E+00 AC125149.3 2 0.36 0.094 0.36 0.0E+00 0.0E+00 Fam43a 2 0.34 0.058 0.35 0.0E+00 0.0E+00 Cd55 2 0.347 0.05 0.35 0.0E+00 0.0E+00 Dok3 2 0.44 0.096 0.33 0.0E+00 0.0E+00 Pold4 2 0.683 0.338 0.31 0.0E+00 0.0E+00 Blk 2 0.362 0.08 0.31 0.0E+00 0.0E+00 Cxcr4 2 0.562 0.31 0.30 0.0E+00 0.0E+00 Lmo2 2 0.386 0.105 0.29 0.0E+00 0.0E+00 Chchd10 2 0.549 0.213 0.28 0.0E+00 0.0E+00 Ralgps2 2 0.393 0.133 0.28 0.0E+00 0.0E+00 Cxcr5 2 0.329 0.097 0.27 0.0E+00 0.0E+00 Pkig 2 0.611 0.225 0.27 0.0E+00 0.0E+00 Serpinb1a 2 0.481 0.182 0.26 0.0E+00 0.0E+00 Ms4a4c 2 0.28 0.066 0.26 0.0E+00 0.0E+00 Cd22 2 0.35 0.078 0.26 0.0E+00 0.0E+00 Unc93b1 2 0.593 0.246 0.25 0.0E+00 0.0E+00 Ptpn6 2 0.714 0.426 0.25 0.0E+00 0.0E+00 Ptp4a3 2 0.62 0.336 0.25 0.0E+00 0.0E+00 Dusp2 2 0.616 0.354 0.34  4.4E−299  8.4E−295 Foxp1 2 0.646 0.435 0.28  2.2E−292  4.3E−288 Cxcr6 3 0.935 0.166 1.27 0.0E+00 0.0E+00 Car2 3 0.915 0.198 1.21 0.0E+00 0.0E+00 Lgals3 3 0.938 0.232 1.17 0.0E+00 0.0E+00 Tmem176b 3 0.975 0.222 1.17 0.0E+00 0.0E+00 Tmem176a 3 0.952 0.203 1.07 0.0E+00 0.0E+00 Serpinb1a 3 0.777 0.161 1.03 0.0E+00 0.0E+00 AW112010 3 0.991 0.553 0.96 0.0E+00 0.0E+00 Upp1 3 0.722 0.068 0.93 0.0E+00 0.0E+00 Il7r 3 0.911 0.348 0.89 0.0E+00 0.0E+00 Sepp1 3 0.904 0.35 0.88 0.0E+00 0.0E+00 Junb 3 0.964 0.736 0.88 0.0E+00 0.0E+00 Ffar2 3 0.693 0.091 0.84 0.0E+00 0.0E+00 Itm2b 3 0.999 0.83 0.83 0.0E+00 0.0E+00 Id2 3 0.824 0.32 0.83 0.0E+00 0.0E+00 Lmo4 3 0.86 0.286 0.83 0.0E+00 0.0E+00 Klrk1 3 0.742 0.154 0.82 0.0E+00 0.0E+00 Emb 3 0.914 0.413 0.81 0.0E+00 0.0E+00 Gadd45b 3 0.621 0.27 0.81 0.0E+00 0.0E+00 Tcrg-C1 3 0.637 0.078 0.80 0.0E+00 0.0E+00 Rora 3 0.756 0.153 0.76 0.0E+00 0.0E+00 Ncoa7 3 0.687 0.155 0.75 0.0E+00 0.0E+00 Rgs1 3 0.737 0.339 0.75 0.0E+00 0.0E+00 Zfp36l1 3 0.945 0.582 0.74 0.0E+00 0.0E+00 Ncr1 3 0.709 0.116 0.69 0.0E+00 0.0E+00 Ifngr1 3 0.814 0.41 0.67 0.0E+00 0.0E+00 Ckb 3 0.802 0.189 0.67 0.0E+00 0.0E+00 Btg2 3 0.924 0.708 0.66 0.0E+00 0.0E+00 Serpina3g 3 0.578 0.134 0.66 0.0E+00 0.0E+00 Ikzf2 3 0.705 0.182 0.66 0.0E+00 0.0E+00 Gimap3 3 0.88 0.487 0.65 0.0E+00 0.0E+00 Nfkbia 3 0.856 0.554 0.62 0.0E+00 0.0E+00 Hcst 3 0.872 0.502 0.62 0.0E+00 0.0E+00 Pim1 3 0.823 0.476 0.61 0.0E+00 0.0E+00 Ctsw 3 0.705 0.212 0.58 0.0E+00 0.0E+00 Fcer1g 3 0.904 0.324 0.58 0.0E+00 0.0E+00 Cd69 3 0.726 0.391 0.56 0.0E+00 0.0E+00 Stk19 3 0.567 0.125 0.56 0.0E+00 0.0E+00 Bhlhe40 3 0.688 0.266 0.56 0.0E+00 0.0E+00 St6galnac3 3 0.633 0.134 0.56 0.0E+00 0.0E+00 S100a10 3 0.914 0.561 0.55 0.0E+00 0.0E+00 Il18r1 3 0.592 0.116 0.55 0.0E+00 0.0E+00 Podnl1 3 0.625 0.132 0.54 0.0E+00 0.0E+00 Ltb 3 0.958 0.812 0.53 0.0E+00 0.0E+00 Chad 3 0.55 0.086 0.52 0.0E+00 0.0E+00 Cd82 3 0.817 0.405 0.51 0.0E+00 0.0E+00 Gimap4 3 0.821 0.441 0.51 0.0E+00 0.0E+00 Prr29 3 0.51 0.078 0.50 0.0E+00 0.0E+00 Txk 3 0.747 0.338 0.50 0.0E+00 0.0E+00 Sla 3 0.629 0.265 0.49 0.0E+00 0.0E+00 Asb2 3 0.507 0.118 0.49 0.0E+00 0.0E+00 Serpinb6b 3 0.461 0.138 0.48 0.0E+00 0.0E+00 Maf 3 0.527 0.115 0.48 0.0E+00 0.0E+00 Ramp3 3 0.345 0.086 0.47 0.0E+00 0.0E+00 Serpinb9 3 0.41 0.115 0.47 0.0E+00 0.0E+00 Maff 3 0.508 0.156 0.45 0.0E+00 0.0E+00 Ahcyl2 3 0.584 0.204 0.45 0.0E+00 0.0E+00 Hk2 3 0.361 0.053 0.45 0.0E+00 0.0E+00 Nrip1 3 0.652 0.303 0.44 0.0E+00 0.0E+00 Icos 3 0.468 0.118 0.44 0.0E+00 0.0E+00 Tnfrsf25 3 0.527 0.12 0.44 0.0E+00 0.0E+00 2010300C02Rik 3 0.455 0.073 0.43 0.0E+00 0.0E+00 Cd160 3 0.503 0.103 0.42 0.0E+00 0.0E+00 Rorc 3 0.437 0.064 0.41 0.0E+00 0.0E+00 Nrgn 3 0.509 0.141 0.40 0.0E+00 0.0E+00 Selplg 3 0.901 0.574 0.40 0.0E+00 0.0E+00 Tcrg-C4 3 0.366 0.079 0.38 0.0E+00 0.0E+00 C4b 3 0.288 0.026 0.38 0.0E+00 0.0E+00 Ahr 3 0.463 0.151 0.38 0.0E+00 0.0E+00 Cxcr3 3 0.413 0.078 0.38 0.0E+00 0.0E+00 Kcnk1 3 0.397 0.048 0.37 0.0E+00 0.0E+00 Slc6a20a 3 0.28 0.01 0.37 0.0E+00 0.0E+00 Tspo 3 0.864 0.578 0.36 0.0E+00 0.0E+00 F2r 3 0.385 0.076 0.36 0.0E+00 0.0E+00 Fgl2 3 0.385 0.1 0.35 0.0E+00 0.0E+00 Prelid2 3 0.444 0.124 0.34 0.0E+00 0.0E+00 Kit 3 0.436 0.109 0.33 0.0E+00 0.0E+00 Klrb1b 3 0.313 0.04 0.32 0.0E+00 0.0E+00 Aqp3 3 0.345 0.045 0.32 0.0E+00 0.0E+00 Dkkl1 3 0.36 0.071 0.31 0.0E+00 0.0E+00 Lpar6 3 0.4 0.108 0.31 0.0E+00 0.0E+00 St3gal6 3 0.441 0.141 0.31 0.0E+00 0.0E+00 Cd7 3 0.733 0.349 0.31 0.0E+00 0.0E+00 Mdfic 3 0.388 0.108 0.31 0.0E+00 0.0E+00 Ppt2 3 0.359 0.081 0.31 0.0E+00 0.0E+00 Klrb1f 3 0.373 0.084 0.30 0.0E+00 0.0E+00 Il2ra 3 0.357 0.084 0.30 0.0E+00 0.0E+00 Tmem64 3 0.396 0.12 0.30 0.0E+00 0.0E+00 Prrt1 3 0.337 0.051 0.30 0.0E+00 0.0E+00 Cited4 3 0.408 0.11 0.30 0.0E+00 0.0E+00 Eef2k 3 0.371 0.082 0.30 0.0E+00 0.0E+00 Actn2 3 0.25 0.028 0.29 0.0E+00 0.0E+00 Lysmd2 3 0.361 0.09 0.29 0.0E+00 0.0E+00 Clnk 3 0.311 0.052 0.27 0.0E+00 0.0E+00 Rbpms2 3 0.267 0.016 0.27 0.0E+00 0.0E+00 Gstm5 3 0.25 0.025 0.27 0.0E+00 0.0E+00 Xlr4a 3 0.338 0.078 0.27 0.0E+00 0.0E+00 Plekhg1 3 0.285 0.037 0.26 0.0E+00 0.0E+00 Tasp1 3 0.326 0.079 0.26 0.0E+00 0.0E+00 Gjb2 3 0.237 0.023 0.26 0.0E+00 0.0E+00 Trbc1 3 0.862 0.426 0.26 0.0E+00 0.0E+00 Bcl2a1d 3 0.45 0.153 0.26 0.0E+00 0.0E+00 Rnase4 3 0.303 0.056 0.25 0.0E+00 0.0E+00 Fhl2 3 0.291 0.055 0.25 0.0E+00 0.0E+00 Acot7 3 0.471 0.177 0.29  3.4E−313 0.0E+00 Il2rb 3 0.514 0.195 0.30  1.1E−311  2.3E−307 Gabarapl1 3 0.318 0.082 0.25  5.9E−311  1.1E−306 Shisa5 3 0.991 0.869 0.35 0.0E+00  4.1E−305 Tnf 3 0.272 0.052 0.31 0.0E+00  3.0E−304 Il22 3 0.264 0.049 1.13  3.3E−302  6.4E−298 Nabp1 3 0.569 0.255 0.46  3.5E−298  6.7E−294 Gem 3 0.587 0.274 0.59  2.1E−297  4.1E−293 Socs2 3 0.301 0.068 0.29  1.1E−293  2.1E−289 Gpr183 3 0.635 0.313 0.36  5.8E−288  1.1E−283 Uhrf2 3 0.564 0.271 0.44  1.3E−286  2.5E−282 Ccdc184 3 0.27 0.054 0.35  9.5E−286  1.8E−281 Wls 3 0.329 0.086 0.25  3.4E−283  6.6E−279 Cers4 3 0.419 0.149 0.30  2.4E−282  4.6E−278 Mast4 3 0.396 0.131 0.29  2.5E−282  4.8E−278 Stk24 3 0.593 0.325 0.31  1.9E−281  3.7E−277 Hbegf 3 0.196 0.027 0.26  5.8E−279  1.1E−274 Dusp5 3 0.616 0.313 0.39  4.6E−275  8.8E−271 Nr4a1 3 0.684 0.362 0.41  2.1E−273  4.0E−269 Il22 4 0.358 0.044 1.64 0.0E+00 0.0E+00 Tmem176a 4 0.979 0.209 1.42 0.0E+00 0.0E+00 Odc1 4 0.803 0.24 1.38 0.0E+00 0.0E+00 S100a4 4 0.884 0.11 1.37 0.0E+00 0.0E+00 Fos 4 0.874 0.472 1.33 0.0E+00 0.0E+00 Tmem176b 4 0.976 0.229 1.26 0.0E+00 0.0E+00 Gem 4 0.777 0.262 1.20 0.0E+00 0.0E+00 Junb 4 0.97 0.738 1.15 0.0E+00 0.0E+00 Ckb 4 0.891 0.188 1.05 0.0E+00 0.0E+00 Prr29 4 0.784 0.061 1.05 0.0E+00 0.0E+00 Rasl11a 4 0.603 0.042 1.02 0.0E+00 0.0E+00 Ncoa7 4 0.798 0.151 1.01 0.0E+00 0.0E+00 Itm2b 4 0.999 0.832 1.01 0.0E+00 0.0E+00 Il7r 4 0.951 0.351 1.01 0.0E+00 0.0E+00 Fosb 4 0.623 0.152 0.99 0.0E+00 0.0E+00 Jun 4 0.795 0.38 0.95 0.0E+00 0.0E+00 Sepp1 4 0.944 0.352 0.94 0.0E+00 0.0E+00 Fcer1g 4 0.98 0.324 0.91 0.0E+00 0.0E+00 Cd82 4 0.901 0.403 0.90 0.0E+00 0.0E+00 Ltb 4 0.982 0.812 0.89 0.0E+00 0.0E+00 Id2 4 0.854 0.323 0.89 0.0E+00 0.0E+00 Cd7 4 0.876 0.342 0.88 0.0E+00 0.0E+00 Chad 4 0.724 0.078 0.87 0.0E+00 0.0E+00 Uhrf2 4 0.715 0.262 0.87 0.0E+00 0.0E+00 Cxcr6 4 0.861 0.179 0.87 0.0E+00 0.0E+00 Sdc4 4 0.748 0.168 0.86 0.0E+00 0.0E+00 Cited4 4 0.614 0.097 0.81 0.0E+00 0.0E+00 Hebp1 4 0.565 0.061 0.79 0.0E+00 0.0E+00 Rora 4 0.73 0.162 0.75 0.0E+00 0.0E+00 Nrgn 4 0.719 0.128 0.74 0.0E+00 0.0E+00 Nr4a1 4 0.774 0.359 0.74 0.0E+00 0.0E+00 Ier2 4 0.789 0.512 0.73 0.0E+00 0.0E+00 Dusp1 4 0.749 0.444 0.72 0.0E+00 0.0E+00 Sla 4 0.697 0.263 0.71 0.0E+00 0.0E+00 Fam110a 4 0.55 0.084 0.70 0.0E+00 0.0E+00 Maff 4 0.631 0.15 0.69 0.0E+00 0.0E+00 Gadd45b 4 0.623 0.273 0.68 0.0E+00 0.0E+00 Nfkbia 4 0.914 0.552 0.68 0.0E+00 0.0E+00 Car2 4 0.803 0.215 0.67 0.0E+00 0.0E+00 Zfp36l1 4 0.935 0.587 0.67 0.0E+00 0.0E+00 Dhrs3 4 0.674 0.135 0.67 0.0E+00 0.0E+00 Espn 4 0.591 0.063 0.65 0.0E+00 0.0E+00 Jund 4 0.94 0.813 0.65 0.0E+00 0.0E+00 Ramp1 4 0.719 0.294 0.65 0.0E+00 0.0E+00 Ccr6 4 0.618 0.077 0.64 0.0E+00 0.0E+00 Cd69 4 0.761 0.391 0.63 0.0E+00 0.0E+00 Tnfsf11 4 0.359 0.046 0.63 0.0E+00 0.0E+00 Oser1 4 0.707 0.349 0.63 0.0E+00 0.0E+00 Bhlhe40 4 0.709 0.269 0.62 0.0E+00 0.0E+00 Ccdc184 4 0.47 0.041 0.62 0.0E+00 0.0E+00 Lmna 4 0.393 0.072 0.62 0.0E+00 0.0E+00 Rgs2 4 0.811 0.482 0.61 0.0E+00 0.0E+00 Lmo4 4 0.817 0.295 0.60 0.0E+00 0.0E+00 Rorc 4 0.557 0.059 0.60 0.0E+00 0.0E+00 Egr1 4 0.526 0.186 0.59 0.0E+00 0.0E+00 Cited2 4 0.57 0.23 0.59 0.0E+00 0.0E+00 Lgals3 4 0.742 0.255 0.58 0.0E+00 0.0E+00 Klf4 4 0.457 0.123 0.58 0.0E+00 0.0E+00 Nrip1 4 0.715 0.302 0.57 0.0E+00 0.0E+00 Ffar2 4 0.563 0.107 0.56 0.0E+00 0.0E+00 Emb 4 0.846 0.424 0.56 0.0E+00 0.0E+00 Sfr1 4 0.779 0.346 0.56 0.0E+00 0.0E+00 Cd81 4 0.65 0.232 0.56 0.0E+00 0.0E+00 Tmem59 4 0.848 0.483 0.55 0.0E+00 0.0E+00 Serpina3g 4 0.543 0.142 0.55 0.0E+00 0.0E+00 Tnfrsf25 4 0.607 0.118 0.54 0.0E+00 0.0E+00 Podnl1 4 0.606 0.139 0.53 0.0E+00 0.0E+00 Ube2e3 4 0.589 0.179 0.53 0.0E+00 0.0E+00 Ldhb 4 0.466 0.092 0.53 0.0E+00 0.0E+00 Gpr132 4 0.66 0.261 0.52 0.0E+00 0.0E+00 Upp1 4 0.507 0.091 0.52 0.0E+00 0.0E+00 Kit 4 0.551 0.103 0.51 0.0E+00 0.0E+00 Dgat1 4 0.504 0.116 0.51 0.0E+00 0.0E+00 Arrdc4 4 0.499 0.094 0.50 0.0E+00 0.0E+00 Znrf1 4 0.632 0.219 0.49 0.0E+00 0.0E+00 Slc6a13 4 0.41 0.032 0.49 0.0E+00 0.0E+00 Rabac1 4 0.889 0.614 0.48 0.0E+00 0.0E+00 M1ap 4 0.417 0.037 0.48 0.0E+00 0.0E+00 Il18r1 4 0.548 0.125 0.47 0.0E+00 0.0E+00 Arg1 4 0.265 0.038 0.47 0.0E+00 0.0E+00 Acot7 4 0.573 0.172 0.46 0.0E+00 0.0E+00 Tspo 4 0.871 0.58 0.46 0.0E+00 0.0E+00 Asb2 4 0.504 0.122 0.46 0.0E+00 0.0E+00 Lamp1 4 0.806 0.463 0.46 0.0E+00 0.0E+00 Ostf1 4 0.844 0.573 0.44 0.0E+00 0.0E+00 2010300C02Rik 4 0.456 0.077 0.44 0.0E+00 0.0E+00 Fdx1 4 0.479 0.138 0.44 0.0E+00 0.0E+00 Mast4 4 0.493 0.126 0.44 0.0E+00 0.0E+00 Serpinb1a 4 0.606 0.181 0.43 0.0E+00 0.0E+00 Kcnk1 4 0.435 0.049 0.42 0.0E+00 0.0E+00 Shisa5 4 0.994 0.87 0.42 0.0E+00 0.0E+00 Pxdc1 4 0.379 0.089 0.41 0.0E+00 0.0E+00 Anxa5 4 0.609 0.22 0.41 0.0E+00 0.0E+00 Sec11c 4 0.862 0.516 0.41 0.0E+00 0.0E+00 Tm9sf2 4 0.484 0.149 0.40 0.0E+00 0.0E+00 Itm2c 4 0.733 0.362 0.40 0.0E+00 0.0E+00 St6galnac3 4 0.529 0.147 0.40 0.0E+00 0.0E+00 Cmc2 4 0.562 0.194 0.39 0.0E+00 0.0E+00 Dkkl1 4 0.408 0.07 0.38 0.0E+00 0.0E+00 Nrp1 4 0.354 0.042 0.37 0.0E+00 0.0E+00 Ptges 4 0.319 0.009 0.36 0.0E+00 0.0E+00 Xlr4a 4 0.399 0.076 0.36 0.0E+00 0.0E+00 Il17re 4 0.36 0.028 0.36 0.0E+00 0.0E+00 Il2ra 4 0.39 0.085 0.35 0.0E+00 0.0E+00 S100a6 4 0.553 0.176 0.35 0.0E+00 0.0E+00 Stom 4 0.358 0.034 0.35 0.0E+00 0.0E+00 Piwil4 4 0.291 0.005 0.35 0.0E+00 0.0E+00 Scn1b 4 0.347 0.039 0.35 0.0E+00 0.0E+00 Nmrk1 4 0.339 0.086 0.35 0.0E+00 0.0E+00 Igfbp7 4 0.515 0.05 0.34 0.0E+00 0.0E+00 Slc41a3 4 0.33 0.031 0.34 0.0E+00 0.0E+00 Xlr4c 4 0.415 0.11 0.34 0.0E+00 0.0E+00 Eef2k 4 0.393 0.084 0.33 0.0E+00 0.0E+00 Cntn1 4 0.312 0.014 0.33 0.0E+00 0.0E+00 Xist 4 0.999 0.871 0.33 0.0E+00 0.0E+00 Casp4 4 0.334 0.069 0.32 0.0E+00 0.0E+00 Dtx4 4 0.356 0.064 0.32 0.0E+00 0.0E+00 Hmgn3 4 0.48 0.16 0.31 0.0E+00 0.0E+00 Cx3cl1 4 0.267 0.012 0.31 0.0E+00 0.0E+00 Oaz1 4 0.999 0.945 0.30 0.0E+00 0.0E+00 Dkk3 4 0.309 0.033 0.30 0.0E+00 0.0E+00 Serinc2 4 0.309 0.025 0.29 0.0E+00 0.0E+00 Ret 4 0.298 0.032 0.29 0.0E+00 0.0E+00 Sdc1 4 0.302 0.048 0.29 0.0E+00 0.0E+00 Igf1r 4 0.31 0.053 0.27 0.0E+00 0.0E+00 Clnk 4 0.318 0.054 0.27 0.0E+00 0.0E+00 Ddc 4 0.222 0.022 0.27 0.0E+00 0.0E+00 Cdc14a 4 0.249 0.036 0.27 0.0E+00 0.0E+00 Ptger2 4 0.252 0.03 0.26 0.0E+00 0.0E+00 Vipr2 4 0.261 0.014 0.26 0.0E+00 0.0E+00 Il1r1 4 0.259 0.022 0.25 0.0E+00 0.0E+00 Bcl2 4 0.85 0.511 0.41  2.2E−302  4.2E−298 S100a1 4 0.291 0.058 0.26  2.8E−300  5.3E−296 Aqp3 4 0.29 0.052 0.26  1.1E−299  2.2E−295 Ecm1 4 0.272 0.047 0.29  5.6E−298  1.1E−293 Mrfap1 4 0.789 0.534 0.36  2.9E−297  5.5E−293 Dbp 4 0.306 0.076 0.31  1.4E−289  2.8E−285 Rabgap1l 4 0.607 0.294 0.36  3.5E−287  6.7E−283 Gpx4 4 0.903 0.657 0.38  8.7E−286  1.7E−281 Agtrap 4 0.362 0.1 0.27  2.2E−282  4.2E−278 Tgif1 4 0.558 0.247 0.41  1.3E−280  2.6E−276 Fhl2 4 0.289 0.058 0.27  2.9E−279  5.6E−275 Nfatc2 4 0.31 0.076 0.26  9.3E−278  1.8E−273 Lta 4 0.264 0.06 0.39  3.4E−276  6.6E−272 Sptssa 4 0.786 0.468 0.38  1.2E−274  2.4E−270 Ptms 4 0.618 0.285 0.30  6.8E−274  1.3E−269 Cd8b1 5 0.947 0.092 1.29 0.0E+00 0.0E+00 Cd8a 5 0.799 0.06 0.90 0.0E+00 0.0E+00 Dapl1 5 0.55 0.082 0.86 0.0E+00 0.0E+00 Ms4a4b 5 0.935 0.373 0.76 0.0E+00 0.0E+00 Cd3d 5 0.934 0.326 0.75 0.0E+00 0.0E+00 Cd3e 5 0.912 0.299 0.69 0.0E+00 0.0E+00 Thy1 5 0.793 0.265 0.67 0.0E+00 0.0E+00 Lef1 5 0.818 0.246 0.67 0.0E+00 0.0E+00 Cd3g 5 0.942 0.344 0.62 0.0E+00 0.0E+00 Trbc2 5 0.958 0.549 0.56 0.0E+00 0.0E+00 Trac 5 0.796 0.279 0.54 0.0E+00 0.0E+00 Wdr89 5 0.98 0.854 0.52 0.0E+00 0.0E+00 Lat 5 0.797 0.332 0.51 0.0E+00 0.0E+00 Arl4c 5 0.626 0.188 0.50 0.0E+00 0.0E+00 Nkg7 5 0.818 0.215 0.50 0.0E+00 0.0E+00 Ms4a6b 5 0.799 0.365 0.50 0.0E+00 0.0E+00 Klk8 5 0.572 0.162 0.47 0.0E+00 0.0E+00 Tmsb10 5 1 0.977 0.41 0.0E+00 0.0E+00 Acp5 5 0.595 0.246 0.38 0.0E+00 0.0E+00 Npc2 5 0.909 0.61 0.31 0.0E+00 0.0E+00 Saraf 5 0.76 0.431 0.39  5.5E−314 0.0E+00 Igfbp4 5 0.555 0.175 0.43  1.1E−313 0.0E+00 Ccr7 5 0.678 0.28 0.38  9.7E−298  1.9E−293 Klf2 5 0.931 0.614 0.40  1.4E−276  2.6E−272 Bst2 6 0.998 0.243 2.99 0.0E+00 0.0E+00 Ly6c2 6 0.997 0.082 2.81 0.0E+00 0.0E+00 Tyrobp 6 0.999 0.263 2.67 0.0E+00 0.0E+00 Siglech 6 0.998 0.053 2.67 0.0E+00 0.0E+00 Ccl4 6 0.868 0.134 2.60 0.0E+00 0.0E+00 Klk1 6 0.96 0.041 2.60 0.0E+00 0.0E+00 Plac8 6 0.999 0.204 2.59 0.0E+00 0.0E+00 Cox6a2 6 0.969 0.019 2.42 0.0E+00 0.0E+00 Ly6c1 6 0.991 0.062 2.36 0.0E+00 0.0E+00 Irf8 6 0.997 0.371 2.27 0.0E+00 0.0E+00 Ctsb 6 0.994 0.335 2.20 0.0E+00 0.0E+00 Psap 6 0.998 0.502 2.19 0.0E+00 0.0E+00 Rnase6 6 0.992 0.124 2.15 0.0E+00 0.0E+00 Grn 6 0.986 0.119 2.11 0.0E+00 0.0E+00 Ctsl 6 0.96 0.079 2.01 0.0E+00 0.0E+00 Mpeg1 6 0.983 0.048 1.97 0.0E+00 0.0E+00 D13Ertd608e 6 0.924 0.007 1.92 0.0E+00 0.0E+00 Klk1b27 6 0.965 0.018 1.88 0.0E+00 0.0E+00 Fth1 6 1 0.978 1.80 0.0E+00 0.0E+00 Pld4 6 0.975 0.098 1.78 0.0E+00 0.0E+00 Ctsh 6 0.988 0.27 1.76 0.0E+00 0.0E+00 Ccr9 6 0.956 0.11 1.75 0.0E+00 0.0E+00 Cybb 6 0.978 0.146 1.70 0.0E+00 0.0E+00 Lgals1 6 0.978 0.292 1.68 0.0E+00 0.0E+00 Iglc3 6 0.968 0.236 1.67 0.0E+00 0.0E+00 Tcf4 6 0.977 0.184 1.67 0.0E+00 0.0E+00 Dnajc7 6 0.982 0.321 1.64 0.0E+00 0.0E+00 Clec12a 6 0.93 0.053 1.57 0.0E+00 0.0E+00 Lair1 6 0.937 0.034 1.54 0.0E+00 0.0E+00 Tsc22d1 6 0.908 0.088 1.50 0.0E+00 0.0E+00 Sell 6 0.973 0.28 1.49 0.0E+00 0.0E+00 Cd8b1 6 0.593 0.116 1.48 0.0E+00 0.0E+00 Slpi 6 0.789 0.06 1.47 0.0E+00 0.0E+00 Pgls 6 0.979 0.41 1.45 0.0E+00 0.0E+00 Tspan13 6 0.982 0.462 1.42 0.0E+00 0.0E+00 St8sia4 6 0.927 0.14 1.39 0.0E+00 0.0E+00 Snx5 6 0.974 0.39 1.39 0.0E+00 0.0E+00 Alox5ap 6 0.937 0.052 1.39 0.0E+00 0.0E+00 Ifi27l2a 6 0.844 0.368 1.37 0.0E+00 0.0E+00 P2ry14 6 0.874 0.029 1.35 0.0E+00 0.0E+00 Ly6e 6 0.891 0.331 1.32 0.0E+00 0.0E+00 Atp1b1 6 0.897 0.137 1.31 0.0E+00 0.0E+00 Bcl11a 6 0.889 0.103 1.30 0.0E+00 0.0E+00 Smim5 6 0.781 0.013 1.30 0.0E+00 0.0E+00 Gpx1 6 0.994 0.56 1.29 0.0E+00 0.0E+00 Serp1 6 0.989 0.518 1.29 0.0E+00 0.0E+00 Cd209d 6 0.564 0.009 1.28 0.0E+00 0.0E+00 Rilpl2 6 0.857 0.182 1.28 0.0E+00 0.0E+00 Tagln2 6 0.982 0.598 1.27 0.0E+00 0.0E+00 Upb1 6 0.86 0.017 1.27 0.0E+00 0.0E+00 Pltp 6 0.842 0.042 1.26 0.0E+00 0.0E+00 Ctss 6 0.96 0.357 1.26 0.0E+00 0.0E+00 Ncf1 6 0.861 0.131 1.25 0.0E+00 0.0E+00 Cd47 6 0.981 0.56 1.24 0.0E+00 0.0E+00 Gpr171 6 0.847 0.242 1.23 0.0E+00 0.0E+00 Ctsz 6 0.954 0.316 1.23 0.0E+00 0.0E+00 Cd209a 6 0.578 0.013 1.22 0.0E+00 0.0E+00 Nucb2 6 0.868 0.035 1.22 0.0E+00 0.0E+00 Unc93b1 6 0.934 0.238 1.20 0.0E+00 0.0E+00 Xbp1 6 0.906 0.229 1.20 0.0E+00 0.0E+00 Dap 6 0.95 0.304 1.18 0.0E+00 0.0E+00 Ppfia4 6 0.864 0.034 1.18 0.0E+00 0.0E+00 Rnaset2a 6 0.974 0.54 1.17 0.0E+00 0.0E+00 Tmed3 6 0.896 0.159 1.16 0.0E+00 0.0E+00 Syngr2 6 0.933 0.328 1.15 0.0E+00 0.0E+00 Cadm1 6 0.848 0.02 1.14 0.0E+00 0.0E+00 Runx2 6 0.811 0.053 1.13 0.0E+00 0.0E+00 Ccr2 6 0.777 0.066 1.12 0.0E+00 0.0E+00 Gnas 6 0.992 0.818 1.12 0.0E+00 0.0E+00 Selplg 6 0.983 0.576 1.12 0.0E+00 0.0E+00 Ifnar2 6 0.868 0.126 1.11 0.0E+00 0.0E+00 Cd68 6 0.83 0.039 1.11 0.0E+00 0.0E+00 Prkca 6 0.876 0.282 1.11 0.0E+00 0.0E+00 Npc2 6 0.98 0.605 1.11 0.0E+00 0.0E+00 Emp3 6 0.897 0.307 1.08 0.0E+00 0.0E+00 Fcrla 6 0.788 0.136 1.06 0.0E+00 0.0E+00 Stx7 6 0.897 0.213 1.05 0.0E+00 0.0E+00 Pkib 6 0.782 0.067 1.03 0.0E+00 0.0E+00 Neat1 6 0.848 0.362 1.02 0.0E+00 0.0E+00 Fam174a 6 0.85 0.187 1.02 0.0E+00 0.0E+00 Cd7 6 0.954 0.343 1.02 0.0E+00 0.0E+00 Lsp1 6 0.976 0.665 1.01 0.0E+00 0.0E+00 Fyb 6 0.944 0.401 1.01 0.0E+00 0.0E+00 Mef2c 6 0.947 0.263 1.01 0.0E+00 0.0E+00 Sub1 6 0.984 0.74 1.01 0.0E+00 0.0E+00 S100a6 6 0.895 0.158 1.00 0.0E+00 0.0E+00 Kctd12 6 0.81 0.113 1.00 0.0E+00 0.0E+00 Snx18 6 0.81 0.128 1.00 0.0E+00 0.0E+00 Pir 6 0.67 0.008 0.99 0.0E+00 0.0E+00 Trib1 6 0.722 0.066 0.98 0.0E+00 0.0E+00 Irf7 6 0.712 0.12 0.98 0.0E+00 0.0E+00 Kmo 6 0.79 0.042 0.98 0.0E+00 0.0E+00 Sec61b 6 0.985 0.67 0.97 0.0E+00 0.0E+00 Cst3 6 0.993 0.557 0.97 0.0E+00 0.0E+00 Ier5 6 0.919 0.474 0.97 0.0E+00 0.0E+00 Tubgcp5 6 0.744 0.043 0.97 0.0E+00 0.0E+00 Mbnl1 6 0.97 0.57 0.97 0.0E+00 0.0E+00 Abhd17b 6 0.78 0.158 0.97 0.0E+00 0.0E+00 Gltp 6 0.917 0.335 0.96 0.0E+00 0.0E+00 Spib 6 0.823 0.149 0.96 0.0E+00 0.0E+00 Sec61g 6 0.986 0.745 0.95 0.0E+00 0.0E+00 Amica1 6 0.791 0.117 0.95 0.0E+00 0.0E+00 Evi2a 6 0.768 0.135 0.95 0.0E+00 0.0E+00 Sh3bgr 6 0.7 0.008 0.95 0.0E+00 0.0E+00 Pacsin1 6 0.819 0.133 0.94 0.0E+00 0.0E+00 Lefty1 6 0.739 0.041 0.94 0.0E+00 0.0E+00 Ramp1 6 0.879 0.289 0.92 0.0E+00 0.0E+00 Plaur 6 0.561 0.064 0.91 0.0E+00 0.0E+00 Gm2a 6 0.91 0.303 0.91 0.0E+00 0.0E+00 H13 6 0.864 0.267 0.90 0.0E+00 0.0E+00 Zeb2 6 0.725 0.072 0.89 0.0E+00 0.0E+00 Cyth4 6 0.803 0.174 0.89 0.0E+00 0.0E+00 Hpse 6 0.73 0.079 0.89 0.0E+00 0.0E+00 Gapt 6 0.69 0.022 0.88 0.0E+00 0.0E+00 Reep5 6 0.918 0.409 0.88 0.0E+00 0.0E+00 Gsn 6 0.819 0.152 0.88 0.0E+00 0.0E+00 Rrbp1 6 0.798 0.202 0.87 0.0E+00 0.0E+00 Blnk 6 0.812 0.153 0.87 0.0E+00 0.0E+00 Hsp90b1 6 0.885 0.331 0.86 0.0E+00 0.0E+00 Ech1 6 0.843 0.285 0.86 0.0E+00 0.0E+00 H2-DMb1 6 0.711 0.133 0.86 0.0E+00 0.0E+00 Svbp 6 0.75 0.225 0.85 0.0E+00 0.0E+00 Ifnar1 6 0.758 0.199 0.84 0.0E+00 0.0E+00 Manf 6 0.913 0.432 0.84 0.0E+00 0.0E+00 Fyn 6 0.777 0.221 0.84 0.0E+00 0.0E+00 Tnfrsf13b 6 0.786 0.166 0.84 0.0E+00 0.0E+00 Ly86 6 0.733 0.109 0.83 0.0E+00 0.0E+00 Serinc3 6 0.867 0.317 0.83 0.0E+00 0.0E+00 Cd164 6 0.838 0.271 0.82 0.0E+00 0.0E+00 Tmem229b 6 0.706 0.069 0.82 0.0E+00 0.0E+00 Stk17b 6 0.859 0.565 0.82 0.0E+00 0.0E+00 Mtdh 6 0.863 0.382 0.81 0.0E+00 0.0E+00 Irf2bp2 6 0.712 0.106 0.81 0.0E+00 0.0E+00 Atp2a1 6 0.654 0.007 0.81 0.0E+00 0.0E+00 Slamf9 6 0.592 0.01 0.79 0.0E+00 0.0E+00 Ighm 6 0.993 0.397 0.77 0.0E+00 0.0E+00 Vimp 6 0.814 0.3 0.77 0.0E+00 0.0E+00 Klra17 6 0.57 0.007 0.76 0.0E+00 0.0E+00 I830077J02Rik 6 0.63 0.029 0.76 0.0E+00 0.0E+00 Fgfr1op2 6 0.822 0.264 0.76 0.0E+00 0.0E+00 Scimp 6 0.785 0.133 0.76 0.0E+00 0.0E+00 Ctsa 6 0.75 0.21 0.74 0.0E+00 0.0E+00 R3hdm4 6 0.798 0.291 0.74 0.0E+00 0.0E+00 Abhd17a 6 0.804 0.27 0.74 0.0E+00 0.0E+00 Smc6 6 0.845 0.457 0.73 0.0E+00 0.0E+00 Sla2 6 0.67 0.117 0.73 0.0E+00 0.0E+00 Ahnak 6 0.688 0.147 0.73 0.0E+00 0.0E+00 Litaf 6 0.728 0.186 0.72 0.0E+00 0.0E+00 Timp2 6 0.68 0.132 0.72 0.0E+00 0.0E+00 Gpcpd1 6 0.773 0.264 0.71 0.0E+00 0.0E+00 Edem2 6 0.687 0.145 0.71 0.0E+00 0.0E+00 Plekhm3 6 0.635 0.05 0.70 0.0E+00 0.0E+00 Slc44a2 6 0.713 0.154 0.70 0.0E+00 0.0E+00 Rnf149 6 0.601 0.122 0.70 0.0E+00 0.0E+00 Cdkn2d 6 0.703 0.203 0.69 0.0E+00 0.0E+00 Irf1 6 0.65 0.177 0.69 0.0E+00 0.0E+00 Rell1 6 0.586 0.052 0.68 0.0E+00 0.0E+00 Klk4 6 0.257 0.008 0.68 0.0E+00 0.0E+00 Fgr 6 0.623 0.049 0.68 0.0E+00 0.0E+00 Clec10a 6 0.48 0.007 0.68 0.0E+00 0.0E+00 Tbc1d8 6 0.593 0.025 0.67 0.0E+00 0.0E+00 Trim30a 6 0.597 0.087 0.66 0.0E+00 0.0E+00 Spns3 6 0.564 0.028 0.64 0.0E+00 0.0E+00 Lifr 6 0.543 0.012 0.64 0.0E+00 0.0E+00 Cd180 6 0.627 0.103 0.63 0.0E+00 0.0E+00 Rpgrip1 6 0.5 0.034 0.62 0.0E+00 0.0E+00 Csf2rb 6 0.577 0.039 0.62 0.0E+00 0.0E+00 Lag3 6 0.548 0.06 0.62 0.0E+00 0.0E+00 Tcf12 6 0.633 0.146 0.62 0.0E+00 0.0E+00 Rnf13 6 0.633 0.127 0.62 0.0E+00 0.0E+00 Ctse 6 0.673 0.213 0.61 0.0E+00 0.0E+00 Fam3c 6 0.678 0.188 0.60 0.0E+00 0.0E+00 Lpgat1 6 0.511 0.063 0.60 0.0E+00 0.0E+00 Rnf122 6 0.525 0.049 0.59 0.0E+00 0.0E+00 Sdc4 6 0.676 0.18 0.59 0.0E+00 0.0E+00 Klrd1 6 0.685 0.139 0.59 0.0E+00 0.0E+00 Havcr1 6 0.568 0.042 0.58 0.0E+00 0.0E+00 Nek6 6 0.518 0.025 0.58 0.0E+00 0.0E+00 Fcer1g 6 0.917 0.336 0.58 0.0E+00 0.0E+00 Card11 6 0.607 0.121 0.58 0.0E+00 0.0E+00 Hhex 6 0.553 0.093 0.58 0.0E+00 0.0E+00 Arhgef6 6 0.62 0.123 0.58 0.0E+00 0.0E+00 Mef2a 6 0.584 0.11 0.57 0.0E+00 0.0E+00 Rasgrp2 6 0.695 0.261 0.57 0.0E+00 0.0E+00 Sema4b 6 0.492 0.069 0.56 0.0E+00 0.0E+00 Mctp2 6 0.5 0.025 0.56 0.0E+00 0.0E+00 Csf2rb2 6 0.49 0.016 0.56 0.0E+00 0.0E+00 Paqr5 6 0.487 0.008 0.56 0.0E+00 0.0E+00 Rab33b 6 0.517 0.061 0.56 0.0E+00 0.0E+00 Hs3st1 6 0.551 0.071 0.55 0.0E+00 0.0E+00 Scpep1 6 0.564 0.094 0.55 0.0E+00 0.0E+00 Gpr137b 6 0.53 0.032 0.54 0.0E+00 0.0E+00 Cmah 6 0.546 0.084 0.54 0.0E+00 0.0E+00 Dntt 6 0.392 0.005 0.54 0.0E+00 0.0E+00 Man1a2 6 0.548 0.099 0.54 0.0E+00 0.0E+00 Adssl1 6 0.468 0.036 0.54 0.0E+00 0.0E+00 Flt3 6 0.51 0.043 0.54 0.0E+00 0.0E+00 Tgfbr1 6 0.52 0.086 0.54 0.0E+00 0.0E+00 Tex2 6 0.522 0.043 0.53 0.0E+00 0.0E+00 Atp13a2 6 0.507 0.046 0.53 0.0E+00 0.0E+00 Dirc2 6 0.493 0.029 0.53 0.0E+00 0.0E+00 Gas7 6 0.499 0.032 0.53 0.0E+00 0.0E+00 Net1 6 0.485 0.044 0.53 0.0E+00 0.0E+00 Npc1 6 0.484 0.029 0.53 0.0E+00 0.0E+00 Il10rb 6 0.59 0.14 0.52 0.0E+00 0.0E+00 Clec9a 6 0.445 0.01 0.52 0.0E+00 0.0E+00 Lgals3 6 0.756 0.26 0.52 0.0E+00 0.0E+00 Grina 6 0.578 0.145 0.51 0.0E+00 0.0E+00 Gna15 6 0.474 0.041 0.51 0.0E+00 0.0E+00 Cdh5 6 0.413 0.009 0.50 0.0E+00 0.0E+00 Ptprs 6 0.458 0.021 0.50 0.0E+00 0.0E+00 Mzb1 6 0.81 0.219 0.50 0.0E+00 0.0E+00 BC147527 6 0.456 0.026 0.49 0.0E+00 0.0E+00 Polr3gl 6 0.515 0.105 0.49 0.0E+00 0.0E+00 Ddr1 6 0.44 0.017 0.49 0.0E+00 0.0E+00 Rassf4 6 0.458 0.035 0.48 0.0E+00 0.0E+00 Fbxl13 6 0.435 0.004 0.48 0.0E+00 0.0E+00 Rgs18 6 0.443 0.034 0.47 0.0E+00 0.0E+00 Ccdc162 6 0.424 0.006 0.47 0.0E+00 0.0E+00 Ccr5 6 0.442 0.049 0.46 0.0E+00 0.0E+00 Nceh1 6 0.441 0.037 0.46 0.0E+00 0.0E+00 5430427O19Rik 6 0.417 0.042 0.46 0.0E+00 0.0E+00 Cd33 6 0.301 0.01 0.46 0.0E+00 0.0E+00 Cacna1e 6 0.409 0.013 0.45 0.0E+00 0.0E+00 B3gnt8 6 0.424 0.033 0.45 0.0E+00 0.0E+00 Stambpl1 6 0.433 0.054 0.45 0.0E+00 0.0E+00 Mycl 6 0.39 0.013 0.45 0.0E+00 0.0E+00 Tlr7 6 0.405 0.009 0.45 0.0E+00 0.0E+00 Slc29a3 6 0.424 0.024 0.45 0.0E+00 0.0E+00 Rilpl1 6 0.418 0.013 0.44 0.0E+00 0.0E+00 Lrrc16a 6 0.415 0.014 0.44 0.0E+00 0.0E+00 Eepd1 6 0.414 0.025 0.43 0.0E+00 0.0E+00 Klhl42 6 0.417 0.053 0.42 0.0E+00 0.0E+00 Tifab 6 0.393 0.019 0.41 0.0E+00 0.0E+00 Cd300lf 6 0.414 0.031 0.40 0.0E+00 0.0E+00 Pdzd4 6 0.368 0.004 0.39 0.0E+00 0.0E+00 Tnni2 6 0.416 0.038 0.39 0.0E+00 0.0E+00 Arhgap27os2 6 0.354 0.011 0.39 0.0E+00 0.0E+00 Tmem163 6 0.368 0.012 0.38 0.0E+00 0.0E+00 Tom1 6 0.391 0.036 0.38 0.0E+00 0.0E+00 Pirb 6 0.374 0.023 0.37 0.0E+00 0.0E+00 Zeb2os 6 0.351 0.014 0.37 0.0E+00 0.0E+00 Atp1a3 6 0.339 0.017 0.37 0.0E+00 0.0E+00 Rbm47 6 0.364 0.024 0.37 0.0E+00 0.0E+00 Tcf7l2 6 0.287 0.012 0.32 0.0E+00 0.0E+00 Plxdc1 6 0.295 0.007 0.31 0.0E+00 0.0E+00 Ldlrad3 6 0.291 0.009 0.31 0.0E+00 0.0E+00 Slco4a1 6 0.279 0.008 0.30 0.0E+00 0.0E+00 Pnck 6 0.268 0.005 0.29 0.0E+00 0.0E+00 P2ry13 6 0.246 0.004 0.28 0.0E+00 0.0E+00 P2ry6 6 0.277 0.01 0.28 0.0E+00 0.0E+00 Cpne2 6 0.273 0.012 0.28 0.0E+00 0.0E+00 Epha2 6 0.252 0.004 0.28 0.0E+00 0.0E+00 B3galnt1 6 0.258 0.005 0.27 0.0E+00 0.0E+00 Nbl1 6 0.256 0.01 0.27 0.0E+00 0.0E+00 Rap1a 6 0.94 0.466 0.90  1.3E−313 0.0E+00 9-Sep 6 0.721 0.272 0.60  5.6E−313 0.0E+00 Dclre1c 6 0.31 0.024 0.33  2.7E−312  5.2E−308 Ptpn6 6 0.892 0.426 0.89  2.0E−311  3.9E−307 Cd8a 6 0.436 0.084 0.78  2.9E−310  5.6E−306 Snx9 6 0.417 0.05 0.40 0.0E+00  8.7E−305 Ly6a 6 0.275 0.019 0.83 0.0E+00  1.1E−304 N4bp3 6 0.377 0.041 0.38  2.1E−307  4.1E−303 Cxxc5 6 0.58 0.135 0.54  3.6E−306  6.8E−302 Il7r 6 0.757 0.371 0.30  1.6E−305  3.1E−301 Asah1 6 0.433 0.053 0.42  1.5E−302  2.9E−298 Ftl1 6 0.999 0.963 0.91  1.2E−301  2.4E−297 Mgat1 6 0.589 0.125 0.54  1.4E−301  2.6E−297 Cd14 6 0.262 0.017 0.25  1.7E−301  3.3E−297 Itga4 6 0.716 0.214 0.69  1.8E−301  3.5E−297 Bloc1s2 6 0.739 0.189 0.71  1.8E−299  3.5E−295 Ifi44 6 0.248 0.011 0.35  1.6E−297  3.0E−293 Rab7b 6 0.24 0.011 0.28  2.9E−297  5.6E−293 Zfp691 6 0.281 0.021 0.32  1.9E−296  3.7E−292 Cib1 6 0.742 0.233 0.69  3.3E−295  6.3E−291 Zyx 6 0.623 0.157 0.61  3.3E−291  6.3E−287 Ubc 6 0.763 0.341 0.75  2.1E−290  4.0E−286 Rabgap1l 6 0.743 0.288 0.60  1.3E−289  2.6E−285 Trf 6 0.513 0.106 0.45  2.6E−289  4.9E−285 Gpr137b-ps 6 0.323 0.028 0.34  2.7E−289  5.1E−285 Eps15 6 0.53 0.119 0.47  2.5E−288  4.8E−284 Tgfb1 6 0.876 0.434 0.83  3.4E−288  6.6E−284 Gns 6 0.455 0.073 0.43  7.1E−288  1.4E−283 Mapkapk2 6 0.574 0.138 0.55  5.4E−286  1.0E−281 Adpgk 6 0.409 0.066 0.37  9.8E−286  1.9E−281 Tifa 6 0.409 0.056 0.44  7.0E−285  1.3E−280 Traf4 6 0.563 0.129 0.57  1.9E−284  3.7E−280 Gne 6 0.344 0.037 0.33  3.9E−284  7.6E−280 Cd44 6 0.609 0.148 0.58  9.1E−284  1.7E−279 Tbxa2r 6 0.312 0.044 0.32  2.9E−283  5.5E−279 Slc41a2 6 0.327 0.026 0.33  1.1E−280  2.0E−276 Fdps 6 0.637 0.156 0.80  1.1E−278  2.1E−274 Nptn 6 0.521 0.113 0.49  2.1E−276  4.0E−272 5730508B09Rik 6 0.29 0.026 0.31  3.7E−276  7.2E−272 Ifi44l 6 0.229 0.01 0.27  1.8E−275  3.6E−271 Lmo2 6 0.563 0.105 0.50  1.2E−274  2.4E−270 Xist 6 0.997 0.873 0.89  2.1E−274  4.0E−270 Arhgap17 6 0.597 0.156 0.54  3.9E−273  7.5E−269 Izumo1r 7 0.861 0.073 1.51 0.0E+00 0.0E+00 Trbc2 7 0.977 0.548 1.12 0.0E+00 0.0E+00 Cd3g 7 0.968 0.343 1.03 0.0E+00 0.0E+00 Trac 7 0.883 0.274 1.02 0.0E+00 0.0E+00 Cd3e 7 0.94 0.298 1.02 0.0E+00 0.0E+00 Cd3d 7 0.94 0.327 0.98 0.0E+00 0.0E+00 Rgs10 7 0.857 0.472 0.87 0.0E+00 0.0E+00 Tnfrsf4 7 0.47 0.038 0.80 0.0E+00 0.0E+00 Ifi27l2a 7 0.802 0.372 0.76 0.0E+00 0.0E+00 Lat 7 0.829 0.331 0.75 0.0E+00 0.0E+00 Tnfsf8 7 0.365 0.064 0.69 0.0E+00 0.0E+00 Lck 7 0.882 0.477 0.69 0.0E+00 0.0E+00 Ctla4 7 0.45 0.043 0.66 0.0E+00 0.0E+00 Cd28 7 0.704 0.207 0.66 0.0E+00 0.0E+00 Cd2 7 0.741 0.309 0.63 0.0E+00 0.0E+00 Pdcd1 7 0.336 0.037 0.63 0.0E+00 0.0E+00 Cd27 7 0.771 0.343 0.63 0.0E+00 0.0E+00 Sh2d1a 7 0.489 0.092 0.60 0.0E+00 0.0E+00 Cdk2ap2 7 0.863 0.601 0.56 0.0E+00 0.0E+00 Shisa5 7 0.991 0.872 0.54 0.0E+00 0.0E+00 Fyb 7 0.809 0.411 0.53 0.0E+00 0.0E+00 Maf 7 0.476 0.128 0.51 0.0E+00 0.0E+00 Cd6 7 0.494 0.09 0.50 0.0E+00 0.0E+00 Skap1 7 0.739 0.352 0.50 0.0E+00 0.0E+00 Cd5 7 0.459 0.081 0.49 0.0E+00 0.0E+00 Cd247 7 0.56 0.183 0.49 0.0E+00 0.0E+00 Tbc1d4 7 0.413 0.055 0.42 0.0E+00 0.0E+00 Hif1a 7 0.444 0.185 0.41 0.0E+00 0.0E+00 Cd4 7 0.485 0.145 0.38  2.3E−308  4.3E−304 Tox 7 0.435 0.155 0.38  3.5E−293  6.8E−289 Foxp3 7 0.174 0.01 0.25  1.0E−286  2.0E−282 Slamf6 7 0.506 0.215 0.42  1.8E−286  3.5E−282 Ccl5 8 0.993 0.181 2.74 0.0E+00 0.0E+00 Gzma 8 0.745 0.069 2.38 0.0E+00 0.0E+00 Nkg7 8 0.983 0.216 1.80 0.0E+00 0.0E+00 AW112010 8 0.996 0.569 1.52 0.0E+00 0.0E+00 Ncr1 8 0.951 0.125 1.42 0.0E+00 0.0E+00 Ctla2a 8 0.697 0.051 1.24 0.0E+00 0.0E+00 Klrd1 8 0.908 0.135 1.20 0.0E+00 0.0E+00 Ms4a4b 8 0.932 0.382 0.93 0.0E+00 0.0E+00 Klre1 8 0.703 0.016 0.93 0.0E+00 0.0E+00 Ccl3 8 0.426 0.063 0.92 0.0E+00 0.0E+00 Xcl1 8 0.532 0.077 0.90 0.0E+00 0.0E+00 Klrb1c 8 0.688 0.043 0.88 0.0E+00 0.0E+00 Klrc1 8 0.548 0.045 0.87 0.0E+00 0.0E+00 Il2rb 8 0.802 0.192 0.86 0.0E+00 0.0E+00 Klrk1 8 0.828 0.171 0.84 0.0E+00 0.0E+00 Klra3 8 0.455 0.011 0.83 0.0E+00 0.0E+00 Klri2 8 0.542 0.052 0.80 0.0E+00 0.0E+00 Serpinb9 8 0.596 0.116 0.79 0.0E+00 0.0E+00 Tyrobp 8 0.989 0.275 0.74 0.0E+00 0.0E+00 Vps37b 8 0.804 0.398 0.73 0.0E+00 0.0E+00 Ctsw 8 0.789 0.226 0.73 0.0E+00 0.0E+00 Gzmb 8 0.336 0.029 0.71 0.0E+00 0.0E+00 Eomes 8 0.578 0.021 0.71 0.0E+00 0.0E+00 Fcer1g 8 0.921 0.344 0.69 0.0E+00 0.0E+00 Ccl4 8 0.579 0.159 0.66 0.0E+00 0.0E+00 Serpinb6b 8 0.598 0.143 0.66 0.0E+00 0.0E+00 Ctsd 8 0.764 0.316 0.65 0.0E+00 0.0E+00 Nabp1 8 0.694 0.261 0.63 0.0E+00 0.0E+00 Gimap4 8 0.861 0.453 0.62 0.0E+00 0.0E+00 Ugcg 8 0.625 0.122 0.62 0.0E+00 0.0E+00 Fasl 8 0.552 0.061 0.59 0.0E+00 0.0E+00 Klra7 8 0.284 0.006 0.58 0.0E+00 0.0E+00 Dok2 8 0.648 0.192 0.57 0.0E+00 0.0E+00 Jak1 8 0.781 0.445 0.56 0.0E+00 0.0E+00 Klra9 8 0.364 0.005 0.56 0.0E+00 0.0E+00 Irf8 8 0.899 0.385 0.55 0.0E+00 0.0E+00 Klrc2 8 0.452 0.036 0.54 0.0E+00 0.0E+00 Sh2d2a 8 0.537 0.17 0.54 0.0E+00 0.0E+00 Ifngr1 8 0.833 0.423 0.51 0.0E+00 0.0E+00 Ctla2b 8 0.418 0.019 0.49 0.0E+00 0.0E+00 Klrb1f 8 0.491 0.089 0.48 0.0E+00 0.0E+00 Ccr2 8 0.475 0.092 0.46 0.0E+00 0.0E+00 Anxa2 8 0.625 0.16 0.46 0.0E+00 0.0E+00 Ptprc 8 0.904 0.632 0.46 0.0E+00 0.0E+00 Samd3 8 0.402 0.018 0.43 0.0E+00 0.0E+00 Ccr5 8 0.413 0.056 0.43 0.0E+00 0.0E+00 Pglyrp1 8 0.51 0.108 0.42 0.0E+00 0.0E+00 Klrb1a 8 0.338 0.026 0.40 0.0E+00 0.0E+00 Tm6sf1 8 0.404 0.07 0.36 0.0E+00 0.0E+00 Trdc 8 0.37 0.032 0.35 0.0E+00 0.0E+00 Ifitm10 8 0.339 0.016 0.35 0.0E+00 0.0E+00 Metrnl 8 0.325 0.037 0.35 0.0E+00 0.0E+00 1700025G04Rik 8 0.346 0.048 0.32 0.0E+00 0.0E+00 H2afz 8 0.965 0.731 0.32 0.0E+00 0.0E+00 Cma1 8 0.215 0.006 0.30 0.0E+00 0.0E+00 Prf1 8 0.232 0.011 0.28 0.0E+00 0.0E+00 Chsy1 8 0.33 0.056 0.30  7.6E−311  1.5E−306 Selplg 8 0.918 0.585 0.46 0.0E+00  4.6E−305 Cd7 8 0.779 0.361 0.56  2.7E−297  5.3E−293 Ahnak 8 0.519 0.164 0.37  4.3E−292  8.2E−288 Calm2 8 0.916 0.691 0.31  5.5E−284  1.1E−279 Txk 8 0.751 0.353 0.52  2.1E−278  4.0E−274 S100a10 8 0.899 0.574 0.47  6.0E−273  1.2E−268 Sh2d1a 8 0.438 0.1 0.38  8.2E−272  1.6E−267 Hmgb2 9 0.999 0.513 2.75 0.0E+00 0.0E+00 2810417H13Rik 9 0.919 0.038 2.64 0.0E+00 0.0E+00 Stmn1 9 0.977 0.103 2.49 0.0E+00 0.0E+00 Tuba1b 9 0.948 0.469 2.38 0.0E+00 0.0E+00 Tubb5 9 0.971 0.589 2.28 0.0E+00 0.0E+00 Ptma 9 1 0.958 2.21 0.0E+00 0.0E+00 H2afz 9 0.998 0.73 2.19 0.0E+00 0.0E+00 Ms4a1 9 0.995 0.178 2.07 0.0E+00 0.0E+00 H2afx 9 0.861 0.17 2.05 0.0E+00 0.0E+00 Hmgn2 9 0.99 0.328 2.03 0.0E+00 0.0E+00 Cd24a 9 0.976 0.187 1.92 0.0E+00 0.0E+00 Hmgn1 9 0.997 0.485 1.89 0.0E+00 0.0E+00 Cd79b 9 0.998 0.272 1.87 0.0E+00 0.0E+00 Ran 9 0.995 0.586 1.86 0.0E+00 0.0E+00 Nap1l1 9 0.997 0.432 1.85 0.0E+00 0.0E+00 Ighg1 9 0.891 0.111 1.84 0.0E+00 0.0E+00 Hmces 9 0.915 0.131 1.84 0.0E+00 0.0E+00 Hmgb1 9 0.995 0.764 1.83 0.0E+00 0.0E+00 Rgs13 9 0.948 0.065 1.83 0.0E+00 0.0E+00 Gapdh 9 0.998 0.746 1.83 0.0E+00 0.0E+00 Cd79a 9 0.997 0.232 1.81 0.0E+00 0.0E+00 Pou2af1 9 0.963 0.124 1.81 0.0E+00 0.0E+00 Anp32b 9 0.994 0.537 1.81 0.0E+00 0.0E+00 Mzb1 9 0.985 0.22 1.76 0.0E+00 0.0E+00 Cks2 9 0.807 0.116 1.74 0.0E+00 0.0E+00 Arpc5l 9 0.991 0.393 1.74 0.0E+00 0.0E+00 Vpreb3 9 0.894 0.128 1.69 0.0E+00 0.0E+00 Ebf1 9 0.987 0.193 1.69 0.0E+00 0.0E+00 Ube2s 9 0.947 0.464 1.66 0.0E+00 0.0E+00 H3f3a 9 1 0.925 1.64 0.0E+00 0.0E+00 Dut 9 0.883 0.181 1.63 0.0E+00 0.0E+00 Pold4 9 0.988 0.343 1.63 0.0E+00 0.0E+00 Slc25a5 9 0.997 0.7 1.62 0.0E+00 0.0E+00 H2afv 9 0.952 0.406 1.61 0.0E+00 0.0E+00 Txn1 9 0.987 0.501 1.60 0.0E+00 0.0E+00 Rbm3 9 0.999 0.819 1.59 0.0E+00 0.0E+00 Hnrnpa2b1 9 0.996 0.712 1.59 0.0E+00 0.0E+00 Chchd10 9 0.916 0.214 1.58 0.0E+00 0.0E+00 Crip1 9 0.997 0.578 1.58 0.0E+00 0.0E+00 Erh 9 0.985 0.542 1.56 0.0E+00 0.0E+00 Cks1b 9 0.843 0.066 1.55 0.0E+00 0.0E+00 Glrx3 9 0.971 0.316 1.54 0.0E+00 0.0E+00 Prdx1 9 0.994 0.646 1.53 0.0E+00 0.0E+00 Basp1 9 0.922 0.129 1.53 0.0E+00 0.0E+00 Ranbp1 9 0.927 0.449 1.53 0.0E+00 0.0E+00 Klhl6 9 0.934 0.239 1.52 0.0E+00 0.0E+00 Birc5 9 0.688 0.019 1.51 0.0E+00 0.0E+00 Tubb4b 9 0.79 0.249 1.50 0.0E+00 0.0E+00 Gcsam 9 0.874 0.055 1.50 0.0E+00 0.0E+00 Hnrnpa3 9 0.985 0.603 1.49 0.0E+00 0.0E+00 Cmpk1 9 0.929 0.319 1.47 0.0E+00 0.0E+00 Snrpe 9 0.993 0.614 1.47 0.0E+00 0.0E+00 2700094K13Rik 9 0.918 0.267 1.47 0.0E+00 0.0E+00 Rrm2 9 0.591 0.013 1.47 0.0E+00 0.0E+00 Slbp 9 0.89 0.299 1.47 0.0E+00 0.0E+00 Eaf2 9 0.9 0.061 1.46 0.0E+00 0.0E+00 Clic1 9 0.997 0.716 1.43 0.0E+00 0.0E+00 Pkig 9 0.934 0.231 1.43 0.0E+00 0.0E+00 Uchl3 9 0.922 0.226 1.42 0.0E+00 0.0E+00 Hnrnpk 9 0.994 0.73 1.42 0.0E+00 0.0E+00 Ube2c 9 0.546 0.017 1.42 0.0E+00 0.0E+00 Srsf3 9 0.991 0.627 1.41 0.0E+00 0.0E+00 Sypl 9 0.962 0.201 1.41 0.0E+00 0.0E+00 Snrpd1 9 0.95 0.327 1.40 0.0E+00 0.0E+00 Ppp1ca 9 0.993 0.734 1.40 0.0E+00 0.0E+00 Atp5b 9 0.99 0.727 1.40 0.0E+00 0.0E+00 Aicda 9 0.88 0.053 1.39 0.0E+00 0.0E+00 Top1 9 0.962 0.383 1.39 0.0E+00 0.0E+00 Dek 9 0.91 0.325 1.39 0.0E+00 0.0E+00 Lrmp 9 0.924 0.245 1.38 0.0E+00 0.0E+00 Snrpg 9 0.995 0.784 1.38 0.0E+00 0.0E+00 Hsp90aa1 9 0.976 0.629 1.37 0.0E+00 0.0E+00 Polr2g 9 0.938 0.316 1.37 0.0E+00 0.0E+00 Apitd1 9 0.894 0.08 1.36 0.0E+00 0.0E+00 Tnfrsf13c 9 0.906 0.147 1.35 0.0E+00 0.0E+00 Anp32e 9 0.9 0.249 1.35 0.0E+00 0.0E+00 Lmnb1 9 0.847 0.111 1.33 0.0E+00 0.0E+00 Gtf2a2 9 0.942 0.298 1.33 0.0E+00 0.0E+00 Top2a 9 0.667 0.023 1.32 0.0E+00 0.0E+00 H1fx 9 0.675 0.019 1.32 0.0E+00 0.0E+00 Cdc20 9 0.522 0.021 1.32 0.0E+00 0.0E+00 Psip1 9 0.918 0.232 1.32 0.0E+00 0.0E+00 Tcp1 9 0.955 0.36 1.32 0.0E+00 0.0E+00 Srsf2 9 0.962 0.554 1.32 0.0E+00 0.0E+00 Atp5a1 9 0.986 0.663 1.31 0.0E+00 0.0E+00 Mcm5 9 0.77 0.065 1.31 0.0E+00 0.0E+00 2700029M09Rik 9 0.883 0.183 1.31 0.0E+00 0.0E+00 Rhoh 9 0.969 0.478 1.30 0.0E+00 0.0E+00 Scimp 9 0.933 0.137 1.30 0.0E+00 0.0E+00 Bfsp2 9 0.775 0.057 1.30 0.0E+00 0.0E+00 Smagp 9 0.866 0.055 1.28 0.0E+00 0.0E+00 Cdca8 9 0.672 0.02 1.28 0.0E+00 0.0E+00 Hnrnpf 9 0.998 0.826 1.28 0.0E+00 0.0E+00 Dynll1 9 0.988 0.68 1.27 0.0E+00 0.0E+00 Ccnb2 9 0.623 0.013 1.27 0.0E+00 0.0E+00 Grb2 9 0.941 0.347 1.26 0.0E+00 0.0E+00 Pcna 9 0.759 0.171 1.26 0.0E+00 0.0E+00 Dbi 9 0.947 0.301 1.26 0.0E+00 0.0E+00 Rfc2 9 0.876 0.241 1.25 0.0E+00 0.0E+00 Snrpf 9 0.962 0.514 1.25 0.0E+00 0.0E+00 Calm3 9 0.938 0.429 1.25 0.0E+00 0.0E+00 Asf1b 9 0.75 0.034 1.24 0.0E+00 0.0E+00 Dnajc9 9 0.868 0.22 1.24 0.0E+00 0.0E+00 Lsm5 9 0.938 0.398 1.22 0.0E+00 0.0E+00 Snrpb 9 0.977 0.641 1.21 0.0E+00 0.0E+00 Mcm6 9 0.72 0.057 1.20 0.0E+00 0.0E+00 Srsf7 9 0.92 0.365 1.20 0.0E+00 0.0E+00 Pttg1 9 0.642 0.043 1.19 0.0E+00 0.0E+00 Tipin 9 0.781 0.103 1.19 0.0E+00 0.0E+00 Nudt21 9 0.94 0.338 1.19 0.0E+00 0.0E+00 Lsm6 9 0.926 0.337 1.19 0.0E+00 0.0E+00 Hnrnpu 9 0.916 0.399 1.18 0.0E+00 0.0E+00 Ube2d2a 9 0.981 0.56 1.18 0.0E+00 0.0E+00 Lsm4 9 0.927 0.417 1.18 0.0E+00 0.0E+00 Zfp706 9 0.956 0.492 1.16 0.0E+00 0.0E+00 Neil1 9 0.792 0.078 1.15 0.0E+00 0.0E+00 Alyref 9 0.807 0.21 1.15 0.0E+00 0.0E+00 Nusap1 9 0.568 0.009 1.15 0.0E+00 0.0E+00 Myl4 9 0.714 0.052 1.15 0.0E+00 0.0E+00 Smc4 9 0.795 0.286 1.15 0.0E+00 0.0E+00 Ube2n 9 0.94 0.393 1.13 0.0E+00 0.0E+00 Erp44 9 0.891 0.257 1.13 0.0E+00 0.0E+00 Ppp1cc 9 0.943 0.485 1.13 0.0E+00 0.0E+00 Lig1 9 0.693 0.056 1.12 0.0E+00 0.0E+00 U2af1 9 0.916 0.393 1.12 0.0E+00 0.0E+00 Tmpo 9 0.832 0.185 1.12 0.0E+00 0.0E+00 Ddx39 9 0.853 0.215 1.12 0.0E+00 0.0E+00 Vdac3 9 0.896 0.271 1.11 0.0E+00 0.0E+00 Mcm7 9 0.739 0.075 1.11 0.0E+00 0.0E+00 Ewsr1 9 0.923 0.386 1.11 0.0E+00 0.0E+00 Rbbp7 9 0.828 0.259 1.11 0.0E+00 0.0E+00 Sfpq 9 0.916 0.393 1.08 0.0E+00 0.0E+00 Bub3 9 0.841 0.301 1.08 0.0E+00 0.0E+00 Nasp 9 0.764 0.129 1.08 0.0E+00 0.0E+00 Csk 9 0.939 0.449 1.07 0.0E+00 0.0E+00 Mif4gd 9 0.887 0.301 1.07 0.0E+00 0.0E+00 Spc24 9 0.642 0.025 1.07 0.0E+00 0.0E+00 Mtf2 9 0.823 0.142 1.07 0.0E+00 0.0E+00 Tcf3 9 0.844 0.182 1.07 0.0E+00 0.0E+00 Mcm3 9 0.7 0.051 1.06 0.0E+00 0.0E+00 Iglc3 9 0.948 0.249 1.05 0.0E+00 0.0E+00 Gmnn 9 0.713 0.062 1.04 0.0E+00 0.0E+00 Nucks1 9 0.808 0.273 1.04 0.0E+00 0.0E+00 Ccna2 9 0.533 0.007 1.03 0.0E+00 0.0E+00 Dck 9 0.774 0.069 1.03 0.0E+00 0.0E+00 Phf5a 9 0.865 0.262 1.03 0.0E+00 0.0E+00 Dazap1 9 0.878 0.307 1.02 0.0E+00 0.0E+00 Hprt 9 0.862 0.329 1.02 0.0E+00 0.0E+00 Mki67 9 0.631 0.017 1.01 0.0E+00 0.0E+00 Bzw2 9 0.854 0.231 1.01 0.0E+00 0.0E+00 Ezh2 9 0.732 0.083 1.01 0.0E+00 0.0E+00 Akr1b3 9 0.896 0.396 0.99 0.0E+00 0.0E+00 Rbmxl1 9 0.802 0.187 0.99 0.0E+00 0.0E+00 Lsm3 9 0.838 0.251 0.99 0.0E+00 0.0E+00 Cdca3 9 0.597 0.013 0.98 0.0E+00 0.0E+00 Ssrp1 9 0.818 0.282 0.98 0.0E+00 0.0E+00 Lsm2 9 0.789 0.195 0.98 0.0E+00 0.0E+00 Tk1 9 0.631 0.02 0.98 0.0E+00 0.0E+00 Tmem243 9 0.86 0.28 0.97 0.0E+00 0.0E+00 Cdk1 9 0.53 0.01 0.97 0.0E+00 0.0E+00 Tcea1 9 0.848 0.264 0.97 0.0E+00 0.0E+00 Csrp2 9 0.742 0.043 0.96 0.0E+00 0.0E+00 Tra2b 9 0.956 0.568 0.96 0.0E+00 0.0E+00 Elof1 9 0.828 0.2 0.96 0.0E+00 0.0E+00 Apobec1 9 0.788 0.092 0.96 0.0E+00 0.0E+00 Mcm2 9 0.674 0.074 0.94 0.0E+00 0.0E+00 Cd19 9 0.801 0.106 0.94 0.0E+00 0.0E+00 Rfc1 9 0.765 0.125 0.94 0.0E+00 0.0E+00 Rbbp4 9 0.815 0.333 0.94 0.0E+00 0.0E+00 Sh2b2 9 0.724 0.061 0.91 0.0E+00 0.0E+00 H2-Ob 9 0.804 0.141 0.89 0.0E+00 0.0E+00 Rfc3 9 0.657 0.052 0.89 0.0E+00 0.0E+00 Rrm1 9 0.616 0.041 0.89 0.0E+00 0.0E+00 S1pr2 9 0.705 0.047 0.87 0.0E+00 0.0E+00 Dhfr 9 0.601 0.024 0.87 0.0E+00 0.0E+00 Cenpm 9 0.615 0.017 0.85 0.0E+00 0.0E+00 Lipc 9 0.66 0.032 0.83 0.0E+00 0.0E+00 Lbr 9 0.751 0.23 0.81 0.0E+00 0.0E+00 Igkc 9 1 0.693 0.77 0.0E+00 0.0E+00 Jchain 9 0.99 0.207 0.76 0.0E+00 0.0E+00 Tpx2 9 0.456 0.008 0.75 0.0E+00 0.0E+00 Mad2l1 9 0.605 0.035 0.74 0.0E+00 0.0E+00 Tacc3 9 0.565 0.018 0.73 0.0E+00 0.0E+00 Nuggc 9 0.586 0.026 0.72 0.0E+00 0.0E+00 Cenpe 9 0.459 0.008 0.71 0.0E+00 0.0E+00 Cep55 9 0.488 0.006 0.66 0.0E+00 0.0E+00 Fcmr 9 0.731 0.145 0.63 0.0E+00 0.0E+00 Ctsh 9 0.886 0.287 0.58 0.0E+00 0.0E+00 Esco2 9 0.388 0.003 0.58 0.0E+00 0.0E+00 Ncapg 9 0.47 0.01 0.58 0.0E+00 0.0E+00 Gpx1 9 0.887 0.572 0.46 0.0E+00 0.0E+00 Ftl1 9 0.999 0.964 0.44 0.0E+00 0.0E+00 Cyba 9 0.929 0.769 0.31 0.0E+00 0.0E+00 Lsp1 9 0.889 0.674 0.31 0.0E+00 0.0E+00 Dok3 9 0.723 0.102 0.87  1.0E−313 0.0E+00 Ssr4 9 0.754 0.529 0.27  1.2E−310  2.4E−306 Nono 9 0.919 0.408 1.01 0.0E+00  8.6E−305 Cdca2 9 0.411 0.008 0.60 0.0E+00  4.1E−304 Gdi2 9 0.987 0.532 1.35  5.2E−308  1.0E−303 Fen1 9 0.662 0.069 0.88  8.3E−308  1.6E−303 Xrcc1 9 0.709 0.093 0.82  6.1E−307  1.2E−302 Nedd8 9 0.981 0.604 1.18  1.4E−306  2.8E−302 Iglc2 9 0.847 0.209 0.97  2.8E−306  5.4E−302 Mybl2 9 0.417 0.005 0.59  6.4E−305  1.2E−300 Sumo2 9 0.99 0.781 1.30  8.3E−305  1.6E−300 Trp53i11 9 0.794 0.148 0.98  2.6E−304  5.0E−300 Mybl1 9 0.438 0.016 0.53  3.0E−304  5.7E−300 Cdkn3 9 0.425 0.008 0.74  3.1E−301  6.0E−297 Ybx1 9 0.998 0.788 1.62  1.7E−299  3.3E−295 Cd37 9 0.975 0.568 1.10  6.7E−299  1.3E−294 Cenpa 9 0.617 0.112 1.06  6.8E−297  1.3E−292 Cd22 9 0.642 0.079 0.72  1.4E−296  2.8E−292 Arhgap8 9 0.538 0.025 0.62  2.3E−295  4.4E−291 Aurkb 9 0.473 0.012 0.72  3.6E−295  6.9E−291 Atp5j 9 0.979 0.648 1.20  9.4E−294  1.8E−289 Mtmr14 9 0.771 0.099 1.00  1.2E−292  2.3E−288 Prim1 9 0.548 0.034 0.68  1.1E−289  2.2E−285 Ppp4r2 9 0.765 0.154 0.85  1.2E−289  2.2E−285 Rfc5 9 0.641 0.065 0.82  7.4E−289  1.4E−284 Pmf1 9 0.753 0.118 0.85  8.4E−289  1.6E−284 Arpp19 9 0.952 0.559 1.06  7.0E−286  1.4E−281 Hnrnpa1 9 0.985 0.616 1.36  2.1E−285  4.0E−281 H2afj 9 0.766 0.568 0.30  2.7E−285  5.2E−281 Atp5k 9 0.962 0.518 1.16  8.7E−285  1.7E−280 Ublcp1 9 0.695 0.116 0.83  2.8E−284  5.5E−280 Raly 9 0.94 0.526 1.03  7.7E−283  1.5E−278 Nuf2 9 0.38 0.004 0.52  1.3E−281  2.5E−277 Hist1h2ap 9 0.555 0.062 2.33  9.2E−281  1.8E−276 Cdc25b 9 0.565 0.056 0.71  3.8E−280  7.4E−276 H2-DMb2 9 0.98 0.275 1.39  2.0E−279  3.8E−275 Atp6v0e 9 0.84 0.619 0.38  4.1E−279  7.9E−275 Id3 9 0.722 0.112 1.01  5.2E−279  1.0E−274 Snrpa1 9 0.805 0.2 1.00  3.5E−278  6.8E−274 Uhrf1 9 0.502 0.016 0.72  6.8E−278  1.3E−273 Ccnb1 9 0.403 0.008 0.82  2.2E−277  4.3E−273 Cdk4 9 0.835 0.3 1.12  2.2E−276  4.3E−272 Racgap1 9 0.546 0.041 0.81  1.1E−275  2.1E−271 Set 9 0.936 0.524 1.22  8.7E−275  1.7E−270 Irf8 9 0.963 0.383 0.56  1.6E−274  3.1E−270 Smc2 9 0.594 0.061 0.84  3.3E−274  6.3E−270 Mbd4 9 0.529 0.033 0.58  2.0E−273  3.8E−269 Fignl1 9 0.394 0.007 0.44  3.5E−273  6.7E−269 Pbk 9 0.376 0.004 0.56  6.0E−273  1.1E−268 Polr1d 9 0.961 0.564 1.09  6.9E−273  1.3E−268 Atp5g2 9 0.991 0.741 1.31  8.6E−273  1.7E−268 Ucp2 9 0.996 0.747 1.40  1.0E−272  2.0E−268 Ckap2l 9 0.37 0.005 0.51  2.3E−272  4.4E−268 Hells 9 0.582 0.048 0.79  7.1E−272  1.4E−267 Ms4a1 10 0.991 0.178 1.67 0.0E+00 0.0E+00 Cd79b 10 0.995 0.273 1.67 0.0E+00 0.0E+00 Cd79a 10 0.998 0.232 1.51 0.0E+00 0.0E+00 Ebf1 10 0.992 0.193 1.40 0.0E+00 0.0E+00 Ighg1 10 0.844 0.114 1.39 0.0E+00 0.0E+00 Rgs13 10 0.907 0.068 1.31 0.0E+00 0.0E+00 Cd74 10 1 0.655 1.26 0.0E+00 0.0E+00 Pold4 10 0.973 0.344 1.24 0.0E+00 0.0E+00 Mzb1 10 0.97 0.221 1.23 0.0E+00 0.0E+00 H2-Eb1 10 0.999 0.43 1.16 0.0E+00 0.0E+00 H2-DMb2 10 0.971 0.276 1.15 0.0E+00 0.0E+00 Aicda 10 0.833 0.056 1.15 0.0E+00 0.0E+00 H2-Aa 10 0.999 0.472 1.14 0.0E+00 0.0E+00 Tnfrsf13c 10 0.864 0.149 1.11 0.0E+00 0.0E+00 Sypl 10 0.903 0.205 1.11 0.0E+00 0.0E+00 Crip1 10 0.982 0.579 1.10 0.0E+00 0.0E+00 Rhoh 10 0.96 0.479 1.04 0.0E+00 0.0E+00 H2-Ab1 10 0.995 0.505 1.02 0.0E+00 0.0E+00 Eaf2 10 0.798 0.067 1.00 0.0E+00 0.0E+00 Ifi30 10 0.922 0.288 1.00 0.0E+00 0.0E+00 Nap1l1 10 0.96 0.434 0.99 0.0E+00 0.0E+00 Arpc5l 10 0.944 0.396 0.99 0.0E+00 0.0E+00 Scimp 10 0.855 0.141 0.97 0.0E+00 0.0E+00 Cd37 10 0.965 0.569 0.95 0.0E+00 0.0E+00 Apoe 10 0.81 0.211 0.95 0.0E+00 0.0E+00 H2-DMa 10 0.934 0.319 0.94 0.0E+00 0.0E+00 Iglc1 10 0.827 0.204 0.93 0.0E+00 0.0E+00 Basp1 10 0.821 0.135 0.93 0.0E+00 0.0E+00 Pou2af1 10 0.84 0.131 0.91 0.0E+00 0.0E+00 Smim14 10 0.95 0.468 0.91 0.0E+00 0.0E+00 Hmces 10 0.8 0.138 0.90 0.0E+00 0.0E+00 Vpreb3 10 0.743 0.136 0.88 0.0E+00 0.0E+00 Bfsp2 10 0.649 0.063 0.83 0.0E+00 0.0E+00 Grb2 10 0.877 0.35 0.83 0.0E+00 0.0E+00 Mef2c 10 0.922 0.276 0.81 0.0E+00 0.0E+00 Klhl6 10 0.817 0.245 0.81 0.0E+00 0.0E+00 Zbtb20 10 0.829 0.314 0.78 0.0E+00 0.0E+00 Neil1 10 0.705 0.082 0.78 0.0E+00 0.0E+00 Erp44 10 0.801 0.262 0.78 0.0E+00 0.0E+00 Glrx3 10 0.828 0.324 0.77 0.0E+00 0.0E+00 Siglecg 10 0.794 0.164 0.77 0.0E+00 0.0E+00 H3f3a 10 0.999 0.926 0.77 0.0E+00 0.0E+00 Iglc2 10 0.825 0.21 0.76 0.0E+00 0.0E+00 Hvcn1 10 0.747 0.263 0.76 0.0E+00 0.0E+00 Smagp 10 0.691 0.064 0.76 0.0E+00 0.0E+00 Gcsam 10 0.674 0.065 0.75 0.0E+00 0.0E+00 Cd19 10 0.745 0.109 0.74 0.0E+00 0.0E+00 Pou2f2 10 0.792 0.215 0.74 0.0E+00 0.0E+00 Cfl1 10 0.998 0.94 0.73 0.0E+00 0.0E+00 Lrmp 10 0.797 0.252 0.73 0.0E+00 0.0E+00 Mif4gd 10 0.81 0.305 0.73 0.0E+00 0.0E+00 Cd24a 10 0.842 0.195 0.73 0.0E+00 0.0E+00 Lat2 10 0.763 0.194 0.71 0.0E+00 0.0E+00 H2-Ob 10 0.741 0.145 0.70 0.0E+00 0.0E+00 Hmgn1 10 0.924 0.489 0.69 0.0E+00 0.0E+00 Ube2d2a 10 0.897 0.564 0.69 0.0E+00 0.0E+00 Coro1a 10 0.989 0.879 0.68 0.0E+00 0.0E+00 S1pr2 10 0.602 0.053 0.68 0.0E+00 0.0E+00 Cd22 10 0.64 0.08 0.68 0.0E+00 0.0E+00 Plekho1 10 0.731 0.155 0.68 0.0E+00 0.0E+00 Apobec1 10 0.68 0.098 0.66 0.0E+00 0.0E+00 Pkig 10 0.788 0.239 0.66 0.0E+00 0.0E+00 Dynll1 10 0.958 0.682 0.66 0.0E+00 0.0E+00 Rftn1 10 0.768 0.266 0.64 0.0E+00 0.0E+00 Clic1 10 0.958 0.718 0.64 0.0E+00 0.0E+00 Arpc2 10 0.985 0.831 0.64 0.0E+00 0.0E+00 Lpxn 10 0.742 0.25 0.63 0.0E+00 0.0E+00 Trp53i11 10 0.64 0.156 0.63 0.0E+00 0.0E+00 Spib 10 0.706 0.166 0.62 0.0E+00 0.0E+00 Swap70 10 0.64 0.136 0.62 0.0E+00 0.0E+00 Fcmr 10 0.732 0.145 0.61 0.0E+00 0.0E+00 Lipc 10 0.523 0.039 0.60 0.0E+00 0.0E+00 Iglc3 10 0.89 0.252 0.59 0.0E+00 0.0E+00 Apitd1 10 0.641 0.093 0.58 0.0E+00 0.0E+00 Snx29 10 0.579 0.105 0.57 0.0E+00 0.0E+00 Sh2b2 10 0.575 0.069 0.55 0.0E+00 0.0E+00 Blnk 10 0.676 0.171 0.55 0.0E+00 0.0E+00 Mtf2 10 0.631 0.152 0.55 0.0E+00 0.0E+00 Dok3 10 0.602 0.108 0.55 0.0E+00 0.0E+00 Mtmr14 10 0.563 0.109 0.53 0.0E+00 0.0E+00 Dcaf12 10 0.632 0.17 0.52 0.0E+00 0.0E+00 Lyl1 10 0.529 0.083 0.50 0.0E+00 0.0E+00 Myl4 10 0.443 0.066 0.50 0.0E+00 0.0E+00 Slc25a19 10 0.533 0.108 0.50 0.0E+00 0.0E+00 Fcrl1 10 0.552 0.098 0.49 0.0E+00 0.0E+00 Srpk3 10 0.472 0.048 0.47 0.0E+00 0.0E+00 Nuggc 10 0.458 0.033 0.46 0.0E+00 0.0E+00 4930597A21Rik 10 0.395 0.049 0.45 0.0E+00 0.0E+00 Ildr1 10 0.404 0.035 0.42 0.0E+00 0.0E+00 Rab30 10 0.427 0.062 0.41 0.0E+00 0.0E+00 Cd86 10 0.448 0.068 0.40 0.0E+00 0.0E+00 Arhgap8 10 0.397 0.032 0.39 0.0E+00 0.0E+00 Csrp2 10 0.414 0.059 0.38 0.0E+00 0.0E+00 Mbd4 10 0.367 0.041 0.35 0.0E+00 0.0E+00 Tmem243 10 0.732 0.287 0.59  1.4E−312  2.9E−308 Anp32b 10 0.927 0.541 0.62  1.4E−310  2.8E−306 1-Mar 10 0.426 0.068 0.39  2.5E−307  4.9E−303 Efnb1 10 0.333 0.038 0.33  4.7E−307  9.0E−303 Cd83 10 0.773 0.277 0.76  1.9E−305  3.7E−301 Top1 10 0.831 0.389 0.63  1.1E−303  2.1E−299 Il4i1 10 0.417 0.065 0.62  1.0E−298  1.9E−294 Il21r 10 0.655 0.22 0.56  4.5E−298  8.7E−294 Gh 10 0.26 0.019 0.32  3.1E−297  6.0E−293 Mybl1 10 0.274 0.024 0.28  2.3E−292  4.5E−288 Eef2 10 0.998 0.945 0.64  1.6E−291  3.1E−287 Blk 10 0.474 0.09 0.41  1.8E−289  3.5E−285 Ublcp1 10 0.536 0.124 0.45  1.0E−288  1.9E−284 Bcar3 10 0.411 0.066 0.38  3.7E−287  7.2E−283 Pxk 10 0.515 0.122 0.44  1.5E−286  2.9E−282 Cd81 10 0.722 0.241 0.53  3.7E−286  7.1E−282 Ctsh 10 0.816 0.29 0.31  4.3E−284  8.3E−280 Zfos1 10 0.755 0.342 0.61  3.3E−283  6.3E−279 Eif3h 10 0.971 0.809 0.58  8.7E−283  1.7E−278 Dck 10 0.456 0.085 0.38  1.7E−282  3.3E−278 Csk 10 0.838 0.455 0.59  4.7E−282  9.0E−278 Bach2 10 0.449 0.086 0.40  2.3E−276  4.3E−272 Cd180 10 0.52 0.117 0.47  1.5E−274  2.9E−270 Xcl1 11 0.908 0.077 1.72 0.0E+00 0.0E+00 Ccl5 11 0.973 0.2 1.58 0.0E+00 0.0E+00 Ncr1 11 0.952 0.143 1.39 0.0E+00 0.0E+00 Nkg7 11 0.964 0.233 1.20 0.0E+00 0.0E+00 AW112010 11 0.997 0.578 1.19 0.0E+00 0.0E+00 Klrd1 11 0.853 0.154 1.00 0.0E+00 0.0E+00 Ctsw 11 0.906 0.235 0.97 0.0E+00 0.0E+00 Klrk1 11 0.88 0.184 0.95 0.0E+00 0.0E+00 Klrc1 11 0.595 0.055 0.92 0.0E+00 0.0E+00 Cd7 11 0.924 0.366 0.90 0.0E+00 0.0E+00 Gimap4 11 0.944 0.46 0.89 0.0E+00 0.0E+00 Ikzf2 11 0.759 0.211 0.87 0.0E+00 0.0E+00 Il2rb 11 0.779 0.207 0.78 0.0E+00 0.0E+00 Cd160 11 0.681 0.121 0.75 0.0E+00 0.0E+00 Gimap3 11 0.928 0.509 0.74 0.0E+00 0.0E+00 Fcer1g 11 0.966 0.356 0.69 0.0E+00 0.0E+00 Fasl 11 0.598 0.071 0.61 0.0E+00 0.0E+00 Klrc2 11 0.484 0.045 0.60 0.0E+00 0.0E+00 Klrb1f 11 0.579 0.095 0.60 0.0E+00 0.0E+00 Klrb1a 11 0.432 0.03 0.57 0.0E+00 0.0E+00 Hopx 11 0.493 0.044 0.51 0.0E+00 0.0E+00 Tyrobp 11 0.945 0.292 0.38 0.0E+00 0.0E+00 Serpinb6b 11 0.642 0.152 0.72  7.4E−288  1.4E−283 Car2 11 0.783 0.243 0.82  3.9E−283  7.4E−279 Bcl2a1d 11 0.643 0.165 0.61  1.2E−282  2.3E−278 Hcst 11 0.921 0.522 0.69  3.4E−276  6.5E−272 Klrb1c 11 0.484 0.063 0.56  1.2E−275  2.3E−271 Hes1 12 0.772 0.06 2.21 0.0E+00 0.0E+00 Lmo4 12 0.988 0.317 2.02 0.0E+00 0.0E+00 Hilpda 12 0.86 0.158 1.90 0.0E+00 0.0E+00 Calca 12 0.616 0.014 1.87 0.0E+00 0.0E+00 Il13 12 0.444 0.01 1.68 0.0E+00 0.0E+00 Gata3 12 0.946 0.128 1.68 0.0E+00 0.0E+00 Hs3st1 12 0.846 0.082 1.55 0.0E+00 0.0E+00 Areg 12 0.448 0.018 1.41 0.0E+00 0.0E+00 Tcrg-C1 12 0.786 0.108 1.34 0.0E+00 0.0E+00 Junb 12 0.989 0.749 1.28 0.0E+00 0.0E+00 Nfkb1 12 0.834 0.322 1.22 0.0E+00 0.0E+00 Nr4a1 12 0.894 0.376 1.16 0.0E+00 0.0E+00 Il4 12 0.546 0.018 1.13 0.0E+00 0.0E+00 Furin 12 0.662 0.153 1.11 0.0E+00 0.0E+00 Nfkbiz 12 0.813 0.236 1.03 0.0E+00 0.0E+00 Nrip1 12 0.878 0.319 0.99 0.0E+00 0.0E+00 Dnaja1 12 0.903 0.61 0.98 0.0E+00 0.0E+00 Samsn1 12 0.891 0.328 0.95 0.0E+00 0.0E+00 Spty2d1 12 0.618 0.157 0.94 0.0E+00 0.0E+00 Sptssa 12 0.903 0.481 0.94 0.0E+00 0.0E+00 Rora 12 0.788 0.189 0.92 0.0E+00 0.0E+00 Zfp36l1 12 0.956 0.604 0.92 0.0E+00 0.0E+00 Emb 12 0.926 0.443 0.89 0.0E+00 0.0E+00 Gpr65 12 0.758 0.174 0.83 0.0E+00 0.0E+00 H3f3b 12 0.997 0.953 0.76 0.0E+00 0.0E+00 Il17rb 12 0.643 0.013 0.76 0.0E+00 0.0E+00 Deptor 12 0.59 0.015 0.74 0.0E+00 0.0E+00 4930523C07Rik 12 0.769 0.416 0.72 0.0E+00 0.0E+00 Frmd4b 12 0.6 0.072 0.68 0.0E+00 0.0E+00 Itk 12 0.613 0.173 0.65 0.0E+00 0.0E+00 Epas1 12 0.605 0.055 0.64 0.0E+00 0.0E+00 1810011H11Rik 12 0.536 0.041 0.59 0.0E+00 0.0E+00 Homer2 12 0.446 0.007 0.54 0.0E+00 0.0E+00 AA467197 12 0.416 0.016 0.51 0.0E+00 0.0E+00 Ret 12 0.493 0.041 0.50 0.0E+00 0.0E+00 Ptpn13 12 0.431 0.009 0.50 0.0E+00 0.0E+00 Rxrg 12 0.232 0.001 0.26  2.1E−305  4.1E−301 Icos 12 0.637 0.135 0.70  2.1E−301  4.0E−297 Ccr4 12 0.304 0.009 0.37  5.9E−293  1.1E−288 Btg2 12 0.959 0.72 0.94  3.7E−291  7.0E−287 Rgs2 12 0.835 0.498 1.02  1.8E−283  3.5E−279 Vps37b 12 0.812 0.408 1.03  1.9E−282  3.7E−278 S100a4 14 0.928 0.154 2.33 0.0E+00 0.0E+00 S100a11 14 0.983 0.494 2.33 0.0E+00 0.0E+00 Mdh2 14 0.973 0.515 2.27 0.0E+00 0.0E+00 S100a6 14 0.953 0.191 2.25 0.0E+00 0.0E+00 Atox1 14 0.962 0.498 2.08 0.0E+00 0.0E+00 Cfp 14 0.908 0.056 1.98 0.0E+00 0.0E+00 Napsa 14 0.981 0.271 1.83 0.0E+00 0.0E+00 Cst3 14 0.989 0.577 1.81 0.0E+00 0.0E+00 Bcl2a1b 14 0.883 0.173 1.78 0.0E+00 0.0E+00 Gm2a 14 0.964 0.33 1.75 0.0E+00 0.0E+00 Gpx1 14 0.995 0.58 1.72 0.0E+00 0.0E+00 Vim 14 0.925 0.324 1.67 0.0E+00 0.0E+00 Rogdi 14 0.917 0.093 1.67 0.0E+00 0.0E+00 Spi1 14 0.934 0.146 1.66 0.0E+00 0.0E+00 Taldo1 14 0.962 0.506 1.61 0.0E+00 0.0E+00 Bcl2a1d 14 0.901 0.165 1.59 0.0E+00 0.0E+00 Tbc1d4 14 0.793 0.064 1.58 0.0E+00 0.0E+00 Gsn 14 0.909 0.181 1.55 0.0E+00 0.0E+00 Lsp1 14 0.992 0.679 1.46 0.0E+00 0.0E+00 Grasp 14 0.723 0.059 1.44 0.0E+00 0.0E+00 Vasp 14 0.964 0.614 1.43 0.0E+00 0.0E+00 Ppp1r14a 14 0.718 0.009 1.40 0.0E+00 0.0E+00 Pglyrp1 14 0.786 0.116 1.39 0.0E+00 0.0E+00 Ms4a6c 14 0.861 0.085 1.36 0.0E+00 0.0E+00 Il1r2 14 0.603 0.016 1.34 0.0E+00 0.0E+00 Plbd1 14 0.833 0.051 1.33 0.0E+00 0.0E+00 Ywhah 14 0.915 0.429 1.29 0.0E+00 0.0E+00 Avpi1 14 0.787 0.086 1.26 0.0E+00 0.0E+00 Efhd2 14 0.839 0.215 1.10 0.0E+00 0.0E+00 Tctex1d2 14 0.792 0.104 1.07 0.0E+00 0.0E+00 Snx20 14 0.801 0.19 1.04 0.0E+00 0.0E+00 M6pr 14 0.854 0.333 1.03 0.0E+00 0.0E+00 Cyp4f16 14 0.671 0.075 1.02 0.0E+00 0.0E+00 Fam105a 14 0.776 0.194 0.98 0.0E+00 0.0E+00 Pak1 14 0.598 0.015 0.80 0.0E+00 0.0E+00 Clec4a2 14 0.512 0.009 0.77  3.5E−303  6.7E−299 2900052N01Rik 14 0.433 0.004 0.63  5.0E−302  9.6E−298 Bcl2a1a 14 0.66 0.031 1.28  6.0E−298  1.1E−293 Arpc1b 14 0.995 0.846 1.35  8.5E−295  1.6E−290 Ostf1 14 0.945 0.586 1.11  3.3E−293  6.3E−289 H2-Eb1 14 0.994 0.447 2.18  7.1E−289  1.4E−284 Btg2 14 0.984 0.722 1.34  6.3E−288  1.2E−283 Rel 14 0.826 0.204 1.14  1.3E−286  2.5E−282 Wdfy4 14 0.742 0.062 0.92  2.6E−285  5.0E−281 Mkrn1 14 0.833 0.344 0.93  3.3E−281  6.4E−277 Anpep 14 0.51 0.012 0.65 l.0E−277  2.0E−273 Ccnd1 14 0.651 0.052 1.13  2.8E−275  5.4E−271 H2-Ab1 14 0.995 0.519 2.12  1.7E−271  3.2E−267 Cd7 17 0.988 0.375 2.02 0.0E+00 0.0E+00 Cd160 17 0.924 0.128 1.50 0.0E+00 0.0E+00 Dapk2 17 0.786 0.067 1.16 0.0E+00 0.0E+00 Ctsw 17 0.956 0.246 1.26  3.1E−308  6.0E−304 Cd3g 17 0.83 0.377 1.58  8.6E−307  1.7E−302 Igha 20 0.924 0.291 6.73 0.0E+00 0.0E+00 Igkc 20 0.996 0.706 5.98 0.0E+00 0.0E+00 Jchain 20 0.996 0.239 5.84 0.0E+00 0.0E+00 Iglv1 20 0.75 0.034 3.48 0.0E+00 0.0E+00 Mzb1 20 0.962 0.251 3.03 0.0E+00 0.0E+00 Txndc5 20 0.873 0.188 2.71 0.0E+00 0.0E+00 Hsp90b1 20 0.907 0.362 2.68 0.0E+00 0.0E+00 Ssr4 20 0.919 0.537 2.39 0.0E+00 0.0E+00 Sec11c 20 0.928 0.538 2.19 0.0E+00 0.0E+00 Pdia4 20 0.839 0.186 2.11 0.0E+00 0.0E+00 Xbp1 20 0.86 0.268 2.07 0.0E+00 0.0E+00 Edem1 20 0.843 0.167 2.04 0.0E+00 0.0E+00 Manf 20 0.898 0.459 1.99 0.0E+00 0.0E+00 H13 20 0.869 0.301 1.94 0.0E+00 0.0E+00 Spcs1 20 0.886 0.484 1.78 0.0E+00 0.0E+00 Ppib 20 0.877 0.627 1.76 0.0E+00 0.0E+00 Sdf2l1 20 0.843 0.194 1.76 0.0E+00 0.0E+00 Sec61b 20 0.915 0.688 1.75 0.0E+00 0.0E+00 Pdia6 20 0.852 0.332 1.73 0.0E+00 0.0E+00 Derl3 20 0.805 0.017 1.70 0.0E+00 0.0E+00 Hspa5 20 0.86 0.503 1.68 0.0E+00 0.0E+00 Calr 20 0.881 0.524 1.67 0.0E+00 0.0E+00 Fkbp2 20 0.835 0.201 1.64 0.0E+00 0.0E+00 Rexo2 20 0.839 0.387 1.63 0.0E+00 0.0E+00 Edem2 20 0.835 0.174 1.62 0.0E+00 0.0E+00 Prdx4 20 0.771 0.085 1.60 0.0E+00 0.0E+00 Spcs2 20 0.898 0.599 1.60 0.0E+00 0.0E+00 Krtcap2 20 0.898 0.556 1.58 0.0E+00 0.0E+00 Creld2 20 0.767 0.128 1.55 0.0E+00 0.0E+00 Trp53inp1 20 0.746 0.115 1.49 0.0E+00 0.0E+00 Txndc11 20 0.792 0.136 1.46 0.0E+00 0.0E+00 Selk 20 0.877 0.596 1.41 0.0E+00 0.0E+00 Lman1 20 0.788 0.098 1.40 0.0E+00 0.0E+00 Dnajc3 20 0.784 0.268 1.38 0.0E+00 0.0E+00 Dnajb11 20 0.78 0.252 1.38 0.0E+00 0.0E+00 Srp9 20 0.869 0.534 1.34 0.0E+00 0.0E+00 Ssr2 20 0.805 0.325 1.33 0.0E+00 0.0E+00 Tmed10 20 0.86 0.388 1.30 0.0E+00 0.0E+00 Ddost 20 0.788 0.314 1.29 0.0E+00 0.0E+00 Ckap4 20 0.754 0.012 1.28 0.0E+00 0.0E+00 Ndufa1 20 0.814 0.502 1.27 0.0E+00 0.0E+00 Ssr3 20 0.754 0.207 1.24 0.0E+00 0.0E+00 Clptm1l 20 0.763 0.227 1.15 0.0E+00 0.0E+00 Ift20 20 0.763 0.283 1.14 0.0E+00 0.0E+00 Tmem248 20 0.703 0.148 0.92 0.0E+00 0.0E+00 Tnfrsf17 20 0.61 0.001 1.41  1.9E−307  3.6E−303 Spcs3 20 0.758 0.185 1.12  9.6E−307  1.9E−302 Cope 20 0.826 0.417 1.15  2.0E−303  3.8E−299 Fkbp11 20 0.682 0.005 1.36  3.1E−301  5.9E−297 Ccr10 20 0.602 0.001 1.39  1.6E−297  3.2E−293 Serp1 20 0.898 0.545 1.64  1.1E−290  2.1E−286 Derl1 20 0.733 0.292 1.00  1.4E−289  2.7E−285 Sdc1 20 0.729 0.062 1.25  1.1E−283  2.1E−279 Rpn2 20 0.75 0.306 1.13  4.4E−280  8.4E−276 Reep5 20 0.826 0.438 1.30  3.1E−279  6.0E−275 Slc35b1 20 0.674 0.133 0.96  3.3E−279  6.3E−275 Sec61g 20 0.881 0.759 1.35  1.3E−277  2.5E−273 Iglc2 20 0.907 0.234 3.07  1.0E−274  2.0E−270 Cst3 21 1 0.582 4.06 0.0E+00 0.0E+00 Ppt1 21 0.897 0.177 2.41 0.0E+00 0.0E+00 Vim 21 0.979 0.331 2.29 0.0E+00 0.0E+00 H2-DMb1 21 0.987 0.164 2.27 0.0E+00 0.0E+00 Naaa 21 0.838 0.034 2.27 0.0E+00 0.0E+00 Atox1 21 0.983 0.503 2.11 0.0E+00 0.0E+00 Fuca1 21 0.859 0.231 1.38 0.0E+00 0.0E+00 Cxx1a 21 0.778 0.09 1.28  4.7E−286  9.0E−282 Psmb9 21 0.944 0.441 1.57  3.6E−280  7.0E−276 Fgd2 21 0.876 0.051 1.29  2.8E−277  5.3E−273 Aif1 21 0.915 0.05 1.96  2.5E−274  4.8E−270 Lyz2 22 0.991 0.073 4.40 0.0E+00 0.0E+00 Ifitm3 22 0.961 0.058 2.97 0.0E+00 0.0E+00 Cebpb 22 0.953 0.256 2.44 0.0E+00 0.0E+00 Lst1 22 0.953 0.146 2.34 0.0E+00 0.0E+00 Psap 22 1 0.531 2.07 0.0E+00 0.0E+00 Ms4a6c 22 0.935 0.093 2.01 0.0E+00 0.0E+00 Ctss 22 0.957 0.391 1.80 0.0E+00 0.0E+00 Mafb 22 0.75 0.008 1.77 0.0E+00 0.0E+00 Msrb1 22 0.875 0.206 1.75 0.0E+00 0.0E+00 Sat1 22 0.953 0.458 1.67 0.0E+00 0.0E+00 Prdx5 22 0.901 0.466 1.59 0.0E+00 0.0E+00 Csf1r 22 0.832 0.007 1.31 0.0E+00 0.0E+00 Clec4a3 22 0.776 0.005 1.27 0.0E+00 0.0E+00 Ccl6 22 0.836 0.019 1.92  3.9E−305  7.5E−301 Ccl9 22 0.728 0.007 1.71  5.0E−293  9.6E−289 Sirpb1b 22 0.724 0.006 1.05  5.7E−293  1.1E−288 Sirpb1c 22 0.741 0.008 1.08  4.9E−289  9.4E−285 Lamp1 22 0.931 0.485 1.34  6.3E−288  1.2E−283 Clec4a1 22 0.69 0.006 1.00  1.4E−282  2.7E−278 Fscn1 24 0.883 0.029 2.62 0.0E+00 0.0E+00 Ccr7 24 0.906 0.302 2.44 0.0E+00 0.0E+00 Tbc1d4 24 0.928 0.071 2.07 0.0E+00 0.0E+00 Tmem123 24 0.924 0.376 1.83 0.0E+00 0.0E+00 Marcks 24 0.919 0.076 1.66 0.0E+00 0.0E+00 Tspan3 24 0.78 0.09 1.54 0.0E+00 0.0E+00 Lamp1 24 0.933 0.485 1.48 0.0E+00 0.0E+00 Ogfrl1 24 0.861 0.094 1.46 0.0E+00 0.0E+00 Iscu 24 0.915 0.32 1.44 0.0E+00 0.0E+00 Relb 24 0.924 0.189 1.43 0.0E+00 0.0E+00 Cacnb3 24 0.771 0.004 1.14 0.0E+00 0.0E+00 Birc2 24 0.78 0.101 1.09 0.0E+00 0.0E+00 Tmcc3 24 0.812 0.049 1.19  4.7E−307  9.1E−303 Marcksl1 24 0.951 0.177 2.06  1.0E−297  1.9E−293 Traf1 24 0.906 0.328 1.53  2.2E−294  4.3E−290 Cxcl16 24 0.839 0.026 1.73  1.3E−285  2.6E−281 Igfbp7 25 0.982 0.079 3.30 0.0E+00 0.0E+00 Fabp4 25 0.937 0.006 2.63 0.0E+00 0.0E+00 Plvap 25 0.878 0.01 2.31 0.0E+00 0.0E+00 Tm4sf1 25 0.869 0.003 1.92 0.0E+00 0.0E+00 Ramp2 25 0.819 0.004 1.53 0.0E+00 0.0E+00 Egfl7 25 0.837 0.004 1.30 0.0E+00 0.0E+00 Esam 25 0.801 0.007 1.27 0.0E+00 0.0E+00 Cav1 25 0.729 0.003 1.15 0.0E+00 0.0E+00 Flt1 25 0.783 0.002 1.11 0.0E+00 0.0E+00 Emcn 25 0.692 0.001 1.02 0.0E+00 0.0E+00 Crip2 25 0.792 0.019 1.22  6.3E−311  1.2E−306 Apold1 25 0.715 0.004 1.47 0.0E+00  1.1E−304 Ifitm3 25 0.95 0.059 2.03  2.1E−299  4.0E−295 Mgll 25 0.706 0.021 1.07  1.9E−296  3.6E−292 Ecscr 25 0.674 0.004 0.97  5.8E−291  1.1E−286 Tmem252 25 0.584 0.001 1.19  4.8E−282  9.2E−278 Ptprb 25 0.597 0.002 0.82  1.5E−279  2.8E−275 Mcpt1 26 0.899 0.071 6.05 0.0E+00 0.0E+00 Mcpt2 26 0.894 0.041 5.51 0.0E+00 0.0E+00 Ifitm1 26 0.991 0.034 3.82 0.0E+00 0.0E+00 Cpa3 26 0.991 0.011 3.73 0.0E+00 0.0E+00 Cd63 26 0.991 0.053 3.36 0.0E+00 0.0E+00 Fcer1a 26 0.982 0.008 3.13 0.0E+00 0.0E+00 Mcpt4 26 0.77 0.003 3.06 0.0E+00 0.0E+00 Ifitm2 26 0.986 0.085 2.80 0.0E+00 0.0E+00 Ier3 26 0.862 0.035 2.58 0.0E+00 0.0E+00 Prnp 26 0.899 0.028 2.47 0.0E+00 0.0E+00 Tph1 26 0.889 0.005 2.46 0.0E+00 0.0E+00 Furin 26 0.834 0.161 1.99 0.0E+00 0.0E+00 Scin 26 0.899 0.005 1.97 0.0E+00 0.0E+00 Srgn 26 1 0.784 1.94 0.0E+00 0.0E+00 Cyp11a1 26 0.917 0.004 1.90 0.0E+00 0.0E+00 Ms4a2 26 0.889 0.002 1.86 0.0E+00 0.0E+00 Gata2 26 0.866 0.004 1.76 0.0E+00 0.0E+00 Cmtm7 26 0.972 0.323 1.53 0.0E+00 0.0E+00 Cd34 26 0.876 0.008 1.44 0.0E+00 0.0E+00 Gmpr 26 0.857 0.005 1.36 0.0E+00 0.0E+00 Itga2b 26 0.719 0.003 1.10 0.0E+00 0.0E+00 Car8 26 0.677 0.002 0.95  1.5E−301  2.9E−297 Npl 26 0.742 0.02 1.14  3.3E−300  6.3E−296 Cx3cr1 26 0.783 0.009 1.11  3.8E−283  7.2E−279 Mcpt9 26 0.59 0.002 2.54  1.2E−275  2.4E−271 Gpx4 26 0.968 0.673 1.37  2.7E−274  5.3E−270 Il1rl1 26 0.724 0.007 0.96  7.9E−274  1.5E−269 Fabp2 30 0.963 0.058 5.36 0.0E+00 0.0E+00 Fabp1 30 0.904 0.029 4.81 0.0E+00 0.0E+00 Rbp2 30 0.926 0.017 4.50 0.0E+00 0.0E+00 Aldob 30 0.956 0.014 3.33 0.0E+00 0.0E+00 Crip1 30 0.978 0.596 2.94 0.0E+00 0.0E+00 Lgals4 30 0.993 0.026 2.92 0.0E+00 0.0E+00 2200002D01Rik 30 0.933 0.029 2.77 0.0E+00 0.0E+00 Dstn 30 0.956 0.14 2.44 0.0E+00 0.0E+00 Cystm1 30 0.919 0.028 2.39 0.0E+00 0.0E+00 Fth1 30 0.993 0.98 2.31 0.0E+00 0.0E+00 Txn1 30 0.97 0.522 2.24 0.0E+00 0.0E+00 Scp2 30 0.933 0.593 2.18 0.0E+00 0.0E+00 Smim24 30 0.83 0.069 2.15 0.0E+00 0.0E+00 Dbi 30 0.941 0.329 2.08 0.0E+00 0.0E+00 Mdh1 30 0.919 0.505 1.89 0.0E+00 0.0E+00 Atpif1 30 0.919 0.359 1.86 0.0E+00 0.0E+00 Prdx1 30 0.941 0.662 1.79 0.0E+00 0.0E+00 Hadh 30 0.859 0.137 1.79 0.0E+00 0.0E+00 Cyb5r3 30 0.778 0.178 1.74 0.0E+00 0.0E+00 Cyb5a 30 0.874 0.382 1.70 0.0E+00 0.0E+00 Cbr1 30 0.77 0.109 1.65 0.0E+00 0.0E+00 Cycs 30 0.889 0.505 1.65 0.0E+00 0.0E+00 Slc9a3r1 30 0.867 0.407 1.57 0.0E+00 0.0E+00 Glrx 30 0.8 0.123 1.55 0.0E+00 0.0E+00 Atp5o 30 0.859 0.559 1.46 0.0E+00 0.0E+00 Rfk 30 0.77 0.126 1.43 0.0E+00 0.0E+00 Txndc17 30 0.83 0.327 1.39 0.0E+00 0.0E+00 Pepd 30 0.711 0.11 1.24 0.0E+00 0.0E+00 Edf1 30 0.926 0.649 1.38  1.8E−310  3.6E−306 Phgr1 30 0.926 0.008 2.86 0.0E+00  2.9E−305 Acaa1a 30 0.733 0.153 1.17 0.0E+00  9.2E−305 Cndp2 30 0.659 0.125 1.16  1.2E−307  2.3E−303 Mdh2 30 0.889 0.522 1.78  4.5E−305  8.6E−301 Cox5a 30 0.933 0.594 1.41  8.4E−297  1.6E−292 Slc25a5 30 0.941 0.713 1.60  4.3E−293  8.3E−289 Atp5j2 30 0.933 0.746 1.31  4.8E−290  9.2E−286 Uqcrq 30 0.911 0.569 1.36  8.3E−288  1.6E−283 Abhd11os 30 0.852 0.003 1.59  1.5E−281  2.9E−277 Krt20 30 0.844 0.004 2.03  5.4E−280  1.0E−275 Ckmt1 30 0.837 0.005 2.24  4.6E−279  8.8E−275 Sephs2 30 0.741 0.16 1.17  5.4E−277  1.0E−272 Prap1 30 0.852 0.005 2.71  6.4E−276  1.2E−271 Calml4 30 0.852 0.005 1.72  8.0E−275  1.5E−270 Uqcrb 30 0.889 0.585 1.33  8.6E−274  1.7E−269 Cst3 31 0.978 0.583 2.21 0.0E+00 0.0E+00 Epsti1 31 0.425 0.174 1.60 0.0E+00 0.0E+00 Ccl21a 33 0.695 0.036 5.74 0.0E+00 0.0E+00 Mfge8 33 0.952 0.048 3.74 0.0E+00 0.0E+00 Igfbp7 33 0.981 0.082 3.64  1.8E−272  3.4E−268 Oat 35 0.717 0.164 2.24 0.0E+00 0.0E+00 Spint2 35 0.869 0.365 2.15  8.8E−311  1.7E−306 Msrb1 36 0.989 0.208 2.03 0.0E+00 0.0E+00 Mif 37 1 0.593 2.36  1.2E−276  2.3E−272 Defa24 39 0.328 0.068 7.77 0.0E+00 0.0E+00 Itln1 39 0.344 0.027 5.40 0.0E+00 0.0E+00

TABLE 2 Differential expression analysis between pairs of clusters in PP regions, related to FIG. 1. In certain embodiments, the genes can be used as markers for the cell types represented by each cluster. The table disclosed here represents only the genes with adjusted p values of 0 or less than or equal to 1.0E−150 and the genes were expressed in greater than 50% of cell type 1 and less than 10% of cell type 2. cluster ID cluster ID percentage of percentage of of cell of cell expressing cells expressing cells LN (average p value, gene type 1 type 2 in cell type 1 in cell type 2 fold change) p value adjusted Ms4a4b 1 2 0.884 0.074 1.28E+00 0.00E+00  0.00E+00  Trbc1 1 2 0.612 0.061 1.26E+00 0.00E+00  0.00E+00  Cd3g 1 2 0.907 0.052 1.26E+00 0.00E+00  0.00E+00  Igfbp4 1 2 0.632 0.03 1.23E+00 0.00E+00  0.00E+00  Cd3d 1 2 0.892 0.073 1.19E+00 0.00E+00  0.00E+00  Trac 1 2 0.803 0.034 1.09E+00 0.00E+00  0.00E+00  Cd3e 1 2 0.846 0.057 1.09E+00 0.00E+00  0.00E+00  Lef1 1 2 0.804 0.046 1.09E+00 0.00E+00  0.00E+00  Lat 1 2 0.755 0.055 8.95E−01 0.00E+00  0.00E+00  Skap1 1 2 0.674 0.038 7.44E−01 0.00E+00  0.00E+00  Fyb 1 2 0.646 0.05 7.11E−01 0.00E+00  0.00E+00  Thy1 1 2 0.546 0.033 6.87E−01 0.00E+00  0.00E+00  Tcf7 1 2 0.531 0.026 5.85E−01 0.00E+00  0.00E+00  Txk 1 2 0.509 0.032 5.65E−01 0.00E+00  0.00E+00  Igfbp4 1 3 0.632 0.022 1.23E+00 0.00E+00  0.00E+00  Ms4a4b 1 3 0.884 0.088 1.22E+00 0.00E+00  0.00E+00  Cd3d 1 3 0.892 0.031 1.22E+00 0.00E+00  0.00E+00  Cd3g 1 3 0.907 0.081 1.12E+00 0.00E+00  0.00E+00  Trac 1 3 0.803 0.062 1.06E+00 0.00E+00  0.00E+00  Cd3e 1 3 0.846 0.047 1.01E+00 0.00E+00  0.00E+00  Ccr7 1 3 0.617 0.03 8.61E−01 0.00E+00  0.00E+00  Ifi27l2a 1 3 0.578 0.043 8.38E−01 0.00E+00  0.00E+00  Cd2 1 3 0.651 0.023 7.46E−01 0.00E+00  0.00E+00  Cd27 1 3 0.632 0.097 6.41E−01 0.00E+00  0.00E+00  Emp3 1 3 0.56 0.076 5.74E−01 0.00E+00  0.00E+00  Sell 1 3 0.548 0.064 5.65E−01 0.00E+00  0.00E+00  Ms4a4b 1 4 0.884 0.027 1.33E+00 0.00E+00  0.00E+00  Cd3g 1 4 0.907 0.032 1.25E+00 0.00E+00  0.00E+00  Cd3d 1 4 0.892 0.016 1.24E+00 0.00E+00  0.00E+00  Igfbp4 1 4 0.632 0.09 1.14E+00 0.00E+00  0.00E+00  Cd3e 1 4 0.846 0.012 1.12E+00 0.00E+00  0.00E+00  Trac 1 4 0.803 0.012 1.11E+00 0.00E+00  0.00E+00  Lef1 1 4 0.804 0.029 1.10E+00 0.00E+00  0.00E+00  Ms4a6b 1 4 0.745 0.027 9.17E−01 0.00E+00  0.00E+00  Ifi27l2a 1 4 0.578 0.038 8.50E−01 0.00E+00  0.00E+00  Ccr7 1 4 0.617 0.066 8.01E−01 0.00E+00  0.00E+00  Cd2 1 4 0.651 0.011 7.59E−01 0.00E+00  0.00E+00  Cd27 1 4 0.632 0.087 6.50E−01 0.00E+00  0.00E+00  Sell 1 4 0.548 0.064 5.66E−01 0.00E+00  0.00E+00  Trbc2 1 6 0.962 0.084 1.76E+00 0.00E+00  0.00E+00  Ms4a4b 1 6 0.884 0.057 1.29E+00 0.00E+00  0.00E+00  Cd3g 1 6 0.907 0.024 1.28E+00 0.00E+00  0.00E+00  Igfbp4 1 6 0.632 0.014 1.24E+00 0.00E+00  0.00E+00  Cd3d 1 6 0.892 0.026 1.23E+00 0.00E+00  0.00E+00  Lef1 1 6 0.804 0.011 1.12E+00 0.00E+00  0.00E+00  Cd3e 1 6 0.846 0.02 1.12E+00 0.00E+00  0.00E+00  Trac 1 6 0.803 0.013 1.11E+00 0.00E+00  0.00E+00  Lat 1 6 0.755 0.098 8.34E−01 0.00E+00  0.00E+00  Lck 1 6 0.762 0.098 8.33E−01 0.00E+00  0.00E+00  Skap1 1 6 0.674 0.033 7.48E−01 0.00E+00  0.00E+00  Cd2 1 6 0.651 0.031 7.37E−01 0.00E+00  0.00E+00  Thy1 1 6 0.546 0.092 6.14E−01 0.00E+00  0.00E+00  Tcf7 1 6 0.531 0.058 5.47E−01 3.02E−285 5.35E−278 Trbc1 1 6 0.612 0.07 1.23E+00 1.52E−280 2.68E−273 Txk 1 6 0.509 0.076 5.15E−01 5.04E−207 8.93E−200 Igfbp4 1 7 0.632 0.058 1.15E+00 0.00E+00  0.00E+00  Igfbp4 1 8 0.632 0.013 1.23E+00 0.00E+00  0.00E+00  Cd3e 1 8 0.846 0.016 1.12E+00 0.00E+00  0.00E+00  Trac 1 8 0.803 0.056 1.06E+00 0.00E+00  0.00E+00  Ifi27l2a 1 8 0.578 0.054 8.03E−01 0.00E+00  0.00E+00  Rgs10 1 8 0.583 0.099 6.06E−01 0.00E+00  0.00E+00  Bcl2 1 9 0.744 0.095 1.20E+00 0.00E+00  0.00E+00  Igfbp4 1 9 0.632 0.066 1.19E+00 0.00E+00  0.00E+00  Lef1 1 9 0.804 0.057 1.07E+00 0.00E+00  0.00E+00  Trac 1 9 0.803 0.083 1.04E+00 0.00E+00  0.00E+00  Skap1 1 9 0.674 0.088 6.92E−01 0.00E+00  0.00E+00  Thy1 1 9 0.546 0.086 6.26E−01  4.2E−310 7.37E−303 Satb1 1 9 0.622 0.069 6.80E−01 1.35E−297 2.40E−290 Itgb7 1 9 0.545 0.075 5.40E−01 2.71E−259 4.80E−252 Tcf7 1 9 0.531 0.052 5.52E−01 6.98E−216 1.24E−208 Sell 1 9 0.548 0.062 5.69E−01 1.72E−207 3.05E−200 S100a10 1 9 0.545 0.093 4.84E−01 5.57E−181 9.87E−174 Ms4a4b 1 10 0.884 0.07 1.28E+00 0.00E+00  0.00E+00  Trbcl 1 10 0.612 0.064 1.26E+00 0.00E+00  0.00E+00  Bcl2 1 10 0.744 0.05 1.26E+00 0.00E+00  0.00E+00  Cd3g 1 10 0.907 0.055 1.25E+00 0.00E+00  0.00E+00  Igfbp4 1 10 0.632 0.037 1.23E+00 0.00E+00  0.00E+00  Cd3d 1 10 0.892 0.083 1.18E+00 0.00E+00  0.00E+00  Lef1 1 10 0.804 0.031 1.10E+00 0.00E+00  0.00E+00  Trac 1 10 0.803 0.05 1.08E+00 0.00E+00  0.00E+00  Cd3e 1 10 0.846 0.07 1.07E+00 0.00E+00  0.00E+00  Lat 1 10 0.755 0.076 8.77E−01 0.00E+00  0.00E+00  Ccnd2 1 10 0.669 0.044 8.10E−01 0.00E+00  0.00E+00  Ccr7 1 10 0.617 0.069 8.07E−01 0.00E+00  0.00E+00  Selplg 1 10 0.677 0.09 7.56E−01 0.00E+00  0.00E+00  Skap1 1 10 0.674 0.035 7.47E−01 0.00E+00  0.00E+00  Hcst 1 10 0.662 0.089 7.41E−01 0.00E+00  0.00E+00  Fyb 1 10 0.646 0.059 7.02E−01 0.00E+00  0.00E+00  Satb1 1 10 0.622 0.061 6.88E−01 0.00E+00  0.00E+00  Cd2 1 10 0.651 0.074 6.77E−01 0.00E+00  0.00E+00  Thy1 1 10 0.546 0.049 6.71E−01 0.00E+00  0.00E+00  Sell 1 10 0.548 0.042 5.90E−01 0.00E+00  0.00E+00  Tcf7 1 10 0.531 0.029 5.83E−01 0.00E+00  0.00E+00  Emp3 1 10 0.56 0.071 5.80E−01 0.00E+00  0.00E+00  Itgb7 1 10 0.545 0.058 5.68E−01 0.00E+00  0.00E+00  Txk 1 10 0.509 0.03 5.69E−01 2.54E−292 4.50E−285 Igfbp4 1 11 0.632 0.009 1.25E+00 0.00E+00  0.00E+00  Cd3d 1 11 0.892 0.047 1.21E+00 0.00E+00  0.00E+00  Cd3g 1 11 0.907 0.069 1.17E+00 0.00E+00  0.00E+00  Cd3e 1 11 0.846 0.021 1.11E+00 0.00E+00  0.00E+00  Lef1 1 11 0.804 0.058 1.07E+00 0.00E+00  0.00E+00  Ccr7 1 11 0.617 0.035 8.56E−01 0.00E+00  0.00E+00  Ifi27l2a 1 11 0.578 0.07 8.00E−01 7.21E−255 1.28E−247 Sell 1 11 0.548 0.094 5.24E−01 8.98E−225 1.59E−217 Ms4a4b 1 12 0.884 0.051 1.29E+00 0.00E+00  0.00E+00  Cd3d 1 12 0.892 0.028 1.23E+00 0.00E+00  0.00E+00  Igfbp4 1 12 0.632 0.03 1.20E+00 0.00E+00  0.00E+00  Trac 1 12 0.803 0.014 1.12E+00 0.00E+00  0.00E+00  Cd3e 1 12 0.846 0.057 1.07E+00 0.00E+00  0.00E+00  Lef1 1 12 0.804 0.073 1.06E+00 0.00E+00  0.00E+00  Ms4a6b 1 12 0.745 0.08 8.58E−01 0.00E+00  0.00E+00  Ccr7 1 12 0.617 0.047 8.25E−01 0.00E+00  0.00E+00  Cd2 1 12 0.651 0.026 7.43E−01 0.00E+00  0.00E+00  Ifi27l2a 1 12 0.578 0.05 8.36E−01 4.79E−257 8.48E−250 Sell 1 12 0.548 0.081 5.45E−01 3.43E−226 6.07E−219 Cd3d 1 14 0.892 0.061 1.16E+00 0.00E+00  0.00E+00  Igfbp4 1 14 0.632 0.066 1.13E+00 0.00E+00  0.00E+00  Cd3e 1 14 0.846 0.038 1.07E+00 0.00E+00  0.00E+00  Lat 1 14 0.755 0.053 8.72E−01 0.00E+00  0.00E+00  Trac 1 14 0.803 0.033 1.07E+00 3.82E−308 6.76E−301 Cd3g 1 14 0.907 0.058 1.19E+00 7.15E−303 1.27E−295 Skap1 1 14 0.674 0.072 6.92E−01 4.35E−271 7.69E−264 Cd2 1 14 0.651 0.058 6.94E−01 6.52E−249 1.16E−241 Thy1 1 14 0.546 0.085 6.21E−01 2.23E−247 3.95E−240 Cd3d 1 15 0.892 0.013 1.25E+00 5.73E−259 1.01E−251 Cd3g 1 15 0.907 0.04 1.26E+00 9.38E−259 1.66E−251 Ms4a4b 1 15 0.884 0.032 1.32E+00 4.71E−243 8.34E−236 Cd3e 1 15 0.846 0.025 1.12E+00 1.87E−198 3.31E−191 Trac 1 15 0.803 0.013 1.11E+00 1.47E−192 2.61E−185 Lef1 1 15 0.804 0.034 1.10E+00 3.09E−170 5.47E−163 Igfbp4 1 17 0.632 0.023 1.19E+00 1.92E−274 3.40E−267 Lef1 1 17 0.804 0.062 1.05E+00 3.70E−268 6.54E−261 Ccr7 1 17 0.617 0.062 8.27E−01 1.49E−178 2.63E−171 Cd2 1 17 0.651 0.082 6.70E−01 4.20E−168 7.43E−161 Igfbp4 1 20 0.632 0.042 1.20E+00 2.40E−263 4.25E−256 Cd3e 1 20 0.846 0.064 1.00E+00 5.78E−250 1.02E−242 Cd3d 1 20 0.892 0.093 1.09E+00 9.39E−239 1.66E−231 Cd3g 1 20 0.907 0.081 1.17E+00 7.45E−235 1.32E−227 Lef1 1 20 0.804 0.034 1.10E+00 1.92E−233 3.40E−226 Trac 1 20 0.803 0.064 1.05E+00 1.52E−211 2.68E−204 Skap1 1 20 0.674 0.047 7.29E−01 3.49E−167 6.17E−160 Igfbp4 1 21 0.632 0.073 1.13E+00 0.00E+00  0.00E+00  Cd3e 1 21 0.846 0.064 1.04E+00 1.92E−234 3.39E−227 Lat 1 21 0.755 0.098 8.26E−01 5.52E−234 9.77E−227 Lef1 1 21 0.804 0.038 1.05E+00 5.55E−206 9.82E−199 Cd3d 1 21 0.892 0.064 1.14E+00 4.12E−196 7.29E−189 Trac 1 21 0.803 0.034 1.06E+00 4.30E−184 7.61E−177 Skap1 1 21 0.674 0.073 6.97E−01 2.20E−169 3.89E−162 Cd3g 1 21 0.907 0.098 1.11E+00 8.39E−168 1.49E−160 Cd2 1 21 0.651 0.06 7.07E−01 1.01E−167 1.78E−160 Igfbp4 1 22 0.632 0.065 1.19E+00 2.64E−257 4.68E−250 Cd3d 1 22 0.892 0.022 1.24E+00 5.10E−251 9.02E−244 Cd3e 1 22 0.846 0.039 1.10E+00 1.11E−249 1.97E−242 Lef1 1 22 0.804 0.034 1.10E+00 8.02E−233 1.42E−225 Cd3g 1 22 0.907 0.039 1.27E+00 9.46E−231 1.68E−223 Lat 1 22 0.755 0.047 9.04E−01 3.23E−219 5.72E−212 Trac 1 22 0.803 0.013 1.12E+00 3.49E−218 6.17E−211 Lck 1 22 0.762 0.082 8.19E−01 4.80E−202 8.51E−195 Skap1 1 22 0.674 0.047 7.37E−01 3.47E−169 6.14E−162 Igfbp4 1 24 0.632 0.031 1.23E+00 4.23E−268 7.50E−261 Cd3e 1 24 0.846 0.004 1.14E+00 6.11E−261 1.08E−253 Cd3d 1 24 0.892 0.018 1.25E+00 5.34E−244 9.46E−237 Cd3g 1 24 0.907 0.027 1.22E+00 4.55E−231 8.06E−224 Trbc2 1 24 0.962 0.081 1.73E+00 8.05E−228 1.43E−220 Bcl2 1 24 0.744 0.094 1.11E+00 8.83E−227 1.56E−219 Ms4a4b 1 24 0.884 0.031 1.31E+00 1.08E−223 1.91E−216 Lat 1 24 0.755 0.027 9.28E−01 6.40E−222 1.13E−214 Lef1 1 24 0.804 0.04 1.07E+00 2.05E−221 3.63E−214 Trac 1 24 0.803 0.013 1.11E+00 4.43E−212 7.84E−205 Lck 1 24 0.762 0.058 8.80E−01 1.94E−209 3.43E−202 Gimap4 1 24 0.684 0.058 7.56E−01 1.39E−171 2.46E−164 Skap1 1 24 0.674 0.031 7.43E−01 5.48E−164 9.70E−157 Cd2 1 24 0.651 0.027 7.47E−01 4.77E−161 8.44E−154 Coro1a 1 25 0.969 0.1 1.56E+00 2.73E−307 4.83E−300 Trbc2 1 25 0.962 0.063 1.78E+00 3.50E−290 6.20E−283 Limd2 1 25 0.928 0.1 1.37E+00 3.75E−282 6.63E−275 Cd3d 1 25 0.892 0.018 1.25E+00 5.85E−242 1.04E−234 Cd3g 1 25 0.907 0.027 1.29E+00 3.89E−237 6.88E−230 Cd3e 1 25 0.846 0.009 1.13E+00 1.41E−226 2.49E−219 Ms4a4b 1 25 0.884 0.018 1.33E+00 1.38E−223 2.44E−216 Lef1 1 25 0.804 0.014 1.12E+00 2.08E−194 3.68E−187 Trac 1 25 0.803 0.009 1.12E+00 1.07E−189 1.89E−182 Lat 1 25 0.755 0.018 9.36E−01 1.97E−170 3.48E−163 Ptprcap 1 25 0.766 0.063 9.42E−01 2.29E−169 4.05E−162 Lck 1 25 0.762 0.045 8.80E−01 1.18E−166 2.08E−159 Cd3d 1 26 0.892 0.032 1.23E+00 1.65E−246 2.93E−239 Cd3e 1 26 0.846 0.078 1.04E+00 1.45E−240 2.56E−233 Cd3g 1 26 0.907 0.014 1.28E+00 7.36E−237 1.30E−229 Trbc2 1 26 0.962 0.083 1.73E+00 6.15E−236 1.09E−228 Igfbp4 1 26 0.632 0.083 1.04E+00 1.95E−234 3.46E−227 Ms4a4b 1 26 0.884 0.06 1.27E+00 1.53E−227 2.71E−220 Lef1 1 26 0.804 0.014 1.11E+00 2.28E−225 4.04E−218 Trac 1 26 0.803 0.005 1.12E+00 7.72E−214 1.37E−206 Lck 1 26 0.762 0.032 9.05E−01 9.29E−203 1.64E−195 Ms4a6b 1 26 0.745 0.028 8.94E−01 5.75E−166 1.02E−158 Trbc2 1 30 0.962 0.059 1.78E+00 8.60E−194 1.52E−186 Cd52 1 32 0.968 0.094 1.85E+00 1.35E−213 2.39E−206 Coro1a 1 32 0.969 0.085 1.59E+00 1.86E−190 3.29E−183 Trbc2 1 32 0.962 0.017 1.86E+00 8.07E−175 1.43E−167 Rac2 1 32 0.946 0.085 1.40E+00 2.49E−164 4.41E−157 Cd52 1 33 0.968 0.076 1.91E+00 5.65E−191 l.OOE−183  Igfbp4 1 34 0.632 0.03 1.24E+00 2.01E−242 3.56E−235 Cd3e 1 34 0.846 0.04 1.11E+00 4.59E−179 8.13E−172 Lat 1 34 0.755 0.06 8.96E−01 1.61E−176 2.85E−169 Cd3e 1 35 0.846 0.051 1.08E+00 3.66E−180 6.47E−173 Cd79a 2 3 0.995 0.025 2.38E+00 0.00E+00  0.00E+00  Iglc2 2 3 0.897 0.025 1.91E+00 0.00E+00  0.00E+00  Apoe 2 3 0.618 0.058 1.83E+00 0.00E+00  0.00E+00  H2-DMb2 2 3 0.966 0.032 1.80E+00 0.00E+00  0.00E+00  Ebf1 2 3 0.971 0.009 1.77E+00 0.00E+00  0.00E+00  Iglc3 2 3 0.886 0.023 1.56E+00 0.00E+00  0.00E+00  Iglc1 2 3 0.54 0.06 1.51E+00 0.00E+00  0.00E+00  Ms4a1 2 3 0.876 0.01 1.38E+00 0.00E+00  0.00E+00  Fcmr 2 3 0.817 0.006 1.37E+00 0.00E+00  0.00E+00  Mef2c 2 3 0.811 0.025 1.20E+00 0.00E+00  0.00E+00  Ifi30 2 3 0.787 0.087 1.18E+00 0.00E+00  0.00E+00  Ighd 2 3 0.738 0.005 1.17E+00 0.00E+00  0.00E+00  Mzb1 2 3 0.671 0.032 1.01E+00 0.00E+00  0.00E+00  Vpreb3 2 3 0.635 0.006 9.94E−01 0.00E+00  0.00E+00  Tnfrsf13c 2 3 0.687 0.008 9.26E−01 0.00E+00  0.00E+00  Ccr7 2 3 0.544 0.03 8.89E−01 0.00E+00  0.00E+00  Fcer2a 2 3 0.613 0.004 8.78E−01 0.00E+00  0.00E+00  Hvcn1 2 3 0.712 0.089 8.71E−01 0.00E+00  0.00E+00  Cd24a 2 3 0.59 0.011 8.58E−01 0.00E+00  0.00E+00  Napsa 2 3 0.686 0.071 8.44E−01 0.00E+00  0.00E+00  Bank1 2 3 0.628 0.01 7.60E−01 0.00E+00  0.00E+00  Pou2f2 2 3 0.578 0.026 7.26E−01 0.00E+00  0.00E+00  Pkig 2 3 0.611 0.057 7.05E−01 0.00E+00  0.00E+00  Siglecg 2 3 0.569 0.01 6.85E−01 0.00E+00  0.00E+00  H2-Oa 2 3 0.545 0.027 6.66E−01 0.00E+00  0.00E+00  Fcrla 2 3 0.535 0.022 6.62E−01 0.00E+00  0.00E+00  Chchd10 2 3 0.549 0.09 6.54E−01 0.00E+00  0.00E+00  H2-Ob 2 3 0.542 0.006 6.30E−01 0.00E+00  0.00E+00  Snn 2 3 0.524 0.015 6.08E−01 0.00E+00  0.00E+00  Cd79a 2 4 0.995 0.027 2.36E+00 0.00E+00  0.00E+00  Iglc2 2 4 0.897 0.024 1.90E+00 0.00E+00  0.00E+00  Apoe 2 4 0.618 0.057 1.84E+00 0.00E+00  0.00E+00  H2-DMb2 2 4 0.966 0.07 1.70E+00 0.00E+00  0.00E+00  Ebf1 2 4 0.971 0.062 1.67E+00 0.00E+00  0.00E+00  Iglc3 2 4 0.886 0.029 1.55E+00 0.00E+00  0.00E+00  Iglc1 2 4 0.54 0.071 1.50E+00 0.00E+00  0.00E+00  Ms4a1 2 4 0.876 0.014 1.38E+00 0.00E+00  0.00E+00  Fcmr 2 4 0.817 0.007 1.37E+00 0.00E+00  0.00E+00  Ifi30 2 4 0.787 0.071 1.20E+00 0.00E+00  0.00E+00  Ighd 2 4 0.738 0.009 1.16E+00 0.00E+00  0.00E+00  Mzb1 2 4 0.671 0.033 1.00E+00 0.00E+00  0.00E+00  Vpreb3 2 4 0.635 0.005 9.93E−01 0.00E+00  0.00E+00  Dusp2 2 4 0.616 0.054 9.49E−01 0.00E+00  0.00E+00  Tnfrsf13c 2 4 0.687 0.007 9.28E−01 0.00E+00  0.00E+00  Fcer2a 2 4 0.613 0.006 8.73E−01 0.00E+00  0.00E+00  Cd24a 2 4 0.59 0.014 8.54E−01 0.00E+00  0.00E+00  Ccr7 2 4 0.544 0.066 8.29E−01 0.00E+00  0.00E+00  Bank1 2 4 0.628 0.008 7.60E−01 0.00E+00  0.00E+00  Pou2f2 2 4 0.578 0.026 7.23E−01 0.00E+00  0.00E+00  Chchd10 2 4 0.549 0.061 6.85E−01 0.00E+00  0.00E+00  Fcrla 2 4 0.535 0.015 6.69E−01 0.00E+00  0.00E+00  Siglecg 2 4 0.569 0.038 6.43E−01 0.00E+00  0.00E+00  H2-Ob 2 4 0.542 0.011 6.26E−01 0.00E+00  0.00E+00  Snn 2 4 0.524 0.022 6.01E−01 0.00E+00  0.00E+00  Iglc2 2 5 0.897 0.071 1.86E+00 0.00E+00  0.00E+00  Apoe 2 5 0.618 0.085 1.78E+00 0.00E+00  0.00E+00  H2-DMb2 2 5 0.966 0.068 1.76E+00 0.00E+00  0.00E+00  Ebf1 2 5 0.971 0.032 1.75E+00 0.00E+00  0.00E+00  Iglc3 2 5 0.886 0.045 1.54E+00 0.00E+00  0.00E+00  Fcmr 2 5 0.817 0.034 1.34E+00 0.00E+00  0.00E+00  Ms4a1 2 5 0.876 0.05 1.34E+00 0.00E+00  0.00E+00  Ifi30 2 5 0.787 0.059 1.21E+00 0.00E+00  0.00E+00  Mef2c 2 5 0.811 0.014 1.21E+00 0.00E+00  0.00E+00  Cd83 2 5 0.735 0.037 1.19E+00 0.00E+00  0.00E+00  Ighd 2 5 0.738 0.015 1.16E+00 0.00E+00  0.00E+00  Mzb1 2 5 0.671 0.048 9.91E−01 0.00E+00  0.00E+00  Vpreb3 2 5 0.635 0.03 9.70E−01 0.00E+00  0.00E+00  Napsa 2 5 0.686 0.018 9.02E−01 0.00E+00  0.00E+00  Tnfrsf13c 2 5 0.687 0.034 9.01E−01 0.00E+00  0.00E+00  Irf8 2 5 0.701 0.045 8.98E−01 0.00E+00  0.00E+00  Fcer2a 2 5 0.613 0.016 8.65E−01 0.00E+00  0.00E+00  Cd24a 2 5 0.59 0.043 8.26E−01 0.00E+00  0.00E+00  Capg 2 5 0.635 0.076 8.01E−01 0.00E+00  0.00E+00  Bank1 2 5 0.628 0.02 7.50E−01 0.00E+00  0.00E+00  Pkig 2 5 0.611 0.02 7.43E−01 0.00E+00  0.00E+00  Ctsh 2 5 0.61 0.028 7.37E−01 0.00E+00  0.00E+00  Unc93b1 2 5 0.593 0.029 6.96E−01 0.00E+00  0.00E+00  Siglecg 2 5 0.569 0.018 6.77E−01 0.00E+00  0.00E+00  Fcrla 2 5 0.535 0.016 6.69E−01 0.00E+00  0.00E+00  Snn 2 5 0.524 0.013 6.10E−01 0.00E+00  0.00E+00  H2-Ob 2 5 0.542 0.071 5.65E−01 0.00E+00  0.00E+00  Cd79a 2 6 0.995 0.056 2.29E+00 0.00E+00  0.00E+00  Ebf1 2 6 0.971 0.023 1.73E+00 0.00E+00  0.00E+00  Ms4a1 2 6 0.876 0.022 1.35E+00 0.00E+00  0.00E+00  Fcmr 2 6 0.817 0.019 1.35E+00 0.00E+00  0.00E+00  Vpreb3 2 6 0.635 0.01 9.81E−01 0.00E+00  0.00E+00  H2-Ob 2 6 0.542 0.031 6.01E−01  5.5E−312 9.68E−305 Ighd 2 6 0.738 0.058 1.11E+00 6.49E−296 1.15E−288 Fcer2a 2 6 0.613 0.014 8.65E−01 8.28E−282 1.47E−274 Dusp2 2 6 0.616 0.098 8.92E−01 3.32E−226 5.88E−219 Iglc2 2 7 0.897 0.084 1.84E+00 0.00E+00  0.00E+00  Ebf1 2 7 0.971 0.029 1.74E+00 0.00E+00  0.00E+00  H2-DMb2 2 7 0.966 0.091 1.73E+00 0.00E+00  0.00E+00  Iglc3 2 7 0.886 0.055 1.52E+00 0.00E+00  0.00E+00  Iglc1 2 7 0.54 0.096 1.47E+00 0.00E+00  0.00E+00  Fcmr 2 7 0.817 0.039 1.34E+00 0.00E+00  0.00E+00  Ms4a1 2 7 0.876 0.059 1.34E+00 0.00E+00  0.00E+00  Mef2c 2 7 0.811 0.019 1.21E+00 0.00E+00  0.00E+00  Ifi30 2 7 0.787 0.072 1.20E+00 0.00E+00  0.00E+00  Ighd 2 7 0.738 0.033 1.14E+00 0.00E+00  0.00E+00  Mzb1 2 7 0.671 0.056 9.76E−01 0.00E+00  0.00E+00  Vpreb3 2 7 0.635 0.037 9.61E−01 0.00E+00  0.00E+00  Tnfrsf13c 2 7 0.687 0.031 9.03E−01 0.00E+00  0.00E+00  Napsa 2 7 0.686 0.019 9.01E−01 0.00E+00  0.00E+00  Fcer2a 2 7 0.613 0.018 8.60E−01 0.00E+00  0.00E+00  Irf8 2 7 0.701 0.07 8.56E−01 0.00E+00  0.00E+00  Cd24a 2 7 0.59 0.063 7.87E−01 0.00E+00  0.00E+00  Cd72 2 7 0.628 0.067 7.60E−01 0.00E+00  0.00E+00  Bank1 2 7 0.628 0.023 7.46E−01 0.00E+00  0.00E+00  Ctsh 2 7 0.61 0.03 7.35E−01 0.00E+00  0.00E+00  Pkig 2 7 0.611 0.041 7.21E−01 0.00E+00  0.00E+00  Siglecg 2 7 0.569 0.012 6.82E−01 0.00E+00  0.00E+00  Fcrla 2 7 0.535 0.02 6.63E−01 0.00E+00  0.00E+00  Unc93b1 2 7 0.593 0.065 6.58E−01 0.00E+00  0.00E+00  H2-Oa 2 7 0.545 0.094 5.88E−01 0.00E+00  0.00E+00  Snn 2 7 0.524 0.043 5.79E−01 0.00E+00  0.00E+00  H2-Ob 2 7 0.542 0.089 5.44E−01 0.00E+00  0.00E+00  Cd79a 2 8 0.995 0.022 2.36E+00 0.00E+00  0.00E+00  Iglc2 2 8 0.897 0.029 1.91E+00 0.00E+00  0.00E+00  Apoe 2 8 0.618 0.058 1.84E+00 0.00E+00  0.00E+00  H2-DMb2 2 8 0.966 0.029 1.79E+00 0.00E+00  0.00E+00  Cd79b 2 8 0.952 0.025 1.78E+00 0.00E+00  0.00E+00  Ebf1 2 8 0.971 0.016 1.76E+00 0.00E+00  0.00E+00  Iglc1 2 8 0.54 0.071 1.49E+00 0.00E+00  0.00E+00  Iglc3 2 8 0.886 0.04 1.47E+00 0.00E+00  0.00E+00  Ms4a1 2 8 0.876 0.008 1.38E+00 0.00E+00  0.00E+00  Fcmr 2 8 0.817 0.009 1.37E+00 0.00E+00  0.00E+00  Ifi30 2 8 0.787 0.058 1.21E+00 0.00E+00  0.00E+00  Ighd 2 8 0.738 0.016 1.15E+00 0.00E+00  0.00E+00  Mzb1 2 8 0.671 0.025 1.01E+00 0.00E+00  0.00E+00  Vpreb3 2 8 0.635 0.007 9.89E−01 0.00E+00  0.00E+00  Tnfrsf13c 2 8 0.687 0.018 9.15E−01 0.00E+00  0.00E+00  Fcer2a 2 8 0.613 0.004 8.75E−01 0.00E+00  0.00E+00  Cd24a 2 8 0.59 0.013 8.54E−01 0.00E+00  0.00E+00  Capg 2 8 0.635 0.089 7.74E−01 0.00E+00  0.00E+00  Bank1 2 8 0.628 0.01 7.60E−01 0.00E+00  0.00E+00  Pou2f2 2 8 0.578 0.049 6.98E−01 0.00E+00  0.00E+00  Siglecg 2 8 0.569 0.013 6.81E−01 0.00E+00  0.00E+00  Chchd10 2 8 0.549 0.07 6.79E−01 0.00E+00  0.00E+00  Ctsh 2 8 0.61 0.087 6.76E−01 0.00E+00  0.00E+00  Fcrla 2 8 0.535 0.015 6.69E−01 0.00E+00  0.00E+00  H2-Ob 2 8 0.542 0.01 6.27E−01 0.00E+00  0.00E+00  H2-Oa 2 8 0.545 0.062 6.24E−01 0.00E+00  0.00E+00  Snn 2 8 0.524 0.013 6.09E−01 0.00E+00  0.00E+00  S100a10 2 9 0.557 0.093 6.13E−01 5.99E−251 1.06E−243 Ighd 2 9 0.738 0.067 1.08E+00 6.91E−174 1.22E−166 Ighd 2 10 0.738 0.046 1.09E+00 0.00E+00  0.00E+00  S100a10 2 10 0.557 0.053 6.71E−01 0.00E+00  0.00E+00  S100a11 2 10 0.534 0.09 5.49E−01 0.00E+00  0.00E+00  Ccr7 2 10 0.544 0.069 8.35E−01 4.09E−304 7.25E−297 Cd79a 2 11 0.995 0.019 2.38E+00 0.00E+00  0.00E+00  Iglc2 2 11 0.897 0.027 1.91E+00 0.00E+00  0.00E+00  H2-DMb2 2 11 0.966 0.036 1.79E+00 0.00E+00  0.00E+00  Ebf1 2 11 0.971 0.004 1.78E+00 0.00E+00  0.00E+00  Cd79b 2 11 0.952 0.048 1.76E+00 0.00E+00  0.00E+00  Iglc3 2 11 0.886 0.024 1.56E+00 0.00E+00  0.00E+00  Ms4a1 2 11 0.876 0.007 1.39E+00 0.00E+00  0.00E+00  Fcmr 2 11 0.817 0.004 1.38E+00 0.00E+00  0.00E+00  Ifi30 2 11 0.787 0.064 1.21E+00 0.00E+00  0.00E+00  Mef2c 2 11 0.811 0.048 1.17E+00 0.00E+00  0.00E+00  Ighd 2 11 0.738 0.008 1.16E+00 0.00E+00  0.00E+00  Mzb1 2 11 0.671 0.029 1.01E+00 0.00E+00  0.00E+00  Vpreb3 2 11 0.635 0.012 9.88E−01 0.00E+00  0.00E+00  Tnfrsf13c 2 11 0.687 0.016 9.17E−01 0.00E+00  0.00E+00  Bank1 2 11 0.628 0.001 7.69E−01 0.00E+00  0.00E+00  Fcer2a 2 11 0.613 0.004 8.77E−01  4.1E−315 7.22E−308 Pkig 2 11 0.611 0.055 7.09E−01 1.75E−306 3.09E−299 Apoe 2 11 0.618 0.037 1.86E+00 1.07E−298 1.90E−291 Siglecg 2 11 0.569 0.01 6.85E−01 5.52E−298 9.77E−291 Ctsh 2 11 0.61 0.07 6.93E−01 1.24E−285 2.19E−278 H2-Ob 2 11 0.542 0.007 6.30E−01 1.78E−281 3.16E−274 Snn 2 11 0.524 0.007 6.17E−01 4.96E−272 8.78E−265 Fcrla 2 11 0.535 0.017 6.67E−01 2.76E−271 4.89E−264 Iglc1 2 11 0.54 0.05 1.52E+00 3.25E−257 5.76E−250 H2-Oa 2 11 0.545 0.039 6.53E−01 9.48E−246 1.68E−238 Ccr7 2 11 0.544 0.035 8.84E−01 2.87E−242 5.09E−235 Chchd10 2 11 0.549 0.058 6.90E−01 1.12E−236 1.99E−229 Pou2f2 2 11 0.578 0.092 6.49E−01 1.25E−223 2.21E−216 Cd79a 2 12 0.995 0.036 2.36E+00 0.00E+00  0.00E+00  Iglc2 2 12 0.897 0.037 1.90E+00 0.00E+00  0.00E+00  H2-DMb2 2 12 0.966 0.043 1.78E+00 0.00E+00  0.00E+00  Ebf1 2 12 0.971 0.009 1.77E+00 0.00E+00  0.00E+00  Iglc3 2 12 0.886 0.019 1.56E+00 0.00E+00  0.00E+00  Ms4a1 2 12 0.876 0.02 1.37E+00 0.00E+00  0.00E+00  Fcmr 2 12 0.817 0.012 1.37E+00 0.00E+00  0.00E+00  Mef2c 2 12 0.811 0.021 1.20E+00 0.00E+00  0.00E+00  Ifi30 2 12 0.787 0.069 1.20E+00 0.00E+00  0.00E+00  Ighd 2 12 0.738 0.005 1.17E+00 0.00E+00  0.00E+00  Mzb1 2 12 0.671 0.034 1.00E+00 0.00E+00  0.00E+00  Vpreb3 2 12 0.635 0.003 9.96E−01 0.00E+00  0.00E+00  Tnfrsf13c 2 12 0.687 0.009 9.26E−01 0.00E+00  0.00E+00  Napsa 2 12 0.686 0.068 8.50E−01 0.00E+00  0.00E+00  Bank1 2 12 0.628 0.003 7.67E−01 0.00E+00  6.42E−302 Pkig 2 12 0.611 0.064 6.98E−01 7.21E−288 1.28E−280 Fcer2a 2 12 0.613 0.008 8.74E−01 8.49E−284 1.50E−276 Ly6e 2 12 0.673 0.088 1.03E+00 2.85E−281 5.05E−274 Siglecg 2 12 0.569 0.012 6.83E−01 2.14E−275 3.79E−268 Apoe 2 12 0.618 0.053 1.84E+00 1.70E−267 3.01E−260 Fcrla 2 12 0.535 0.012 6.72E−01 4.54E−263 8.05E−256 H2-Ob 2 12 0.542 0.01 6.27E−01 5.35E−258 9.48E−251 Ctsh 2 12 0.61 0.098 6.63E−01 3.85E−247 6.81E−240 Snn 2 12 0.524 0.012 6.11E−01 3.77E−245 6.68E−238 Ctss 2 12 0.601 0.087 6.12E−01 8.84E−239 1.57E−231 Cd24a 2 12 0.59 0.069 7.66E−01 2.56E−238 4.53E−231 Iglc1 2 12 0.54 0.07 1.50E+00 5.13E−224 9.09E−217 Chchd10 2 12 0.549 0.067 6.81E−01 8.46E−217 1.50E−209 Ccr7 2 12 0.544 0.047 8.53E−01 7.54E−211 1.33E−203 Ighd 2 13 0.738 0.006 1.17E+00 9.31E−288 1.65E−280 H2-Aa 2 13 0.994 0.076 3.19E+00 1.58E−267 2.80E−260 Mef2c 2 13 0.811 0.009 1.22E+00 8.09E−185 1.43E−177 H2-Eb1 2 13 0.989 0.059 2.65E+00 2.70E−178 4.77E−171 Fcmr 2 13 0.817 0.014 1.37E+00 3.39E−176 6.01E−169 Fcer2a 2 13 0.613 0.007 8.74E−01 1.56E−175 2.75E−168 Ebf1 2 13 0.971 0.004 1.78E+00 4.68E−172 8.29E−165 Bank1 2 13 0.628 0.004 7.66E−01 7.24E−166 1.28E−158 Cd79a 2 14 0.995 0.081 2.25E+00 0.00E+00  0.00E+00  Ebf1 2 14 0.971 0.034 1.71E+00 2.31E−299 4.09E−292 Ms4a1 2 14 0.876 0.053 1.31E+00 1.80E−295 3.19E−288 Iglc2 2 14 0.897 0.063 1.79E+00 5.45E−295 9.65E−288 Mzb1 2 14 0.671 0.094 8.58E−01 1.05E−239 1.86E−232 Fcmr 2 14 0.817 0.023 1.34E+00 2.25E−231 3.98E−224 Tnfrsf13c 2 14 0.687 0.091 8.31E−01 1.51E−209 2.67E−202 Vpreb3 2 14 0.635 0.014 9.81E−01 1.89E−184 3.34E−177 Chchd10 2 14 0.549 0.085 6.44E−01 4.45E−175 7.87E−168 Fcrla 2 14 0.535 0.061 6.16E−01 3.76E−165 6.66E−158 Cd79a 2 15 0.995 0.021 2.38E+00 0.00E+00  0.00E+00  Ighm 2 15 0.923 0.07 2.19E+00  9.9E−315 1.75E−307 Ebf1 2 15 0.971 0.013 1.76E+00  9.9E−310 1.77E−302 H2-DMb2 2 15 0.966 0.027 1.80E+00 2.09E−279 3.70E−272 Ighd 2 15 0.738 0 1.17E+00 7.89E−252 1.40E−244 Cd79b 2 15 0.952 0.061 1.74E+00 4.07E−241 7.21E−234 Iglc2 2 15 0.897 0.019 1.92E+00 5.23E−228 9.27E−221 Ms4a1 2 15 0.876 0 1.39E+00 7.94E−214 1.41E−206 Fcmr 2 15 0.817 0.008 1.37E+00 9.13E−206 1.62E−198 Iglc3 2 15 0.886 0.006 1.58E+00 4.90E−205 8.68E−198 Mef2c 2 15 0.811 0.038 1.19E+00 1.72E−183 3.05E−176 Ighm 2 16 0.923 0.049 2.20E+00 3.66E−252 6.49E−245 Cd79a 2 16 0.995 0.028 2.37E+00 2.35E−217 4.16E−210 Ighd 2 16 0.738 0.008 1.16E+00 1.14E−200 2.02E−193 Ebf1 2 16 0.971 0.036 1.73E+00 4.09E−185 7.24E−178 H2-DMb2 2 16 0.966 0.015 1.81E+00 1.88E−177 3.32E−170 Cd79a 2 17 0.995 0.082 2.30E+00 0.00E+00  0.00E+00  H2-DMb2 2 17 0.966 0.059 1.76E+00 0.00E+00  0.00E+00  Ebf1 2 17 0.971 0.018 1.75E+00 0.00E+00  0.00E+00  Iglc3 2 17 0.886 0.035 1.54E+00 7.17E−291 1.27E−283 Ms4a1 2 17 0.876 0.035 1.36E+00 5.25E−281 9.30E−274 Iglc2 2 17 0.897 0.05 1.88E+00 4.90E−280 8.68E−273 Fcmr 2 17 0.817 0.021 1.36E+00 1.61E−219 2.85E−212 Mef2c 2 17 0.811 0.041 1.17E+00 3.32E−204 5.88E−197 Cd83 2 17 0.735 0.065 1.16E+00 1.16E−168 2.06E−161 Tnfrsf13c 2 17 0.687 0.038 8.98E−01 1.02E−163 1.80E−156 Ebf1 2 18 0.971 0.036 1.74E+00 0.00E+00  0.00E+00  Iglc3 2 18 0.886 0.053 1.53E+00 1.07E−244 1.89E−237 Iglc2 2 18 0.897 0.085 1.85E+00 2.09E−227 3.71E−220 Ms4a1 2 18 0.876 0.078 1.31E+00 6.40E−223 1.13E−215 Mef2c 2 18 0.811 0.021 1.21E+00 1.58E−182 2.79E−175 Fcmr 2 18 0.817 0.039 1.34E+00 2.44E−182 4.32E−175 Ifi30 2 18 0.787 0.078 1.19E+00 1.51E−169 2.68E−162 Cd79a 2 19 0.995 0.072 2.33E+00 0.00E+00  0.00E+00  Ebf1 2 19 0.971 0.016 1.76E+00 8.53E−302 1.51E−294 H2-DMb2 2 19 0.966 0.04 1.78E+00 1.62E−288 2.88E−281 Cd79b 2 19 0.952 0.064 1.74E+00 1.02E−252 1.81E−245 Iglc3 2 19 0.886 0.02 1.56E+00 2.01E−206 3.55E−199 Iglc2 2 19 0.897 0.036 1.90E+00 7.14E−204 1.26E−196 Ms4a1 2 19 0.876 0.028 1.37E+00 8.31E−192 1.47E−184 Fcmr 2 19 0.817 0.012 1.37E+00 1.78E−162 3.16E−155 Cd79a 2 21 0.995 0.098 2.28E+00 3.60E−235 6.37E−228 Iglc3 2 21 0.886 0.081 1.49E+00 3.39E−181 5.99E−174 Ms4a1 2 21 0.876 0.034 1.36E+00 3.37E−174 5.96E−167 Cd79a 2 22 0.995 0.06 2.27E+00 1.90E−282 3.36E−275 Ebf1 2 22 0.971 0.043 1.70E+00 9.75E−224 1.73E−216 Iglc3 2 22 0.886 0.069 1.49E+00 1.76E−207 3.11E−200 Ms4a1 2 22 0.876 0.039 1.34E+00 3.73E−194 6.61E−187 Iglc2 2 22 0.897 0.056 1.80E+00 5.88E−186 1.04E−178 Cd79a 2 24 0.995 0.049 2.35E+00 1.67E−304 2.95E−297 Iglc3 2 24 0.886 0.081 1.45E+00 9.13E−201 1.62E−193 Ms4a1 2 24 0.876 0.045 1.35E+00 7.25E−194 1.28E−186 Iglc2 2 24 0.897 0.04 1.89E+00 2.69E−190 4.77E−183 Cd79a 2 25 0.995 0.027 2.38E+00 0.00E+00  0.00E+00  H2-DMb2 2 25 0.966 0.045 1.78E+00 8.70E−269 1.54E−261 Cd79b 2 25 0.952 0.009 1.80E+00 8.96E−260 1.59E−252 Coro1a 2 25 0.958 0.1 1.62E+00 1.35E−250 2.40E−243 Cd37 2 25 0.902 0.014 1.40E+00 1.55E−210 2.74E−203 Ptprcap 2 25 0.902 0.063 1.31E+00 5.36E−209 9.49E−202 Ms4a1 2 25 0.876 0 1.39E+00 4.12E−203 7.29E−196 Ighm 2 25 0.923 0.077 2.18E+00 2.75E−199 4.86E−192 Iglc3 2 25 0.886 0.027 1.55E+00 1.18E−195 2.08E−188 Iglc2 2 25 0.897 0.036 1.90E+00 2.77E−191 4.90E−184 Fcmr 2 25 0.817 0 1.38E+00 5.24E−159 9.27E−152 Cd79a 2 26 0.995 0.018 2.38E+00 5.72E−297 1.01E−289 H2-DMb2 2 26 0.966 0.069 1.73E+00 5.83E−248 1.03E−240 Ebf1 2 26 0.971 0.005 1.78E+00 3.67E−244 6.50E−237 Cd79b 2 26 0.952 0.092 1.70E+00 1.03E−224 1.83E−217 Iglc3 2 26 0.886 0.069 1.47E+00 1.20E−205 2.13E−198 Ms4a1 2 26 0.876 0.014 1.38E+00 1.91E−200 3.38E−193 Iglc2 2 26 0.897 0.055 1.86E+00 3.31E−189 5.87E−182 Cd79a 2 30 0.995 0.052 2.32E+00 5.67E−240 l.OOE−232  H2-DMb2 2 30 0.966 0.03 1.79E+00 3.43E−182 6.07E−175 Ebf1 2 30 0.971 0.022 1.76E+00 4.17E−181 7.38E−174 Cd79b 2 30 0.952 0.059 1.71E+00 2.66E−160 4.71E−153 Cd79a 2 31 0.995 0.037 2.37E+00 2.47E−182 4.38E−175 Cd52 2 32 0.991 0.094 2.51E+00 1.96E−209 3.48E−202 Cd79a 2 32 0.995 0.009 2.39E+00 1.10E−204 1.95E−197 Cd52 2 33 0.991 0.076 2.57E+00 3.71E−173 6.56E−166 Cd79a 2 33 0.995 0.057 2.34E+00 2.24E−169 3.96E−162 Ncr1 3 4 0.709 0.093 9.33E−01 0.00E+00  0.00E+00  Tmem176b 3 5 0.975 0.016 1.86E+00 0.00E+00  0.00E+00  Lgals3 3 5 0.938 0.012 1.72E+00 0.00E+00  0.00E+00  Tmem176a 3 5 0.952 0.018 1.69E+00 0.00E+00  0.00E+00  Car2 3 5 0.915 0.041 1.57E+00 0.00E+00  0.00E+00  Fcer1g 3 5 0.904 0.02 1.53E+00 0.00E+00  0.00E+00  Lmo4 3 5 0.86 0.101 1.35E+00 0.00E+00  0.00E+00  Gadd45b 3 5 0.621 0.051 1.32E+00 0.00E+00  0.00E+00  Serpinb1a 3 5 0.777 0.01 1.31E+00 0.00E+00  0.00E+00  Gem 3 5 0.587 0.028 1.21E+00 0.00E+00  0.00E+00  Nr4a1 3 5 0.684 0.095 1.14E+00 0.00E+00  0.00E+00  Klrk1 3 5 0.742 0.013 1.12E+00 0.00E+00  0.00E+00  Ckb 3 5 0.802 0.022 1.10E+00 0.00E+00  0.00E+00  Ncr1 3 5 0.709 0.002 1.05E+00 0.00E+00  0.00E+00  Bhlhe40 3 5 0.688 0.015 1.04E+00 0.00E+00  0.00E+00  Upp1 3 5 0.722 0.001 1.04E+00 0.00E+00  0.00E+00  Rora 3 5 0.756 0.016 1.03E+00 0.00E+00  0.00E+00  Ffar2 3 5 0.693 0.002 9.97E−01 0.00E+00  0.00E+00  Ncoa7 3 5 0.687 0.048 9.89E−01 0.00E+00  0.00E+00  Tcrg-C1 3 5 0.637 0.012 9.84E−01 0.00E+00  0.00E+00  Serpina3g 3 5 0.578 0.005 9.43E−01 0.00E+00  0.00E+00  Ikzf2 3 5 0.705 0.046 9.32E−01 0.00E+00  0.00E+00  St6galnac3 3 5 0.633 0.022 7.02E−01 0.00E+00  0.00E+00  Prr29 3 5 0.51 0.002 6.80E−01 0.00E+00  0.00E+00  Chad 3 5 0.55 0.003 6.78E−01 0.00E+00  0.00E+00  Stk19 3 5 0.567 0.035 6.78E−01 0.00E+00  0.00E+00  Podnl1 3 5 0.625 0.042 6.72E−01 0.00E+00  0.00E+00  Nrgn 3 5 0.509 0.004 6.68E−01 0.00E+00  0.00E+00  Asb2 3 5 0.507 0.006 6.62E−01 0.00E+00  0.00E+00  Maf 3 5 0.527 0.008 6.40E−01 0.00E+00  0.00E+00  Maff 3 5 0.508 0.023 7.09E−01 2.12E−304 3.75E−297 Tnfrsf25 3 5 0.527 0.034 5.52E−01 1.58E−289 2.79E−282 Cd160 3 5 0.503 0.039 5.57E−01 2.92E−248 5.17E−241 Samsn1 3 5 0.531 0.06 6.13E−01 9.53E−242 1.69E−234 Nfkbiz 3 5 0.511 0.074 6.23E−01 1.15E−204 2.03E−197 Capg 3 5 0.536 0.076 6.29E−01 2.48E−204 4.39E−197 Cxcr6 3 6 0.935 0.078 1.57E+00 0.00E+00  0.00E+00  Id2 3 6 0.824 0.096 1.50E+00 0.00E+00  0.00E+00  Car2 3 6 0.915 0.101 1.50E+00 0.00E+00  0.00E+00  Trbc2 3 6 0.818 0.084 1.33E+00 0.00E+00  0.00E+00  Serpinb1a 3 6 0.777 0.062 1.26E+00 0.00E+00  0.00E+00  Trbc1 3 6 0.862 0.07 1.24E+00 0.00E+00  0.00E+00  Upp1 3 6 0.722 0.044 9.97E−01 0.00E+00  0.00E+00  Ncr1 3 6 0.709 0.067 9.84E−01 0.00E+00  0.00E+00  Ffar2 3 6 0.693 0.035 9.63E−01 0.00E+00  0.00E+00  Tcrg-C1 3 6 0.637 0.037 9.61E−01 0.00E+00  0.00E+00  Rora 3 6 0.756 0.09 9.48E−01 0.00E+00  0.00E+00  Txk 3 6 0.747 0.076 8.89E−01 0.00E+00  0.00E+00  Prr29 3 6 0.51 0.02 6.62E−01 5.50E−298 9.75E−291 Gimap7 3 6 0.556 0.043 6.16E−01 6.91E−293 1.22E−285 Cd160 3 6 0.503 0.021 5.76E−01 9.52E−293 1.69E−285 Serpina3g 3 6 0.578 0.064 8.84E−01 4.05E−282 7.17E−275 Maf 3 6 0.527 0.015 6.33E−01 1.63E−281 2.89E−274 Lck 3 6 0.584 0.098 5.60E−01 5.02E−279 8.89E−272 Nrgn 3 6 0.509 0.04 6.29E−01 6.28E−276 1.11E−268 Tnfrsf25 3 6 0.527 0.027 5.58E−01 6.33E−269 1.12E−261 Ptpn22 3 6 0.552 0.057 5.86E−01 1.22E−268 2.16E−261 Asb2 3 6 0.507 0.05 6.16E−01 3.58E−264 6.35E−257 Skap1 3 6 0.5 0.033 5.10E−01 6.03E−260 1.07E−252 Il18r1 3 6 0.592 0.048 6.50E−01 2.01E−252 3.56E−245 Gimap5 3 6 0.5 0.058 5.21E−01 2.77E−245 4.90E−238 Chad 3 6 0.55 0.051 6.24E−01 1.34E−231 2.37E−224 Maff 3 6 0.508 0.072 6.55E−01 2.85E−204 5.05E−197 Tmem176b 3 7 0.975 0.031 1.83E+00 0.00E+00  0.00E+00  Lgals3 3 7 0.938 0.03 1.68E+00 0.00E+00  0.00E+00  Tmem176a 3 7 0.952 0.021 1.68E+00 0.00E+00  0.00E+00  Car2 3 7 0.915 0.019 1.58E+00 0.00E+00  0.00E+00  Fcer1g 3 7 0.904 0.019 1.53E+00 0.00E+00  0.00E+00  Cxcr6 3 7 0.935 0.099 1.50E+00 0.00E+00  0.00E+00  Serpinb1a 3 7 0.777 0.022 1.30E+00 0.00E+00  0.00E+00  Gem 3 7 0.587 0.088 1.12E+00 0.00E+00  0.00E+00  Klrk1 3 7 0.742 0.009 1.12E+00 0.00E+00  0.00E+00  Ncr1 3 7 0.709 0.006 1.05E+00 0.00E+00  0.00E+00  Upp1 3 7 0.722 0.004 1.04E+00 0.00E+00  0.00E+00  Ffar2 3 7 0.693 0.014 9.79E−01 0.00E+00  0.00E+00  Tcrg-C1 3 7 0.637 0.014 9.79E−01 0.00E+00  0.00E+00  Serpina3g 3 7 0.578 0.045 8.73E−01 0.00E+00  0.00E+00  Prr29 3 7 0.51 0.001 6.80E−01 0.00E+00  0.00E+00  Chad 3 7 0.55 0.005 6.75E−01 0.00E+00  0.00E+00  Il18r1 3 7 0.592 0.034 6.64E−01 0.00E+00  0.00E+00  Stk19 3 7 0.567 0.066 6.47E−01 0.00E+00  0.00E+00  Nrgn 3 7 0.509 0.042 5.78E−01 0.00E+00  0.00E+00  Cd160 3 7 0.503 0.08 4.93E−01 4.88E−261 8.64E−254 Runx3 3 7 0.518 0.101 4.63E−01 9.65E−246 1.71E−238 Cxcr6 3 8 0.935 0.085 1.56E+00 0.00E+00  0.00E+00  Serpinb1a 3 8 0.777 0.052 1.24E+00 0.00E+00  0.00E+00  Upp1 3 8 0.722 0.026 1.02E+00 0.00E+00  0.00E+00  Ffar2 3 8 0.693 0.021 9.74E−01 0.00E+00  0.00E+00  Ncoa7 3 8 0.687 0.08 9.54E−01 0.00E+00  0.00E+00  Tcrg-C1 3 8 0.637 0.036 9.43E−01 0.00E+00  0.00E+00  Prr29 3 8 0.51 0.008 6.74E−01 0.00E+00  0.00E+00  Chad 3 8 0.55 0.042 6.37E−01 0.00E+00  0.00E+00  Tnfrsf25 3 8 0.527 0.048 5.34E−01 1.65E−292 2.92E−285 Stk19 3 8 0.567 0.08 6.28E−01 6.16E−288 1.09E−280 Maf 3 8 0.527 0.079 5.54E−01 1.24E−241 2.20E−234 Capg 3 8 0.536 0.089 6.01E−01 5.04E−241 8.92E−234 Asb2 3 8 0.507 0.088 5.67E−01 3.60E−224 6.37E−217 Tmem176b 3 9 0.975 0.039 1.83E+00 0.00E+00  0.00E+00  Lgals3 3 9 0.938 0.035 1.68E+00 0.00E+00  0.00E+00  Tmem176a 3 9 0.952 0.034 1.67E+00 0.00E+00  0.00E+00  Cxcr6 3 9 0.935 0.017 1.64E+00 0.00E+00  0.00E+00  Fcer1g 3 9 0.904 0.038 1.51E+00 0.00E+00  0.00E+00  Il7r 3 9 0.911 0.043 1.48E+00 0.00E+00  0.00E+00  S100a10 3 9 0.914 0.093 1.29E+00 0.00E+00  0.00E+00  Ckb 3 9 0.802 0.052 1.05E+00 0.00E+00  0.00E+00  Serpinb1a 3 9 0.777 0.067 1.22E+00 1.71E−278 3.03E−271 Ctsw 3 9 0.705 0.04 8.99E−01 9.95E−276 1.76E−268 Ncr1 3 9 0.709 0.008 1.05E+00 2.71E−258 4.80E−251 Txk 3 9 0.747 0.055 9.10E−01 1.58E−257 2.79E−250 Upp1 3 9 0.722 0.015 1.03E+00 3.55E−250 6.29E−243 Cd7 3 9 0.733 0.077 1.31E+00 1.84E−249 3.27E−242 Rora 3 9 0.756 0.013 1.04E+00 1.38E−247 2.45E−240 Tcrg-C1 3 9 0.637 0.013 9.88E−01 8.95E−242 1.58E−234 Klrk1 3 9 0.742 0.005 1.13E+00 1.02E−238 1.81E−231 Ffar2 3 9 0.693 0.014 9.81E−01 3.26E−234 5.77E−227 Bcl2 3 9 0.602 0.095 8.37E−01 1.69E−220 2.99E−213 Sla 3 9 0.629 0.063 8.19E−01 3.88E−220 6.88E−213 Bhlhe40 3 9 0.688 0.05 9.97E−01 7.34E−214 1.30E−206 Il2rb 3 9 0.514 0.041 5.57E−01 3.47E−213 6.14E−206 Gpr183 3 9 0.635 0.07 7.46E−01 2.56E−212 4.53E−205 Podnl1 3 9 0.625 0.016 7.00E−01 1.20E−211 2.13E−204 Ikzf2 3 9 0.705 0.015 9.81E−01 9.17E−205 1.62E−197 Prr29 3 9 0.51 0.008 6.73E−01 1.19E−202 2.11E−195 Cd160 3 9 0.503 0.006 5.92E−01 2.80E−193 4.96E−186 Serpina3g 3 9 0.578 0.021 9.25E−01 3.16E−191 5.60E−184 Nabp1 3 9 0.569 0.082 7.92E−01 1.76E−189 3.11E−182 Ptpn22 3 9 0.552 0.038 6.06E−01 1.34E−186 2.37E−179 Tnfrsf25 3 9 0.527 0.012 5.74E−01 7.36E−183 1.30E−175 St6galnac3 3 9 0.633 0.019 7.05E−01 8.09E−183 1.43E−175 Asb2 3 9 0.507 0.025 6.37E−01 9.64E−182 1.71E−174 Il18r1 3 9 0.592 0.009 6.95E−01 1.07E−168 1.89E−161 Maf 3 9 0.527 0.016 6.27E−01 4.18E−166 7.39E−159 Runx3 3 9 0.518 0.097 4.50E−01 3.68E−162 6.51E−155 Maff 3 9 0.508 0.015 7.17E−01 5.96E−161 1.05E−153 Tmem176b 3 10 0.975 0.025 1.83E+00 0.00E+00  0.00E+00  Lgals3 3 10 0.938 0.03 1.70E+00 0.00E+00  0.00E+00  Tmem176a 3 10 0.952 0.023 1.67E+00 0.00E+00  0.00E+00  Cxcr6 3 10 0.935 0.013 1.64E+00 0.00E+00  0.00E+00  Id2 3 10 0.824 0.051 1.56E+00 0.00E+00  0.00E+00  Fcer1g 3 10 0.904 0.032 1.51E+00 0.00E+00  0.00E+00  Car2 3 10 0.915 0.1 1.50E+00 0.00E+00  0.00E+00  Il7r 3 10 0.911 0.026 1.49E+00 0.00E+00  0.00E+00  Emb 3 10 0.914 0.057 1.37E+00 0.00E+00  0.00E+00  Sepp1 3 10 0.904 0.075 1.36E+00 0.00E+00  0.00E+00  S100a10 3 10 0.914 0.053 1.35E+00 0.00E+00  0.00E+00  Cd7 3 10 0.733 0.043 1.34E+00 0.00E+00  0.00E+00  Selplg 3 10 0.901 0.09 1.28E+00 0.00E+00  0.00E+00  Trbc1 3 10 0.862 0.064 1.27E+00 0.00E+00  0.00E+00  Hcst 3 10 0.872 0.089 1.27E+00 0.00E+00  0.00E+00  Serpinb1a 3 10 0.777 0.088 1.18E+00 0.00E+00  0.00E+00  Klrk1 3 10 0.742 0.005 1.13E+00 0.00E+00  0.00E+00  Nr4a1 3 10 0.684 0.093 1.12E+00 0.00E+00  0.00E+00  Ckb 3 10 0.802 0.027 1.09E+00 0.00E+00  0.00E+00  Ncr1 3 10 0.709 0.009 1.05E+00 0.00E+00  0.00E+00  Rora 3 10 0.756 0.008 1.04E+00 0.00E+00  0.00E+00  Upp1 3 10 0.722 0.009 1.04E+00 0.00E+00  0.00E+00  Vps37b 3 10 0.607 0.074 1.03E+00 0.00E+00  0.00E+00  Bhlhe40 3 10 0.688 0.04 1.00E+00 0.00E+00  0.00E+00  Tcrg-C1 3 10 0.637 0.009 9.92E−01 0.00E+00  0.00E+00  Ikzf2 3 10 0.705 0.009 9.89E−01 0.00E+00  0.00E+00  Ffar2 3 10 0.693 0.009 9.88E−01 0.00E+00  0.00E+00  Ncoa7 3 10 0.687 0.074 9.61E−01 0.00E+00  0.00E+00  Txk 3 10 0.747 0.03 9.42E−01 0.00E+00  0.00E+00  Serpina3g 3 10 0.578 0.014 9.34E−01 0.00E+00  0.00E+00  Ctsw 3 10 0.705 0.018 9.21E−01 0.00E+00  0.00E+00  Bcl2 3 10 0.602 0.05 8.89E−01 0.00E+00  0.00E+00  Nabp1 3 10 0.569 0.04 8.35E−01 0.00E+00  0.00E+00  Sla 3 10 0.629 0.05 8.30E−01 0.00E+00  0.00E+00  S100a11 3 10 0.707 0.09 8.06E−01 0.00E+00  0.00E+00  Gpr183 3 10 0.635 0.048 7.69E−01 0.00E+00  0.00E+00  Maff 3 10 0.508 0.009 7.23E−01 0.00E+00  0.00E+00  Podnl1 3 10 0.625 0.008 7.07E−01 0.00E+00  0.00E+00  St6galnac3 3 10 0.633 0.019 7.04E−01 0.00E+00  0.00E+00  Il18r1 3 10 0.592 0.005 6.98E−01 0.00E+00  0.00E+00  Prr29 3 10 0.51 0.007 6.75E−01 0.00E+00  0.00E+00  Chad 3 10 0.55 0.005 6.73E−01 0.00E+00  0.00E+00  Asb2 3 10 0.507 0.01 6.57E−01 0.00E+00  0.00E+00  Maf 3 10 0.527 0.01 6.39E−01 0.00E+00  0.00E+00  Ptpn22 3 10 0.552 0.024 6.18E−01 0.00E+00  0.00E+00  Cd160 3 10 0.503 0.005 5.94E−01 0.00E+00  0.00E+00  Il2rb 3 10 0.514 0.021 5.82E−01 0.00E+00  0.00E+00  Tnfrsf25 3 10 0.527 0.011 5.76E−01 0.00E+00  0.00E+00  Skap1 3 10 0.5 0.035 5.09E−01 4.43E−306 7.85E−299 Gpr132 3 10 0.506 0.025 5.69E−01 1.88E−305 3.32E−298 Ccnd2 3 10 0.501 0.044 5.65E−01 2.22E−282 3.93E−275 Tnfaip3 3 10 0.518 0.07 6.70E−01 3.65E−282 6.46E−275 Runx3 3 10 0.518 0.049 5.27E−01 3.49E−277 6.17E−270 Ahcyl2 3 10 0.584 0.095 5.88E−01 1.87E−273 3.31E−266 Nfkbiz 3 10 0.511 0.082 6.08E−01 2.20E−254 3.90E−247 Prr29 3 11 0.51 0.026 6.44E−01 2.46E−199 4.35E−192 Car2 3 12 0.915 0.1 1.48E+00 0.00E+00  0.00E+00  Klrk1 3 12 0.742 0.059 1.06E+00 0.00E+00  0.00E+00  Upp1 3 12 0.722 0.039 1.00E+00 0.00E+00  0.00E+00  Ncr1 3 12 0.709 0.076 9.46E−01 2.27E−278 4.03E−271 Ncoa7 3 12 0.687 0.096 9.31E−01 3.69E−246 6.53E−239 Il18r1 3 12 0.592 0.07 6.10E−01 8.42E−191 1.49E−183 Chad 3 12 0.55 0.072 6.07E−01 5.93E−169 1.05E−161 Prr29 3 12 0.51 0.054 6.21E−01 3.24E−165 5.74E−158 Cxcr6 3 14 0.935 0.091 1.52E+00 1.09E−274 1.92E−267 Upp1 3 14 0.722 0.052 9.88E−01 3.46E−173 6.12E−166 Ncr1 3 14 0.709 0.077 9.39E−01 2.37E−171 4.20E−164 Tmem176b 3 17 0.975 0.094 1.74E+00 0.00E+00  0.00E+00  Serpinb1a 3 17 0.777 0.026 1.30E+00 5.39E−195 9.53E−188 Upp1 3 17 0.722 0.009 1.04E+00 4.52E−171 8.01E−164 Ffar2 3 17 0.693 0.009 9.78E−01 3.09E−158 5.47E−151 Tmem176b 3 18 0.975 0.032 1.84E+00 0.00E+00  0.00E+00  Tmem176a 3 18 0.952 0.011 1.69E+00 7.52E−299 1.33E−291 Lgals3 3 18 0.938 0.025 1.71E+00 4.73E−275 8.37E−268 Cxcr6 3 18 0.935 0.06 1.57E+00 1.03E−253 1.82E−246 Car2 3 18 0.915 0.028 1.59E+00 1.22E−247 2.17E−240 Fcer1g 3 18 0.904 0.05 1.50E+00 2.29E−229 4.06E−222 Lmo4 3 18 0.86 0.089 1.36E+00 3.31E−171 5.86E−164 Serpinb1a 3 18 0.777 0.018 1.31E+00 5.90E−164 1.04E−156 Tmem176b 3 19 0.975 0.096 1.77E+00 8.87E−200 1.57E−192 Tmem176a 3 19 0.952 0.052 1.65E+00 1.42E−185 2.52E−178 Lgals3 3 19 0.938 0.076 1.63E+00 3.13E−161 5.54E−154 Id2 3 20 0.824 0.059 1.41E+00 1.24E−160 2.19E−153 Cxcr6 3 22 0.935 0.086 1.54E+00 2.08E−206 3.69E−199 Cxcr6 3 24 0.935 0.049 1.56E+00 5.53E−210 9.78E−203 Sepp1 3 24 0.904 0.09 1.35E+00 6.20E−174 1.10E−166 Gimap3 3 24 0.88 0.049 1.21E+00 3.21E−165 5.69E−158 Cxcr6 3 25 0.935 0.054 1.56E+00 1.35E−189 2.40E−182 Lgals3 3 25 0.938 0.086 1.65E+00 1.46E−189 2.59E−182 Car2 3 25 0.915 0.054 1.49E+00 4.23E−172 7.49E−165 Il7r 3 25 0.911 0.081 1.40E+00 2.80E−161 4.96E−154 Emb 3 25 0.914 0.086 1.32E+00 9.93E−160 1.76E−152 Tmem176b 3 26 0.975 0.101 1.75E+00 6.96E−260 1.23E−252 Cxcr6 3 26 0.935 0.055 1.54E+00 1.21E−199 2.15E−192 Tmem176b 3 29 0.975 0.047 1.81E+00 9.29E−181 1.64E−173 Tmem176a 3 29 0.952 0.034 1.67E+00 5.29E−161 9.37E−154 Tmem176a 4 5 0.979 0.018 1.97E+00 0.00E+00  0.00E+00  Tmem176b 4 5 0.976 0.016 1.95E+00 0.00E+00  0.00E+00  S100a4 4 5 0.884 0.006 1.83E+00 0.00E+00  0.00E+00  Fcer1g 4 5 0.98 0.02 1.82E+00 0.00E+00  0.00E+00  Gem 4 5 0.777 0.028 1.72E+00 0.00E+00  0.00E+00  Nr4a1 4 5 0.774 0.095 1.43E+00 0.00E+00  0.00E+00  Ckb 4 5 0.891 0.022 1.42E+00 0.00E+00  0.00E+00  Fosb 4 5 0.623 0.011 1.32E+00 0.00E+00  0.00E+00  Cd83 4 5 0.578 0.037 1.27E+00 0.00E+00  0.00E+00  Lgals3 4 5 0.742 0.012 1.25E+00 0.00E+00  0.00E+00  Ncoa7 4 5 0.798 0.048 1.22E+00 0.00E+00  0.00E+00  Gadd45b 4 5 0.623 0.051 1.22E+00 0.00E+00  0.00E+00  Lmo4 4 5 0.817 0.101 1.17E+00 0.00E+00  0.00E+00  Prr29 4 5 0.784 0.002 1.15E+00 0.00E+00  0.00E+00  Car2 4 5 0.803 0.041 1.15E+00 0.00E+00  0.00E+00  Sdc4 4 5 0.748 0.004 1.12E+00 0.00E+00  0.00E+00  Bhlhe40 4 5 0.709 0.015 1.11E+00 0.00E+00  0.00E+00  Rasl11a 4 5 0.603 0.002 1.10E+00 0.00E+00  0.00E+00  Rora 4 5 0.73 0.016 1.03E+00 0.00E+00  0.00E+00  Chad 4 5 0.724 0.003 9.89E−01 0.00E+00  0.00E+00  Cited4 4 5 0.614 0.003 9.82E−01 0.00E+00  0.00E+00  Nrgn 4 5 0.719 0.004 9.65E−01 0.00E+00  0.00E+00  Maff 4 5 0.631 0.023 9.24E−01 0.00E+00  0.00E+00  Cd81 4 5 0.65 0.035 9.17E−01 0.00E+00  0.00E+00  Dhrs3 4 5 0.674 0.009 8.22E−01 0.00E+00  0.00E+00  Serpinb1a 4 5 0.606 0.01 8.13E−01 0.00E+00  0.00E+00  Fam110a 4 5 0.55 0.011 8.09E−01 0.00E+00  0.00E+00  Ffar2 4 5 0.563 0.002 7.72E−01 0.00E+00  0.00E+00  Ccr6 4 5 0.618 0.003 7.34E−01 0.00E+00  0.00E+00  Espn 4 5 0.591 0.008 7.30E−01 0.00E+00  0.00E+00  Rorc 4 5 0.557 0.003 6.76E−01 0.00E+00  0.00E+00  Kit 4 5 0.551 0.005 6.47E−01 0.00E+00  0.00E+00  Serpina3g 4 5 0.543 0.005 8.53E−01  1.9E−313 3.38E−306 Upp1 4 5 0.507 0.001 7.04E−01  3.2E−313 5.80E−306 Tnfrsf25 4 5 0.607 0.034 6.52E−01  7.1E−313 1.27E−305 Hebp1 4 5 0.565 0.013 8.70E−01 0.00E+00  3.61E−302 S100a6 4 5 0.553 0.019 1.02E+00 1.72E−294 3.05E−287 St6galnac3 4 5 0.529 0.022 5.66E−01 3.73E−294 6.61E−287 Podnl1 4 5 0.606 0.042 6.73E−01 3.90E−287 6.91E−280 Asb2 4 5 0.504 0.006 6.39E−01 7.62E−284 1.35E−276 Igfbp7 4 5 0.515 0.005 7.54E−01 9.67E−280 1.71E−272 Ube2e3 4 5 0.589 0.049 6.87E−01 2.18E−273 3.87E−266 Ptms 4 5 0.618 0.05 7.02E−01 8.80E−265 1.56E−257 Acot7 4 5 0.573 0.037 6.36E−01 6.45E−254 1.14E−246 Dgat1 4 5 0.504 0.025 6.34E−01 1.02E−248 1.81E−241 Egr1 4 5 0.526 0.055 9.05E−01 2.39E−244 4.23E−237 Il18r1 4 5 0.548 0.065 5.74E−01 8.58E−226 1.52E−218 Samsn1 4 5 0.543 0.06 5.85E−01 1.32E−212 2.34E−205 Cmc2 4 5 0.562 0.1 5.33E−01 6.39E−176 1.13E−168 S100a4 4 6 0.884 0.085 1.74E+00 0.00E+00  0.00E+00  Id2 4 6 0.854 0.096 1.56E+00 0.00E+00  0.00E+00  Cxcr6 4 6 0.861 0.078 1.26E+00 0.00E+00  0.00E+00  Prr29 4 6 0.784 0.02 1.13E+00 0.00E+00  0.00E+00  Rasl11a 4 6 0.603 0.023 1.08E+00 0.00E+00  0.00E+00  Car2 4 6 0.803 0.101 1.07E+00 0.00E+00  0.00E+00  Rora 4 6 0.73 0.09 9.45E−01 0.00E+00  0.00E+00  Cited4 4 6 0.614 0.043 9.36E−01 0.00E+00  0.00E+00  Chad 4 6 0.724 0.051 9.35E−01 0.00E+00  0.00E+00  Nrgn 4 6 0.719 0.04 9.26E−01 0.00E+00  0.00E+00  Cd81 4 6 0.65 0.031 9.17E−01 0.00E+00  0.00E+00  Dhrs3 4 6 0.674 0.04 7.90E−01 0.00E+00  0.00E+00  Espn 4 6 0.591 0.025 7.13E−01 0.00E+00  0.00E+00  Igfbp7 4 6 0.515 0.053 7.06E−01 0.00E+00  0.00E+00  Podnl1 4 6 0.606 0.047 6.67E−01 0.00E+00  0.00E+00  Tnfrsf25 4 6 0.607 0.027 6.58E−01 0.00E+00  0.00E+00  Acot7 4 6 0.573 0.062 6.12E−01 0.00E+00  0.00E+00  Serpinb1a 4 6 0.606 0.062 7.56E−01  2.3E−315 4.18E−308 Rorc 4 6 0.557 0.034 6.43E−01  l.OE−313 1.85E−306 Tcf7 4 6 0.617 0.058 6.93E−01  1.1E−311 2.00E−304 Serpina3g 4 6 0.543 0.064 7.94E−01 1.48E−301 2.62E−294 Upp1 4 6 0.507 0.044 6.57E−01 1.60E−284 2.84E−277 Asb2 4 6 0.504 0.05 5.92E−01 1.76E−279 3.11E−272 Maff 4 6 0.631 0.072 8.70E−01 2.21E−273 3.91E−266 St6galnac3 4 6 0.529 0.033 5.53E−01 3.37E−264 5.97E−257 Trbc2 4 6 0.544 0.084 9.70E−01 2.49E−262 4.40E−255 Il18r1 4 6 0.548 0.048 5.90E−01 2.56E−251 4.53E−244 Txk 4 6 0.564 0.076 6.13E−01 4.15E−247 7.36E−240 Kit 4 6 0.551 0.082 5.65E−01 5.62E−233 9.96E−226 Tmem176a 4 7 0.979 0.021 1.96E+00 0.00E+00  0.00E+00  Tmem176b 4 7 0.976 0.031 1.92E+00 0.00E+00  0.00E+00  Fcer1g 4 7 0.98 0.019 1.82E+00 0.00E+00  0.00E+00  S100a4 4 7 0.884 0.063 1.68E+00 0.00E+00  0.00E+00  Gem 4 7 0.777 0.088 1.64E+00 0.00E+00  0.00E+00  Fosb 4 7 0.623 0.023 1.31E+00 0.00E+00  0.00E+00  Lgals3 4 7 0.742 0.03 1.21E+00 0.00E+00  0.00E+00  Cxcr6 4 7 0.861 0.099 1.20E+00 0.00E+00  0.00E+00  Car2 4 7 0.803 0.019 1.16E+00 0.00E+00  0.00E+00  Prr29 4 7 0.784 0.001 1.15E+00 0.00E+00  0.00E+00  Sdc4 4 7 0.748 0.041 1.08E+00 0.00E+00  0.00E+00  Rasl11a 4 7 0.603 0.028 1.07E+00 0.00E+00  0.00E+00  Chad 4 7 0.724 0.005 9.87E−01 0.00E+00  0.00E+00  Cited4 4 7 0.614 0.006 9.76E−01 0.00E+00  0.00E+00  Maff 4 7 0.631 0.052 8.78E−01 0.00E+00  0.00E+00  Nrgn 4 7 0.719 0.042 8.74E−01 0.00E+00  0.00E+00  Hebp1 4 7 0.565 0.016 8.67E−01 0.00E+00  0.00E+00  Serpinb1a 4 7 0.606 0.022 7.97E−01 0.00E+00  0.00E+00  Serpina3g 4 7 0.543 0.045 7.83E−01 0.00E+00  0.00E+00  Fam110a 4 7 0.55 0.049 7.65E−01 0.00E+00  0.00E+00  Ffar2 4 7 0.563 0.014 7.54E−01 0.00E+00  0.00E+00  Igfbp7 4 7 0.515 0.01 7.45E−01 0.00E+00  0.00E+00  Upp1 4 7 0.507 0.004 7.01E−01 0.00E+00  0.00E+00  Espn 4 7 0.591 0.043 6.93E−01 0.00E+00  0.00E+00  Ccr6 4 7 0.618 0.052 6.75E−01 0.00E+00  0.00E+00  Rorc 4 7 0.557 0.019 6.58E−01 0.00E+00  0.00E+00  Kit 4 7 0.551 0.006 6.44E−01 0.00E+00  0.00E+00  Il18r1 4 7 0.548 0.034 6.04E−01 0.00E+00  0.00E+00  Ube2e3 4 7 0.589 0.094 6.32E−01  8.0E−313 1.42E−305 Dgat1 4 7 0.504 0.063 5.90E−01 3.12E−273 5.52E−266 Runx3 4 7 0.508 0.101 4.70E−01 6.20E−216 1.10E−208 S100a4 4 8 0.884 0.101 1.65E+00 0.00E+00  0.00E+00  Cxcr6 4 8 0.861 0.085 1.26E+00 0.00E+00  0.00E+00  Ncoa7 4 8 0.798 0.08 1.18E+00 0.00E+00  0.00E+00  Prr29 4 8 0.784 0.008 1.14E+00 0.00E+00  0.00E+00  Rasl11a 4 8 0.603 0.019 1.08E+00 0.00E+00  0.00E+00  Chad 4 8 0.724 0.042 9.48E−01 0.00E+00  0.00E+00  Cd81 4 8 0.65 0.027 9.21E−01 0.00E+00  0.00E+00  Hebp1 4 8 0.565 0.025 8.58E−01 0.00E+00  0.00E+00  Ffar2 4 8 0.563 0.021 7.50E−01 0.00E+00  0.00E+00  Serpinb1a 4 8 0.606 0.052 7.43E−01 0.00E+00  0.00E+00  Ccr6 4 8 0.618 0.019 7.17E−01 0.00E+00  0.00E+00  Espn 4 8 0.591 0.027 7.10E−01 0.00E+00  0.00E+00  Rorc 4 8 0.557 0.025 6.54E−01 0.00E+00  0.00E+00  Tnfrsf25 4 8 0.607 0.048 6.34E−01 0.00E+00  0.00E+00  Fosb 4 8 0.623 0.091 1.18E+00 2.12E−305 3.76E−298 Upp1 4 8 0.507 0.026 6.78E−01 5.62E−296 9.96E−289 Igfbp7 4 8 0.515 0.032 7.20E−01 2.28E−288 4.04E−281 Fam110a 4 8 0.55 0.053 7.49E−01 4.44E−285 7.86E−278 Anxa5 4 8 0.609 0.088 6.17E−01 4.30E−283 7.62E−276 Rgs10 4 8 0.564 0.099 5.69E−01 2.60E−228 4.60E−221 Asb2 4 8 0.504 0.088 5.43E−01 1.25E−194 2.21E−187 Tmem176a 4 9 0.979 0.034 1.95E+00 0.00E+00  0.00E+00  Tmem176b 4 9 0.976 0.039 1.92E+00 0.00E+00  0.00E+00  Cd7 4 9 0.876 0.077 1.81E+00 0.00E+00  0.00E+00  S100a4 4 9 0.884 0.02 1.81E+00 0.00E+00  0.00E+00  Fcer1g 4 9 0.98 0.038 1.80E+00 0.00E+00  0.00E+00  Il7r 4 9 0.951 0.043 1.59E+00 0.00E+00  0.00E+00  Ckb 4 9 0.891 0.052 1.38E+00 0.00E+00  0.00E+00  Cxcr6 4 9 0.861 0.017 1.34E+00 0.00E+00  0.00E+00  Bcl2 4 9 0.85 0.095 1.24E+00 0.00E+00  0.00E+00  Lgals3 4 9 0.742 0.035 1.21E+00 0.00E+00  0.00E+00  Prr29 4 9 0.784 0.008 1.14E+00 0.00E+00  0.00E+00  S100a10 4 9 0.824 0.093 1.14E+00 0.00E+00  0.00E+00  Ramp1 4 9 0.719 0.053 1.04E+00 6.49E−304 1.15E−296 Sdc4 4 9 0.748 0.038 1.07E+00 1.97E−283 3.48E−276 Chad 4 9 0.724 0.009 9.83E−01 5.16E−265 9.14E−258 Bst2 4 9 0.687 0.099 7.89E−01 6.89E−259 1.22E−251 Cited4 4 9 0.614 0.009 9.72E−01 8.64E−251 1.53E−243 Rora 4 9 0.73 0.013 1.04E+00 4.19E−243 7.43E−236 Sla 4 9 0.697 0.063 1.01E+00 1.41E−239 2.50E−232 Igfbp7 4 9 0.515 0.01 7.49E−01 1.42E−239 2.52E−232 S100a6 4 9 0.553 0.029 1.00E+00 1.52E−235 2.69E−228 Gpr183 4 9 0.675 0.07 8.23E−01 1.14E−234 2.02E−227 Hebp1 4 9 0.565 0.024 8.60E−01 9.49E−234 1.68E−226 Podnl1 4 9 0.606 0.016 7.01E−01 5.77E−230 1.02E−222 Tnfrsf25 4 9 0.607 0.012 6.74E−01 5.55E−228 9.83E−221 Bhlhe40 4 9 0.709 0.05 1.06E+00 4.15E−226 7.35E−219 Ffar2 4 9 0.563 0.014 7.57E−01 5.97E−226 1.06E−218 Serpina3g 4 9 0.543 0.021 8.35E−01 8.93E−226 1.58E−218 Rorc 4 9 0.557 0.006 6.71E−01 2.53E−224 4.48E−217 Rasl11a 4 9 0.603 0.004 1.10E+00 7.17E−221 1.27E−213 Ccr6 4 9 0.618 0.015 7.19E−01 6.70E−205 1.19E−197 Tcf7 4 9 0.617 0.052 6.98E−01 1.71E−203 3.03E−196 Anxa5 4 9 0.609 0.077 6.29E−01 5.35E−203 9.46E−196 Gpr132 4 9 0.66 0.038 8.02E−01 1.11E−200 1.96E−193 Asb2 4 9 0.504 0.025 6.13E−01 1.60E−197 2.83E−190 Espn 4 9 0.591 0.023 7.16E−01 3.83E−197 6.79E−190 Serpinb1a 4 9 0.606 0.067 7.16E−01 2.30E−194 4.08E−187 Upp1 4 9 0.507 0.015 6.89E−01 2.77E−191 4.90E−184 Maff 4 9 0.631 0.015 9.33E−01 8.58E−187 1.52E−179 Il18r1 4 9 0.548 0.009 6.35E−01 1.22E−178 2.17E−171 Kit 4 9 0.551 0.007 6.43E−01 1.46E−175 2.58E−168 Runx3 4 9 0.508 0.097 4.57E−01 5.54E−169 9.81E−162 Dgat1 4 9 0.504 0.042 6.19E−01 2.01E−167 3.56E−160 St6galnac3 4 9 0.529 0.019 5.69E−01 8.27E−160 1.46E−152 Txk 4 9 0.564 0.055 6.34E−01 4.75E−159 8.41E−152 Tmem176a 4 10 0.979 0.023 1.96E+00 0.00E+00  0.00E+00  Tmem176b 4 10 0.976 0.025 1.92E+00 0.00E+00  0.00E+00  Cd7 4 10 0.876 0.043 1.84E+00 0.00E+00  0.00E+00  S100a4 4 10 0.884 0.014 1.83E+00 0.00E+00  0.00E+00  Fcer1g 4 10 0.98 0.032 1.80E+00 0.00E+00  0.00E+00  Id2 4 10 0.854 0.051 1.61E+00 0.00E+00  0.00E+00  Il7r 4 10 0.951 0.026 1.60E+00 0.00E+00  0.00E+00  Sepp1 4 10 0.944 0.075 1.42E+00 0.00E+00  0.00E+00  Ckb 4 10 0.891 0.027 1.42E+00 0.00E+00  0.00E+00  Nr4a1 4 10 0.774 0.093 1.41E+00 0.00E+00  0.00E+00  Cxcr6 4 10 0.861 0.013 1.34E+00 0.00E+00  0.00E+00  Bcl2 4 10 0.85 0.05 1.30E+00 0.00E+00  0.00E+00  Fosb 4 10 0.623 0.041 1.28E+00 0.00E+00  0.00E+00  Lgals3 4 10 0.742 0.03 1.22E+00 0.00E+00  0.00E+00  S100a10 4 10 0.824 0.053 1.20E+00 0.00E+00  0.00E+00  Ncoa7 4 10 0.798 0.074 1.19E+00 0.00E+00  0.00E+00  Emb 4 10 0.846 0.057 1.17E+00 0.00E+00  0.00E+00  Prr29 4 10 0.784 0.007 1.14E+00 0.00E+00  0.00E+00  Rasl11a 4 10 0.603 0.005 1.10E+00 0.00E+00  0.00E+00  Ramp1 4 10 0.719 0.019 1.08E+00 0.00E+00  0.00E+00  Car2 4 10 0.803 0.1 1.08E+00 0.00E+00  0.00E+00  Bhlhe40 4 10 0.709 0.04 1.07E+00 0.00E+00  0.00E+00  Sdc4 4 10 0.748 0.044 1.05E+00 0.00E+00  0.00E+00  Rora 4 10 0.73 0.008 1.04E+00 0.00E+00  0.00E+00  S100a6 4 10 0.553 0.01 1.03E+00 0.00E+00  0.00E+00  Sla 4 10 0.697 0.05 1.02E+00 0.00E+00  0.00E+00  Chad 4 10 0.724 0.005 9.84E−01 0.00E+00  0.00E+00  Cited4 4 10 0.614 0.006 9.76E−01 0.00E+00  0.00E+00  Maff 4 10 0.631 0.009 9.38E−01 0.00E+00  0.00E+00  Hebp1 4 10 0.565 0.016 8.67E−01 0.00E+00  0.00E+00  Gpr183 4 10 0.675 0.048 8.46E−01 0.00E+00  0.00E+00  Serpina3g 4 10 0.543 0.014 8.44E−01 0.00E+00  0.00E+00  Bst2 4 10 0.687 0.051 8.44E−01 0.00E+00  0.00E+00  Selplg 4 10 0.712 0.09 8.21E−01 0.00E+00  0.00E+00  Gpr132 4 10 0.66 0.025 8.18E−01 0.00E+00  0.00E+00  Ffar2 4 10 0.563 0.009 7.63E−01 0.00E+00  0.00E+00  Igfbp7 4 10 0.515 0.012 7.47E−01 0.00E+00  0.00E+00  Tcf7 4 10 0.617 0.029 7.29E−01 0.00E+00  0.00E+00  Ccr6 4 10 0.618 0.014 7.20E−01 0.00E+00  0.00E+00  Podnl1 4 10 0.606 0.008 7.08E−01 0.00E+00  0.00E+00  Espn 4 10 0.591 0.029 7.08E−01 0.00E+00  0.00E+00  Upp1 4 10 0.507 0.009 6.97E−01 0.00E+00  0.00E+00  Tnfrsf25 4 10 0.607 0.011 6.76E−01 0.00E+00  0.00E+00  Rorc 4 10 0.557 0.002 6.76E−01 0.00E+00  0.00E+00  Znrf1 4 10 0.632 0.057 6.75E−01 0.00E+00  0.00E+00  Anxa5 4 10 0.609 0.043 6.67E−01 0.00E+00  0.00E+00  Txk 4 10 0.564 0.03 6.66E−01 0.00E+00  0.00E+00  Kit 4 10 0.551 0.007 6.44E−01 0.00E+00  0.00E+00  Il18r1 4 10 0.548 0.005 6.38E−01 0.00E+00  0.00E+00  Asb2 4 10 0.504 0.01 6.34E−01 0.00E+00  0.00E+00  St6galnac3 4 10 0.529 0.019 5.68E−01 0.00E+00  0.00E+00  Acot7 4 10 0.573 0.099 5.72E−01  2.1E−316 0.00E+00  Serpinb1a 4 10 0.606 0.088 6.82E−01 3.77E−307 6.68E−300 S100a11 4 10 0.563 0.09 6.10E−01 3.58E−302 6.34E−295 Tnfaip3 4 10 0.573 0.07 7.74E−01 1.16E−298 2.05E−291 Vps37b 4 10 0.549 0.074 9.19E−01 2.39E−275 4.23E−268 Runx3 4 10 0.508 0.049 5.35E−01 2.40E−275 4.25E−268 Hcst 4 10 0.511 0.089 5.47E−01 8.65E−248 1.53E−240 Prr29 4 11 0.784 0.026 1.11E+00 0.00E+00  0.00E+00  Cd81 4 11 0.65 0.042 8.99E−01 3.13E−256 5.54E−249 Ccr6 4 11 0.618 0.032 7.01E−01 2.96E−246 5.24E−239 Rasl11a 4 11 0.603 0.038 1.06E+00 1.56E−229 2.77E−222 Hebp1 4 11 0.565 0.044 8.35E−01 1.32E−195 2.33E−188 Rorc 4 11 0.557 0.052 6.21E−01 1.54E−181 2.73E−174 Igfbp7 4 11 0.515 0.041 7.13E−01 2.65E−166 4.69E−159 Ncoa7 4 12 0.798 0.096 1.16E+00 0.00E+00  0.00E+00  Prr29 4 12 0.784 0.054 1.09E+00 0.00E+00  0.00E+00  Chad 4 12 0.724 0.072 9.18E−01 8.94E−278 1.58E−270 Sdc4 4 12 0.748 0.095 1.02E+00 4.64E−275 8.21E−268 Ccr6 4 12 0.618 0.02 7.15E−01 6.12E−252 1.08E−244 Rasl11a 4 12 0.603 0.041 1.04E+00 1.99E−216 3.52E−209 Hebp1 4 12 0.565 0.042 8.35E−01 8.58E−194 1.52E−186 Rorc 4 12 0.557 0.044 6.31E−01 2.96E−186 5.24E−179 Upp1 4 12 0.507 0.039 6.61E−01 1.53E−164 2.71E−157 Igfbp7 4 12 0.515 0.045 6.86E−01 4.77E−160 8.44E−153 Cxcr6 4 14 0.861 0.091 1.22E+00 6.27E−239 1.11E−231 Prr29 4 14 0.784 0.063 9.79E−01 1.67E−222 2.95E−215 Chad 4 14 0.724 0.078 9.04E−01 9.40E−171 1.66E−163 Tmem176a 4 17 0.979 0.059 1.91E+00 0.00E+00  0.00E+00  Tmem176b 4 17 0.976 0.094 1.83E+00 0.00E+00  0.00E+00  S100a4 4 17 0.884 0.012 1.83E+00 9.45E−277 1.67E−269 Prr29 4 17 0.784 0.006 1.14E+00 2.32E−207 4.11E−200 Sdc4 4 17 0.748 0.023 1.10E+00 1.01E−170 1.78E−163 Ncoa7 4 17 0.798 0.094 1.16E+00 2.00E−162 3.54E−155 Ramp1 4 17 0.719 0.032 1.05E+00 2.36E−159 4.18E−152 Tmem176a 4 18 0.979 0.011 1.98E+00 0.00E+00  0.00E+00  S100a4 4 18 0.884 0.028 1.79E+00 9.91E−215 1.75E−207 Cd7 4 18 0.876 0.05 1.84E+00 2.91E−195 5.15E−188 Ckb 4 18 0.891 0.1 1.34E+00 1.20E−194 2.13E−187 Cxcr6 4 18 0.861 0.06 1.26E+00 2.34E−179 4.14E−172 Prr29 4 18 0.784 0.004 1.15E+00 9.47E−171 1.68E−163 Car2 4 18 0.803 0.028 1.16E+00 2.62E−160 4.64E−153 Tmem176a 4 19 0.979 0.052 1.93E+00 1.02E−193 1.81E−186 Tmem176b 4 19 0.976 0.096 1.87E+00 2.33E−175 4.12E−168 Id2 4 20 0.854 0.059 1.47E+00 1.98E−183 3.50E−176 Prr29 4 20 0.784 0.025 1.13E+00 1.18E−165 2.09E−158 Prr29 4 22 0.784 0.022 1.12E+00 1.40E−168 2.48E−161 Cxcr6 4 22 0.861 0.086 1.24E+00 3.90E−164 6.90E−157 Sepp1 4 24 0.944 0.09 1.41E+00 5.72E−219 1.01E−211 Cxcr6 4 24 0.861 0.049 1.26E+00 1.18E−169 2.09E−162 Bcl2 4 24 0.85 0.094 1.15E+00 9.74E−163 1.72E−155 Fcer1g 4 25 0.98 0.086 1.71E+00 1.44E−228 2.56E−221 Il7r 4 25 0.951 0.081 1.51E+00 2.87E−186 5.07E−179 Tmem176b 4 26 0.976 0.101 1.84E+00 1.93E−273 3.41E−266 S100a4 4 26 0.884 0.051 1.78E+00 6.55E−191 1.16E−183 Ckb 4 26 0.891 0.097 1.33E+00 4.88E−179 8.64E−172 Tmem176a 4 29 0.979 0.034 1.96E+00 8.35E−204 1.48E−196 Tmem176b 4 29 0.976 0.047 1.90E+00 1.75E−193 3.10E−186 Fcer1g 4 29 0.98 0.027 1.78E+00 2.57E−174 4.54E−167 Fcer1g 4 30 0.98 0.074 1.73E+00 1.68E−162 2.97E−155 Tmem176a 4 30 0.979 0.081 1.91E+00 1.28E−161 2.27E−154 Trbc2 5 6 0.958 0.084 1.80E+00 0.00E+00  0.00E+00  Ms4a4b 5 6 0.935 0.057 1.49E+00 0.00E+00  0.00E+00  Cd3d 5 6 0.934 0.026 1.40E+00 0.00E+00  0.00E+00  Cd3g 5 6 0.942 0.024 1.39E+00 0.00E+00  0.00E+00  Cd3e 5 6 0.912 0.02 1.29E+00 0.00E+00  0.00E+00  Lef1 5 6 0.818 0.011 1.10E+00 0.00E+00  0.00E+00  Trac 5 6 0.796 0.013 1.10E+00 0.00E+00  0.00E+00  Lck 5 6 0.802 0.098 9.17E−01 0.00E+00  0.00E+00  Lat 5 6 0.797 0.098 9.15E−01 0.00E+00  0.00E+00  Thy1 5 6 0.793 0.092 9.78E−01  6.4E−316 0.00E+00  Skap1 5 6 0.706 0.033 7.74E−01 1.37E−278 2.43E−271 Igfbp4 5 6 0.555 0.014 8.95E−01 5.40E−273 9.57E−266 Dapl1 5 6 0.55 0.006 1.04E+00 1.26E−256 2.23E−249 Cd2 5 6 0.613 0.031 6.73E−01 1.79E−253 3.16E−246 Klk8 5 6 0.572 0.03 6.42E−01 2.89E−242 5.11E−235 Arl4c 5 6 0.626 0.062 6.86E−01 2.80E−232 4.95E−225 Trbc1 5 6 0.631 0.07 1.29E+00 1.70E−208 3.00E−201 Cd247 5 6 0.514 0.011 5.38E−01 2.34E−203 4.14E−196 Tcf7 5 6 0.555 0.058 5.79E−01 3.71E−177 6.57E−170 Dusp2 5 6 0.5 0.098 6.04E−01 3.25E−168 5.76E−161 Txk 5 6 0.547 0.076 5.71E−01 3.11E−162 5.50E−155 Cd8b1 5 7 0.947 0.082 1.49E+00 0.00E+00  0.00E+00  Cd8a 5 7 0.799 0.035 1.00E+00 0.00E+00  0.00E+00  Nkg7 5 7 0.818 0.095 9.24E−01 0.00E+00  0.00E+00  Dapl1 5 7 0.55 0.047 8.85E−01 0.00E+00  0.00E+00  Igfbp4 5 7 0.555 0.058 7.98E−01 0.00E+00  0.00E+00  Cd8b1 5 8 0.947 0.033 1.63E+00 0.00E+00  0.00E+00  Cd3e 5 8 0.912 0.016 1.30E+00 0.00E+00  0.00E+00  Cd8a 5 8 0.799 0.014 1.07E+00 0.00E+00  0.00E+00  Trac 5 8 0.796 0.056 1.05E+00 0.00E+00  0.00E+00  Dapl1 5 8 0.55 0.001 1.04E+00 0.00E+00  0.00E+00  Igfbp4 5 8 0.555 0.013 8.79E−01 0.00E+00  0.00E+00  Rgs10 5 8 0.626 0.099 6.67E−01 0.00E+00  0.00E+00  Klk8 5 8 0.572 0.076 5.86E−01 0.00E+00  0.00E+00  Bcl2 5 9 0.762 0.095 1.27E+00 7.72E−296 1.37E−288 Nkg7 5 9 0.818 0.068 1.15E+00 3.37E−277 5.96E−270 Trac 5 9 0.796 0.083 1.02E+00 7.53E−267 1.33E−259 Lef1 5 9 0.818 0.057 1.04E+00 8.04E−257 1.42E−249 Thy1 5 9 0.793 0.086 9.90E−01 1.90E−238 3.37E−231 Cd8a 5 9 0.799 0.031 1.05E+00 4.61E−213 8.17E−206 Skap1 5 9 0.706 0.088 7.18E−01 2.66E−183 4.71E−176 Igfbp4 5 9 0.555 0.066 8.38E−01 1.30E−179 2.29E−172 Arl4c 5 9 0.626 0.037 7.19E−01 4.23E−179 7.49E−172 Dapl1 5 9 0.55 0.036 1.01E+00 4.26E−167 7.54E−160 Satb1 5 9 0.618 0.069 6.56E−01 2.82E−164 4.98E−157 Sell 5 9 0.604 0.062 6.59E−01 8.62E−163 1.53E−155 Klk8 5 9 0.572 0.034 6.35E−01 1.97E−160 3.48E−153 S100a10 5 9 0.656 0.093 6.51E−01 3.53E−160 6.25E−153 Cd8b1 5 10 0.947 0.027 1.63E+00 0.00E+00  0.00E+00  Ms4a4b 5 10 0.935 0.07 1.48E+00 0.00E+00  0.00E+00  Cd3g 5 10 0.942 0.055 1.36E+00 0.00E+00  0.00E+00  Cd3d 5 10 0.934 0.083 1.35E+00 0.00E+00  0.00E+00  Bcl2 5 10 0.762 0.05 1.33E+00 0.00E+00  0.00E+00  Cd3e 5 10 0.912 0.07 1.25E+00 0.00E+00  0.00E+00  Nkg7 5 10 0.818 0.045 1.18E+00 0.00E+00  0.00E+00  Lef1 5 10 0.818 0.031 1.08E+00 0.00E+00  0.00E+00  Trac 5 10 0.796 0.05 1.07E+00 0.00E+00  0.00E+00  Cd8a 5 10 0.799 0.023 1.06E+00 0.00E+00  0.00E+00  Thy1 5 10 0.793 0.049 1.04E+00 0.00E+00  0.00E+00  Selplg 5 10 0.825 0.09 1.01E+00 0.00E+00  0.00E+00  Lat 5 10 0.797 0.076 9.57E−01 0.00E+00  0.00E+00  Ccnd2 5 10 0.75 0.044 9.54E−01 0.00E+00  0.00E+00  Hcst 5 10 0.782 0.089 9.37E−01 0.00E+00  0.00E+00  Ccr7 5 10 0.678 0.069 9.00E−01 0.00E+00  0.00E+00  Skap1 5 10 0.706 0.035 7.73E−01 0.00E+00  0.00E+00  Arl4c 5 10 0.626 0.017 7.42E−01 0.00E+00  0.00E+00  Igfbp4 5 10 0.555 0.037 8.78E−01  7.8E−317 0.00E+00  Sell 5 10 0.604 0.042 6.80E−01  2.0E−315 3.62E−308 Dapl1 5 10 0.55 0.013 1.03E+00  4.5E−315 8.06E−308 Satb1 5 10 0.618 0.061 6.64E−01 3.05E−300 5.40E−293 Fyb 5 10 0.633 0.059 6.85E−01 3.34E−299 5.92E−292 Trbc1 5 10 0.631 0.064 1.32E+00 2.06E−298 3.65E−291 Itgb7 5 10 0.608 0.058 6.22E−01 1.31E−284 2.31E−277 Cd2 5 10 0.613 0.074 6.13E−01 9.74E−273 1.72E−265 Ramp1 5 10 0.528 0.019 5.78E−01 7.85E−268 1.39E−260 Tcf7 5 10 0.555 0.029 6.15E−01 3.02E−264 5.34E−257 Txk 5 10 0.547 0.03 6.25E−01 1.63E−243 2.88E−236 Cd247 5 10 0.514 0.025 5.25E−01 6.23E−243 1.10E−235 Ifi203 5 10 0.515 0.023 5.53E−01 1.57E−230 2.77E−223 Fam189b 5 10 0.506 0.025 5.28E−01 1.71E−229 3.03E−222 Mndal 5 10 0.506 0.024 5.35E−01 1.07E−223 1.90E−216 Emp3 5 10 0.574 0.071 5.97E−01 2.13E−222 3.77E−215 H2-Q7 5 10 0.549 0.101 5.17E−01 1.25E−210 2.21E−203 Cd8b1 5 11 0.947 0.018 1.64E+00 0.00E+00  0.00E+00  Cd3d 5 11 0.934 0.047 1.37E+00 0.00E+00  0.00E+00  Cd3e 5 11 0.912 0.021 1.28E+00 0.00E+00  0.00E+00  Cd3g 5 11 0.942 0.069 1.27E+00 0.00E+00  0.00E+00  Lef1 5 11 0.818 0.058 1.05E+00 0.00E+00  0.00E+00  Cd8a 5 11 0.799 0.014 1.05E+00 0.00E+00  0.00E+00  Ccr7 5 11 0.678 0.035 9.49E−01 0.00E+00  0.00E+00  Dapl1 5 11 0.55 0 1.05E+00 9.92E−289 1.76E−281 Igfbp4 5 11 0.555 0.009 9.05E−01 7.67E−283 1.36E−275 Sell 5 11 0.604 0.094 6.14E−01 8.04E−216 1.42E−208 Cd8b1 5 12 0.947 0.03 1.62E+00 0.00E+00  0.00E+00  Ms4a4b 5 12 0.935 0.051 1.49E+00 0.00E+00  0.00E+00  Cd3d 5 12 0.934 0.028 1.40E+00 0.00E+00  0.00E+00  Cd3e 5 12 0.912 0.057 1.25E+00 0.00E+00  0.00E+00  Trac 5 12 0.796 0.014 1.10E+00 0.00E+00  0.00E+00  Cd8a 5 12 0.799 0.02 1.06E+00 0.00E+00  0.00E+00  Lef1 5 12 0.818 0.073 1.03E+00 0.00E+00  0.00E+00  Ms4a6b 5 12 0.799 0.08 9.20E−01 0.00E+00  0.00E+00  Ccr7 5 12 0.678 0.047 9.18E−01 5.14E−295 9.10E−288 Cd2 5 12 0.613 0.026 6.79E−01 1.75E−271 3.09E−264 Dapl1 5 12 0.55 0.003 1.04E+00 9.79E−262 1.73E−254 Arl4c 5 12 0.626 0.048 7.07E−01 1.32E−252 2.34E−245 Igfbp4 5 12 0.555 0.03 8.47E−01 2.74E−243 4.85E−236 Sell 5 12 0.604 0.081 6.35E−01 9.27E−220 1.64E−212 Cd247 5 12 0.514 0.027 5.20E−01 9.38E−193 1.66E−185 Cd3d 5 14 0.934 0.061 1.33E+00 1.69E−223 2.99E−216 Cd8b1 5 14 0.947 0.061 1.58E+00 1.25E−210 2.22E−203 Cd3e 5 14 0.912 0.038 1.24E+00 1.22E−208 2.15E−201 Cd3g 5 14 0.942 0.058 1.30E+00 2.71E−192 4.79E−185 Lat 5 14 0.797 0.053 9.52E−01 1.02E−187 1.80E−180 Trac 5 14 0.796 0.033 1.06E+00 8.61E−187 1.52E−179 Lef1 5 14 0.818 0.033 1.06E+00 2.95E−168 5.22E−161 Cd8a 5 14 0.799 0.019 1.06E+00 2.46E−164 4.35E−157 Thy1 5 14 0.793 0.085 9.85E−01 2.27E−162 4.01E−155 Cd8b1 5 15 0.947 0.008 1.65E+00 1.82E−197 3.22E−190 Cd3d 5 15 0.934 0.013 1.42E+00 2.40E−165 4.25E−158 Cd3g 5 15 0.942 0.04 1.36E+00 9.49E−165 1.68E−157 Cd8b1 5 17 0.947 0.062 1.52E+00 2.23E−258 3.95E−251 Lef1 5 17 0.818 0.062 1.03E+00 8.96E−196 1.59E−188 Cd8b1 5 20 0.947 0.064 1.59E+00 1.42E−204 2.52E−197 Cd3d 5 20 0.934 0.093 1.25E+00 2.63E−193 4.66E−186 Cd3e 5 20 0.912 0.064 1.18E+00 2.15E−191 3.80E−184 Cd3g 5 20 0.942 0.081 1.28E+00 1.05E−188 1.86E−181 Cd3d 5 22 0.934 0.022 1.41E+00 1.13E−183 2.00E−176 Cd8b1 5 22 0.947 0.043 1.62E+00 5.11E−174 9.05E−167 Cd3e 5 22 0.912 0.039 1.28E+00 1.04E−169 1.84E−162 Cd3g 5 22 0.942 0.039 1.37E+00 2.02E−166 3.58E−159 Cd8b1 5 24 0.947 0.031 1.62E+00 6.07E−184 1.07E−176 Ms4a4b 5 24 0.935 0.031 1.52E+00 1.46E−180 2.58E−173 Cd3e 5 24 0.912 0.004 1.32E+00 5.08E−180 8.99E−173 Cd3d 5 24 0.934 0.018 1.42E+00 4.87E−179 8.62E−172 Trbc2 5 24 0.958 0.081 1.76E+00 5.81E−171 1.03E−163 Cd3g 5 24 0.942 0.027 1.33E+00 3.96E−170 7.02E−163 Nkg7 5 24 0.818 0.076 1.10E+00 1.16E−163 2.05E−156 Coro1a 5 25 0.982 0.1 1.63E+00 5.40E−263 9.56E−256 Trbc2 5 25 0.958 0.063 1.81E+00 1.45E−233 2.56E−226 Limd2 5 25 0.951 0.1 1.46E+00 1.06E−232 1.88E−225 Cd3d 5 25 0.934 0.018 1.42E+00 1.37E−225 2.43E−218 Cd8b1 5 25 0.947 0.023 1.61E+00 2.35E−225 4.15E−218 Ms4a4b 5 25 0.935 0.018 1.54E+00 6.53E−221 1.16E−213 Cd3g 5 25 0.942 0.027 1.39E+00 1.93E−218 3.42E−211 Cd3e 5 25 0.912 0.009 1.31E+00 1.51E−212 2.67E−205 Ptprcap 5 25 0.844 0.063 1.11E+00 2.09E−160 3.69E−153 Ms4a4b 5 26 0.935 0.06 1.48E+00 2.56E−197 4.52E−190 Cd3d 5 26 0.934 0.032 1.39E+00 5.62E−191 9.95E−184 Cd3g 5 26 0.942 0.014 1.39E+00 1.36E−180 2.40E−173 Cd3e 5 26 0.912 0.078 1.22E+00 2.76E−180 4.89E−173 Trbc2 5 26 0.958 0.083 1.77E+00 8.90E−180 1.58E−172 Cd8b1 5 26 0.947 0.046 1.55E+00 9.54E−180 1.69E−172 Trbc2 5 30 0.958 0.059 1.82E+00 2.56E−158 4.53E−151 Cd52 5 32 0.992 0.094 2.05E+00 8.42E−188 1.49E−180 Coro1a 5 32 0.982 0.085 1.66E+00 4.24E−162 7.51E−155 Tyrobp 6 7 0.999 0.04 3.69E+00 0.00E+00  0.00E+00  Plac8 6 7 0.999 0.054 3.41E+00 0.00E+00  0.00E+00  Ccl4 6 7 0.868 0.016 3.40E+00 0.00E+00  0.00E+00  Ly6c2 6 7 0.997 0.015 3.18E+00 0.00E+00  0.00E+00  Irf8 6 7 0.997 0.07 3.02E+00 0.00E+00  0.00E+00  Siglech 6 7 0.998 0.008 2.78E+00 0.00E+00  0.00E+00  Klk1 6 7 0.96 0.01 2.68E+00 0.00E+00  0.00E+00  Ly6c1 6 7 0.991 0.007 2.62E+00 0.00E+00  0.00E+00  Cox6a2 6 7 0.969 0.005 2.48E+00 0.00E+00  0.00E+00  Rnase6 6 7 0.992 0.009 2.35E+00 0.00E+00  0.00E+00  Iglc3 6 7 0.968 0.055 2.34E+00 0.00E+00  0.00E+00  Ctsh 6 7 0.988 0.03 2.27E+00 0.00E+00  0.00E+00  Mpeg1 6 7 0.983 0.004 2.09E+00 0.00E+00  0.00E+00  Ctsl 6 7 0.96 0.098 2.01E+00 0.00E+00  0.00E+00  D13Ertd608e 6 7 0.924 0.001 1.94E+00 0.00E+00  0.00E+00  Pld4 6 7 0.975 0.013 1.94E+00 0.00E+00  0.00E+00  Tcf4 6 7 0.977 0.018 1.92E+00 0.00E+00  0.00E+00  Klk1b27 6 7 0.965 0.012 1.91E+00 0.00E+00  0.00E+00  Cybb 6 7 0.978 0.09 1.87E+00 0.00E+00  0.00E+00  Ccr9 6 7 0.956 0.09 1.76E+00 0.00E+00  0.00E+00  Slpi 6 7 0.789 0.013 1.68E+00 0.00E+00  0.00E+00  Clec12a 6 7 0.93 0.002 1.66E+00 0.00E+00  0.00E+00  Tsc22d1 6 7 0.908 0.032 1.64E+00 0.00E+00  0.00E+00  Mef2c 6 7 0.947 0.019 1.63E+00 0.00E+00  0.00E+00  Lair1 6 7 0.937 0.008 1.59E+00 0.00E+00  0.00E+00  Alox5ap 6 7 0.937 0.004 1.58E+00 0.00E+00  0.00E+00  Fcer1g 6 7 0.917 0.019 1.55E+00 0.00E+00  0.00E+00  Unc93b1 6 7 0.934 0.065 1.50E+00 0.00E+00  0.00E+00  Bcl11a 6 7 0.889 0.007 1.44E+00 0.00E+00  0.00E+00  Ncf1 6 7 0.861 0.019 1.43E+00 0.00E+00  0.00E+00  P2ry14 6 7 0.874 0.006 1.40E+00 0.00E+00  0.00E+00  Pltp 6 7 0.842 0.004 1.32E+00 0.00E+00  0.00E+00  Smim5 6 7 0.781 0.001 1.32E+00 0.00E+00  0.00E+00  Upb1 6 7 0.86 0.008 1.29E+00 0.00E+00  0.00E+00  Napsa 6 7 0.849 0.019 1.28E+00 0.00E+00  0.00E+00  Ppfia4 6 7 0.864 0.002 1.24E+00 0.00E+00  0.00E+00  Nucb2 6 7 0.868 0.043 1.22E+00 0.00E+00  0.00E+00  Spib 6 7 0.823 0.021 1.21E+00 0.00E+00  0.00E+00  Cadm1 6 7 0.848 0.001 1.18E+00 0.00E+00  0.00E+00  Cd68 6 7 0.83 0.01 1.17E+00 0.00E+00  0.00E+00  Runx2 6 7 0.811 0.023 1.17E+00 0.00E+00  0.00E+00  Pkib 6 7 0.782 0.004 1.15E+00 0.00E+00  0.00E+00  Kctd12 6 7 0.81 0.02 1.15E+00 0.00E+00  0.00E+00  Blnk 6 7 0.812 0.022 1.12E+00 0.00E+00  0.00E+00  Amica1 6 7 0.791 0.007 1.11E+00 0.00E+00  0.00E+00  Kmo 6 7 0.79 0.003 1.03E+00 0.00E+00  0.00E+00  Gapt 6 7 0.69 0.002 9.05E−01 0.00E+00  0.00E+00  Sh3bgr 6 7 0.7 0 9.59E−01  4.1E−312 7.41E−305 Pkig 6 7 0.839 0.041 1.13E+00  1.6E−311 2.85E−304 Scimp 6 7 0.785 0.019 1.06E+00 8.50E−308 1.51E−300 Fcrla 6 7 0.788 0.02 1.26E+00 8.04E−303 1.42E−295 Lefty1 6 7 0.739 0.01 9.87E−01 5.71E−302 1.01E−294 H2-DMb1 6 7 0.711 0.007 1.12E+00 1.26E−294 2.23E−287 Hpse 6 7 0.73 0.008 9.91E−01 1.52E−294 2.68E−287 Ccr2 6 7 0.777 0.046 1.17E+00 4.98E−290 8.82E−283 Zeb2 6 7 0.725 0.022 9.78E−01 2.15E−287 3.81E−280 Pir 6 7 0.67 0.001 1.01E+00 4.22E−276 7.48E−269 Atp2a1 6 7 0.654 0.002 8.16E−01 5.80E−275 1.03E−267 Klrd1 6 7 0.685 0.007 8.81E−01 8.69E−275 1.54E−267 Mzb1 6 7 0.81 0.056 1.35E+00 5.34E−273 9.45E−266 Ifi30 6 7 0.846 0.072 1.40E+00 3.49E−267 6.18E−260 Lgals3 6 7 0.756 0.03 1.16E+00 7.20E−261 1.27E−253 I830077J02Rik 6 7 0.63 0 8.08E−01 3.03E−260 5.36E−253 Cd209a 6 7 0.578 0 1.25E+00 4.68E−251 8.29E−244 Tubgcp5 6 7 0.744 0.04 9.82E−01 1.35E−243 2.39E−236 Cd209d 6 7 0.564 0.001 1.30E+00 1.68E−242 2.98E−235 Tbc1d8 6 7 0.593 0.002 7.06E−01 7.43E−239 1.32E−231 Plekhm3 6 7 0.635 0.013 7.47E−01 1.32E−238 2.33E−231 Cd180 6 7 0.627 0.012 7.71E−01 4.96E−238 8.78E−231 Lyn 6 7 0.681 0.017 8.20E−01 7.23E−237 1.28E−229 Abhd17b 6 7 0.78 0.076 1.07E+00 8.27E−237 1.46E−229 Slamf9 6 7 0.592 0.002 8.00E−01 9.18E−236 1.62E−228 Sdc4 6 7 0.676 0.041 8.52E−01 4.11E−234 7.28E−227 Klra17 6 7 0.57 0.001 7.70E−01 2.06E−231 3.65E−224 Csf2rb 6 7 0.577 0.001 6.97E−01 6.95E−228 1.23E−220 Plek 6 7 0.634 0.017 8.31E−01 7.06E−225 1.25E−217 Lifr 6 7 0.543 0 6.51E−01 1.41E−224 2.50E−217 Rell1 6 7 0.586 0.005 7.41E−01 3.01E−223 5.32E−216 Pgr 6 7 0.623 0.01 7.38E−01 1.35E−222 2.38E−215 Lat2 6 7 0.644 0.019 7.70E−01 3.62E−215 6.41E−208 Gsn 6 7 0.819 0.08 1.09E+00 5.35E−215 9.47E−208 Havcr1 6 7 0.568 0.005 6.33E−01 1.48E−214 2.62E−207 Spns3 6 7 0.564 0.002 6.76E−01 2.36E−213 4.17E−206 Hs3st1 6 7 0.551 0.006 7.40E−01 4.11E−201 7.28E−194 Lmo2 6 7 0.563 0.011 6.36E−01 6.60E−200 1.17E−192 Pafah1b3 6 7 0.776 0.086 9.60E−01 2.03E−195 3.60E−188 Rpgrip1 6 7 0.5 0.005 6.57E−01 2.36E−194 4.17E−187 Plaur 6 7 0.561 0.019 9.97E−01 1.31E−193 2.32E−186 Flt3 6 7 0.51 0.002 5.96E−01 3.20E−190 5.67E−183 Hhex 6 7 0.553 0.011 6.88E−01 2.52E−187 4.46E−180 Klrk1 6 7 0.522 0.009 6.98E−01 8.33E−183 1.47E−175 Nek6 6 7 0.518 0.005 6.07E−01 3.08E−179 5.45E−172 Mctp2 6 7 0.5 0.009 5.78E−01 1.98E−176 3.51E−169 Hmgn3 6 7 0.6 0.033 6.78E−01 2.45E−171 4.33E−164 Syk 6 7 0.5 0.01 5.68E−01 5.95E−168 1.05E−160 Tmem229b 6 7 0.706 0.071 8.24E−01 3.39E−167 6.00E−160 Gpr137b 6 7 0.53 0.019 5.62E−01 3.22E−165 5.70E−158 Irf5 6 7 0.61 0.038 6.73E−01 1.51E−164 2.68E−157 Irf7 6 7 0.712 0.076 1.06E+00 2.37E−163 4.19E−156 Trf 6 7 0.513 0.017 6.03E−01 1.96E−158 3.47E−151 Klk1 6 8 0.96 0.074 2.61E+00 0.00E+00  0.00E+00  Cox6a2 6 8 0.969 0.044 2.41E+00 0.00E+00  0.00E+00  Rnase6 6 8 0.992 0.035 2.33E+00 0.00E+00  0.00E+00  Iglc3 6 8 0.968 0.04 2.28E+00 0.00E+00  0.00E+00  Ctsh 6 8 0.988 0.087 2.22E+00 0.00E+00  0.00E+00  Ctsl 6 8 0.96 0.053 2.11E+00 0.00E+00  0.00E+00  Mpeg1 6 8 0.983 0.041 2.06E+00 0.00E+00  0.00E+00  Cybb 6 8 0.978 0.026 1.96E+00 0.00E+00  0.00E+00  D13Ertd608e 6 8 0.924 0.008 1.94E+00 0.00E+00  0.00E+00  Klk1b27 6 8 0.965 0.016 1.90E+00 0.00E+00  0.00E+00  Pld4 6 8 0.975 0.057 1.89E+00 0.00E+00  0.00E+00  Ccr9 6 8 0.956 0.051 1.88E+00 0.00E+00  0.00E+00  Clec12a 6 8 0.93 0.02 1.64E+00 0.00E+00  0.00E+00  Alox5ap 6 8 0.937 0.029 1.55E+00 0.00E+00  0.00E+00  Lair1 6 8 0.937 0.071 1.52E+00 0.00E+00  0.00E+00  Bcl11a 6 8 0.889 0.015 1.43E+00 0.00E+00  0.00E+00  Nucb2 6 8 0.868 0.01 1.25E+00 0.00E+00  0.00E+00  Ppfia4 6 8 0.864 0.014 1.23E+00 0.00E+00  0.00E+00  Upb1 6 8 0.86 0.016 1.28E+00 1.67E−306 2.96E−299 Cadm1 6 8 0.848 0.016 1.16E+00 2.18E−304 3.86E−297 Spib 6 8 0.823 0.017 1.21E+00 6.90E−290 1.22E−282 Smim5 6 8 0.781 0.01 1.31E+00 2.86E−281 5.07E−274 Gm2a 6 8 0.91 0.092 1.37E+00 2.30E−274 4.08E−267 Ifi27l2a 6 8 0.844 0.054 2.11E+00 4.32E−272 7.66E−265 P2ry14 6 8 0.874 0.058 1.34E+00 1.44E−261 2.55E−254 Cd68 6 8 0.83 0.022 1.16E+00 1.42E−258 2.51E−251 Blnk 6 8 0.812 0.02 1.12E+00 1.20E−256 2.13E−249 Mzb1 6 8 0.81 0.025 1.39E+00 2.40E−255 4.26E−248 Pkib 6 8 0.782 0.013 1.14E+00 1.14E−254 2.01E−247 Slpi 6 8 0.789 0.029 1.66E+00 1.77E−242 3.13E−235 Fcrla 6 8 0.788 0.015 1.27E+00 1.46E−237 2.58E−230 Pltp 6 8 0.842 0.043 1.28E+00 3.11E−233 5.52E−226 Pacsin1 6 8 0.819 0.03 1.08E+00 2.15E−232 3.81E−225 Lefty1 6 8 0.739 0.009 9.89E−01 5.65E−232 1.00E−224 Kmo 6 8 0.79 0.02 1.01E+00 5.62E−230 9.96E−223 Sh3bgr 6 8 0.7 0.005 9.54E−01 7.57E−224 1.34E−216 Ly86 6 8 0.733 0.014 9.74E−01 1.93E−218 3.42E−211 Gapt 6 8 0.69 0.023 8.82E−01 1.65E−215 2.92E−208 Ifi30 6 8 0.846 0.058 1.42E+00 1.18E−213 2.09E−206 Amica1 6 8 0.791 0.04 1.07E+00 3.89E−205 6.90E−198 Tnfrsf13b 6 8 0.786 0.037 1.02E+00 5.71E−204 1.01E−196 Bmyc 6 8 0.807 0.041 1.07E+00 9.53E−204 1.69E−196 H2-DMb1 6 8 0.711 0.018 1.11E+00 7.48E−201 1.32E−193 Trib1 6 8 0.722 0.027 1.05E+00 1.24E−197 2.20E−190 Gsn 6 8 0.819 0.038 1.14E+00 8.13E−194 1.44E−186 Atp2a1 6 8 0.654 0.01 8.08E−01 1.34E−189 2.38E−182 Pir 6 8 0.67 0.007 1.00E+00 5.75E−186 1.02E−178 Cd180 6 8 0.627 0.011 7.71E−01 1.18E−182 2.09E−175 Tubgcp5 6 8 0.744 0.046 9.75E−01 8.31E−181 1.47E−173 Cd200 6 8 0.609 0.007 7.81E−01 1.45E−172 2.57E−165 Slamf9 6 8 0.592 0.004 7.97E−01 3.45E−171 6.11E−164 Cd209d 6 8 0.564 0.011 1.29E+00 3.78E−166 6.69E−159 Hpse 6 8 0.73 0.041 9.58E−01 1.70E−165 3.00E−158 I830077J02Rik 6 8 0.63 0.012 7.96E−01 3.02E−162 5.34E−155 Havcr1 6 8 0.568 0.007 6.31E−01 2.53E−159 4.47E−152 Tbc1d8 6 8 0.593 0.011 6.96E−01 5.35E−159 9.47E−152 Tyrobp 6 9 0.999 0.093 3.64E+00 0.00E+00  0.00E+00  Ccl4 6 9 0.868 0.033 3.40E+00 0.00E+00  0.00E+00  Bst2 6 9 0.998 0.099 3.31E+00 0.00E+00  0.00E+00  Ly6c2 6 9 0.997 0.036 3.16E+00 0.00E+00  0.00E+00  Siglech 6 9 0.998 0.022 2.77E+00 0.00E+00  0.00E+00  Klk1 6 9 0.96 0.021 2.67E+00 0.00E+00  0.00E+00  Ly6c1 6 9 0.991 0.008 2.63E+00 0.00E+00  0.00E+00  Cox6a2 6 9 0.969 0.013 2.48E+00 0.00E+00  0.00E+00  Grn 6 9 0.986 0.1 2.19E+00 0.00E+00  0.00E+00  Ctsl 6 9 0.96 0.021 2.14E+00 0.00E+00  0.00E+00  Mpeg1 6 9 0.983 0.02 2.07E+00 0.00E+00  0.00E+00  Cd7 6 9 0.954 0.077 1.94E+00 0.00E+00  0.00E+00  D13Ertd608e 6 9 0.924 0.002 1.94E+00 0.00E+00  0.00E+00  Klk1b27 6 9 0.965 0.008 1.91E+00 0.00E+00  0.00E+00  Ccr9 6 9 0.956 0.017 1.91E+00 0.00E+00  0.00E+00  Sell 6 9 0.973 0.062 1.82E+00 0.00E+00  0.00E+00  Cd8b1 6 9 0.593 0.057 1.75E+00 0.00E+00  0.00E+00  Tsc22d1 6 9 0.908 0.021 1.66E+00 0.00E+00  0.00E+00  Lair1 6 9 0.937 0.008 1.59E+00 0.00E+00  0.00E+00  S100a6 6 9 0.895 0.029 1.58E+00 0.00E+00  0.00E+00  Alox5ap 6 9 0.937 0.005 1.58E+00 0.00E+00  0.00E+00  Fcer1g 6 9 0.917 0.038 1.52E+00 0.00E+00  0.00E+00  Atp1b1 6 9 0.897 0.016 1.50E+00 0.00E+00  0.00E+00  Gpr171 6 9 0.847 0.081 1.47E+00 0.00E+00  0.00E+00  Rilpl2 6 9 0.857 0.078 1.45E+00 0.00E+00  0.00E+00  P2ry14 6 9 0.874 0.008 1.40E+00 0.00E+00  0.00E+00  Smim5 6 9 0.781 0.003 1.32E+00 0.00E+00  0.00E+00  Pltp 6 9 0.842 0.015 1.31E+00 0.00E+00  0.00E+00  Cd209d 6 9 0.564 0.005 1.29E+00 0.00E+00  0.00E+00  Ramp1 6 9 0.879 0.053 1.29E+00 0.00E+00  0.00E+00  Upb1 6 9 0.86 0.005 1.29E+00 0.00E+00  0.00E+00  Ccr2 6 9 0.777 0.004 1.26E+00 0.00E+00  0.00E+00  Cd209a 6 9 0.578 0.004 1.25E+00 0.00E+00  0.00E+00  Ifnar2 6 9 0.868 0.023 1.24E+00 0.00E+00  0.00E+00  Ppfia4 6 9 0.864 0.005 1.24E+00 0.00E+00  0.00E+00  Nucb2 6 9 0.868 0.046 1.21E+00 0.00E+00  0.00E+00  Runx2 6 9 0.811 0.009 1.19E+00 0.00E+00  0.00E+00  Cadm1 6 9 0.848 0.003 1.18E+00 0.00E+00  0.00E+00  Lgals3 6 9 0.756 0.035 1.15E+00 0.00E+00  0.00E+00  Kctd12 6 9 0.81 0.017 1.15E+00 0.00E+00  0.00E+00  Cd68 6 9 0.83 0.042 1.14E+00 0.00E+00  0.00E+00  Amica1 6 9 0.791 0.009 1.11E+00 0.00E+00  0.00E+00  Snx18 6 9 0.81 0.075 1.08E+00 0.00E+00  0.00E+00  Plaur 6 9 0.561 0.009 1.01E+00 0.00E+00  0.00E+00  Pir 6 9 0.67 0.003 1.00E+00 0.00E+00  0.00E+00  Trib1 6 9 0.722 0.072 1.00E+00 0.00E+00  0.00E+00  Il7r 6 9 0.757 0.043 9.84E−01 0.00E+00  0.00E+00  Zeb2 6 9 0.725 0.02 9.80E−01 0.00E+00  0.00E+00  Sh3bgr 6 9 0.7 0.005 9.53E−01 0.00E+00  0.00E+00  Socs3 6 9 0.52 0.033 9.25E−01 0.00E+00  0.00E+00  Mndal 6 9 0.694 0.035 9.07E−01 0.00E+00  0.00E+00  Ahnak 6 9 0.688 0.022 8.99E−01 0.00E+00  0.00E+00  Klrd1 6 9 0.685 0.015 8.78E−01 0.00E+00  0.00E+00  Timp2 6 9 0.68 0.019 8.59E−01 0.00E+00  0.00E+00  Gapt 6 9 0.69 0.048 8.58E−01 0.00E+00  0.00E+00  Sdc4 6 9 0.676 0.038 8.50E−01 0.00E+00  0.00E+00  Gpr183 6 9 0.624 0.07 8.40E−01 0.00E+00  0.00E+00  Sla2 6 9 0.67 0.026 8.33E−01 0.00E+00  0.00E+00  Irf2bp2 6 9 0.712 0.101 8.18E−01 0.00E+00  0.00E+00  Atp2a1 6 9 0.654 0.002 8.16E−01 0.00E+00  0.00E+00  I830077J02Rik 6 9 0.63 0.004 8.03E−01 0.00E+00  0.00E+00  Slamf9 6 9 0.592 0.003 7.98E−01 0.00E+00  0.00E+00  Irf1 6 9 0.65 0.092 7.96E−01 0.00E+00  0.00E+00  Tmem229b 6 9 0.706 0.1 7.91E−01 0.00E+00  0.00E+00  Rnf149 6 9 0.601 0.075 7.79E−01 0.00E+00  0.00E+00  Klra17 6 9 0.57 0.003 7.68E−01 0.00E+00  0.00E+00  Zyx 6 9 0.623 0.036 7.62E−01 0.00E+00  0.00E+00  Adgre5 6 9 0.617 0.052 7.57E−01 0.00E+00  0.00E+00  Ifi203 6 9 0.573 0.048 7.44E−01 0.00E+00  0.00E+00  Rell1 6 9 0.586 0.021 7.24E−01 0.00E+00  0.00E+00  Klrk1 6 9 0.522 0.005 7.05E−01 0.00E+00  0.00E+00  Tbc1d8 6 9 0.593 0.003 7.04E−01 0.00E+00  0.00E+00  Lag3 6 9 0.548 0.016 7.01E−01 0.00E+00  0.00E+00  Itgb7 6 9 0.622 0.075 7.00E−01 0.00E+00  0.00E+00  Csf2rb 6 9 0.577 0.006 6.92E−01 0.00E+00  0.00E+00  Trim30a 6 9 0.597 0.067 6.84E−01 0.00E+00  0.00E+00  Plekhm3 6 9 0.635 0.074 6.76E−01 0.00E+00  0.00E+00  Spns3 6 9 0.564 0.009 6.69E−01 0.00E+00  0.00E+00  Fgr 6 9 0.623 0.081 6.65E−01 0.00E+00  0.00E+00  Lifr 6 9 0.543 0.006 6.45E−01 0.00E+00  0.00E+00  Il10rb 6 9 0.59 0.045 6.29E−01 0.00E+00  0.00E+00  Trf 6 9 0.513 0.005 6.19E−01 0.00E+00  0.00E+00  Tex2 6 9 0.522 0.012 5.68E−01 0.00E+00  0.00E+00  Runx3 6 9 0.567 0.097 6.09E−01 1.44E−305 2.54E−298 Cmah 6 9 0.546 0.077 5.36E−01 8.39E−296 1.48E−288 Mctp2 6 9 0.5 0.038 5.49E−01 1.53E−293 2.71E−286 Nek6 6 9 0.518 0.089 5.18E−01 3.80E−284 6.73E−277 Rnf122 6 9 0.525 0.058 5.87E−01 1.18E−279 2.08E−272 Rpgrip1 6 9 0.5 0.039 6.19E−01 8.44E−279 1.50E−271 Bhlhe40 6 9 0.504 0.05 6.30E−01 2.55E−276 4.51E−269 Tyrobp 6 10 0.999 0.064 3.65E+00 0.00E+00  0.00E+00  Ccl4 6 10 0.868 0.025 3.41E+00 0.00E+00  0.00E+00  Plac8 6 10 0.999 0.063 3.39E+00 0.00E+00  0.00E+00  Bst2 6 10 0.998 0.051 3.36E+00 0.00E+00  0.00E+00  Ly6c2 6 10 0.997 0.019 3.17E+00 0.00E+00  0.00E+00  Siglech 6 10 0.998 0.011 2.78E+00 0.00E+00  0.00E+00  Klk1 6 10 0.96 0.014 2.67E+00 0.00E+00  0.00E+00  Ly6c1 6 10 0.991 0.007 2.62E+00 0.00E+00  0.00E+00  Cox6a2 6 10 0.969 0.008 2.48E+00 0.00E+00  0.00E+00  Grn 6 10 0.986 0.044 2.26E+00 0.00E+00  0.00E+00  Ctsl 6 10 0.96 0.016 2.14E+00 0.00E+00  0.00E+00  Mpeg1 6 10 0.983 0.015 2.08E+00 0.00E+00  0.00E+00  Cd7 6 10 0.954 0.043 1.97E+00 0.00E+00  0.00E+00  D13Ertd608e 6 10 0.924 0.001 1.94E+00 0.00E+00  0.00E+00  Ccr9 6 10 0.956 0.008 1.93E+00 0.00E+00  0.00E+00  Selplg 6 10 0.983 0.09 1.92E+00 0.00E+00  0.00E+00  Klk1b27 6 10 0.965 0.005 1.92E+00 0.00E+00  0.00E+00  Sell 6 10 0.973 0.042 1.84E+00 0.00E+00  0.00E+00  Tsc22d1 6 10 0.908 0.015 1.67E+00 0.00E+00  0.00E+00  S100a6 6 10 0.895 0.01 1.61E+00 0.00E+00  0.00E+00  Lair1 6 10 0.937 0.004 1.59E+00 0.00E+00  0.00E+00  Alox5ap 6 10 0.937 0.005 1.58E+00 0.00E+00  0.00E+00  Fyb 6 10 0.944 0.059 1.52E+00 0.00E+00  0.00E+00  Fcer1g 6 10 0.917 0.032 1.52E+00 0.00E+00  0.00E+00  Atp1b1 6 10 0.897 0.009 1.51E+00 0.00E+00  0.00E+00  Rilpl2 6 10 0.857 0.049 1.49E+00 0.00E+00  0.00E+00  Gpr171 6 10 0.847 0.076 1.48E+00 0.00E+00  0.00E+00  Emp3 6 10 0.897 0.071 1.43E+00 0.00E+00  0.00E+00  P2ry14 6 10 0.874 0.005 1.40E+00 0.00E+00  0.00E+00  Ramp1 6 10 0.879 0.019 1.33E+00 0.00E+00  0.00E+00  Smim5 6 10 0.781 0.001 1.32E+00 0.00E+00  0.00E+00  Pltp 6 10 0.842 0.012 1.31E+00 0.00E+00  0.00E+00  Upb1 6 10 0.86 0.001 1.29E+00 0.00E+00  0.00E+00  Ccr2 6 10 0.777 0.002 1.26E+00 0.00E+00  0.00E+00  Ifnar2 6 10 0.868 0.015 1.25E+00 0.00E+00  0.00E+00  Ppfia4 6 10 0.864 0.006 1.24E+00 0.00E+00  0.00E+00  Nucb2 6 10 0.868 0.034 1.23E+00 0.00E+00  0.00E+00  S100a11 6 10 0.877 0.09 1.22E+00 0.00E+00  0.00E+00  Runx2 6 10 0.811 0.005 1.19E+00 0.00E+00  0.00E+00  Cadm1 6 10 0.848 0.001 1.18E+00 0.00E+00  0.00E+00  Lgals3 6 10 0.756 0.03 1.17E+00 0.00E+00  0.00E+00  Cd68 6 10 0.83 0.019 1.17E+00 0.00E+00  0.00E+00  Kctd12 6 10 0.81 0.017 1.15E+00 0.00E+00  0.00E+00  Snx18 6 10 0.81 0.046 1.11E+00 0.00E+00  0.00E+00  Amica1 6 10 0.791 0.009 1.11E+00 0.00E+00  0.00E+00  Evi2a 6 10 0.768 0.076 1.05E+00 0.00E+00  0.00E+00  Trib1 6 10 0.722 0.046 1.03E+00 0.00E+00  0.00E+00  Pir 6 10 0.67 0.002 1.01E+00 0.00E+00  0.00E+00  Il7r 6 10 0.757 0.026 1.00E+00 0.00E+00  0.00E+00  Zeb2 6 10 0.725 0.015 9.84E−01 0.00E+00  0.00E+00  Tubgcp5 6 10 0.744 0.051 9.72E−01 0.00E+00  0.00E+00  Sh3bgr 6 10 0.7 0.004 9.55E−01 0.00E+00  0.00E+00  Kmo 6 10 0.79 0.075 9.52E−01 0.00E+00  0.00E+00  Litaf 6 10 0.728 0.049 9.47E−01 0.00E+00  0.00E+00  Mndal 6 10 0.694 0.024 9.27E−01 0.00E+00  0.00E+00  Ahnak 6 10 0.688 0.018 9.02E−01 0.00E+00  0.00E+00  Klrd1 6 10 0.685 0.007 8.85E−01 0.00E+00  0.00E+00  Timp2 6 10 0.68 0.014 8.66E−01 0.00E+00  0.00E+00  Sla2 6 10 0.67 0.016 8.43E−01 0.00E+00  0.00E+00  Atp2a1 6 10 0.654 0.001 8.17E−01 0.00E+00  0.00E+00  I830077J02Rik 6 10 0.63 0.002 8.07E−01 0.00E+00  0.00E+00  Tbc1d8 6 10 0.593 0.001 7.06E−01  3.7E−313 6.72E−306 Cd209a 6 10 0.578 0.002 1.25E+00 5.29E−306 9.37E−299 Slamf9 6 10 0.592 0.004 7.98E−01 7.25E−302 1.28E−294 Sdc4 6 10 0.676 0.044 8.31E−01 3.09E−300 5.47E−293 Klra17 6 10 0.57 0.001 7.71E−01 6.75E−298 1.20E−290 Tmem229b 6 10 0.706 0.059 8.33E−01 1.66E−295 2.94E−288 Cd209d 6 10 0.564 0.006 1.29E+00 1.24E−287 2.20E−280 Csf2rb 6 10 0.577 0.005 6.92E−01 4.51E−283 7.98E−276 Plaur 6 10 0.561 0.006 1.01E+00 5.25E−282 9.31E−275 Rell1 6 10 0.586 0.01 7.35E−01 6.41E−281 1.14E−273 Irf2bp2 6 10 0.712 0.073 8.55E−01 4.60E−278 8.14E−271 Zyx 6 10 0.623 0.024 7.76E−01 6.37E−273 1.13E−265 Cd8b1 6 10 0.593 0.027 1.78E+00 9.61E−270 1.70E−262 Lifr 6 10 0.543 0.005 6.46E−01 2.42E−266 4.28E−259 Tex2 6 10 0.522 0.002 5.78E−01 1.30E−261 2.30E−254 Adgre5 6 10 0.617 0.03 7.77E−01 3.51E−260 6.22E−253 Lag3 6 10 0.548 0.007 7.10E−01 1.09E−255 1.93E−248 Spns3 6 10 0.564 0.011 6.66E−01 2.50E−254 4.43E−247 Ifi203 6 10 0.573 0.023 7.73E−01 9.81E−254 1.74E−246 Klrk1 6 10 0.522 0.005 7.03E−01 1.72E−251 3.05E−244 Irf7 6 10 0.712 0.1 1.04E+00 5.55E−251 9.83E−244 Il10rb 6 10 0.59 0.026 6.48E−01 2.77E−249 4.90E−242 Leprotl1 6 10 0.634 0.045 6.91E−01 8.56E−245 1.52E−237 Trf 6 10 0.513 0.006 6.20E−01 1.30E−239 2.30E−232 Irf1 6 10 0.65 0.065 8.30E−01 3.67E−239 6.51E−232 Rnf149 6 10 0.601 0.041 8.20E−01 3.18E−228 5.63E−221 Trim30a 6 10 0.597 0.045 7.07E−01 1.57E−226 2.78E−219 Fgr 6 10 0.623 0.055 6.93E−01 1.46E−225 2.59E−218 Gpr183 6 10 0.624 0.048 8.64E−01 1.35E−223 2.38E−216 Itgb7 6 10 0.622 0.058 7.28E−01 3.41E−217 6.04E−210 Socs3 6 10 0.52 0.019 9.44E−01 2.02E−212 3.58E−205 Mctp2 6 10 0.5 0.02 5.67E−01 6.79E−202 1.20E−194 Runx3 6 10 0.567 0.049 6.86E−01 2.44E−196 4.33E−189 Cmah 6 10 0.546 0.038 5.94E−01 3.91E−195 6.93E−188 Plekhm3 6 10 0.635 0.097 6.60E−01 3.70E−191 6.55E−184 Hhex 6 10 0.553 0.048 6.41E−01 3.86E−186 6.83E−179 Rnf13 6 10 0.633 0.101 6.50E−01 2.27E−184 4.02E−177 Cd44 6 10 0.609 0.085 6.75E−01 3.87E−179 6.84E−172 Nek6 6 10 0.518 0.037 5.74E−01 1.56E−174 2.77E−167 Man1a2 6 10 0.548 0.063 5.81E−01 6.02E−172 1.06E−164 Gpr137b 6 10 0.53 0.053 5.28E−01 3.43E−170 6.07E−163 Bhlhe40 6 10 0.504 0.04 6.37E−01 3.39E−163 6.00E−156 Rnf122 6 10 0.525 0.064 5.80E−01 3.97E−159 7.02E−152 Ly6c2 6 11 0.997 0.069 3.10E+00 0.00E+00  0.00E+00  Siglech 6 11 0.998 0.093 2.69E+00 0.00E+00  0.00E+00  Ly6c1 6 11 0.991 0.028 2.59E+00 0.00E+00  0.00E+00  Cox6a2 6 11 0.969 0.037 2.45E+00 0.00E+00  0.00E+00  Iglc3 6 11 0.968 0.024 2.38E+00 0.00E+00  0.00E+00  Rnase6 6 11 0.992 0.031 2.33E+00 0.00E+00  0.00E+00  Ctsh 6 11 0.988 0.07 2.23E+00 0.00E+00  0.00E+00  Mpeg1 6 11 0.983 0.048 2.05E+00 0.00E+00  0.00E+00  Cybb 6 11 0.978 0.028 1.95E+00 0.00E+00  0.00E+00  Klk1b27 6 11 0.965 0.011 1.91E+00 5.08E−307 9.00E−300 Pld4 6 11 0.975 0.053 1.90E+00 4.35E−294 7.70E−287 Klk1 6 11 0.96 0.066 2.62E+00 6.06E−290 1.07E−282 Ctsl 6 11 0.96 0.046 2.11E+00 5.69E−268 1.01E−260 Sell 6 11 0.973 0.094 1.77E+00 1.66E−265 2.95E−258 Lair1 6 11 0.937 0.021 1.57E+00 1.26E−262 2.23E−255 Mef2c 6 11 0.947 0.048 1.59E+00 1.86E−250 3.30E−243 Clec12a 6 11 0.93 0.025 1.63E+00 1.14E−244 2.02E−237 D13Ertd608e 6 11 0.924 0.007 1.94E+00 7.09E−243 1.26E−235 Alox5ap 6 11 0.937 0.031 1.55E+00 9.83E−238 1.74E−230 Bcl11a 6 11 0.889 0.018 1.43E+00 5.00E−214 8.85E−207 Ppfia4 6 11 0.864 0.014 1.23E+00 3.73E−208 6.60E−201 Tsc22d1 6 11 0.908 0.075 1.60E+00 2.65E−201 4.69E−194 Nucb2 6 11 0.868 0.01 1.25E+00 1.19E−199 2.11E−192 P2ry14 6 11 0.874 0.024 1.38E+00 2.54E−193 4.50E−186 Cadm1 6 11 0.848 0.012 1.17E+00 3.48E−192 6.15E−185 Upb1 6 11 0.86 0.015 1.28E+00 4.89E−185 8.66E−178 Ifi27l2a 6 11 0.844 0.07 2.10E+00 6.88E−179 1.22E−171 Spib 6 11 0.823 0.022 1.21E+00 7.33E−177 1.30E−169 Smim5 6 11 0.781 0.012 1.31E+00 2.16E−174 3.82E−167 Cd68 6 11 0.83 0.016 1.17E+00 5.67E−160 l.OOE−152  Slpi 6 11 0.789 0.024 1.67E+00 4.23E−159 7.48E−152 Ly6c2 6 12 0.997 0.048 3.15E+00 0.00E+00  0.00E+00  Ly6c1 6 12 0.991 0.017 2.61E+00 0.00E+00  0.00E+00  Cox6a2 6 12 0.969 0.027 2.46E+00 0.00E+00  0.00E+00  Iglc3 6 12 0.968 0.019 2.38E+00 0.00E+00  0.00E+00  Rnase6 6 12 0.992 0.032 2.33E+00 0.00E+00  0.00E+00  Ctsh 6 12 0.988 0.098 2.20E+00 0.00E+00  0.00E+00  Mpeg1 6 12 0.983 0.036 2.06E+00 0.00E+00  0.00E+00  Klk1b27 6 12 0.965 0.018 1.90E+00  5.0E−315 8.89E−308 Pld4 6 12 0.975 0.061 1.90E+00 1.48E−307 2.62E−300 Tcf4 6 12 0.977 0.096 1.84E+00 1.50E−304 2.65E−297 Klk1 6 12 0.96 0.072 2.61E+00 4.78E−300 8.46E−293 Lgals1 6 12 0.978 0.085 2.13E+00 7.50E−297 1.33E−289 Sell 6 12 0.973 0.081 1.79E+00 9.66E−291 1.71E−283 Mef2c 6 12 0.947 0.021 1.62E+00 1.14E−287 2.02E−280 Lair1 6 12 0.937 0.023 1.57E+00 2.43E−274 4.30E−267 Ctsl 6 12 0.96 0.067 2.09E+00 5.61E−273 9.93E−266 Clec12a 6 12 0.93 0.017 1.64E+00 2.53E−265 4.47E−258 D13Ertd608e 6 12 0.924 0.007 1.94E+00 5.62E−257 9.96E−250 Alox5ap 6 12 0.937 0.032 1.55E+00 1.67E−253 2.95E−246 Ctss 6 12 0.96 0.087 1.71E+00 1.39E−238 2.46E−231 Bcl11a 6 12 0.889 0.023 1.43E+00 1.66E−217 2.95E−210 Atp1b1 6 12 0.897 0.033 1.48E+00 8.29E−213 1.47E−205 Ppfia4 6 12 0.864 0.017 1.23E+00 3.85E−212 6.82E−205 Cadm1 6 12 0.848 0.011 1.17E+00 3.92E−202 6.93E−195 Ifi27l2a 6 12 0.844 0.05 2.14E+00 5.33E−199 9.43E−192 Tsc22d1 6 12 0.908 0.099 1.55E+00 7.63E−195 1.35E−187 Nucb2 6 12 0.868 0.024 1.24E+00 2.42E−192 4.29E−185 Spib 6 12 0.823 0.021 1.21E+00 5.83E−184 1.03E−176 Upb1 6 12 0.86 0.026 1.27E+00 4.32E−182 7.65E−175 Ly6e 6 12 0.891 0.088 1.85E+00 9.81E−178 1.74E−170 Smim5 6 12 0.781 0.018 1.30E+00 5.63E−173 9.97E−166 Slpi 6 12 0.789 0.024 1.67E+00 4.60E−164 8.15E−157 Ncf1 6 12 0.861 0.072 1.38E+00 1.18E−163 2.08E−156 Cd68 6 12 0.83 0.024 1.16E+00 1.24E−160 2.19E−153 Scimp 6 12 0.785 0.008 1.07E+00 3.82E−159 6.75E−152 Pkib 6 12 0.782 0.019 1.14E+00 4.90E−158 8.67E−151 Ly6c2 6 14 0.997 0.094 3.04E+00 0.00E+00  0.00E+00  Ly6c1 6 14 0.991 0.041 2.56E+00 0.00E+00  0.00E+00  Cox6a2 6 14 0.969 0.049 2.44E+00 0.00E+00  0.00E+00  Iglc3 6 14 0.968 0.092 2.23E+00 0.00E+00  0.00E+00  D13Ertd608e 6 14 0.924 0.014 1.93E+00 0.00E+00  0.00E+00  P2ry14 6 14 0.874 0.059 1.34E+00 0.00E+00  0.00E+00  Nucb2 6 14 0.868 0.08 1.17E+00 0.00E+00  0.00E+00  Mzb1 6 14 0.81 0.094 1.23E+00  2.0E−316 0.00E+00  Slpi 6 14 0.789 0.056 1.63E+00  3.1E−316 0.00E+00  Lefty1 6 14 0.739 0.033 9.62E−01 2.90E−292 5.14E−285 Ccr2 6 14 0.777 0.055 1.15E+00 8.71E−281 1.54E−273 Sh3bgr 6 14 0.7 0.022 9.38E−01 6.49E−278 1.15E−270 Pir 6 14 0.67 0.02 9.80E−01 3.81E−261 6.75E−254 Atp2a1 6 14 0.654 0.019 7.98E−01 9.82E−251 1.74E−243 Tubgcp5 6 14 0.744 0.095 9.24E−01 2.08E−249 3.69E−242 Hpse 6 14 0.73 0.099 8.88E−01 7.92E−242 1.40E−234 Timp2 6 14 0.68 0.049 8.30E−01 3.17E−239 5.61E−232 Havcr1 6 14 0.568 0.009 6.29E−01 2.65E−209 4.68E−202 Ctse 6 14 0.673 0.091 7.43E−01 1.66E−203 2.94E−196 Klra17 6 14 0.57 0.013 7.54E−01 4.42E−203 7.83E−196 Sla2 6 14 0.67 0.085 7.65E−01 1.99E−198 3.53E−191 Slamf9 6 14 0.592 0.05 7.44E−01 1.63E−188 2.89E−181 Cd209d 6 14 0.564 0.02 1.28E+00 3.15E−188 5.57E−181 Cd8b1 6 14 0.593 0.061 1.73E+00 2.83E−181 5.01E−174 Lifr 6 14 0.543 0.025 6.26E−01 3.74E−175 6.63E−168 Cmah 6 14 0.546 0.033 6.01E−01 6.25E−171 1.11E−163 Plac8 6 15 0.999 0.101 3.39E+00 1.33E−188 2.35E−181 Siglech 6 17 0.998 0.053 2.74E+00 0.00E+00  0.00E+00  Ly6c2 6 17 0.997 0.038 3.13E+00 7.09E−290 1.25E−282 Rnase6 6 17 0.992 0.032 2.33E+00 1.18E−267 2.10E−260 Ly6c1 6 17 0.991 0.009 2.61E+00 2.52E−265 4.47E−258 Ctsh 6 17 0.988 0.044 2.26E+00 9.57E−255 1.69E−247 Mpeg1 6 17 0.983 0.018 2.08E+00 1.59E−245 2.81E−238 Cybb 6 17 0.978 0.023 1.95E+00 1.45E−229 2.57E−222 Cox6a2 6 17 0.969 0.015 2.47E+00 8.65E−223 1.53E−215 Lgals1 6 17 0.978 0.065 2.24E+00 1.20E−213 2.12E−206 Iglc3 6 17 0.968 0.035 2.36E+00 1.61E−211 2.85E−204 Pld4 6 17 0.975 0.038 1.92E+00 3.79E−211 6.71E−204 Klk1b27 6 17 0.965 0.015 1.90E+00 1.19E−204 2.10E−197 Sell 6 17 0.973 0.062 1.80E+00 1.53E−198 2.70E−191 Klk1 6 17 0.96 0.059 2.63E+00 4.21E−192 7.45E−185 Ctsl 6 17 0.96 0.032 2.13E+00 2.12E−188 3.74E−181 Clec12a 6 17 0.93 0 1.66E+00 3.48E−180 6.16E−173 Alox5ap 6 17 0.937 0.006 1.58E+00 3.24E−177 5.73E−170 Mef2c 6 17 0.947 0.041 1.59E+00 9.11E−172 1.61E−164 Lair1 6 17 0.937 0.026 1.57E+00 6.35E−171 1.12E−163 D13Ertd608e 6 17 0.924 0.003 1.94E+00 1.23E−163 2.17E−156 Tyrobp 6 18 0.999 0.06 3.68E+00 0.00E+00  0.00E+00  Plac8 6 18 0.999 0.06 3.43E+00 0.00E+00  0.00E+00  Siglech 6 18 0.998 0.011 2.78E+00 1.41E−259 2.49E−252 Ly6c2 6 18 0.997 0.064 3.07E+00 1.48E−245 2.62E−238 Rnase6 6 18 0.992 0.007 2.36E+00 1.88E−233 3.34E−226 Ctsh 6 18 0.988 0.021 2.29E+00 1.17E−220 2.07E−213 Ly6c1 6 18 0.991 0.039 2.56E+00 1.84E−214 3.25E−207 Mpeg1 6 18 0.983 0.007 2.09E+00 2.41E−212 4.26E−205 Grn 6 18 0.986 0.046 2.27E+00 8.35E−202 1.48E−194 Tcf4 6 18 0.977 0.011 1.93E+00 1.24E−196 2.20E−189 Cybb 6 18 0.978 0.025 1.96E+00 2.11E−192 3.73E−185 Pld4 6 18 0.975 0.004 1.95E+00 1.18E−191 2.10E−184 Cox6a2 6 18 0.969 0.004 2.49E+00 4.26E−191 7.54E−184 Klk1b27 6 18 0.965 0.004 1.92E+00 6.06E−177 1.07E−169 Iglc3 6 18 0.968 0.053 2.35E+00 2.30E−174 4.08E−167 Klk1 6 18 0.96 0.018 2.67E+00 7.26E−171 1.29E−163 Siglech 6 19 0.998 0.048 2.74E+00 6.67E−163 1.18E−155 Mpeg1 6 20 0.983 0.076 2.01E+00 2.84E−257 5.03E−250 Cox6a2 6 20 0.969 0.068 2.42E+00 7.10E−237 1.26E−229 Klk1b27 6 20 0.965 0.059 1.86E+00 2.63E−218 4.66E−211 D13Ertd608e 6 20 0.924 0.013 1.93E+00 1.81E−197 3.21E−190 Lair1 6 20 0.937 0.034 1.56E+00 2.85E−195 5.05E−188 Alox5ap 6 20 0.937 0.068 1.50E+00 5.83E−181 1.03E−173 Clec12a 6 20 0.93 0.064 1.59E+00 2.00E−178 3.54E−171 Fyb 6 20 0.944 0.097 1.45E+00 1.49E−171 2.64E−164 Cox6a2 6 21 0.969 0.064 2.41E+00 1.26E−286 2.23E−279 Iglc3 6 21 0.968 0.081 2.31E+00 1.72E−274 3.05E−267 D13Ertd608e 6 21 0.924 0.021 1.92E+00 3.39E−254 6.01E−247 Atp1b1 6 21 0.897 0.081 1.42E+00 2.06E−204 3.64E−197 Pltp 6 21 0.842 0.094 1.17E+00 5.48E−176 9.70E−169 Pacsin1 6 21 0.819 0.06 1.04E+00 5.47E−173 9.69E−166 Cox6a2 6 22 0.969 0.039 2.45E+00 1.15E−237 2.04E−230 Klk1b27 6 22 0.965 0.017 1.90E+00 2.03E−237 3.59E−230 Iglc3 6 22 0.968 0.069 2.30E+00 2.07E−228 3.67E−221 Ccr9 6 22 0.956 0.06 1.86E+00 7.64E−206 1.35E−198 D13Ertd608e 6 22 0.924 0.004 1.94E+00 1.52E−198 2.70E−191 Siglech 6 24 0.998 0.085 2.66E+00 0.00E+00  0.00E+00  Ly6c2 6 24 0.997 0.072 2.99E+00 2.84E−299 5.03E−292 Ly6c1 6 24 0.991 0.013 2.57E+00 1.26E−280 2.23E−273 Mpeg1 6 24 0.983 0.067 1.94E+00 4.29E−240 7.60E−233 Cox6a2 6 24 0.969 0.031 2.42E+00 7.94E−234 1.41E−226 Sell 6 24 0.973 0.063 1.80E+00 2.73E−224 4.84E−217 Iglc3 6 24 0.968 0.081 2.27E+00 2.72E−220 4.81E−213 Klk1b27 6 24 0.965 0.054 1.86E+00 3.66E−216 6.49E−209 D13Ertd608e 6 24 0.924 0.004 1.93E+00 1.09E−194 1.93E−187 Clec12a 6 24 0.93 0.036 1.57E+00 5.33E−180 9.44E−173 Rnase6 6 25 0.992 0.023 2.34E+00 6.71E−176 1.19E−168 Ighm 6 25 0.993 0.077 2.22E+00 4.96E−173 8.78E−166 Ly6c2 6 26 0.997 0.074 3.02E+00 1.89E−279 3.35E−272 Ly6c1 6 26 0.991 0.014 2.58E+00 1.16E−259 2.05E−252 Mpeg1 6 26 0.983 0.065 2.01E+00 7.29E−228 1.29E−220 Cybb 6 26 0.978 0.055 1.89E+00 5.08E−215 8.99E−208 Pld4 6 26 0.975 0.083 1.84E+00 3.94E−209 6.97E−202 Cox6a2 6 26 0.969 0.055 2.38E+00 6.24E−207 1.10E−199 Tcf4 6 26 0.977 0.097 1.81E+00 1.15E−206 2.03E−199 Iglc3 6 26 0.968 0.069 2.29E+00 1.39E−204 2.45E−197 Klk1b27 6 26 0.965 0.065 1.83E+00 3.67E−190 6.49E−183 Ctss 6 26 0.96 0.088 1.68E+00 2.68E−184 4.75E−177 Mef2c 6 26 0.947 0.037 1.59E+00 2.52E−178 4.46E−171 Ccr9 6 26 0.956 0.065 1.83E+00 1.24E−177 2.19E−170 D13Ertd608e 6 26 0.924 0.014 1.90E+00 2.13E−166 3.77E−159 Clec12a 6 26 0.93 0.046 1.60E+00 9.21E−160 1.63E−152 Siglech 6 29 0.998 0.014 2.74E+00 9.57E−222 1.69E−214 Ly6c2 6 29 0.997 0.101 2.92E+00 1.64E−203 2.90E−196 Grn 6 29 0.986 0.095 2.18E+00 5.73E−184 1.02E−176 Ly6c1 6 29 0.991 0.074 2.45E+00 2.29E−183 4.05E−176 Mpeg1 6 29 0.983 0.047 2.03E+00 4.62E−183 8.17E−176 Cox6a2 6 29 0.969 0.014 2.48E+00 8.33E−165 1.47E−157 Klk1b27 6 29 0.965 0.014 1.91E+00 2.04E−160 3.61E−153 Siglech 6 30 0.998 0.067 2.69E+00 2.05E−162 3.62E−155 Siglech 6 33 0.998 0.076 2.68E+00 6.01E−198 1.06E−190 Ly6c2 6 33 0.997 0.019 3.18E+00 4.19E−173 7.41E−166 Rnase6 6 35 0.992 0.071 2.24E+00 4.20E−180 7.44E−173 Ly6c1 6 35 0.991 0.02 2.53E+00 6.21E−175 1.10E−167 Pld4 6 35 0.975 0.101 1.80E+00 1.27E−163 2.24E−156 Siglech 6 37 0.998 0.034 2.76E+00 1.07E−186 1.89E−179 Ctsh 6 37 0.988 0.057 2.25E+00 7.37E−162 1.30E−154 Ly6c2 6 37 0.997 0.08 2.93E+00 1.15E−160 2.03E−153 Grn 6 37 0.986 0.068 2.21E+00 4.72E−159 8.35E−152 Rnase6 6 37 0.992 0.023 2.34E+00 8.48E−159 1.50E−151 Izumo1r 7 8 0.861 0.008 1.63E+00 0.00E+00  0.00E+00  Ifi27l2a 7 8 0.802 0.054 1.61E+00 0.00E+00  0.00E+00  Cd3e 7 8 0.94 0.016 1.59E+00 0.00E+00  0.00E+00  Trac 7 8 0.883 0.056 1.47E+00 0.00E+00  0.00E+00  Rgs10 7 8 0.857 0.099 1.46E+00 0.00E+00  0.00E+00  Izumo1r 7 9 0.861 0.062 1.57E+00 0.00E+00  0.00E+00  Trac 7 9 0.883 0.083 1.45E+00 0.00E+00  0.00E+00  S100a10 7 9 0.741 0.093 1.14E+00 0.00E+00  0.00E+00  Skap1 7 9 0.739 0.088 8.68E−01 0.00E+00  0.00E+00  Cd28 7 9 0.704 0.037 9.08E−01 3.10E−291 5.48E−284 Cd247 7 9 0.56 0.055 6.59E−01 7.39E−279 1.31E−271 Tcf7 7 9 0.567 0.052 7.85E−01 2.87E−250 5.08E−243 Thy1 7 9 0.548 0.086 7.66E−01 7.64E−240 1.35E−232 Tnfrsf18 7 9 0.511 0.052 6.81E−01 3.25E−186 5.74E−179 Trbc1 7 10 0.666 0.064 1.83E+00 0.00E+00  0.00E+00  Cd3g 7 10 0.968 0.055 1.72E+00 0.00E+00  0.00E+00  Izumo1r 7 10 0.861 0.029 1.62E+00 0.00E+00  0.00E+00  Cd3d 7 10 0.94 0.083 1.54E+00 0.00E+00  0.00E+00  Cd3e 7 10 0.94 0.07 1.54E+00 0.00E+00  0.00E+00  Trac 7 10 0.883 0.05 1.49E+00 0.00E+00  0.00E+00  S100a10 7 10 0.741 0.053 1.19E+00 0.00E+00  0.00E+00  Ms4a4b 7 10 0.695 0.07 1.19E+00 0.00E+00  0.00E+00  Lat 7 10 0.829 0.076 1.17E+00 0.00E+00  0.00E+00  Fyb 7 10 0.809 0.059 1.11E+00 0.00E+00  0.00E+00  S100a11 7 10 0.675 0.09 9.97E−01 0.00E+00  0.00E+00  Cd2 7 10 0.741 0.074 9.65E−01 0.00E+00  0.00E+00  Hcst 7 10 0.746 0.089 9.60E−01 0.00E+00  0.00E+00  Cd28 7 10 0.704 0.013 9.39E−01 0.00E+00  0.00E+00  Skap1 7 10 0.739 0.035 9.24E−01 0.00E+00  0.00E+00  Tcf7 7 10 0.567 0.029 8.17E−01 0.00E+00  0.00E+00  Thy1 7 10 0.548 0.049 8.12E−01 0.00E+00  0.00E+00  Cd247 7 10 0.56 0.025 6.92E−01 0.00E+00  0.00E+00  Tnfrsf18 7 10 0.511 0.024 7.11E−01 8.12E−305 1.44E−297 Ccnd2 7 10 0.508 0.044 6.89E−01 3.76E−300 6.66E−293 Izumo1r 7 11 0.861 0.005 1.64E+00 0.00E+00  0.00E+00  Cd3g 7 11 0.968 0.069 1.64E+00 0.00E+00  0.00E+00  Ifi27l2a 7 11 0.802 0.07 1.60E+00 0.00E+00  0.00E+00  Cd3e 7 11 0.94 0.021 1.57E+00 0.00E+00  0.00E+00  Cd3d 7 11 0.94 0.047 1.57E+00 0.00E+00  0.00E+00  Cd247 7 11 0.56 0.097 6.18E−01 6.59E−169 1.17E−161 Slamf6 7 11 0.506 0.058 6.26E−01 2.89E−160 5.12E−153 Ifi27l2a 7 12 0.802 0.05 1.64E+00 0.00E+00  0.00E+00  Izumo1r 7 12 0.861 0.019 1.62E+00 0.00E+00  0.00E+00  Cd3d 7 12 0.94 0.028 1.59E+00 0.00E+00  0.00E+00  Cd3e 7 12 0.94 0.057 1.53E+00 0.00E+00  0.00E+00  Trac 7 12 0.883 0.014 1.53E+00 0.00E+00  0.00E+00  Cd2 7 12 0.741 0.026 1.03E+00 0.00E+00  0.00E+00  Ms4a4b 7 12 0.695 0.051 1.20E+00 3.69E−294 6.54E−287 Ms4a6b 7 12 0.713 0.08 8.79E−01 1.14E−278 2.01E−271 Cd247 7 12 0.56 0.027 6.88E−01 2.73E−226 4.83E−219 Slamf6 7 12 0.506 0.023 6.66E−01 2.62E−187 4.64E−180 Cd3g 7 14 0.968 0.058 1.66E+00 0.00E+00  0.00E+00  Cd3e 7 14 0.94 0.038 1.53E+00 0.00E+00  0.00E+00  Cd3d 7 14 0.94 0.061 1.53E+00 0.00E+00  0.00E+00  Trac 7 14 0.883 0.033 1.48E+00 2.64E−306 4.67E−299 Lat 7 14 0.829 0.053 1.16E+00 1.88E−298 3.32E−291 Izumo1r 7 14 0.861 0.019 1.60E+00 6.48E−242 1.15E−234 Skap1 7 14 0.739 0.072 8.69E−01 3.49E−239 6.17E−232 Cd2 7 14 0.741 0.058 9.82E−01 3.58E−217 6.34E−210 Cd28 7 14 0.704 0.03 9.15E−01 1.08E−195 1.92E−188 Cd247 7 14 0.56 0.041 6.62E−01 9.06E−191 1.60E−183 Izumo1r 7 15 0.861 0 1.65E+00 7.11E−193 1.26E−185 Cd3g 7 15 0.968 0.04 1.73E+00 3.70E−172 6.55E−165 Cd3d 7 15 0.94 0.013 1.62E+00 2.96E−160 5.24E−153 Izumo1r 7 17 0.861 0.018 1.63E+00 5.44E−235 9.63E−228 Cd3g 7 20 0.968 0.081 1.64E+00 6.23E−254 1.10E−246 Cd3e 7 20 0.94 0.064 1.47E+00 9.72E−237 1.72E−229 Cd3d 7 20 0.94 0.093 1.45E+00 1.67E−228 2.96E−221 Trac 7 20 0.883 0.064 1.46E+00 7.54E−197 1.33E−189 Izumo1r 7 20 0.861 0.034 1.55E+00 1.71E−160 3.02E−153 Cd3e 7 21 0.94 0.064 1.51E+00 1.45E−185 2.56E−178 Cd3d 7 21 0.94 0.064 1.50E+00 1.11E−179 1.96E−172 Lat 7 21 0.829 0.098 1.12E+00 8.93E−178 1.58E−170 Cd3g 7 21 0.968 0.098 1.58E+00 1.06E−171 1.88E−164 Cd3g 7 22 0.968 0.039 1.73E+00 3.01E−248 5.34E−241 Cd3d 7 22 0.94 0.022 1.60E+00 2.68E−239 4.74E−232 Cd3e 7 22 0.94 0.039 1.56E+00 1.40E−230 2.48E−223 Lck 7 22 0.882 0.082 1.22E+00 3.03E−206 5.37E−199 Trac 7 22 0.883 0.013 1.53E+00 6.99E−202 1.24E−194 Lat 7 22 0.829 0.047 1.20E+00 7.06E−182 1.25E−174 Izumo1r 7 22 0.861 0.004 1.64E+00 2.55E−168 4.52E−161 Trbc2 7 24 0.977 0.081 2.25E+00 3.84E−252 6.81E−245 Cd3g 7 24 0.968 0.027 1.69E+00 6.76E−247 1.20E−239 Cd3e 7 24 0.94 0.004 1.60E+00 2.10E−240 3.71E−233 Cd3d 7 24 0.94 0.018 1.61E+00 2.76E−231 4.89E−224 Lck 7 24 0.882 0.058 1.29E+00 1.39E−211 2.45E−204 Trac 7 24 0.883 0.013 1.52E+00 1.54E−195 2.73E−188 Lat 7 24 0.829 0.027 1.22E+00 8.60E−185 1.52E−177 Izumo1r 7 24 0.861 0.013 1.63E+00 3.74E−160 6.63E−153 Trbc2 7 25 0.977 0.063 2.30E+00 5.05E−261 8.93E−254 Cd3g 7 25 0.968 0.027 1.75E+00 3.98E−246 7.05E−239 Cd3e 7 25 0.94 0.009 1.60E+00 7.30E−229 1.29E−221 Cd3d 7 25 0.94 0.018 1.61E+00 7.24E−224 1.28E−216 Coro1a 7 25 0.957 0.1 1.76E+00 4.86E−220 8.61E−213 Limd2 7 25 0.919 0.1 1.57E+00 5.21E−191 9.22E−184 Ptprcap 7 25 0.91 0.063 1.50E+00 3.38E−190 5.98E−183 Trac 7 25 0.883 0.009 1.53E+00 9.75E−182 1.73E−174 Lck 7 25 0.882 0.045 1.28E+00 6.13E−180 1.09E−172 Izumo1r 7 25 0.861 0 1.65E+00 2.79E−167 4.94E−160 Laptm5 7 25 0.9 0.1 1.28E+00 5.99E−166 1.06E−158 Trbc2 7 26 0.977 0.083 2.26E+00 3.43E−253 6.06E−246 Cd3g 7 26 0.968 0.014 1.75E+00 3.10E−251 5.50E−244 Cd3d 7 26 0.94 0.032 1.59E+00 7.47E−233 1.32E−225 Cd3e 7 26 0.94 0.078 1.50E+00 1.33E−225 2.35E−218 Lck 7 26 0.882 0.032 1.31E+00 6.43E−206 1.14E−198 Trac 7 26 0.883 0.005 1.53E+00 3.70E−198 6.55E−191 Izumo1r 7 26 0.861 0.005 1.64E+00 2.77E−163 4.90E−156 Trbc2 7 30 0.977 0.059 2.31E+00 2.58E−180 4.56E−173 Cd3g 7 30 0.968 0.044 1.73E+00 1.44E−168 2.55E−161 Trbc2 7 32 0.977 0.017 2.38E+00 1.60E−167 2.83E−160 Nkg7 8 9 0.983 0.068 2.28E+00 0.00E+00  0.00E+00  Tyrobp 8 9 0.989 0.093 2.27E+00 0.00E+00  0.00E+00  Cd7 8 9 0.779 0.077 1.55E+00 0.00E+00  0.00E+00  Klrd1 8 9 0.908 0.015 1.43E+00 0.00E+00  0.00E+00  S100a10 8 9 0.899 0.093 1.24E+00 0.00E+00  0.00E+00  Il2rb 8 9 0.802 0.041 1.09E+00 0.00E+00  0.00E+00  Klrk1 8 9 0.828 0.005 1.19E+00 2.02E−283 3.58E−276 Ctla2a 8 9 0.697 0.01 1.34E+00 6.60E−282 1.17E−274 Fcer1g 8 9 0.921 0.038 1.63E+00 3.24E−266 5.74E−259 Satb1 8 9 0.607 0.069 7.14E−01 2.09E−236 3.70E−229 Txk 8 9 0.751 0.055 9.45E−01 1.70E−235 3.01E−228 Nabp1 8 9 0.694 0.082 9.67E−01 5.57E−233 9.86E−226 Klri2 8 9 0.542 0.002 8.86E−01 2.65E−232 4.69E−225 Xcl1 8 9 0.532 0.01 1.15E+00 5.71E−226 1.01E−218 Sh2d2a 8 9 0.537 0.052 6.93E−01 3.54E−199 6.26E−192 Dok2 8 9 0.648 0.046 7.46E−01 2.58E−198 4.57E−191 Ptpn22 8 9 0.528 0.038 5.75E−01 5.06E−195 8.95E−188 Bhlhe40 8 9 0.591 0.05 7.18E−01 1.55E−189 2.75E−182 Klrb1c 8 9 0.688 0.012 9.32E−01 6.00E−187 1.06E−179 Eomes 8 9 0.578 0.002 7.33E−01 1.91E−186 3.38E−179 Klre1 8 9 0.703 0 9.51E−01 1.52E−185 2.70E−178 Pglyrp1 8 9 0.51 0.027 5.95E−01 5.35E−177 9.48E−170 Sell 8 9 0.575 0.062 6.79E−01 2.79E−169 4.93E−162 Skap1 8 9 0.554 0.088 5.45E−01 8.74E−169 1.55E−161 Ccl5 8 10 0.993 0.084 3.97E+00 0.00E+00  0.00E+00  Gzma 8 10 0.745 0.05 2.96E+00 0.00E+00  0.00E+00  Nkg7 8 10 0.983 0.045 2.31E+00 0.00E+00  0.00E+00  Tyrobp 8 10 0.989 0.064 2.28E+00 0.00E+00  0.00E+00  Ncr1 8 10 0.951 0.009 1.72E+00 0.00E+00  0.00E+00  Ms4a4b 8 10 0.932 0.07 1.65E+00 0.00E+00  0.00E+00  Fcer1g 8 10 0.921 0.032 1.63E+00 0.00E+00  0.00E+00  Cd7 8 10 0.779 0.043 1.58E+00 0.00E+00  0.00E+00  Klrd1 8 10 0.908 0.007 1.44E+00 0.00E+00  0.00E+00  Trbc1 8 10 0.852 0.064 1.39E+00 0.00E+00  0.00E+00  Vps37b 8 10 0.804 0.074 1.39E+00 0.00E+00  0.00E+00  Selplg 8 10 0.918 0.09 1.35E+00 0.00E+00  0.00E+00  Ctla2a 8 10 0.697 0.008 1.35E+00 0.00E+00  0.00E+00  S100a10 8 10 0.899 0.053 1.30E+00 0.00E+00  0.00E+00  Bcl2 8 10 0.799 0.05 1.30E+00 0.00E+00  0.00E+00  Xcl1 8 10 0.532 0.002 1.20E+00 0.00E+00  0.00E+00  Klrk1 8 10 0.828 0.005 1.18E+00 0.00E+00  0.00E+00  Hcst 8 10 0.861 0.089 1.17E+00 0.00E+00  0.00E+00  Il2rb 8 10 0.802 0.021 1.11E+00 0.00E+00  0.00E+00  Ctsw 8 10 0.789 0.018 1.08E+00 0.00E+00  0.00E+00  Nabp1 8 10 0.694 0.04 1.01E+00 0.00E+00  0.00E+00  Txk 8 10 0.751 0.03 9.77E−01 0.00E+00  0.00E+00  Klre1 8 10 0.703 0.001 9.50E−01 0.00E+00  0.00E+00  Klrb1c 8 10 0.688 0.004 9.41E−01 0.00E+00  0.00E+00  Klri2 8 10 0.542 0.001 8.87E−01 0.00E+00  0.00E+00  S100a11 8 10 0.706 0.09 7.72E−01 0.00E+00  0.00E+00  Dok2 8 10 0.648 0.024 7.71E−01 0.00E+00  0.00E+00  Eomes 8 10 0.578 0.002 7.35E−01 0.00E+00  0.00E+00  Emb 8 10 0.52 0.057 7.30E−01 0.00E+00  0.00E+00  Satb1 8 10 0.607 0.061 7.22E−01 0.00E+00  0.00E+00  Skap1 8 10 0.554 0.035 6.01E−01 1.09E−305 1.92E−298 Ptpn22 8 10 0.528 0.024 5.87E−01 1.50E−305 2.66E−298 Serpinb9 8 10 0.596 0.011 1.00E+00 1.50E−302 2.65E−295 Car2 8 10 0.578 0.1 8.79E−01 2.96E−302 5.24E−295 Fasl 8 10 0.552 0.002 6.73E−01 1.01E−298 1.79E−291 Klre1 8 10 0.548 0.001 9.66E−01 3.41E−295 6.03E−288 Sell 8 10 0.575 0.042 7.00E−01 7.32E−295 1.30E−287 Nr4a1 8 10 0.618 0.093 9.83E−01 1.89E−294 3.34E−287 Id2 8 10 0.606 0.051 1.02E+00 1.75E−285 3.10E−278 Ccl4 8 10 0.579 0.025 2.00E+00 1.26E−281 2.23E−274 Pglyrp1 8 10 0.51 0.034 5.87E−01 5.32E−271 9.43E−264 Serpinb6b 8 10 0.598 0.09 8.01E−01 3.38E−256 5.99E−249 Ccnd2 8 10 0.519 0.044 6.49E−01 1.88E−255 3.34E−248 Ahnak 8 10 0.519 0.018 5.86E−01 3.92E−238 6.95E−231 Tnfaip3 8 10 0.534 0.07 6.06E−01 2.50E−236 4.42E−229 H2-Q7 8 10 0.546 0.101 5.50E−01 7.70E−230 1.36E−222 Gpr171 8 10 0.501 0.076 5.05E−01 7.53E−213 1.33E−205 Eomes 8 11 0.578 0.062 6.59E−01 3.01E−188 5.33E−181 Sell 8 11 0.575 0.094 6.33E−01 3.69E−161 6.53E−154 Ms4a4b 8 12 0.932 0.051 1.66E+00 0.00E+00  0.00E+00  Ncr1 8 12 0.951 0.076 1.62E+00 0.00E+00  0.00E+00  Klrd1 8 12 0.908 0.02 1.41E+00 0.00E+00  0.00E+00  Klrk1 8 12 0.828 0.059 1.12E+00 0.00E+00  0.00E+00  Cd2 8 12 0.681 0.026 8.63E−01 1.17E−278 2.07E−271 Klrb1c 8 12 0.688 0.035 9.02E−01 3.42E−270 6.05E−263 Anxa2 8 12 0.625 0.038 7.75E−01 6.86E−225 1.21E−217 Eomes 8 12 0.578 0.021 7.15E−01 3.08E−219 5.46E−212 Klri2 8 12 0.542 0.025 8.63E−01 1.06E−209 1.88E−202 Klrc1 8 12 0.548 0.017 9.45E−01 5.87E−203 1.04E−195 Xcl1 8 12 0.532 0.033 1.16E+00 1.02E−189 1.80E−182 Fasl 8 12 0.552 0.035 6.33E−01 4.99E−182 8.83E−175 Pglyrp1 8 12 0.51 0.024 5.95E−01 2.59E−180 4.59E−173 Car2 8 12 0.578 0.1 8.61E−01 1.15E−174 2.04E−167 Sell 8 12 0.575 0.081 6.54E−01 3.90E−166 6.90E−159 Gzma 8 13 0.745 0.003 3.01E+00 2.11E−279 3.73E−272 Fcer1g 8 13 0.921 0.017 1.66E+00 5.50E−219 9.75E−212 Ncr1 8 14 0.951 0.077 1.61E+00 3.85E−245 6.82E−238 Ctla2a 8 14 0.697 0.052 1.27E+00 2.60E−192 4.60E−185 Ctsw 8 14 0.789 0.1 9.56E−01 1.88E−190 3.33E−183 Ccl5 8 15 0.993 0.085 3.90E+00 7.57E−296 1.34E−288 Gzma 8 15 0.745 0.032 2.97E+00 3.99E−238 7.07E−231 Gzma 8 16 0.745 0.098 2.26E+00 1.41E−181 2.49E−174 Ccl5 8 18 0.993 0.085 3.77E+00 0.00E+00  0.00E+00  Tyrobp 8 18 0.989 0.06 2.30E+00 0.00E+00  0.00E+00  Ncr1 8 18 0.951 0.007 1.72E+00 7.58E−263 1.34E−255 Klrd1 8 18 0.908 0.028 1.40E+00 4.84E−222 8.57E−215 Fcer1g 8 18 0.921 0.05 1.63E+00 3.56E−217 6.30E−210 Klrk1 8 18 0.828 0.021 1.17E+00 6.13E−178 1.09E−170 Cd7 8 18 0.779 0.05 1.58E+00 1.99E−172 3.52E−165 Ncr1 8 20 0.951 0.089 1.61E+00 1.17E−194 2.08E−187 Klrd1 8 20 0.908 0.093 1.34E+00 5.68E−177 1.00E−169 Ncr1 8 22 0.951 0.086 1.60E+00 5.24E−178 9.28E−171 Klrd1 8 22 0.908 0.043 1.37E+00 8.53E−175 1.51E−167 Nkg7 8 24 0.983 0.076 2.23E+00 2.96E−230 5.24E−223 Ms4a4b 8 24 0.932 0.031 1.69E+00 4.56E−188 8.07E−181 Trbc1 8 24 0.852 0.076 1.34E+00 6.70E−188 1.19E−180 Ncr1 8 24 0.951 0.036 1.67E+00 3.31E−182 5.86E−175 Gimap4 8 24 0.861 0.058 1.23E+00 4.15E−179 7.34E−172 Klrd1 8 24 0.908 0.076 1.32E+00 1.93E−169 3.41E−162 Nkg7 8 25 0.983 0.063 2.28E+00 1.49E−252 2.64E−245 Ncr1 8 25 0.951 0.036 1.69E+00 1.45E−208 2.57E−201 Ms4a4b 8 25 0.932 0.018 1.70E+00 6.98E−198 1.24E−190 Klrd1 8 25 0.908 0.014 1.43E+00 7.14E−184 1.26E−176 Fcer1g 8 25 0.921 0.086 1.54E+00 1.71E−170 3.02E−163 Selplg 8 25 0.918 0.09 1.35E+00 2.29E−165 4.06E−158 Coro1a 8 25 0.91 0.1 1.36E+00 1.65E−164 2.93E−157 Ptprcap 8 25 0.894 0.063 1.25E+00 1.64E−162 2.90E−155 Ms4a4b 8 26 0.932 0.06 1.64E+00 5.99E−191 1.06E−183 Klrd1 8 26 0.908 0.037 1.40E+00 8.99E−178 1.59E−170 Trbc1 8 26 0.852 0.069 1.32E+00 1.40E−176 2.48E−169 Gimap4 8 26 0.861 0.078 1.22E+00 3.37E−163 5.97E−156 Ccl5 8 29 0.993 0.095 3.39E+00 1.57E−163 2.79E−156 Nkg7 8 30 0.983 0.044 2.29E+00 3.81E−172 6.74E−165 Ccl5 8 32 0.993 0.085 3.98E+00 1.18E−179 2.09E−172 Cd52 8 32 0.989 0.094 2.16E+00 1.45E−164 2.56E−157 Cd79b 9 11 0.998 0.048 2.66E+00 3.93E−245 6.95E−238 Cd79a 9 11 0.997 0.019 2.87E+00 5.18E−227 9.17E−220 Aicda 9 11 0.88 0.002 1.53E+00 6.56E−218 1.16E−210 Ms4a1 9 11 0.995 0.007 2.69E+00 5.05E−211 8.94E−204 Ebf1 9 11 0.987 0.004 2.37E+00 4.99E−196 8.83E−189 Mzb1 9 11 0.985 0.029 2.48E+00 1.05E−174 1.85E−167 Rgsl3 9 11 0.948 0.002 2.04E+00 8.72E−171 1.54E−163 Hlfx 9 11 0.675 0.002 1.35E+00 1.81E−164 3.21E−157 Siglecg 9 11 0.79 0.01 1.09E+00 6.20E−163 1.10E−155 H2-DMb2 9 11 0.98 0.036 2.23E+00 1.30E−160 2.31E−153 Smagp 9 11 0.866 0.007 1.37E+00 2.76E−159 4.88E−152 Cd79a 9 12 0.997 0.036 2.85E+00 1.89E−254 3.35E−247 Ms4a1 9 12 0.995 0.02 2.68E+00 3.27E−226 5.79E−219 Aicda 9 12 0.88 0.006 1.53E+00 2.31E−213 4.10E−206 Ebf1 9 12 0.987 0.009 2.36E+00 1.32E−206 2.34E−199 Mzb1 9 12 0.985 0.034 2.48E+00 3.75E−189 6.64E−182 Rgs13 9 12 0.948 0.003 2.04E+00 8.16E−178 1.44E−170 H2-DMb2 9 12 0.98 0.043 2.22E+00 1.50E−169 2.66E−162 Smagp 9 12 0.866 0.002 1.38E+00 6.56E−168 1.16E−160 Stmn1 9 12 0.977 0.036 2.66E+00 2.00E−165 3.54E−158 Vpreb3 9 12 0.894 0.003 2.00E+00 1.88E−163 3.32E−156 Scimp 9 12 0.933 0.008 1.56E+00 1.46E−159 2.58E−152 Siglecg 9 12 0.79 0.012 1.09E+00 4.77E−159 8.45E−152 Cd79a 9 14 0.997 0.081 2.74E+00 0.00E+00  0.00E+00  Ms4a1 9 14 0.995 0.053 2.62E+00 0.00E+00  0.00E+00  Mzb1 9 14 0.985 0.094 2.33E+00 0.00E+00  0.00E+00  Ebf1 9 14 0.987 0.034 2.30E+00 0.00E+00  0.00E+00  Rgs13 9 14 0.948 0.014 2.02E+00 0.00E+00  0.00E+00  Pou2af1 9 14 0.963 0.023 2.01E+00 0.00E+00  0.00E+00  Vpreb3 9 14 0.894 0.014 1.98E+00 0.00E+00  0.00E+00  Chchd10 9 14 0.916 0.085 1.81E+00 0.00E+00  0.00E+00  Iglc3 9 14 0.948 0.092 1.76E+00 0.00E+00  0.00E+00  Eaf2 9 14 0.9 0.034 1.56E+00 0.00E+00  0.00E+00  Aicda 9 14 0.88 0.008 1.52E+00 0.00E+00  0.00E+00  Apitd1 9 14 0.894 0.099 1.35E+00  3.0E−315 5.33E−308 Gcsam 9 14 0.874 0.056 1.48E+00 6.17E−300 1.09E−292 Smagp 9 14 0.866 0.085 1.29E+00 8.32E−283 1.47E−275 Cdl9 9 14 0.801 0.014 1.09E+00 2.81E−278 4.98E−271 Iglc2 9 14 0.847 0.063 1.66E+00 2.23E−276 3.94E−269 Blnk 9 14 0.848 0.088 1.22E+00 2.20E−259 3.90E−252 Bfsp2 9 14 0.775 0.033 1.36E+00 1.88E−247 3.34E−240 Neil1 9 14 0.792 0.058 1.20E+00 4.58E−239 8.10E−232 Cd81 9 14 0.838 0.094 1.12E+00 6.41E−239 1.14E−231 Csrp2 9 14 0.742 0.027 1.00E+00 5.87E−225 1.04E−217 Fcmr 9 14 0.731 0.023 9.44E−01 3.68E−222 6.52E−215 Hlfx 9 14 0.675 0.006 1.34E+00 1.16E−219 2.05E−212 Apobec1 9 14 0.788 0.081 1.00E+00 1.33E−215 2.35E−208 Id3 9 14 0.722 0.031 1.16E+00 2.68E−207 4.75E−200 Slpr2 9 14 0.705 0.02 9.16E−01 9.00E−207 1.59E−199 Lipc 9 14 0.66 0.003 8.78E−01 1.64E−203 2.90E−196 Myl4 9 14 0.714 0.044 1.18E+00 5.61E−199 9.93E−192 Asf1b 9 14 0.75 0.075 1.16E+00 3.18E−196 5.63E−189 Sh2b2 9 14 0.724 0.049 9.44E−01 1.11E−195 1.97E−188 Nuggc 9 14 0.586 0.002 7.58E−01 1.75E−170 3.10E−163 Cd22 9 14 0.642 0.023 8.07E−01 8.94E−170 1.58E−162 Cd79a 9 17 0.997 0.082 2.78E+00 9.84E−183 1.74E−175 Ms4a1 9 17 0.995 0.035 2.66E+00 5.67E−160 l.OOE−152  Stmn1 9 20 0.977 0.081 2.52E+00 2.71E−162 4.80E−155 Cd79a 9 21 0.997 0.098 2.76E+00 0.00E+00  0.00E+00  Ms4a1 9 21 0.995 0.034 2.66E+00 4.15E−303 7.35E−296 Ebf1 9 21 0.987 0.021 2.35E+00 5.78E−277 1.02E−269 Pou2af1 9 21 0.963 0.038 1.99E+00 9.91E−246 1.75E−238 Rgs13 9 21 0.948 0.021 2.02E+00 1.90E−221 3.36E−214 Iglc3 9 21 0.948 0.081 1.84E+00 2.35E−204 4.16E−197 Tnfrsf13c 9 21 0.906 0.043 1.62E+00 5.72E−184 1.01E−176 Eaf2 9 21 0.9 0.026 1.58E+00 8.29E−184 1.47E−176 Aicda 9 21 0.88 0.004 1.53E+00 2.66E−176 4.72E−169 Vpreb3 9 21 0.894 0.034 1.96E+00 1.48E−174 2.61E−167 Cd79a 9 22 0.997 0.06 2.75E+00 5.18E−216 9.16E−209 Ms4a1 9 22 0.995 0.039 2.64E+00 6.47E−211 1.14E−203 Ebf1 9 22 0.987 0.043 2.29E+00 1.98E−188 3.51E−181 Mzb1 9 22 0.985 0.065 2.45E+00 2.95E−179 5.21E−172 Stmn1 9 22 0.977 0.034 2.67E+00 8.71E−174 1.54E−166 Cd24a 9 22 0.976 0.047 2.30E+00 1.89E−161 3.35E−154 Pou2af1 9 22 0.963 0.013 2.04E+00 2.98E−158 5.27E−151 Cd79a 9 24 0.997 0.049 2.84E+00 8.48E−229 1.50E−221 Ms4a1 9 24 0.995 0.045 2.65E+00 2.20E−211 3.89E−204 Mzb1 9 24 0.985 0.058 2.46E+00 1.11E−181 1.97E−174 Stmn1 9 24 0.977 0.058 2.59E+00 6.50E−162 1.15E−154 Pou2af1 9 24 0.963 0.009 2.04E+00 2.88E−159 5.10E−152 Cd79b 9 26 0.998 0.092 2.60E+00 4.40E−200 7.79E−193 Cd79a 9 26 0.997 0.018 2.86E+00 3.10E−193 5.48E−186 Ms4a1 9 26 0.995 0.014 2.68E+00 3.48E−188 6.15E−181 Ebf1 9 26 0.987 0.005 2.37E+00 1.71E−174 3.02E−167 Mzb1 9 26 0.985 0.041 2.46E+00 5.42E−159 9.58E−152 Cd79a 9 34 0.997 0.05 2.82E+00 5.35E−169 9.48E−162 Cd79b 9 35 0.998 0.081 2.61E+00 5.26E−166 9.31E−159 Cd79a 10 11 0.998 0.019 2.63E+00 0.00E+00  0.00E+00  Cd79b 10 11 0.995 0.048 2.50E+00 0.00E+00  0.00E+00  Ms4a1 10 11 0.991 0.007 2.39E+00 0.00E+00  0.00E+00  Ighg1 10 11 0.844 0.072 2.28E+00 0.00E+00  0.00E+00  Ebf1 10 11 0.992 0.004 2.14E+00 0.00E+00  0.00E+00  Mzb1 10 11 0.97 0.029 2.05E+00 0.00E+00  0.00E+00  H2-DMb2 10 11 0.971 0.036 2.04E+00 0.00E+00  0.00E+00  Ifi30 10 11 0.922 0.064 1.75E+00 0.00E+00  0.00E+00  Rgs13 10 11 0.907 0.002 1.62E+00 0.00E+00  0.00E+00  Iglc3 10 11 0.89 0.024 1.50E+00 0.00E+00  0.00E+00  Mef2c 10 11 0.922 0.048 1.45E+00 0.00E+00  0.00E+00  Tnfrsf13c 10 11 0.864 0.016 1.44E+00 0.00E+00  0.00E+00  Sypl 10 11 0.903 0.037 1.42E+00 0.00E+00  0.00E+00  Cd24a 10 11 0.842 0.015 1.33E+00 0.00E+00  0.00E+00  Aicda 10 11 0.833 0.002 1.33E+00 0.00E+00  0.00E+00  Pou2af1 10 11 0.84 0.007 1.29E+00 0.00E+00  0.00E+00  Scimp 10 11 0.855 0.017 1.26E+00 0.00E+00  0.00E+00  Siglecg 10 11 0.794 0.01 1.04E+00  3.4E−316 0.00E+00  Basp1 10 11 0.821 0.026 1.24E+00  1.0E−310 1.88E−303 Iglc2 10 11 0.825 0.027 1.58E+00 6.08E−307 1.08E−299 Eaf2 10 11 0.798 0.006 1.21E+00 1.05E−301 1.86E−294 Apoe 10 11 0.81 0.037 1.86E+00 6.28E−297 1.11E−289 Iglc1 10 11 0.827 0.05 2.19E+00 1.73E−277 3.06E−270 H2-Ob 10 11 0.741 0.007 9.24E−01 3.68E−269 6.53E−262 Cd19 10 11 0.745 0.004 9.18E−01 1.38E−266 2.45E−259 Vpreb3 10 11 0.743 0.012 1.31E+00 5.68E−263 1.01E−255 Plekho1 10 11 0.731 0.008 9.07E−01 2.71E−261 4.80E−254 Fcmr 10 11 0.732 0.004 9.61E−01 9.71E−259 1.72E−251 Ctsh 10 11 0.816 0.07 1.03E+00 6.46E−243 1.14E−235 Pkig 10 11 0.788 0.055 1.09E+00 7.22E−230 1.28E−222 Smagp 10 11 0.691 0.007 9.10E−01 1.52E−229 2.68E−222 Gcsam 10 11 0.674 0.008 9.54E−01 8.41E−220 1.49E−212 Cd22 10 11 0.64 0.002 7.95E−01 2.04E−212 3.61E−205 Pou2f2 10 11 0.792 0.092 9.93E−01 1.12E−211 1.98E−204 Spib 10 11 0.706 0.022 9.31E−01 1.39E−209 2.45E−202 Neil1 10 11 0.705 0.037 9.03E−01 2.01E−201 3.56E−194 Apobec1 10 11 0.68 0.018 7.94E−01 9.30E−201 1.65E−193 Cd81 10 11 0.722 0.042 8.90E−01 9.65E−196 1.71E−188 Blnk 10 11 0.676 0.024 8.51E−01 5.58E−191 9.88E−184 Sh2b2 10 11 0.575 0.004 6.58E−01 8.74E−185 1.55E−177 Dok3 10 11 0.602 0.004 7.14E−01 2.91E−181 5.15E−174 Slpr2 10 11 0.602 0.01 7.65E−01 1.97E−176 3.49E−169 Bfsp2 10 11 0.649 0.03 9.62E−01 1.58E−171 2.80E−164 Apitd1 10 11 0.641 0.023 7.57E−01 3.86E−169 6.83E−162 H2-Oa 10 11 0.647 0.039 7.65E−01 2.66E−166 4.71E−159 Cd79a 10 12 0.998 0.036 2.61E+00 0.00E+00  0.00E+00  Ms4a1 10 12 0.991 0.02 2.38E+00 0.00E+00  0.00E+00  Ighg1 10 12 0.844 0.073 2.27E+00 0.00E+00  0.00E+00  Ebf1 10 12 0.992 0.009 2.13E+00 0.00E+00  0.00E+00  Mzb1 10 12 0.97 0.034 2.04E+00 0.00E+00  0.00E+00  H2-DMb2 10 12 0.971 0.043 2.02E+00 0.00E+00  0.00E+00  Ifi30 10 12 0.922 0.069 1.73E+00 0.00E+00  0.00E+00  Rgs13 10 12 0.907 0.003 1.62E+00 0.00E+00  0.00E+00  Iglc3 10 12 0.89 0.019 1.50E+00 0.00E+00  0.00E+00  Mef2c 10 12 0.922 0.021 1.47E+00 0.00E+00  0.00E+00  Tnfrsf13c 10 12 0.864 0.009 1.45E+00 0.00E+00  0.00E+00  Sypl 10 12 0.903 0.089 1.36E+00 0.00E+00  0.00E+00  Aicda 10 12 0.833 0.006 1.32E+00 0.00E+00  0.00E+00  Pou2af1 10 12 0.84 0.006 1.29E+00 0.00E+00  0.00E+00  Scimp 10 12 0.855 0.008 1.27E+00 0.00E+00  0.00E+00  Siglecg 10 12 0.794 0.012 1.04E+00 2.28E−307 4.03E−300 Eaf2 10 12 0.798 0.005 1.21E+00 5.39E−306 9.55E−299 Iglc2 10 12 0.825 0.037 1.57E+00 1.75E−295 3.10E−288 Apoe 10 12 0.81 0.053 1.84E+00 1.86E−279 3.29E−272 Vpreb3 10 12 0.743 0.003 1.31E+00 2.87E−275 5.08E−268 Cd24a 10 12 0.842 0.069 1.25E+00 7.23E−268 1.28E−260 H2-Ob 10 12 0.741 0.01 9.21E−01 9.22E−262 1.63E−254 Iglc1 10 12 0.827 0.07 2.18E+00 1.01E−261 1.79E−254 Plekho1 10 12 0.731 0.01 9.05E−01 1.95E−255 3.44E−248 Cd19 10 12 0.745 0.012 9.10E−01 3.19E−253 5.65E−246 Fcmr 10 12 0.732 0.012 9.52E−01 1.68E−244 2.97E−237 Smagp 10 12 0.691 0.002 9.15E−01 2.09E−237 3.70E−230 Pkig 10 12 0.788 0.064 1.08E+00 1.18E−226 2.08E−219 Ctsh 10 12 0.816 0.098 1.00E+00 2.17E−223 3.84E−216 Lat2 10 12 0.763 0.047 9.49E−01 7.05E−223 1.25E−215 Gcsam 10 12 0.674 0.007 9.55E−01 4.03E−221 7.13E−214 Spib 10 12 0.706 0.021 9.31E−01 2.91E−212 5.15E−205 Apobec1 10 12 0.68 0.012 8.04E−01 1.39E−211 2.47E−204 Cd22 10 12 0.64 0.007 7.91E−01 2.53E−202 4.48E−195 Neil1 10 12 0.705 0.042 8.98E−01 2.33E−197 4.12E−190 Il21r 10 12 0.655 0.016 8.25E−01 1.03E−190 1.82E−183 Bfsp2 10 12 0.649 0.015 9.76E−01 4.45E−190 7.87E−183 Blnk 10 12 0.676 0.03 8.44E−01 2.70E−185 4.78E−178 Dok3 10 12 0.602 0.006 7.12E−01 1.02E−178 1.81E−171 Sh2b2 10 12 0.575 0.009 6.54E−01 2.16E−173 3.83E−166 Slpr2 10 12 0.602 0.016 7.59E−01 2.93E−168 5.18E−161 Apitd1 10 12 0.641 0.033 7.47E−01 4.53E−161 8.02E−154 Napsa 10 12 0.687 0.068 8.57E−01 1.52E−158 2.69E−151 H2-Aa 10 13 0.999 0.076 3.49E+00 3.61E−168 6.40E−161 Cd79a 10 14 0.998 0.081 2.50E+00 0.00E+00  0.00E+00  Ms4a1 10 14 0.991 0.053 2.31E+00 0.00E+00  0.00E+00  Ebf1 10 14 0.992 0.034 2.07E+00 0.00E+00  0.00E+00  Mzb1 10 14 0.97 0.094 1.90E+00 0.00E+00  0.00E+00  Rgs13 10 14 0.907 0.014 1.60E+00 0.00E+00  0.00E+00  Iglc3 10 14 0.89 0.092 1.36E+00 0.00E+00  0.00E+00  Aicda 10 14 0.833 0.008 1.31E+00 0.00E+00  0.00E+00  Pou2af1 10 14 0.84 0.023 1.26E+00 0.00E+00  0.00E+00  Eaf2 10 14 0.798 0.034 1.17E+00  2.4E−310 4.25E−303 Tnfrsf13c 10 14 0.864 0.091 1.35E+00 0.00E+00  6.31E−302 Iglc2 10 14 0.825 0.063 1.47E+00 3.70E−287 6.55E−280 Cd19 10 14 0.745 0.014 9.08E−01 2.99E−273 5.30E−266 Vpreb3 10 14 0.743 0.014 1.30E+00 1.62E−259 2.88E−252 Fcmr 10 14 0.732 0.023 9.28E−01 2.95E−258 5.22E−251 Neil1 10 14 0.705 0.058 8.77E−01 8.25E−220 1.46E−212 Bfsp2 10 14 0.649 0.033 9.55E−01 2.51E−218 4.44E−211 Blnk 10 14 0.676 0.088 7.73E−01 1.36E−210 2.41E−203 Smagp 10 14 0.691 0.085 8.24E−01 2.47E−207 4.38E−200 Cd81 10 14 0.722 0.094 8.11E−01 2.30E−205 4.07E−198 Cd22 10 14 0.64 0.023 7.68E−01 1.11E−204 1.96E−197 Apitd1 10 14 0.641 0.099 6.56E−01 5.55E−200 9.83E−193 Slpr2 10 14 0.602 0.02 7.49E−01 8.78E−195 1.55E−187 Gcsam 10 14 0.674 0.056 8.38E−01 1.22E−194 2.15E−187 Apobec1 10 14 0.68 0.081 7.29E−01 2.83E−193 5.00E−186 Lipc 10 14 0.523 0.003 6.71E−01 3.47E−184 6.15E−177 Chchd10 10 14 0.594 0.085 7.19E−01 1.96E−159 3.46E−152 Cd79a 10 17 0.998 0.082 2.54E+00 0.00E+00  0.00E+00  Ms4a1 10 17 0.991 0.035 2.36E+00 0.00E+00  0.00E+00  Ebf1 10 17 0.992 0.018 2.11E+00 0.00E+00  0.00E+00  H2-DMb2 10 17 0.971 0.059 2.00E+00 2.87E−294 5.09E−287 Mzb1 10 17 0.97 0.041 2.04E+00 9.13E−292 1.62E−284 Rgs13 10 17 0.907 0.006 1.62E+00 8.52E−237 1.51E−229 Mef2c 10 17 0.922 0.041 1.44E+00 5.71E−228 1.01E−220 Iglc3 10 17 0.89 0.035 1.48E+00 4.72E−203 8.36E−196 Scimp 10 17 0.855 0.018 1.26E+00 9.09E−189 1.61E−181 Aicda 10 17 0.833 0.006 1.32E+00 1.73E−186 3.07E−179 Tnfrsf13c 10 17 0.864 0.038 1.42E+00 l.OOE−183  1.78E−176 Ighg1 10 17 0.844 0.082 2.27E+00 1.20E−177 2.12E−170 Pou2af1 10 17 0.84 0.023 1.27E+00 5.60E−177 9.91E−170 Cd24a 10 17 0.842 0.035 1.31E+00 1.10E−170 1.94E−163 Siglecg 10 17 0.794 0.009 1.04E+00 9.13E−166 1.62E−158 Eaf2 10 17 0.798 0.009 1.20E+00 9.41E−163 1.66E−155 Ebf1 10 18 0.992 0.036 2.11E+00 1.11E−295 1.97E−288 Ms4a1 10 18 0.991 0.078 2.32E+00 8.46E−294 1.50E−286 H2-DMb2 10 18 0.971 0.096 1.95E+00 1.38E−246 2.44E−239 Mzb1 10 18 0.97 0.053 2.03E+00 4.86E−245 8.61E−238 Mef2c 10 18 0.922 0.021 1.48E+00 7.94E−201 1.41E−193 Rgs13 10 18 0.907 0.018 1.60E+00 5.24E−190 9.27E−183 Ifi30 10 18 0.922 0.078 1.73E+00 2.12E−178 3.75E−171 Iglc3 10 18 0.89 0.053 1.47E+00 1.78E−161 3.15E−154 Cd79a 10 19 0.998 0.072 2.58E+00 7.16E−230 1.27E−222 Cd79b 10 19 0.995 0.064 2.49E+00 6.93E−205 1.23E−197 Ebf1 10 19 0.992 0.016 2.13E+00 4.79E−199 8.48E−192 Ms4a1 10 19 0.991 0.028 2.37E+00 1.22E−192 2.17E−185 Rgs13 10 20 0.907 0.064 1.48E+00 2.65E−185 4.70E−178 Aicda 10 20 0.833 0.017 1.31E+00 4.12E−180 7.29E−173 Scimp 10 20 0.855 0.059 1.22E+00 2.59E−161 4.59E−154 Cd79a 10 21 0.998 0.098 2.53E+00 5.07E−300 8.97E−293 Ms4a1 10 21 0.991 0.034 2.36E+00 1.40E−227 2.48E−220 Aicda 10 21 0.833 0.004 1.32E+00 1.38E−198 2.45E−191 Ebf1 10 21 0.992 0.021 2.12E+00 1.28E−193 2.27E−186 Rgs13 10 21 0.907 0.021 1.60E+00 3.72E−188 6.58E−181 Iglc3 10 21 0.89 0.081 1.43E+00 7.41E−186 1.31E−178 Pou2af1 10 21 0.84 0.038 1.24E+00 5.44E−183 9.63E−176 Eaf2 10 21 0.798 0.026 1.19E+00 1.06E−168 1.88E−161 Tnfrsf13c 10 21 0.864 0.043 1.41E+00 8.31E−166 1.47E−158 Cd79a 10 22 0.998 0.06 2.51E+00 5.54E−304 9.80E−297 Ms4a1 10 22 0.991 0.039 2.34E+00 8.01E−280 1.42E−272 Ebf1 10 22 0.992 0.043 2.06E+00 2.12E−267 3.75E−260 Mzb1 10 22 0.97 0.065 2.01E+00 3.91E−244 6.92E−237 Rgs13 10 22 0.907 0.013 1.61E+00 5.35E−209 9.47E−202 Iglc3 10 22 0.89 0.069 1.43E+00 3.11E−182 5.51E−175 Aicda 10 22 0.833 0.017 1.31E+00 2.75E−180 4.88E−173 Pou2af1 10 22 0.84 0.013 1.28E+00 1.97E−176 3.50E−169 Tnfrsf13c 10 22 0.864 0.017 1.43E+00 1.11E−175 1.97E−168 Cd24a 10 22 0.842 0.047 1.30E+00 6.21E−160 1.10E−152 Cd79a 10 24 0.998 0.049 2.60E+00 0.00E+00  0.00E+00  Ms4a1 10 24 0.991 0.045 2.35E+00 5.18E−283 9.17E−276 Mzb1 10 24 0.97 0.058 2.02E+00 1.75E−255 3.10E−248 Rgs13 10 24 0.907 0.013 1.60E+00 3.34E−202 5.91E−195 Aicda 10 24 0.833 0.013 1.30E+00 5.11E−175 9.05E−168 Pou2af1 10 24 0.84 0.009 1.29E+00 2.44E−174 4.31E−167 Iglc3 10 24 0.89 0.081 1.39E+00 7.47E−174 1.32E−166 Tnfrsf13c 10 24 0.864 0.013 1.44E+00 2.27E−173 4.01E−166 Scimp 10 24 0.855 0.031 1.25E+00 4.54E−170 8.04E−163 Eaf2 10 24 0.798 0 1.21E+00 2.57E−161 4.54E−154 Cd79a 10 25 0.998 0.027 2.62E+00 3.18E−255 5.64E−248 Cd79b 10 25 0.995 0.009 2.54E+00 3.64E−242 6.45E−235 Ms4a1 10 25 0.991 0 2.40E+00 3.99E−234 7.06E−227 Coro1a 10 25 0.989 0.1 2.32E+00 2.55E−223 4.51E−216 Mzb1 10 25 0.97 0.023 2.05E+00 3.06E−190 5.42E−183 Cd37 10 25 0.965 0.014 1.79E+00 4.75E−190 8.40E−183 H2-DMb2 10 25 0.971 0.045 2.03E+00 5.72E−189 1.01E−181 Rhoh 10 25 0.96 0.036 1.69E+00 2.97E−177 5.26E−170 Laptm5 10 25 0.96 0.1 1.69E+00 4.12E−159 7.28E−152 Limd2 10 25 0.962 0.1 1.72E+00 1.90E−158 3.36E−151 Cd79a 10 26 0.998 0.018 2.62E+00 8.82E−302 1.56E−294 Cd79b 10 26 0.995 0.092 2.44E+00 1.67E−298 2.95E−291 Ms4a1 10 26 0.991 0.014 2.38E+00 7.48E−275 1.32E−267 Ebf1 10 26 0.992 0.005 2.14E+00 5.80E−273 1.03E−265 H2-DMb2 10 26 0.971 0.069 1.98E+00 1.09E−246 1.94E−239 Mzb1 10 26 0.97 0.041 2.03E+00 1.91E−245 3.38E−238 Mef2c 10 26 0.922 0.037 1.44E+00 8.93E−198 1.58E−190 Ifi30 10 26 0.922 0.092 1.69E+00 1.66E−187 2.94E−180 Iglc3 10 26 0.89 0.069 1.41E+00 8.92E−169 1.58E−161 Aicda 10 26 0.833 0.005 1.32E+00 3.12E−167 5.52E−160 Tnfrsf13c 10 26 0.864 0.009 1.44E+00 7.36E−167 1.30E−159 Pou2af1 10 26 0.84 0.009 1.29E+00 2.00E−162 3.53E−155 Scimp 10 26 0.855 0.018 1.26E+00 1.38E−161 2.44E−154 Cd79a 10 30 0.998 0.052 2.57E+00 3.89E−191 6.88E−184 Cd79b 10 30 0.995 0.059 2.45E+00 3.12E−172 5.52E−165 Ms4a1 10 30 0.991 0.022 2.35E+00 1.41E−162 2.50E−155 Ebf1 10 30 0.992 0.022 2.12E+00 8.97E−162 1.59E−154 Cd79a 10 32 0.998 0.009 2.64E+00 2.54E−167 4.50E−160 Cd79a 10 33 0.998 0.057 2.59E+00 3.57E−182 6.31E−175 Cd79b 10 33 0.995 0.076 2.48E+00 1.51E−174 2.67E−167 Ms4a1 10 33 0.991 0.01 2.39E+00 8.34E−160 1.48E−152 Cd79b 10 35 0.995 0.081 2.46E+00 1.84E−177 3.26E−170 H2-DMb2 10 35 0.971 0.101 1.94E+00 1.09E−160 1.93E−153 Xcl1 11 12 0.908 0.033 1.93E+00 0.00E+00  0.00E+00  Ncr1 11 12 0.952 0.076 1.65E+00 0.00E+00  0.00E+00  Klrd1 11 12 0.853 0.02 1.28E+00 0.00E+00  0.00E+00  Klrk1 11 12 0.88 0.059 1.25E+00 0.00E+00  0.00E+00  Ms4a4b 11 12 0.817 0.051 1.21E+00 4.74E−300 8.39E−293 Car2 11 12 0.783 0.1 1.23E+00 7.03E−250 1.24E−242 Klrc1 11 12 0.595 0.017 1.02E+00 2.45E−194 4.34E−187 Klrblf 11 12 0.579 0.025 7.00E−01 1.51E−182 2.67E−175 Fasl 11 12 0.598 0.035 6.67E−01 3.16E−176 5.60E−169 Ncr1 11 14 0.952 0.077 1.64E+00 1.55E−194 2.74E−187 Ccl5 11 18 0.973 0.085 3.04E+00 7.30E−233 1.29E−225 Ncr1 11 18 0.952 0.007 1.75E+00 1.45E−231 2.57E−224 Fcer1g 11 18 0.966 0.05 1.65E+00 4.66E−229 8.25E−222 Tyrobp 11 18 0.945 0.06 1.98E+00 3.97E−219 7.03E−212 Cd7 11 18 0.924 0.05 1.91E+00 5.81E−203 1.03E−195 Xcl1 11 18 0.908 0.039 1.63E+00 2.51E−179 4.45E−172 Klrk1 11 18 0.88 0.021 1.30E+00 6.65E−177 1.18E−169 Klrd1 11 18 0.853 0.028 1.26E+00 6.33E−159 1.12E−151 Ncr1 11 20 0.952 0.089 1.64E+00 2.56E−176 4.53E−169 Nkg7 11 24 0.964 0.076 1.79E+00 6.88E−184 1.22E−176 Ncr1 11 24 0.952 0.036 1.70E+00 1.22E−160 2.16E−153 Gimap4 11 24 0.944 0.058 1.50E+00 5.77E−159 1.02E−151 Nkg7 11 25 0.964 0.063 1.84E+00 2.29E−193 4.06E−186 Ncr1 11 25 0.952 0.036 1.72E+00 8.48E−185 1.50E−177 Fcer1g 11 25 0.966 0.086 1.57E+00 4.05E−177 7.18E−170 Xcl1 11 25 0.908 0.009 1.96E+00 4.57E−161 8.09E−154 Gata3 12 14 0.946 0.066 1.76E+00 1.57E−197 2.78E−190 Hs3st1 12 17 0.846 0.003 1.70E+00 2.51E−189 4.44E−182 Lmo4 12 18 0.988 0.089 2.52E+00 4.76E−262 8.43E−255 Hs3st1 12 18 0.846 0.007 1.69E+00 2.17E−162 3.85E−155 Lmo4 12 19 0.988 0.084 2.51E+00 1.10E−206 1.95E−199 Gata3 12 20 0.946 0.076 1.70E+00 6.31E−171 1.12E−163 Gata3 12 22 0.946 0.082 1.70E+00 2.26E−159 4.00E−152 Trbc1 12 24 0.946 0.076 1.59E+00 9.97E−173 1.76E−165 Gata3 12 24 0.946 0.031 1.81E+00 2.45E−167 4.34E−160 Gata3 12 25 0.946 0.027 1.81E+00 1.05E−175 1.86E−168 Trbc1 12 25 0.946 0.059 1.58E+00 1.28E−165 2.27E−158 Trbc1 12 26 0.946 0.069 1.57E+00 1.27E−169 2.25E−162 Gata3 12 26 0.946 0.028 1.77E+00 1.10E−163 1.94E−156 Cd7 17 18 0.988 0.05 3.01E+00 2.24E−179 3.96E−172

TABLE 3 Differential expression analysis between cells from mice treated with OVA or PBS in each cell type in PP (Table 3A) and LP (Table 3B) regions, related to FIG. 2. A percentage of percentage of expressing expressing cluster cells in OVA- cells in PBS- LN (average p value, gene ID treated group treated group fold change) p value adjusted Tsc22d3 1 0.811 0.538 0.720  9.66E−129  7.61E−123 Wdr89 1 0.983 0.941 0.366  3.01E−124  1.13E−118 Txnip 1 0.617 0.378 0.759 8.02E−98 1.05E−92 Uba52 1 0.97 0.917 0.334 1.80E−65 1.42E−60 Ddit4 1 0.348 0.209 0.532 7.46E−61 4.19E−56 Bcl2 1 0.806 0.701 0.510 3.76E−55 1.64E−50 Cd74 1 0.428 0.525 −0.311 1.07E−49 3.67E−45 Jund 1 0.667 0.761 −0.352 2.35E−45 6.62E−41 Zfp36l2 1 0.566 0.302 0.837 1.47E−42 3.31E−38 Il7r 1 0.406 0.248 0.548 6.56E−39 1.03E−34 Pik3ip1 1 0.495 0.361 0.321 2.62E−28 2.46E−24 Hspa8 1 0.965 0.967 −0.313 6.56E−25 4.61E−21 Hsp90ab1 1 0.82 0.867 −0.340 3.66E−23 2.34E−19 Pdcd4 1 0.626 0.487 0.353 3.23E−22 1.93E−18 Klf6 1 0.388 0.474 −0.370 1.86E−20 9.96E−17 Igha 1 0.166 0.1 0.552 8.23E−20 4.26E−16 Ifngr1 1 0.434 0.268 0.579 8.75E−19 3.92E−15 Ltb 1 0.826 0.847 −0.221 6.06E−18 2.54E−14 Dnaja1 1 0.551 0.652 −0.413 8.11E−18 3.32E−14 Iglc1 1 0.072 0.158 −0.884 1.12E−16 4.05E−13 Gramd3 1 0.386 0.222 0.593 1.12E−16 4.05E−13 Klhl6 1 0.299 0.211 0.353 1.21E−16 4.37E−13 DynIl1 1 0.64 0.721 −0.268 1.48E−16 5.28E−13 Rnaset2a 1 0.583 0.437 0.311 1.65E−15 5.21E−12 Ube2s 1 0.472 0.361 0.296 1.79E−15 5.56E−12 Ucp2 1 0.764 0.636 0.295 4.56E−15 1.35E−11 Igkc 1 0.531 0.601 −0.321 5.17E−15 1.52E−11 Grcc10 1 0.557 0.414 0.357 1.95E−14 5.45E−11 Ubb 1 0.989 0.983 −0.168 2.36E−14 6.45E−11 Srsf3 1 0.505 0.555 −0.236 5.37E−14 1.44E−10 VgIl4 1 0.274 0.322 −0.350 2.14E−13 5.48E−10 H2-Aa 1 0.211 0.228 −0.202 8.81E−13 2.04E−09 Tnfrsf18 1 0.392 0.27 0.456 1.03E−12 2.35E−09 Dnajb1 1 0.222 0.347 −0.700 1.25E−12 2.85E−09 Cd40lg 1 0.138 0.194 −0.506 2.21E−12 4.84E−09 Tpm3 1 0.621 0.5 0.239 6.64E−12 1.38E−08 Hsp90aa1 1 0.558 0.661 −0.444 1.07E−10 1.97E−07 Tnfsf8 1 0.181 0.099 0.471 2.28E−10 3.97E−07 Ppp1r15a 1 0.281 0.311 −0.226 2.29E−10 3.98E−07 Atf4 1 0.218 0.261 −0.316 2.32E−10 4.01E−07 Ms4a4b 1 0.921 0.858 0.189 2.65E−10 4.50E−07 Ahsa1 1 0.247 0.307 −0.359 2.91E−10 4.92E−07 Fos 1 0.22 0.261 −0.255 4.30E−10 7.12E−07 Klhdc1 1 0.327 0.225 0.342 6.23E−10 1.00E−06 Kbtbd11 1 0.314 0.219 0.355 1.78E−09 2.69E−06 Neat1 1 0.274 0.3 −0.269 1.80E−09 2.72E−06 Nrip1 1 0.247 0.16 0.455 2.74E−09 4.01E−06 Lrrc58 1 0.437 0.35 0.238 3.24E−09 4.69E−06 Klhdc2 1 0.281 0.201 0.399 4.01E−09 5.75E−06 Rcsd1 1 0.336 0.254 0.283 4.20E−09 6.01E−06 Ptpn22 1 0.215 0.132 0.489 4.66E−09 6.61E−06 Cacybp 1 0.305 0.393 −0.386 4.92E−09 6.94E−06 Ier5 1 0.244 0.268 −0.208 6.69E−09 9.22E−06 Socs1 1 0.226 0.134 0.523 1.68E−08 2.16E−05 Arl4c 1 0.459 0.495 −0.184 1.76E−08 2.26E−05 Bcl11b 1 0.431 0.474 −0.226 2.69E−08 3.36E−05 Hspe1 1 0.659 0.677 −0.196 3.26E−08 4.03E−05 Ctsc 1 0.155 0.113 0.285 3.64E−08 4.48E−05 Gstp1 1 0.332 0.258 0.204 5.44E−08 6.48E−05 Acp5 1 0.414 0.325 0.201 6.23E−08 7.30E−05 Tagap 1 0.183 0.207 −0.202 6.30E−08 7.35E−05 Slbp 1 0.129 0.164 −0.301 1.11E−07 1.23E−04 Ets1 1 0.625 0.519 0.186 1.19E−07 1.33E−04 Rbm3 1 0.838 0.758 0.201 1.41E−07 1.54E−04 Cetn3 1 0.259 0.188 0.240 2.79E−07 2.89E−04 Cd3e 1 0.891 0.815 0.170 3.56E−07 3.58E−04 Bloc1s1 1 0.162 0.107 0.349 4.83E−07 4.76E−04 Jun 1 0.23 0.297 −0.389 6.84E−07 6.50E−04 Crlf3 1 0.594 0.469 0.317 7.03E−07 6.67E−04 Ywhah 1 0.377 0.408 −0.167 1.38E−06 1.24E−03 Cnp 1 0.487 0.409 0.157 1.53E−06 1.37E−03 Dusp2 1 0.367 0.292 0.319 1.56E−06 1.39E−03 Slfn2 1 0.55 0.432 0.289 2.16E−06 1.88E−03 Sfpq 1 0.311 0.341 −0.216 2.48E−06 2.14E−03 2810474O19Rik 1 0.318 0.262 0.171 2.93E−06 2.47E−03 Stip1 1 0.177 0.221 −0.355 3.30E−06 2.76E−03 Mfap1b 1 0.157 0.123 0.161 4.60E−06 3.70E−03 Tubb4b 1 0.183 0.206 −0.198 4.76E−06 3.80E−03 Stt3b 1 0.281 0.206 0.252 5.25E−06 4.14E−03 Tmem50a 1 0.595 0.485 0.195 6.05E−06 4.69E−03 Sh3bp5 1 0.239 0.171 0.302 8.96E−06 6.65E−03 Smad7 1 0.301 0.322 −0.160 1.15E−05 8.28E−03 Zfp36 1 0.196 0.223 −0.174 1.54E−05 1.07E−02 Atp1b3 1 0.692 0.595 0.188 1.56E−05 1.09E−02 Sdhaf1 1 0.167 0.097 0.511 1.61E−05 1.12E−02 Grb2 1 0.202 0.266 −0.357 1.74E−05 1.20E−02 Rhof 1 0.195 0.214 −0.180 1.98E−05 1.34E−02 Rheb 1 0.208 0.229 −0.179 2.01E−05 1.36E−02 H2-T23 1 0.252 0.173 0.288 3.34E−05 2.16E−02 Fkbp4 1 0.273 0.315 −0.251 4.39E−05 2.76E−02 Zfos1 1 0.299 0.316 −0.155 6.66E−05 3.94E−02 Anapc16 1 0.199 0.144 0.279 7.73E−05 4.49E−02 Ywhab 1 0.328 0.358 −0.172 8.66E−05 4.93E−02 Irf1 1 0.155 0.187 −0.208 8.82E−05 5.00E−02 Zfp36l2 2 0.64 0.218 1.626  2.64E−112  4.65E−107 Tsc22d3 2 0.806 0.526 0.816 3.02E−56 1.40E−51 Sesn1 2 0.32 0.099 1.317 1.40E−32 1.62E−28 Ptpn22 2 0.213 0.093 0.999 2.68E−21 1.51E−17 Ddit4 2 0.216 0.126 0.714 5.00E−20 2.62E−16 Fam107b 2 0.53 0.334 0.653 7.67E−20 4.00E−16 Iglc2 2 0.861 0.924 −0.275 1.01E−17 4.06E−14 Hs3st1 2 0.183 0.072 0.958 4.47E−16 1.49E−12 Iglc3 2 0.86 0.905 −0.196 9.41E−16 3.05E−12 Pik3ip1 2 0.231 0.131 0.568 1.42E−15 4.49E−12 Ccnd3 2 0.321 0.171 0.710 1.41E−14 4.00E−11 Plaur 2 0.273 0.093 1.207 2.91E−14 7.91E−11 Pdcd4 2 0.426 0.32 0.482 1.82E−11 3.57E−08 Btg1 2 0.996 0.99 0.251 5.67E−11 1.07E−07 Cd69 2 0.502 0.367 0.462 7.31E−11 1.37E−07 Swap70 2 0.326 0.373 −0.259 1.59E−10 2.83E−07 Srgn 2 0.867 0.745 0.347 1.93E−10 3.39E−07 Cd24a 2 0.582 0.596 −0.234 4.21E−10 6.98E−07 Egln2 2 0.311 0.169 0.709 1.07E−09 1.67E−06 Rsrp1 2 0.481 0.564 −0.342 4.13E−08 5.03E−05 Ltb 2 0.837 0.853 −0.251 5.43E−08 6.48E−05 Cxcr4 2 0.671 0.477 0.491 7.26E−08 8.37E−05 Sorl1 2 0.4 0.267 0.459 2.08E−07 2.21E−04 Sla 2 0.251 0.145 0.642 2.53E−07 2.64E−04 Smad7 2 0.212 0.13 0.479 2.58E−07 2.68E−04 Cd180 2 0.281 0.334 −0.252 3.15E−07 3.23E−04 Sdhaf1 2 0.31 0.228 0.473 3.64E−07 3.66E−04 Txnip 2 0.403 0.255 0.611 4.70E−07 4.65E−04 Egr1 2 0.289 0.198 0.594 6.79E−07 6.46E−04 Gpr171 2 0.445 0.272 0.554 7.35E−07 6.95E−04 Smc6 2 0.673 0.58 0.212 8.29E−07 7.73E−04 Malat1 2 1 0.999 −0.189 1.92E−06 1.69E−03 Ly6d 2 0.253 0.339 −0.495 2.27E−06 1.97E−03 Sypl 2 0.434 0.307 0.405 4.65E−06 3.73E−03 Napsa 2 0.749 0.638 0.242 4.95E−06 3.92E−03 Acp5 2 0.411 0.313 0.289 5.31E−06 4.18E−03 P2ry10 2 0.308 0.167 0.629 8.14E−06 6.11E−03 Hhex 2 0.277 0.309 −0.177 1.12E−05 8.07E−03 Il10ra 2 0.155 0.081 0.643 1.96E−05 1.34E−02 1110059E24Rik 2 0.313 0.204 0.447 2.73E−05 1.80E−02 Scd1 2 0.48 0.345 0.338 2.75E−05 1.81E−02 Jmjd1c 2 0.222 0.177 0.252 3.83E−05 2.45E−02 Stk17b 2 0.77 0.63 0.315 3.85E−05 2.45E−02 Cd47 2 0.587 0.464 0.328 4.50E−05 2.82E−02 Btg2 2 0.767 0.632 0.450 5.96E−05 3.59E−02 Zfand5 2 0.161 0.213 −0.399 6.22E−05 3.72E−02 Bend5 2 0.21 0.151 0.306 6.81E−05 4.02E−02 Sgms1 2 0.263 0.159 0.537 8.69E−05 4.94E−02 Jund 3 0.82 0.94 −0.733  2.95E−112  4.65E−107 Id2 3 0.923 0.738 0.591 1.26E−87 1.42E−82 Pim1 3 0.754 0.884 −0.496 4.49E−72 4.42E−67 Nfkbia 3 0.801 0.905 −0.415 5.12E−63 3.36E−58 Klf4 3 0.19 0.407 −1.015 1.81E−52 7.14E−48 Tgif1 3 0.407 0.6 −0.586 4.81E−50 1.72E−45 Hk2 3 0.253 0.457 −0.836 1.71E−49 5.61E−45 Junb 3 0.957 0.971 −0.156 8.61E−48 2.71E−43 Gimap1 3 0.793 0.61 0.500 1.66E−47 5.02E−43 Dusp5 3 0.535 0.687 −0.410 7.77E−45 2.04E−40 Nr4a1 3 0.607 0.752 −0.338 8.83E−43 2.05E−38 Dusp1 3 0.628 0.769 −0.335 5.48E−42 1.17E−37 Sla 3 0.745 0.528 0.626 2.36E−41 4.77E−37 Nfkbiz 3 0.425 0.586 −0.520 7.49E−41 1.47E−36 Prr7 3 0.176 0.343 −0.936 9.56E−41 1.84E−36 AY036118 3 0.388 0.411 −0.405 1.72E−40 3.23E−36 Mcpt1 3 0.19 0.036 1.670 2.37E−40 4.33E−36 Defa24 3 0.04 0.178 −1.549 5.34E−40 9.56E−36 Ifrd1 3 0.255 0.436 −0.719 1.46E−39 2.55E−35 Kdm6b 3 0.291 0.454 −0.672 3.57E−39 6.12E−35 Ubb 3 0.996 0.999 −0.215 3.92E−39 6.56E−35 Fam110a 3 0.22 0.394 −0.748 4.57E−38 6.92E−34 Gadd45b 3 0.533 0.698 −0.196 2.97E−37 4.33E−33 Maff 3 0.435 0.573 −0.425 2.69E−32 3.07E−28 Bhlhe40 3 0.635 0.734 −0.329 1.81E−31 2.00E−27 Ppp1r15a 3 0.312 0.473 −0.550 2.34E−31 2.55E−27 Tnfaip3 3 0.453 0.575 −0.311 4.47E−31 4.82E−27 Txnip 3 0.222 0.08 1.243 2.01E−30 2.09E−26 Vps37b 3 0.551 0.657 −0.438 4.05E−30 4.09E−26 Lmna 3 0.101 0.226 −1.191 5.81E−30 5.79E−26 Gimap6 3 0.841 0.722 0.343 1.67E−29 1.63E−25 Fosb 3 0.272 0.413 −0.583 1.90E−29 1.82E−25 Il22 3 0.188 0.33 −0.772 4.09E−28 3.79E−24 Cd69 3 0.68 0.767 −0.330 7.25E−28 6.42E−24 Bcl2 3 0.679 0.535 0.594 2.16E−27 1.83E−23 Irf7 3 0.155 0.294 −0.904 3.28E−26 2.56E−22 Uhrf2 3 0.495 0.624 −0.452 3.96E−26 3.03E−22 Nfkb1 3 0.352 0.463 −0.558 6.87E−26 5.15E−22 Igha 3 0.477 0.282 0.516 8.76E−26 6.45E−22 Nfkbid 3 0.316 0.454 −0.489 1.85E−24 1.28E−20 Dok1 3 0.367 0.198 0.611 4.60E−24 3.09E−20 Pnrc1 3 0.752 0.826 −0.247 1.44E−23 9.52E−20 Rel 3 0.129 0.253 −0.749 2.98E−23 1.93E−19 Litaf 3 0.246 0.372 −0.544 4.98E−23 3.16E−19 Gimap9 3 0.472 0.304 0.525 2.44E−22 1.48E−18 Nmrk1 3 0.092 0.204 −0.763 6.05E−22 3.55E−18 Atf3 3 0.086 0.19 −0.803 6.89E−22 4.02E−18 Coq10b 3 0.268 0.384 −0.483 7.50E−21 4.07E−17 Taf10 3 0.26 0.402 −0.563 8.81E−20 4.50E−16 Gimap5 3 0.579 0.431 0.446 8.97E−20 4.54E−16 Sik1 3 0.17 0.281 −0.640 9.96E−20 4.99E−16 Btg1 3 0.977 0.978 −0.163 1.28E−19 6.33E−16 Tsc22d3 3 0.514 0.347 0.622 1.43E−19 6.97E−16 Ikzf2 3 0.663 0.742 −0.369 3.39E−19 1.60E−15 Rsrp1 3 0.623 0.492 0.268 3.47E−19 1.62E−15 Nr4a3 3 0.197 0.3 −0.600 3.69E−19 1.72E−15 Ahr 3 0.538 0.397 0.447 5.05E−19 2.34E−15 Rgs2 3 0.535 0.633 −0.297 5.75E−19 2.62E−15 Cdkn1a 3 0.082 0.177 −0.870 8.51E−19 3.83E−15 Phlda1 3 0.248 0.38 −0.522 2.57E−18 1.12E−14 Ncoa7 3 0.755 0.627 0.345 2.84E−18 1.23E−14 D16Ertd472e 3 0.223 0.311 −0.484 5.45E−18 2.29E−14 Ffar2 3 0.752 0.642 0.294 7.23E−18 2.98E−14 Egr1 3 0.192 0.294 −0.541 1.27E−17 5.02E−14 Zc3h12a 3 0.237 0.338 −0.483 1.53E−17 6.00E−14 Rasl11a 3 0.346 0.216 0.766 1.77E−17 6.86E−14 Cited4 3 0.479 0.346 0.361 4.36E−17 1.65E−13 Serpinb9 3 0.367 0.448 −0.428 5.58E−17 2.08E−13 Ier5l 3 0.067 0.153 −1.214 9.93E−17 3.62E−13 Mir142hg 3 0.077 0.161 −0.709 1.29E−16 4.60E−13 Nabp1 3 0.544 0.591 −0.340 1.87E−16 6.64E−13 Zfp36l2 3 0.523 0.364 0.563 3.72E−16 1.27E−12 Igkc 3 0.661 0.527 0.304 4.32E−16 1.45E−12 Ubc 3 0.347 0.457 −0.378 1.66E−15 5.22E−12 Bcl2a1d 3 0.407 0.488 −0.357 2.09E−15 6.44E−12 Slc16a6 3 0.176 0.267 −0.490 4.79E−15 1.41E−11 Crem 3 0.291 0.372 −0.456 5.75E−15 1.68E−11 Cd74 3 0.43 0.53 −0.422 1.31E−14 3.73E−11 Il2rg 3 0.76 0.791 −0.199 1.95E−14 5.45E−11 Furin 3 0.367 0.454 −0.360 6.03E−14 1.62E−10 Fosl2 3 0.337 0.427 −0.340 6.29E−14 1.67E−10 Slfn2 3 0.435 0.311 0.459 7.64E−14 2.01E−10 Icos 3 0.43 0.502 −0.325 1.02E−13 2.67E−10 Emb 3 0.903 0.922 −0.182 1.09E−13 2.83E−10 Nr4a2 3 0.112 0.186 −0.662 1.32E−13 3.42E−10 Cd83 3 0.211 0.303 −0.369 1.43E−13 3.68E−10 Traf1 3 0.557 0.627 −0.266 3.07E−13 7.70E−10 Alyref 3 0.127 0.23 −0.688 3.57E−13 8.86E−10 Dusp2 3 0.313 0.194 0.870 7.85E−13 1.86E−09 Sqstm1 3 0.365 0.456 −0.328 8.72E−13 2.03E−09 Rora 3 0.734 0.775 −0.228 1.57E−12 3.51E−09 Gnai2 3 0.583 0.673 −0.341 1.87E−12 4.17E−09 Il7r 3 0.934 0.891 0.206 3.05E−12 6.56E−09 Serpinb6b 3 0.421 0.497 −0.223 4.37E−12 9.26E−09 Ramp3 3 0.316 0.37 −0.470 9.85E−12 2.00E−08 Ptp4a2 3 0.538 0.618 −0.235 1.77E−11 3.51E−08 Gna13 3 0.394 0.45 −0.291 1.92E−11 3.76E−08 Sla2 3 0.295 0.19 0.465 2.62E−11 5.11E−08 Slpr4 3 0.182 0.097 0.601 6.96E−11 1.31E−07 Cish 3 0.39 0.287 0.423 9.27E−11 1.72E−07 Neat1 3 0.46 0.349 0.291 1.37E−10 2.45E−07 Fcer1g 3 0.914 0.895 0.188 2.11E−10 3.69E−07 Tagap 3 0.277 0.352 −0.196 2.30E−10 3.98E−07 Rnf19b 3 0.287 0.351 −0.411 4.10E−10 6.82E−07 2010300C02Rik 3 0.509 0.407 0.315 4.65E−10 7.65E−07 Icam1 3 0.144 0.219 −0.479 4.80E−10 7.88E−07 Amica1 3 0.405 0.306 0.371 5.80E−10 9.38E−07 Odc1 3 0.227 0.284 −0.409 6.27E−10 1.01E−06 Actr3 3 0.72 0.67 0.227 8.43E−10 1.34E−06 Ppp2ca 3 0.307 0.405 −0.395 1.04E−09 1.63E−06 Klrk1 3 0.733 0.75 −0.160 1.05E−09 1.65E−06 Hist1h1c 3 0.3 0.204 0.664 1.05E−09 1.65E−06 Sec11a 3 0.441 0.351 0.300 1.14E−09 1.78E−06 Csrnp1 3 0.258 0.326 −0.236 1.25E−09 1.92E−06 Nrip1 3 0.627 0.673 −0.162 1.31E−09 2.01E−06 Rilpl2 3 0.284 0.183 0.478 2.33E−09 3.46E−06 Rinl 3 0.624 0.521 0.233 2.45E−09 3.61E−06 H2-Q7 3 0.393 0.459 −0.237 2.58E−09 3.78E−06 Ptpn7 3 0.355 0.266 0.326 3.15E−09 4.57E−06 Neurl3 3 0.446 0.516 −0.209 5.65E−09 7.93E−06 Pdrg1 3 0.265 0.174 0.377 6.42E−09 8.88E−06 Rnf125 3 0.099 0.158 −0.583 6.81E−09 9.36E−06 Chmp4b 3 0.356 0.432 −0.295 6.87E−09 9.42E−06 Cd160 3 0.564 0.449 0.275 8.12E−09 1.10E−05 Ifi47 3 0.265 0.172 0.465 8.87E−09 1.19E−05 Arpc5l 3 0.353 0.261 0.341 9.63E−09 1.29E−05 Ifi203 3 0.47 0.376 0.352 1.02E−08 1.35E−05 Stom 3 0.165 0.091 0.580 1.15E−08 1.52E−05 Cytip 3 0.516 0.551 −0.185 1.60E−08 2.07E−05 Rab19 3 0.178 0.11 0.484 2.36E−08 2.99E−05 Kcnk1 3 0.45 0.35 0.325 2.49E−08 3.12E−05 Ccrl2 3 0.146 0.204 −0.395 2.92E−08 3.64E−05 Jagn1 3 0.156 0.087 0.602 3.06E−08 3.80E−05 Orai1 3 0.293 0.354 −0.265 3.72E−08 4.57E−05 Amd1 3 0.169 0.232 −0.397 3.85E−08 4.72E−05 Dbp 3 0.188 0.126 0.465 4.22E−08 5.12E−05 Gimap7 3 0.598 0.519 0.236 4.58E−08 5.52E−05 Nfil3 3 0.154 0.21 −0.381 4.99E−08 5.98E−05 Cmtm6 3 0.27 0.18 0.417 5.69E−08 6.77E−05 Tmem243 3 0.246 0.315 −0.347 6.06E−08 7.14E−05 Gimap3 3 0.905 0.859 0.189 6.58E−08 7.66E−05 Ptger2 3 0.204 0.139 0.460 6.94E−08 8.05E−05 Fam195b 3 0.287 0.201 0.360 7.37E−08 8.47E−05 Asb2 3 0.551 0.469 0.246 8.68E−08 9.91E−05 Tspan32 3 0.178 0.108 0.515 8.87E−08 1.01E−04 Frmd4b 3 0.169 0.23 −0.389 9.08E−08 1.03E−04 Tob2 3 0.253 0.306 −0.243 9.74E−08 1.10E−04 Ssna1 3 0.299 0.21 0.352 1.38E−07 1.52E−04 Klf2 3 0.272 0.327 −0.271 1.54E−07 1.69E−04 Tvp23b 3 0.17 0.095 0.546 1.78E−07 1.93E−04 Sdhd 3 0.276 0.186 0.419 2.51E−07 2.63E−04 Tbx21 3 0.169 0.109 0.524 2.57E−07 2.68E−04 Gem 3 0.561 0.61 −0.167 2.98E−07 3.07E−04 Map3k14 3 0.155 0.217 −0.422 3.09E−07 3.18E−04 Sat1 3 0.665 0.599 0.179 3.33E−07 3.38E−04 Tomm5 3 0.372 0.282 0.314 3.78E−07 3.79E−04 4921524J17Rik 3 0.153 0.091 0.521 4.49E−07 4.45E−04 Prex1 3 0.365 0.271 0.372 4.96E−07 4.86E−04 Trpc4ap 3 0.344 0.263 0.320 5.24E−07 5.11E−04 Ube2g2 3 0.252 0.172 0.369 5.59E−07 5.41E−04 Gimap8 3 0.238 0.151 0.472 5.81E−07 5.61E−04 Smap2 3 0.369 0.442 −0.258 6.66E−07 6.36E−04 Kit 3 0.411 0.458 −0.204 6.69E−07 6.38E−04 Tifa 3 0.196 0.124 0.459 7.52E−07 7.10E−04 P2ry10 3 0.261 0.318 −0.229 7.55E−07 7.11E−04 Ccnl1 3 0.379 0.44 −0.180 8.06E−07 7.54E−04 Tox 3 0.253 0.171 0.492 8.57E−07 7.97E−04 Mdfic 3 0.437 0.345 0.292 1.03E−06 9.48E−04 Serpinb1a 3 0.768 0.784 −0.178 1.09E−06 9.93E−04 Rlim 3 0.148 0.199 −0.386 1.30E−06 1.18E−03 Timm10b 3 0.351 0.254 0.295 1.36E−06 1.22E−03 F2r 3 0.355 0.412 −0.242 1.52E−06 1.35E−03 Tgoln1 3 0.262 0.322 −0.234 1.71E−06 1.51E−03 Gpcpd1 3 0.187 0.246 −0.328 1.83E−06 1.62E−03 Bcl2a1b 3 0.15 0.194 −0.350 2.38E−06 2.06E−03 VgIl4 3 0.24 0.29 −0.332 2.43E−06 2.09E−03 Ccdc115 3 0.218 0.151 0.408 2.71E−06 2.31E−03 Arl6ip5 3 0.476 0.388 0.229 2.79E−06 2.37E−03 Ddx3x 3 0.353 0.403 −0.175 2.88E−06 2.43E−03 Polr2a 3 0.209 0.26 −0.277 3.08E−06 2.59E−03 Gcnt2 3 0.258 0.305 −0.265 3.87E−06 3.16E−03 Ahcyl2 3 0.623 0.551 0.192 4.48E−06 3.61E−03 H2-Eb1 3 0.162 0.212 −0.312 4.63E−06 3.72E−03 Dusp4 3 0.158 0.211 −0.322 4.87E−06 3.87E−03 Oard1 3 0.176 0.122 0.412 5.55E−06 4.36E−03 Ormdl3 3 0.195 0.129 0.363 6.00E−06 4.66E−03 Gpr171 3 0.382 0.279 0.299 6.36E−06 4.91E−03 Zc3hav1 3 0.223 0.271 −0.209 6.73E−06 5.15E−03 Ezr 3 0.322 0.365 −0.189 6.82E−06 5.21E−03 Clk1 3 0.55 0.585 −0.156 7.20E−06 5.48E−03 Zkscan3 3 0.157 0.105 0.422 7.50E−06 5.68E−03 Klrc1 3 0.225 0.156 0.505 8.30E−06 6.21E−03 Plekhg1 3 0.255 0.312 −0.320 8.53E−06 6.37E−03 Tbc1d10c 3 0.471 0.415 0.204 8.69E−06 6.48E−03 Gjb2 3 0.209 0.263 −0.286 8.75E−06 6.52E−03 Rnf166 3 0.351 0.271 0.250 8.89E−06 6.61E−03 Tcrg-C1 3 0.671 0.607 0.219 9.69E−06 7.15E−03 Clec2d 3 0.243 0.172 0.363 9.72E−06 7.17E−03 Snx20 3 0.194 0.129 0.403 1.02E−05 7.47E−03 Rnf114 3 0.251 0.188 0.288 1.04E−05 7.63E−03 Smim11 3 0.365 0.286 0.307 1.10E−05 8.01E−03 Ptprcap 3 0.818 0.753 0.186 1.17E−05 8.39E−03 Timm13 3 0.556 0.475 0.211 1.23E−05 8.79E−03 Ndel1 3 0.167 0.212 −0.336 1.31E−05 9.33E−03 Supt4a 3 0.672 0.601 0.195 1.37E−05 9.70E−03 Emd 3 0.293 0.343 −0.185 1.41E−05 9.94E−03 Rnf5 3 0.194 0.129 0.419 1.44E−05 1.01E−02 BC031181 3 0.502 0.543 −0.166 1.60E−05 1.12E−02 Mxd1 3 0.269 0.32 −0.211 1.63E−05 1.13E−02 Rgs3 3 0.25 0.178 0.356 1.79E−05 1.23E−02 Gatad1 3 0.153 0.208 −0.322 1.83E−05 1.26E−02 Stat4 3 0.297 0.321 −0.222 1.92E−05 1.31E−02 Tmx1 3 0.199 0.153 0.318 2.53E−05 1.69E−02 Nudt16l1 3 0.183 0.121 0.403 2.76E−05 1.82E−02 Gnb1 3 0.395 0.452 −0.269 2.88E−05 1.89E−02 Fam184b 3 0.232 0.183 0.317 3.00E−05 1.97E−02 Tuba1c 3 0.125 0.162 −0.301 3.03E−05 1.99E−02 Pten 3 0.205 0.263 −0.336 3.04E−05 1.99E−02 Klrb1f 3 0.413 0.338 0.210 3.35E−05 2.17E−02 Fyn 3 0.169 0.223 −0.338 3.65E−05 2.34E−02 Bloc1s2 3 0.159 0.106 0.414 3.90E−05 2.49E−02 Commd6 3 0.238 0.171 0.343 4.08E−05 2.58E−02 Tuba1a 3 0.214 0.258 −0.209 4.09E−05 2.59E−02 Ppt2 3 0.389 0.332 0.224 4.28E−05 2.70E−02 Scn1b 3 0.138 0.186 −0.340 4.92E−05 3.05E−02 Birc3 3 0.297 0.337 −0.173 4.99E−05 3.09E−02 Skil 3 0.198 0.247 −0.266 5.04E−05 3.11E−02 Tmem261 3 0.211 0.142 0.365 5.28E−05 3.24E−02 Ube2s 3 0.433 0.47 −0.154 5.28E−05 3.24E−02 4930523C07Rik 3 0.386 0.426 −0.187 5.83E−05 3.53E−02 C4b 3 0.321 0.26 0.336 5.89E−05 3.56E−02 Traf2 3 0.19 0.137 0.321 5.89E−05 3.56E−02 Rbm4b 3 0.114 0.159 −0.349 5.90E−05 3.56E−02 4930453N24Rik 3 0.237 0.183 0.309 5.97E−05 3.59E−02 Triap1 3 0.167 0.116 0.346 6.00E−05 3.60E−02 Ptpn22 3 0.603 0.508 0.266 6.06E−05 3.64E−02 Il18r1 3 0.626 0.561 0.165 6.22E−05 3.72E−02 Podnl1 3 0.66 0.594 0.171 6.29E−05 3.75E−02 Nt5e 3 0.216 0.164 0.329 7.59E−05 4.42E−02 Pnrc2 3 0.191 0.148 0.224 7.74E−05 4.49E−02 Ppp1r3b 3 0.16 0.195 −0.172 8.39E−05 4.81E−02 Jund 4 0.888 0.978 −0.773  4.29E−124  1.13E−118 Klf4 4 0.284 0.583 −1.032 4.37E−69 3.82E−64 Junb 4 0.957 0.98 −0.249 7.45E−65 5.33E−60 Lmna 4 0.241 0.503 −1.267 2.12E−60 1.11E−55 Ncoa7 4 0.899 0.725 0.635 3.60E−60 1.77E−55 Dusp1 4 0.657 0.816 −0.419 4.71E−45 1.28E−40 Pim1 4 0.688 0.839 −0.372 8.88E−45 2.26E−40 Rasl11a 4 0.737 0.504 0.766 2.69E−42 5.89E−38 Fam110a 4 0.453 0.62 −0.604 4.10E−39 6.72E−35 Sla 4 0.819 0.608 0.624 1.04E−36 1.50E−32 B930036N10Rik 4 0.377 0.159 0.957 9.56E−34 1.26E−29 Ifrd1 4 0.37 0.551 −0.531 1.21E−33 1.50E−29 Ubb 4 0.997 1 −0.219 1.22E−33 1.50E−29 Nfkbia 4 0.882 0.937 −0.305 3.74E−33 4.46E−29 Gimap1 4 0.735 0.537 0.488 6.73E−33 7.91E−29 Maff 4 0.554 0.688 −0.378 8.53E−32 9.60E−28 Fosb 4 0.561 0.668 −0.453 4.03E−30 4.09E−26 Bcl2 4 0.912 0.804 0.403 1.05E−29 1.04E−25 Kdm6b 4 0.324 0.491 −0.629 2.70E−27 2.26E−23 Emb 4 0.822 0.864 −0.325 3.20E−27 2.65E−23 Ahr 4 0.448 0.264 0.772 1.57E−26 1.25E−22 Prr7 4 0.192 0.354 −0.719 1.91E−26 1.51E−22 Ffar2 4 0.669 0.487 0.537 3.71E−26 2.86E−22 AY036118 4 0.316 0.415 −0.746 8.43E−26 6.26E−22 Rora 4 0.674 0.77 −0.391 1.57E−25 1.14E−21 Hspa1a 4 0.308 0.173 0.397 5.71E−25 4.05E−21 Pnrc1 4 0.805 0.864 −0.272 1.65E−24 1.15E−20 Phlda1 4 0.292 0.469 −0.447 1.97E−22 1.21E−18 Gimap6 4 0.721 0.573 0.417 3.67E−22 2.17E−18 Cd83 4 0.504 0.632 −0.288 5.17E−21 2.83E−17 Igha 4 0.463 0.305 0.385 8.55E−20 4.40E−16 Nmrk1 4 0.262 0.395 −0.442 2.64E−19 1.25E−15 Rilpl2 4 0.356 0.189 0.762 5.33E−19 2.45E−15 Tnfaip3 4 0.51 0.62 −0.220 5.42E−19 2.48E−15 Dusp5 4 0.443 0.57 −0.400 5.87E−19 2.66E−15 Actg1 4 0.938 0.964 −0.209 1.09E−18 4.84E−15 Id2 4 0.921 0.805 0.376 3.64E−18 1.56E−14 Odc1 4 0.786 0.816 −0.296 4.30E−18 1.83E−14 Ppp1r15a 4 0.312 0.424 −0.441 7.06E−18 2.93E−14 Igkc 4 0.718 0.569 0.306 8.21E−18 3.35E−14 Avpi1 4 0.203 0.313 −0.575 1.09E−17 4.34E−14 Vps37b 4 0.489 0.593 −0.376 1.12E−17 4.47E−14 Gem 4 0.727 0.813 −0.217 5.78E−17 2.15E−13 Nfkb1 4 0.415 0.523 −0.507 4.11E−16 1.40E−12 Atf3 4 0.19 0.308 −0.487 5.16E−16 1.71E−12 Traf1 4 0.59 0.663 −0.296 6.90E−16 2.26E−12 Rrad 4 0.294 0.412 −0.763 1.10E−15 3.50E−12 Sertad1 4 0.091 0.185 −0.838 1.72E−15 5.37E−12 Tnfsf14 4 0.172 0.074 1.043 3.02E−15 9.14E−12 Sqstm1 4 0.467 0.557 −0.345 3.13E−15 9.45E−12 Crem 4 0.343 0.431 −0.494 4.12E−15 1.23E−11 Hk2 4 0.184 0.286 −0.731 4.51E−15 1.34E−11 Neurl3 4 0.301 0.412 −0.324 1.14E−14 3.28E−11 Defa24 4 0.076 0.169 −0.827 1.37E−14 3.89E−11 Ier5l 4 0.09 0.202 −1.300 1.65E−14 4.66E−11 Ubc 4 0.417 0.508 −0.308 2.10E−14 5.80E−11 Zc3h12a 4 0.336 0.43 −0.358 3.83E−14 1.04E−10 Ube2s 4 0.511 0.581 −0.264 3.26E−13 8.14E−10 H2-Q7 4 0.321 0.439 −0.400 4.20E−13 1.03E−09 Tgif1 4 0.522 0.585 −0.211 4.99E−13 1.21E−09 Uhrf2 4 0.677 0.743 −0.213 5.36E−13 1.30E−09 Gnai2 4 0.596 0.701 −0.411 8.35E−13 1.96E−09 Pcyt1a 4 0.101 0.19 −0.727 9.33E−13 2.16E−09 Il22 4 0.3 0.4 −0.341 1.71E−12 3.83E−09 Pdrg1 4 0.255 0.154 0.546 2.24E−12 4.89E−09 Cish 4 0.393 0.255 0.530 2.75E−12 5.93E−09 Ccng2 4 0.257 0.316 −0.410 1.27E−11 2.56E−08 Nfkbiz 4 0.422 0.524 −0.247 1.63E−11 3.25E−08 Skil 4 0.293 0.365 −0.374 1.64E−11 3.26E−08 Gimap5 4 0.488 0.339 0.470 4.63E−11 8.83E−08 Rsrp1 4 0.613 0.53 0.273 1.19E−10 2.18E−07 Tpm4 4 0.338 0.432 −0.351 1.20E−10 2.18E−07 Mir142hg 4 0.1 0.164 −0.659 1.28E−10 2.32E−07 Sik1 4 0.221 0.322 −0.485 1.49E−10 2.67E−07 Ifngr1 4 0.594 0.65 −0.210 3.17E−10 5.29E−07 Socs1 4 0.38 0.452 −0.304 3.94E−10 6.58E−07 Nfkbie 4 0.242 0.325 −0.368 4.10E−10 6.82E−07 Dok1 4 0.336 0.214 0.446 4.37E−10 7.21E−07 Tuba1a 4 0.187 0.275 −0.471 4.88E−10 7.97E−07 Sdhaf1 4 0.466 0.343 0.404 7.78E−10 1.24E−06 Slc15a3 4 0.199 0.275 −0.484 1.00E−09 1.58E−06 Egr1 4 0.483 0.557 −0.338 1.14E−09 1.78E−06 Slfn2 4 0.243 0.152 0.583 1.17E−09 1.81E−06 Opa3 4 0.091 0.16 −0.602 1.50E−09 2.28E−06 Cotl1 4 0.674 0.736 −0.196 1.66E−09 2.51E−06 Isy1 4 0.245 0.326 −0.344 2.01E−09 3.00E−06 Litaf 4 0.223 0.305 −0.470 2.17E−09 3.22E−06 Ccdc71l 4 0.154 0.257 −0.629 3.10E−09 4.51E−06 Ptp4a1 4 0.268 0.305 −0.253 3.57E−09 5.14E−06 Birc3 4 0.361 0.426 −0.276 4.40E−09 6.28E−06 Cryaa 4 0.104 0.162 −0.447 4.59E−09 6.53E−06 Lta 4 0.333 0.213 0.712 5.92E−09 8.28E−06 Hist1h1c 4 0.285 0.182 0.597 6.38E−09 8.85E−06 Dbp 4 0.38 0.252 0.474 6.96E−09 9.53E−06 Coq10b 4 0.313 0.386 −0.298 7.17E−09 9.80E−06 Atf4 4 0.396 0.454 −0.263 7.42E−09 1.01E−05 Cytip 4 0.386 0.428 −0.282 7.84E−09 1.06E−05 Gna13 4 0.348 0.412 −0.293 8.52E−09 1.15E−05 Emd 4 0.387 0.439 −0.261 9.35E−09 1.25E−05 Socs3 4 0.293 0.362 −0.202 9.71E−09 1.30E−05 Mdfic 4 0.402 0.267 0.439 1.17E−08 1.55E−05 Csrp1 4 0.158 0.21 −0.549 1.30E−08 1.71E−05 Mmd 4 0.476 0.339 0.473 1.54E−08 1.99E−05 Amica1 4 0.313 0.206 0.422 1.88E−08 2.41E−05 Tsix 4 0.153 0.28 −0.771 2.38E−08 3.01E−05 Klf2 4 0.265 0.366 −0.198 2.73E−08 3.42E−05 D16Ertd472e 4 0.175 0.248 −0.412 3.09E−08 3.83E−05 Klrk1 4 0.133 0.219 −0.613 6.25E−08 7.30E−05 Ttc19 4 0.152 0.23 −0.499 6.38E−08 7.43E−05 S100a6 4 0.603 0.517 0.370 6.87E−08 7.98E−05 Rgs3 4 0.282 0.187 0.447 7.43E−08 8.53E−05 Clec2d 4 0.261 0.165 0.489 9.09E−08 1.03E−04 Serpinb6b 4 0.2 0.26 −0.432 1.10E−07 1.22E−04 Neat1 4 0.502 0.378 0.447 1.25E−07 1.38E−04 Ppp2ca 4 0.336 0.429 −0.432 1.27E−07 1.40E−04 Cdkn1a 4 0.256 0.319 −0.202 1.72E−07 1.87E−04 Icos 4 0.236 0.288 −0.291 2.08E−07 2.21E−04 Tubb4b 4 0.347 0.396 −0.252 2.30E−07 2.42E−04 Nedd8 4 0.781 0.67 0.234 2.57E−07 2.68E−04 Tspan32 4 0.395 0.298 0.324 2.84E−07 2.93E−04 Map3k14 4 0.133 0.202 −0.515 3.33E−07 3.39E−04 Dnaja1 4 0.705 0.747 −0.300 3.53E−07 3.57E−04 Saraf 4 0.557 0.581 −0.187 4.03E−07 4.01E−04 Tuba4a 4 0.156 0.206 −0.342 4.91E−07 4.83E−04 Cd69 4 0.737 0.779 −0.153 5.93E−07 5.72E−04 Azin1 4 0.135 0.192 −0.472 6.34E−07 6.08 E−04  Minos1 4 0.768 0.696 0.218 6.36E−07 6.08 E−04  Klf13 4 0.417 0.498 −0.255 6.70E−07 6.38E−04 Rassf5 4 0.31 0.193 0.506 7.28E−07 6.89E−04 2310001H17Rik 4 0.214 0.133 0.484 7.78E−07 7.30E−04 4921524J17Rik 4 0.161 0.097 0.531 7.82E−07 7.33E−04 Tcrg-C1 4 0.36 0.255 0.484 9.86E−07 9.09E−04 2010300C02Rik 4 0.518 0.411 0.310 1.02E−06 9.35E−04 Alyref 4 0.141 0.239 −0.564 1.04E−06 9.54E−04 Ramp3 4 0.224 0.289 −0.380 1.14E−06 1.04E−03 VgIl4 4 0.338 0.398 −0.302 1.16E−06 1.05E−03 Gnb1 4 0.419 0.506 −0.255 1.44E−06 1.29E−03 Asb2 4 0.548 0.471 0.320 1.45E−06 1.30E−03 Taf10 4 0.297 0.403 −0.422 1.48E−06 1.32E−03 Trps1 4 0.17 0.228 −0.444 1.58E−06 1.40E−03 Cacybp 4 0.293 0.208 0.291 2.10E−06 1.83E−03 Taf7 4 0.144 0.2 −0.409 2.16E−06 1.88E−03 Scn1b 4 0.314 0.371 −0.273 2.37E−06 2.05E−03 Mast4 4 0.467 0.512 −0.207 2.54E−06 2.18E−03 Bin3 4 0.235 0.155 0.452 2.67E−06 2.29E−03 Ppp1r16b 4 0.302 0.327 −0.157 2.84E−06 2.41E−03 Furin 4 0.382 0.433 −0.203 2.91E−06 2.46E−03 Rgs1 4 0.498 0.536 −0.221 2.98E−06 2.51E−03 Amd1 4 0.192 0.265 −0.353 4.81E−06 3.83E−03 Itgav 4 0.175 0.227 −0.394 4.91E−06 3.90E−03 H2-T23 4 0.264 0.322 −0.260 6.24E−06 4.82E−03 S100a10 4 0.866 0.794 0.215 6.58E−06 5.06E−03 Plekhg1 4 0.231 0.295 −0.229 7.07E−06 5.39E−03 Ptpn7 4 0.337 0.238 0.323 7.78E−06 5.86E−03 Git2 4 0.3 0.215 0.350 9.21E−06 6.83E−03 Tagap 4 0.461 0.366 0.423 1.02E−05 7.46E−03 Morf4l2 4 0.317 0.366 −0.252 1.10E−05 8.01E−03 Egln3 4 0.172 0.217 −0.350 1.10E−05 8.01E−03 Mbnl2 4 0.162 0.233 −0.436 1.10E−05 8.01E−03 Gimap3 4 0.536 0.43 0.275 1.12E−05 8.07E−03 Zfand5 4 0.252 0.306 −0.245 1.12E−05 8.09E−03 Ssna1 4 0.294 0.21 0.346 1.32E−05 9.39E−03 Raf1 4 0.232 0.149 0.457 1.36E−05 9.64E−03 Tgoln1 4 0.286 0.324 −0.209 1.42E−05 1.00E−02 Trim8 4 0.223 0.138 0.530 1.48E−05 1.04E−02 Rel 4 0.19 0.252 −0.354 1.67E−05 1.16E−02 Cwc25 4 0.12 0.163 −0.463 1.74E−05 1.20E−02 Sat1 4 0.744 0.652 0.222 1.78E−05 1.23E−02 Gatad1 4 0.155 0.2 −0.316 1.89E−05 1.29E−02 Fibp 4 0.178 0.212 −0.268 2.16E−05 1.46E−02 Il2ra 4 0.457 0.342 0.378 2.23E−05 1.50E−02 Gcnt2 4 0.144 0.201 −0.352 2.58E−05 1.72E−02 Vegfa 4 0.131 0.174 −0.252 2.61E−05 1.73E−02 Il18r1 4 0.605 0.507 0.193 2.62E−05 1.74E−02 Timm13 4 0.592 0.522 0.230 3.06E−05 2.00E−02 Rcn2 4 0.258 0.302 −0.225 3.10E−05 2.02E−02 Irs2 4 0.149 0.201 −0.372 3.24E−05 2.10E−02 Fam46a 4 0.099 0.152 −0.500 3.45E−05 2.22E−02 Leng9 4 0.128 0.179 −0.375 4.41E−05 2.77E−02 Herpud1 4 0.33 0.387 −0.214 5.16E−05 3.18E−02 Dnajb9 4 0.18 0.236 −0.322 5.37E−05 3.29E−02 Zc3hav1 4 0.145 0.184 −0.303 5.44E−05 3.33E−02 1600014C10Rik 4 0.185 0.117 0.467 5.46E−05 3.34E−02 Tsc22d3 4 0.489 0.413 0.359 5.46E−05 3.34E−02 Ptger2 4 0.299 0.218 0.347 5.75E−05 3.49E−02 Rpa3 4 0.175 0.101 0.541 6.42E−05 3.82E−02 Tnf 4 0.245 0.172 0.465 6.52E−05 3.86E−02 Txk 4 0.529 0.59 −0.188 6.82E−05 4.02E−02 Sec11a 4 0.376 0.297 0.283 7.54E−05 4.40E−02 Serpina3g 4 0.587 0.512 0.347 7.67E−05 4.46E−02 Bzw1 4 0.321 0.354 −0.190 8.62E−05 4.92E−02 Rnf19b 4 0.427 0.454 −0.242 8.70E−05 4.94E−02 Irf2 4 0.306 0.216 0.312 8.71E−05 4.94E−02 Tsc22d3 5 0.84 0.565 0.772 1.41E−53 5.84E−49 Bcl2 5 0.863 0.694 0.658 9.92E−34 1.28E−29 Wdr89 5 0.996 0.97 0.291 1.59E−33 1.93E−29 Txnip 5 0.605 0.38 0.660 4.21E−27 3.45E−23 Ddit4 5 0.369 0.253 0.426 2.88E−20 1.53E−16 Zfp36l2 5 0.617 0.332 0.865 1.31E−19 6.44E−16 Il7r 5 0.48 0.286 0.612 2.61E−19 1.24E−15 Uba52 5 0.984 0.939 0.277 1.81E−18 7.96E−15 Pik3ip1 5 0.556 0.411 0.361 3.91E−13 9.67E−10 Cd74 5 0.501 0.562 −0.211 3.20E−11 6.20E−08 DynIl1 5 0.7 0.79 −0.370 4.66E−11 8.86E−08 Ifngr1 5 0.563 0.377 0.536 2.38E−10 4.10E−07 Jund 5 0.654 0.749 −0.319 1.15E−09 1.78E−06 Klhl6 5 0.332 0.208 0.485 2.58E−09 3.78E−06 Pdcd4 5 0.66 0.524 0.394 2.81E−09 4.09E−06 Lfng 5 0.333 0.379 −0.281 6.06E−09 8.46E−06 Ier2 5 0.428 0.464 −0.174 5.80E−08 6.87E−05 Ctsc 5 0.268 0.168 0.402 1.05E−07 1.17E−04 Dnaja1 5 0.591 0.71 −0.416 1.91E−07 2.05E−04 Ucp2 5 0.773 0.643 0.325 2.69E−07 2.79E−04 Tpm3 5 0.665 0.528 0.282 3.17E−07 3.25E−04 Igha 5 0.197 0.127 0.503 4.85E−07 4.77E−04 Tuba1a 5 0.302 0.345 −0.250 5.21E−07 5.08E−04 Dnajb1 5 0.206 0.351 −0.867 9.86E−07 9.09E−04 Dusp1 5 0.206 0.235 −0.321 3.53E−06 2.92E−03 Slc9a3r1 5 0.428 0.507 −0.256 5.20E−06 4.11E−03 Hspa8 5 0.977 0.975 −0.255 6.72E−06 5.15E−03 Sfpq 5 0.284 0.366 −0.373 6.74E−06 5.15E−03 Tdrp 5 0.228 0.277 −0.354 9.01E−06 6.69E−03 Ppp2ca 5 0.277 0.376 −0.469 1.12E−05 8.10E−03 Gramd3 5 0.475 0.302 0.481 1.65E−05 1.14E−02 Calm1 5 0.868 0.891 −0.192 1.69E−05 1.17E−02 Ppp3cc 5 0.152 0.074 0.621 1.87E−05 1.29E−02 Klf6 5 0.368 0.437 −0.374 2.48E−05 1.66E−02 1810037l17Rik 5 0.446 0.473 −0.158 2.48E−05 1.66E−02 Crlf3 5 0.569 0.421 0.370 3.69E−05 2.36E−02 Rnaset2a 5 0.709 0.583 0.225 4.18E−05 2.64E−02 Ppp1r15a 5 0.219 0.257 −0.287 4.73E−05 2.95E−02 Ltb 5 0.865 0.893 −0.238 5.43E−05 3.33E−02 Ilk 5 0.2 0.15 0.159 7.23E−05 4.22E−02 Racgap1 5 0.21 0.135 0.436 8.16E−05 4.70E−02 Mcpt1 6 0.35 0.058 0.479 8.41E−63 5.09E−58 Defa24 6 0.099 0.298 −1.145 2.72E−44 6.70E−40 Jund 6 0.92 0.964 −0.422 2.90E−43 6.92E−39 Igha 6 0.681 0.424 0.596 4.93E−39 7.92E−35 Mcpt2 6 0.212 0.03 0.749 2.04E−38 3.16E−34 Lyz1 6 0.035 0.174 −1.858 2.01E−37 2.99E−33 Ppia 6 0.998 0.998 0.186 9.41E−36 1.30E−31 Ddit4 6 0.221 0.077 1.322 7.53E−31 8.01E−27 Junb 6 0.745 0.856 −0.174 1.91E−30 2.01E−26 Fabp2 6 0.048 0.187 −1.495 4.37E−28 4.00E−24 Psap 6 0.997 0.999 0.202 6.20E−28 5.55E−24 Nr4a1 6 0.508 0.62 −0.422 8.34E−28 7.30E−24 Egr1 6 0.143 0.243 −0.987 2.00E−27 1.72E−23 Fosb 6 0.332 0.475 −0.556 3.19E−25 2.28E−21 Klf4 6 0.147 0.286 −0.763 1.96E−23 1.28E−19 Jun 6 0.769 0.66 0.499 9.00E−20 4.54E−16 Ptpre 6 0.392 0.534 −0.452 2.12E−19 1.02E−15 Neat1 6 0.885 0.81 0.364 1.57E−17 6.12E−14 Hist1h1c 6 0.522 0.364 0.792 2.52E−17 9.66E−14 Mir142hg 6 0.169 0.289 −0.649 6.19E−17 2.29E−13 Pnrc1 6 0.706 0.761 −0.212 2.17E−16 7.64E−13 Grasp 6 0.193 0.309 −0.617 2.21E−16 7.72E−13 Rilpl2 6 0.851 0.863 −0.158 3.71E−16 1.27E−12 Dusp5 6 0.668 0.711 −0.167 6.13E−16 2.02E−12 Kdm6b 6 0.307 0.397 −0.488 1.04E−15 3.34E−12 Bcl2l11 6 0.257 0.35 −0.499 2.99E−15 9.09E−12 Smc6 6 0.849 0.841 −0.180 1.25E−14 3.59E−11 Bhlhe40 6 0.465 0.543 −0.297 1.25E−14 3.59E−11 Ier2 6 0.432 0.538 −0.265 2.19E−14 6.02E−11 Dnajc7 6 0.987 0.976 0.197 6.20E−14 1.65E−10 Ier5 6 0.937 0.9 0.332 2.06E−13 5.27E−10 Hist2h4 6 0.165 0.066 1.036 3.04E−13 7.66E−10 Mpeg1 6 0.992 0.975 0.185 3.52E−13 8.76E−10 VgIl4 6 0.34 0.455 −0.419 4.36E−13 1.06E−09 Ifrd1 6 0.241 0.319 −0.459 4.97E−13 1.21E−09 Igkc 6 0.944 0.856 0.194 5.84E−13 1.40E−09 Ppp2ca 6 0.539 0.637 −0.356 6.35E−13 1.51E−09 Napsa 6 0.888 0.809 0.245 7.31E−13 1.73E−09 Klk1 6 0.964 0.956 0.243 8.31E−13 1.96E−09 Dusp18 6 0.091 0.161 −0.789 1.03E−12 2.35E−09 Rnase6 6 0.991 0.994 0.160 1.39E−12 3.13E−09 Filip1l 6 0.384 0.471 −0.295 2.43E−12 5.31E−09 Spsb2 6 0.187 0.275 −0.508 3.32E−12 7.11E−09 Vps37b 6 0.424 0.489 −0.292 6.60E−12 1.38E−08 Ccl4 6 0.848 0.889 0.241 7.42E−12 1.52E−08 Odc1 6 0.366 0.44 −0.325 9.58E−12 1.95E−08 Clec2d 6 0.578 0.438 0.409 1.12E−11 2.28E−08 H2-Ab1 6 0.949 0.947 0.238 1.36E−11 2.75E−08 Cxcr4 6 0.561 0.407 0.491 1.64E−11 3.26E−08 Pltp 6 0.878 0.806 0.260 1.78E−11 3.52E−08 D13Ertd608e 6 0.947 0.901 0.276 3.28E−11 6.34E−08 Dusp1 6 0.406 0.494 −0.366 3.41E−11 6.58E−08 Nr4a3 6 0.134 0.197 −0.556 4.12E−11 7.90E−08 Plek 6 0.617 0.652 −0.205 4.40E−11 8.40E−08 Fyn 6 0.756 0.799 −0.230 9.87E−11 1.83E−07 Rel 6 0.381 0.454 −0.305 1.01E−10 1.87E−07 Fam46c 6 0.221 0.306 −0.440 1.30E−10 2.35E−07 Wnk1 6 0.605 0.645 −0.262 1.60E−10 2.85E−07 Rpn2 6 0.664 0.569 0.272 1.79E−10 3.18E−07 H2-Aa 6 0.947 0.949 0.220 1.83E−10 3.24E−07 Pim1 6 0.509 0.58 −0.188 2.16E−10 3.77E−07 Rgs1 6 0.466 0.351 0.548 5.04E−10 8.21E−07 Pik3ip1 6 0.423 0.307 0.445 5.80E−10 9.38E−07 Runx3 6 0.53 0.603 −0.200 1.09E−09 1.70E−06 B3gnt8 6 0.486 0.362 0.265 1.17E−09 1.81E−06 Ppp1r16b 6 0.237 0.315 −0.419 1.41E−09 2.15E−06 Selplg 6 0.992 0.973 0.183 1.76E−09 2.67E−06 Atf3 6 0.091 0.161 −0.693 1.95E−09 2.92E−06 Npc2 6 0.985 0.975 0.166 2.14E−09 3.18E−06 Skil 6 0.435 0.477 −0.246 2.74E−09 4.01E−06 Traf4 6 0.535 0.592 −0.199 2.88E−09 4.19E−06 Emp3 6 0.936 0.856 0.172 4.65E−09 6.61E−06 Foxp1 6 0.719 0.741 −0.169 4.72E−09 6.68E−06 Ly6c1 6 0.991 0.99 −0.173 5.07E−09 7.14E−06 Zfp36l2 6 0.783 0.66 0.365 7.84E−09 1.06E−05 Ifi30 6 0.883 0.807 0.256 1.09E−08 1.45E−05 Zc3h12a 6 0.135 0.198 −0.495 1.43E−08 1.86E−05 Lag3 6 0.605 0.489 0.315 2.39E−08 3.01E−05 Plekho2 6 0.201 0.271 −0.406 2.76E−08 3.44E−05 S1pr4 6 0.351 0.27 0.331 3.95E−08 4.83E−05 Trim25 6 0.339 0.394 −0.239 4.20E−08 5.10E−05 Lgals1 6 0.985 0.97 0.174 4.90E−08 5.89E−05 Ptp4a1 6 0.4 0.412 −0.201 5.43E−08 6.48E−05 Erdr1 6 0.149 0.2 −0.520 5.84E−08 6.91E−05 Tgif1 6 0.115 0.174 −0.548 6.25E−08 7.30E−05 H2-Eb1 6 0.907 0.891 0.228 8.18E−08 9.36E−05 Clec10a 6 0.532 0.426 0.327 8.43E−08 9.63E−05 Gapdh 6 0.911 0.848 0.206 9.39E−08 1.06E−04 Gtf2i 6 0.542 0.484 0.283 9.52E−08 1.08E−04 Atp5h 6 0.963 0.92 0.168 9.81E−08 1.10E−04 Cd68 6 0.861 0.798 0.204 1.25E−07 1.38E−04 Itpkb 6 0.296 0.363 −0.230 1.78E−07 1.93E−04 Rnf19b 6 0.255 0.303 −0.314 1.88E−07 2.02E−04 Kmt2e 6 0.596 0.634 −0.156 1.91E−07 2.05E−04 Ddx3x 6 0.436 0.489 −0.202 2.38E−07 2.50E−04 Crem 6 0.34 0.38 −0.279 2.77E−07 2.87E−04 Zfand5 6 0.423 0.496 −0.220 3.13E−07 3.21E−04 Sell 6 0.983 0.962 0.172 3.31E−07 3.38E−04 Nfkbiz 6 0.336 0.381 −0.288 3.37E−07 3.42E−04 Coq10b 6 0.242 0.311 −0.336 3.65E−07 3.66E−04 Cd83 6 0.092 0.155 −0.472 3.80E−07 3.80E−04 Lmnb1 6 0.189 0.257 −0.415 4.02E−07 4.01E−04 Sla2 6 0.735 0.605 0.243 4.24E−07 4.23E−04 Cxcr3 6 0.516 0.405 0.302 4.51E−07 4.47E−04 Hes6 6 0.474 0.367 0.290 5.14E−07 5.04E−04 Sf3b1 6 0.706 0.627 0.237 5.35E−07 5.21E−04 Gnb1 6 0.515 0.574 −0.247 5.60E−07 5.41E−04 AY036118 6 0.426 0.414 −0.256 6.27E−07 6.02E−04 Siah2 6 0.253 0.318 −0.303 7.71E−07 7.24E−04 Fosl2 6 0.141 0.176 −0.387 9.82E−07 9.08E−04 Gapt 6 0.657 0.723 −0.204 1.23E−06 1.11E−03 Fkbp5 6 0.161 0.093 0.573 1.31E−06 1.18E−03 Cdv3 6 0.414 0.479 −0.219 1.33E−06 1.20E−03 Tnfaip8l2 6 0.512 0.419 0.307 1.42E−06 1.27E−03 Btg2 6 0.801 0.841 −0.156 1.51E−06 1.34E−03 Mcl1 6 0.459 0.495 −0.199 1.94E−06 1.71E−03 Socs3 6 0.55 0.49 0.385 2.68E−06 2.29E−03 Bloc1s2 6 0.784 0.694 0.218 2.78E−06 2.37E−03 Nfkbia 6 0.661 0.695 −0.191 2.85E−06 2.41E−03 Os9 6 0.441 0.365 0.265 2.87E−06 2.43E−03 Clcn3 6 0.35 0.383 −0.239 3.30E−06 2.76E−03 H2afj 6 0.935 0.878 0.166 3.66E−06 3.01E−03 Pink1 6 0.282 0.337 −0.291 4.12E−06 3.34E−03 Sema4b 6 0.531 0.453 0.221 4.49E−06 3.62E−03 Ablim1 6 0.403 0.451 −0.197 4.87E−06 3.87E−03 Rsrp1 6 0.754 0.701 0.195 5.54E−06 4.36E−03 Map3k1 6 0.346 0.397 −0.227 5.60E−06 4.39E−03 Ctsz 6 0.97 0.939 0.156 5.69E−06 4.45E−03 Gadd45b 6 0.342 0.413 −0.220 6.21E−06 4.80E−03 H2-DMa 6 0.878 0.801 0.190 6.66E−06 5.12E−03 Gnai2 6 0.932 0.939 −0.175 6.87E−06 5.24E−03 Irf4 6 0.256 0.304 −0.248 9.39E−06 6.95E−03 Ptprcap 6 0.941 0.894 0.159 1.09E−05 7.99E−03 Pten 6 0.429 0.475 −0.226 1.11E−05 8.01E−03 Tmem86a 6 0.204 0.151 0.323 1.21E−05 8.69E−03 Grb2 6 0.614 0.678 −0.222 1.23E−05 8.79E−03 Orai1 6 0.274 0.339 −0.245 1.48E−05 1.04E−02 Itgb7 6 0.669 0.574 0.238 1.65E−05 1.14E−02 Paqr5 6 0.52 0.453 0.279 1.81E−05 1.25E−02 Snrnp70 6 0.43 0.347 0.220 1.88E−05 1.29E−02 Sertad1 6 0.12 0.173 −0.396 1.94E−05 1.32E−02 Klf3 6 0.125 0.177 −0.428 2.01E−05 1.36E−02 Hnrnpa3 6 0.851 0.799 0.164 2.53E−05 1.69E−02 Tsix 6 0.23 0.271 −0.418 2.64E−05 1.75E−02 Cdkn2d 6 0.747 0.658 0.244 2.68E−05 1.77E−02 Rab7b 6 0.223 0.257 −0.285 3.09E−05 2.02E−02 Fcer1g 6 0.94 0.895 0.160 3.14E−05 2.05E−02 Tmem59 6 0.833 0.779 0.179 3.23E−05 2.10E−02 Klk1b27 6 0.974 0.955 0.170 3.69E−05 2.36E−02 Tmem50a 6 0.854 0.801 0.153 3.90E−05 2.48E−02 Txndc5 6 0.699 0.623 0.226 4.00E−05 2.54E−02 Lifr 6 0.595 0.489 0.265 4.03E−05 2.55E−02 Arid3a 6 0.212 0.247 −0.329 4.35E−05 2.74E−02 Pde4b 6 0.177 0.227 −0.282 4.84E−05 3.01E−02 Mark3 6 0.139 0.184 −0.383 4.92E−05 3.05E−02 Pdia3 6 0.844 0.792 0.157 5.00E−05 3.09E−02 Gatad1 6 0.34 0.391 −0.199 5.83E−05 3.53E−02 Arl4a 6 0.228 0.289 −0.276 6.07E−05 3.64E−02 Asph 6 0.377 0.405 −0.195 7.17E−05 4.20E−02 Net1 6 0.53 0.44 0.285 7.94E−05 4.59E−02 Cfp 6 0.422 0.358 0.312 8.22E−05 4.72E−02 5730508B09Rik 6 0.268 0.313 −0.218 8.68E−05 4.94E−02 Zfp36l2 7 0.757 0.354 1.239 4.40E−35 5.97E−31 Tsc22d3 7 0.565 0.294 1.003 1.83E−19 8.83E−16 Ddit4 7 0.359 0.273 0.463 2.18E−14 5.99E−11 Lmo4 7 0.204 0.135 0.711 1.35E−10 2.43E−07 Dusp2 7 0.465 0.327 0.542 4.00E−09 5.74E−06 Txnip 7 0.415 0.275 0.551 7.43E−09 1.01E−05 Ptpn22 7 0.53 0.429 0.340 3.19E−06 2.67E−03 Fkbp5 7 0.167 0.091 0.540 4.79E−06 3.82E−03 Il7r 7 0.191 0.123 0.526 7.22E−06 5.48E−03 Hsp90ab1 7 0.834 0.891 −0.450 7.82E−06 5.88E−03 Matk 7 0.284 0.173 0.513 3.61E−05 2.32E−02 Gabarapl2 7 0.643 0.554 0.253 6.23E−05 3.72E−02 Svbp 7 0.246 0.178 0.261 7.76E−05 4.50E−02 Jund 8 0.846 0.905 −0.703 1.54E−45 4.48E−41 Txnip 8 0.398 0.146 1.190 8.77E−36 1.23E−31 Kdm6b 8 0.274 0.451 −0.833 9.22E−28 7.97E−24 Nfkbia 8 0.614 0.778 −0.579 6.04E−27 4.90E−23 Crem 8 0.371 0.502 −0.681 1.50E−23 9.85E−20 Mcpt1 8 0.209 0.037 1.756 5.20E−23 3.28E−19 Nfkbid 8 0.146 0.323 −1.010 7.52E−23 4.70E−19 Ifrd1 8 0.276 0.434 −0.708 7.62E−22 4.41E−18 Defa24 8 0.044 0.172 −0.967 8.62E−22 4.95E−18 Nr4a1 8 0.561 0.698 −0.415 3.63E−21 2.02E−17 Nfkbiz 8 0.358 0.471 −0.640 1.02E−19 5.07E−16 Litaf 8 0.339 0.488 −0.518 1.52E−18 6.74E−15 Rgs1 8 0.699 0.507 0.795 2.13E−18 9.31E−15 Nr4a3 8 0.157 0.272 −0.808 5.15E−18 2.18E−14 Gadd45b 8 0.17 0.326 −0.563 8.88E−18 3.60E−14 Ier5l 8 0.057 0.16 −1.422 4.06E−17 1.54E−13 H3f3b 8 0.993 0.996 −0.185 5.58E−17 2.08E−13 AW112010 8 0.995 0.996 0.208 2.63E−16 9.12E−13 Id2 8 0.684 0.497 0.467 2.67E−16 9.22E−13 Ncr1 8 0.964 0.931 0.265 4.30E−16 1.45E−12 Lmna 8 0.089 0.207 −1.022 1.00E−15 3.23E−12 Nr4a2 8 0.348 0.486 −0.530 1.28E−15 4.07E−12 Prr7 8 0.093 0.208 −0.910 2.04E−15 6.31E−12 VgIl4 8 0.47 0.602 −0.452 2.25E−15 6.92E−12 Tsc22d3 8 0.664 0.475 0.472 3.58E−15 1.07E−11 Tgif1 8 0.305 0.437 −0.580 4.29E−15 1.28E−11 Cd74 8 0.448 0.563 −0.187 5.48E−15 1.60E−11 Hist1h1e 8 0.176 0.047 1.277 1.14E−14 3.28E−11 Nkg7 8 0.985 0.981 0.194 6.12E−14 1.63E−10 Gzma 8 0.764 0.719 0.340 9.80E−14 2.57E−10 AY036118 8 0.431 0.444 −0.339 1.27E−13 3.31E−10 Mir142hg 8 0.161 0.29 −0.715 2.41E−13 6.14E−10 Zfp36l2 8 0.84 0.66 0.382 4.30E−13 1.05E−09 Traf1 8 0.464 0.552 −0.355 4.30E−13 1.05E−09 Cxcr4 8 0.577 0.349 0.544 5.87E−13 1.40E−09 Egr1 8 0.156 0.256 −0.640 5.89E−13 1.40E−09 Zc3h12a 8 0.182 0.288 −0.680 1.19E−12 2.71E−09 Klrc1 8 0.608 0.463 0.392 2.12E−12 4.69E−09 Klrb1f 8 0.56 0.394 0.487 2.48E−12 5.40E−09 Cdkn1a 8 0.084 0.191 −0.980 2.74E−12 5.93E−09 Ftl1 8 0.963 0.977 −0.171 4.25E−12 9.04E−09 Fosl2 8 0.378 0.418 −0.358 6.97E−12 1.44E−08 Icam1 8 0.175 0.304 −0.819 7.07E−12 1.46E−08 Pnrc1 8 0.769 0.836 −0.302 8.05E−12 1.65E−08 Odc1 8 0.202 0.284 −0.540 1.51E−11 3.04E−08 Pim1 8 0.677 0.77 −0.358 2.02E−11 3.95E−08 Igha 8 0.488 0.302 0.514 6.38E−11 1.21E−07 Emb 8 0.506 0.54 −0.223 9.10E−11 1.69E−07 Zfp512 8 0.446 0.273 0.523 1.36E−10 2.44E−07 Hist1h1c 8 0.348 0.217 0.586 2.05E−10 3.61E−07 Ptprcap 8 0.929 0.844 0.276 2.51E−10 4.30E−07 Vps37b 8 0.79 0.825 −0.178 2.53E−10 4.33E−07 Rel 8 0.139 0.222 −0.595 2.67E−10 4.54E−07 Gramd3 8 0.227 0.338 −0.502 3.02E−10 5.06E−07 Klre1 8 0.744 0.645 0.295 4.38E−10 7.22E−07 Ms4a6b 8 0.419 0.257 0.490 5.22E−10 8.47E−07 Igkc 8 0.677 0.522 0.390 8.49E−10 1.35E−06 Klrd1 8 0.939 0.866 0.261 1.17E−09 1.81E−06 H2-K1 8 0.978 0.991 0.192 1.37E−09 2.10E−06 Ikzf2 8 0.216 0.283 −0.467 1.82E−09 2.74E−06 Ptp4a2 8 0.606 0.7 −0.243 2.08E−09 3.11E−06 Ms4a4b 8 0.953 0.903 0.271 2.28E−09 3.39E−06 Rrad 8 0.191 0.264 −0.602 3.81E−09 5.49E−06 Maff 8 0.251 0.326 −0.445 6.29E−09 8.76E−06 Coq10b 8 0.305 0.401 −0.426 1.31E−08 1.72E−05 Tfam 8 0.19 0.248 −0.555 1.44E−08 1.87E−05 Phlda1 8 0.134 0.234 −0.867 1.86E−08 2.38E−05 Klrc2 8 0.505 0.376 0.396 1.92E−08 2.45E−05 B2m 8 0.999 0.997 0.159 2.10E−08 2.66E−05 Fcer1g 8 0.927 0.913 0.170 3.13E−08 3.88E−05 Arl6ip5 8 0.618 0.461 0.344 3.31E−08 4.08E−05 Gimap9 8 0.511 0.364 0.367 3.43E−08 4.23E−05 Ddx21 8 0.248 0.322 −0.379 4.05E−08 4.94E−05 Ifi203 8 0.547 0.387 0.402 4.11E−08 5.01E−05 Arl6ip1 8 0.61 0.447 0.367 4.47E−08 5.40E−05 Eif4a2 8 0.622 0.453 0.300 6.14E−08 7.21E−05 Myl6 8 0.987 0.955 0.199 7.12E−08 8.23E−05 Ier2 8 0.781 0.851 −0.235 9.00E−08 1.02E−04 Eef2 8 0.957 0.896 0.257 1.06E−07 1.19E−04 Txndc5 8 0.239 0.137 0.592 1.21E−07 1.34E−04 Gimap1 8 0.776 0.641 0.283 1.45E−07 1.59E−04 Klrb1c 8 0.735 0.621 0.233 1.78E−07 1.93E−04 Actr3 8 0.771 0.639 0.315 2.06E−07 2.20E−04 Gnai2 8 0.661 0.685 −0.261 2.16E−07 2.30E−04 Ppp1r16b 8 0.206 0.28 −0.367 2.26E−07 2.39E−04 Fasl 8 0.598 0.488 0.296 2.30E−07 2.42E−04 Ube2s 8 0.478 0.535 −0.248 2.30E−07 2.42E−04 Ppp1r15a 8 0.406 0.499 −0.355 2.52E−07 2.63E−04 Gimap6 8 0.815 0.682 0.272 3.06E−07 3.15E−04 Amd1 8 0.265 0.34 −0.426 3.32E−07 3.38E−04 Dusp1 8 0.614 0.702 −0.244 4.56E−07 4.51E−04 Sh2d1a 8 0.488 0.367 0.388 6.06E−07 5.83E−04 Nfkb1 8 0.374 0.425 −0.244 6.15E−07 5.91E−04 Fam105a 8 0.376 0.26 0.376 7.53E−07 7.10E−04 Bcl2 8 0.839 0.743 0.286 7.94E−07 7.43E−04 Alyref 8 0.137 0.207 −0.597 8.08E−07 7.55E−04 Arfrp1 8 0.21 0.119 0.609 8.64E−07 8.02E−04 Taf10 8 0.347 0.414 −0.372 9.27E−07 8.59E−04 Sik1 8 0.161 0.229 −0.527 1.00E−06 9.23E−04 Cdk2ap1 8 0.132 0.215 −0.673 1.04E−06 9.53E−04 Rac2 8 0.97 0.949 0.169 1.22E−06 1.11E−03 Ctla2a 8 0.74 0.637 0.372 1.39E−06 1.25E−03 Skil 8 0.207 0.271 −0.410 1.77E−06 1.56E−03 Ccr2 8 0.536 0.39 0.330 2.01E−06 1.76E−03 Sla 8 0.335 0.218 0.486 2.10E−06 1.83E−03 Cd47 8 0.833 0.739 0.262 2.56E−06 2.20E−03 Dgat1 8 0.175 0.229 −0.352 2.67E−06 2.29E−03 Tm6sf1 8 0.454 0.334 0.360 2.71E−06 2.31E−03 Gramd1a 8 0.336 0.214 0.460 3.06E−06 2.57E−03 Il2rg 8 0.681 0.727 −0.226 3.62E−06 2.98E−03 Sp100 8 0.537 0.411 0.330 3.65E−06 3.00E−03 Ninj1 8 0.125 0.168 −0.512 3.92E−06 3.19E−03 Klrk1 8 0.873 0.763 0.213 4.14E−06 3.36E−03 Rnf125 8 0.167 0.241 −0.483 4.94E−06 3.91E−03 Bcl2l11 8 0.383 0.425 −0.208 5.91E−06 4.60E−03 Neurl3 8 0.388 0.429 −0.244 6.01E−06 4.67E−03 Rora 8 0.161 0.227 −0.455 6.55E−06 5.05E−03 Nabp1 8 0.702 0.683 −0.167 8.55E−06 6.38E−03 Csrp1 8 0.129 0.179 −0.437 1.12E−05 8.10E−03 Cks2 8 0.108 0.156 −0.601 1.12E−05 8.10E−03 Rnf157 8 0.188 0.24 −0.362 1.20E−05 8.62E−03 Arpc5l 8 0.381 0.254 0.383 2.08E−05 1.40E−02 Slfn2 8 0.408 0.3 0.342 2.15E−05 1.45E−02 Bcl2a1b 8 0.151 0.215 −0.507 2.23E−05 1.50E−02 Rsrp1 8 0.559 0.436 0.318 2.24E−05 1.50E−02 Il16 8 0.336 0.223 0.455 2.52E−05 1.68E−02 Arf4 8 0.478 0.495 −0.186 2.66E−05 1.76E−02 Rab35 8 0.207 0.123 0.478 2.81E−05 1.85E−02 Kdm2b 8 0.158 0.203 −0.379 3.08E−05 2.01E−02 Ndel1 8 0.216 0.281 −0.337 3.09E−05 2.02E−02 Ppp3cc 8 0.268 0.156 0.528 3.78E−05 2.41E−02 Cdv3 8 0.255 0.294 −0.281 4.42E−05 2.77E−02 Nfkbie 8 0.111 0.158 −0.483 4.49E−05 2.82E−02 Klf6 8 0.589 0.544 0.166 4.89E−05 3.04E−02 Neat1 8 0.503 0.415 0.275 5.11E−05 3.15E−02 Samd9l 8 0.176 0.106 0.479 5.18E−05 3.19E−02 Arrb2 8 0.32 0.246 0.295 5.19E−05 3.19E−02 Jun 8 0.453 0.384 0.210 5.29E−05 3.25E−02 P2ry10 8 0.374 0.396 −0.196 5.34E−05 3.27E−02 Nfil3 8 0.365 0.244 0.490 5.82E−05 3.53E−02 Ash1l 8 0.235 0.139 0.491 5.93E−05 3.57E−02 Hcst 8 0.898 0.809 0.174 6.28E−05 3.75E−02 Klf4 8 0.122 0.175 −0.524 6.42E−05 3.82E−02 Cap1 8 0.695 0.601 0.235 6.52E−05 3.86E−02 Bhlhe40 8 0.571 0.62 −0.159 6.54E−05 3.87E−02 Lax1 8 0.286 0.18 0.486 7.05E−05 4.14E−02 Clec2d 8 0.289 0.194 0.391 7.08E−05 4.15E−02 Cd69 8 0.306 0.357 −0.386 7.60E−05 4.42E−02 Samsn1 8 0.324 0.369 −0.280 8.02E−05 4.63E−02 Tuba4a 8 0.191 0.222 −0.361 8.56E−05 4.89E−02 Igha 9 0.566 0.317 0.227 2.42E−50 9.06E−46 Ighg3 9 0.211 0.027 1.831 5.18E−28 4.69E−24 Wdr89 9 0.993 0.989 0.469 4.18E−24 2.84E−20 Zfp36l2 9 0.758 0.305 1.590 8.84E−23 5.48E−19 Mcpt1 9 0.156 0.003 2.708 2.58E−21 1.46E−17 Uba52 9 0.996 0.992 0.365 9.80E−13 2.26E−09 Hspa8 9 0.995 0.998 −0.426 4.24E−12 9.04E−09 Rsrp1 9 0.796 0.802 −0.274 1.03E−10 1.91E−07 Tsc22d3 9 0.669 0.347 1.031 2.68E−10 4.54E−07 Ddit4 9 0.241 0.105 0.791 7.45E−09 1.01E−05 Nme2 9 0.4 0.228 0.703 1.33E−08 1.75E−05 Serinc3 9 0.874 0.576 0.784 4.83E−08 5.82E−05 Ubb 9 0.998 1 −0.190 4.77E−07 4.71E−04 Basp1 9 0.871 0.947 −0.559 1.11E−06 1.01E−03 Il2 9 0.244 0.092 0.918 2.19E−06 1.90E−03 Cdk1 9 0.478 0.555 −0.396 3.14E−06 2.63E−03 Cks1brt 9 0.262 0.111 1.033 3.83E−06 3.13E−03 Actg1 9 1 1 −0.161 3.88E−06 3.16E−03 Tubb5 9 0.966 0.973 −0.244 4.06E−06 3.30E−03 Malat1 9 1 0.998 −0.269 4.52E−06 3.64E−03 Lnx2 9 0.191 0.075 0.811 8.25E−06 6.18E−03 Narf 9 0.441 0.28 0.449 1.29E−05 9.17E−03 Apobec1 9 0.86 0.753 0.201 3.28E−05 2.13E−02 AC125149.3 9 0.619 0.477 0.342 5.12E−05 3.16E−02 Eif2ak3 9 0.384 0.189 0.581 7.28E−05 4.25E−02 Zfp36l2 10 0.68 0.182 1.856 5.31E−26 4.02E−22 Igha 10 0.405 0.229 0.162 2.16E−16 7.61E−13 Tsc22d3 10 0.689 0.322 1.088 2.41E−14 6.57E−11 Ttc7 10 0.244 0.061 1.338 4.72E−12 9.91E−09 Sesn1 10 0.402 0.141 1.071 7.32E−11 1.37E−07 1110059E24Rik 10 0.507 0.266 0.715 2.47E−10 4.25E−07 Apobec1 10 0.807 0.618 0.309 1.04E−07 1.17E−04 Ddit4 10 0.296 0.126 0.864 2.21E−07 2.34E−04 Uba52 10 0.985 0.948 0.287 2.96E−07 3.05E−04 Rsrp1 10 0.722 0.702 −0.187 7.68E−07 7.23E−04 Hspa8 10 0.975 0.984 −0.286 3.38E−06 2.80E−03 Dusp1 10 0.451 0.253 0.614 3.45E−06 2.85E−03 Napsa 10 0.776 0.644 0.374 4.92E−06 3.90E−03 Cd47 10 0.602 0.368 0.638 6.15E−06 4.76E−03 Egln2 10 0.558 0.321 0.624 7.51E−06 5.69E−03 Btg1 10 0.985 0.95 0.438 1.03E−05 7.53E−03 Serinc3 10 0.764 0.397 0.883 1.09E−05 7.93E−03 Ppp1r21 10 0.165 0.052 1.045 1.38E−05 9.74E−03 Crlf3 10 0.658 0.479 0.396 2.36E−05 1.59E−02 Basp1 10 0.755 0.852 −0.516 3.20E−05 2.08E−02 Sh3glb2 10 0.187 0.134 0.383 6.45E−05 3.83E−02 Jund 11 0.855 0.944 −0.624 3.24E−34 4.33E−30 Id2 11 0.879 0.641 0.666 6.36E−27 5.11E−23 Egr1 11 0.191 0.33 −1.192 1.14E−17 4.52E−14 Fabp2 11 0.021 0.151 −2.142 3.09E−17 1.18E−13 AY036118 11 0.447 0.432 −0.357 5.25E−17 1.98E−13 Crem 11 0.344 0.551 −0.785 7.48E−17 2.75E−13 Nr4a1 11 0.625 0.775 −0.424 7.83E−17 2.87E−13 Junb 11 0.938 0.981 −0.194 2.59E−16 9.03E−13 Nr4a3 11 0.195 0.378 −0.968 8.68E−16 2.84E−12 Mcpt1 11 0.217 0.041 1.668 1.94E−14 5.45E−11 Pim1 11 0.799 0.92 −0.269 2.06E−14 5.72E−11 Txnip 11 0.434 0.21 0.976 2.08E−14 5.75E−11 Kdm6b 11 0.346 0.499 −0.703 4.22E−14 1.14E−10 Litaf 11 0.387 0.553 −0.562 5.84E−13 1.40E−09 Tgif1 11 0.408 0.575 −0.505 8.44E−13 1.98E−09 Vps37b 11 0.732 0.829 −0.394 1.30E−12 2.95E−09 Ier5l 11 0.047 0.162 −1.609 1.53E−12 3.43E−09 Rel 11 0.195 0.361 −0.837 2.10E−12 4.67E−09 Zfp36l2 11 0.803 0.6 0.464 2.16E−12 4.76E−09 Nr4a2 11 0.236 0.4 −0.777 3.96E−12 8.47E−09 Lmna 11 0.074 0.19 −1.198 4.31E−12 9.15E−09 Nfkbid 11 0.287 0.46 −0.759 4.43E−12 9.36E−09 Ier2 11 0.707 0.814 −0.331 4.56E−12 9.60E−09 Traf1 11 0.57 0.698 −0.462 5.06E−12 1.06E−08 Defa24 11 0.035 0.16 −1.545 1.58E−11 3.17E−08 Phlda1 11 0.205 0.376 −0.883 1.59E−11 3.18E−08 Rgs1 11 0.857 0.711 0.486 2.93E−11 5.70E−08 Nfkb1 11 0.301 0.419 −0.649 3.42E−11 6.58E−08 Igkc 11 0.691 0.508 0.474 3.59E−11 6.90E−08 Klrc1 11 0.676 0.505 0.477 8.20E−11 1.53E−07 Tpm4 11 0.453 0.583 −0.477 1.04E−10 1.91E−07 Fam110a 11 0.105 0.22 −0.925 2.58E−10 4.40E−07 Fosl2 11 0.35 0.492 −0.566 3.03E−10 5.08E−07 Nfkbiz 11 0.545 0.665 −0.342 5.04E−10 8.21E−07 Irf8 11 0.447 0.553 −0.411 6.67E−10 1.07E−06 Maff 11 0.404 0.562 −0.400 7.21E−10 1.16E−06 Rora 11 0.5 0.603 −0.466 8.69E−10 1.38E−06 Sla 11 0.498 0.274 0.612 1.41E−09 2.15E−06 Ifrd1 11 0.32 0.458 −0.514 2.53E−09 3.72E−06 Klrb1f 11 0.656 0.495 0.457 9.35E−09 1.25E−05 Gadd45b 11 0.447 0.598 −0.389 1.26E−08 1.65E−05 Ikzf2 11 0.721 0.801 −0.383 1.39E−08 1.82E−05 Bcl2a1d 11 0.607 0.683 −0.405 1.45E−08 1.88E−05 Hist1h1c 11 0.402 0.21 0.662 1.81E−08 2.32E−05 Bcl2 11 0.916 0.814 0.380 1.82E−08 2.33E−05 Tsc22d3 11 0.582 0.393 0.564 1.97E−08 2.51E−05 Ptp4a2 11 0.652 0.739 −0.322 2.31E−08 2.92E−05 Nfkbia 11 0.82 0.892 −0.211 2.33E−08 2.95E−05 Dusp5 11 0.691 0.771 −0.198 3.02E−08 3.76E−05 Bcl2a1b 11 0.518 0.6 −0.492 5.15E−08 6.17E−05 Sik1 11 0.146 0.231 −0.679 6.10E−08 7.18E−05 Il7r 11 0.824 0.734 0.359 7.33E−08 8.43E−05 Nabp1 11 0.754 0.771 −0.335 7.69E−08 8.82E−05 Cd74 11 0.498 0.581 −0.289 1.12E−07 1.24E−04 Btg2 11 0.947 0.976 −0.166 1.57E−07 1.72E−04 Sub1 11 0.898 0.94 −0.239 2.03E−07 2.17E−04 Coq10b 11 0.287 0.406 −0.527 2.42E−07 2.54E−04 Pnrc1 11 0.826 0.89 −0.214 2.63E−07 2.74E−04 Skil 11 0.166 0.281 −0.626 3.25E−07 3.32E−04 Samsn1 11 0.455 0.54 −0.404 3.54E−07 3.57E−04 Ltb 11 0.975 0.946 0.288 4.72E−07 4.66E−04 Ubb 11 0.998 1 −0.186 5.50E−07 5.34E−04 Ahr 11 0.395 0.248 0.630 5.85E−07 5.64E−04 Mir142hg 11 0.148 0.253 −0.656 6.33E−07 6.07E−04 Map3k14 11 0.141 0.24 −0.737 8.20E−07 7.65E−04 Cited4 11 0.512 0.346 0.292 9.52E−07 8.81E−04 Gimap9 11 0.5 0.354 0.467 3.22E−06 2.69E−03 Gimap6 11 0.854 0.749 0.279 3.36E−06 2.79E−03 Gimap7 11 0.719 0.59 0.349 3.56E−06 2.94E−03 Dok1 11 0.215 0.102 0.756 3.75E−06 3.07E−03 B2m 11 0.998 1 0.156 4.36E−06 3.54E−03 Zc3h12a 11 0.246 0.363 −0.506 4.37E−06 3.54E−03 AW112010 11 1 0.994 0.167 5.49E−06 4.32E−03 Igha 11 0.461 0.283 0.479 5.99E−06 4.66E−03 Gnb1 11 0.32 0.419 −0.404 7.40E−06 5.61E−03 Hexim1 11 0.09 0.175 −0.822 7.63E−06 5.75E−03 Gimap3 11 0.941 0.914 0.224 7.97E−06 5.98E−03 Rhog 11 0.213 0.313 −0.491 1.00E−05 7.37E−03 Bhlhe40 11 0.623 0.693 −0.227 1.05E−05 7.66E−03 Tmem176a 11 0.701 0.536 0.383 1.47E−05 1.03E−02 Tsix 11 0.133 0.201 −0.615 1.53E−05 1.07E−02 VgIl4 11 0.387 0.479 −0.446 1.82E−05 1.25E−02 Gimap1 11 0.754 0.652 0.275 2.92E−05 1.91E−02 Gna13 11 0.371 0.449 −0.345 3.23E−05 2.10E−02 Cd69 11 0.496 0.598 −0.200 3.41E−05 2.20E−02 Amd1 11 0.174 0.238 −0.549 3.57E−05 2.29E−02 Ngrn 11 0.168 0.067 0.921 4.08E−05 2.58E−02 Bud31 11 0.291 0.367 −0.400 4.56E−05 2.85E−02 Ubc 11 0.369 0.464 −0.354 4.82E−05 3.01E−02 Gimap5 11 0.672 0.529 0.360 4.84E−05 3.01E−02 9930111J21Rik2 11 0.217 0.106 0.791 4.94E−05 3.06E−02 Icam1 11 0.281 0.38 −0.441 5.73E−05 3.49E−02 Mxd1 11 0.523 0.611 −0.273 6.08E−05 3.64E−02 Asb2 11 0.441 0.294 0.482 6.95E−05 4.09E−02 Eif4a1 11 0.727 0.754 −0.192 7.81E−05 4.52E−02 Anapc16 11 0.195 0.097 0.702 8.29E−05 4.76E−02 Srgn 12 0.99 0.876 0.838 6.70E−42 1.39E−37 Il13 12 0.614 0.233 2.088 1.02E−33 1.30E−29 Plk3 12 0.419 0.066 2.118 5.52E−29 5.24E−25 Sla 12 0.73 0.342 1.237 2.30E−25 1.66E−21 Zfp36l1 12 0.984 0.922 0.569 4.00E−24 2.74E−20 Jund 12 0.888 0.949 −0.733 1.05E−23 6.98E−20 Hspa8 12 0.974 0.894 0.424 2.23E−22 1.36E−18 Il4 12 0.701 0.352 1.591 3.24E−22 1.93E−18 Cxcr6 12 0.884 0.684 0.732 1.40E−21 7.98E−18 Furin 12 0.789 0.504 1.089 4.44E−21 2.44E−17 Ier2 12 0.785 0.823 −0.913 1.29E−20 6.96E−17 Pim3 12 0.551 0.241 1.184 4.81E−20 2.54E−16 Nab2 12 0.309 0.046 2.136 1.70E−19 8.27E−16 Areg 12 0.589 0.271 1.194 3.57E−18 1.54E−14 Rel 12 0.476 0.185 1.320 9.56E−18 3.86E−14 Ubb 12 0.984 0.967 −0.307 1.83E−17 7.06E−14 Egr1 12 0.449 0.489 −0.834 3.18E−16 1.09E−12 Fos 12 0.797 0.868 −0.975 4.46E−16 1.49E−12 Zap70 12 0.604 0.281 0.945 5.90E−16 1.95E−12 Rheb 12 0.738 0.458 0.668 9.15E−16 2.98E−12 Dusp1 12 0.734 0.825 −0.671 1.04E−15 3.33E−12 Cytip 12 0.858 0.572 0.629 2.35E−15 7.19E−12 Lif 12 0.348 0.099 1.263 2.71E−15 8.28E−12 Lmna 12 0.085 0.253 −1.359 8.70E−15 2.53E−11 Hilpda 12 0.921 0.785 0.484 1.55E−13 3.99E−10 Cycs 12 0.695 0.42 0.799 2.60E−13 6.60E−10 Sptssa 12 0.898 0.909 −0.295 2.64E−13 6.69E−10 Nxpe3 12 0.307 0.076 1.364 2.71E−13 6.83E−10 Mcpt1 12 0.242 0.048 1.458 3.95E−13 9.74E−10 Prr7 12 0.118 0.263 −1.304 8.63E−13 2.01E−09 Pdcd1 12 0.443 0.147 1.179 1.90E−12 4.22E−09 Fabp2 12 0.024 0.157 −2.073 5.42E−12 1.13E−08 Rap1b 12 0.76 0.524 0.609 1.52E−11 3.05E−08 Klf2 12 0.394 0.509 −1.024 2.39E−11 4.67E−08 Gadd45b 12 0.807 0.58 0.474 8.59E−11 1.60E−07 Nrgn 12 0.427 0.18 1.027 1.20E−10 2.18E−07 Adora2a 12 0.398 0.162 1.022 1.20E−10 2.18E−07 Plaur 12 0.447 0.175 1.074 1.32E−10 2.38E−07 Spty2d1 12 0.713 0.499 0.568 1.86E−10 3.28E−07 Nr4a2 12 0.526 0.294 0.760 2.58E−10 4.40E−07 Ccl1 12 0.285 0.101 1.634 2.93E−10 4.95E−07 Kif23 12 0.138 0.268 −1.060 2.98E−10 5.01E−07 Cd27 12 0.693 0.468 0.632 4.81E−10 7.88E−07 Lgals7 12 0.215 0.051 1.450 7.68E−10 1.23E−06 Gypc 12 0.358 0.142 0.911 8.21E−10 1.31E−06 Bcl2 12 0.791 0.625 0.473 9.98E−10 1.57E−06 Slc3a2 12 0.72 0.468 0.577 1.64E−09 2.49E−06 Cisd2 12 0.638 0.337 0.655 1.85E−09 2.78E−06 Abi3 12 0.159 0.294 −0.824 2.43E−09 3.59E−06 Defa24 12 0.061 0.182 −1.210 2.49E−09 3.66E−06 Cotl1 12 0.774 0.775 −0.219 4.37E−09 6.24E−06 Tnfaip8 12 0.638 0.385 0.663 4.69E−09 6.64E−06 Gata3 12 0.982 0.901 0.334 5.32E−09 7.47E−06 Clk1 12 0.427 0.542 −0.574 5.66E−09 7.93E−06 Dnaja1 12 0.904 0.901 −0.457 6.32E−09 8.79E−06 Ccr4 12 0.407 0.177 0.845 6.35E−09 8.82E−06 Nfkb1 12 0.884 0.772 0.412 6.68E−09 9.22E−06 Klf6 12 0.441 0.557 −0.873 6.76E−09 9.31E−06 Tgfb1 12 0.618 0.405 0.679 8.22E−09 1.11E−05 Lilrb4a 12 0.313 0.127 1.020 1.05E−08 1.40E−05 Mmd 12 0.28 0.076 1.490 1.41E−08 1.84E−05 Ifngr2 12 0.376 0.167 0.916 1.46E−08 1.89E−05 Id2 12 0.878 0.724 0.583 1.99E−08 2.53E−05 Prdx6 12 0.726 0.506 0.666 2.46E−08 3.09E−05 Serpina3g 12 0.467 0.294 1.116 2.51E−08 3.14E−05 Trf 12 0.222 0.066 1.243 4.52E−08 5.46E−05 Rassf5 12 0.455 0.205 0.796 4.94E−08 5.93E−05 Gch1 12 0.157 0.028 1.674 5.78E−08 6.87E−05 Gpcpd1 12 0.254 0.38 −0.513 5.86E−08 6.91E−05 Cited2 12 0.325 0.486 −0.576 6.19E−08 7.26E−05 Crem 12 0.713 0.484 0.281 6.98E−08 8.08E−05 Dtx1 12 0.268 0.408 −0.557 7.14E−08 8.24E−05 Gimap5 12 0.553 0.322 0.704 9.51E−08 1.08E−04 Eef2 12 0.982 0.942 0.321 1.01E−07 1.14E−04 Abhd17c 12 0.465 0.248 0.667 1.02E−07 1.15E−04 Nfkbiz 12 0.874 0.737 0.340 1.04E−07 1.17E−04 Tagln2 12 0.74 0.709 −0.161 1.22E−07 1.35E−04 Sh2d2a 12 0.533 0.271 0.767 1.33E−07 1.46E−04 Egr2 12 0.157 0.03 1.855 1.65E−07 1.80E−04 Fosl2 12 0.677 0.456 0.481 1.73E−07 1.88E−04 Ppp1r15a 12 0.654 0.709 −0.415 2.01E−07 2.15E−04 Selplg 12 0.862 0.706 0.461 2.20E−07 2.34E−04 Atp2b1 12 0.524 0.311 0.573 2.69E−07 2.80E−04 Eif4a1 12 0.911 0.775 0.421 2.98E−07 3.07E−04 Rhob 12 0.234 0.322 −0.776 3.43E−07 3.47E−04 Scp2 12 0.65 0.646 −0.199 3.49E−07 3.52E−04 Rap1a 12 0.553 0.319 0.726 3.78E−07 3.79E−04 Zfp36 12 0.514 0.491 −0.561 4.30E−07 4.28E−04 Hic1 12 0.356 0.144 0.964 5.04E−07 4.94E−04 Tpm4 12 0.551 0.329 0.654 5.60E−07 5.41E−04 Esm1 12 0.093 0.233 −0.997 6.47E−07 6.18E−04 Kcnn4 12 0.234 0.309 −0.527 7.30E−07 6.91E−04 Orai1 12 0.459 0.238 0.758 1.01E−06 9.32E−04 Ubc 12 0.404 0.489 −0.472 1.04E−06 9.54E−04 Txnip 12 0.114 0.218 −1.091 1.05E−06 9.57E−04 Fosb 12 0.472 0.496 −0.561 1.54E−06 1.37E−03 Cntnap2 12 0.083 0.187 −1.029 1.99E−06 1.75E−03 Nab1 12 0.246 0.084 1.142 2.04E−06 1.78E−03 Traf4 12 0.301 0.162 0.878 2.66E−06 2.28E−03 AY036118 12 0.429 0.438 −0.381 2.85E−06 2.41E−03 Igkc 12 0.734 0.547 0.321 3.30E−06 2.76E−03 Tsc22d3 12 0.333 0.375 −0.528 3.31E−06 2.76E−03 Rasa2 12 0.354 0.162 0.780 3.32E−06 2.77E−03 Igha 12 0.516 0.316 0.508 3.35E−06 2.78E−03 Nr4a3 12 0.559 0.37 0.596 3.41E−06 2.82E−03 Sub1 12 0.978 0.919 0.258 3.46E−06 2.86E−03 Jun 12 0.616 0.689 −0.758 3.79E−06 3.10E−03 DynIl1 12 0.691 0.499 0.524 3.80E−06 3.11E−03 Il2ra 12 0.604 0.382 0.561 4.84E−06 3.85E−03 Ramp1 12 0.417 0.435 −0.296 5.11E−06 4.04E−03 Mapkapk2 12 0.211 0.066 1.193 5.83E−06 4.55E−03 Slc2a3 12 0.157 0.043 1.265 6.66E−06 5.12E−03 Btg3 12 0.266 0.104 0.862 6.70E−06 5.14E−03 Arl5c 12 0.179 0.271 −0.886 7.34E−06 5.57E−03 Lilr4b 12 0.274 0.111 0.886 7.85E−06 5.90E−03 Ndfip1 12 0.417 0.241 0.606 9.38E−06 6.95E−03 Ptpn22 12 0.451 0.271 0.629 9.54E−06 7.05E−03 Tmem59 12 0.65 0.623 −0.162 1.10E−05 8.01E−03 Pnrc1 12 0.768 0.787 −0.254 1.11E−05 8.07E−03 Phf6 12 0.278 0.127 0.764 1.23E−05 8.77E−03 H2-Q6 12 0.317 0.435 −0.578 1.40E−05 9.90E−03 Satb1 12 0.579 0.37 0.496 1.41E−05 9.95E−03 Itk 12 0.685 0.524 0.442 1.43E−05 1.01E−02 Fgl2 12 0.695 0.468 0.408 1.91E−05 1.31E−02 Hccs 12 0.26 0.094 0.922 1.97E−05 1.34E−02 Klf4 12 0.461 0.552 −0.505 2.38E−05 1.60E−02 Gnai2 12 0.593 0.625 −0.303 2.56E−05 1.70E−02 Ero1l 12 0.455 0.251 0.822 2.57E−05 1.71E−02 Mctp1 12 0.096 0.162 −0.729 2.67E−05 1.76E−02 Hes1 12 0.754 0.795 −0.548 3.77E−05 2.41E−02 Spry2 12 0.398 0.238 0.353 3.92E−05 2.49E−02 Tnfrsf1b 12 0.268 0.124 0.797 4.02E−05 2.55E−02 Nfatc1 12 0.274 0.147 0.680 5.51E−05 3.36E−02 Fam105a 12 0.445 0.256 0.498 5.70E−05 3.47E−02 Lpar6 12 0.285 0.354 −0.494 5.81E−05 3.53E−02 Serp1 12 0.807 0.8 −0.216 6.34E−05 3.77E−02 Psma6 12 0.291 0.266 −0.175 6.91E−05 4.07E−02 Vamp2 12 0.283 0.134 0.706 7.05E−05 4.14E−02 March7 12 0.278 0.127 0.738 7.22E−05 4.22E−02 Nfkbie 12 0.1 0.175 −0.749 7.56E−05 4.41E−02 Lrp10 12 0.39 0.18 0.808 7.58E−05 4.41E−02 Ssbp3 12 0.244 0.296 −0.425 7.84E−05 4.53E−02 Plscr1 12 0.463 0.301 0.580 8.32E−05 4.77E−02 Nfkbid 12 0.506 0.337 0.422 8.52E−05 4.87E−02 Tpt1 12 1 1 0.182 8.70E−05 4.94E−02 Wdr89 13 0.812 0.676 0.488 2.53E−12 5.48E−09 Uba52 13 0.753 0.655 0.423 1.79E−07 1.93E−04 Mcpt1 14 0.367 0.057 1.837 3.69E−21 2.05E−17 Mcpt2 14 0.234 0.017 2.435 6.32E−18 2.63E−14 Lyz1 14 0.05 0.24 −0.177 6.49E−14 1.71E−10 Defa24 14 0.106 0.333 −1.055 8.53E−13 1.99E−09 Grasp 14 0.633 0.77 −0.498 1.36E−12 3.09E−09 Id2 14 0.702 0.584 0.543 8.97E−09 1.21E−05 Nrros 14 0.578 0.325 0.796 1.23E−08 1.62E−05 Fabp2 14 0.046 0.19 −1.518 5.79E−08 6.87E−05 Rgs1 14 0.615 0.451 0.651 1.50E−07 1.65E−04 Ifrd1 14 0.674 0.751 −0.449 5.16E−07 5.05E−04 Sub1 14 1 0.988 −0.155 1.34E−06 1.20E−03 Cfp 14 0.904 0.91 −0.366 2.85E−06 2.41E−03 Maff 14 0.647 0.77 −0.329 3.56E−06 2.94E−03 Igkc 14 0.917 0.827 −1.522 4.43E−06 3.58E−03 Jund 14 0.94 0.95 −0.363 5.67E−06 4.44E−03 Anxa3 14 0.083 0.242 −1.191 1.00E−05 7.37E−03 Plac8 14 0.821 0.651 0.297 1.47E−05 1.03E−02 Plscr1 14 0.307 0.466 −0.634 1.47E−05 1.03E−02 Elf4 14 0.239 0.114 0.665 1.70E−05 1.17E−02 Igha 14 0.784 0.599 −0.973 1.97E−05 1.34E−02 AY036118 14 0.436 0.451 −0.392 2.01E−05 1.36E−02 Smap2 14 0.555 0.727 −0.418 2.43E−05 1.63E−02 Tbc1d4 14 0.761 0.81 −0.261 2.60E−05 1.73E−02 Ncl 14 0.872 0.867 −0.226 2.70E−05 1.78E−02 Elmsan1 14 0.193 0.323 −0.552 3.16E−05 2.06E−02 Arf4 14 0.775 0.824 −0.232 4.43E−05 2.78E−02 Ccr1 14 0.197 0.382 −0.803 4.54E−05 2.84E−02 Polr3c 14 0.298 0.173 0.494 4.90E−05 3.04E−02 Trps1 14 0.505 0.644 −0.415 6.20E−05 3.71E−02 Bex6 14 0.188 0.067 1.241 7.11E−05 4.16E−02 Birc2 14 0.252 0.354 −0.642 8.12E−05 4.68E−02 Tuba1c 14 0.367 0.368 −0.242 8.44E−05 4.83E−02 Jund 15 0.696 0.871 −0.886 1.14E−10 2.08E−07 Kdm6b 15 0.28 0.575 −0.851 2.25E−10 3.92E−07 Hk2 15 0.096 0.305 −1.074 1.32E−05 9.39E−03 Lmna 15 0.056 0.239 −1.137 1.33E−05 9.40E−03 Gimap6 15 0.48 0.333 0.667 2.10E−05 1.42E−02 Pnrc1 15 0.424 0.635 −0.562 3.36E−05 2.17E−02 Pim1 15 0.496 0.71 −0.599 6.51E−05 3.86E−02 Id2 15 0.728 0.514 0.579 8.76E−05 4.96E−02 Hes1 16 0.084 0.193 −1.843 5.36E−07 5.21E−04 Gpcpd1 16 0.118 0.22 −0.962 2.33E−06 2.02E−03 Dnaja1 16 0.382 0.487 −0.735 7.82E−06 5.88E−03 Ppp1r15a 16 0.189 0.293 −1.206 1.91E−05 1.31E−02 Sla 16 0.412 0.173 1.197 2.54E−05 1.70E−02 Cdk2ap2 16 0.08 0.167 −1.073 4.59E−05 2.87E−02 Gpr183 16 0.424 0.347 −0.256 8.06E−05 4.65E−02 Ptma 16 0.471 0.533 −0.390 8.17E−05 4.70E−02 Chchd10 17 0.235 0.11 0.792 5.97E−05 3.59E−02 Wdr89 18 1 0.96 0.510 1.74E−07 1.88E−04 Wsb1 18 0.038 0.169 −1.529 1.07E−05 7.83E−03 Junb 19 0.774 0.737 −0.245 2.79E−06 2.37E−03 Mcpt1 20 0.45 0.048 2.227 2.11E−10 3.69E−07 Mcpt2 20 0.321 0.01 3.407 1.02E−08 1.35E−05 Fabp2 20 0.061 0.276 −2.260 2.15E−06 1.87E−03 Lyz1 20 0.038 0.2 −2.380 1.19E−05 8.58E−03 Mcpt1 21 0.427 0.06 3.356 3.40E−09 4.92E−06 H2afz 21 0.983 0.991 −0.307 3.72E−06 3.06E−03 Defa24 21 0.248 0.444 −0.656 9.88E−06 7.29E−03 Ly6e 21 0.65 0.752 −0.726 1.02E−05 7.47E−03 Efhd2 21 0.889 0.915 −0.342 2.03E−05 1.37E−02 Nrros 21 0.658 0.436 0.861 2.90E−05 1.90E−02 Sla 21 0.863 0.744 0.496 3.49E−05 2.24E−02 Twf2 21 0.838 0.667 0.477 6.58E−05 3.89E−02 Hspa1a 21 0.556 0.47 0.298 7.00E−05 4.11E−02 Jund 22 0.898 0.947 −0.710 2.21E−07 2.34E−04 Gapdh 22 0.873 0.8 0.582 1.58E−06 1.40E−03 Trpv2 22 0.197 0 3.860 3.81E−06 3.11E−03 Pla2g2d 22 0.032 0.187 −2.738 3.41E−05 2.20E−02 Fam213b 22 0.051 0.173 −1.795 4.19E−05 2.65E−02 Hspa8 22 0.987 0.973 0.298 5.00E−05 3.09E−02 Lgals3bp 22 0.325 0.293 −0.597 5.93E−05 3.57E−02 Igha 24 0.688 0.263 1.262 6.96E−12 1.44E−08 Lyz1 24 0 0.175 −3.978 8.81E−07 8.17E−04 Mcpt1 24 0.257 0.035 3.554 1.05E−06 9.59E−04 Mcpt2 24 0.211 0.009 4.485 4.73E−06 3.78E−03 Arpp19 24 0.872 0.632 0.513 3.29E−05 2.13E−02 Ppp2r2d 24 0.083 0.254 −0.941 5.57E−05 3.40E−02 Egfl7 25 0.895 0.817 0.621 1.95E−07 2.09E−04 8430408G22Rik 25 0.702 0.341 1.076 4.38E−06 3.54E−03 Hspa1b 25 0.193 0.098 1.118 6.67E−06 5.12E−03 Fzd4 25 0.368 0.14 0.813 5.61E−05 3.42E−02 Actg1 26 1 0.976 0.880 2.14E−12 4.72E−09 Tph1 26 0.938 0.683 1.298 7.68E−12 1.58E−08 Alox5ap 26 0.926 0.659 1.357 5.00E−11 9.48E−08 Fcer1a 26 0.983 0.976 0.700 9.83E−10 1.55E−06 Mcpt2 26 0.955 0.634 1.631 1.74E−08 2.24E−05 Mcpt1 26 0.96 0.634 1.586 3.76E−08 4.61E−05 Decr1 26 0.682 0.171 1.704 4.35E−08 5.26E−05 Ms4a2 26 0.932 0.707 1.066 2.04E−07 2.18E−04 Itga2b 26 0.818 0.293 1.452 3.40E−07 3.45E−04 Ncor1 26 0.534 0.707 −0.936 3.88E−07 3.88E−04 Ero1l 26 0.739 0.293 1.562 5.25E−07 5.12E−04 Mcpt4 26 0.835 0.488 1.895 1.56E−06 1.39E−03 Sytl3 26 0.449 0.049 2.647 1.64E−06 1.45E−03 Ptpre 26 0.239 0.537 −1.096 1.78E−06 1.57E−03 Prnp 26 0.92 0.805 0.856 2.01E−06 1.76E−03 Fam105a 26 0.784 0.293 1.562 2.65E−06 2.28E−03 Gpr171 26 0.852 0.512 1.799 3.99E−06 3.25E−03 Vasp 26 0.892 0.537 1.081 4.68E−06 3.75E−03 Scin 26 0.966 0.61 0.960 4.70E−06 3.76E−03 Rac2 26 0.994 0.951 0.643 5.62E−06 4.40E−03 Igfbp4 26 0.045 0.244 −0.802 6.08E−06 4.71E−03 Pga5 26 0.307 0 4.663 7.06E−06 5.38E−03 Psip1 26 0.284 0.39 −0.818 7.61E−06 5.75E−03 Stk19 26 0.631 0.317 1.122 8.39E−06 6.28E−03 Atp1b1 26 0.92 0.659 0.831 1.53E−05 1.07E−02 Gm2a 26 0.938 0.854 0.723 1.63E−05 1.13E−02 Opa3 26 0.193 0.22 −0.937 1.68E−05 1.16E−02 Ftl1 26 1 1 0.846 3.43E−05 2.21E−02 Il4 26 0.784 0.659 1.307 5.53E−05 3.37E−02 Tacc1 26 0.415 0.122 0.633 5.83E−05 3.53E−02 Ptms 26 0.733 0.78 −0.473 6.46E−05 3.83E−02 Cox4i1 26 0.966 0.927 0.528 6.81E−05 4.02E−02 Sec11c 26 0.898 0.512 0.801 6.98E−05 4.10E−02 Zcchc10 26 0.46 0.122 0.773 8.08E−05 4.66E−02 Mknk2 26 0.205 0.317 −0.914 8.67E−05 4.93E−02 Mcpt1 27 0.177 0.017 2.416 2.33E−05 1.57E−02 Kdm6b 27 0.258 0.554 −1.318 4.79E−05 2.99E−02 Cd84 27 0.419 0.124 1.416 7.77E−05 4.50E−02 Zfp36l2 29 0.831 0.482 1.290 8.32E−07 7.75E−04 Tsc22d3 29 0.877 0.651 0.697 4.32E−05 2.72E−02 P2ry10 29 0.538 0.157 1.414 4.35E−05 2.74E−02 Dstn 30 0.857 0.99 −0.625 2.68E−06 2.29E−03 Ada 30 0.057 0.2 −4.360 5.72E−06 4.47E−03 Ubb 30 0.943 0.95 −0.641 1.25E−05 8.92E−03 Igkc 30 0.743 0.52 0.553 1.25E−05 8.92E−03 Apol9a 30 0 0.18 −4.300 7.19E−05 4.20E−02 Al413582 31 0.024 0.272 −2.863 5.52E−06 4.34E−03 Casq2 32 0.35 0.021 2.515 1.16E−05 8.34E−03 Thbs1 33 0.469 0.268 1.681 6.38E−05 3.80E−02 Mcpt2 34 0.491 0.07 1.799 1.14E−06 1.04E−03 Areg 34 0.018 0.186 1.280 2.27E−06 1.97E−03 Slc25a5 34 0.93 0.907 0.470 2.39E−06 2.06E−03 Mcpt1 34 0.474 0.07 2.144 7.59E−06 5.74E−03 Runx3 34 0.702 0.977 −0.675 8.83E−06 6.57E−03 Defa24 34 0.175 0.558 −1.480 1.20E−05 8.62E−03 Zmiz1 34 0.456 0.744 −0.901 1.67E−05 1.15E−02 Itm2b 34 0.947 0.977 0.362 3.72E−05 2.38E−02 Capns1 34 0.842 0.628 0.596 6.09E−05 3.65E−02 Whrn 34 0 0.186 −3.482 8.47E−05 4.84E−02 Xrcc6bp1 35 0 0.203 −3.388 1.10E−05 8.01E−03 Atf3 35 0.275 0.627 −0.517 4.05E−05 2.57E−02 Cxcl2 36 0.875 0.692 0.999 4.55E−06 3.66E−03 Dusp1 36 0.946 0.821 0.719 5.85E−06 4.56E−03 S100a8 36 0.982 0.795 1.265 7.62E−06 5.75E−03 Actg1 36 0.964 1 0.587 2.04E−05 1.38E−02 S100a9 36 0.946 0.923 1.043 3.43E−05 2.21E−02 G0s2 36 0.893 0.846 0.800 7.82E−05 4.52E−02 Il1b 36 0.982 1 0.474 8.19E−05 4.70E−02 Ptgs2 36 0.661 0.282 1.505 8.59E−05 4.90E−02 Hmgcs1 37 0 0.306 −4.058 5.86E−05 3.54E−02 Mcpt1 41 0.458 0 4.593 1.64E−05 1.14E−02 Alcam 41 0.583 0.04 2.248 1.93E−05 1.32E−02 Ptp4a3 41 0.625 1 −0.853 4.79E−05 2.99E−02 Acbd5 41 0.667 0.12 1.926 8.37E−05 4.80E−02 Itgal 42 0.375 0.125 −0.238 1.65E−07 1.80E−04 Reep5 43 0.786 0.5 0.884 6.46E−06 4.98E−03 Tceb2 44 0.588 0 6.153 2.88E−05 1.89E−02 B percentage of percentage of expressing expressing cluster cells in OVA- cells in PBS- LN (average p value, gene ID treated group treated group fold change) p value adjusted Actb 1 1 0.968 1.320 1.82E−23 5.92E−20 Ighg1 1 0.372 0.008 3.863 2.30E−14 3.41E−11 Ptprcap 1 0.653 0.376 0.960 2.96E−09 2.23E−06 Igha 1 0.992 1 0.613 1.87E−08 1.23E−05 Pfn1 1 1 0.944 0.431 1.51E−07 8.39E−05 Emb 1 0.545 0.816 −0.648 4.11E−07 2.09E−04 Igkc 1 1 1 0.926 4.21E−07 2.13E−04 Ddit4 1 0.157 0 3.923 4.72E−07 2.36E−04 Mcpt1 1 0.157 0.008 2.804 1.94E−05 6.35E−03 Maff 1 0.107 0.32 −0.879 2.13E−05 6.90E−03 Cfl1 1 0.934 0.912 0.344 3.23E−05 9.88E−03 Rras2 1 0.099 0.296 −1.281 3.71E−05 1.12E−02 Dusp10 1 0.612 0.768 −0.557 4.19E−05 1.24E−02 Cnn2 1 0.678 0.424 0.641 4.42E−05 1.30E−02 Jun 1 0.438 0.232 1.206 4.47E−05 1.31E−02 Myl6 1 0.909 0.808 0.369 7.44E−05 2.03E−02 Ppp1r16b 1 0.281 0.072 1.323 7.72E−05 2.10E−02 Dusp5 1 0.289 0.552 −0.744 7.95E−05 2.15E−02 Igkv1-135 1 0.033 0.2 −1.720 9.18E−05 2.42E−02 Tmem71 1 0.066 0.264 −1.482 9.45E−05 2.48E−02 Rgs1 1 0.306 0.096 1.424 1.01E−04 2.62E−02 Hsp90ab1 1 0.76 0.624 0.546 1.07E−04 2.76E−02 Fam169b 1 0.033 0.184 −1.553 1.14E−04 2.91E−02 Cd52 1 0.893 0.816 0.412 1.17E−04 2.98E−02 Cct8 1 0.347 0.12 1.026 1.96E−04 4.59E−02 Mcpt1 11 0.167 0 4.314 3.70E−09 2.72E−06 Ikzf2 11 0.369 0.724 −0.930 5.16E−07 2.57E−04 Rgs1 11 0.821 0.704 0.745 1.31E−06 5.92E−04 Dusp2 11 0.464 0.24 1.175 2.06E−06 8.78E−04 Igha 11 0.988 0.913 0.278 2.41E−06 1.01E−03 Def6 11 0.357 0.112 1.164 1.66E−05 5.56E−03 Bhlhe40 11 0.429 0.73 −0.539 4.53E−05 1.33E−02 Top1 11 0.143 0.321 −0.475 4.63E−05 1.35E−02 Zfp36l2 11 0.774 0.663 0.442 6.65E−05 1.85E−02 Pdcd4 11 0.393 0.423 0.429 7.20E−05 1.97E−02 Rbm5 11 0.036 0.214 −2.020 7.61E−05 2.08E−02 Pim1 11 0.536 0.796 −0.640 8.10E−05 2.18E−02 Neat1 11 0.321 0.388 0.273 8.63E−05 2.30E−02 Napsa 11 0.25 0.092 0.833 1.74E−04 4.15E−02 Bcl2 11 0.821 0.755 0.439 2.11E−04 4.89E−02 Srgn 12 0.935 0.714 0.951 2.14E−85 1.55E−80 Hes1 12 0.487 0.871 −1.225 1.02E−69 4.26E−65 Sla 12 0.6 0.182 1.644 6.69E−66 2.59E−61 Ppp1r15a 12 0.4 0.741 −1.371 3.00E−64 1.03E−59 Furin 12 0.727 0.359 1.650 2.64E−63 7.31E−59 Actg1 12 0.926 0.77 0.782 4.58E−63 1.21E−58 Il13 12 0.445 0.093 2.748 4.80E−55 8.74E−51 Hspa8 12 0.929 0.783 0.644 3.71E−49 5.26E−45 Lilr4b 12 0.345 0.038 2.439 6.08 E−48 7.86E−44 4930523C07Rik 12 0.433 0.747 −0.954 5.86E−46 6.69E−42 Dnaja1 12 0.694 0.847 −0.898 5.15E−45 5.55E−41 Vps37b 12 0.568 0.811 −0.893 3.69E−43 3.64E−39 Nr4a3 12 0.524 0.169 1.521 2.56E−42 2.48E−38 Plaur 12 0.374 0.078 2.052 2.02E−40 1.78E−36 Fos 12 0.572 0.82 −1.132 1.82E−39 1.56E−35 Lif 12 0.263 0.022 2.855 5.25E−39 4.37E−35 Zfp36l1 12 0.938 0.82 0.631 6.03E−39 4.94E−35 Cxcr6 12 0.625 0.301 1.109 1.02E−37 7.81E−34 Sptssa 12 0.501 0.769 −0.841 8.77E−36 6.38E−32 Dusp1 12 0.62 0.867 −0.896 2.80E−33 1.79E−29 Ubb 12 0.919 0.965 −0.413 1.48E−32 8.78E−29 Plk3 12 0.285 0.051 1.772 8.17E−31 4.40E−27 Areg 12 0.498 0.224 1.394 2.69E−30 1.40E−26 Nab2 12 0.182 0.007 2.979 6.12E−30 3.12E−26 Pdcd1 12 0.244 0.033 2.125 1.16E−29 5.83E−26 Il4 12 0.519 0.301 1.409 2.35E−28 1.14E−24 Gcnt1 12 0.217 0.024 2.384 4.66E−28 2.19E−24 Jund 12 0.864 0.964 −0.512 5.58E−27 2.42E−23 Fosl2 12 0.614 0.332 0.801 3.42E−26 1.41E−22 H2-D1 12 0.972 0.995 −0.326 1.13E−25 4.46E−22 Tpt1 12 0.985 0.976 0.333 1.22E−25 4.76E−22 Prr7 12 0.09 0.281 −1.547 5.86E−25 2.22E−21 Sh2d2a 12 0.435 0.186 0.936 1.07E−24 3.90E−21 Esm1 12 0.018 0.173 −2.314 3.73E−24 1.29E−20 Crem 12 0.717 0.443 0.579 5.47E−24 1.88E−20 Fosb 12 0.412 0.616 −0.805 9.76E−24 3.28E−20 Rap1b 12 0.663 0.444 0.613 2.09E−23 6.74E−20 Csf2 12 0.258 0.067 1.960 2.13E−23 6.81E−20 Ptpn22 12 0.313 0.095 1.251 3.56E−23 1.12E−19 Lilrb4a 12 0.206 0.029 2.154 3.70E−23 1.16E−19 Lmo4 12 0.914 0.974 −0.391 1.10E−22 3.37E−19 Cdk11b 12 0.133 0.306 −1.282 2.16E−22 6.48E−19 Lgals7 12 0.291 0.08 1.511 2.32E−22 6.93E−19 Nfkbiz 12 0.729 0.525 0.624 3.17E−20 8.28E−17 Actb 12 0.964 0.903 0.686 1.26E−19 3.07E−16 Zap70 12 0.424 0.2 0.882 1.26E−19 3.07E−16 Fam46a 12 0.425 0.211 1.080 5.68E−19 1.32E−15 Dusp10 12 0.273 0.448 −0.820 5.80E−19 1.34E−15 Spry2 12 0.427 0.204 1.201 7.86E−19 1.79E−15 Cytip 12 0.625 0.392 0.531 1.50E−18 3.34E−15 Siah2 12 0.082 0.253 −1.422 1.68E−18 3.71E−15 Wnk1 12 0.398 0.197 0.971 2.95E−18 6.31E−15 Dtx1 12 0.05 0.197 −1.600 4.37E−18 9.28E−15 Tnfaip8 12 0.518 0.299 0.740 6.98E−18 1.45E−14 Fgl2 12 0.61 0.388 0.609 1.62E−17 3.21E−14 Prdx6 12 0.507 0.33 0.908 2.87E−17 5.57E−14 Tpm4 12 0.394 0.193 0.964 2.87E−17 5.57E−14 Serp1 12 0.554 0.692 −0.529 3.88E−17 7.46E−14 Ero1l 12 0.399 0.213 0.949 5.36E−17 1.01E−13 Uqcrh 12 0.765 0.596 0.450 6.48E−17 1.21E−13 Arl5c 12 0.04 0.173 −1.873 7.55E−17 1.39E−13 Coq10b 12 0.332 0.521 −0.690 9.27E−17 1.69E−13 Pfn1 12 0.974 0.962 0.233 9.91E−17 1.80E−13 Sepp1 12 0.254 0.439 −0.824 1.47E−16 2.64E−13 Ucp2 12 0.612 0.43 0.519 4.62E−16 8.09E−13 Pnrc1 12 0.583 0.774 −0.457 5.82E−16 1.00E−12 Gpr132 12 0.399 0.539 −0.573 1.25E−15 2.09E−12 Tiparp 12 0.18 0.33 −0.904 1.88E−15 3.10E−12 Hccs 12 0.243 0.08 1.079 3.32E−15 5.37E−12 Eef1a1 12 0.997 0.995 0.236 4.21E−15 6.72E−12 Lmna 12 0.045 0.173 −1.627 4.61E−15 7.30E−12 Cd52 12 0.581 0.397 0.644 4.69E−15 7.38E−12 Cycs 12 0.531 0.337 0.561 4.96E−15 7.79E−12 Igha 12 0.951 0.907 0.407 6.51E−15 1.02E−11 Rheb 12 0.536 0.342 0.631 1.00E−14 1.54E−11 Igkc 12 0.985 0.974 0.474 1.09E−14 1.68E−11 Kif23 12 0.102 0.259 −1.129 1.13E−14 1.71E−11 Cited2 12 0.176 0.375 −0.724 1.18E−14 1.79E−11 Klf4 12 0.336 0.537 −0.566 3.70E−14 5.32E−11 Nfkb1 12 0.81 0.674 0.501 4.40E−14 6.26E−11 BC031181 12 0.365 0.454 −0.512 5.80E−14 8.17E−11 Ramp3 12 0.561 0.342 0.516 7.44E−14 1.03E−10 Cwc25 12 0.061 0.188 −1.439 9.00E−14 1.24E−10 Scp2 12 0.382 0.559 −0.568 9.01E−14 1.24E−10 Eif3e 12 0.67 0.512 0.416 2.54E−13 3.33E−10 Tnfaip3 12 0.534 0.643 −0.487 2.72E−13 3.55E−10 Irf1 12 0.069 0.206 −1.336 2.81E−13 3.66E−10 Nrgn 12 0.284 0.12 1.042 3.57E−13 4.57E−10 Abhd17c 12 0.52 0.324 0.599 5.00E−13 6.29E−10 Glul 12 0.184 0.339 −1.009 6.84E−13 8.52E−10 Vmp1 12 0.239 0.093 1.019 8.14E−13 1.01E−09 Gmfg 12 0.31 0.142 0.821 1.34E−12 1.62E−09 Tmem64 12 0.41 0.224 0.605 1.76E−12 2.11E−09 Rnf19b 12 0.279 0.118 0.971 3.11E−12 3.58E−09 Naca 12 0.839 0.723 0.299 4.17E−12 4.76E−09 Gimap5 12 0.338 0.179 0.779 8.34E−12 9.16E−09 Arf6 12 0.429 0.268 0.610 9.31E−12 1.01E−08 Tmsb4x 12 1 1 0.195 9.66E−12 1.05E−08 Eef1b2 12 0.709 0.554 0.395 1.30E−11 1.39E−08 Eif1 12 0.996 0.989 0.152 1.86E−11 1.96E−08 Arpc2 12 0.769 0.654 0.318 2.02E−11 2.12E−08 H2-Q4 12 0.246 0.41 −0.675 2.07E−11 2.17E−08 Gpx4 12 0.818 0.887 −0.345 2.52E−11 2.63E−08 Emd 12 0.235 0.353 −0.729 2.83E−11 2.94E−08 Polr2e 12 0.091 0.226 −1.019 4.42E−11 4.49 E−08 Tspan13 12 0.699 0.787 −0.366 4.65E−11 4.69E−08 Zc3h12a 12 0.157 0.301 −0.866 8.60E−11 8.39E−08 Itk 12 0.515 0.332 0.495 8.94E−11 8.69E−08 Maff 12 0.399 0.519 −0.518 9.49E−11 9.18E−08 Rsrp1 12 0.24 0.386 −0.708 1.16E−10 1.11E−07 Tgfb1 12 0.457 0.293 0.625 1.48E−10 1.39E−07 Ptp4a1 12 0.349 0.466 −0.514 1.88E−10 1.74E−07 Gapdh 12 0.561 0.434 0.420 2.03E−10 1.87E−07 Ly6a 12 0.055 0.173 −1.208 2.28E−10 2.09E−07 Iglc1 12 0.184 0.311 −0.692 2.55E−10 2.32E−07 Psap 12 0.299 0.437 −0.562 3.21E−10 2.88E−07 Pole4 12 0.604 0.457 0.415 3.83E−10 3.35E−07 Cox8a 12 0.798 0.71 0.285 3.88E−10 3.38E−07 Ndfip1 12 0.247 0.109 0.765 4.09E−10 3.56E−07 Eef2 12 0.927 0.898 0.240 5.72E−10 4.91E−07 Tgoln1 12 0.215 0.326 −0.572 5.85E−10 5.00E−07 Jarid2 12 0.156 0.046 1.269 6.36E−10 5.40E−07 Galnt12 12 0.086 0.209 −0.960 7.06E−10 5.97E−07 Ddx5 12 0.886 0.931 −0.276 7.94E−10 6.71E−07 Kdm6b 12 0.65 0.47 0.555 9.04E−10 7.58E−07 Pgm2l1 12 0.065 0.177 −0.966 1.03E−09 8.51E−07 Tspan32 12 0.073 0.184 −0.997 1.15E−09 9.39E−07 Zfp36l2 12 0.49 0.448 0.453 1.17E−09 9.52E−07 Fth1 12 0.963 0.989 −0.236 1.23E−09 1.00E−06 Ubc 12 0.303 0.446 −0.542 1.29E−09 1.04E−06 Mat2a 12 0.288 0.415 −0.572 1.34E−09 1.08E−06 Nxpe3 12 0.202 0.082 0.974 1.64E−09 1.30E−06 Cbarp 12 0.193 0.077 0.886 1.74E−09 1.38E−06 Nr4a2 12 0.383 0.259 0.702 2.50E−09 1.92E−06 H3f3b 12 0.982 0.982 0.286 2.59E−09 1.98E−06 Fxyd5 12 0.564 0.432 0.407 2.82E−09 2.14E−06 Neurl3 12 0.328 0.439 −0.470 3.18E−09 2.38E−06 Arl4a 12 0.256 0.128 0.781 3.23E−09 2.40E−06 Psmb10 12 0.219 0.335 −0.598 3.50E−09 2.60E−06 Cntnap2 12 0.074 0.175 −1.008 4.85E−09 3.50E−06 Usmg5 12 0.509 0.585 −0.414 5.00E−09 3.60E−06 Zrsr1 12 0.242 0.337 −0.652 5.12E−09 3.68E−06 H2afj 12 0.433 0.29 0.452 7.92E−09 5.53E−06 Ccrl2 12 0.192 0.308 −0.742 8.29E−09 5.78E−06 Psmb8 12 0.49 0.627 −0.441 8.39E−09 5.84E−06 Tmsb10 12 0.942 0.976 −0.240 1.08E−08 7.39E−06 Ccl1 12 0.203 0.084 1.335 1.17E−08 7.93E−06 Saraf 12 0.304 0.435 −0.533 1.19E−08 8.02E−06 Uhrf2 12 0.296 0.424 −0.506 1.19E−08 8.02E−06 Eif3h 12 0.686 0.568 0.298 1.64E−08 1.09E−05 Srsf7 12 0.251 0.311 −0.443 2.24E−08 1.45E−05 Hmgb1 12 0.552 0.687 −0.400 2.28E−08 1.47E−05 H2-K1 12 0.921 0.958 −0.243 2.81E−08 1.79E−05 Gypc 12 0.256 0.133 0.686 2.89E−08 1.84E−05 Dbp 12 0.059 0.151 −1.018 3.11E−08 1.96E−05 Lcp2 12 0.339 0.208 0.544 3.75E−08 2.32E−05 Pnn 12 0.123 0.235 −0.769 3.80E−08 2.35E−05 Nab1 12 0.193 0.082 0.888 3.94E−08 2.42E−05 2810474O19Rik 12 0.099 0.195 −0.835 4.39E−08 2.67E−05 Hist1h1c 12 0.205 0.102 1.035 4.46E−08 2.71E−05 Pdcd1lg2 12 0.223 0.109 0.833 4.95E−08 2.98E−05 Tmem59 12 0.332 0.463 −0.485 5.65E−08 3.37E−05 Tapbp 12 0.287 0.403 −0.510 5.78E−08 3.44E−05 Tob2 12 0.328 0.434 −0.479 6.05E−08 3.57E−05 Hmha1 12 0.206 0.333 −0.645 6.95E−08 4.06E−05 Slc3a2 12 0.47 0.321 0.469 7.95E−08 4.59E−05 Fam189b 12 0.116 0.226 −0.759 9.57E−08 5.44E−05 Churc1 12 0.258 0.357 −0.570 1.08E−07 6.12E−05 Clk1 12 0.269 0.362 −0.438 1.26E−07 7.07E−05 Cox4i1 12 0.836 0.765 0.208 1.70E−07 9.31E−05 Tprgl 12 0.291 0.401 −0.513 1.76E−07 9.63E−05 Rnf167 12 0.098 0.2 −0.794 1.93E−07 1.05E−04 Eprs 12 0.133 0.231 −0.676 2.01E−07 1.09E−04 Polr2j 12 0.099 0.206 −0.824 2.02E−07 1.09E−04 Slc25a5 12 0.458 0.352 0.368 2.12E−07 1.14E−04 Ak2 12 0.288 0.169 0.603 2.14E−07 1.15E−04 Cd53 12 0.687 0.566 0.260 2.45E−07 1.30E−04 Jun 12 0.456 0.534 −0.614 2.67E−07 1.41E−04 Nr3c1 12 0.487 0.346 0.471 2.92E−07 1.53E−04 Srrm2 12 0.433 0.455 −0.241 3.14E−07 1.63E−04 Selk 12 0.749 0.661 0.258 3.40E−07 1.75E−04 Cotl1 12 0.481 0.61 −0.396 3.52E−07 1.80E−04 Hsp90ab1 12 0.585 0.485 0.369 3.91E−07 1.99E−04 Bcl11b 12 0.115 0.215 −0.742 4.36E−07 2.20E−04 Taldo1 12 0.399 0.508 −0.406 4.61E−07 2.31E−04 Orai1 12 0.247 0.129 0.719 4.95E−07 2.47E−04 Pfdn5 12 0.778 0.69 0.229 6.11E−07 2.99E−04 Rxrg 12 0.089 0.191 −0.813 6.16E−07 3.01E−04 Maf1 12 0.122 0.209 −0.730 6.66E−07 3.23E−04 Spcs2 12 0.583 0.709 −0.346 7.47E−07 3.56E−04 Ralbp1 12 0.26 0.362 −0.471 7.89E−07 3.75E−04 Hlf 12 0.25 0.135 0.620 8.37E−07 3.95E−04 Smco4 12 0.185 0.089 1.106 9.51E−07 4.44E−04 Fam102a 12 0.31 0.191 0.548 1.08E−06 5.00E−04 Btg2 12 0.945 0.9 0.203 1.08E−06 5.01E−04 Rab26os 12 0.094 0.175 −0.713 1.09E−06 5.02E−04 Runx3 12 0.194 0.31 −0.586 1.27E−06 5.77E−04 Cd47 12 0.312 0.393 −0.415 1.28E−06 5.82E−04 Fam32a 12 0.169 0.255 −0.572 1.33E−06 5.97E−04 Dusp5 12 0.563 0.43 0.426 1.53E−06 6.77E−04 Rgs2 12 0.832 0.796 0.360 1.61E−06 7.11E−04 Lgals9 12 0.156 0.244 −0.599 1.68E−06 7.36E−04 Sec11c 12 0.403 0.51 −0.377 1.84E−06 7.99E−04 Zyx 12 0.188 0.093 0.712 1.85E−06 8.02E−04 Eif4a1 12 0.671 0.585 0.213 2.01E−06 8.59E−04 Nkg7 12 0.445 0.57 −0.379 2.34E−06 9.88E−04 1500011K16Rik 12 0.135 0.157 −0.378 2.46E−06 1.03E−03 Rsbn1l 12 0.157 0.2 −0.441 2.47E−06 1.03E−03 Hmgn2 12 0.091 0.182 −0.797 2.67E−06 1.10E−03 Npm1 12 0.704 0.623 0.255 2.73E−06 1.13E−03 Srsf3 12 0.35 0.468 −0.403 2.77E−06 1.14E−03 Arpc5 12 0.507 0.386 0.280 2.97E−06 1.21E−03 Cox7a2 12 0.621 0.51 0.217 2.98E−06 1.21E−03 Cmtm6 12 0.099 0.195 −0.711 3.16E−06 1.27E−03 Asb2 12 0.219 0.131 0.449 3.36E−06 1.35E−03 Rap1a 12 0.338 0.226 0.514 3.50E−06 1.39E−03 Map1lc3a 12 0.217 0.284 −0.448 3.60E−06 1.43E−03 Ier2 12 0.663 0.747 −0.498 3.87E−06 1.52E−03 Eif3m 12 0.406 0.29 0.403 3.88E−06 1.52E−03 Hspa4 12 0.247 0.142 0.563 4.09E−06 1.60E−03 Neat1 12 0.329 0.22 0.571 4.14E−06 1.62E−03 1110004F10Rik 12 0.148 0.233 −0.584 4.25E−06 1.66E−03 Ikzf2 12 0.181 0.237 −0.586 4.85E−06 1.87E−03 Polr2m 12 0.214 0.308 −0.492 5.09E−06 1.96E−03 Itpkb 12 0.277 0.189 0.222 5.10E−06 1.96E−03 Tubb4b 12 0.086 0.157 −0.768 5.16E−06 1.98E−03 Tbck 12 0.153 0.239 −0.562 5.24E−06 2.01E−03 Vrk1 12 0.144 0.233 −0.650 5.58E−06 2.12E−03 Ago2 12 0.207 0.107 0.728 5.85E−06 2.21E−03 Tsc22d3 12 0.255 0.357 −0.557 5.98E−06 2.25E−03 Ppp1r16b 12 0.279 0.162 0.621 6.17E−06 2.32E−03 Dhx40 12 0.184 0.086 0.750 6.25E−06 2.35E−03 Cmc2 12 0.203 0.255 −0.410 6.86E−06 2.55E−03 Lcp1 12 0.314 0.206 0.393 6.99E−06 2.59E−03 Gnb2l1 12 0.76 0.701 0.257 7.40E−06 2.72E−03 Taf7 12 0.09 0.153 −0.639 7.50E−06 2.76E−03 Faah 12 0.178 0.288 −0.572 7.99E−06 2.91E−03 Trappc6b 12 0.267 0.273 −0.211 8.10E−06 2.95E−03 Nsa2 12 0.299 0.191 0.379 8.74E−06 3.16E−03 Ip6k1 12 0.083 0.157 −0.767 8.97E−06 3.23E−03 Tnfrsf1b 12 0.16 0.073 0.769 8.99E−06 3.23E−03 Sh3bgrl3 12 0.754 0.803 −0.224 9.42E−06 3.37E−03 Abhd17b 12 0.091 0.173 −0.752 9.44E−06 3.38E−03 Calm3 12 0.329 0.432 −0.423 9.69E−06 3.46E−03 Hsp90aa1 12 0.387 0.299 0.543 9.73E−06 3.48E−03 Ddx3x 12 0.433 0.308 0.376 1.06E−05 3.75E−03 Ramp1 12 0.148 0.244 −0.600 1.13E−05 3.96E−03 Ndel1 12 0.09 0.158 −0.699 1.15E−05 4.02E−03 Pebp1 12 0.255 0.342 −0.433 1.19E−05 4.13E−03 Tonsl 12 0.402 0.472 −0.339 1.30E−05 4.49E−03 Kcnn4 12 0.111 0.2 −0.711 1.35E−05 4.66E−03 Cldnd1 12 0.238 0.144 0.683 1.37E−05 4.70E−03 Ssbp2 12 0.106 0.164 −0.559 1.61E−05 5.43E−03 Arl2bp 12 0.14 0.222 −0.567 1.63E−05 5.48E−03 Tgm2 12 0.116 0.188 −0.651 1.68E−05 5.61E−03 Lsp1 12 0.285 0.353 −0.396 1.88E−05 6.19E−03 Rbm5 12 0.11 0.171 −0.602 1.91E−05 6.27E−03 Glrx 12 0.314 0.222 0.253 1.93E−05 6.33E−03 Tnfrsf18 12 0.523 0.541 −0.238 1.97E−05 6.44E−03 Arih1 12 0.136 0.171 −0.537 2.05E−05 6.70E−03 Dad1 12 0.495 0.501 −0.321 2.28E−05 7.31E−03 Hmgb2 12 0.382 0.488 −0.362 2.42E−05 7.71E−03 Zcchc10 12 0.213 0.124 0.523 2.66E−05 8.33E−03 Mkrn1 12 0.231 0.242 −0.228 2.69E−05 8.40E−03 Slc6a13 12 0.122 0.209 −0.662 2.89E−05 8.96E−03 Gpsm3 12 0.413 0.521 −0.352 2.91E−05 9.01E−03 Tmem30a 12 0.326 0.222 0.395 3.02E−05 9.33E−03 Klf3 12 0.147 0.239 −0.583 3.06E−05 9.43E−03 Cd7 12 0.075 0.155 −0.714 3.07E−05 9.44E−03 Eif3f 12 0.769 0.699 0.189 3.24E−05 9.88E−03 Alad 12 0.184 0.271 −0.500 3.57E−05 1.08E−02 Al413582 12 0.091 0.168 −0.699 3.74E−05 1.12E−02 Mat2b 12 0.111 0.2 −0.636 3.84E−05 1.15E−02 Polr2i 12 0.104 0.171 −0.674 3.93E−05 1.18E−02 Icos 12 0.281 0.386 −0.356 4.44E−05 1.31E−02 Rbms1 12 0.226 0.268 −0.300 4.91E−05 1.42E−02 Cstb 12 0.197 0.253 −0.548 4.94E−05 1.43E−02 Atp5g2 12 0.552 0.448 0.219 4.99E−05 1.44E−02 Tmem176a 12 0.199 0.293 −0.544 5.21E−05 1.49E−02 Cd27 12 0.402 0.293 0.409 5.26E−05 1.51E−02 Aprt 12 0.284 0.182 0.449 5.37E−05 1.54E−02 Lbr 12 0.148 0.211 −0.498 5.49E−05 1.57E−02 Rasa2 12 0.184 0.098 0.665 5.87E−05 1.66E−02 Ypel3 12 0.375 0.483 −0.375 6.04E−05 1.70E−02 Ndufs7 12 0.21 0.281 −0.413 6.04E−05 1.70E−02 Tapbpl 12 0.099 0.162 −0.629 6.06E−05 1.70E−02 G3bp1 12 0.239 0.317 −0.433 6.09E−05 1.71E−02 Rassf5 12 0.247 0.155 0.458 6.58E−05 1.83E−02 Zc3h15 12 0.21 0.124 0.524 6.80E−05 1.89E−02 Arpc4 12 0.39 0.301 0.362 6.96E−05 1.92E−02 Ppp1r10 12 0.11 0.164 −0.520 6.99E−05 1.93E−02 Dusp11 12 0.217 0.126 0.563 7.03E−05 1.94E−02 Cd37 12 0.332 0.231 0.368 7.13E−05 1.96E−02 Tmem14c 12 0.127 0.184 −0.538 7.16E−05 1.96E−02 Hnrnpu 12 0.281 0.193 0.435 7.90E−05 2.14E−02 Ptprc 12 0.441 0.333 0.327 8.06E−05 2.18E−02 Abracl 12 0.357 0.251 0.406 8.08E−05 2.18E−02 Cisd2 12 0.388 0.288 0.253 8.08E−05 2.18E−02 Ikzf1 12 0.226 0.322 −0.460 8.56E−05 2.28E−02 Hcst 12 0.437 0.33 0.253 8.85E−05 2.35E−02 Elovl5 12 0.32 0.242 0.152 8.97E−05 2.38E−02 Rnf166 12 0.131 0.199 −0.569 8.98E−05 2.38E−02 Bst2 12 0.086 0.16 −0.675 9.00E−05 2.38E−02 Polr2k 12 0.301 0.213 0.266 9.18E−05 2.42E−02 Med28 12 0.32 0.337 −0.202 9.36E−05 2.46E−02 Baz1a 12 0.256 0.162 0.496 9.63E−05 2.52E−02 Ifnar1 12 0.209 0.308 −0.459 9.91E−05 2.58E−02 Gpcpd1 12 0.107 0.182 −0.607 1.02E−04 2.66E−02 Zfand5 12 0.157 0.242 −0.525 1.03E−04 2.66E−02 Gbp7 12 0.115 0.199 −0.681 1.03E−04 2.67E−02 Rsrc2 12 0.24 0.299 −0.365 1.05E−04 2.72E−02 Birc3 12 0.255 0.27 −0.292 1.07E−04 2.75E−02 Elf1 12 0.378 0.397 −0.249 1.16E−04 2.95E−02 Ipmk 12 0.226 0.138 0.375 1.30E−04 3.26E−02 Tmed9 12 0.207 0.282 −0.424 1.36E−04 3.38E−02 Rab37 12 0.119 0.188 −0.598 1.42E−04 3.51E−02 Sumo3 12 0.119 0.191 −0.580 1.58E−04 3.82E−02 Pura 12 0.103 0.179 −0.588 1.59E−04 3.84E−02 Ifrd1 12 0.428 0.536 −0.210 1.60E−04 3.84E−02 Btf3 12 0.716 0.643 0.151 1.61E−04 3.88E−02 Zc3hav1 12 0.336 0.393 −0.304 1.62E−04 3.90E−02 Map1lc3b 12 0.415 0.505 −0.322 1.73E−04 4.14E−02 Bnip3l 12 0.281 0.346 −0.334 1.76E−04 4.18E−02 Timm13 12 0.244 0.324 −0.449 1.76E−04 4.19E−02 Cox17 12 0.436 0.352 0.301 1.88E−04 4.42E−02 Gpr171 12 0.24 0.151 0.538 1.92E−04 4.50E−02 Rela 12 0.122 0.193 −0.563 1.97E−04 4.60E−02 Pim3 12 0.196 0.12 0.737 2.02E−04 4.70E−02 Ccr4 12 0.166 0.087 0.675 2.09E−04 4.84E−02 Mcpt1 13 0.31 0.014 4.351 6.62E−07 3.21E−04 Mcpt2 13 0.319 0.028 3.840 8.50E−06 3.08E−03 Vps37b 13 0.168 0.514 −1.238 3.79E−05 1.14E−02 Malat1 13 0.956 1 −0.616 4.18E−05 1.24E−02 Prkca 13 0.053 0.292 −1.342 8.86E−05 2.35E−02 Mcpt4 13 0.212 0.014 2.758 1.22E−04 3.09E−02 Btg1 13 0.664 0.847 −0.619 1.41E−04 3.49E−02 Actb 13 0.991 0.986 0.469 1.42E−04 3.51E−02 Igkc 13 0.973 0.931 1.825 2.03E−04 4.72E−02 Hspa1a 14 0.313 0.039 3.041 1.60E−28 7.81E−25 Ighg1 14 0.232 0.013 3.120 3.10E−26 1.29E−22 Tnfaip2 14 0.367 0.703 −1.159 3.56E−24 1.24E−20 Hspa1b 14 0.181 0.009 3.382 1.25E−20 3.34E−17 Mcpt1 14 0.201 0.009 4.922 2.24E−19 5.41E−16 Iglc1 14 0.444 0.672 −0.883 3.05E−19 7.27E−16 Mcpt2 14 0.17 0.006 4.456 7.66E−18 1.58E−14 Btg2 14 0.977 0.985 −0.289 3.88E−17 7.46E−14 Actg1 14 1 1 0.419 6.17E−17 1.16E−13 Igkv1-135 14 0.058 0.239 −1.531 6.21E−14 8.71E−11 Zfp36 14 0.938 0.88 0.502 3.47E−12 3.96E−09 Dab2 14 0.201 0.053 1.466 9.95E−12 1.08E−08 Pilra 14 0.359 0.565 −0.586 5.41E−11 5.42E−08 Hspa8 14 0.992 0.98 0.479 6.08E−11 6.05E−08 Xlr 14 0.278 0.483 −0.746 9.04E−11 8.77E−08 Ccr1 14 0.317 0.532 −0.504 1.54E−10 1.45E−07 Fosb 14 0.564 0.746 −0.494 1.88E−10 1.74E−07 Nr4a2 14 0.483 0.68 −0.509 3.73E−10 3.27E−07 Ppia 14 0.996 0.982 0.386 3.86E−10 3.38E−07 Neat1 14 0.834 0.674 0.555 5.52E−10 4.76E−07 Jun 14 0.687 0.453 0.769 5.88E−10 5.02E−07 Id2 14 0.514 0.324 0.997 6.84E−10 5.79E−07 Hsp90aa1 14 0.714 0.562 0.738 9.01E−10 7.57E−07 Arl4c 14 0.344 0.51 −0.709 1.01E−09 8.37E−07 Srsf5 14 0.822 0.851 −0.304 1.24E−09 1.01E−06 Lgals3 14 0.892 0.913 −0.323 1.36E−09 1.09E−06 Agpat4 14 0.436 0.593 −0.568 2.57E−09 1.96E−06 Vps37b 14 0.27 0.459 −0.748 2.60E−09 1.99E−06 Il1b 14 0.749 0.891 −0.287 3.12E−09 2.33E−06 Cxcr4 14 0.456 0.223 1.002 4.01E−09 2.93E−06 S100a6 14 0.707 0.448 0.622 8.77E−09 6.07E−06 Arid5a 14 0.251 0.411 −0.640 9.84E−09 6.75E−06 Hsp90ab1 14 0.961 0.893 0.435 1.37E−08 9.20E−06 Fam110a 14 0.212 0.343 −0.815 2.00E−08 1.31E−05 Zfp36l1 14 0.629 0.468 0.618 2.43E−08 1.56E−05 Ebi3 14 0.166 0.32 −0.957 2.66E−08 1.70E−05 Fam43a 14 0.066 0.201 −1.331 2.73E−08 1.74E−05 Il1r2 14 0.618 0.781 −0.400 2.84E−08 1.81E−05 Ifi30 14 0.911 0.812 0.500 3.14E−08 1.98E−05 Gp2 14 0.089 0.225 −1.351 3.20E−08 2.01E−05 Lin54 14 0.131 0.256 −0.872 3.81E−08 2.35E−05 Igkv12-44 14 0.174 0.042 1.266 3.88E−08 2.39E−05 Napsa 14 0.942 0.858 0.442 4.76E−08 2.89E−05 Cfp 14 0.873 0.72 0.517 5.80E−08 3.45E−05 Zfand5 14 0.66 0.766 −0.528 6.61E−08 3.89E−05 Ppp1r1a 14 0.166 0.319 −0.969 7.77E−08 4.51E−05 Ifrd1 14 0.707 0.792 −0.477 7.82E−08 4.54E−05 Lacc1 14 0.104 0.215 −0.999 8.10E−08 4.67E−05 Syngr2 14 0.903 0.75 0.460 1.23E−07 6.93E−05 Rgs2 14 0.622 0.751 −0.310 1.59E−07 8.79E−05 Gapdh 14 0.946 0.904 0.411 2.77E−07 1.45E−04 Fth1 14 1 1 −0.206 4.16E−07 2.11E−04 Icam1 14 0.44 0.486 −0.618 5.47E−07 2.70E−04 Ptp4a1 14 0.595 0.696 −0.383 8.24E−07 3.90E−04 Tyrobp 14 0.961 0.971 −0.247 9.57E−07 4.47E−04 Klf4 14 0.32 0.462 −0.399 1.19E−06 5.44E−04 Hck 14 0.336 0.44 −0.460 1.48E−06 6.57E−04 S100a4 14 0.324 0.151 0.620 1.50E−06 6.67E−04 Ltc4s 14 0.124 0.252 −0.891 1.75E−06 7.63E−04 Ms4a4c 14 0.189 0.083 1.398 1.80E−06 7.85E−04 Tiparp 14 0.151 0.295 −0.903 1.82E−06 7.90E−04 Cxcl16 14 0.506 0.643 −0.436 1.87E−06 8.11E−04 Cd33 14 0.247 0.383 −0.680 1.93E−06 8.30E−04 Hepacam2 14 0.054 0.164 −1.349 2.42E−06 1.02E−03 Prdm1 14 0.042 0.16 −1.404 2.46E−06 1.03E−03 Atp5b 14 0.919 0.805 0.377 2.48E−06 1.04E−03 DynIl1 14 0.9 0.777 0.382 2.55E−06 1.06E−03 Ckb 14 0.784 0.606 0.493 2.87E−06 1.17E−03 Clec4n 14 0.247 0.413 −0.710 3.02E−06 1.23E−03 Slc25a5 14 0.938 0.88 0.383 3.32E−06 1.33E−03 Atp5c1 14 0.88 0.775 0.382 3.73E−06 1.47E−03 Plet1 14 0.293 0.438 −0.497 3.83E−06 1.51E−03 Hspd1 14 0.556 0.359 0.665 3.83E−06 1.51E−03 Atp5h 14 0.923 0.827 0.331 3.98E−06 1.56E−03 Zfp263 14 0.398 0.514 −0.502 4.63E−06 1.79E−03 AW112010 14 0.382 0.516 −0.201 4.80E−06 1.86E−03 AF251705 14 0.363 0.49 −0.523 5.32E−06 2.03E−03 Nfkbiz 14 0.436 0.556 −0.644 6.23E−06 2.34E−03 Ndel1 14 0.363 0.481 −0.517 6.57E−06 2.45E−03 Klf6 14 0.718 0.61 0.429 7.19E−06 2.66E−03 Tubb5 14 0.768 0.6 0.542 7.30E−06 2.70E−03 Spg21 14 0.486 0.567 −0.361 7.69E−06 2.82E−03 Tmem50b 14 0.29 0.413 −0.480 9.27E−06 3.33E−03 Ak2 14 0.537 0.394 0.597 1.05E−05 3.72E−03 Lair1 14 0.12 0.206 −0.772 1.12E−05 3.95E−03 Atf3 14 0.548 0.698 −0.156 1.17E−05 4.10E−03 Irf1 14 0.135 0.262 −1.045 1.19E−05 4.13E−03 Tnni2 14 0.722 0.803 −0.164 1.33E−05 4.59E−03 Sdc4 14 0.205 0.087 0.976 1.42E−05 4.85E−03 Zbtb46 14 0.22 0.094 0.654 1.43E−05 4.87E−03 Ninj1 14 0.201 0.348 −0.685 1.47E−05 5.01E−03 Tuba1b 14 0.761 0.545 0.479 1.50E−05 5.10E−03 Clta 14 0.884 0.807 0.346 1.52E−05 5.16E−03 Nlrp3 14 0.301 0.433 −0.656 1.62E−05 5.46E−03 Neurl3 14 0.479 0.597 −0.385 1.73E−05 5.76E−03 Mt1 14 0.448 0.617 −0.720 1.73E−05 5.76E−03 Tkt 14 0.672 0.499 0.513 1.91E−05 6.27E−03 Erlin1 14 0.158 0.274 −0.606 1.96E−05 6.43E−03 Dph3 14 0.336 0.416 −0.452 2.08E−05 6.76E−03 Rnaset2a 14 0.757 0.775 −0.247 2.21E−05 7.10E−03 Rasgef1b 14 0.541 0.348 0.369 2.26E−05 7.23E−03 Rhob 14 0.255 0.129 1.055 2.32E−05 7.43E−03 Iglv1 14 0.093 0.186 −0.608 2.33E−05 7.44E−03 Fgl2 14 0.452 0.571 −0.427 2.51E−05 7.94E−03 Gsg1 14 0.093 0.204 −0.956 2.58E−05 8.14E−03 Rap1b 14 0.842 0.816 −0.198 2.62E−05 8.21E−03 Npm1 14 0.958 0.906 0.310 2.79E−05 8.67E−03 Tm2d2 14 0.502 0.558 −0.386 2.87E−05 8.93E−03 Lmo2 14 0.49 0.578 −0.320 2.90E−05 9.00E−03 Pcyt2 14 0.189 0.293 −0.536 2.94E−05 9.12E−03 Runx1 14 0.274 0.379 −0.623 3.24E−05 9.89E−03 Ppp1r15a 14 0.653 0.595 −0.405 3.28E−05 1.00E−02 Sla 14 0.633 0.49 0.504 3.29E−05 1.00E−02 Crem 14 0.355 0.455 −0.536 3.78E−05 1.14E−02 Pa2g4 14 0.583 0.372 0.564 3.90E−05 1.17E−02 Vim 14 0.923 0.84 0.314 4.07E−05 1.21E−02 Dusp1 14 0.838 0.759 0.380 4.34E−05 1.28E−02 Ltb 14 0.618 0.573 0.582 4.68E−05 1.36E−02 Ctage5 14 0.498 0.6 −0.293 4.91E−05 1.42E−02 Nuak2 14 0.208 0.331 −0.566 5.87E−05 1.66E−02 Btg1 14 0.973 0.989 −0.221 5.87E−05 1.66E−02 Cxx1b 14 0.228 0.368 −0.572 6.28E−05 1.75E−02 Aif1 14 0.363 0.495 −0.259 6.54E−05 1.82E−02 Herpud1 14 0.703 0.737 −0.254 6.61E−05 1.84E−02 Ifnar1 14 0.309 0.401 −0.505 7.81E−05 2.12E−02 Atp2c1 14 0.236 0.103 0.828 7.87E−05 2.13E−02 Mmp12 14 0.097 0.214 −0.837 7.92E−05 2.14E−02 Ntpcr 14 0.166 0.274 −0.631 8.29E−05 2.22E−02 Cd209a 14 0.436 0.622 −0.315 8.53E−05 2.28E−02 Slc25a33 14 0.154 0.247 −0.661 1.07E−04 2.75E−02 Smim3 14 0.568 0.606 −0.317 1.09E−04 2.81E−02 Nfkbia 14 0.896 0.775 0.243 1.12E−04 2.87E−02 Baiap2 14 0.197 0.308 −0.610 1.16E−04 2.97E−02 Atf4 14 0.672 0.654 −0.231 1.18E−04 3.01E−02 Cd300a 14 0.571 0.635 −0.305 1.24E−04 3.14E−02 Csnk2b 14 0.591 0.435 0.458 1.26E−04 3.19E−02 Mgl2 14 0.212 0.173 0.811 1.34E−04 3.36E−02 Dnase1l3 14 0.232 0.365 −0.624 1.37E−04 3.41E−02 Arih1 14 0.32 0.396 −0.585 1.40E−04 3.46E−02 Serpinb1a 14 0.224 0.088 0.860 1.44E−04 3.55E−02 Cd7 14 0.351 0.249 0.893 1.45E−04 3.56E−02 Csf2rb 14 0.436 0.573 −0.453 1.51E−04 3.68E−02 Fndc5 14 0.151 0.252 −0.668 1.52E−04 3.70E−02 Tspan13 14 0.745 0.814 −0.189 1.56E−04 3.78E−02 Tifab 14 0.228 0.319 −0.483 1.59E−04 3.84E−02 Rnf149 14 0.625 0.7 −0.352 1.75E−04 4.16E−02 Ccl3 14 0.174 0.077 1.191 1.75E−04 4.18E−02 St13 14 0.614 0.418 0.430 1.85E−04 4.35E−02 Pglyrp1 14 0.398 0.245 0.794 1.97E−04 4.60E−02 Gsdmd 14 0.228 0.147 0.638 2.13E−04 4.94E−02 Sla 15 0.617 0.335 0.970 3.56E−64 1.15E−59 Jund 15 0.797 0.928 −0.492 2.47E−59 5.13E−55 Klf4 15 0.104 0.319 −1.292 2.04E−46 2.47E−42 Dusp1 15 0.492 0.729 −0.680 1.33E−45 1.49E−41 Btg2 15 0.779 0.897 −0.347 5.17E−33 3.27E−29 Fosb 15 0.212 0.416 −0.826 5.80E−33 3.63E−29 Pim1 15 0.406 0.576 −0.561 3.11E−26 1.29E−22 Kdm6b 15 0.315 0.496 −0.670 7.03E−25 2.62E−21 Irf7 15 0.06 0.176 −1.344 1.60E−23 5.23E−20 Junb 15 0.938 0.982 −0.162 3.33E−23 1.05E−19 Bcl2 15 0.434 0.288 0.691 1.02E−22 3.14E−19 Igkc 15 0.967 0.933 0.581 1.53E−22 4.65E−19 Hk2 15 0.158 0.283 −0.866 1.65E−21 4.65E−18 Ptpn22 15 0.473 0.305 0.582 1.12E−20 3.02E−17 Pnrc1 15 0.506 0.648 −0.383 1.20E−20 3.21E−17 Fos 15 0.627 0.765 −0.368 3.15E−20 8.25E−17 Ppp1r15a 15 0.183 0.323 −0.710 4.02E−19 9.44E−16 Phlda1 15 0.157 0.287 −0.769 1.45E−18 3.24E−15 Srgn 15 0.568 0.422 0.478 7.07E−18 1.46E−14 Zfp36l2 15 0.364 0.219 0.671 8.48E−18 1.74E−14 Prr7 15 0.08 0.19 −0.972 1.57E−17 3.13E−14 Rsrp1 15 0.299 0.421 −0.508 2.68E−17 5.24E−14 Igha 15 0.905 0.83 0.540 5.48E−16 9.49E−13 Iglc1 15 0.104 0.217 −0.765 6.61E−16 1.14E−12 Hsp90aa1 15 0.283 0.163 0.761 7.31E−16 1.25E−12 Vps37b 15 0.387 0.497 −0.461 8.21E−16 1.39E−12 Emb 15 0.563 0.676 −0.344 1.93E−15 3.16E−12 Cxcr6 15 0.651 0.512 0.363 2.72E−15 4.45E−12 Klrk1 15 0.319 0.446 −0.502 2.95E−15 4.79E−12 Slc7a6os 15 0.074 0.16 −0.957 6.70E−15 1.04E−11 Ifrd1 15 0.195 0.304 −0.605 1.36E−14 2.05E−11 Tgif1 15 0.263 0.391 −0.476 4.15E−14 5.91E−11 Tnfaip3 15 0.31 0.44 −0.457 7.00E−14 9.75E−11 Rgcc 15 0.238 0.14 0.905 9.36E−14 1.28E−10 Pabpc1 15 0.486 0.574 −0.348 2.94E−13 3.80E−10 BC031181 15 0.293 0.376 −0.437 3.22E−13 4.13E−10 Il22 15 0.119 0.211 −1.132 4.47E−13 5.66E−10 Ikzf2 15 0.26 0.335 −0.468 2.23E−12 2.64E−09 Rasl11a 15 0.225 0.13 0.776 3.43E−12 3.93E−09 4930523C07Rik 15 0.196 0.284 −0.548 5.47E−12 6.12E−09 Cd69 15 0.371 0.49 −0.392 5.61E−12 6.27E−09 Dok1 15 0.18 0.086 0.749 1.82E−11 1.93E−08 Actg1 15 0.675 0.591 0.327 1.45E−10 1.37E−07 Sqstm1 15 0.205 0.274 −0.446 1.83E−10 1.70E−07 Gimap1 15 0.403 0.287 0.434 2.95E−10 2.66E−07 Ptp4a2 15 0.31 0.409 −0.387 3.33E−10 2.97E−07 Maff 15 0.382 0.456 −0.358 3.93E−10 3.42E−07 Ubb 15 0.85 0.837 −0.164 1.26E−09 1.02E−06 Btg1 15 0.778 0.832 −0.196 1.30E−09 1.04E−06 Icos 15 0.169 0.25 −0.490 4.08 E−09 2.98E−06 Fcer1g 15 0.714 0.606 0.250 5.49E−09 3.93E−06 Slc3a2 15 0.308 0.21 0.482 6.20E−09 4.42E−06 Il2rg 15 0.43 0.508 −0.294 7.60E−09 5.32E−06 Uhrf2 15 0.335 0.429 −0.336 8.61E−09 5.97E−06 Sepp1 15 0.639 0.689 −0.213 1.11E−08 7.59E−06 Nfkb1 15 0.162 0.247 −0.489 1.53E−08 1.02E−05 Sdhaf1 15 0.239 0.147 0.471 1.57E−08 1.05E−05 Txk 15 0.336 0.425 −0.354 1.83E−08 1.21E−05 Gimap5 15 0.277 0.184 0.508 1.85E−08 1.22E−05 Mmd 15 0.206 0.122 0.613 2.05E−08 1.34E−05 Gatad1 15 0.098 0.151 −0.587 3.89E−08 2.39E−05 Gpr157 15 0.161 0.086 0.658 3.97E−08 2.44E−05 Ncoa7 15 0.388 0.281 0.372 4.04E−08 2.47E−05 Nfkbia 15 0.488 0.583 −0.217 4.79E−08 2.89E−05 Bhlhe40 15 0.428 0.512 −0.275 5.09E−08 3.06E−05 Zc3h12a 15 0.146 0.215 −0.484 8.73E−08 5.01E−05 Tmem176a 15 0.554 0.465 0.304 1.11E−07 6.27E−05 Ptp4a1 15 0.152 0.202 −0.423 1.23E−07 6.90E−05 Ffar2 15 0.307 0.219 0.436 1.42E−07 7.92E−05 Fam110a 15 0.128 0.195 −0.569 2.16E−07 1.16E−04 Saraf 15 0.267 0.331 −0.335 2.39E−07 1.27E−04 Gpr171 15 0.193 0.119 0.561 3.35E−07 1.73E−04 Gem 15 0.442 0.498 −0.291 6.28E−07 3.06E−04 Zfp36l1 15 0.797 0.734 0.223 7.29E−07 3.48E−04 Tgoln1 15 0.171 0.22 −0.390 7.70E−07 3.66E−04 Abhd2 15 0.26 0.351 −0.399 8.29E−07 3.92E−04 Clcn3 15 0.159 0.222 −0.424 1.02E−06 4.72E−04 Lgals3 15 0.529 0.572 −0.219 1.19E−06 5.41E−04 H2-K1 15 0.593 0.622 −0.181 1.25E−06 5.67E−04 Nr4a3 15 0.176 0.106 0.618 1.38E−06 6.15E−04 Ahr 15 0.183 0.111 0.510 1.82E−06 7.92E−04 Tmem176b 15 0.612 0.517 0.252 2.19E−06 9.28E−04 Nfkbiz 15 0.183 0.244 −0.394 2.22E−06 9.41E−04 Litaf 15 0.247 0.165 0.430 2.65E−06 1.09E−03 Gimap9 15 0.158 0.095 0.576 2.96E−06 1.21E−03 Clk1 15 0.296 0.364 −0.309 3.26E−06 1.31E−03 B930036N10Rik 15 0.107 0.153 −0.603 3.47E−06 1.39E−03 Mast4 15 0.166 0.219 −0.371 3.57E−06 1.42E−03 Gltscr2 15 0.354 0.408 −0.254 4.91E−06 1.89E−03 Slc25a3 15 0.224 0.286 −0.333 5.24E−06 2.01E−03 Asb2 15 0.183 0.238 −0.386 6.86E−06 2.55E−03 Orai1 15 0.155 0.093 0.486 8.96E−06 3.23E−03 Ubald2 15 0.13 0.173 −0.455 9.14E−06 3.29E−03 Pcbp2 15 0.361 0.419 −0.234 9.64E−06 3.45E−03 Fam107b 15 0.186 0.118 0.509 1.09E−05 3.83E−03 Xlr4c 15 0.146 0.195 −0.381 1.18E−05 4.12E−03 Srsf5 15 0.48 0.538 −0.179 1.23E−05 4.28E−03 AW112010 15 0.776 0.706 0.183 1.26E−05 4.35E−03 Dusp5 15 0.329 0.408 −0.257 1.41E−05 4.81E−03 Hspe1 15 0.253 0.178 0.384 1.69E−05 5.65E−03 Mapkapk2 15 0.162 0.1 0.528 1.74E−05 5.78E−03 Cd7 15 0.397 0.314 0.305 1.79E−05 5.93E−03 Ccnl1 15 0.2 0.252 −0.331 1.98E−05 6.48E−03 Nfkbid 15 0.15 0.212 −0.427 2.15E−05 6.95E−03 Prdx2 15 0.165 0.104 0.451 2.23E−05 7.14E−03 Tnfsf11 15 0.204 0.135 0.422 2.38E−05 7.60E−03 Ybx1 15 0.43 0.493 −0.206 2.58E−05 8.13E−03 Actb 15 0.881 0.917 −0.206 3.83E−05 1.15E−02 Samsn1 15 0.334 0.252 0.264 4.01E−05 1.19E−02 Hspa8 15 0.619 0.566 0.228 4.14E−05 1.23E−02 Lcp1 15 0.399 0.321 0.335 4.25E−05 1.26E−02 Dhrs3 15 0.224 0.155 0.385 4.92E−05 1.42E−02 Kit 15 0.295 0.337 −0.236 5.11E−05 1.47E−02 Cox17 15 0.349 0.282 0.293 5.34E−05 1.53E−02 Ppm1h 15 0.101 0.151 −0.498 6.23E−05 1.75E−02 Gna13 15 0.203 0.254 −0.319 6.38E−05 1.78E−02 Egr1 15 0.17 0.112 0.477 6.39E−05 1.78E−02 Ccng2 15 0.143 0.194 −0.396 7.04E−05 1.94E−02 Tmem59 15 0.368 0.286 0.266 7.78E−05 2.11E−02 Nabp1 15 0.355 0.422 −0.242 8.55E−05 2.28E−02 Pfdn5 15 0.603 0.523 0.204 9.03E−05 2.39E−02 Selplg 15 0.504 0.433 0.275 9.18E−05 2.42E−02 H2-Q7 15 0.13 0.166 −0.354 9.97E−05 2.59E−02 Spop 15 0.14 0.191 −0.355 1.04E−04 2.70E−02 Serp1 15 0.224 0.275 −0.272 1.06E−04 2.75E−02 Ptprcap 15 0.327 0.252 0.323 1.08E−04 2.77E−02 Ier5 15 0.25 0.313 −0.262 1.23E−04 3.12E−02 Calm2 15 0.41 0.444 −0.186 1.25E−04 3.16E−02 Coq10b 15 0.192 0.255 −0.308 1.35E−04 3.37E−02 Kcnk1 15 0.22 0.158 0.396 1.37E−04 3.40E−02 Zap70 15 0.243 0.182 0.350 1.38E−04 3.43E−02 C4b 15 0.227 0.161 0.410 1.51E−04 3.68E−02 Rbm3 15 0.414 0.458 −0.186 1.53E−04 3.72E−02 Eif4a1 15 0.404 0.437 −0.177 1.56E−04 3.77E−02 Tmed2 15 0.296 0.348 −0.228 1.56E−04 3.78E−02 Hsp90ab1 15 0.363 0.31 0.316 1.84E−04 4.35E−02 Dph3 15 0.137 0.175 −0.315 2.00E−04 4.67E−02 Gm2a 15 0.226 0.279 −0.336 2.01E−04 4.69E−02 Rsrp1 16 0.328 0.676 −1.081 6.67E−08 3.91E−05 Btg2 16 0.681 0.901 −0.858 8.99E−08 5.14E−05 Traf1 16 0.138 0.341 −0.795 1.19E−04 3.04E−02 H2-D1 16 0.94 0.951 −0.358 1.71E−04 4.10E−02 Pnrc1 16 0.25 0.577 −0.914 1.92E−04 4.50E−02 Ifngr1 17 0.267 0.857 −1.121 1.01E−04 2.62E−02 Cd28 19 0.588 0.458 −0.588 2.92E−06 1.19E−03 Cd74 19 0.118 0.5 −0.250 9.75E−06 3.48E−03 Trbc1 19 0.706 0.333 2.193 1.69E−05 5.65E−03 Igkv1-135 2 0.004 0.175 −3.217 6.34E−08 3.74E−05 Fosl2 2 0.032 0.175 −1.947 2.21E−05 7.10E−03 Nr4a2 2 0.035 0.175 −2.145 4.72E−05 1.38E−02 Gapdh 2 0.603 0.54 0.677 1.04E−04 2.69E−02 Txnip 20 0.205 0.582 −1.669 1.31E−184 7.60E−179 Mcpt1 20 0.252 0.02 2.731 7.68E−163 2.23E−157 Igkv1-135 20 0.091 0.365 −1.523 1.15E−110 1.67E−105 Mcpt2 20 0.159 0.007 3.011 5.12E−109 5.96E−104 Ighg1 20 0.381 0.13 2.328 2.92E−108 2.83E−103 Igkv12-44 20 0.243 0.072 1.451 3.22E−88 2.68E−83 Ifi27l2a 20 0.354 0.622 −1.074 1.90E−84 1.10E−79 Ubald2 20 0.484 0.734 −0.802 1.92E−82 1.01E−77 Cacna1s 20 0.419 0.695 −0.890 5.33E−79 2.59E−74 Sepp1 20 0.235 0.501 −0.909 6.73E−77 3.01E−72 Pdia6 20 0.767 0.833 0.189 5.39E−64 1.65E−59 Rilpl2 20 0.48 0.686 −0.725 2.17E−63 6.31E−59 Iglc2 20 0.892 0.96 −0.559 1.71E−62 4.32E−58 Dusp5 20 0.402 0.65 −0.790 8.28E−62 1.93E−57 Fosb 20 0.527 0.761 −0.671 5.45E−60 1.22E−55 Serp1 20 0.88 0.975 −0.376 5.65E−60 1.22E−55 Grasp 20 0.091 0.269 −1.223 1.80E−55 3.37E−51 Ccr10 20 0.711 0.681 0.296 5.19E−55 9.15E−51 Ddit4 20 0.174 0.058 1.315 2.50E−53 4.15E−49 Malat1 20 0.976 0.99 −0.406 9.30E−53 1.46E−48 Pim1 20 0.767 0.916 −0.469 5.00E−49 6.93E−45 Hsp90b1 20 0.896 0.96 0.166 1.25E−46 1.55E−42 Trf 20 0.566 0.779 −0.516 3.72E−46 4.32E−42 Ifi27 20 0.102 0.273 −1.059 2.93E−45 3.22E−41 Odc1 20 0.297 0.485 −0.890 3.02E−44 3.14E−40 Xbp1 20 0.862 0.962 −0.460 3.30E−44 3.37E−40 Rgcc 20 0.18 0.372 −0.945 5.83E−44 5.85E−40 Nrip1 20 0.281 0.507 −0.727 3.65E−42 3.48E−38 Cd274 20 0.175 0.355 −0.938 8.53E−42 8.00E−38 Eif1 20 0.902 0.979 −0.352 3.22E−41 2.93E−37 Chac1 20 0.042 0.165 −1.345 4.88E−40 4.24E−36 Gmfg 20 0.204 0.113 0.842 2.80E−39 2.36E−35 Ly6a 20 0.052 0.173 −1.632 1.26E−38 1.02E−34 Pycard 20 0.669 0.725 0.345 6.97E−38 5.48E−34 Iglc1 20 0.831 0.956 −0.986 8.37E−38 6.50E−34 Actg1 20 0.624 0.633 0.359 2.29E−37 1.73E−33 Lmna 20 0.094 0.233 −1.156 5.66E−37 4.22E−33 Mdh1 20 0.535 0.505 0.218 3.80E−35 2.63E−31 Trib1 20 0.3 0.494 −0.641 4.86E−35 3.33E−31 Coro1a 20 0.534 0.513 0.294 7.57E−35 5.12E−31 Fth1 20 0.835 0.96 −0.389 1.87E−34 1.25E−30 Ifitm3 20 0.221 0.396 −0.837 1.27E−32 7.64E−29 Ly6d 20 0.307 0.499 −0.610 1.21E−31 6.96E−28 Cdc42 20 0.601 0.587 0.173 1.82E−31 1.03E−27 Ahnak 20 0.13 0.274 −0.857 2.40E−31 1.34E−27 Clic4 20 0.322 0.513 −0.601 6.74E−31 3.74E−27 Iglc3 20 0.8 0.938 −1.260 7.73E−31 4.20E−27 Zfp36l2 20 0.37 0.292 0.651 1.30E−30 6.93E−27 Mtdh 20 0.65 0.847 −0.428 1.89E−30 1.00E−26 Atf4 20 0.537 0.711 −0.482 6.56E−30 3.32E−26 Rpn1 20 0.548 0.565 0.164 3.86E−29 1.92E−25 Hsp90aa1 20 0.371 0.343 0.506 4.23E−28 2.02E−24 Fkbp11 20 0.542 0.549 0.240 4.27E−28 2.02E−24 Pkm 20 0.53 0.547 0.177 4.79E−28 2.23E−24 Txndc5 20 0.912 0.977 −0.302 1.02E−27 4.58E−24 5031425E22Rik 20 0.319 0.487 −0.660 1.51E−27 6.75E−24 Ralgds 20 0.079 0.195 −0.829 1.84E−26 7.80E−23 Vps37b 20 0.078 0.196 −0.936 2.42E−26 1.02E−22 Zfp706 20 0.689 0.852 −0.388 3.43E−26 1.41E−22 Eif4ebp1 20 0.149 0.279 −0.838 4.71E−26 1.92E−22 Il10rb 20 0.181 0.316 −0.652 5.08E−26 2.05E−22 Mcl1 20 0.505 0.683 −0.512 7.71E−26 3.05E−22 Ifnar2 20 0.216 0.359 −0.632 1.85E−25 7.18E−22 Tmem154 20 0.256 0.429 −0.595 2.32E−25 8.89E−22 Eno1 20 0.278 0.22 0.377 6.47E−25 2.43E−21 Ccser2 20 0.199 0.344 −0.660 1.25E−24 4.54E−21 Gm 20 0.2 0.373 −0.547 1.41E−24 5.09E−21 Taldo1 20 0.497 0.488 0.159 1.59E−24 5.73E−21 Ost4 20 0.756 0.895 −0.347 2.35E−24 8.39E−21 Ifi30 20 0.201 0.133 0.502 2.46E−24 8.72E−21 Bst2 20 0.546 0.71 −0.454 2.90E−24 1.02E−20 Igkv3-7 20 0.183 0.1 0.872 3.30E−24 1.16E−20 Slc7a5 20 0.125 0.259 −0.798 8.26E−24 2.83E−20 Kcnmb4os2 20 0.224 0.382 −0.548 1.35E−23 4.47E−20 Ptprcap 20 0.545 0.528 0.192 1.47E−23 4.82E−20 Ifnar1 20 0.139 0.27 −0.725 1.83E−23 5.92E−20 Plac8 20 0.119 0.252 −0.724 2.61E−23 8.29E−20 Ly6c1 20 0.858 0.94 −0.411 3.92E−23 1.22E−19 Tnfrsf13b 20 0.562 0.75 −0.406 6.67E−23 2.07E−19 Uqcrc1 20 0.477 0.459 0.175 2.42E−22 7.19E−19 Gimap5 20 0.306 0.461 −0.561 3.33E−22 9.85E−19 Ssbp1 20 0.254 0.378 −0.558 3.79E−22 1.11E−18 Prg2 20 0.147 0.293 −0.555 3.92E−22 1.15E−18 Peli1 20 0.273 0.423 −0.593 4.10E−22 1.19E−18 Ftl1 20 0.942 0.991 −0.270 4.52E−22 1.31E−18 Limd2 20 0.509 0.685 −0.439 1.09E−21 3.12E−18 Bckdk 20 0.399 0.589 −0.476 1.60E−21 4.51E−18 Nfkbia 20 0.691 0.829 −0.460 6.97E−21 1.90E−17 Saraf 20 0.421 0.579 −0.444 1.89E−20 4.99E−17 Ly6c2 20 0.909 0.967 −0.370 2.15E−20 5.67E−17 Fxyd5 20 0.499 0.468 0.193 3.27E−20 8.49E−17 P2rx4 20 0.136 0.263 −0.715 4.18E−20 1.07E−16 Cd69 20 0.557 0.755 −0.375 5.37E−20 1.37E−16 Ppp1r15a 20 0.372 0.508 −0.541 5.72E−20 1.45E−16 Ifrd1 20 0.202 0.351 −0.601 7.49E−20 1.89E−16 Itgb7 20 0.507 0.503 0.210 8.04E−20 2.02E−16 Irf7 20 0.075 0.173 −0.969 1.00E−19 2.49E−16 Clic1 20 0.367 0.339 0.257 1.35E−19 3.28E−16 Sepw1 20 0.835 0.942 −0.289 3.77E−19 8.92E−16 Cirbp 20 0.334 0.499 −0.454 3.82E−19 9.01E−16 Skil 20 0.354 0.516 −0.443 5.85E−19 1.35E−15 Nfkb2 20 0.123 0.229 −0.681 1.60E−18 3.54E−15 Tmed2 20 0.786 0.936 −0.322 2.01E−18 4.41E−15 Mthfd2 20 0.139 0.262 −0.725 2.09E−18 4.56E−15 Trp53i11 20 0.271 0.421 −0.527 2.52E−18 5.43E−15 Cybb 20 0.421 0.581 −0.445 5.99E−18 1.25E−14 Cebpg 20 0.17 0.27 −0.597 9.54E−18 1.95E−14 Hist1h2ap 20 0.165 0.13 0.704 1.11E−17 2.24E−14 Ccng2 20 0.185 0.309 −0.592 1.30E−17 2.60E−14 S100a10 20 0.355 0.321 0.361 1.83E−17 3.60E−14 Ctss 20 0.493 0.658 −0.370 3.29E−17 6.36E−14 Pou2f1 20 0.103 0.207 −0.733 4.59E−17 8.75E−14 Dusp4 20 0.119 0.217 −0.870 5.91E−17 1.11E−13 Rrad 20 0.165 0.261 −0.972 6.96E−17 1.29E−13 Sdc1 20 0.726 0.857 −0.341 8.01E−17 1.47E−13 Pcbp2 20 0.585 0.758 −0.388 8.14E−17 1.49E−13 Junb 20 0.514 0.686 −0.400 1.46E−16 2.64E−13 Cd48 20 0.319 0.286 0.218 1.91E−16 3.41E−13 Rbm7 20 0.299 0.421 −0.465 1.98E−16 3.53E−13 Vim 20 0.254 0.215 0.525 2.46E−16 4.37E−13 Zbp1 20 0.302 0.433 −0.472 2.67E−16 4.71E−13 Prkcsh 20 0.267 0.223 0.244 3.33E−16 5.88E−13 Polr2m 20 0.258 0.41 −0.544 5.09E−16 8.89E−13 Crem 20 0.186 0.303 −0.549 5.43E−16 9.43E−13 Serpina3g 20 0.078 0.171 −0.805 6.85E−16 1.17E−12 Cd79a 20 0.83 0.935 −0.268 1.69E−15 2.81E−12 Pink1 20 0.29 0.43 −0.454 1.80E−15 2.97E−12 Kctd12 20 0.185 0.307 −0.609 1.88E−15 3.10E−12 Ypel3 20 0.394 0.562 −0.391 2.91E−15 4.72E−12 Elf1 20 0.292 0.404 −0.469 3.95E−15 6.32E−12 Smap2 20 0.254 0.397 −0.512 4.54E−15 7.20E−12 Jtb 20 0.456 0.61 −0.370 4.65E−15 7.33E−12 Tram1 20 0.708 0.86 −0.340 5.23E−15 8.18E−12 A530040E14Rik 20 0.465 0.619 −0.421 6.80E−15 1.05E−11 P2ry10 20 0.108 0.206 −0.645 8.23E−15 1.27E−11 Pls1 20 0.14 0.243 −0.573 1.11E−14 1.70E−11 Srsf9 20 0.453 0.606 −0.409 1.32E−14 2.00E−11 Hmgn3 20 0.373 0.502 −0.399 1.82E−14 2.72E−11 AC125149.3 20 0.449 0.624 −0.432 1.82E−14 2.72E−11 Idh3g 20 0.312 0.286 0.185 2.25E−14 3.35E−11 H3f3b 20 0.873 0.976 −0.345 2.30E−14 3.41E−11 Pqlc3 20 0.48 0.629 −0.390 2.65E−14 3.89E−11 Psmc4 20 0.269 0.232 0.193 2.69E−14 3.94E−11 Tyrobp 20 0.144 0.252 −0.592 2.99E−14 4.36E−11 Hist1h4i 20 0.293 0.249 0.394 3.01E−14 4.38E−11 Filip1l 20 0.121 0.221 −0.625 3.48E−14 5.03E−11 B2m 20 0.965 0.984 −0.278 3.56E−14 5.13E−11 Irf8 20 0.087 0.173 −0.833 3.80E−14 5.44E−11 D16Ertd472e 20 0.142 0.24 −0.595 4.87E−14 6.90E−11 Dyrk3 20 0.088 0.166 −0.777 5.10E−14 7.20E−11 Jund 20 0.875 0.978 −0.243 5.84E−14 8.21E−11 AW112010 20 0.287 0.443 −0.396 6.42E−14 8.98E−11 Jchain 20 0.993 0.991 −0.214 9.15E−14 1.25E−10 Ormdl3 20 0.156 0.265 −0.550 9.16E−14 1.25E−10 Nacc2 20 0.264 0.41 −0.454 1.05E−13 1.42E−10 Ldha 20 0.344 0.331 0.166 1.09E−13 1.47E−10 Al413582 20 0.283 0.407 −0.451 1.47E−13 1.96E−10 Agpat4 20 0.174 0.281 −0.579 1.50E−13 2.00E−10 Slc39a7 20 0.465 0.624 −0.389 1.86E−13 2.46E−10 Cdv3 20 0.565 0.702 −0.359 2.36E−13 3.10E−10 Tgif1 20 0.109 0.199 −0.659 2.49E−13 3.27E−10 Bcl10 20 0.251 0.368 −0.464 2.56E−13 3.34E−10 Arid5a 20 0.079 0.154 −0.725 2.85E−13 3.70E−10 Shisa5 20 0.824 0.936 −0.287 2.91E−13 3.77E−10 Rheb 20 0.409 0.547 −0.420 3.02E−13 3.89E−10 Ring1 20 0.117 0.214 −0.648 3.68E−13 4.70E−10 Med25 20 0.126 0.19 −0.712 4.62E−13 5.83E−10 Aes 20 0.463 0.62 −0.371 7.23E−13 8.99E−10 Hmgb2 20 0.272 0.307 0.336 1.06E−12 1.30E−09 Tmem184b 20 0.093 0.18 −0.634 1.12E−12 1.37E−09 Insl6 20 0.186 0.292 −0.482 1.28E−12 1.56E−09 Siah2 20 0.235 0.358 −0.461 1.29E−12 1.57E−09 Reep3 20 0.132 0.235 −0.574 1.35E−12 1.63E−09 Ergic1 20 0.334 0.485 −0.461 1.61E−12 1.94E−09 Sumo3 20 0.206 0.327 −0.531 1.95E−12 2.33E−09 Azin1 20 0.33 0.473 −0.426 2.08E−12 2.47E−09 Psmc2 20 0.24 0.203 0.230 2.25E−12 2.67E−09 Pnrc1 20 0.607 0.767 −0.334 2.26E−12 2.67E−09 Rab3d 20 0.162 0.267 −0.517 2.34E−12 2.75E−09 Cd93 20 0.137 0.24 −0.527 2.87E−12 3.35E−09 Gramd3 20 0.147 0.249 −0.495 2.88E−12 3.36E−09 Lbh 20 0.177 0.283 −0.502 2.97E−12 3.45E−09 Arl4a 20 0.124 0.221 −0.585 2.98E−12 3.46E−09 Ctso 20 0.212 0.331 −0.480 3.32E−12 3.82E−09 Ier5 20 0.515 0.665 −0.365 3.43E−12 3.93E−09 VgIl4 20 0.142 0.238 −0.587 5.08E−12 5.73E−09 Map7d1 20 0.203 0.313 −0.465 5.28E−12 5.94E−09 Usf1 20 0.138 0.226 −0.559 5.34E−12 6.00E−09 Tmem123 20 0.52 0.686 −0.333 5.40E−12 6.05E−09 Ctsa 20 0.263 0.225 0.220 6.34E−12 7.05E−09 Ginm1 20 0.181 0.281 −0.479 6.54E−12 7.26E−09 Tmsb4x 20 0.9 0.945 0.168 7.61E−12 8.41E−09 Vmp1 20 0.346 0.481 −0.432 8.85E−12 9.68E−09 Dnajb9 20 0.487 0.653 −0.360 9.38E−12 1.02E−08 Man1b1 20 0.334 0.478 −0.422 9.99E−12 1.08E−08 Rassf3 20 0.109 0.178 −0.553 1.12E−11 1.21E−08 Tpst1 20 0.178 0.288 −0.523 1.14E−11 1.23E−08 Copb2 20 0.267 0.24 0.214 1.25E−11 1.34E−08 Ube2d3 20 0.651 0.818 −0.333 1.48E−11 1.58E−08 Cnn2 20 0.202 0.175 0.293 1.51E−11 1.61E−08 Eif4a2 20 0.459 0.616 −0.370 1.53E−11 1.62E−08 Tmem192 20 0.249 0.372 −0.444 1.96E−11 2.07E−08 Sec11c 20 0.898 0.972 −0.233 2.74E−11 2.86E−08 Casp4 20 0.202 0.309 −0.472 2.87E−11 2.97E−08 St6gal1 20 0.583 0.738 −0.339 3.02E−11 3.11E−08 Kdm2b 20 0.1 0.186 −0.646 3.10E−11 3.19E−08 Ckb 20 0.179 0.141 0.331 3.72E−11 3.81E−08 Scand1 20 0.513 0.651 −0.340 4.15E−11 4.22E−08 Rab28 20 0.124 0.213 −0.548 4.19E−11 4.26E−08 Bmi1 20 0.095 0.179 −0.579 4.52E−11 4.57E−08 Cers2 20 0.319 0.443 −0.412 4.80E−11 4.82E−08 Sdha 20 0.255 0.22 0.151 5.60E−11 5.59E−08 Vapa 20 0.403 0.547 −0.378 6.08E−11 6.05E−08 Stoml1 20 0.091 0.163 −0.634 6.48E−11 6.43E−08 Idnk 20 0.277 0.393 −0.387 7.20E−11 7.11E−08 Tmem219 20 0.309 0.44 −0.399 8.75E−11 8.51E−08 Commd3 20 0.317 0.448 −0.400 9.50E−11 9.18E−08 Kif5b 20 0.356 0.5 −0.423 1.17E−10 1.12E−07 Klhdc1 20 0.083 0.154 −0.601 1.81E−10 1.69E−07 Pml 20 0.184 0.284 −0.515 1.85E−10 1.72E−07 Tcf4 20 0.42 0.551 −0.385 1.87E−10 1.74E−07 Tram2 20 0.287 0.426 −0.395 2.12E−10 1.95E−07 Ppp1r11 20 0.404 0.535 −0.368 2.34E−10 2.14E−07 Smim19 20 0.123 0.201 −0.511 2.40E−10 2.19E−07 Limd1 20 0.164 0.256 −0.529 3.52E−10 3.13E−07 Cd200 20 0.428 0.595 −0.279 3.54E−10 3.14E−07 PigP 20 0.142 0.217 −0.492 3.88E−10 3.38E−07 A630072M18Rik 20 0.085 0.16 −0.686 4.35E−10 3.77E−07 Pabpc1 20 0.708 0.867 −0.300 5.39E−10 4.66E−07 Orai1 20 0.151 0.233 −0.466 8.79E−10 7.39E−07 Spg21 20 0.176 0.276 −0.489 9.10E−10 7.62E−07 Actb 20 0.953 0.968 0.250 9.34E−10 7.80E−07 Ddrgk1 20 0.533 0.672 −0.321 9.80E−10 8.16E−07 Cebpb 20 0.27 0.382 −0.374 1.06E−09 8.76E−07 Hiat1 20 0.132 0.204 −0.490 1.06E−09 8.76E−07 Ubxn6 20 0.201 0.296 −0.426 1.07E−09 8.78E−07 Fam214a 20 0.228 0.346 −0.415 1.10E−09 9.05E−07 Stub1 20 0.22 0.33 −0.454 1.33E−09 1.07E−06 Chtf8 20 0.09 0.154 −0.560 1.41E−09 1.13E−06 Fcer1g 20 0.293 0.407 −0.335 1.51E−09 1.21E−06 Plbd2 20 0.156 0.251 −0.479 1.69E−09 1.34E−06 Drap1 20 0.285 0.392 −0.390 1.74E−09 1.38E−06 1500011B03Rik 20 0.166 0.257 −0.506 1.75E−09 1.38E−06 Gpx4 20 0.626 0.759 −0.299 1.94E−09 1.52E−06 Gng5 20 0.572 0.709 −0.307 1.94E−09 1.52E−06 Bcl2l11 20 0.269 0.369 −0.489 1.96E−09 1.53E−06 Cflar 20 0.222 0.328 −0.458 1.98E−09 1.55E−06 Ddx39 20 0.169 0.142 0.237 2.16E−09 1.68E−06 Tspan13 20 0.744 0.886 −0.288 2.17E−09 1.68E−06 Ppp2r5a 20 0.332 0.453 −0.392 2.37E−09 1.84E−06 Lrrfip2 20 0.091 0.159 −0.580 2.38E−09 1.84E−06 EIl2 20 0.543 0.697 −0.344 2.41E−09 1.85E−06 Btg3 20 0.251 0.358 −0.417 2.42E−09 1.86E−06 Scamp3 20 0.126 0.209 −0.532 2.46E−09 1.89E−06 Ptp4a1 20 0.208 0.313 −0.448 2.76E−09 2.10E−06 Mettl1 20 0.278 0.383 −0.404 2.85E−09 2.16E−06 Relb 20 0.127 0.203 −0.501 2.90E−09 2.19E−06 Mxd1 20 0.126 0.207 −0.515 3.08E−09 2.31E−06 Bcl2 20 0.221 0.336 −0.342 3.47E−09 2.58E−06 Akirin1 20 0.293 0.408 −0.379 3.60E−09 2.67E−06 4930453N24Rik 20 0.111 0.159 −0.464 3.66E−09 2.70E−06 Nxf1 20 0.286 0.401 −0.389 4.18E−09 3.05E−06 Fam174a 20 0.181 0.274 −0.391 4.23E−09 3.07E−06 Rad23a 20 0.147 0.245 −0.460 4.23E−09 3.07E−06 Ptp4a2 20 0.666 0.82 −0.304 4.54E−09 3.29E−06 Rad23b 20 0.353 0.486 −0.376 4.99E−09 3.60E−06 Arrdc3 20 0.136 0.226 −0.504 5.05E−09 3.63E−06 Tsg101 20 0.193 0.297 −0.456 5.65E−09 4.04E−06 Blmh 20 0.177 0.148 0.173 6.02E−09 4.29E−06 H2-T22 20 0.165 0.249 −0.450 6.32E−09 4.49E−06 Uqcc2 20 0.365 0.504 −0.382 6.66E−09 4.73E−06 Tmem251 20 0.139 0.225 −0.487 6.79E−09 4.80E−06 Tor2a 20 0.313 0.425 −0.372 6.85E−09 4.84E−06 Sel1l 20 0.473 0.608 −0.346 7.02E−09 4.95E−06 Tmc6 20 0.169 0.247 −0.401 7.42E−09 5.22E−06 Psip1 20 0.341 0.469 −0.395 7.44E−09 5.22E−06 Btg1 20 0.208 0.313 −0.369 7.53E−09 5.28E−06 Gimap1 20 0.649 0.789 −0.305 7.54E−09 5.28E−06 Tuba1b 20 0.209 0.225 0.341 8.54E−09 5.93E−06 Cib2 20 0.126 0.195 −0.474 9.05E−09 6.24E−06 Tapbpl 20 0.276 0.4 −0.376 9.07E−09 6.25E−06 Smarca2 20 0.113 0.187 −0.560 9.48E−09 6.51E−06 Wnk1 20 0.26 0.357 −0.421 9.80E−09 6.73E−06 H2afj 20 0.583 0.73 −0.310 1.01E−08 6.88E−06 Ikzf3 20 0.167 0.263 −0.464 1.41E−08 9.43E−06 Zc3h14 20 0.133 0.218 −0.523 1.51E−08 1.01E−05 Lrp10 20 0.336 0.461 −0.368 1.73E−08 1.15E−05 Foxp1 20 0.218 0.313 −0.425 1.98E−08 1.30E−05 Rap1b 20 0.479 0.617 −0.343 2.06E−08 1.34E−05 Nfkbie 20 0.089 0.159 −0.540 2.07E−08 1.35E−05 Pkig 20 0.578 0.733 −0.314 2.08E−08 1.36E−05 Laptm5 20 0.422 0.56 −0.343 2.13E−08 1.39E−05 Mast4 20 0.129 0.2 −0.492 2.15E−08 1.40E−05 Cd83 20 0.106 0.184 −0.492 2.47E−08 1.59E−05 Dnajc7 20 0.582 0.713 −0.312 2.69E−08 1.72E−05 Gnl3 20 0.142 0.237 −0.503 2.92E−08 1.85E−05 Nudt18 20 0.252 0.35 −0.398 2.96E−08 1.87E−05 Rftn1 20 0.378 0.5 −0.347 3.03E−08 1.92E−05 1810043H04Rik 20 0.265 0.385 −0.384 3.09E−08 1.95E−05 Desi1 20 0.487 0.62 −0.330 3.28E−08 2.06E−05 Ppp1r2 20 0.211 0.311 −0.443 3.31E−08 2.07E−05 Napsa 20 0.202 0.171 0.207 3.51E−08 2.19E−05 Slc3a2 20 0.528 0.67 −0.297 3.59E−08 2.22E−05 Pfdn5 20 0.784 0.906 −0.267 3.67E−08 2.28E−05 Scarb2 20 0.189 0.284 −0.412 3.89E−08 2.39E−05 Sh3glb1 20 0.483 0.621 −0.334 4.12E−08 2.52E−05 Ddit3 20 0.181 0.275 −0.432 4.32E−08 2.63E−05 Cars 20 0.113 0.187 −0.508 4.65E−08 2.82E−05 4933434E20Rik 20 0.35 0.473 −0.366 4.78E−08 2.89E−05 Pcif1 20 0.248 0.358 −0.379 4.80E−08 2.89E−05 Tpst2 20 0.51 0.654 −0.309 5.01E−08 3.01E−05 Rab10 20 0.31 0.438 −0.364 5.12E−08 3.07E−05 Edem2 20 0.813 0.935 −0.257 5.31E−08 3.18E−05 Pofut2 20 0.137 0.216 −0.467 5.38E−08 3.22E−05 Mapkapk2 20 0.142 0.218 −0.459 5.38E−08 3.22E−05 Brcc3 20 0.163 0.138 0.202 5.90E−08 3.49E−05 Pex16 20 0.161 0.242 −0.386 6.63E−08 3.90E−05 Tpd52 20 0.128 0.207 −0.463 7.96E−08 4.60E−05 Anapc5 20 0.469 0.621 −0.357 8.19E−08 4.71E−05 Smc4 20 0.186 0.169 0.183 8.60E−08 4.94E−05 Arsg 20 0.092 0.153 −0.506 1.25E−07 7.00E−05 Ltb 20 0.183 0.259 −0.485 1.34E−07 7.50E−05 Ap3s1 20 0.402 0.505 −0.304 1.36E−07 7.60E−05 Hmg20b 20 0.123 0.192 −0.504 1.50E−07 8.34E−05 Rnf19b 20 0.172 0.264 −0.414 1.52E−07 8.39E−05 Ptpra 20 0.097 0.161 −0.511 1.55E−07 8.58E−05 Tm2d1 20 0.195 0.291 −0.423 1.65E−07 9.08E−05 Amfr 20 0.276 0.382 −0.349 1.66E−07 9.10E−05 Mgat2 20 0.54 0.669 −0.315 1.81E−07 9.86E−05 Ccz1 20 0.219 0.303 −0.410 1.87E−07 1.02E−04 Btf3l4 20 0.18 0.271 −0.397 1.92E−07 1.04E−04 Dnajc19 20 0.386 0.535 −0.346 1.93E−07 1.05E−04 Cyth2 20 0.161 0.242 −0.430 2.05E−07 1.11E−04 Ggta1 20 0.11 0.178 −0.538 2.15E−07 1.15E−04 Fam177a 20 0.103 0.173 −0.530 2.43E−07 1.29E−04 Bet1l 20 0.242 0.322 −0.349 2.48E−07 1.31E−04 Cdipt 20 0.238 0.34 −0.416 2.56E−07 1.35E−04 Zfp560 20 0.13 0.198 −0.422 2.67E−07 1.41E−04 Wipi1 20 0.23 0.329 −0.392 2.72E−07 1.43E−04 Ninj1 20 0.273 0.387 −0.364 2.77E−07 1.45E−04 Ndufaf4 20 0.092 0.16 −0.555 2.86E−07 1.50E−04 Rapgef1 20 0.133 0.207 −0.452 2.92E−07 1.53E−04 Ddx5 20 0.736 0.859 −0.266 2.94E−07 1.53E−04 Ddx54 20 0.233 0.334 −0.388 3.04E−07 1.58E−04 Ube2e3 20 0.264 0.374 −0.350 3.09E−07 1.60E−04 Eif5 20 0.587 0.732 −0.308 3.23E−07 1.67E−04 Hes1 20 0.2 0.274 −0.641 3.29E−07 1.70E−04 Tusc2 20 0.134 0.207 −0.465 3.31E−07 1.71E−04 Tiparp 20 0.249 0.358 −0.387 3.52E−07 1.80E−04 Gbp4 20 0.093 0.158 −0.519 3.90E−07 1.99E−04 Ankrd12 20 0.256 0.349 −0.361 4.18E−07 2.12E−04 Fastk 20 0.177 0.262 −0.425 4.21E−07 2.13E−04 Atg101 20 0.15 0.222 −0.439 4.38E−07 2.21E−04 Mdm2 20 0.214 0.303 −0.414 4.46E−07 2.24E−04 Tgfb1 20 0.228 0.308 −0.387 4.47E−07 2.25E−04 Bri3 20 0.211 0.31 −0.379 4.64E−07 2.33E−04 Stard5 20 0.16 0.254 −0.409 4.81E−07 2.41E−04 Irf4 20 0.348 0.479 −0.375 5.16E−07 2.57E−04 Upf3b 20 0.174 0.221 −0.309 5.18E−07 2.57E−04 Ubald1 20 0.17 0.246 −0.432 5.35E−07 2.65E−04 Rab3a 20 0.115 0.186 −0.511 5.46E−07 2.70E−04 Pck2 20 0.266 0.344 −0.325 5.60E−07 2.76E−04 Grina 20 0.337 0.444 −0.312 5.64E−07 2.78E−04 Dph3 20 0.356 0.479 −0.351 5.91E−07 2.90E−04 Eif4a3 20 0.221 0.203 0.151 5.94E−07 2.92E−04 Zc3h15 20 0.3 0.389 −0.352 5.98E−07 2.93E−04 Ppp3ca 20 0.262 0.364 −0.363 6.03E−07 2.95E−04 Clptm1l 20 0.651 0.788 −0.293 7.17E−07 3.44E−04 Dera 20 0.179 0.16 0.158 7.18E−07 3.44E−04 St8sia6 20 0.247 0.344 −0.382 7.19E−07 3.45E−04 Cited2 20 0.542 0.611 0.167 7.22E−07 3.45E−04 Sar1a 20 0.546 0.695 −0.306 7.28E−07 3.48E−04 Wipf1 20 0.121 0.199 −0.474 7.39E−07 3.53E−04 4930523C07Rik 20 0.307 0.411 −0.393 7.45E−07 3.55E−04 Mta2 20 0.256 0.34 −0.367 8.25E−07 3.90E−04 Ptpn6 20 0.268 0.375 −0.376 8.37E−07 3.95E−04 Pgrmc1 20 0.205 0.285 −0.376 8.69E−07 4.08 E−04 Fndc3a 20 0.324 0.425 −0.331 8.70E−07 4.08 E−04 Gtf3c6 20 0.181 0.166 0.189 9.88E−07 4.60E−04 Ccs 20 0.158 0.135 0.190 9.90E−07 4.61E−04 Lrrn3 20 0.099 0.156 −0.521 1.01E−06 4.66E−04 Tcf3 20 0.326 0.404 −0.300 1.10E−06 5.05E−04 Mob1a 20 0.1 0.159 −0.493 1.10E−06 5.07E−04 Setd3 20 0.132 0.207 −0.408 1.17E−06 5.33E−04 Sdc4 20 0.423 0.533 −0.265 1.17E−06 5.33E−04 Rp9 20 0.342 0.455 −0.351 1.17E−06 5.33E−04 Tomm20 20 0.408 0.529 −0.332 1.17E−06 5.33E−04 Vamp3 20 0.253 0.341 −0.366 1.19E−06 5.44E−04 Herpud2 20 0.121 0.177 −0.398 1.20E−06 5.45E−04 Dctn3 20 0.349 0.404 −0.287 1.27E−06 5.77E−04 Pitpnb 20 0.101 0.161 −0.517 1.29E−06 5.85E−04 Csnk1a1 20 0.34 0.437 −0.338 1.30E−06 5.89E−04 Dynlt3 20 0.261 0.348 −0.342 1.34E−06 6.01E−04 Arpc5l 20 0.444 0.588 −0.332 1.35E−06 6.05E−04 Atp6v1d 20 0.2 0.284 −0.371 1.37E−06 6.14E−04 Ccpg1 20 0.33 0.426 −0.263 1.40E−06 6.27E−04 Cytip 20 0.619 0.753 −0.297 1.54E−06 6.80E−04 Tmem147 20 0.413 0.54 −0.323 1.61E−06 7.11E−04 Isyna1 20 0.165 0.149 0.169 1.62E−06 7.12E−04 Bhlha15 20 0.213 0.309 −0.404 1.64E−06 7.19E−04 A930033H14Rik 20 0.104 0.165 −0.518 1.68E−06 7.39E−04 Vimp 20 0.72 0.846 −0.262 1.71E−06 7.50E−04 Asns 20 0.096 0.165 −0.481 1.74E−06 7.62E−04 Sp140 20 0.306 0.399 −0.342 1.75E−06 7.65E−04 Sumo1 20 0.442 0.58 −0.315 1.78E−06 7.76E−04 Toporsos 20 0.151 0.229 −0.459 1.78E−06 7.76E−04 March5 20 0.273 0.369 −0.354 1.88E−06 8.13E−04 Srpr 20 0.446 0.585 −0.309 1.90E−06 8.21E−04 Inpp1 20 0.119 0.186 −0.447 1.91E−06 8.25E−04 Emc6 20 0.288 0.383 −0.328 2.02E−06 8.62E−04 Spint2 20 0.64 0.764 −0.248 2.05E−06 8.76E−04 Fbxw2 20 0.183 0.261 −0.418 2.15E−06 9.16E−04 Atp6v0a1 20 0.253 0.352 −0.351 2.16E−06 9.16E−04 Myl12a 20 0.505 0.637 −0.314 2.26E−06 9.54E−04 Unc50 20 0.265 0.37 −0.356 2.31E−06 9.75E−04 Akap9 20 0.116 0.186 −0.471 2.33E−06 9.83E−04 Tmem248 20 0.615 0.767 −0.292 2.35E−06 9.91E−04 D8Ertd738e 20 0.503 0.657 −0.312 2.41E−06 1.01E−03 Stx7 20 0.132 0.205 −0.465 2.43E−06 1.02E−03 Rela 20 0.113 0.179 −0.447 2.45E−06 1.03E−03 Smim20 20 0.133 0.194 −0.424 2.49E−06 1.04E−03 Sod2 20 0.363 0.468 −0.313 2.50E−06 1.04E−03 Zfand5 20 0.23 0.328 −0.406 2.51E−06 1.05E−03 Atat1 20 0.397 0.525 −0.325 2.63E−06 1.09E−03 Vars 20 0.394 0.526 −0.346 2.72E−06 1.12E−03 Lrrc8d 20 0.14 0.21 −0.453 2.79E−06 1.15E−03 Ube2g2 20 0.14 0.214 −0.431 2.83E−06 1.16E−03 Ap4s1 20 0.185 0.245 −0.357 2.91E−06 1.19E−03 Arl2bp 20 0.216 0.295 −0.341 2.92E−06 1.19E−03 Ralbp1 20 0.332 0.445 −0.372 3.05E−06 1.23E−03 Dtx3 20 0.114 0.174 −0.431 3.07E−06 1.24E−03 Golga4 20 0.175 0.243 −0.373 3.13E−06 1.26E−03 Mia3 20 0.188 0.267 −0.399 3.14E−06 1.27E−03 Birc3 20 0.153 0.23 −0.368 3.14E−06 1.27E−03 Wbp11 20 0.124 0.191 −0.517 3.15E−06 1.27E−03 Atf6 20 0.197 0.278 −0.391 3.28E−06 1.32E−03 Jun 20 0.733 0.757 −0.151 3.32E−06 1.33E−03 Tmem230 20 0.117 0.181 −0.463 3.34E−06 1.34E−03 Ccdc117 20 0.21 0.279 −0.326 3.50E−06 1.39E−03 Cggbp1 20 0.171 0.251 −0.432 3.56E−06 1.42E−03 Dock10 20 0.15 0.213 −0.387 3.59E−06 1.43E−03 Manea 20 0.26 0.324 −0.280 3.65E−06 1.45E−03 Rab7 20 0.362 0.457 −0.290 3.80E−06 1.50E−03 Etf1 20 0.261 0.354 −0.384 4.27E−06 1.66E−03 Copz2 20 0.115 0.158 −0.399 4.38E−06 1.70E−03 Rnf10 20 0.282 0.382 −0.376 4.97E−06 1.92E−03 Fdx1l 20 0.115 0.182 −0.441 5.02E−06 1.93E−03 Golt1b 20 0.18 0.259 −0.410 5.07E−06 1.95E−03 Fcrla 20 0.252 0.361 −0.333 5.29E−06 2.02E−03 Plekha2 20 0.216 0.305 −0.386 5.35E−06 2.04E−03 Hbp1 20 0.2 0.271 −0.332 5.38E−06 2.05E−03 Emc2 20 0.167 0.15 0.151 5.56E−06 2.11E−03 Ryr1 20 0.23 0.32 −0.341 5.72E−06 2.17E−03 Al467606 20 0.103 0.164 −0.523 5.77E−06 2.19E−03 Tuba1a 20 0.291 0.41 −0.449 5.90E−06 2.23E−03 Rab5a 20 0.284 0.366 −0.294 6.49E−06 2.43E−03 Nudt9 20 0.179 0.252 −0.386 6.54E−06 2.44E−03 Taz 20 0.138 0.193 −0.366 6.60E−06 2.46E−03 Oser1 20 0.234 0.317 −0.348 6.73E−06 2.51E−03 2300009A05Rik 20 0.129 0.2 −0.421 6.99E−06 2.59E−03 Gigyf2 20 0.109 0.173 −0.503 7.09E−06 2.63E−03 Tmed3 20 0.344 0.437 −0.304 7.37E−06 2.72E−03 Mkrn1 20 0.391 0.477 −0.262 7.63E−06 2.80E−03 Bbs9 20 0.206 0.29 −0.360 7.79E−06 2.86E−03 Ddx24 20 0.193 0.273 −0.385 7.92E−06 2.90E−03 Hint2 20 0.165 0.238 −0.341 8.36E−06 3.04E−03 Tnfaip3 20 0.194 0.27 −0.361 8.39E−06 3.04E−03 Vamp8 20 0.502 0.644 −0.277 8.42E−06 3.05E−03 Gem 20 0.198 0.181 0.200 8.67E−06 3.14E−03 Guk1 20 0.211 0.302 −0.346 8.88E−06 3.20E−03 Slain1 20 0.166 0.233 −0.350 9.30E−06 3.34E−03 Ccnd2 20 0.404 0.526 −0.335 9.66E−06 3.46E−03 Rbm3 20 0.773 0.888 −0.244 9.83E−06 3.50E−03 Arpc1a 20 0.335 0.443 −0.330 9.90E−06 3.52E−03 Fam168b 20 0.111 0.173 −0.481 9.97E−06 3.55E−03 Gosr2 20 0.265 0.368 −0.384 1.02E−05 3.62E−03 Nudc 20 0.235 0.336 −0.392 1.03E−05 3.64E−03 0610012G03Rik 20 0.154 0.231 −0.418 1.04E−05 3.69E−03 Rnf11 20 0.11 0.168 −0.386 1.07E−05 3.79E−03 BC004004 20 0.438 0.576 −0.318 1.08E−05 3.79E−03 Tspan31 20 0.115 0.187 −0.449 1.09E−05 3.85E−03 Qrich1 20 0.167 0.242 −0.407 1.15E−05 4.04E−03 Ccm2 20 0.227 0.323 −0.336 1.15E−05 4.04E−03 Bhlhe41 20 0.247 0.335 −0.419 1.17E−05 4.09E−03 Usf2 20 0.135 0.203 −0.405 1.17E−05 4.10E−03 Chrac1 20 0.207 0.29 −0.380 1.24E−05 4.30E−03 Arpc2 20 0.622 0.781 −0.295 1.28E−05 4.44E−03 Cnot11 20 0.108 0.157 −0.413 1.40E−05 4.80E−03 Gorasp2 20 0.446 0.569 −0.313 1.41E−05 4.83E−03 Kcnq1ot1 20 0.209 0.287 −0.385 1.43E−05 4.88E−03 Srpk2 20 0.203 0.282 −0.378 1.45E−05 4.95E−03 Rfk 20 0.131 0.206 −0.441 1.53E−05 5.18E−03 Rab24 20 0.154 0.234 −0.432 1.54E−05 5.20E−03 Ndufb4 20 0.409 0.522 −0.306 1.61E−05 5.43E−03 Brd2 20 0.296 0.387 −0.323 1.69E−05 5.66E−03 Adssl1 20 0.125 0.196 −0.370 1.74E−05 5.78E−03 Pnrc2 20 0.157 0.237 −0.376 1.77E−05 5.87E−03 Evi2a 20 0.473 0.593 −0.315 1.77E−05 5.88E−03 Gng12 20 0.157 0.228 −0.365 1.84E−05 6.07E−03 Chmp1a 20 0.102 0.159 −0.497 1.84E−05 6.07E−03 Smchd1 20 0.289 0.38 −0.344 1.87E−05 6.16E−03 Ccdc88a 20 0.255 0.337 −0.334 1.99E−05 6.49E−03 Gna13 20 0.152 0.213 −0.430 2.00E−05 6.52E−03 Lyn 20 0.119 0.173 −0.419 2.08E−05 6.77E−03 St8sia4 20 0.25 0.345 −0.376 2.10E−05 6.82E−03 Psmg4 20 0.195 0.275 −0.388 2.13E−05 6.89E−03 Tgoln1 20 0.229 0.324 −0.362 2.15E−05 6.95E−03 Fam46c 20 0.658 0.79 −0.265 2.16E−05 6.98E−03 Eif4g2 20 0.537 0.677 −0.295 2.18E−05 7.03E−03 C130026l21Rik 20 0.151 0.213 −0.399 2.19E−05 7.04E−03 Mat2b 20 0.252 0.344 −0.338 2.20E−05 7.09E−03 Gde1 20 0.181 0.266 −0.387 2.32E−05 7.41E−03 Atp6v1f 20 0.587 0.727 −0.290 2.33E−05 7.45E−03 Tob1 20 0.165 0.231 −0.381 2.37E−05 7.55E−03 Bcl7c 20 0.256 0.34 −0.338 2.44E−05 7.75E−03 B4galnt1 20 0.185 0.258 −0.365 2.44E−05 7.76E−03 Nudcd3 20 0.138 0.186 −0.361 2.45E−05 7.77E−03 Swap70 20 0.121 0.167 −0.377 2.51E−05 7.95E−03 Arf6 20 0.517 0.643 −0.286 2.53E−05 8.00E−03 Dennd5b 20 0.396 0.469 −0.243 2.55E−05 8.06E−03 Ndel1 20 0.116 0.178 −0.469 2.59E−05 8.15E−03 Kras 20 0.142 0.207 −0.440 2.60E−05 8.17E−03 Smim7 20 0.241 0.326 −0.324 2.65E−05 8.31E−03 1810026J23Rik 20 0.094 0.153 −0.443 2.67E−05 8.34E−03 Atp9a 20 0.128 0.19 −0.423 2.71E−05 8.46E−03 Yipf2 20 0.214 0.308 −0.334 2.73E−05 8.53E−03 Ube2j2 20 0.272 0.366 −0.335 2.77E−05 8.63E−03 Trnau1ap 20 0.108 0.161 −0.419 2.87E−05 8.93E−03 Abhd16a 20 0.135 0.206 −0.394 2.90E−05 8.99E−03 Bmyc 20 0.13 0.184 −0.383 3.01E−05 9.31E−03 Denr 20 0.293 0.395 −0.316 3.11E−05 9.57E−03 Rab2a 20 0.595 0.708 −0.259 3.14E−05 9.63E−03 Luc7l3 20 0.14 0.181 −0.363 3.23E−05 9.88E−03 Ncf4 20 0.301 0.395 −0.327 3.26E−05 9.93E−03 Cnbp 20 0.622 0.75 −0.250 3.32E−05 1.01E−02 Snapc5 20 0.15 0.212 −0.393 3.85E−05 1.16E−02 Zfp64 20 0.126 0.193 −0.454 4.04E−05 1.20E−02 Sec24c 20 0.127 0.191 −0.408 4.05E−05 1.21E−02 Zfand2b 20 0.125 0.192 −0.414 4.07E−05 1.21E−02 Fuca1 20 0.293 0.398 −0.328 4.11E−05 1.22E−02 Tmem5 20 0.105 0.162 −0.413 4.23E−05 1.25E−02 Rgs10 20 0.417 0.523 −0.280 4.28E−05 1.26E−02 Vamp2 20 0.182 0.26 −0.367 4.30E−05 1.27E−02 Haus3 20 0.349 0.455 −0.284 4.35E−05 1.28E−02 Sept11 20 0.213 0.285 −0.341 4.47E−05 1.31E−02 Fam204a 20 0.164 0.241 −0.372 4.48E−05 1.31E−02 Tap1 20 0.164 0.221 −0.349 4.49E−05 1.32E−02 Pex2 20 0.167 0.215 −0.335 4.57E−05 1.34E−02 Polr2e 20 0.275 0.34 −0.251 4.64E−05 1.36E−02 Tmem203 20 0.147 0.219 −0.362 4.65E−05 1.36E−02 Grpel1 20 0.3 0.42 −0.326 4.67E−05 1.36E−02 Vps37a 20 0.185 0.267 −0.336 4.70E−05 1.37E−02 Cd164 20 0.27 0.349 −0.328 4.76E−05 1.39E−02 Gtf2a2 20 0.247 0.342 −0.357 4.91E−05 1.42E−02 Cbx4 20 0.163 0.232 −0.356 4.97E−05 1.44E−02 Apitd1 20 0.156 0.202 −0.370 5.12E−05 1.47E−02 Rhobtb1 20 0.195 0.272 −0.377 5.16E−05 1.48E−02 Strap 20 0.251 0.341 −0.364 5.23E−05 1.50E−02 Nek7 20 0.39 0.514 −0.308 5.40E−05 1.54E−02 Egln2 20 0.204 0.288 −0.323 5.50E−05 1.57E−02 Atp6v0d1 20 0.325 0.385 −0.232 5.66E−05 1.61E−02 Htatsf1 20 0.104 0.167 −0.451 5.68E−05 1.62E−02 Csde1 20 0.311 0.399 −0.301 5.73E−05 1.63E−02 Pdcd4 20 0.301 0.391 −0.267 5.87E−05 1.66E−02 Cd82 20 0.192 0.234 −0.256 5.97E−05 1.69E−02 Man1a2 20 0.156 0.224 −0.386 6.04E−05 1.70E−02 Pafah1b1 20 0.292 0.374 −0.313 6.33E−05 1.77E−02 Slc48a1 20 0.254 0.346 −0.314 6.68E−05 1.85E−02 Kmt2e 20 0.362 0.469 −0.310 6.82E−05 1.89E−02 Irf2 20 0.253 0.34 −0.329 7.14E−05 1.96E−02 Atp6v0b 20 0.48 0.589 −0.242 7.17E−05 1.96E−02 Yipf4 20 0.287 0.373 −0.292 7.27E−05 1.99E−02 Atg3 20 0.271 0.37 −0.332 7.36E−05 2.01E−02 Arl8b 20 0.148 0.211 −0.400 7.57E−05 2.06E−02 Prr5 20 0.442 0.567 −0.303 7.64E−05 2.08E−02 Vapb 20 0.167 0.245 −0.396 7.81E−05 2.12E−02 Eif4enif1 20 0.13 0.183 −0.382 7.98E−05 2.16E−02 Ctnnbl1 20 0.142 0.207 −0.435 8.02E−05 2.17E−02 Bola3 20 0.24 0.339 −0.343 8.07E−05 2.18E−02 Ddx3x 20 0.237 0.325 −0.318 8.09E−05 2.18E−02 Insig1 20 0.239 0.322 −0.339 8.14E−05 2.19E−02 Map3k1 20 0.124 0.166 −0.341 8.16E−05 2.20E−02 H2-Q7 20 0.095 0.153 −0.452 8.22E−05 2.21E−02 Uvrag 20 0.127 0.193 −0.435 8.30E−05 2.22E−02 Abcb1b 20 0.096 0.154 −0.442 8.55E−05 2.28E−02 Phf3 20 0.176 0.218 −0.261 8.77E−05 2.33E−02 Fubp1 20 0.107 0.168 −0.459 8.96E−05 2.38E−02 Eps15 20 0.111 0.166 −0.412 9.03E−05 2.39E−02 4833439L19Rik 20 0.116 0.153 −0.324 9.16E−05 2.42E−02 Gpr180 20 0.153 0.202 −0.308 9.17E−05 2.42E−02 Cops7a 20 0.178 0.261 −0.380 9.26E−05 2.44E−02 Lrrc59 20 0.494 0.645 −0.306 9.48E−05 2.49E−02 Nus1 20 0.207 0.264 −0.326 9.65E−05 2.52E−02 Chuk 20 0.119 0.153 −0.352 9.71E−05 2.54E−02 Maf1 20 0.234 0.292 −0.270 9.92E−05 2.58E−02 Cnot7 20 0.185 0.249 −0.335 1.01E−04 2.63E−02 Smim10l1 20 0.116 0.175 −0.408 1.02E−04 2.66E−02 Babam1 20 0.302 0.392 −0.301 1.03E−04 2.67E−02 Arfgap1 20 0.126 0.181 −0.404 1.14E−04 2.92E−02 Eif4g3 20 0.144 0.176 −0.277 1.16E−04 2.96E−02 DynIl2 20 0.193 0.272 −0.357 1.19E−04 3.04E−02 Coq2 20 0.094 0.151 −0.449 1.22E−04 3.09E−02 Pla2g12a 20 0.233 0.328 −0.338 1.24E−04 3.14E−02 Atg13 20 0.11 0.159 −0.366 1.26E−04 3.19E−02 Abhd17b 20 0.128 0.192 −0.439 1.26E−04 3.19E−02 Raf1 20 0.234 0.324 −0.364 1.29E−04 3.25E−02 Ppp1r14b 20 0.175 0.253 −0.391 1.30E−04 3.27E−02 Chtop 20 0.236 0.301 −0.292 1.33E−04 3.32E−02 Ccdc127 20 0.164 0.207 −0.273 1.39E−04 3.45E−02 Papola 20 0.368 0.453 −0.276 1.40E−04 3.46E−02 St3gal6 20 0.168 0.223 −0.332 1.42E−04 3.50E−02 Bloc1s2 20 0.142 0.202 −0.417 1.45E−04 3.55E−02 Ndnl2 20 0.125 0.175 −0.381 1.46E−04 3.58E−02 Ccnt2 20 0.174 0.227 −0.331 1.46E−04 3.58E−02 Map2k3 20 0.134 0.181 −0.363 1.49E−04 3.64E−02 Morf4l1 20 0.559 0.68 −0.265 1.55E−04 3.76E−02 Dcaf11 20 0.185 0.255 −0.353 1.69E−04 4.05E−02 Mrfap1 20 0.598 0.725 −0.260 1.69E−04 4.06E−02 Klhdc2 20 0.442 0.563 −0.295 1.71E−04 4.09E−02 Slc25a51 20 0.143 0.196 −0.368 1.72E−04 4.11E−02 Papd4 20 0.149 0.208 −0.336 1.72E−04 4.11E−02 Brap 20 0.121 0.168 −0.372 1.74E−04 4.15E−02 Shc1 20 0.108 0.158 −0.425 1.76E−04 4.18E−02 Mcfd2 20 0.126 0.187 −0.385 1.77E−04 4.22E−02 Csnk1g3 20 0.276 0.336 −0.228 1.80E−04 4.26E−02 Dpm1 20 0.153 0.196 −0.276 1.88E−04 4.44E−02 Srsf5 20 0.493 0.609 −0.277 1.90E−04 4.47E−02 Gps2 20 0.146 0.215 −0.423 1.91E−04 4.48E−02 Rnf167 20 0.154 0.211 −0.344 1.91E−04 4.49E−02 1700017B05Rik 20 0.273 0.353 −0.296 1.91E−04 4.50E−02 Letm1 20 0.182 0.247 −0.355 1.93E−04 4.52E−02 Rnf187 20 0.378 0.468 −0.260 1.94E−04 4.54E−02 Rnf114 20 0.143 0.18 −0.283 1.95E−04 4.56E−02 Eif3a 20 0.314 0.424 −0.332 1.95E−04 4.56E−02 Rusc1 20 0.244 0.331 −0.315 1.96E−04 4.58E−02 Armc1 20 0.135 0.186 −0.366 2.04E−04 4.75E−02 Gpr65 20 0.151 0.213 −0.348 2.07E−04 4.81E−02 Ubxn4 20 0.547 0.666 −0.275 2.12E−04 4.91E−02 Zfp622 20 0.126 0.17 −0.349 2.16E−04 4.98E−02 Rnf4 20 0.206 0.26 −0.314 2.16E−04 4.99E−02 Ighg1 21 0.256 0.029 1.795 5.93E−33 3.67E−29 Mcpt2 21 0.202 0 5.176 1.61E−26 6.87E−23 Nr4a2 21 0.546 0.834 −0.933 1.44E−22 4.38E−19 Ppia 21 1 0.997 0.329 1.64E−18 3.62E−15 Slc25a20 21 0.511 0.784 −0.865 6.90E−18 1.44E−14 Nfkbia 21 0.763 0.443 0.993 5.20E−17 9.89E−14 Hspa1a 21 0.385 0.135 1.750 6.60E−17 1.23E−13 Mcpt1 21 0.205 0.021 4.061 1.16E−16 2.11E−13 Tm2d2 21 0.621 0.815 −0.625 2.38E−16 4.24E−13 Jun 21 0.609 0.443 0.934 1.06E−15 1.79E−12 Iglc1 21 0.464 0.768 −0.583 1.17E−15 1.95E−12 Zfand5 21 0.498 0.739 −0.854 9.22E−15 1.42E−11 Btg2 21 0.962 0.974 −0.460 1.10E−14 1.68E−11 Irf7 21 0.196 0.456 −1.092 2.13E−13 2.81E−10 Ckb 21 0.934 0.905 0.434 4.26E−13 5.42E−10 Ifi30 21 0.842 0.697 0.508 4.52E−13 5.72E−10 Ly6e 21 0.435 0.662 −0.839 5.27E−13 6.60E−10 Ifi27l2a 21 0.353 0.609 −1.014 9.74E−13 1.20E−09 Gapdh 21 0.987 0.963 0.249 3.00E−12 3.48E−09 Tnfaip2 21 0.177 0.43 −1.252 3.03E−12 3.50E−09 Tuba1b 21 0.741 0.573 0.851 2.00E−11 2.10E−08 Igkv1-135 21 0.123 0.396 −1.236 6.93E−11 6.87E−08 Rgs2 21 0.741 0.879 −0.603 6.94E−11 6.87E−08 Neat1 21 0.735 0.594 0.579 2.12E−10 1.95E−07 Atp5b 21 0.95 0.923 0.322 3.56E−10 3.15E−07 Il1r2 21 0.174 0.435 −0.959 3.81E−10 3.34E−07 Hfe 21 0.461 0.261 0.857 5.83E−10 5.00E−07 Calr 21 0.937 0.847 0.254 9.89E−10 8.22E−07 Slc25a5 21 0.978 0.96 0.323 1.47E−09 1.17E−06 Tmem50b 21 0.388 0.607 −0.594 1.86E−09 1.47E−06 B930036N10Rik 21 0.167 0.026 1.176 2.12E−09 1.65E−06 Coro1a 21 0.987 0.976 0.200 2.53E−09 1.94E−06 Lpar6 21 0.315 0.517 −0.790 3.20E−09 2.38E−06 Vps37b 21 0.164 0.393 −1.167 3.62E−09 2.68E−06 Man2b1 21 0.82 0.744 0.355 3.71E−09 2.72E−06 Rheb 21 0.852 0.918 −0.319 4.00E−09 2.93E−06 Tifab 21 0.7 0.813 −0.378 5.43E−09 3.89E−06 Errfi1 21 0.246 0.454 −0.863 7.19E−09 5.06E−06 Ctla2b 21 0.473 0.639 −0.685 8.48E−09 5.90E−06 Rpn2 21 0.653 0.546 0.477 8.74E−09 6.05E−06 Zfp36 21 0.918 0.916 0.470 1.29E−08 8.73E−06 Junb 21 0.978 0.984 −0.242 2.25E−08 1.46E−05 Ildr1 21 0.11 0.311 −1.204 3.02E−08 1.91E−05 Hspa1b 21 0.17 0.053 1.234 7.86E−08 4.55E−05 Bcl2a1d 21 0.886 0.852 0.372 1.59E−07 8.79E−05 Dck 21 0.237 0.443 −0.663 1.81E−07 9.86E−05 Hsp90aa1 21 0.773 0.681 0.462 2.22E−07 1.19E−04 Nr4a1 21 0.811 0.931 −0.351 2.63E−07 1.39E−04 Apol10b 21 0.066 0.214 −0.935 3.25E−07 1.68E−04 Igkc 21 1 1 0.404 3.60E−07 1.84E−04 Fndc5 21 0.322 0.515 −0.592 3.83E−07 1.96E−04 Ndel1 21 0.438 0.612 −0.617 4.54E−07 2.28E−04 Cct8 21 0.785 0.707 0.364 6.91E−07 3.33E−04 Herpud1 21 0.754 0.868 −0.354 7.11E−07 3.42E−04 Arl4a 21 0.303 0.451 −0.646 7.64E−07 3.64E−04 Grasp 21 0.375 0.57 −0.773 8.38E−07 3.95E−04 Cdc42 21 0.978 0.963 0.232 9.98E−07 4.64E−04 Txnip 21 0.139 0.319 −0.939 1.07E−06 4.96E−04 Tmem243 21 0.451 0.599 −0.412 1.20E−06 5.45E−04 Isg15 21 0.11 0.277 −0.924 1.30E−06 5.86E−04 Ptger4 21 0.3 0.158 0.743 1.50E−06 6.65E−04 Rap2a 21 0.429 0.245 0.789 1.51E−06 6.68E−04 Runx3 21 0.42 0.565 −0.524 1.60E−06 7.07E−04 Itgb7 21 0.735 0.649 0.391 1.90E−06 8.21E−04 Ifngr2 21 0.536 0.683 −0.382 2.01E−06 8.59E−04 Atf4 21 0.59 0.802 −0.561 2.12E−06 9.02E−04 Arl4c 21 0.183 0.348 −0.993 2.50E−06 1.04E−03 Ddost 21 0.738 0.673 0.309 2.98E−06 1.21E−03 Eef1d 21 0.886 0.852 0.198 3.02E−06 1.22E−03 Ifi44l 21 0.17 0.306 −0.572 3.44E−06 1.38E−03 Pcyt2 21 0.344 0.462 −0.494 3.49E−06 1.39E−03 Lztfl1 21 0.281 0.195 0.710 3.72E−06 1.47E−03 Lbh 21 0.517 0.628 −0.370 4.19E−06 1.63E−03 Ap1s3 21 0.691 0.773 −0.306 4.33E−06 1.69E−03 Ifitm3 21 0.905 0.963 −0.236 5.02E−06 1.93E−03 Iglc3 21 0.069 0.224 −0.825 5.42E−06 2.06E−03 Ifrd1 21 0.483 0.678 −0.603 6.82E−06 2.54E−03 Hnrnpa2b1 21 0.931 0.91 0.297 7.39E−06 2.72E−03 Ppp1r2 21 0.571 0.734 −0.428 7.98E−06 2.91E−03 Pkm 21 0.839 0.826 0.302 8.35E−06 3.03E−03 Tagln2 21 0.95 0.918 0.288 9.33E−06 3.34E−03 Hnrnpa3 21 0.905 0.868 0.301 1.00E−05 3.57E−03 Sgk1 21 0.268 0.438 −0.750 1.01E−05 3.57E−03 Ldha 21 0.962 0.931 0.319 1.14E−05 3.98E−03 Irf8 21 0.924 0.955 −0.160 1.19E−05 4.15E−03 Kdm6b 21 0.691 0.58 0.457 1.21E−05 4.21E−03 Adgre5 21 0.568 0.475 0.397 1.29E−05 4.46E−03 Ubb 21 1 0.979 0.253 1.46E−05 4.98E−03 Eno1 21 0.751 0.583 0.517 1.77E−05 5.88E−03 S100a13 21 0.722 0.588 0.304 1.82E−05 6.02E−03 A530040E14Rik 21 0.095 0.235 −0.947 1.89E−05 6.21E−03 Spg21 21 0.767 0.86 −0.312 1.94E−05 6.35E−03 Gna13 21 0.584 0.704 −0.487 2.08E−05 6.78E−03 Sla 21 0.773 0.654 0.364 2.12E−05 6.87E−03 Gns 21 0.363 0.515 −0.504 2.16E−05 6.97E−03 Vmp1 21 0.618 0.443 0.491 2.18E−05 7.04E−03 Amica1 21 0.634 0.789 −0.272 2.40E−05 7.64E−03 Snrpd1 21 0.694 0.652 0.267 2.47E−05 7.82E−03 Adrb2 21 0.36 0.206 0.769 2.62E−05 8.21E−03 Pdia6 21 0.767 0.644 0.410 2.75E−05 8.56E−03 Eif4a1 21 0.978 0.966 0.271 3.00E−05 9.28E−03 Ifi44 21 0.054 0.161 −1.018 3.09E−05 9.50E−03 Ppib 21 0.946 0.931 0.171 3.61E−05 1.09E−02 Arih2 21 0.372 0.562 −0.629 3.75E−05 1.13E−02 Fam162a 21 0.486 0.351 0.345 3.96E−05 1.18E−02 Srsf5 21 0.845 0.873 −0.330 4.04E−05 1.20E−02 2200002D01Rik 21 0.142 0.269 −0.786 4.76E−05 1.39E−02 Tkt 21 0.748 0.673 0.338 4.92E−05 1.42E−02 Pa2g4 21 0.621 0.501 0.389 5.14E−05 1.48E−02 Ezr 21 0.521 0.391 0.319 5.23E−05 1.50E−02 Fxyd5 21 0.754 0.633 0.274 5.42E−05 1.55E−02 Il1b 21 0.476 0.594 −0.609 5.42E−05 1.55E−02 Prkar2a 21 0.546 0.699 −0.435 5.51E−05 1.57E−02 Fbl 21 0.836 0.786 0.303 5.53E−05 1.58E−02 Stt3b 21 0.473 0.559 −0.435 5.57E−05 1.59E−02 Actb 21 1 1 0.363 5.76E−05 1.63E−02 Dusp1 21 0.861 0.768 0.517 6.02E−05 1.70E−02 Fam174a 21 0.565 0.71 −0.382 6.07E−05 1.71E−02 Tiparp 21 0.107 0.245 −0.919 6.14E−05 1.72E−02 Zfp706 21 0.877 0.881 −0.202 6.26E−05 1.75E−02 Baz1a 21 0.555 0.501 0.343 6.50E−05 1.81E−02 Hnrnpu 21 0.688 0.588 0.377 6.67E−05 1.85E−02 Eif3l 21 0.666 0.578 0.303 6.88E−05 1.90E−02 Got2 21 0.59 0.472 0.430 7.08E−05 1.95E−02 Hlx 21 0.136 0.285 −0.749 7.12E−05 1.96E−02 Magohb 21 0.199 0.348 −0.617 7.14E−05 1.96E−02 Dgat1 21 0.088 0.214 −1.018 7.42E−05 2.03E−02 Cdv3 21 0.555 0.654 −0.426 7.53E−05 2.06E−02 Litaf 21 0.694 0.799 −0.273 7.86E−05 2.13E−02 Igkv12-44 21 0.174 0.077 0.985 8.44E−05 2.26E−02 Napsa 21 0.767 0.665 0.374 8.62E−05 2.30E−02 Evi2a 21 0.612 0.755 −0.246 9.30E−05 2.45E−02 Dusp2 21 0.407 0.264 0.608 9.44E−05 2.48E−02 AC125149.3 21 0.088 0.219 −0.978 9.63E−05 2.52E−02 Orai1 21 0.596 0.446 0.338 1.10E−04 2.83E−02 Agpat4 21 0.511 0.673 −0.476 1.10E−04 2.84E−02 Mt1 21 0.486 0.319 0.475 1.11E−04 2.84E−02 Ube2l6 21 0.211 0.332 −0.593 1.13E−04 2.88E−02 Fndc3a 21 0.098 0.232 −0.888 1.14E−04 2.91E−02 Gm 21 0.839 0.776 0.296 1.28E−04 3.22E−02 Fh1 21 0.552 0.417 0.471 1.35E−04 3.37E−02 Commd8 21 0.804 0.852 −0.222 1.38E−04 3.42E−02 Snrnp70 21 0.517 0.406 0.365 1.42E−04 3.51E−02 Dapk2 21 0.435 0.559 −0.381 1.43E−04 3.53E−02 Brox 21 0.132 0.259 −0.540 1.49E−04 3.64E−02 Mnda 21 0.65 0.541 0.528 1.54E−04 3.74E−02 Btg1 21 0.965 0.987 −0.253 1.56E−04 3.77E−02 Mcm7 21 0.218 0.098 0.815 1.63E−04 3.93E−02 Map1lc3a 21 0.183 0.33 −0.666 1.69E−04 4.06E−02 Ubald2 21 0.606 0.739 −0.445 1.75E−04 4.17E−02 Ptp4a1 21 0.539 0.665 −0.401 1.77E−04 4.21E−02 Prr13 21 0.817 0.881 −0.200 1.80E−04 4.26E−02 Atxn7l3b 21 0.514 0.649 −0.356 1.84E−04 4.35E−02 Nlrp3 21 0.107 0.219 −0.852 1.84E−04 4.35E−02 Nabp1 21 0.249 0.417 −0.602 1.87E−04 4.41E−02 Gngt2 21 0.338 0.478 −0.369 1.93E−04 4.52E−02 Chic2 21 0.647 0.768 −0.314 1.94E−04 4.55E−02 Tspan13 21 0.808 0.889 −0.216 2.01E−04 4.68E−02 Al467606 21 0.189 0.084 0.798 2.03E−04 4.71E−02 Actg1 22 0.977 0.98 0.479 3.28E−21 9.09E−18 Vim 22 0.663 0.42 0.827 1.03E−20 2.79E−17 Ccl7 22 0.286 0.037 3.742 3.69E−19 8.76E−16 Ighg1 22 0.166 0.007 3.332 4.61E−19 1.08E−15 AW112010 22 0.288 0.573 −1.156 6.67E−19 1.52E−15 Tspan13 22 0.505 0.732 −0.833 4.47E−18 9.47E−15 HP 22 0.301 0.075 1.775 2.69E−17 5.24E−14 Ccl2 22 0.416 0.139 1.980 9.74E−16 1.65E−12 Fth1 22 0.995 1 −0.457 3.57E−15 5.74E−12 Ccl9 22 0.635 0.41 0.687 1.56E−14 2.34E−11 Apol7c 22 0.089 0.247 −1.747 2.61E−14 3.85E−11 Aif1 22 0.663 0.858 −0.513 3.02E−14 4.38E−11 Hspa8 22 0.936 0.878 0.333 4.03E−14 5.76E−11 Dnase1l3 22 0.171 0.366 −1.262 1.12E−13 1.50E−10 Cebpb 22 0.977 0.905 0.489 4.18E−13 5.33E−10 Dusp1 22 0.939 0.898 0.547 5.81E−13 7.26E−10 Tm2d2 22 0.304 0.441 −0.730 1.09E−12 1.34E−09 Irf7 22 0.24 0.471 −1.077 1.15E−12 1.40E−09 Mgst1 22 0.311 0.122 1.436 2.83E−12 3.31E−09 Isg15 22 0.26 0.485 −1.002 3.09E−12 3.57E−09 Cxcl2 22 0.781 0.549 0.778 4.23E−12 4.81E−09 Cd74 22 0.857 0.966 −0.387 7.80E−12 8.58E−09 Ftl1 22 1 1 −0.297 2.50E−11 2.61E−08 Irf8 22 0.393 0.583 −0.747 3.02E−11 3.11E−08 Chil3 22 0.153 0.02 2.589 3.95E−11 4.03E−08 Lpar6 22 0.23 0.444 −0.964 4.51E−11 4.56E−08 Cxcl16 22 0.454 0.644 −0.679 7.38E−11 7.28E−08 Asb2 22 0.112 0.302 −1.341 7.54E−11 7.41E−08 Napsa 22 0.385 0.254 0.886 7.66E−11 7.50E−08 Ccl6 22 0.806 0.631 0.287 1.11E−10 1.07E−07 Tgfb1 22 0.712 0.841 −0.483 1.41E−10 1.34E−07 Fn1 22 0.255 0.102 1.534 3.10E−10 2.79E−07 H2-DMb1 22 0.607 0.79 −0.499 3.44E−10 3.06E−07 S100a4 22 0.411 0.214 0.571 3.58E−10 3.17E−07 Aldh2 22 0.464 0.336 0.668 3.60E−10 3.18E−07 Arid5a 22 0.158 0.356 −1.089 3.65E−10 3.21E−07 Malat1 22 1 1 −0.442 5.65E−10 4.86E−07 Tmsb4x 22 1 1 −0.261 6.35E−10 5.40E−07 S100a6 22 0.548 0.437 0.632 9.21E−10 7.70E−07 Batf 22 0.105 0.305 −1.283 1.29E−09 1.04E−06 Adamdec1 22 0.163 0.312 −1.284 1.48E−09 1.18E−06 Igkv1-135 22 0.02 0.163 −1.953 1.89E−09 1.48E−06 Rnf149 22 0.589 0.783 −0.517 2.35E−09 1.82E−06 H2-Aa 22 0.763 0.932 −0.214 2.40E−09 1.85E−06 Alox5ap 22 0.548 0.4 0.711 2.80E−09 2.13E−06 Gbp7 22 0.097 0.278 −1.220 2.81E−09 2.13E−06 Vps37b 22 0.148 0.315 −1.322 2.94E−09 2.22E−06 F13a1 22 0.214 0.068 1.352 2.98E−09 2.24E−06 Emp3 22 0.518 0.346 0.588 3.67E−09 2.70E−06 Iglc1 22 0.27 0.481 −0.819 4.60E−09 3.33E−06 Egr2 22 0.276 0.105 1.235 8.97E−09 6.19E−06 Lair1 22 0.276 0.495 −0.673 1.02E−08 6.97E−06 Hjurp 22 0.071 0.217 −1.397 1.05E−08 7.13E−06 Egr1 22 0.592 0.366 0.285 1.12E−08 7.61E−06 Atp6v0e 22 0.64 0.763 −0.402 1.74E−08 1.15E−05 Irf1 22 0.105 0.278 −1.311 2.32E−08 1.50E−05 S100a10 22 0.413 0.258 0.723 2.42E−08 1.56E−05 Tapbp 22 0.36 0.532 −0.598 2.57E−08 1.65E−05 Neurl3 22 0.319 0.505 −0.681 2.64E−08 1.69E−05 Pla2g2d 22 0.059 0.186 −1.637 2.71E−08 1.73E−05 Acp5 22 0.298 0.444 −0.863 3.31E−08 2.07E−05 Fgl2 22 0.194 0.373 −0.766 3.42E−08 2.14E−05 C3 22 0.235 0.095 1.228 3.80E−08 2.35E−05 Mxd1 22 0.133 0.292 −0.960 5.12E−08 3.07E−05 Naca 22 0.86 0.756 0.200 5.85E−08 3.47E−05 Pf4 22 0.344 0.268 1.093 6.03E−08 3.57E−05 H2-DMb2 22 0.434 0.62 −0.540 6.59E−08 3.88E−05 Ctsz 22 0.821 0.854 −0.372 7.46E−08 4.34E−05 Batf3 22 0.276 0.464 −0.688 7.85E−08 4.55E−05 Ppp1r15a 22 0.446 0.542 −0.637 9.41E−08 5.37E−05 Coro1a 22 0.844 0.776 0.338 9.49E−08 5.41E−05 Anxa1 22 0.286 0.159 1.069 1.07E−07 6.04E−05 Svbp 22 0.179 0.346 −0.827 1.14E−07 6.44E−05 Btg1 22 0.916 0.959 −0.344 1.25E−07 7.03E−05 Hpgds 22 0.105 0.251 −0.982 1.41E−07 7.87E−05 Gda 22 0.258 0.105 1.080 1.49E−07 8.26E−05 Srgn 22 0.895 0.81 0.343 1.66E−07 9.13E−05 Ptgs1 22 0.23 0.373 −0.825 1.67E−07 9.14E−05 Anxa2 22 0.418 0.312 0.668 2.08E−07 1.12E−04 Cd37 22 0.184 0.064 1.128 2.27E−07 1.21E−04 Rnasel 22 0.097 0.258 −1.028 2.29E−07 1.22E−04 Socs3 22 0.258 0.4 −0.880 2.56E−07 1.35E−04 Grb2 22 0.383 0.553 −0.530 2.69E−07 1.41E−04 AB124611 22 0.342 0.197 0.557 2.88E−07 1.51E−04 H2-Eb1 22 0.719 0.875 −0.162 3.43E−07 1.76E−04 Herpud1 22 0.281 0.427 −0.720 3.65E−07 1.87E−04 Marcks 22 0.571 0.759 −0.384 4.35E−07 2.20E−04 Plin2 22 0.679 0.515 0.440 4.85E−07 2.42E−04 Ahnak 22 0.37 0.21 0.634 5.19E−07 2.58E−04 Fxyd5 22 0.651 0.559 0.399 6.21E−07 3.03E−04 P2ry14 22 0.064 0.186 −1.294 6.30E−07 3.07E−04 Hbegf 22 0.179 0.047 1.831 6.69E−07 3.23E−04 Srsf5 22 0.64 0.664 −0.284 6.84E−07 3.30E−04 C130050O18Rik 22 0.171 0.264 −0.678 8.69E−07 4.08 E−04 Ier3 22 0.523 0.339 0.543 9.39E−07 4.39E−04 Slco3a1 22 0.048 0.166 −1.361 1.00E−06 4.66E−04 Lgals3bp 22 0.171 0.339 −0.835 1.10E−06 5.06E−04 Csf1r 22 0.727 0.776 −0.486 1.14E−06 5.25E−04 S100a11 22 0.543 0.434 0.494 1.18E−06 5.37E−04 Cfp 22 0.556 0.38 0.344 1.23E−06 5.60E−04 Klrk1 22 0.059 0.186 −1.286 1.31E−06 5.91E−04 Gbp2b 22 0.107 0.241 −0.981 1.35E−06 6.05E−04 Nr4a1 22 0.666 0.492 0.369 1.40E−06 6.26E−04 Prdm1 22 0.189 0.373 −0.693 1.47E−06 6.54E−04 Fam46c 22 0.061 0.197 −1.150 1.61E−06 7.10E−04 Rcan1 22 0.168 0.044 1.957 1.71E−06 7.50E−04 Hspa1a 22 0.214 0.095 0.524 1.73E−06 7.56E−04 Cdk2ap2 22 0.561 0.695 −0.473 1.80E−06 7.85E−04 Clec10a 22 0.227 0.098 1.028 1.93E−06 8.32E−04 Fam46a 22 0.207 0.383 −0.803 1.95E−06 8.37E−04 Cdc42se2 22 0.194 0.353 −0.800 1.95E−06 8.37E−04 Ifnar1 22 0.227 0.329 −0.654 2.13E−06 9.07E−04 Cd44 22 0.625 0.464 0.421 2.16E−06 9.16E−04 Pltp 22 0.375 0.227 0.817 2.21E−06 9.35E−04 Npm1 22 0.781 0.668 0.231 2.33E−06 9.84E−04 Map3k8 22 0.082 0.217 −1.011 2.36E−06 9.96E−04 Runx3 22 0.332 0.441 −0.480 2.40E−06 1.01E−03 Ntpcr 22 0.173 0.298 −0.826 2.45E−06 1.03E−03 Peli1 22 0.207 0.366 −0.754 2.49E−06 1.04E−03 Rbm7 22 0.357 0.536 −0.576 2.52E−06 1.05E−03 Psme2 22 0.523 0.624 −0.403 2.56E−06 1.06E−03 Hn1 22 0.485 0.614 −0.424 2.76E−06 1.14E−03 Msrb1 22 0.569 0.478 0.573 2.83E−06 1.16E−03 Mgat4a 22 0.102 0.227 −0.897 3.15E−06 1.27E−03 Cd14 22 0.801 0.668 0.328 3.26E−06 1.31E−03 Osm 22 0.385 0.234 1.039 3.30E−06 1.32E−03 Rgs2 22 0.518 0.705 −0.605 3.56E−06 1.42E−03 Pgd 22 0.288 0.156 0.747 3.87E−06 1.52E−03 Zfp263 22 0.219 0.353 −0.601 4.01E−06 1.57E−03 Bst2 22 0.421 0.502 −0.428 4.37E−06 1.70E−03 Tcirg1 22 0.253 0.153 0.290 4.44E−06 1.72E−03 Lbh 22 0.27 0.407 −0.695 5.04E−06 1.94E−03 Fam26f 22 0.094 0.22 −1.012 5.94E−06 2.24E−03 Etv3 22 0.191 0.353 −0.678 6.06E−06 2.28E−03 Fosb 22 0.385 0.461 −0.614 6.07E−06 2.29E−03 B2m 22 0.98 0.963 −0.230 6.16E−06 2.32E−03 Actb 22 0.992 1 0.400 6.22E−06 2.34E−03 Calm1 22 0.791 0.831 −0.340 6.37E−06 2.39E−03 Nfkbie 22 0.117 0.254 −0.800 6.52E−06 2.44E−03 Fyb 22 0.492 0.614 −0.489 6.64E−06 2.47E−03 Hic1 22 0.077 0.19 −1.211 7.07E−06 2.62E−03 Abi3 22 0.145 0.281 −0.957 7.26E−06 2.68E−03 Tgfbr1 22 0.151 0.305 −0.751 7.42E−06 2.73E−03 Il6st 22 0.092 0.22 −0.914 7.63E−06 2.80E−03 Ly6c1 22 0.296 0.169 0.222 7.93E−06 2.90E−03 Cd83 22 0.717 0.834 −0.322 7.96E−06 2.91E−03 Slc25a5 22 0.742 0.675 0.258 8.41E−06 3.05E−03 Tm6sf1 22 0.477 0.322 0.432 8.82E−06 3.18E−03 Ybx1 22 0.788 0.817 −0.292 9.72E−06 3.47E−03 Abr 22 0.117 0.247 −0.901 1.06E−05 3.76E−03 Gbp4 22 0.071 0.18 −1.162 1.13E−05 3.96E−03 Btg2 22 0.849 0.912 −0.402 1.34E−05 4.60E−03 AF251705 22 0.533 0.637 −0.460 1.35E−05 4.66E−03 Eif3f 22 0.816 0.759 0.238 1.36E−05 4.67E−03 Clta 22 0.773 0.692 0.232 1.46E−05 4.95E−03 Emp1 22 0.281 0.169 0.835 1.52E−05 5.16E−03 Ifitm6 22 0.418 0.278 0.474 1.57E−05 5.31E−03 Pole4 22 0.196 0.363 −0.595 1.60E−05 5.40E−03 Gm2a 22 0.788 0.875 −0.337 1.66E−05 5.56E−03 Cd81 22 0.398 0.58 −0.407 1.69E−05 5.65E−03 Clec2d 22 0.13 0.285 −0.693 1.70E−05 5.68E−03 H2-K1 22 0.821 0.902 −0.266 1.78E−05 5.89E−03 Eif3e 22 0.605 0.485 0.375 1.82E−05 6.02E−03 Arhgap17 22 0.176 0.292 −0.753 1.87E−05 6.16E−03 S100a13 22 0.449 0.325 0.495 2.10E−05 6.82E−03 Jun 22 0.64 0.498 0.332 2.12E−05 6.87E−03 Tnfaip3 22 0.283 0.39 −0.612 2.13E−05 6.90E−03 Dnajb6 22 0.347 0.451 −0.468 2.16E−05 6.97E−03 Mtpn 22 0.388 0.485 −0.430 2.19E−05 7.06E−03 Srrm2 22 0.436 0.515 −0.404 2.21E−05 7.09E−03 Dab2 22 0.311 0.183 0.890 2.39E−05 7.60E−03 BC005537 22 0.564 0.424 0.457 2.51E−05 7.95E−03 Bcl2l11 22 0.151 0.288 −0.756 2.59E−05 8.14E−03 Slpi 22 0.224 0.122 0.469 2.65E−05 8.31E−03 Pbxip1 22 0.209 0.292 −0.553 2.66E−05 8.33E−03 Ccl3 22 0.622 0.454 0.647 2.69E−05 8.40E−03 Btf3 22 0.768 0.729 0.190 2.71E−05 8.46E−03 Metrnl 22 0.561 0.441 0.405 2.80E−05 8.71E−03 Ifi27l2a 22 0.811 0.841 −0.439 2.91E−05 9.02E−03 Lyz2 22 0.995 0.983 0.273 2.96E−05 9.15E−03 Litaf 22 0.62 0.692 −0.289 3.07E−05 9.44E−03 Icam1 22 0.179 0.312 −0.751 3.19E−05 9.78E−03 Hopx 22 0.25 0.149 0.893 3.34E−05 1.02E−02 Cd86 22 0.388 0.376 −0.227 3.37E−05 1.02E−02 Cx3cr1 22 0.327 0.407 −0.597 3.43E−05 1.04E−02 Cox4i1 22 0.918 0.858 0.173 3.55E−05 1.08E−02 C5ar1 22 0.393 0.241 0.701 3.68E−05 1.11E−02 PISD 22 0.173 0.251 −0.584 3.68E−05 1.11E−02 Ythdc1 22 0.151 0.285 −0.753 3.68E−05 1.11E−02 Rcbtb2 22 0.219 0.376 −0.737 3.90E−05 1.17E−02 Il17ra 22 0.237 0.125 0.712 4.07E−05 1.21E−02 Ocstamp 22 0.051 0.153 −1.131 4.14E−05 1.23E−02 Dusp5 22 0.298 0.403 −0.519 4.48E−05 1.31E−02 Asph 22 0.194 0.302 −0.601 4.64E−05 1.36E−02 Pkm 22 0.597 0.512 0.363 4.83E−05 1.40E−02 Sdc4 22 0.362 0.254 0.962 4.87E−05 1.41E−02 Csnk1e 22 0.135 0.251 −0.720 4.94E−05 1.43E−02 Tmem37 22 0.11 0.231 −0.914 4.94E−05 1.43E−02 Ndufa1 22 0.462 0.492 −0.251 5.07E−05 1.46E−02 P2ry6 22 0.321 0.468 −0.500 5.10E−05 1.47E−02 Idh3b 22 0.242 0.163 0.312 5.74E−05 1.63E−02 Oser1 22 0.401 0.536 −0.408 5.83E−05 1.65E−02 Ptms 22 0.459 0.553 −0.371 5.98E−05 1.69E−02 Mpeg1 22 0.778 0.871 −0.225 6.14E−05 1.72E−02 Ciita 22 0.056 0.156 −1.102 6.16E−05 1.73E−02 Bri3 22 0.597 0.698 −0.331 6.19E−05 1.73E−02 Ighm 22 0.347 0.505 −0.561 6.40E−05 1.79E−02 Ccl24 22 0.63 0.576 0.745 6.83E−05 1.89E−02 Npl 22 0.066 0.153 −1.103 7.04E−05 1.94E−02 P2rx4 22 0.309 0.403 −0.462 7.13E−05 1.96E−02 Ubl3 22 0.559 0.627 −0.295 7.66E−05 2.09E−02 Adam19 22 0.128 0.264 −0.609 8.38E−05 2.24E−02 Ndufa4 22 0.5 0.634 −0.377 8.49E−05 2.27E−02 Ube2s 22 0.403 0.502 −0.395 8.53E−05 2.28E−02 Tsc22d3 22 0.543 0.407 0.418 8.71E−05 2.32E−02 Il1b 22 0.867 0.929 −0.351 9.72E−05 2.54E−02 Sertad1 22 0.265 0.149 0.664 9.82E−05 2.56E−02 Psmb8 22 0.564 0.668 −0.341 1.06E−04 2.75E−02 Usf2 22 0.278 0.383 −0.487 1.09E−04 2.80E−02 Sgms1 22 0.179 0.081 1.009 1.11E−04 2.85E−02 Gapdh 22 0.679 0.624 0.201 1.16E−04 2.96E−02 Arf2 22 0.173 0.071 1.044 1.20E−04 3.04E−02 Tuba1c 22 0.321 0.203 0.731 1.24E−04 3.14E−02 Ogfrl1 22 0.181 0.305 −0.670 1.25E−04 3.15E−02 Tsc22d1 22 0.11 0.234 −1.009 1.36E−04 3.38E−02 Bcl3 22 0.128 0.237 −0.835 1.39E−04 3.43E−02 Vasp 22 0.434 0.536 −0.432 1.41E−04 3.49E−02 Eno1 22 0.518 0.431 0.380 1.43E−04 3.54E−02 Srrm1 22 0.191 0.346 −0.711 1.44E−04 3.54E−02 Pmaip1 22 0.403 0.549 −0.422 1.45E−04 3.55E−02 Ier2 22 0.763 0.644 0.258 1.46E−04 3.58E−02 Birc3 22 0.27 0.346 −0.538 1.48E−04 3.63E−02 Smpdl3a 22 0.51 0.441 0.442 1.49E−04 3.63E−02 Csf2rb 22 0.411 0.532 −0.439 1.51E−04 3.68E−02 Smim3 22 0.245 0.353 −0.460 1.55E−04 3.76E−02 Uqcrh 22 0.806 0.759 0.180 1.63E−04 3.93E−02 Trem2 22 0.168 0.081 0.903 1.66E−04 3.98E−02 Pxdc1 22 0.102 0.21 −0.875 1.71E−04 4.10E−02 Tor3a 22 0.099 0.207 −0.772 1.72E−04 4.11E−02 Themis2 22 0.077 0.159 −1.051 1.73E−04 4.14E−02 Ltb4r1 22 0.176 0.085 0.704 1.81E−04 4.28E−02 Slc15a3 22 0.383 0.454 −0.576 1.84E−04 4.35E−02 Nabp1 22 0.186 0.305 −0.758 1.90E−04 4.46E−02 Ppfia4 22 0.306 0.451 −0.532 1.91E−04 4.49E−02 Taldo1 22 0.625 0.573 0.335 2.00E−04 4.67E−02 Eif4a2 22 0.418 0.295 0.493 2.15E−04 4.96E−02 Tnip3 23 0 0.4 −6.333 8.83E−08 5.06E−05 Psap 23 0.21 0.667 −1.655 1.11E−04 2.85E−02 Dock10 24 0.926 0.489 0.417 9.58E−05 2.51E−02 Mcpt4 26 0.911 0.357 1.787 5.23E−28 2.42E−24 Tph1 26 0.934 0.486 1.478 2.57E−27 1.14E−23 Srsf5 26 0.63 0.829 −1.082 4.98E−21 1.37E−17 Cma1 26 0.744 0.243 2.537 9.01E−19 2.03E−15 Fcer1a 26 0.99 0.943 0.660 4.49E−18 9.47E−15 Hdc 26 0.851 0.5 1.578 2.26E−17 4.45E−14 Mcpt1 26 0.926 0.514 0.960 4.48E−17 8.57E−14 Mcpt2 26 0.925 0.571 1.316 3.45E−16 6.06E−13 Jun 26 0.931 0.657 0.914 1.05E−15 1.76E−12 Rac2 26 0.967 0.943 0.602 3.12E−14 4.51E−11 Ftl1 26 1 1 0.693 1.20E−13 1.60E−10 Rhob 26 0.376 0.014 3.404 1.65E−13 2.19E−10 Lxn 26 0.462 0.071 2.252 3.85E−13 4.92E−10 Rgs13 26 0.73 0.3 1.533 1.69E−12 2.04E−09 Gzmb 26 0.745 0.729 −0.968 6.66E−12 7.38E−09 Smpx 26 0.629 0.229 1.654 7.19E−12 7.96E−09 Sla 26 0.535 0.114 1.631 8.46E−12 9.27E−09 Sox4 26 0.025 0.243 −3.162 1.51E−11 1.61E−08 Zfp36l2 26 0.897 0.643 1.135 2.91E−11 3.01E−08 Srgn 26 0.999 1 0.549 4.41E−11 4.48 E−08 Cpa3 26 0.999 0.986 0.828 7.69E−11 7.52E−08 Ranbp1 26 0.357 0.629 −0.883 9.59E−11 9.26E−08 Tgm2 26 0.011 0.186 −3.066 1.04E−10 1.00E−07 Ninj1 26 0.254 0.6 −1.060 1.42E−10 1.34E−07 Cnbp 26 0.626 0.857 −0.661 1.96E−10 1.81E−07 Cited2 26 0.8 0.471 1.214 2.62E−10 2.38E−07 Mcpt8 26 0.171 0.457 −0.992 2.92E−10 2.64E−07 Btg2 26 0.23 0.571 −1.300 5.60E−10 4.82E−07 Hmgn1 26 0.23 0.486 −1.120 9.79E−10 8.16E−07 Oaf 26 0.524 0.157 1.769 1.28E−09 1.04E−06 Klf2 26 0.452 0.129 2.040 1.72E−09 1.36E−06 Mif 26 0.297 0.5 −0.971 1.88E−09 1.48E−06 Cst3 26 0.861 0.629 0.718 2.95E−09 2.22E−06 Dnaja1 26 0.545 0.7 −0.770 3.19E−09 2.38E−06 Ncl 26 0.46 0.671 −0.777 3.37E−09 2.51E−06 Il1rl1 26 0.755 0.443 1.096 4.41E−09 3.20E−06 Serpinb1a 26 0.826 0.571 1.037 6.33E−09 4.49E−06 Ero1l 26 0.676 0.357 1.295 8.15E−09 5.69E−06 Zfp36 26 0.673 0.343 1.037 1.18E−08 7.97E−06 Sub1 26 0.943 0.971 −0.456 3.26E−08 2.05E−05 Srsf6 26 0.347 0.6 −0.812 3.47E−08 2.16E−05 Srsf2 26 0.413 0.529 −0.824 3.56E−08 2.21E−05 Phlda1 26 0.409 0.1 2.714 5.58E−08 3.33E−05 Mctp1 26 0.419 0.129 1.488 5.82E−08 3.46E−05 Crip1 26 0.883 0.743 0.753 6.64E−08 3.90E−05 Spint2 26 0.088 0.314 −1.410 6.72E−08 3.93E−05 Ctla2a 26 0.18 0 4.696 6.75E−08 3.95E−05 Hic1 26 0.252 0.543 −1.130 7.28E−08 4.24E−05 Srrm2 26 0.369 0.614 −0.891 8.77E−08 5.03E−05 Cirbp 26 0.334 0.571 −0.866 8.94E−08 5.12E−05 Tpsb2 26 0.237 0.029 4.861 9.22E−08 5.26E−05 Tmem64 26 0.346 0.057 1.990 1.20E−07 6.78E−05 Npc2 26 0.789 0.6 0.654 1.21E−07 6.84E−05 Klf6 26 0.581 0.329 1.376 1.64E−07 9.03E−05 Hspa1a 26 0.166 0 5.537 1.77E−07 9.65E−05 Vim 26 0.626 0.343 0.759 1.88E−07 1.02E−04 Eif5a 26 0.721 0.786 −0.446 2.15E−07 1.15E−04 Furin 26 0.945 0.871 0.737 2.23E−07 1.19E−04 Gadd45a 26 0.273 0.6 −0.836 2.42E−07 1.29E−04 Tgif1 26 0.046 0.243 −1.699 2.49E−07 1.32E−04 H2-D1 26 0.896 0.957 −0.482 2.71E−07 1.43E−04 Tsc22d3 26 0.662 0.357 1.032 2.94E−07 1.53E−04 Magohb 26 0.165 0.429 −1.075 3.01E−07 1.57E−04 Igkv1-135 26 0.033 0.2 −1.693 3.48E−07 1.78E−04 Gpr132 26 0.057 0.271 −1.568 4.28E−07 2.16E−04 Kdelr1 26 0.317 0.071 1.679 5.15E−07 2.57E−04 Il4ra 26 0.147 0.286 −1.265 5.76E−07 2.83E−04 Ebi3 26 0.161 0 4.036 5.83E−07 2.87E−04 Cyp11a1 26 0.899 0.786 0.600 7.08E−07 3.41E−04 Errfi1 26 0.365 0.529 −0.821 7.10E−07 3.42E−04 Plxdc2 26 0.163 0 3.918 7.20E−07 3.45E−04 Slc7a8 26 0.37 0.129 1.625 9.70E−07 4.52E−04 Eif4a1 26 0.773 0.814 −0.432 1.12E−06 5.13E−04 Cst7 26 0.665 0.4 0.794 1.16E−06 5.32E−04 Gpr171 26 0.608 0.343 1.297 1.45E−06 6.45E−04 Rnf128 26 0.374 0.1 1.404 1.78E−06 7.77E−04 H2-K1 26 0.642 0.771 −0.585 1.84E−06 7.97E−04 Cish 26 0.397 0.1 1.408 1.92E−06 8.25E−04 H3f3b 26 0.996 0.986 −0.452 1.92E−06 8.25E−04 Fam105a 26 0.73 0.557 0.743 2.06E−06 8.80E−04 Malat1 26 0.999 1 −0.422 2.21E−06 9.37E−04 Neurl3 26 0.389 0.643 −0.790 2.58E−06 1.07E−03 Egr1 26 0.849 0.614 0.220 2.58E−06 1.07E−03 Map1lc3a 26 0.378 0.514 −0.642 2.71E−06 1.12E−03 Sec11c 26 0.715 0.514 0.729 2.79E−06 1.15E−03 Pnrc1 26 0.562 0.771 −0.684 2.83E−06 1.16E−03 Lgals1 26 0.7 0.429 0.520 3.68E−06 1.46E−03 Lilrb4a 26 0.598 0.3 0.964 4.14E−06 1.62E−03 Pilrb2 26 0.263 0.043 1.825 4.67E−06 1.81E−03 Actg1 26 0.976 0.914 0.322 5.47E−06 2.08E−03 Ddit4 26 0.369 0.129 1.501 5.56E−06 2.11E−03 Cyb5a 26 0.509 0.243 0.906 6.23E−06 2.34E−03 Ccl2 26 0.455 0.186 1.605 7.97E−06 2.91E−03 Slc30a2 26 0.206 0.029 1.497 7.99E−06 2.91E−03 Vwa5a 26 0.338 0.1 1.596 8.14E−06 2.96E−03 Gsn 26 0.437 0.186 1.055 8.80E−06 3.18E−03 Mat2a 26 0.378 0.6 −0.741 8.83E−06 3.18E−03 Srsf7 26 0.374 0.557 −0.602 9.23E−06 3.32E−03 Cd200r3 26 0.267 0.057 1.849 1.17E−05 4.10E−03 Mt1 26 0.522 0.257 1.064 1.18E−05 4.12E−03 Patz1 26 0.154 0.314 −0.988 1.39E−05 4.77E−03 Tyrobp 26 0.955 0.929 0.395 1.43E−05 4.89E−03 Cbx1 26 0.184 0.329 −0.828 1.51E−05 5.12E−03 Ccnd2 26 0.346 0.443 −0.674 1.61E−05 5.42E−03 Emd 26 0.206 0.314 −1.086 1.61E−05 5.43E−03 Rgs1 26 0.84 0.6 0.590 1.65E−05 5.55E−03 Impdh2 26 0.211 0.371 −0.895 1.81E−05 6.00E−03 Optn 26 0.213 0.029 2.198 1.98E−05 6.48E−03 Opa3 26 0.089 0.257 −1.429 2.12E−05 6.88E−03 Mns1 26 0.338 0.143 1.231 2.32E−05 7.41E−03 Itm2b 26 0.987 0.971 0.287 2.44E−05 7.76E−03 Adora3 26 0.431 0.186 0.909 2.50E−05 7.90E−03 Pim3 26 0.145 0.371 −1.317 2.62E−05 8.21E−03 Tmem9 26 0.437 0.229 0.978 2.95E−05 9.14E−03 Eif3h 26 0.84 0.686 0.444 2.96E−05 9.16E−03 1810058l24Rik 26 0.625 0.386 0.587 3.04E−05 9.37E−03 Hspa8 26 0.953 0.843 0.375 3.06E−05 9.43E−03 Alox5ap 26 0.762 0.543 0.807 3.09E−05 9.49E−03 Coq10b 26 0.226 0.314 −0.675 3.54E−05 1.07E−02 Fam174a 26 0.201 0.4 −0.766 3.59E−05 1.09E−02 Spag9 26 0.153 0.343 −1.004 4.00E−05 1.19E−02 Fbxo9 26 0.144 0.171 −0.681 4.12E−05 1.22E−02 H3f3a 26 0.885 0.9 −0.310 4.35E−05 1.28E−02 Ndufa6 26 0.865 0.729 0.485 4.60E−05 1.35E−02 Pik3r6 26 0.366 0.129 0.880 4.81E−05 1.40E−02 Ptp4a1 26 0.354 0.543 −0.748 5.01E−05 1.45E−02 Dot1l 26 0.088 0.2 −1.211 5.22E−05 1.50E−02 Cited4 26 0.891 0.829 −0.273 5.73E−05 1.63E−02 F2r 26 0.389 0.157 1.091 6.05E−05 1.70E−02 Snrpb 26 0.546 0.7 −0.456 6.05E−05 1.70E−02 Lif 26 0.174 0.014 3.225 6.63E−05 1.84E−02 Nmrk1 26 0.043 0.186 −1.576 6.82E−05 1.89E−02 Homer2 26 0.293 0.086 1.493 6.90E−05 1.91E−02 Adgre5 26 0.304 0.1 1.018 7.15E−05 1.96E−02 Ctsc 26 0.701 0.471 0.858 7.46E−05 2.04E−02 Ddx5 26 0.943 0.986 −0.374 7.71E−05 2.10E−02 Kcnq1ot1 26 0.101 0.243 −1.171 7.75E−05 2.11E−02 Zcrb1 26 0.343 0.586 −0.574 8.17E−05 2.20E−02 Deptor 26 0.119 0.329 −1.074 8.21E−05 2.21E−02 Dcaf12 26 0.143 0.357 −0.920 8.27E−05 2.22E−02 Myeov2 26 0.826 0.614 0.406 8.54E−05 2.28E−02 Il6 26 0.356 0.114 1.578 8.97E−05 2.38E−02 Tubb2b 26 0.164 0.043 0.556 9.08E−05 2.40E−02 Rrp15 26 0.056 0.214 −1.304 9.41E−05 2.47E−02 Lmo4 26 0.407 0.571 −0.744 9.80E−05 2.56E−02 Creg1 26 0.699 0.514 0.693 1.02E−04 2.64E−02 Cuedc1 26 0.166 0.4 −0.928 1.06E−04 2.74E−02 Nucb1 26 0.396 0.171 0.953 1.16E−04 2.95E−02 Zcchc10 26 0.409 0.186 1.098 1.26E−04 3.17E−02 Zfp131 26 0.106 0.271 −1.115 1.27E−04 3.21E−02 Smco4 26 0.629 0.386 0.580 1.28E−04 3.21E−02 Nhp2l1 26 0.382 0.514 −0.624 1.28E−04 3.22E−02 Snrpd3 26 0.37 0.429 −0.444 1.32E−04 3.30E−02 Ifitm3 26 0.169 0.314 −0.813 1.32E−04 3.31E−02 Rac1 26 0.703 0.486 0.575 1.33E−04 3.32E−02 Cox4i1 26 0.948 0.886 0.320 1.35E−04 3.37E−02 Plscr1 26 0.553 0.286 0.843 1.45E−04 3.55E−02 Ccdc107 26 0.202 0.3 −0.711 1.45E−04 3.56E−02 Zfos1 26 0.264 0.3 −0.542 1.46E−04 3.58E−02 Rexo2 26 0.745 0.557 0.602 1.48E−04 3.62E−02 Bhlhe40 26 0.433 0.186 1.174 1.52E−04 3.70E−02 Tsc22d1 26 0.739 0.843 −0.468 1.55E−04 3.76E−02 Ctsg 26 0.117 0.3 −0.877 1.56E−04 3.78E−02 Nfkbid 26 0.664 0.386 0.823 1.56E−04 3.78E−02 Actb 26 0.999 1 0.617 1.72E−04 4.11E−02 Bcl2l11 26 0.035 0.157 −1.690 1.74E−04 4.15E−02 Ecm1 26 0.301 0.086 1.528 1.81E−04 4.29E−02 Serf2 26 0.979 0.971 0.319 1.86E−04 4.39E−02 Dnajc2 26 0.14 0.271 −0.988 1.96E−04 4.57E−02 Neat1 26 0.735 0.543 0.449 1.97E−04 4.61E−02 Eif3g 26 0.315 0.457 −0.628 1.99E−04 4.65E−02 Dusp2 27 0.396 0.152 1.356 9.49E−05 2.49E−02 Btg2 3 0.826 0.969 −0.826 2.71E−113 5.25E−108 Junb 3 0.945 0.99 −0.529 8.39E−66 3.05E−61 Ubb 3 0.96 0.994 −0.435 1.78E−62 4.32E−58 Dusp1 3 0.55 0.847 −0.794 2.66E−59 5.33E−55 Bcl2 3 0.592 0.355 0.931 2.24E−56 4.35E−52 Pnrc1 3 0.567 0.824 −0.650 1.08E−54 1.84E−50 Pim1 3 0.402 0.691 −0.806 8.46E−53 1.37E−48 Jund 3 0.851 0.964 −0.536 1.29E−48 1.70E−44 Actg1 3 0.92 0.875 0.331 1.42E−47 1.80E−43 Btg1 3 0.808 0.931 −0.523 2.11E−46 2.51E−42 Irf7 3 0.149 0.388 −1.262 8.63E−45 9.13E−41 Ppp1r15a 3 0.237 0.503 −0.934 2.94E−41 2.72E−37 Zfp36l2 3 0.47 0.246 0.933 1.12E−40 9.99E−37 Fosb 3 0.211 0.462 −1.004 2.21E−38 1.76E−34 Hk2 3 0.23 0.445 −0.999 4.43E−36 3.26E−32 Nfkbia 3 0.533 0.795 −0.622 9.05E−36 6.50E−32 Gadd45b 3 0.264 0.518 −0.881 1.36E−35 9.65E−32 Klf4 3 0.133 0.346 −1.042 4.12E−34 2.70E−30 Dusp2 3 0.235 0.07 1.410 4.13E−34 2.70E−30 Cd69 3 0.493 0.703 −0.730 4.86E−34 3.14E−30 Fos 3 0.611 0.828 −0.558 1.81E−31 1.03E−27 B930036N10Rik 3 0.147 0.322 −1.297 7.30E−31 4.01E−27 Slc7a6os 3 0.156 0.356 −1.073 4.21E−30 2.17E−26 Igkc 3 0.993 0.99 0.322 2.50E−28 1.20E−24 Tiparp 3 0.039 0.182 −1.581 5.71E−28 2.62E−24 Eif1 3 0.99 1 −0.260 3.15E−27 1.39E−23 Sla 3 0.716 0.658 0.317 1.28E−26 5.50E−23 Rsrp1 3 0.466 0.665 −0.640 5.63E−26 2.26E−22 Bhlhe40 3 0.438 0.633 −0.573 5.97E−26 2.38E−22 Igha 3 0.966 0.943 0.291 2.18E−25 8.41E−22 Tgif1 3 0.254 0.444 −0.724 7.91E−25 2.93E−21 Prr7 3 0.076 0.223 −1.236 9.69E−25 3.57E−21 Klrk1 3 0.546 0.684 −0.499 9.42E−24 3.19E−20 Tnfaip3 3 0.301 0.489 −0.677 5.84E−22 1.68E−18 Clk1 3 0.338 0.518 −0.578 3.00E−21 8.35E−18 Ier2 3 0.685 0.822 −0.556 5.05E−21 1.38E−17 Ifrd1 3 0.183 0.357 −0.754 3.81E−20 9.81E−17 Txnip 3 0.202 0.084 1.079 9.16E−20 2.29E−16 Lpar6 3 0.24 0.401 −0.676 1.77E−19 4.30E−16 Uhrf2 3 0.298 0.465 −0.609 6.32E−19 1.45E−15 Dok1 3 0.318 0.207 0.534 1.78E−18 3.91E−15 Pabpc1 3 0.698 0.855 −0.452 2.17E−18 4.72E−15 Ikzf2 3 0.438 0.561 −0.451 2.44E−18 5.29E−15 Ptpn22 3 0.521 0.39 0.465 2.81E−18 6.03E−15 Nfkbid 3 0.191 0.371 −0.763 5.78E−18 1.21E−14 Iglc1 3 0.184 0.359 −0.525 9.64E−18 1.96E−14 Hsp90aa1 3 0.394 0.326 0.558 7.02E−17 1.30E−13 Il22 3 0.082 0.207 −1.460 6.26E−16 1.08E−12 Phlda1 3 0.194 0.355 −0.587 1.73E−15 2.87E−12 Dusp5 3 0.48 0.644 −0.437 3.57E−15 5.74E−12 Cebpb 3 0.518 0.409 0.434 3.87E−15 6.20E−12 Nr4a1 3 0.458 0.63 −0.503 4.34E−15 6.90E−12 Sqstm1 3 0.227 0.375 −0.607 1.49E−14 2.25E−11 Il2rg 3 0.543 0.701 −0.419 2.42E−14 3.58E−11 Icos 3 0.271 0.421 −0.530 6.75E−14 9.42E−11 Nfil3 3 0.067 0.176 −0.989 1.01E−13 1.37E−10 Gimap9 3 0.372 0.268 0.441 1.09E−13 1.47E−10 Ier5 3 0.375 0.535 −0.499 2.92E−13 3.77E−10 Actb 3 0.956 0.953 0.237 5.27E−13 6.60E−10 Rgs1 3 0.597 0.74 −0.469 8.80E−13 1.09E−09 Hexim1 3 0.059 0.153 −0.847 1.04E−12 1.28E−09 Zc3h12a 3 0.138 0.256 −0.676 1.93E−12 2.31E−09 Cited2 3 0.137 0.264 −0.735 2.07E−12 2.47E−09 Serpinb6b 3 0.51 0.392 0.341 4.27E−12 4.85E−09 Hspa5 3 0.399 0.54 −0.437 7.57E−11 7.43E−08 Pik3r1 3 0.586 0.474 0.297 1.03E−10 9.92E−08 Herpud1 3 0.135 0.253 −0.667 2.34E−10 2.14E−07 Fam110a 3 0.101 0.199 −0.786 2.47E−10 2.25E−07 Csrnp1 3 0.185 0.311 −0.660 2.78E−10 2.52E−07 Nfkbiz 3 0.248 0.38 −0.505 3.16E−10 2.83E−07 Litaf 3 0.314 0.213 0.440 3.41E−10 3.04E−07 Asb2 3 0.402 0.563 −0.590 3.70E−10 3.26E−07 Sh2d2a 3 0.273 0.226 0.342 4.26E−10 3.70E−07 Cish 3 0.264 0.189 0.423 8.15E−10 6.87E−07 Ccnl1 3 0.276 0.43 −0.536 1.11E−09 9.06E−07 Eef2 3 0.841 0.891 −0.269 1.48E−09 1.18E−06 Chd2 3 0.134 0.241 −0.663 1.90E−09 1.49E−06 Il2rb 3 0.468 0.389 0.286 3.01E−09 2.26E−06 Nrip1 3 0.379 0.492 −0.314 3.68E−09 2.71E−06 Hsp90ab1 3 0.579 0.551 0.247 4.22E−09 3.07E−06 H2-Q7 3 0.183 0.299 −0.562 4.85E−09 3.50E−06 Tnf 3 0.155 0.272 −0.594 5.24E−09 3.76E−06 BC031181 3 0.458 0.531 −0.307 6.68E−09 4.74E−06 Uqcrh 3 0.733 0.699 0.168 6.75E−09 4.78E−06 Ptp4a1 3 0.188 0.286 −0.533 1.15E−08 7.84E−06 Ccl4 3 0.165 0.099 0.609 1.39E−08 9.32E−06 Txk 3 0.529 0.64 −0.289 1.39E−08 9.32E−06 Kdm6b 3 0.234 0.346 −0.450 1.48E−08 9.88E−06 Slc3a2 3 0.464 0.422 0.275 1.49E−08 9.95E−06 Tnfrsf18 3 0.378 0.306 0.282 1.85E−08 1.22E−05 Peli1 3 0.155 0.256 −0.536 2.62E−08 1.68E−05 Rbm3 3 0.669 0.775 −0.346 4.08 E−08 2.49E−05 Rasgrp1 3 0.184 0.281 −0.495 4.40E−08 2.68E−05 Hbp1 3 0.083 0.155 −0.641 4.76E−08 2.88E−05 Pcf11 3 0.084 0.166 −0.699 4.80E−08 2.89E−05 Tns4 3 0.147 0.258 −0.647 5.88E−08 3.49E−05 Rora 3 0.552 0.617 −0.268 6.69E−08 3.92E−05 Prdx6 3 0.719 0.67 0.153 7.69E−08 4.47E−05 Gpr65 3 0.176 0.111 0.508 8.15E−08 4.69E−05 Tpm4 3 0.398 0.34 0.239 9.64E−08 5.48E−05 Tnfsf11 3 0.24 0.166 0.430 1.25E−07 7.00E−05 Abi3 3 0.22 0.36 −0.553 1.32E−07 7.38E−05 Samsn1 3 0.449 0.381 0.225 1.35E−07 7.51E−05 Oser1 3 0.273 0.379 −0.404 1.52E−07 8.39E−05 Gpr171 3 0.279 0.22 0.298 1.76E−07 9.61E−05 Traf1 3 0.319 0.395 −0.340 2.26E−07 1.21E−04 Tuba1a 3 0.118 0.21 −0.674 2.35E−07 1.25E−04 Sla2 3 0.27 0.204 0.330 3.15E−07 1.63E−04 Ccng2 3 0.12 0.205 −0.558 3.26E−07 1.68E−04 5031425E22Rik 3 0.202 0.311 −0.472 4.05E−07 2.06E−04 Cmas 3 0.196 0.305 −0.539 4.14E−07 2.10E−04 Lmo4 3 0.583 0.682 −0.256 6.18E−07 3.02E−04 Tgoln1 3 0.222 0.334 −0.444 6.36E−07 3.09E−04 Erdr1 3 0.118 0.184 −0.515 6.51E−07 3.16E−04 Emb 3 0.794 0.827 −0.232 6.91E−07 3.33E−04 Ubc 3 0.343 0.46 −0.304 8.30E−07 3.92E−04 Pcbp2 3 0.491 0.633 −0.325 8.47E−07 3.99E−04 4930523C07Rik 3 0.185 0.281 −0.469 9.87E−07 4.60E−04 Tle3 3 0.189 0.125 0.507 1.00E−06 4.65E−04 Il16 3 0.087 0.161 −0.633 1.30E−06 5.87E−04 Sft2d2 3 0.174 0.114 0.455 1.32E−06 5.95E−04 Sepp1 3 0.849 0.899 −0.270 1.33E−06 6.00E−04 H2-K1 3 0.828 0.897 −0.269 1.35E−06 6.04E−04 Birc3 3 0.144 0.22 −0.453 1.63E−06 7.17E−04 Tmem243 3 0.21 0.305 −0.402 1.87E−06 8.10E−04 Vps37b 3 0.49 0.514 −0.262 2.55E−06 1.06E−03 Ptprcap 3 0.625 0.568 0.175 2.86E−06 1.17E−03 Serinc3 3 0.202 0.143 0.464 3.66E−06 1.45E−03 Gltscr2 3 0.468 0.572 −0.269 3.86E−06 1.52E−03 Rsl24d1 3 0.164 0.111 0.429 4.20E−06 1.64E−03 Maff 3 0.385 0.446 −0.284 4.62E−06 1.79E−03 Npc2 3 0.496 0.457 0.158 5.10E−06 1.96E−03 Acpp 3 0.093 0.162 −0.600 5.45E−06 2.08E−03 Ppt2 3 0.361 0.309 0.209 5.74E−06 2.18E−03 Gcnt2 3 0.13 0.203 −0.416 5.76E−06 2.18E−03 Pnisr 3 0.213 0.314 −0.367 6.48E−06 2.42E−03 D16Ertd472e 3 0.136 0.223 −0.475 6.49E−06 2.43E−03 Gna13 3 0.265 0.348 −0.321 7.31E−06 2.70E−03 Socs1 3 0.271 0.231 0.281 8.07E−06 2.94E−03 Ifngr1 3 0.725 0.673 0.162 1.11E−05 3.90E−03 H2-D1 3 0.979 0.99 −0.188 1.20E−05 4.17E−03 Hilpda 3 0.404 0.527 −0.321 1.25E−05 4.32E−03 Fam102a 3 0.219 0.169 0.330 1.33E−05 4.57E−03 Crem 3 0.369 0.289 0.312 1.43E−05 4.89E−03 Rinl 3 0.465 0.388 0.248 1.45E−05 4.95E−03 Spop 3 0.205 0.301 −0.398 1.63E−05 5.47E−03 Jchain 3 0.781 0.732 0.156 1.70E−05 5.67E−03 F2r 3 0.258 0.36 −0.384 1.71E−05 5.70E−03 Rgs2 3 0.37 0.466 −0.291 1.72E−05 5.73E−03 Ahr 3 0.268 0.205 0.390 1.82E−05 6.02E−03 Ndufs4 3 0.293 0.238 0.222 1.98E−05 6.48E−03 Hes1 3 0.093 0.176 −0.774 2.01E−05 6.56E−03 Ddx18 3 0.188 0.159 0.252 2.36E−05 7.53E−03 Eprs 3 0.127 0.202 −0.476 2.38E−05 7.59E−03 Rara 3 0.1 0.17 −0.564 2.43E−05 7.72E−03 Prelid2 3 0.323 0.269 0.243 3.05E−05 9.40E−03 Clcn3 3 0.202 0.277 −0.363 3.20E−05 9.81E−03 Tbx21 3 0.185 0.137 0.344 3.22E−05 9.86E−03 Exosc3 3 0.167 0.125 0.348 3.25E−05 9.91E−03 Ppp1r10 3 0.19 0.274 −0.337 3.60E−05 1.09E−02 Cbx3 3 0.276 0.238 0.168 3.94E−05 1.18E−02 Rnf19b 3 0.173 0.231 −0.353 4.11E−05 1.22E−02 Ccdc174 3 0.11 0.167 −0.475 4.11E−05 1.22E−02 Gimap5 3 0.45 0.395 0.168 4.82E−05 1.40E−02 Dgat1 3 0.306 0.404 −0.324 4.90E−05 1.42E−02 Plk3 3 0.177 0.143 0.331 5.41E−05 1.55E−02 H2-Q4 3 0.167 0.254 −0.495 6.01E−05 1.70E−02 Znhit1 3 0.188 0.154 0.272 6.69E−05 1.85E−02 Nop56 3 0.089 0.162 −0.544 7.45E−05 2.03E−02 Neurl3 3 0.314 0.382 −0.256 7.70E−05 2.10E−02 Il18r1 3 0.431 0.465 −0.175 8.60E−05 2.29E−02 Mbd2 3 0.209 0.314 −0.452 8.79E−05 2.34E−02 Tubb4b 3 0.138 0.233 −0.547 8.85E−05 2.35E−02 Dtx3 3 0.185 0.275 −0.378 9.21E−05 2.42E−02 Slc38a2 3 0.12 0.186 −0.469 9.33E−05 2.45E−02 Ehd1 3 0.158 0.119 0.345 1.13E−04 2.90E−02 Abhd2 3 0.286 0.24 0.335 1.13E−04 2.90E−02 Zc3hav1 3 0.163 0.248 −0.395 1.22E−04 3.09E−02 Dtx1 3 0.173 0.251 −0.367 1.22E−04 3.09E−02 Nfkb2 3 0.103 0.165 −0.512 1.35E−04 3.36E−02 Gem 3 0.463 0.509 −0.304 1.38E−04 3.42E−02 Bcl2a1d 3 0.344 0.394 −0.236 1.43E−04 3.53E−02 Xbp1 3 0.31 0.282 0.218 1.50E−04 3.67E−02 Slc16a6 3 0.233 0.309 −0.365 1.52E−04 3.69E−02 Cdc42se2 3 0.198 0.283 −0.363 1.53E−04 3.72E−02 Clta 3 0.37 0.32 0.163 1.78E−04 4.24E−02 Ahcyl2 3 0.515 0.469 0.214 1.83E−04 4.33E−02 Saraf 3 0.394 0.493 −0.258 1.85E−04 4.36E−02 Tgfb1 3 0.268 0.361 −0.366 2.06E−04 4.79E−02 Cnot2 3 0.089 0.154 −0.535 2.10E−04 4.87E−02 Ighg1 31 0.165 0 4.475 1.46E−06 6.53E−04 Ifi30 31 0.417 0.274 1.031 3.76E−06 1.48E−03 Cyba 31 0.626 0.453 0.749 1.25E−05 4.35E−03 AW112010 31 0.087 0.379 −0.682 1.66E−05 5.56E−03 Ppia 31 0.904 0.768 0.300 1.91E−05 6.27E−03 Tmem258 31 0.4 0.368 0.478 4.81E−05 1.40E−02 Mif 31 0.461 0.232 0.781 1.24E−04 3.14E−02 H2-DMb2 31 0.617 0.421 0.572 1.73E−04 4.14E−02 1600010M07Rik 31 0.017 0.189 −2.290 1.78E−04 4.24E−02 Npm1 31 0.661 0.505 0.488 1.79E−04 4.25E−02 Cebpb 33 1 0.528 2.572 8.08E−08 4.66E−05 Nr4a1 33 1 0.167 3.626 5.30E−07 2.63E−04 Errfi1 33 1 0.153 4.176 8.06E−07 3.82E−04 Mt1 33 1 0.694 3.108 1.08E−06 5.00E−04 Thbs1 33 1 0.111 3.767 2.94E−06 1.20E−03 Ccl7 33 0.8 0 7.280 1.34E−05 4.62E−03 Mt2 33 0.8 0.347 2.965 1.81E−05 5.99E−03 Hspa8 33 1 0.806 0.917 5.18E−05 1.49E−02 Cyr61 33 1 0.264 2.237 7.96E−05 2.15E−02 Vmp1 33 1 0.389 2.516 1.37E−04 3.40E−02 Mylk 33 0.8 0.417 1.983 1.48E−04 3.63E−02 Csrnp1 33 0.6 0.014 4.333 1.84E−04 4.35E−02 Cxcl1 33 0.6 0.014 4.780 2.16E−04 4.98E−02 Klf6 34 1 0.444 1.381 3.64E−06 1.44E−03 Dusp1 34 1 0.944 1.553 1.30E−05 4.49E−03 Jun 34 0.815 0.556 1.650 1.41E−05 4.84E−03 Hp 34 0.778 0.111 2.076 2.60E−05 8.17E−03 Zfp36 34 1 0.944 1.022 2.61E−05 8.19E−03 Actg1 34 1 1 0.491 3.69E−05 1.11E−02 Osm 34 0.63 0.111 3.025 6.22E−05 1.74E−02 2700029M09Rik 34 0.111 0.722 −1.619 7.03E−05 1.94E−02 Ctsd 34 0.593 0.611 1.128 8.03E−05 2.17E−02 Oas1a 34 0 0.333 −4.376 1.99E−04 4.65E−02 Pkp3 34 0.296 0 4.344 2.09E−04 4.84E−02 Dusp1 36 0.981 0.944 1.061 1.05E−09 8.69E−07 Cxcl2 36 0.879 0.5 2.134 2.52E−08 1.62E−05 Zfp36 36 0.873 0.444 1.362 4.84E−07 2.42E−04 Btg1 36 0.943 0.944 −0.853 7.36E−06 2.71E−03 Junb 36 0.994 0.889 0.761 1.05E−05 3.70E−03 Fos 36 0.815 0.556 0.893 3.16E−05 9.69E−03 Ccr12 36 0.924 0.556 0.948 3.33E−05 1.01E−02 Osm 36 0.554 0.056 3.512 4.40E−05 1.30E−02 Psmb3 36 0.076 0.5 −1.766 6.03E−05 1.70E−02 Plac8 36 0.083 0.5 −2.336 7.78E−05 2.11E−02 Laptm5 36 0.248 0.778 −1.097 1.30E−04 3.25E−02 Nfkbia 36 0.86 0.556 1.136 1.79E−04 4.25E−02 Nfkbiz 36 0.605 0.167 1.880 2.08E−04 4.84E−02 Sla 4 0.794 0.538 0.969 2.51E−32 1.48E−28 Hspa1a 4 0.242 0.016 3.237 3.38E−32 1.97E−28 Vps37b 4 0.458 0.761 −0.984 1.98E−30 1.04E−26 Ifrd1 4 0.334 0.632 −1.143 7.30E−29 3.60E−25 Jund 4 0.892 0.983 −0.446 6.06E−28 2.75E−24 Junb 4 0.974 1 −0.294 1.32E−23 4.41E−20 Fosb 4 0.434 0.725 −0.828 1.90E−22 5.73E−19 Crem 4 0.324 0.608 −1.068 2.14E−21 5.98E−18 Ighg1 4 0.152 0.009 2.835 6.74E−20 1.70E−16 Pim1 4 0.555 0.787 −0.650 9.41E−20 2.34E−16 Maff 4 0.53 0.798 −0.559 2.54E−19 6.10E−16 Eif1 4 0.995 0.997 −0.261 5.38E−19 1.25E−15 Bcl2 4 0.83 0.631 0.595 9.99E−19 2.24E−15 Klf4 4 0.249 0.528 −0.915 8.57E−18 1.76E−14 Hsp90aa1 4 0.591 0.434 0.823 9.70E−18 1.97E−14 Ubc 4 0.352 0.611 −0.751 1.24E−17 2.51E−14 Emb 4 0.625 0.777 −0.562 1.30E−17 2.60E−14 Tnfaip3 4 0.452 0.711 −0.653 5.35E−17 1.01E−13 Prr7 4 0.129 0.368 −1.231 6.59E−17 1.23E−13 Ncoa7 4 0.717 0.495 0.664 1.73E−16 3.10E−13 Lmna 4 0.198 0.422 −1.142 5.25E−16 9.14E−13 Fam110a 4 0.308 0.526 −0.910 8.04E−16 1.37E−12 Cwc25 4 0.082 0.286 −1.528 1.08E−15 1.80E−12 Bhlhe40 4 0.555 0.761 −0.529 2.89E−15 4.70E−12 Igkc 4 0.992 0.993 0.522 1.54E−14 2.32E−11 Rasl11a 4 0.563 0.34 0.883 2.96E−14 4.33E−11 Hsp90ab1 4 0.71 0.639 0.576 4.53E−14 6.42E−11 Tgif1 4 0.442 0.66 −0.551 1.85E−13 2.45E−10 Pnrc1 4 0.73 0.855 −0.435 7.84E−13 9.73E−10 Sqstm1 4 0.365 0.566 −0.648 1.97E−12 2.35E−09 Dnajb1 4 0.316 0.152 1.254 2.45E−12 2.87E−09 Ptpn22 4 0.437 0.251 0.859 4.74E−12 5.38E−09 Ccng2 4 0.239 0.463 −0.679 4.86E−12 5.50E−09 Zc3h12a 4 0.27 0.479 −0.761 7.63E−12 8.41E−09 Rilpl2 4 0.237 0.077 1.286 9.02E−12 9.85E−09 Nabp1 4 0.357 0.568 −0.645 1.97E−11 2.08E−08 Ube2s 4 0.432 0.648 −0.485 3.44E−11 3.54E−08 Srsf2 4 0.527 0.62 −0.468 3.68E−11 3.77E−08 Atf3 4 0.113 0.291 −1.066 4.69E−11 4.72E−08 Phlda1 4 0.288 0.507 −0.547 5.57E−11 5.57E−08 Btg2 4 0.835 0.958 −0.231 7.48E−11 7.37E−08 Saraf 4 0.432 0.622 −0.530 7.86E−11 7.68E−08 Gimap1 4 0.56 0.343 0.584 1.23E−10 1.17E−07 Hspe1 4 0.512 0.362 0.670 1.77E−10 1.65E−07 Coq10b 4 0.298 0.497 −0.674 2.49E−10 2.27E−07 Hspa8 4 0.861 0.831 0.431 5.85E−10 5.00E−07 Gna13 4 0.254 0.443 −0.674 6.56E−10 5.56E−07 H2-D1 4 0.977 0.99 −0.231 8.63E−10 7.27E−07 Tcrg-C1 4 0.326 0.136 1.027 1.08E−09 8.87E−07 Uhrf2 4 0.545 0.706 −0.558 1.17E−09 9.57E−07 Dot1l 4 0.054 0.181 −1.046 1.19E−09 9.71E−07 Srgn 4 0.738 0.617 0.492 1.38E−09 1.10E−06 Dusp1 4 0.71 0.841 −0.424 3.19E−09 2.38E−06 Ptp4a1 4 0.265 0.43 −0.687 3.62E−09 2.68E−06 4930523C07Rik 4 0.365 0.51 −0.605 8.93E−09 6.17E−06 Gltscr2 4 0.524 0.659 −0.495 1.16E−08 7.84E−06 Rbm3 4 0.635 0.754 −0.399 1.40E−08 9.37E−06 Emd 4 0.244 0.409 −0.653 1.55E−08 1.03E−05 Dgat1 4 0.491 0.66 −0.450 1.66E−08 1.10E−05 Neurl3 4 0.26 0.448 −0.600 2.15E−08 1.40E−05 Gpx1 4 0.763 0.76 −0.322 2.94E−08 1.86E−05 Gimap5 4 0.409 0.232 0.701 3.55E−08 2.21E−05 Mmd 4 0.35 0.19 0.817 4.03E−08 2.47E−05 Neat1 4 0.386 0.289 0.600 4.81E−08 2.90E−05 Hspa5 4 0.568 0.69 −0.402 7.66E−08 4.46E−05 Gpr183 4 0.357 0.51 −0.523 9.52E−08 5.42E−05 Ppp1r15a 4 0.329 0.493 −0.513 1.21E−07 6.84E−05 Tiparp 4 0.049 0.153 −1.235 1.28E−07 7.14E−05 Il2rg 4 0.64 0.791 −0.301 1.60E−07 8.79E−05 Il4ra 4 0.069 0.193 −1.110 1.75E−07 9.59E−05 Arg1 4 0.28 0.138 1.029 2.02E−07 1.09E−04 Hk2 4 0.226 0.378 −0.726 2.03E−07 1.10E−04 B2m 4 0.992 0.986 −0.174 2.28E−07 1.22E−04 Pop4 4 0.051 0.16 −1.155 3.07E−07 1.60E−04 Ahr 4 0.211 0.099 0.979 3.29E−07 1.70E−04 Cish 4 0.221 0.092 1.037 4.61E−07 2.31E−04 Gpr132 4 0.56 0.726 −0.351 4.68E−07 2.35E−04 Nfkbia 4 0.743 0.866 −0.242 5.88E−07 2.89E−04 Atf4 4 0.347 0.47 −0.529 6.24E−07 3.05E−04 Arf4 4 0.476 0.571 −0.400 7.76E−07 3.69E−04 Tnfsf11 4 0.424 0.253 0.445 8.09E−07 3.83E−04 Rsrp1 4 0.414 0.551 −0.470 8.58E−07 4.04E−04 Cdk11b 4 0.149 0.284 −0.771 9.01E−07 4.22E−04 P2ry10 4 0.262 0.392 −0.583 1.12E−06 5.15E−04 Odc1 4 0.566 0.652 −0.516 1.53E−06 6.77E−04 Zfp36l2 4 0.419 0.279 0.651 1.53E−06 6.77E−04 BC031181 4 0.409 0.533 −0.477 1.90E−06 8.21E−04 Birc3 4 0.262 0.411 −0.586 2.37E−06 9.98E−04 Tgoln1 4 0.211 0.341 −0.597 2.82E−06 1.16E−03 Ccdc71l 4 0.144 0.267 −0.784 3.29E−06 1.32E−03 Rora 4 0.625 0.721 −0.327 3.67E−06 1.45E−03 Isy1 4 0.229 0.382 −0.531 3.74E−06 1.47E−03 Ubald2 4 0.219 0.364 −0.679 4.20E−06 1.64E−03 DIl1 4 0.059 0.153 −1.050 4.61E−06 1.79E−03 Dph3 4 0.203 0.345 −0.586 4.80E−06 1.86E−03 Rel 4 0.085 0.176 −0.907 5.09E−06 1.95E−03 Zfp36l1 4 0.913 0.848 0.290 5.89E−06 2.23E−03 Cited2 4 0.38 0.516 −0.524 5.89E−06 2.23E−03 Egr1 4 0.419 0.274 0.472 6.47E−06 2.42E−03 Eif4a1 4 0.694 0.749 −0.248 6.77E−06 2.52E−03 Gem 4 0.753 0.815 −0.384 7.89E−06 2.89E−03 Dusp5 4 0.36 0.505 −0.399 8.25E−06 3.00E−03 Serp1 4 0.445 0.566 −0.379 8.38E−06 3.04E−03 Herpud1 4 0.229 0.366 −0.605 8.85E−06 3.19E−03 Arf6 4 0.53 0.375 0.442 9.80E−06 3.50E−03 Ccnl1 4 0.285 0.409 −0.529 1.02E−05 3.61E−03 Nfkbiz 4 0.267 0.401 −0.538 1.04E−05 3.69E−03 Kdm6b 4 0.398 0.561 −0.392 1.04E−05 3.69E−03 Txk 4 0.324 0.441 −0.489 1.05E−05 3.73E−03 Eprs 4 0.141 0.26 −0.700 1.19E−05 4.13E−03 Dnajb2 4 0.069 0.166 −0.778 1.44E−05 4.93E−03 H2-K1 4 0.835 0.862 −0.192 1.49E−05 5.05E−03 Cisd2 4 0.229 0.354 −0.517 1.49E−05 5.06E−03 Nfkbie 4 0.159 0.239 −0.658 1.73E−05 5.76E−03 Snx18 4 0.129 0.246 −0.657 1.77E−05 5.88E−03 Ubald1 4 0.111 0.226 −0.735 1.79E−05 5.93E−03 Ramp3 4 0.201 0.329 −0.598 1.91E−05 6.27E−03 Nfil3 4 0.09 0.188 −0.714 2.40E−05 7.64E−03 Srsf5 4 0.697 0.774 −0.284 2.47E−05 7.82E−03 Icos 4 0.113 0.225 −0.789 2.60E−05 8.17E−03 Nr4a3 4 0.272 0.169 0.743 3.17E−05 9.73E−03 Slc3a2 4 0.404 0.348 0.374 3.38E−05 1.03E−02 Cdc14a 4 0.188 0.307 −0.494 3.76E−05 1.13E−02 Skil 4 0.247 0.376 −0.507 3.88E−05 1.16E−02 Klf2 4 0.388 0.423 0.325 3.94E−05 1.18E−02 Igha 4 0.964 0.963 0.253 4.00E−05 1.19E−02 Tpm4 4 0.332 0.465 −0.421 4.18E−05 1.24E−02 H2-Q4 4 0.17 0.282 −0.538 4.29E−05 1.27E−02 Naca 4 0.859 0.782 0.210 4.60E−05 1.35E−02 Arpc5l 4 0.221 0.105 0.710 5.25E−05 1.50E−02 Npc2 4 0.44 0.315 0.459 6.46E−05 1.80E−02 Arpc3 4 0.602 0.714 −0.251 6.62E−05 1.84E−02 Pcf11 4 0.067 0.153 −0.884 6.67E−05 1.85E−02 Lcp1 4 0.62 0.54 0.343 6.96E−05 1.92E−02 Gimap6 4 0.53 0.392 0.399 7.00E−05 1.93E−02 Sub1 4 0.823 0.848 −0.221 7.87E−05 2.13E−02 Pla2g16 4 0.254 0.138 0.633 8.15E−05 2.19E−02 Actb 4 0.964 0.934 0.449 8.19E−05 2.20E−02 Arih1 4 0.105 0.207 −0.641 8.87E−05 2.35E−02 Il22 4 0.252 0.378 −0.485 8.97E−05 2.38E−02 Ndufa8 4 0.373 0.251 0.299 9.70E−05 2.53E−02 Dad1 4 0.635 0.718 −0.325 9.83E−05 2.57E−02 Rinl 4 0.257 0.153 0.589 1.07E−04 2.76E−02 Clcn3 4 0.26 0.385 −0.467 1.16E−04 2.96E−02 D8Ertd738e 4 0.586 0.671 −0.294 1.24E−04 3.14E−02 Dok1 4 0.239 0.122 0.629 1.27E−04 3.20E−02 Opa3 4 0.077 0.164 −0.810 1.33E−04 3.33E−02 Dnajb9 4 0.157 0.254 −0.601 1.34E−04 3.36E−02 Dnaja2 4 0.267 0.153 0.596 1.35E−04 3.37E−02 Ffar2 4 0.437 0.315 0.472 1.36E−04 3.38E−02 Tmem59 4 0.707 0.571 0.166 1.46E−04 3.58E−02 Sdhaf1 4 0.362 0.226 0.490 1.50E−04 3.67E−02 Avpi1 4 0.18 0.272 −0.679 1.57E−04 3.80E−02 Tuba4a 4 0.1 0.192 −0.704 1.59E−04 3.84E−02 Traf1 4 0.432 0.537 −0.366 1.78E−04 4.23E−02 Dnajb6 4 0.306 0.383 −0.357 2.12E−04 4.92E−02 Ccl7 40 0.482 0.085 3.479 1.71E−08 1.14E−05 Ier2 40 0.643 0.271 1.132 2.10E−05 6.82E−03 Lat 42 0.7 0.556 −0.552 2.84E−05 8.83E−03 Atp5c1 42 0.7 0.111 1.086 1.39E−04 3.44E−02 Zfp36l1 42 0.2 0.778 −0.292 2.14E−04 4.95E−02 Agpat5 5 0 0.438 −4.897 1.57E−04 3.80E−02 Mgat2 5 0 0.562 −5.227 2.14E−04 4.94E−02 Jun 6 0.666 0.338 1.583 5.37E−85 3.47E−80 Zfp36l2 6 0.719 0.485 0.974 3.81E−52 5.83E−48 Fos 6 0.812 0.724 0.888 1.26E−49 1.88E−45 Neat1 6 0.778 0.712 0.716 2.00E−49 2.91E−45 Irf7 6 0.4 0.709 −1.088 1.22E−48 1.65E−44 Ppia 6 0.993 0.982 0.247 1.69E−35 1.18E−31 Btg1 6 0.965 0.987 −0.414 8.69E−33 5.32E−29 Rgs1 6 0.38 0.159 1.314 8.93E−33 5.41E−29 Zfp36 6 0.765 0.682 0.586 4.85E−27 2.12E−23 Ighm 6 0.948 0.976 −0.299 4.43E−25 1.68E−21 Ly6c1 6 0.938 0.947 −0.406 9.16E−24 3.12E−20 Klf6 6 0.442 0.284 0.903 1.27E−23 4.25E−20 Tsc22d3 6 0.592 0.448 0.555 7.80E−22 2.24E−18 Klf2 6 0.681 0.661 0.739 1.16E−21 3.28E−18 Ifi27l2a 6 0.625 0.805 −0.683 4.66E−21 1.29E−17 Cxcr4 6 0.447 0.272 0.755 1.66E−20 4.41E−17 Ly6c2 6 0.97 0.984 −0.405 3.35E−20 8.66E−17 Ddit4 6 0.188 0.055 1.655 1.08E−19 2.66E−16 Hist1h1c 6 0.324 0.184 1.030 2.84E−19 6.80E−16 Iglc1 6 0.309 0.57 −0.411 8.99E−19 2.03E−15 Jund 6 0.95 0.949 0.470 1.58E−17 3.13E−14 Fth1 6 1 1 −0.285 7.02E−14 9.75E−11 D13Ertd608e 6 0.654 0.585 0.320 7.46E−14 1.03E−10 Traf4 6 0.361 0.594 −0.613 8.63E−14 1.19E−10 Rpn2 6 0.486 0.395 0.495 1.04E−13 1.41E−10 Klk1 6 0.904 0.885 0.304 1.12E−13 1.51E−10 Psap 6 0.995 0.985 0.159 5.12E−13 6.43E−10 Evi2a 6 0.57 0.722 −0.349 1.57E−12 1.90E−09 Dusp1 6 0.382 0.262 0.853 2.33E−12 2.75E−09 Fyn 6 0.661 0.756 −0.315 4.81E−12 5.44E−09 Arpc2 6 0.874 0.928 −0.235 9.26E−12 1.01E−08 Ccl4 6 0.849 0.883 0.430 1.13E−11 1.22E−08 Trp53i11 6 0.232 0.436 −0.700 2.70E−11 2.82E−08 Runx3 6 0.424 0.621 −0.562 5.41E−11 5.42E−08 Ctsl 6 0.835 0.787 0.176 1.09E−10 1.04E−07 Tmem229b 6 0.43 0.605 −0.472 1.18E−10 1.12E−07 Pim1 6 0.282 0.506 −0.542 1.22E−10 1.16E−07 Hspa8 6 0.946 0.932 0.171 1.42E−10 1.35E−07 Cd69 6 0.471 0.373 0.538 1.47E−10 1.38E−07 Ubb 6 0.985 0.968 0.172 1.48E−10 1.39E−07 Rhob 6 0.19 0.113 0.790 1.60E−10 1.50E−07 Csrnp1 6 0.187 0.369 −0.676 1.70E−10 1.59E−07 Orai1 6 0.151 0.342 −0.812 2.91E−10 2.63E−07 Ifi44l 6 0.069 0.19 −0.991 3.23E−10 2.89E−07 Ifi44 6 0.087 0.213 −0.834 3.33E−10 2.97E−07 Ywhah 6 0.471 0.385 0.552 5.01E−10 4.34E−07 Igkv1-135 6 0.035 0.195 −1.520 6.19E−10 5.27E−07 Pltp 6 0.65 0.603 0.235 1.02E−09 8.42E−07 Cd7 6 0.892 0.944 −0.229 1.25E−09 1.01E−06 Tagln2 6 0.901 0.869 0.179 1.93E−09 1.51E−06 Vps37b 6 0.218 0.434 −0.767 2.91E−09 2.20E−06 Cdkn1a 6 0.071 0.186 −1.202 5.78E−09 4.13E−06 Bcl2l11 6 0.208 0.416 −0.809 9.18E−09 6.32E−06 Nfil3 6 0.076 0.22 −1.017 1.01E−08 6.88E−06 Adh5 6 0.232 0.169 0.390 1.93E−08 1.27E−05 Atp5c1 6 0.778 0.711 0.220 2.02E−08 1.32E−05 Arpc1b 6 0.919 0.944 −0.187 2.28E−08 1.47E−05 Cd37 6 0.649 0.597 0.256 2.90E−08 1.84E−05 Litaf 6 0.543 0.651 −0.348 3.37E−08 2.11E−05 H2-D1 6 0.916 0.957 −0.222 3.39E−08 2.12E−05 Irf2bp2 6 0.582 0.477 0.313 3.57E−08 2.22E−05 Gapdh 6 0.645 0.627 0.154 6.22E−08 3.67E−05 Pmepa1 6 0.163 0.303 −0.703 7.88E−08 4.56E−05 Clec10a 6 0.378 0.313 0.391 2.31E−07 1.23E−04 Insig1 6 0.297 0.447 −0.375 3.16E−07 1.64E−04 Srsf5 6 0.802 0.86 −0.323 3.48E−07 1.78E−04 Btg2 6 0.526 0.697 −0.306 3.82E−07 1.95E−04 Gapt 6 0.397 0.553 −0.390 4.28E−07 2.16E−04 Calm1 6 0.85 0.916 −0.186 5.39E−07 2.67E−04 Stat3 6 0.264 0.458 −0.611 5.43E−07 2.69E−04 Ly6e 6 0.615 0.736 −0.388 5.55E−07 2.74E−04 Ctbp1 6 0.486 0.63 −0.297 6.38E−07 3.10E−04 Ptprcap 6 0.768 0.724 0.170 6.73E−07 3.26E−04 Napsa 6 0.617 0.59 0.229 6.76E−07 3.26E−04 Eif4a2 6 0.635 0.572 0.262 7.76E−07 3.69E−04 Igkc 6 1 0.998 −0.201 8.90E−07 4.17E−04 Ier5 6 0.805 0.794 0.219 9.26E−07 4.33E−04 Csf2rb 6 0.296 0.46 −0.553 1.10E−06 5.07E−04 Ube2d2a 6 0.534 0.673 −0.304 1.30E−06 5.87E−04 Eif3i 6 0.472 0.426 0.223 1.31E−06 5.92E−04 Ube2d3 6 0.724 0.825 −0.202 1.34E−06 6.02E−04 Arid5a 6 0.328 0.494 −0.472 1.49E−06 6.62E−04 Ptpre 6 0.232 0.402 −0.567 1.58E−06 7.00E−04 Ablim1 6 0.166 0.335 −0.751 1.95E−06 8.37E−04 Prdx2 6 0.257 0.195 0.424 1.95E−06 8.37E−04 Spib 6 0.659 0.74 −0.270 1.96E−06 8.40E−04 Klk1b27 6 0.892 0.866 0.152 2.01E−06 8.61E−04 Cope 6 0.624 0.562 0.269 2.65E−06 1.10E−03 Cbfa2t3 6 0.18 0.314 −0.651 2.90E−06 1.19E−03 Sub1 6 0.95 0.965 −0.153 2.94E−06 1.20E−03 Myl6 6 0.812 0.786 0.172 3.10E−06 1.26E−03 Cct7 6 0.447 0.386 0.273 3.41E−06 1.37E−03 Sla2 6 0.59 0.525 0.287 3.45E−06 1.38E−03 Atf4 6 0.311 0.494 −0.601 3.66E−06 1.45E−03 S100a6 6 0.617 0.762 −0.324 4.09E−06 1.60E−03 Ctsd 6 0.361 0.299 0.336 4.33E−06 1.68E−03 Ptpn1 6 0.466 0.641 −0.390 4.98E−06 1.92E−03 Tmem251 6 0.158 0.284 −0.547 5.24E−06 2.01E−03 Gnas 6 0.951 0.972 −0.216 5.32E−06 2.03E−03 Batf 6 0.153 0.312 −0.708 5.59E−06 2.12E−03 Kmt2e 6 0.351 0.497 −0.416 6.45E−06 2.42E−03 Sepw1 6 0.776 0.855 −0.216 7.12E−06 2.64E−03 Cd8a 6 0.255 0.191 0.381 7.22E−06 2.67E−03 Cd48 6 0.444 0.431 0.240 1.06E−05 3.74E−03 Me2 6 0.21 0.357 −0.468 1.18E−05 4.13E−03 Hsp90aa1 6 0.479 0.506 0.175 1.38E−05 4.72E−03 Fam46c 6 0.139 0.287 −0.730 1.57E−05 5.32E−03 Kmo 6 0.551 0.658 −0.233 1.62E−05 5.44E−03 Sla 6 0.313 0.26 0.413 1.62E−05 5.46E−03 Asph 6 0.198 0.331 −0.557 1.84E−05 6.08E−03 Nrros 6 0.195 0.336 −0.536 2.11E−05 6.87E−03 Crem 6 0.22 0.389 −0.664 2.16E−05 6.98E−03 Ppp1cc 6 0.477 0.612 −0.237 2.26E−05 7.24E−03 Tmem59 6 0.65 0.585 0.239 2.55E−05 8.06E−03 Csnk2b 6 0.405 0.37 0.220 3.23E−05 9.87E−03 Hhex 6 0.358 0.301 0.200 3.50E−05 1.06E−02 Cnn2 6 0.44 0.381 0.284 3.56E−05 1.08E−02 Cdc42se2 6 0.314 0.466 −0.423 3.63E−05 1.10E−02 Hmgb2 6 0.356 0.375 0.286 3.67E−05 1.11E−02 Slc15a3 6 0.133 0.246 −0.605 4.98E−05 1.44E−02 Eif3d 6 0.336 0.284 0.318 5.06E−05 1.46E−02 Rnf149 6 0.365 0.493 −0.419 5.17E−05 1.49E−02 Clec12a 6 0.8 0.783 0.164 5.72E−05 1.63E−02 Aldoa 6 0.539 0.502 0.274 6.04E−05 1.70E−02 Cxxc5 6 0.373 0.508 −0.279 6.11E−05 1.72E−02 Mndal 6 0.36 0.467 −0.366 6.25E−05 1.75E−02 Polr3gl 6 0.333 0.481 −0.372 7.10E−05 1.95E−02 Pafah1b1 6 0.282 0.424 −0.322 7.38E−05 2.02E−02 Rsrp1 6 0.508 0.638 −0.235 8.19E−05 2.20E−02 Cdv3 6 0.292 0.428 −0.426 8.32E−05 2.23E−02 Ppp1r2 6 0.146 0.27 −0.566 8.41E−05 2.25E−02 Fcrla 6 0.617 0.599 0.212 8.57E−05 2.28E−02 Plekho2 6 0.096 0.221 −0.682 9.24E−05 2.43E−02 Mdh2 6 0.56 0.508 0.212 9.63E−05 2.52E−02 Tmem108 6 0.166 0.304 −0.730 1.01E−04 2.62E−02 Stat1 6 0.203 0.331 −0.414 1.02E−04 2.64E−02 Snx18 6 0.529 0.676 −0.354 1.05E−04 2.73E−02 Sh3glb1 6 0.371 0.541 −0.388 1.07E−04 2.75E−02 Blnk 6 0.61 0.715 −0.297 1.08E−04 2.79E−02 Rbm5 6 0.203 0.332 −0.496 1.09E−04 2.80E−02 Jakmip1 6 0.187 0.339 −0.505 1.12E−04 2.87E−02 Ppp2ca 6 0.461 0.573 −0.283 1.16E−04 2.96E−02 Kpna4 6 0.239 0.184 0.355 1.23E−04 3.12E−02 Pkib 6 0.566 0.692 −0.235 1.28E−04 3.22E−02 Ndufa13 6 0.738 0.703 0.169 1.30E−04 3.26E−02 Iqgap1 6 0.439 0.57 −0.347 1.35E−04 3.36E−02 Itpkb 6 0.146 0.266 −0.621 1.35E−04 3.37E−02 Cyth4 6 0.545 0.674 −0.190 1.45E−04 3.56E−02 Wnk1 6 0.334 0.504 −0.543 1.55E−04 3.76E−02 Npm3 6 0.403 0.366 0.213 1.55E−04 3.77E−02 Mef2a 6 0.331 0.394 −0.217 1.55E−04 3.77E−02 Fam117a 6 0.136 0.209 −0.376 1.62E−04 3.90E−02 Ubl3 6 0.412 0.561 −0.334 1.68E−04 4.03E−02 Gsn 6 0.622 0.587 0.184 1.73E−04 4.14E−02 Bri3 6 0.41 0.558 −0.335 1.83E−04 4.33E−02 Chrac1 6 0.198 0.32 −0.486 2.15E−04 4.96E−02 Ighg1 7 0.407 0 5.050 3.59E−18 7.66E−15 Gm2a 7 0.642 0.398 1.626 5.92E−12 6.60E−09 Actb 7 0.992 0.971 0.962 3.97E−11 4.06E−08 Il17rb 7 0.293 0.019 3.210 2.95E−10 2.66E−07 Smco4 7 0.659 0.32 1.788 5.54E−10 4.77E−07 Gata3 7 0.618 0.388 1.226 2.27E−09 1.76E−06 Igkv1-135 7 0.016 0.252 −2.815 2.39E−09 1.84E−06 Igha 7 0.992 0.99 0.455 3.88E−09 2.84E−06 Gimap4 7 0.439 0.738 −0.828 7.29E−09 5.13E−06 Jun 7 0.569 0.194 1.121 1.42E−08 9.54E−06 Dusp5 7 0.341 0.68 −0.905 1.95E−08 1.28E−05 Fgl2 7 0.455 0.194 1.771 3.97E−08 2.44E−05 Mcpt1 7 0.195 0 4.373 4.26E−08 2.60E−05 Vps37b 7 0.39 0.728 −0.964 5.97E−08 3.54E−05 Ddit4 7 0.366 0.107 2.414 7.06E−08 4.12E−05 Ubald2 7 0.325 0.65 −0.844 9.80E−08 5.56E−05 Lgmn 7 0.35 0.078 2.276 1.05E−07 5.97E−05 1700061F12Rik 7 0.244 0.019 3.537 2.06E−07 1.11E−04 Ifngr1 7 0.496 0.757 −0.885 6.29E−07 3.06E−04 Cst7 7 0.463 0.136 1.346 6.44E−07 3.13E−04 Il4 7 0.317 0.068 2.197 9.09E−07 4.26E−04 Zeb2 7 0.203 0.01 3.094 2.54E−06 1.06E−03 Igkc 7 1 1 0.756 3.05E−06 1.23E−03 Ccl5 7 0.114 0.34 −1.521 7.96E−06 2.91E−03 Ltb 7 0.463 0.777 −0.502 8.51E−06 3.08E−03 Pik3r1 7 0.374 0.67 −0.770 1.32E−05 4.56E−03 Foxp3 7 0.138 0.369 −1.433 3.47E−05 1.05E−02 Il21r 7 0.13 0.379 −0.811 4.26E−05 1.26E−02 Foxp1 7 0.431 0.223 1.129 4.28E−05 1.26E−02 Dusp1 7 0.87 0.709 0.631 4.64E−05 1.36E−02 Tmsb4x 7 1 1 0.377 6.83E−05 1.89E−02 Got1 7 0.171 0.379 −1.199 8.56E−05 2.28E−02 Pxdc1 7 0.154 0.01 3.051 9.85E−05 2.57E−02 Fas1 7 0.033 0.184 −1.603 1.07E−04 2.75E−02 Cd27 7 0.48 0.563 −0.759 1.17E−04 2.97E−02 Txk 7 0.065 0.252 −1.234 1.52E−04 3.70E−02 Tmsb10 7 0.976 1 −0.179 1.56E−04 3.78E−02 Gzma 7 0.317 0.117 1.230 1.57E−04 3.79E−02 Pim1 7 0.52 0.728 −0.660 1.98E−04 4.63E−02 Icos 7 0.488 0.738 −0.538 2.09E−04 4.84E−02 Ikzf2 8 0.099 0.26 −1.020 1.37E−07 7.61E−05 Ubald2 8 0.464 0.644 −0.714 2.09E−07 1.12E−04 Ppp1r15a 8 0.304 0.575 −0.642 4.53E−07 2.28E−04 Litaf 8 0.326 0.582 −0.663 2.58E−06 1.07E−03 Gimap7 8 0.519 0.247 0.937 1.08E−05 3.81E−03 Orai1 8 0.127 0.349 −1.213 1.29E−05 4.46E−03 Zc3h12a 8 0.077 0.288 −1.472 1.31E−05 4.52E−03 Dusp2 8 0.613 0.404 0.686 2.44E−05 7.76E−03 Prr7 8 0.066 0.24 −1.385 2.58E−05 8.13E−03 Btg1 8 0.912 0.973 −0.402 3.21E−05 9.84E−03 Irf7 8 0.138 0.322 −1.262 3.96E−05 1.18E−02 Zfp36 8 0.376 0.144 1.132 5.81E−05 1.65E−02 Tob2 8 0.11 0.253 −1.231 5.81E−05 1.65E−02 Rgs1 8 0.691 0.486 0.864 9.21E−05 2.42E−02 VgIl4 8 0.331 0.555 −0.657 1.07E−04 2.75E−02 Sh2d1a 8 0.431 0.247 0.847 1.22E−04 3.10E−02 Igkc 8 1 1 0.307 1.27E−04 3.20E−02 Jun 8 0.343 0.151 1.129 1.32E−04 3.32E−02 Vps37b 8 0.702 0.836 −0.490 1.33E−04 3.33E−02 Ctla2a 8 0.464 0.425 0.531 1.35E−04 3.37E−02 Nr4a2 8 0.265 0.493 −0.758 1.36E−04 3.38E−02 Pim1 8 0.63 0.815 −0.376 1.53E−04 3.73E−02 Sptssa 8 0.42 0.199 0.904 1.71E−04 4.09E−02 Ifrd1 8 0.232 0.425 −0.686 1.80E−04 4.27E−02 4930523C07Rik 8 0.215 0.425 −0.724 1.83E−04 4.33E−02 H2-D1 8 1 0.993 −0.212 2.09E−04 4.84E−02 Al504432 9 0.057 0.636 −2.126 4.42E−05 1.30E−02

TABLE 4 A-K. Top 50 genes in each topics revealed by topic modeling on T cells, B cells, DCs, myeloid cells and stromal cells in PP and LP regions, related to FIG. 3. A. T cells LP topic_1 topic_2 topic_3 topic_4 topic_5 topic_6 topic_7 topic_8 mt-Co1 Eef1a1 Igfbp4 Gimap5 1700061F12Rik H3f3b Malat1 Actb mt-Atp6 Gm8730 Dapl1 Gabarap Il13 Ier2 Zfp369 Pdcd4 Gmfg Gm10260 Ccr7 Rbck1 Scin Junb Gtdc1 Cbx3 Myl12b Eef2 Pdlim4 Cops4 Lgmn Tnfaip3 Dusp23 Abhd2 Sfxn2 Gm10709 Lef1 mt-Nd1 Hlf Pim1 5330439K02Rik Ccdc38 Socs3 Fau Bcl2 Bcl7c Smco4 Ppp1r15a 5430421N21Rik Tnfrsf19 Cd53 Naca Sell Iqgap1 Npnt Dusp5 Ltk Ncoa3 Acp5 Eif3k Ifngr2 Ralbp1 Il17rb Crem Mdm4 Il17f Gm12840 Eif3f Gm8369 Ier3ip1 Deptor Atf4 Snapc3 Ptpn22 Mbp Pabpc1 Satb1 Dock10 Gata3 Ramp3 Gm28424 Trav3-1 Rasal3 Btf3 Gm9889 0610030E20Rik Gm2a Nfkbia Gm16894 Sv2a Atxn7l1 Tmsb10 Smc6 Ptbp1 Il6 Jund Stk3 Fxyd4 mt-Nd2 Wdr89 Hotairm1 Emp1 Il17a Nr4a1 Klhl4 Lta Gltscr2 Cct4 Khdrbs3 Scand1 Ltb4r1 Tgif1 Serinc2 Ankrd23 Ets1 Kif1b Actn1 Zfp672 Fgl2 Pnrc1 Herc2 Alkbh5 Son Bola2 Ms4a4b Lrmp Areg Ier5 Apc Bend5 Kcnn4 Pelp1 Rapgef4 Usp9x Fbxl21 Eif1 Pgap3 Ptp4a2 Uqcrfs1 Eef1b2 Amigo2 Gm10814 AA467197 Nr4a3 P4htm Nthl1 Cd3d Dkc1 Atp1b1 mt-Nd3 Il1rl1 Zfp36 Ptpre Caprin2 Lrp12 Mrps33 Eml5 Emd Mel Sub1 Tnrc6a Zfp763 Casp8 Gm10073 Sh3bp5 Sipa1 Gm5544 Calm2 Map1b Tctn1 Gypc Gm2000 Trav17 Dnajc14 Tmem159 Dnajb6 Antxr2 Gga2 Ap5b1 Nhp2l1 Btg1 Trappc4 Rasgrp4 Ifrd1 Trbv19 Armcx6 Tes Gnb2l1 F2rl1 Akap13 1700012B07Rik Zc3h12a Uhrf2 Sostdc1 Trim26 Eif6 Gm11808 Desi1 1700113H08Rik Traf1 Aagab Gm43625 Arid5a Gm9493 St8sia6 Srebf2 St6galnac5 Srsf2 Cr1l Fcer2a Abcb9 Rexo2 S1pr1 Gngt2 Il4 Tgif2 Ei24 Carm1 Stk17b Gm6133 Klhdc2 Uqcrb Chdh Kras Gm17518 Nrg4 Snrpd3 Atp1a1 Foxp1 Sppl3 Slco2b1 Klf2 Lix1l Tlr7 Hmha1 Klrb1a Npc2 Tmem167 Ccr9 Rnf125 Dmrta1 Tmem121 Rragd Sepw1 Saraf Ssbp2 Epas1 Bud31 Uchl4 Slc39a1 Wnk1 Emc6 2610020C07Rik Sec61g Grp Il2rg Sgtb Gm42809 Arhgap15 Prorsd1 Myo19 Manbal Lztfl1 Cd69 Nfam1 Fitm2 Siah1a Ndufa6 Ranbp6 Fkbp3 Gm10369 Csrnp1 Ackr3 Dqx1 Tcf25 Nhp2 Cmah Fis1 Kif19a Apoe Arhgef9 Clec10a Wdr33 Gm9843 Treml2 Kdm2b Tenm4 Cep85 Ighv1-64 Ankrd60 Cbx4 Yeats4 Drc1 Fip1l1 Serpinf1 Coq10b Trav9-2 Gm14154 RP23-428N8.3 Gm26545 Prrg1 H2afv Gnb2 Gpr132 Gm3716 Upf1 Gna1 Ctdsp1 Usp28 H2-Q10 Ubox5 Cd209b Evx1 Marf1 Clec2l Eef1d Atp1b3 Hdgfrp2 Plcl1 Pcna-ps2 Plxnb2 Actr2 Cd247 Rbfa Rab3ip Nsmce1 Rab31 Fus Ascl3 Mapkbp1 Gltp Pfdn5 Trib2 Fastk Ffar2 Cap2 Gm8973 1110035H17Rik Rock1 Eif5a Rpusd2 Ndufb7 Slx1b Ifnar1 Hhex Eid2b Eif3i Atp5e Il4ra Ndufs4 Asb2 Nfkbie Armt1 Kalrn Ctss Ndufa10 Il6ra Prdx5 Zfp85 Ube2b Ccdc86 P3h4 Ccm2 Cycs Whsc1l1 Tbl1xr1 Tmsb4x Dus2 Hbegf Notch2 Zmat2 Ppp1r14b Ggt1 Sf3b5 Hdc Birc3 Stkld1 Mcpt1 Fxyd5 Tomm7 Prdx6 Tomm34 Pxdc1 Hnrnph1 Zswim3 Gskip Bnip3l Snrpf Pygm Bend4 Heatr1 Osgep Edaradd Dpysl2 Dnajc25 Cox7a2l Itga6 Gng7 Lgals7 Igkv5-37 C030034L19Rik Lsm14b topic_9 topic_10 topic_11 topic_12 topic_13 topic_14 topic_15 topic_16 Tnfrsf4 Ube2c Fos Trpm1 Crip1 B2m Cel5 Iglc2 Foxp3 Actg1 Hspa1a Prss2 Ccr2 H2-K1 Nkg7 Igkc Tnfrsf9 Lgals1 Rgs1 Gm26825 Emp3 Ubb Klra7 Jchain Cd83 Ccna2 Jun Zfp266 Zfat H2-D1 Gzmm Igha Ikzf2 Tuba1b Klf6 Kifap3 Klf3 Gimap4 4930486L24Rik Mzb1 Izumo1r Hmgb2 Dnajb1 Mareks Map4 Psme1 Cd200r2 Iglc1 Mmd Tubb5 Hist1h3a Igkv4-50 Plekha6 Gm28707 Gzma Hsp90b1 Itgb8 Fam64a Hsp90aa1 Acp2 Glipr2 Itpripl2 Xcl1 Pdia4 Penk Mybl2 Gm29666 Ptpn23 Myl10 Polr1b Cd8a Txndc5 Ifi27l2a Cfl1 Ampd2 Rpgrip1 Atrnl1 Isgl5 Cd7 Mef2c Tnfrsf18 Birc5 Btg2 Gm17275 Zfp318 Siae Klrd1 Creld2 Ctla4 Pttg1 Tiparp Ccdc51 Ptpn18 Igtp Cel3 Derl3 Rgs10 Stmn1 Pygl Ppp1r12b Recql5 Cul5 Ccl4 Cacna1e Zfp36l1 Cenpk Cops6 Klhl35 Dennd1a Ighv1-80 Ppp2r2c Arx Nrip1 Slc30a2 Ppp1r3b Sumf2 Gm26740 Gm14306 Zmat4 Ftx Gpm6b Cenpf Gle1 Sh3pxd2a Gm37696 Ifi35 Gzmk Gm43121 S100a11 Actr3 Efna4 Dcaf13 Mboat4 Tbc1d31 Pdzk1 Fkbp2 Capg Gapdh Litaf Arl11 Tnnt3 Tifab Klrk1 Sdf2l1 Il10 Rad54l Anks3 Cnr2 Ppp1r14a Travl6n Slc16a11 Edem1 Lag3 Eme1 Dtx4 Abcb6 Ift74 AW112010 Car2 Cd79a Tiam1 Nek2 Tab2 C230037L18Rik Klrb1b Psmb10 Dact2 Iglv1 Matk Ect2 Ahcyl1 Gm26910 Odf2l Shisa5 Adrb1 Fkbp11 Wisp1 Cntnap2 1110001J03Rik Oasl1 Arl6ip5 Xrcc2 Ablim2 Manf Gas2l3 Bcam Dusp1 Bin3 Il23r Cyp26b1 Slc9a3r2 Slc7a11 Fgf16 H2afx Fam103a1 Gtf2ird2 Ppplrl2a Rarres2 Cited4 Rab25 Hist1h4c 2810417H13Rik Nabp1 Dgcr8 Zfp40 Ighv14-2 Klra5 Mfsd2a Ccl20 Ccnb2 A630001G21Rik Anapc2 Thy1 Armc2 Serpinb6b Rhd Slc7a10 Rad51ap1 Fam189b Gcfc2 Elf4 Dapk1 Lmo1 Pla2g5 Fam46a Pfn1 Osgin1 Caleb Lsp1 Zfp964 Tlr6 Ccdc18 Ptprcap Esco2 Qpct Gstt1 2010320M18Rik Tapbp Pdgfb Bhlhal5 H1f0 Neil3 Myo7a Pard3b Adcy7 A730015C16Rik RP24-330M21.1 Bcat1 Tbc1d4 Kif4 Susd4 Thnsl1 Csl Cntd1 Rasgef1c Arfgef3 Ankrd55 Arhgap19 Al847159 Gm14321 Ulk3 Zbp1 Emilin2 Gm867 Bcar3 Hist1h2ap Evx1os Eng Mcm9 Krit1 A930011G23Rik Fabp3-psl Gm3488 Top2a Adamts14 Gps1 Cpne4 Cacng8 Gm11491 Mettl21b Nefm Cks1b Stac3 Ddr1 Spaca6 Egfl8 Ccdc14 Mcemp1 Alox8 Cotl1 Rhoq Rasl11a Abcc10 Gm8444 1810006J02Rik Arhgef40 Celf5 Cdkn3 Nox1 Gm17089 Enpp2 Tinf2 Trgv2 Piwil2 Slc26a11 Rbm3 Wdr19 Eme2 Slc27a1 Mbnl3 Tcrg-C2 2010007H06Rik Camk2n1 Myl12a Sema7a Gm12454 Lancl3 Gbp4 Tlr12 Plekhh3 Pdcd1 270094K13Rik Anks6 Gm43740 Ighv1-15 Smpd1 Wdr95 Spata32 Zan Kif18a Gm17056 Mtus2 Ccne2 Rnf13 Itln1 Cyb561 Gm3739 Plk1 Lamtor2 Mdfi Fbxl13 Psmb9 Ifng Apoh Gm3667 Lockd Tgfbr1 Gm43691 Gm43153 Cyp4f18 3110082l17Rik Arsg Tnfsf8 Hist1h2ag Gm10031 Zcchc24 Arg2 Mvk 1700021A07Rik Mgat3 Maf C330027C09Rik Dapk3 Gm28731 Slco4a1 Mccc1 Nr4a2 Endou Egln3 Trip13 Dnaja4 Lrrc27 Rab34 Stat1 Htra1 Gm20517 Gm3636 BC030867 5033417F24Rik Zfp937 Gpr25 Got1 Gm27194 Pank1 Spock2 Sgol2a Ehbp1 Coasy Gm20750 Gbp2b Cd8b1 Pbx1 Myo1h 4930524J08Rik Serpinb1b Slc9b2 Nos3 Myof Klrc1 Phka1 B. B cells LP topic_1 topic_2 topic_3 topic_4 topic_5 topic_6 topic_7 topic_8 Igkc Igha Mzb1 Cd74 Jchain Fos Malat1 Crip1 Igkv6-23 Rec1l4 Hsp90b1 Tmsb4x Ighg2c mt-Nd1 Gm42418 Psma7 Ighv6-7 Igkv3-8 Sec61b H2-Aa Iglv1 Jun Ccdc88a Srsf6 Igkv8-27 Stab1 Ppib H2-Eb1 Ly6c2 mt-Atp6 Gm26917 Dnaja2 Igkv12-41 Tmem147os Sub1 H2-Ab1 Ly6c1 Jund Txndc5 Nop56 Pomgnt2 Gm14327 Manf Fau Edem2 Fosb Rbm39 Trp53il1 Slc1a1 4930451G09Rik Calr H2-DMb2 B2m Nfkbia Gm42726 Eif4g2 Ighv1-30 Ighv1-19-1 Pycard Ebf1 Insl6 H3f3b Zfp292 Hypk AY074887 9530052E02Rik Hspa5 H2-Ob Procr mt-Co3 Kmt2e Cnbp Igkv9-124 Gm14399 Pdia6 Fcer2a Dmtn mt-Cytb Rrbp1 Ahsa1 Cbs Gm26596 Ighg2b Ighd Selm Dusp1 Krr1 Cox7b Igkv17-127 Platr17 Sec61g Cd79b Iqcd Dusp5 4930523C07Rik Wbp11 Gm15104 Iqca Pdia4 Ms4a1 Iglv3 Cacna1s Creb3l2 Psmc5 Syce1 Myo3b Dnajb11 4930597A21Rik Ighv1-15 Ier2 Slc48a1 Ndufa5 Gm26527 Igkv9-123 H13 Pax5 Gm15284 mt-Co2 Zdhhc14 Mrpl21 Abca17 Ttyh1 Sdf2l1 Cxcr5 1700047l17Rik2 mt-Nd4 Ankhd1 Ociad1 Nsg2 Gnrh1 Tnfrsf17 Cd72 Sdc1 Ftl1 Upf2 Pfdn6 Gm17529 Fabp1 Krtcap2 Sapcd1 Copz2 Mt1 Nfkbil1 Arpc2 Spin4 Krt7 Ddost H2-DMa Gm20878 Ier5 Zmynd11 Mrpl40 Col5a3 Zfp174 Ssr2 Eef1a1 Ryr1 Ppp1r15a Gm26719 Nsun2 A830009L08Rik Cdh24 Ssr3 Cd22 Gpnmb Cxci10 Cyld Ubtf Cps1 Gm26515 Reep5 Ly86 Pycr1 mt-Co1 A630072M18Rik Cmtm7 Clec4a4 Rhobtb3 Lman1 H2-Oa Cst6 Rilpl2 Rbm26 Rrp1 Col4a2 Gm15445 Rpn1 Cox7a2l Igfn1 Pnrc1 Nek7 Morf4l1 Prox2os Mdfi Emp3 Eif3f Cdnf Ubald2 Cspp1 Ndufb5 Pdc Cfap53 Pdia3 1-Mar Bhlha15 Lmna Map3k10 Tomm22 1700019B03Rik Tal2 Srp9 Eef2 Ighv1-23 Hes1 Zfp51 Ndufa7 Ighv1-61 Zp3 Fkbp11 Rac2 Vps37d Herpud1 Mvp Pcnp Lcat Nr3c2 Spcs2 Ccr7 Akap6 Egr1 2510039018Rik Gars Igkv8-16 Rdh1 Spcs1 Fcmr Igkv1-110 Ly6d Map3k1 Basp1 Ripk4 Tmem202 Ift20 Spib Extl1 Serp1 Ppt1 Pafah1b3 D930048G16Rik Gm43616 Ostc Dusp2 Ckmt1 Cd69 Vwa1 Mrpl11 RP23-138J20.8 Frzb Sec11c Rapgef4 Ero1lb mt-Nd3 Rabac1 Srrm1 Sec31b Kcna2 Cope Cotl1 Fam71b Mt2 Alyref2 Csnk2b Gm20632 Gm37027 Derl3 Gm9843 Ighv1-20 Rhob Gm26586 Abcf1 Etv2 Padi3 Cd52 Siglecg Gm20478 Xbp1 Ggnbp2 Caprin1 Gm17034 Aqp7 Rpn2 Coro1a Gm5134 mt-Nd2 Slc16a6 Ddx21 Wisp2 Gm14453 Slc35b1 Pold4 Gm29375 Mel1 Nacc2 Serbp1 RP24-159C12.10 Dusp27 Ssr4 Bin1 Dlg2 Rgcc Gigyf2 Mrps33 Tbx15 Slc6a12 Tmbim6 Bank1 Gpr31b Zfp36l1 Clec2d Mrfap1 Mlana Scn2a1 Lman2 Cd37 Kcnmb4os2 Ode1 Arhgap22 H2afy Synm Hoxb1 Creld2 Gm43603 Ighv10-3 Clic4 Ankrd40 Eif1b Gm26663 1700001L19Rik Ccr10 Rgs13 Atp6v0e2 Txnip Cped1 Cnot2 Gm43479 Pabpn1l Atp5g1 Zfp318 Rnf123 Atf4 Fam214a Oaz1 Gm12735 Dynlrb2 Srprb Scd1 F420014N23Rik Fam46c St6ga1nac4 Pfn1 Gm19902 Mb21d2 Os9 Blk Btd Chac1 Ddx46 Dnajc8 Sema6c Gm19345 Erp44 Cnn2 Gdap2 5031425E22Rik Fam117a Arf1 A530013C23Rik Tmem253 Scpep1 4930426D05Rik Nron Klf2 Stk25 Mrpl54 Nav3 Gm42749 Kdelr1 Fth1 Gm26725 Hist1h2bc RP24-172H24.1 Chchd10 Cacna1f Sstr2 Srp72 Napsa Gm12474 Ddit3 Tnfrsf13b Eif3a topic_9 topic_10 topic_11 topic_12 topic_13 topic_14 topic_15 topic_16 2810417H13Rik Iglc1 Xist Mcpt1 Ighg1 Iglc2 Slpi Ighm Birc5 Iglc3 Peli1 Lyz2 lgkv3-4 Igkv9-119 Actb Phactr1 Stmn1 Pcsk5 Mef2c Mcpt2 Pon3 Igkvl4-111 Igkv3-7 Igkv16-104 Hmgb2 Gm43409 Tcf4 Tyrobp Cldn4 Iglv2 Ighv1-18 Ccdc155 Ptma Mc1r Arl2bp Ighg3 Kcnh2 Iglc4 Stt3b Nr6a1os Tubb5 1700017D01Rik Akap13 Ccl4 Nat8 Gm11444 Tsc22d3 Gm648 Ube2c Lrrc46 Alkbh5 Ighv2-3 Hey2 Trav13-1 Sdc4 Smoc2 Tuba1b Gm28198 Fli1 Gzma Gm14210 Gm28513 Gprl71 Fhad1 Nusap1 Sst Ctbp1 Cpa3 Kcnq4 Cacna2d1 lghv1-21 Gm26840 Hist1h2ap Igll1 Tmem57 Psap Gm29395 Mettl21c Cited2 1700061G19Rik H2afz Tnr Vgll4 Ccl5 Hist1h1t Trbv14 Gm37511 Stkld1 Cenpf Tenm3 Hmgn3 Plac8 Nmur1 BC049352 Kdelr2 Asb18 Rrm2 Slc38a5 Dennd4a Trbc2 Pip5kl1 Prom1 Ywhaq Gm26646 Cdkn3 Gm20468 Igkv12-46 Maf Atp6v1g3 Necab3 Pole2 Gm43569 Ccnb1 Angptl7 Insig1 Cma1 D930007J09Rik lgkv1-99 Tram1 Gm15819 Ube2s Gm10719 Tgoln1 Il1b Fbxo24 Gm17151 Vpreb3 Fmo2 Ccna2 Pcdh19 Psd4 Ifitm1 Plxnb1 Gm43734 Rbm47 Lrrc74b Cenpe Hpca Marf1 Id2 Gm28551 Gm44175 Pitpnc1 Fer1l6 Ran Plvap Ddx3x 1700061F12Rik Trim66 Pappa Lgals1 Ncs1 Uhrf1 Gm26681 Hmg20b AW112010 Drp2 2610528Jl1Rik Atp6v1g1 Pdilt Cep55 Gnao1 Skil Cxcl2 Gm16494 4930481A15Rik Naa38 Casq1 Top2a Gja5 Bcl21l1 Apoe Gdap1l1 Eci3 Dap Ly6k Kif22 Klkb1 Cnppd1 Ifitm2 RP23-53O7.2 Muc2 Slc39a1 Gm26780 Cdc20 Gm19434 C87436 Mpeg1 Boll D630029K05Rik Entpd7 Gm14137 Plk1 Fgf16 Slc25a36 Trbc1 Tsx Gfra2 Zbtb20 Cpq Cdc45 Ccdc96 Mdm4 Cd7 Gm16982 Gm15356 Tox Tmbim7 H2afx D7Ertd443e Wnk1 Cox6a2 Apol6 Rlbp1 Gm19585 lgkv4-57 Cdca3 D030040B21Rik Ccm2 Mcpt9 Gm42957 Gm10516 Upf1 Igkv2-112 Mcm5 Tmcc2 Prkcd Furin Irx5 Smkr-ps Timmdc1 Slc7a7 Cdca8 Al661453 Elf1 Kdm6b lgkv4-63 Mfsd7c Eaf2 Gp2 Pbk Gm44037 Tomm5 Il4 Iqch Adamts12 Pycr2 9430069l07Rik Ccnb2 Gm26550 Rbms2 Alox5ap Slc27a2 Gm37240 Khdc1a Csn3 Mybl2 Tmem45a2 Phf3 Igkv12-40 Apol8 Art3 Xlr4b Zfp316 Nuf2 K230010J24Rik 1300002E11Rik C1qc Gm26883 Nlrp1b Emc10 Mpp7 Hmmr lghv3-4 Ubxn2a Fcer1a Shank2 Clca3b Fkbp8 Gm43218 Cit Cdhr1 Nktr Lgals3 Ighv1-43 Rab33a Yrdc Igkv4-86 Pttg1 Ighv1-53 Slc38a2 Cd63 Igkv1-88 Pcdhb19 Kcnn4 Prg2 Spc24 Npm2 Bhlhe41 Siglech Mx1 Gm42669 Arf4 Rab3b Hmgn2 5730460C07Rik Birc2 Actn2 1700023F06Rik Defa-rs1 Dnajb9 3222401L13Rik Esco2 Cebpe Coa5 Itm2b Abcc3 Pglyrp4 Per3 Myo5c Cdk1 Vtn Safb2 Igkv19-93 Klhl40 Flrt1 Tmem50a Ccdc3 Ckap2l Gm12666 Ddx50 Nkg7 Igkv8-18 Tpbg Fn3krp D630003M21Rik Chaf1a Rem2 Rbm25 Cxcr6 1700010K24Rik Gm15895 Uqcrq Tom1l1 Ybx1 Gm26765 Zfp787 Adamdec1 Samd3 3110070M22Rik Pcca Gm6034 Neil3 Gm15978 Ube2h Gata3 A930006L05Rik Cadps Eif5b Tspan32os Smc4 lghv1-55 Alkbh1 Mcpt4 Klhl31 Necab1 Luc7l2 Stox2 Asf1b RP23-366014.5 Raf1 Zfp36l2 Gm4787 5430402013Rik Igkv12-38 C1ra Cks2 BC043934 Ppcdc Lair1 Gm12333 Mptx2 Tagln2 Sox12 Cks1b Gm26707 Bcl7c Ccl3 1700088E04Rik AY761184 Tmem173 C2 Smc2 Gm19684 Dennd5b Emb Gzmk Tc2n Ccdc117 2610528A11Rik C. DCs LP topic_1 topic_2 topic_3 topic_4 topic_5 topic_6 Siglech Ctla2b Lyz2 Stmn1 Cd74 Ccl17 Cox6a2 Xcr1 Il22ra2 2810417H13Rik H2-Ab1 Malat1 Klk1 Ppt1 Siglece Ptma H2-Aa Ccl22 Cd8b1 Cst3 Plet1 Ube2c H2-Eb1 Ftl1 D13Ertd608e Naaa S100a11 Hmgb2 Ifitm3 Ccr7 Sh3bgr Tlr3 Cxcl14 Tuba1b Wfdc17 Cxcl1 Pacsin1 A530099J19Rik Mmp12 Birc5 Clec4b1 Flrt3 Ccl4 Hebp2 Gp2 Tubb5 Cd209a Fscn1 Sell Actg1 Ppplrl4a Rrm2 H2-DMb1 Lad1 Ly6c2 Plpp1 B4galt6 Ccnb2 Ifitm2 Cacnb3 Lefty1 Ptgis Vasp Nusap1 H2-DMb2 Bcl2a1d Smim5 Eef1b2 Atox1 Ran Cd209b Cdkn1a Bst2 Cxx1a Atp5e Ccna2 Socs3 Ankrd33b Tyrobp 2310031A07Rik Fpr2 Cdca3 Srgn Ccl5 Ly6cl Atpif1 Sec61b Ranbp1 Smpdl3a Tmem123 Ighm Vwf Ifitm6 Ppia H2-D1 Cxcl2 Cdh5 Ucp2 Sh3bgrl3 H2afx Gadd45g Cxcl16 Dnajc7 Txndc15 Msrb1 Cks1b Hfe Bcl2a1b Ctsb Cxx1b Ccr1 Tk1 Trf Arl5c Dntt Rundc3a Tnni2 Top2a Hcls1 Gadd45b Gm14964 Acvrl1 Arpc1b Anp32b Gsn Apol7c Prkca Psmb9 Mcemp1 Cep55 Cd53 Basp1 Lair1 Aif1 S100a6 Erh Ms4a4c Bcl2a1a Atp2a1 Agpat3 Cyp4f18 Cdkn3 Atp6ap2 Il4i1 Ccr9 Cd207 Trem1 Ybx1 App Etv3 Mctp2 Fam149a Tctex1d2 Ckap2l Bcap31 Cd83 Timp2 Psme1 Igsf6 Cenpe Hexb Serpinb9 Iglc3 1700009J07Rik Lyz1 Ccnb1 Ms4a6d Nudtl7 Klk1b27 Rab32 Il1rn Alyref Cysltr1 Traf1 Pir Plbd1 Serf2 Hmgb1 Bicd2 Cxcl10 Nrxn2 Gm11837 Spi1 Ska1 Gm5150 Zmynd15 mt-Atp6 Ttc39a Fam189a2 Tmpo Itm2b Tspan3 Tbxa2r Rgs10 Tgfbi Cdca8 Dab2 Samsn1 Grn Tmsb4x Adamdec1 Prc1 Csf2ra Mt2 Dap Cd52 Bcas1 H2afz Susd3 Csrp1 Blnk Rab7b Cox4i1 Dut Ebp Lrrc32 Atp1b1 Cd36 Atp5l Cenph Milr1 Clic4 Clec12a Qpct Stra6l Cdca7 Man2b1 Il12b Gm5547 Lpar6 Clec4a4 Npm1 Itgam Marcksl1 Gm12253 P3h2 Il23a Mcm6 Slc44a5 Map4k4 Il12a Proser2 Pald1 Prdx1 Ptger3 Mxd1 Scimp Gm28411 Sirpa Melk Myl12a Cd40 Rpgrip1 Col25a1 Myeov2 Snrpd1 Ppp1r13l Tnnt2 Pgls Sult1a1 Nedd8 Pttg1 Dmkn Cdkn2b Paqr5 Snx22 Atp6v1f Cdk1 Mgl2 Rgs1 Fcrla Cyp26bl Tarm1 Nuf2 Ctsc Lilr4b Gm19705 Pmf1 Tsga10ip Snrpb Aph1c Fam49a Irf7 Kremen2 Clec5a Hnrnpa3 Ticam1 Tnfaip2 Hpse Gm6377 Cox6c Bub1 AF251705 Eno3 Havcr1 Commd8 Calml4 Pfn1 Gm43936 Il1a topic_7 topic_8 topic_9 topic_10 topic_11 topic_12 Junb Actb Fth1 Klf2 Igkc S100a4 Btg2 Gm2a Tpt1 Fos Igha Mcpt1 Nr4a1 Cbx3 mt-Co2 Jun Jchain Mcpt2 Pim1 Notch2 Xist Dusp1 Iglc2 Nccrp1 Atf4 Skil Fau Neat1 Iglc1 Gm15848 Zfand5 Kdelr2 Gnb2l1 Ubb Txndc5 Prr29 Fosb Slc39a1 Btg1 Hspa8 Gm43291 C1qb Ppp3ca Ncoa3 mt-Nd1 Jund Cd79a Ltb Ddx5 Lrrc58 Eef2 Alox5ap Trp53inpl Gpx4 Ptbp3 Upf1 Gm10709 Klf6 Iglv1 Mif Zfos1 Rbm15 Eef1a1 Zfp36l2 Mzb1 Aif1l Jarid2 Alkbh5 mt-Nd3 Tspo Slpi Krt8 Picalm Kdm6b Gm8730 Dnajb1 Derl3 Gata3 Cmip Insig1 Wnk1 Fxyd5 Ssr4 Lum Dusp5 Otub1 mt-Co1 Cd48 Edem1 Mdk Pip4k2a Fn3krp Vps37b Ccnd3 Pou2afl Ndufa1 Mat2a D17H6S53E Crem Pmaip1 Hsp90b1 Cfp Tob2 Mcmbp Bcl2l11 Fcer1g Fkbp11 Crybb2 Ndel1 Wtap Tgfb1 Lsp1 Sec11c Cib1 Mel1 Marf1 Srrm2 Arhgdib Vpreb3 Klrg1 Gna13 Abhd2 Ptpn18 Bin2 Sdc1 S100a9 Ythdc1 Yme1l1 Stat3 Zfp36 lgkv3-7 Kcnk1 Ubc Soat1 Ssh2 Cyp7b1 Ccr10 G0s2 Pde4b Cdk6 Gm42418 Itgb7 Iglv3 S100a3 Plekho2 Hsf2 Ubl3 Tsc22d3 Lax1 Platr3 Cbl Ric1 Gcnt2 Zbtb32 Tnfrsf17 PISD Sf3b1 4933434E20Rik Eif3h Atp5c1 Pdia4 Sri Ctage5 Paip1 Klf13 Plp2 a Cma2 Eif4g3 Lyrm4 mt-Co3 Sin3b Xbp1 C1qa Tiparp Pdcd4 Map3kl Eif4a1 Eaf2 Cited4 Stk38 Rrn3 Slc3a2 Itm2c Spcs1 Serpinb1a Dock10 B4galtl Mrfap1 Ier5 St6gal1 Lysmd2 Jmjd1c Timmdc1 Oaz1 Enol Cd55 Prdx5 Herpud1 St13 Nsa2 Cd209e Edem2 Foxs1 Ankrd11 Bmp2k St8sia4 Ms4a6c Rein Id2 Brd2 Dfna5 Ywhaz Sema4a Lman1 Lamp1 Clk1 Kmt2d Gpcpd1 Egr1 Endou Rac2 Csrnp1 Dnase1l3 Ago2 Fgd2 Hid1 Nrgn Gm26917 2310035C23Rik Smc6 Rhob Gm26826 Bcam Pten Klhl9 Itpkb Capns1 Mgat3 Clic3 Ddx21 Tmf1 Son Fcgrt 9230117E06Rik Trbc1 Gnaq Gm15800 Pmepa1 Hnrnpk Gm15634 Cxcr6 St3gal4 Acot2 Ahr Pepd Actg2 Ly9 Wsb1 Zscan26 Luc7l2 Ifi30 Gm17096 Gem Alcam Ppm1h Fam43a Lmo1 Gm9796 Tnfsf11 Kdm7a Pan3 Kras Ccl9 Txndc11 Vsig2 Ifrd1 Myef2 Ifnar1 Capzb Chchd10 Capg Gm6133 Lrrc8a Tsix Pdcd10 Il5ra Plekhs1 5031425E22Rik Slc2a12 Dph3 Coro1a Bhlha15 S100a10 Tm9sf3 Pfas Gng5 Gltp Znrf3 Limd2 D. Myeloid cells LP topic_1 topic_2 topic_3 topic_4 topic_5 topic_6 topic_7 topic_8 Cpa3 Lyz2 Cd74 Malat1 S100a9 2810417H13Rik Mcpt1 Ccl2 Cma1 S100a4 H2-Aa Mmp13 S100a8 Stmn1 Mcpt2 Hspa1a Mcpt4 Ifitm3 H2-Abl Apoe G0s2 H2afz Igkc Gm26522 Tpsb2 Ccl9 H2-Eb1 Dnase1l3 Retnlg Tubb5 Igha Dnajb6 Fcer1a Ms4a4c Retn1a Ccl8 Il1b Ptma Jchain Ccl7 Hs3st1 F13a1 H2-DMb1 Lilra5 Cxcl2 Birc5 Mcpt9 Tmem261 Gata2 Chil3 Mgl2 Clec1b Gm5483 Ube2c Ifitm1 Nr4a2 Cited4 Thbs1 H2-DMb2 Ccl4 Wfdc21 Mcpt8 Cd63 Gm6133 Cyp11a1 Id3 Tmsb4x Amica1 Lrg1 Rrm2 Cma2 Mrpl30 Tph1 F10 H2-DMa Acp5 Asprv1 Hist1h2ap Apol9b Jtb Furin Serpinb10 Aif1 C6 Lcn2 Ppia Iglc2 Ppp3ca Rab27b Ifi27l2a Tmem176b Apol7c Irg1 Spc24 Ctla2a Jarid2 Slc45a3 Gpx1 Cd83 Gas6 Ccrl2 Hmgb2 Itgae Serinc3 Cel1 Crip1 Lyz1 Pla2g7 Il1f9 Hmgb1 Apol9a Idh2 Il13 Al839979 Tmem176a Stab1 S100a11 Nusap1 Mzb1 Zfos1 Il1rl1 Ace Cd209a Gas1 Msrb1 Ccnb2 Otop1 Poldip3 Itga2b Cst3 Slamf8 Pla2g2d Mrgpra2b Top2a Cpne5 Panx1 Cited2 Ly6c2 Mmp12 Ftl1 Dusp1 Tuba1b Prnp Fam96a Fam110c Smpdl3a Axl Mertk Stfa2l1 Spc25 Gzma Ppp1r9b Creb3l1 Ifitm6 Cxcl16 Sash1 Hcar2 Cdca3 Pga5 Pigt Rgs13 Fn1 Gm15056 Apol10b Pglyrp1 Cdc20 Iglv1 Bckdha Tpsab1 Lgals3 Pltp Adamdec1 Marcksl1 Ccna2 Kcnn4 Fh1 Cyp26a1 Plac8 Pdgfb Gm19434 Nfkbia Cks1b Htra1 Rtf1 Serpinb1a Fau Psap Ubc Fth1 H2afx Asb17os Snhg6 Slc18a2 Nupr1 Mrc1 S1c15a3 Trem1 H3f3b Creg1 Grsf1 Gmpr Ccr2 Mpeg1 Ccl3 BC100530 Cdca8 Ldlrad4 Rsl24d1 Rprm Arpc2 Mt1 C1qa Igfbp3 H1f0 Thsd4 Zc3h7a Ero1l Galnt9 Slamf9 Atf3 Csf3r Aurkb Adgrg1 Eif4e3 Il4 Apoc1 Ctss Cebpa Clec4e Tpx2 Colec11 Dtx3l Cd200r3 Ly6c1 Ccl12 Ppbp HP H2afv Sec14l2 Dram2 Glul Tppp3 Gatm Cd81 Cebpb Ran Iglc3 Dock2 Kit Tnfsf13os Rgl1 Cxcl1 Slc16a3 Kif22 BCl2l15 Sertad2 Lat Vim Sdc3 Klf6 Steap4 Hmgn2 Ssr4 Tnfrsf13b Alox5 Stxbp6 Itgb5 Ctsl Mfap4 Cks2 Speg Srsf6 Gchfr Shfm1 Ppfia4 Ms4a7 Ly6g Ube2s Zcchc18 Mbnl1 mt-Atp6 Dmkn Ctsh Vps37b Clec4d Alyref Fkbp11 Tmem192 Lat2 Wfdc17 Cfp Pgf Il23a Asf1b Urocl Tcea1 Prss34 Pitpna Ctsc Csf1r Mrgpra2a Pbk Ulk4 Cat Poln Cd52 Plxdc2 Pmepa1 Osm Ccnb1 Ldhc Slk Klk8 B2m Ifi30 Rgs1 Chil1 Fbxo5 Iglc1 Prdx2 4932438H23Rik Cd300lg Il22ra2 Sat1 Cxcr2 Ranbp1 Gm43291 Gm26825 Slc6a13 Clec4a3 B4galt6 Fcna Mxd1 Ncapd2 Fermt2 Vps41 Avil Lmo1 Plekho1 Rhob Cyp4f18 Cenpa Ppa1 Smim20 Socs2 Arpc1b Batf3 Gpx3 Gadd45b Ska1 Ndrg2 Pabpn1 Smco4 Ahnak Rogdi Tsku Plpp3 Racgap1 Mro Psma5 Ier3 Actr3 Dab2 AF251705 Cdk2ap2 Cit Cux2 Phf20 Lxn Emp1 Amdhd1 Ltc4s Ltb Rad51 Adamts1 Vav1 Gpr171 Hopx Tbc1d9 C1qc Mmp8 Anp32b Slc6a9 Os9 Adk Glud1 Sdc4 Irf8 Dhrs9 Mcm6 Mbtps1 Comt Gata1 Ms4a8a Bvht Hal Ctsd Ncapg 6030468B19Rik Mfsd1 E. ILCs LP topic_1 topic_2 topic_3 topic_4 topic_5 topic_6 topic_7 Rnase4 Calca Il22 Id2 Malat1 Ccl5 Dusp5 Gda Hs3st1 Cd83 Tmem59 Shisa5 Gzma Bcl2a1d Rcbtb2 Areg Odc1 Dbp Aim2 Klrd1 Serpinb9 Tcrg-C1 Il13 Cx3cl1 Itm2b Amz2 Ms4a4b Rgs1 Upp1 Il4 Cxcr5 Med23 Tnfaip8l2 Klre1 Klrk1 Ly6g5b Ccl1 Cd74 Bcl2 Il18r1 Klra3 Gimap4 Cd163l1 Hes1 Nrp1 Tmx2 Pdcd4 Sh2d1a Tmsb10 Lrrn2 Il17rb Il17f Paqr7 Gm26917 Klra9 Pim1 Ucp3 Lgals7 Gpx1 Cep57 Itch Klra7 Cd69 Gapdh Homer2 Dil1 Ttc14 Aldh3a2 Eomes Irf7 Ppp1r14c Il5 Igkc More1 Cd96 Samd3 Pfn1 Pcp4 Gata3 Tox2 Uqcc1 Icos Serpinb9b Serpinb6b Aprt Deptor H2-Ab1 Stat5b Pnisr Gzmb Bhlhe40 Abi3bp Ptpn13 Gem Prkd3 Dhcr24 Tyrobp Mxd1 Serf2 Ly6a Prss2 Sec62 Crebzf Ccl4 Hk2 Ucp2 Hba-a1 Foxq1 Vhl Cebpz Sema4a Fasl Cxcr6 Kcnn4 Lmna Cept1 Sap30bp Cd2 Hcst Dmrta1 Ccr4 Cacna1g Smg6 Gab3 Ccr5 Gimap3 Rbpms2 Rxrg Foxs1 Tnfaip1 1600014C10Rik Trdc Nabp1 Cox6bl Sub1 Parvb Rnfl14 Fus Nkg7 Serpinb1a Ptprz1 1700061F12Rik Adra1b Ncln Fam65b Phactr3 Tnfaip3 Sla Cntnap2 Fcgrt Mcfd2 Stk19 Il21r Slc16a6 Uqcr11 AA467197 Ramp1 Phc3 Rsrp1 Itgam Selplg Capg Ptgir H2-Eb1 Bod1 Spns1 Irf8 Litaf Efhd1 Il10 Fam110a Snapin Cab39l Lgals1 Smap2 Atp5j2 Nfkb1 Bst2 Tmem11 Rbm39 Gzmk Lgals3 Gm13180 Lmo4 Hoxa7 Smn1 Hbp1 Actb Gadd45b 4933431E20Rik Pparg Hebp1 Gimap1 Luc7l2 Gramd3 Vps37b 2010107E04Rik Plaur H2-Aa Pitpnb Slc7a6os Anxa2 Pim3 Minos1 Il9r Xist Champ1 Spryd3 Klra5 Car2 Myeov2 Serpine1 Platr3 Phf20 Tmem127 Tm6sf1 Srsf12 Gabbr2 Seel Sox4 Chd8 Them6 Gm15518 Abi3 Cfl1 Bmp7 Edf1 Pwwp2a Bnip3l Cd247 Ikzf2 Cryba4 Neb Ostf1 Fra10ac1 Ypel3 Ifitm10 Lck Sit1 Sox8 Rrad Wdr82 Ankrd11 Cd52 Pltp Gm26652 Lpcat2 Stab1 Zmynd8 N4bp2l1 Dusp2 Ggct Gm9949 Samsn1 Fermt2 Jtb Itpr2 Gpx8 Ncr1 Tns4 Alox5 Jchain Cdc26 Rpusd4 BC094916 Neurl3 Ybx1 Gpr65 Slc16a2 Cnot1 Gm16223 Atp1b1 Vasp Nop10 Abhd17c Ninj1 Tor2a Gps2 Klra4 Phlda1 Gimap9 Gm20186 Cd4 Zfp866 Oard1 Fcrl6 Ctsw Rinl Gm973 Cd81 1110034G24Rik Kdelc2 Lat2 Nfil3 Tomm7 Epas1 Cd40 Nudt9 Cdc23 Sell Clcf1 Tmem64 Ccr8 Krt25 Trim12c Sbds Ifng RP23-218E6.4 Mrps33 D430036J16Rik Adra2a Otud6b Mgea5 Tmsb15a Ezr Clic1 Cd6 5930412G12Rik Cited4 Tk2 Klra1 Sept6 Pfdn1 Stxbp6 Cldn10 Nfx1 Usp7 Kcnj8 Pabpc1 P2rx7 9230102004Rik Piwil4 Baz1b Sirt7 Myb Kctd12 Tnp2 Furin Pacsin1 Zbtb43 Ing1 Ptprc Ifngr1 Sema4b Klf5 Marcksl1 Mphosph8 Hipk1 Ugcg Cd160 topic_8 topic_9 topic_10 Fos Zfp740 Il1b Junb H1f0 Ncoa7 Dusp1 Usb1 S100a8 Ier2 B930036N10Rik Tubb5 Zfp36 Ppp1r10 Tuba1b Jun Puf60 Rasl11a Klf2 Adprm Hmgb2 Btg2 Bod1l Stmn1 Nr4a1 Ppp2r1b Ltb Fosb Dhx30 S100a9 Klf4 Pdcl Ttyh2 Ppp1r15a Slc35c1 2810417H13Rik Pnrc1 Jade2 Cks1b Egr1 Elk3 Hmgn2 Gm26532 Psmb10 Rgcc Klf6 Tnrc6b Ube2c Iglc1 Osbpl2 Hspa1a H2-T23 Rhob Chad Jund Thap3 Rorc Irf1 Mad2l2 Igf1r Rnf2 Trim26 Cd7 Ier5 Sec16a Sdc4 Fuca2 Golga7 Cks2 Sgf29 Pgm2l1 Ddc Arid4a Uxt Birc5 Gm8797 Yif1a Top2a Ap3b1 Ccdc47 Hist1h2ap Nt5c3 Tpp1 Apoe Ip6k1 Wdr45b Cbx3 Uvrag Mcpt1 Pbk Amn1 Pde4dip H2afx Mir142hg Zfand2a Pxdc1 Trrap Rbm5 M1ap Snhg12 Unc93b1 Smc2 Pias2 Lonp1 Asf1b Vps41 Ppp3r1 Spc24 Per1 Ppp2ca Retnlg Ppp5c Neil1 Ccdc34 Sgta Xrcc6 Cenpa Slain2 Brix1 Tipin Tbc1d10a Rbm15b G0s2 Tiparp Prmt1 Rrm2 Get4 Mdh1 Smc4 Xpa Arcn1 Cdc20 Pomgnt1 Dynlt3 S1pr3 Cmip Polr2g Tifa Vamp2 Map4 Siva1 Stim1 Zfp830 Ccna2 Sp2 Eif2b4 Fbxo5 H2-Q4 Pip5k1c Dhrs3 F. Stromal cells PP topic_1 topic_2 topic_3 topic_4 B2m Glycam1 Dcn Ccl21a Cd81 Tm4sf1 Mt1 Cxcl13 Gm26917 Fabp4 Col3a1 Clu Malat1 Ly6c1 Gsn Ccl19 Igfbp7 Lrg1 Adamdec1 Acta2 Lmna Ctla2a Serping1 Mfge8 Eif3f Tmem252 Rarres2 Apoe Arpc1b Pecam1 C3 Tagln Ndufa4 Egfl7 Col1a1 Cxcl1 Gnas Plvap Rgs5 Cilp Atp5l Flt1 Col1a2 Cel2 Atp6v1g1 Scgb3a1 Cel11 Il33 Srsf5 Apold1 Plac8 Cxcl12 Ppib 8430408G22Rik Clec3b Actg2 Erh Cldn5 Gem Serpina3n Ndufb11 Sox17 Bmp4 Ccl7 Rab2a Ace Col6a2 Bst1 Pfdn5 Cdh5 Cebpb Serpina1a Srsf3 Emcn Ifi27l2a Fmod Pfn1 Esam Mt2 Grem1 Cox6b1 Ptprb Phlda1 Serpina1b Uqcr10 Aqp1 Ms4a4d Slc36a2 Sept4 Cd93 Fbln1 Cnn1 Gm10260 Esm1 Col6a1 Myh11 Socs3 Rasip1 Mgp Art2b Cope Kdr Tcf21 Actc1 Fkbp8 Cd36 Lrp1 Al838599 Ranbp1 Icam2 Crispld2 Serpina1c Tagln2 Myct1 Cxcl14 Cr2 Ube2n Cav1 Lpl Gxylt2 Fos Mgll Spon1 Crym H2-Q7 Edn1 Olfml3 Dclk1 Gm13889 Caim1 Spon2 Serpina1d Fus Arhgap31 Aspn Myl9 Slc25a5 Ushbp1 Bgn Parm1 Map1lc3b Actg1 Fth1 Gm16685 Zfos1 Ackr1 Col14a1 Postn Pnrc1 Gpihbp1 Sdc2 Chrdl1 Ube2i C1qtnf9 Pid1 Colq Atp5o Klf2 Col6a3 Csn2 Ubald2 Mecom Cd302 Prss12 Pkig Cdkn1a Mmp2 H2-M2 Chmp4b Ptprr Col5a2 Trf Zcrb1 Rnd1 Pdgfra Sostdc1 Mel1 Gngt2 Cygb Dsc3 Maf1 Tek Gm12840 Ctgf Spop Tspan13 Mmp10 Thbs4 mt-Atp8 Sema3g Mxra8 Pcdh15 Dctn3 Adgrg1 Ctsk Rtn4r Ubb St3gal6 Cpxm1 A230065H16Rik G. T cells PP topic_1 topic_2 topic_3 topic_4 topic_5 topic_6 topic_7 topic_8 Igfbp4 Tmsb10 Arhgdib Malat1 Klf2 Pdcd1 Ptma Trbc1 Gm8730 Pfn1 Pik3ip1 Xist Btg1 Il4 Ppia Sepp1 Eef1a1 Sepw1 Gmfg mt-Co1 Dusp10 Gal Tuba1b Cd53 Eef2 Ccnd2 Coro1a Fyb Vps37b Nav2 Eif5a Smc6 Gm10709 Cycs Lsp1 mt-Co3 H3f3b Tox2 Ran Stk38 Gm10260 Psmg4 Cdkn2d mt-Cytb Ccr7 Cebpa Slc25a5 Tcf7 Naca Rrs1 Sell mt-Atp6 Junb Sostdc1 Mif Hsdl1 Fau Nolc1 Grap mt-Nd5 Pnrc1 Angptl2 Pa2g4 Cdc42se1 Eif3f Bel2 Scp2 Inpp4b Ifngr2 5430421N21Rik Nme1 Atp1b3 Pdlim4 Gar1 Tuba1a Atrx Gm8369 Gfra4 Ranbp1 Skap1 Tpt1 Map2k2 Tmem59 Zfp941 Rgs2 Tbc1d4 Serbp1 Atp1b1 Btf3 Zfp593 Al467606 Stx16 Gpcpd1 Rgs10 Atp5g1 Add3 Eif3k Rpf2 Emc9 Zmynd12 Frat2 Gpm6b Fbl Mycbp2 Crip1 Atn1.1 Def6 Rb1cc1 Dusp5 Cxcr5 Hmgn1 Tmem234 Pabpc1 Trmt10c Rnf114 Map1a P2ry10 Bcl2a1b Ddx39 Tspan14 Gm10269 Srm Samd9l Taco1 Tnfaip3 Cd200 Eno1 4930523C07Rik Eif3e Tmem248 Rsrp1 Ufsp1 Zfp281 Smco4 Ybx1 Prkd2 Eef1b2 Rsl1d1 Ostc Gm28306 Bambi Izumo1r Eif4a1 Egln2 Nacc2 Med28 Mpnd Vwa1 Cd28 Ascl2 Uqcrq Lamtor2 Nsa2 Ywhaq B3galt4 Prrc2c Il4ra Vdr Apex1 Rp9 Gm13546 Gng5 Sgk3 Zkscan8 Btg2 Il21 Anp32b Itk Eif3h Impdh2 Triap1 4933427l04Rik Cxcr4 Adam33 Tcp1 Ms4a6b Cox4i1 Mlx 2410002F23Rik Gm27241 Ssh2 Ucp2 Banf1 Ikzf1 Gm26888 Mettl1 Ric8 Bcl11b Ptp4a1 Gna14 Nop10 Card19 2010107E04Rik Rasgrp2 Rgs19 Ssbp2 Ets2 Cdk2ap2 Prdx1 Itm2a Eif3i Pwp2 Glud1 Cul9 S1pr1 Ptprcap Psma7 G3bp2 Tsga10ip Armc1 BC029722 Rbm39 Tagap Chn1 Hnrnpa3 Il17ra Psmb1 Synj2bp Ppp1ca Gm16152 Gm20186 Lgals1 Uqcc2 Raf1 Atp5g2 Atad3a Psap Zmym5 Arid5a lgkv3-2 Ppa1 Zfp292 Pfdn5 Abce1 Rbm10 Ankrd12 Csrnp1 Sh2d1a Snrpe Usp53 Hnrnpa1 Psmd3 Smarcd2 Vps13a Gpr18 Rac2 Mcm2 Faah Uqcrh Nop16 Leprotl1 Fus Dnajb9 Maf Hprt Ndrg3 Slpi Psme3 Mettl9 Tmx4 Gpr183 Krt17 Erh Actr10 Use1 Ddx18 Sat1 Tmem40 Socs3 Gm2762 Ndufa12 Klf7 Eif4b Myd88 Bin1 Ddrgk1 Nabp1 Fgf2 C1qbp Hgs Snrpf Trmt1 Vps4a Cecr6 Maff Gm9885 Cox7b Pde12 Gltscr2 Aars Ankrd13a Oxt Mirt1 Sh3gl3 Lsm7 Gimap6 Uqcrfs1 Msl2 Phyh Erich4 Trim13 Vamp8 Snrpd2 Rasgrp1 Myeov2 Gps1 Ubald1 Gm44226 Ifnar1 Serpinf1 Atp5j Mir142hg 2700060E02Rik 2810004N23Rik Limd2 Gm26559 Prkca Il9r Atp5j2 2410016O06Rik Vipr1 Fam50a Med25 Zbtb20 Fosl2 Ctsb Tubb5 Slc35b3 Gnb2l1 Lsm12 Pafah1b2 Gm28044 Rnf125 Ubl5 Prmt1 Trac Gm17541 Dnaja3 Gtf3a RP23-272F2.2 Sgms1 Fam20a Cox6a1 Ncoa2 Tomm7 Ccnd3 Map4k2 2810030D12Rik Il2rg Fst Ncl Cd3d Srms Polr2h Ppa2 Arhgef17 Bcl2l11 Bcl2a1d Stmn1 Toporsos Emg1 Utp18 Tbc1d10c Adam6b Gramd3 Actg2 Srsf3 Upf2 Sec61g Nfkbib Gm15675 2610528J11Rik Sgip1 Smox Grwd1 Mlec Tbc1d16 Nop2 Daxx Plch2 Tubb2a Cpeb1 Lyar Tpp2 mt-Co2 Pisd Slc28a2 Hist1h2ad Gypc Dhx34 Gpn1 1600020E01Rik Gm6096 Thap7 Exosc7 Pcdhgb2 Prdx6 Kirrel3 Mrpl23 Rnf167 topic_9 topic_10 topic_11 topic_12 topic_13 topic_14 topic_15 topic_16 Hspa1a Wdr89 Ctla4 Dusp2 Actb Ccl5 Cd8b1 Ifi27l2a Hspa1b Gm11808 Il10 Foxn3 Pdcd4 Gzma Ly6c2 Shisa5 Hsp90aa1 Uba52 Sapcd1 Stag2 Abhd2 Tyrobp Ly6c1 Ass1 Hspa8 Gm10073 Tnfrsf4 Igkc Cbx3 Fcer1g Lcn4 Tspan32 Ubb Gm9843 Klrg1 Chic2 Wtap Gzmb Cd8a Ecm1 Gm26825 Gm6133 Penk Arf6 Ptp4a2 Xcl1 Ggt1 Samhd1 Jun Gm9844 Areg Cnppd1 Kdm6b Tcrg-C4 Ly6a Cd4 Dnaja1 Gm26917 Hmgb2 Snapc3 Mcmbp Cd7 Tmem108 Ifi203 Dnajb1 Gm10036 Cd83 Sox4 Notch2 Dapk2 Adgrb2 Gimap3 Klf6 Gm2000 Samsn1 Pcgf5 Gm26771 Tcrg-C2 Nkg7 Igtp Hsp90ab1 Gm10263 Ikzf2 Asf1a Fxyd4 Cited4 Glipr2 Trav9-1 Gnai2 Gm9493 Tnfrsf9 Maea Upf1 Klra5 Rcn3 Stat1 Grb2 Grcc10 Axl Zfp330 Actr2 Klri2 Thy1 Ltb Actg1 Gm10116 Batf Ugcg Marf1 Cd244 Gm43698 S100a10 Hsph1 Nme2 Dhrs3 Tbc1d17 B4galt1 Tcrg-C1 Ccr9 Trav9d-1 Fos Gm10250 Apoe Smim19 D17H6S53E Zmat4 Kcnc1 Gpr83 Lcp1 Gm42418 Ebi3 Celf1 Slc39a1 Spry2 Dapl1 Cyp4f18 Ppp2ca Gm5093 Smpdl3a Mysm1 Lrrc8a Cd160 B2m Cytip Dynll1 Gm15013 Nusap1 2210016L21Rik Tmf1 Gm156 Slc25a4 Capg Jund Gm8186 Pou2f2 Trip12 Fn3krp Klra7 Klk8 Cd2 Calm1 Gm6576 Il17rb Ubn1 Alkbh5 Klrc2 Plac8 H2-D1 Glycam1 Ddit4 Dusp1 Pten Zbtb40 Ccl4 Racgap1 Gimap1 Slc3a2 AY036118 Ldlrad4 Tmem128 Ncoa3 Lgals3 Hcst Cish Srpk2 Gm7808 Mmd Vps41 Paip1 Batf3 Eomes Gm5424 Pitpna Ighg3 Nfkb1 Chmp3 Arglu1 Klre1 Runx3 Trav9n-1 Phlda1 Psme2b Rora Cant1 Zc3hav1 Trdc Tagln2 Gata1 Hspb1 Gm10320 S100a4 Pafah1b1 Kmt2d Klre1 Ppic St8sia6 Cacybp Gm8797 Cybb Sun2 Acot2 Cd200r2 Ifitm10 Gbp7 Fabp2 Eno1b Rilpl2 Etnk1 Rbm15 Klra3 Ms4a4c Vim Tra2b Clca3a1 Podnl1 Gramd1a Dpysl2 Spp1 Eng Txnip Baz1a Ttc7 Tnfaip8 Mtf2 Ppm1h Ncr1 Tm6sf1 Iigp1 Slc38a2 Gm4950 Hey1 Mknk2 Ppp1r16b Lrrk1 Ostf1 Zbp1 Gm42670 Gm17669 Il1rl1 Nufip1 Rap2b Ckm Lman1l Cyb5a Gm37170 mt-Atp8 St6galnac3 Gnpnat1 Pitpnc1 Clnk Adgrg5 Tnfrsf18 Tra2a Gm5786 Epas1 Hagh Inpp4a Htra3 Ehd1 Tnfrsf25 Cd40lg Gm5239 Ltb4r1 Dock8 Inafm2 Klra9 Saraf Arl6ip1 Cdk2ap1 Lfng Gm3636 Armt1 Skil Klri1 Osbpl6 Rtp4 Ccdc117 Gm4978 Atp6v0d2 Cdk11b Ptpn22 Itga1 Dnajc15 Phf11b Fabp6 Lhfpl4 Rab37 Ap1s1 Kdelr2 Fgl2 Slco3a1 Nxpe3 Nav1 Gm16519 Nt5e Trmt2a Lyrm4 Car2 mt-Nd1 Ccdc22 Taf10 Lrrc58 Trib1 Arl8b Otub1 Trgv2 Tapbpl 1110032F04Rik Ighg2c Snhg9 Wisp1 Ldlrap1 Mon1b Gm16602 Sorl1 Adgre5 Fabp1 Gm10020 Bhlhe40 Wdr3 Hsf2 Emilin2 AB124611 Chd3 Mrpl38 Rnaset2a Krt18 Rbbp6 Insig1 Slc16a11 Psme1 Arhgap15 Slc25a20 Gm5426 Cd44 Stxbp2 Slc24a5 Gm19590 Trim30c Cd81 Rabggtb Ost4 Ckap2l Ppm1b Zscan26 Cd3g Fcgrt Znrf1 Ahsa1 Usp50 Lztfl1 Kif2a Sema4b 1810041H14Rik G0s2 Fsd1l Swt1 Gm43062 Trappc1 Pias1 Ric1 Ccl3 5730508B09Rik Spcs2 H60b Gm10094 Tnfsf8 Txndc9 4933434E20Rik Sh2d1b1 Sec61b Slfn1 Ighv1-14 Rtn4rl1 Zfp36l1 Chchd7 Tc2n Cyp2j6 Sidt1 Trav2 H. B cells PP topic_1 topic_2 topic_3 topic_4 topic_5 topic_6 topic_7 Plac8 Crip1 Malat1 Npm1 H2-Ab1 2810417H13Rik Actb H2-Aa Aicda Xist Mif Cd74 Stmn1 Klf2 Capg Chrna9 mt-Atp6 Gm8730 Ifi30 Ube2c Junb Tmsb4x sypl mt-Co3 Eef1g H2-Eb1 Cdca8 H3f3b S100a11 Rgs13 mt-Co1 Ybx1 Pfn1 Ccnb2 Fos Cd79a Lipc mt-Cytb Pebp1 Il4i1 Nusap1 Ier2 S100a10 Scimp mt-Co2 Hspe1 Tnfrsf13c Tubb5 Jund Ly6e Laptm5 Rsrp1 Hsp90ab1 Marcksl1 H2afz Btg2 Sapcd1 Sorbs2 Siglecg Ranbp1 Swap70 Tuba1b Nr4a1 Cd38 Pold4 mt-Nd4 Erh Hspa1a Tpx2 Ppp1r15a Gm9843 Eaf2 Ebf1 Gm10709 Syngr2 Hmgb2 Dusp1 Arhgap24 Arpc3 Ptprc Nme1 Ptpn6 Ccna2 Cd69 Gm6133 Anxa2 Rbm39 Cox7c Actr3 Birc5 Btg1 Edaradd Bfsp2 Snx29 Gm10260 Cfl1 Hist1h2ap Rgs2 Cyp4f18 Gm3336 Gm42726 Hint1 Hvcn1 Kif22 Tsc22d3 Marcks Eif3h Mbnl1 Atp5b Cd40 Plk1 Zfp36 Gm11808 Slpr2 mt-Nd1 Snrpd2 Grap Cep55 Pxdc1 Cd72 Prr13 Ttc14 Gapdh Myl12a Esco2 Cxcr4 Ostf1 Gm32200 mt-Nd2 Atp5e Dnaja1 Asf1b Dusp2 Ccr1 Gh Atrx Slc25a5 Cyba Cdca2 Jun Gm9493 Neil1 Chd6 Eef1b2 Samsn1 Pbk Ier5 Sh3bgrl3 Fth1 Fchsd2 Eno1 Ms4a1 Ptma Myc Fcmr Ube2d2a Mbnl2 Gm10076 Iep1 Nuf2 Stk17b Fcrl1 Smco4 Klhl24 Atp5g1 Cd53 Cdc20 Kdm6b Ifi203 Dap PISD Prdx1 Mif4gd Rrm2 Rhob St3gal6 Serf2 Ddit3 Chchd2 Hnrnpf Cdca5 Ccr7 Bcl2 Coro1a Rbm5 Npm3 Actg1 Hmmr Egr1 Rdx Kcng2 Tsix Phgdh Slc25a19 Top2a Hist1h1c Hhex Ildr1 Cdkal1 Hnrnpa1 Grb2 Cenpe Nfkbid Sub1 Pla2gl6 Trim7 Eif3i Hcls1 Neil3 Satb1 Sla Cd79b Arid4a Pkm Irf8 Sgol1 Plk2 D1Ertd622e Clta Tra2a Eef1d Nfkb2 Ckap2l Klf6 Serpinb1a Bzw2 Cwf19l2 Gnb2l1 Rab35 Bub1b Vps37b Hck Stbd1 mt-Nd5 Uqcrq H3f3a Mxd3 Il2rg Ephx1 Oaz1 Map3k14 Nop58 II21r Ccnb1 Sdc4 Eef1a1 Smim14 Dock11 Tpi1 Trp53 Hmgb1 Srsf5 Mndal Dram2 Msl2 Snrpf Cotl1 Cks1b Nr4a2 Ncf1 Commd4 Prpf38b C1qbp Zfp362 Cdca3 Ptp4a2 Pml Apobec1 Zfp280d Cox5a Bzw1 Cdk1 Tgif1 Ypel3 Cpne5 Son Fkbp1a Apex1 Lmnb1 Gm26532 H2-D1 Gnb4 Scaper Uqcr10 Vasp Cdkn3 Rrad Zeb2 Sept1 mt-Nd3 Serbp1 Eif5 Spc24 Egr2 Tpt1 Tcea1 Prpf4b Ndufb2 Calr Tk1 Rel Trps1 Rhoh Safb Ndufab1 Arpc4 Bub1 Zfp36l2 Fcrla Smagp Gm43291 Mdh2 Arpc1b H2afx Abhd2 Gns Glrx3 Ate1 Shmt2 Nfkbia Spag5 Fosb BC094916 Borcs8 Cspp1 Phb2 Erp44 Sgol2a Cytip Cd300lf Nuggc Slc4a1ap Hspd1 Lyl1 Melk Gpr183 Gm2a Gm2447 Ncor1 Cox6c Psme1 Cdc25c Atf4 Slfn2 Mroh7 Sumf1 Pa2g4 Relb Rad51ap1 Neat1 topic_8 topic_9 topic_10 topic_11 topic_12 Ifi27l2a Chd4 Igkc Iglc1 Ighg2b Ptms Myo1c Igha Ighm Ighg3 Gm9844 Ythdf2 Ccr10 lgkv5-39 Ighg1 Med11 Fam173b Jchain Iglc2 Ighg2c Cdk2ap2 Ttc1 Hsp90b1 Iglv1 Igkv3-7 Pkp3 lsg20l2 Tnfrsf17 Iglv3 Igkv4-72 Phf14 Apopt1 Edem1 Mzb1 Igkv4-63 Cd24a Birc2 lgkv4-59 Six4 Igkv6-25 Fkbp8 Pptc7 Krtcap2 Cst3 Igkv5-48 Mrpl10 Mmgt2 Fkbp11 Apoe Igkv4-53 Lsg1 R3hdm1 Ssr4 Il1b Igkv3-4 Hp1bp3 Kdm2b Cd28 Prg2 Igkv1-135 Trmt10c Sgf29 Iman1 Klk4 Igkv4-86 Ppp2r1a Slc15a3 Edem2 Igkv2-109 Igkv8-30 Sdhaf4 Srsf1 Ssr3 Gm11772 Igkv1-110 Tcirg1 Exoc2 Ckap4 8030442B05Rik Igkv3-5 Cstf3 Oxr1 Sdc1 Clstn3 Igkv4-68 Ggta1 Mtf1 H13 Cacna1s Slpi Pum2 Asb7 Pdia4 Gm42917 AY036118 Vamp8 Naa35 Spcs2 Iglc3 Gm42418 Parvg Hif1a Klrg2 Ighv7-1 Lyz2 Nelfb Acot9 Igkv10-94 Kctd17 Gm37511 Acot8 Cltc Mgat3 Dnajb9 Igkv8-24 Szrd1 Snx15 Khdc1c Chst1 Cxcl13 Rab5c Ado Kdelr3 Fam174b Gm26917 Ddx54 Pop7 Anxa8 Gm28062 Cxcl9 Faim Mrpl3 Gm35202 Col5a1 Igkv4-60 Mettl5 Ctu2 Nacc2 Tarm1 Ly6c1 H2-T22 Nxf1 Ccr9 Gabrr1 Ighe Oat Arv1 Sec24d Gm28513 Clu Slu7 Tbl1xr1 Mpzl2 Sirpb1c Fabp2 Alyref2 Leng8 Trp53inp1 Wnk2 A230065H16Rik Pex19 Gon4l Gtf2a1l Prph Ly6c2 Ndufa8 Nagk Prss57 Gm5103 Ighv1-76 Aco2 Wdr6 Ighv3-5 D6Ertd527e Gm11175 Apls3 Dynlt1c Ly6g Epyc Fabp1 Atg101 Sema4d Pls1 Cdh19 Igkv10-96 Il16 Lpcat3 Entpd1 Ceacam18 Mfge8 Rinl Tmx2 Ppib Asb16 Ighv1-62-1 Zdhhc7 Siah1a Spcs1 1700011l03Rik Ifitm3 Aftph Fam53a Pla2g5 Casq2 Ighv11-2 Slc30a9 Atxn2l Fkbp2 Fam71b Igkv6-23 Necap2 Ufm1 Lgals1 Lhfpl2 Mmp25 Tmem59 Gm5900 Fkbp14 Gm17590 Serpina1c Prkcd Ehmt2 Mpo Slc6al9 Tmem176b Hnrnph2 Bsdc1 Hoxd3os1 Cplx1 Igkv3-1 Scly Zfp628 Nodal Slc9a4 Igkv4-71 Oaz2 Sp110 Gm43121 Abcd2 Ccl2 Napg Dhrs3 Txndc5 Inmt Igkv4-50 Dync1li1 Polb Gm15533 Xrra1 Serpina1a I. DCs PP topic_1 topic_2 topic_3 topic_4 topic_5 topic_6 topic_7 D13Ertd608e Cst3 Actb mt-Co3 S100a4 Malat1 Fscn1 Cox6a2 Xcr1 Pfn1 mt-Co1 H2-DMb2 Hspa1a Ccl22 Ly6c2 Naaa Cfl1 mt-Atp6 Napsa Hspb1 H2-M2 Bst2 Aif1 Ndufa1 mt-Co2 Cd74 Gm26825 Nudt17 Klk1 Tlr3 Cox6c mt-Nd1 Ltb Gm42726 Ccl5 Iglc3 H2-Aa Myl6 mt-Cytb Ifi30 Arhgap30 Ccr7 Ctsb Cd207 Arpc4 mt-Nd2 Sucnr1 Pnisr Cacnb3 Ly6c1 Ppt1 Atp5j2 mt-Nd4 Cfp Hspa1b Crip1 Cd8b1 Fam149a Cox6b1 Tpt1 Cyp4f16 Prpf38b Lad1 Slpi H2-DMbl Mif mt-Nd3 Pglyrp1 Rbm25 Prg3 Grn Tlr11 Myl12a Fau Gsn Ubb Tmem123 Rnase6 P3h2 2010107E04Rik Wnk1 Limd2 PISD Il4i1 Klk1b27 Cd52 Psmb3 Pabpc1 Cdh17 Swt1 Tnfrsf4 Siglech Vwf Usmg5 Eif3f Clec4a2 Rsrp1 Tmprss11d Irf8 Sult1a1 Capzb Map3k1 Mdh2 Dnajb1 Socs2 Cd209d A530099J19Rik Uqcr11 Cirbp Lpl Gls Gm16685 Ctsl 1700009J07Rik Arpc5 Zfp106 S100a6 Ankrd11 Tnfrsf11b Fcrla Cxx1a Arpc1b Traf4 Rasgef1b Ankrd61 Epsti1 Snx5 Eef1b2 Crybb2 Mbnl1 H2-Oa Tmem55b Tspan3 Sh3bgr Cxx1b Atp5e Cdv3 H2-Ob Rnf152 Nptx2 Serp1 Plpp1 Tma7 Eef2 Stk32c Zfp280d B2m Pir Hepacam2 Arhgdib Xist Gbx1 4833420G17Rik Il12b Upb1 RP24-416M6.5 Mrps21 Mir142hg Asphd1 Golga1 Tdh Gm5547 Psmb9 Cox7b Fam107b Tmem141 Tspyl2 Aire Scimp Fgd2 Ubl5 Ddx3x Prdx6 Gm26522 Slc1a3 Pgls Acvrl1 Ost4 Eef1a1 Siglecg Ogt Insm1 Dnajc7 BC028528 Lrrc58 Stat3 Arhgef2 Bdp1 H2-K1 Smim5 Eif3k Serf2 Gltscr2 Tmem132c Phip Anxa3 Cybb Stfa2l1 Tomm7 Sp140 Ggta1 Eif4a2 Lamp1 Lair1 Gramd2 Ppp1r18 Gnb2l1 S100a5 Gm42787 Cd63 Mpeg1 Gatm Rab5c Skil Gabarapl2 Clk4 Nid1 Lefty1 Mctp1 Arpc2 Tacc1 Fbrsl1 Dhx30 Eno2 Pld4 H2-Ab1 Chchd2 Dock2 Ppp1r14a Gdap10 Ankrd33b Ly6a Fuca1 Ndufv3 Kxd1 Ffar2 Lpin2 H2-D1 Nucb2 E030013l19Rik Psmc5 4933434E20Rik Rgs12 Zfp638 Syt1 Atp2a1 Rab32 Smdt1 Zfos1 Clec4a4 Smg1 Eno3 P2ry14 Cd36 Cox6a1 Aes Lcp1 Akap9 Dkk2 Ptprcap Dnasel13 Vapa Cox7a2l Lysmd2 Tor1b Aard Ccr9 Ece1 Ufm1 Defa24 M6pr Gm28707 Zmynd15 Dap Khk Pdrg1 Gm26853 Syngr2 Tor4a Slc7a10 Sell Naga Gm15848 Use1 Rp2 Akap8 Id2 Paqr5 Tifab Arpc5l Usf2 Slc6a13 Dhx36 Iscu Robo3 Olfm1 Pfdn2 Lrba Gdi2 Cspp1 Cd200 Klra17 Naalad2 Ndufa2 Serinc1 Rogdi Hsp90aa1 Efnb2 Fbxl13 Gm28411 Fdps Tomm20 Sh3bp1 Uvssa Asprv1 Sema4b Proser2 Gpx1 Csde1 Dlc1 Trim24 Prg2 Myh13 Tnfrsf22 Gpsm3 Whsc1l1 Chst10 Kdm3b Tmem158 Cdh5 Rnf144b Wdr1 Amnl Myo1b Nxf1 Tm4sf5 Blnk Tbxas1 Akr1a1 Dennd1b Nav1 Tyk2 Slco5a1 Lifr Zfp652os S100a10 Gm8730 Sirpa Wdr13 Hgd topic_8 topic_9 topic_10 topic_11 topic_12 Ptma AY036118 Ccl4 Il1b Ccl21a Stmn1 Gm26917 Cel3 Lyz2 Nfkbia 2810417H13Rik Uba52 Gpr171 Plet1 Mcpt1 Tmsb10 Igkc Plaur Il22ra2 Dusp2 Ccnb2 Gm42418 Fth1 Ifitm6 Junb Vim Gm10073 H3f3b Ifitm3 Cd7 Ranbp1 Jchain Klf2 Atox1 Tmem176b Ube2c Gm10076 Hist1h1c Gp2 Sox4 Ran mt-Atp8 Cd69 Csf1r Bel2 Cks1b Hist2h2aa1 Jund Ccr1 Mcpt2 Anp32b Gm10260 Ncf1 Ass1 Ier2 Rrm2 Gm21762 Rilpl2 Tarm1 Trbc1 Hmgb2 Gm10116 Fos Mcemp1 Shisa5 Hmgb1 Gm11175 Btg1 Srgn Dusp1 Cdca7 Igkv4-72 Herpud1 Sirpb1c Xcl1 Tubb5 Nme2 Stk17b Epcam Mfge8 Tuba1b Igha Ubc Tnni2 Nrgn Dut Gm20721 St8sia4 Csf2rb Igfbp7 Cenpm Gm8797 Neat1 Ctsc Dcn Cdk4 Igkv4-63 Tsc22d3 Mmp12 Apoe Pa2g4 Gm28727 Gm26532 Sec61b Spry2 H2afx Gml0020 Cxcr4 Lgals3 Tnfsf11 Cdkn3 Gstp1 Tsc22d1 Msrb1 Ifitm1 Snrpd1 Hist1h2a1 Sub1 Dab2 Trbc2 Birc5 Eno1b Irf1 Igsf6 Wfdc18 Hnrnpf Gm9493 Ier5 Havcr2 Cd82 2700094K13Rik Igkv3-4 Cytip Ear2 Tmem176a Ppia Ighv11-2 Fam46c Itgax Il18r1 Mcm7 Gclm Ptger4 Clec4n Rorc Nusap1 Grcc10 Evi2a Fgl2 Cyr61 Srsf2 Gm6576 Zfp36l1 Csf2ra Hilpda Eif5a Igkv4-68 5430427O19Rik Acp5 Ikzf2 Impdh2 Dynlt1b Zfp36l2 9530059O14Rik Ighv1-85 Srsf3 Iglv1 Zc3h12c Ctsz Hes1 Npm1 Gm11127 Dyrk3 Adgre1 Prr7 Rbm3 1810009A15Rik Slc3a2 Gm5150 Ccl19 Nudc Igkv3-7 Lca5l Pilra Gem Nel Igkv5-48 Smc6 Hfe Cited4 Pttg1 Cd79a Jakmip1 Sat1 Cd37 Erh Ighv9-1 Il12a Sirpb1b Dkkl1 Mcm2 Gm9843 Dusp18 Agpat4 Ddit4 Snrpf Ighv5-9 Mef2c Rrad Chd3 Mcm6 Gm17275 Dusp5 Eps8 Igfbp4 Mcm3 Tespa1 Arrdc3 Tmsb4x Nr4a1 Dnph1 Sft2d1 Ldlrad4 Gngt2 Cd3g Banf1 Pgk1 Incpint Gm2a Nedd4 Hnrnpk Fabp2 Ddit3 Timd4 Ier3 Mcm5 Gm26809 Rab7b Cd86 Csf2 Pcna mt-Nd4l Fam174a AF251705 Pim1 Ccnb1 Gm8186 Ifnar1 Fcer1g Tgif1 J. Myeloid cells PP topic_1 topic_2 topic_3 topic_4 topic_5 Ifitm3 Eef1a1 S100a9 Cpa3 Mcpt1 Eyz2 Gm8730 S100a8 Mcpt4 Mcpt2 Ey6c2 Fau G0s2 Cma1 Mcpt9 Ace Gm10709 Cxcl2 Cyp11a1 Cd63 S100a4 Eef2 Retnlg Gata2 Ifitm1 Ear2 Actb Gm5483 Tpsb2 Cma2 Plac8 mt-Atp6 Il1b Il4 Pga5 Ly6c1 Cox4i1 Cxcr2 Hs3st1 Gm10354 Gm15987 Npm1 Lrg1 Il1rl1 Speer4e Thbs1 Eif3h Ecn2 Ubb Prnp Ms4a4c Sh3bgrl3 Asprv1 Ccl4 Itgae Chil3 Tpt1 Stfa2l1 Dnajb1 Ldhc Clec4a3 Rbm3 Il1f9 Furin Gm2a Clec4a1 Gapdh Wfdc21 Rab27b Sec14l2 F13al Naca Msrb1 Cited4 Gm21190 Ifitm6 Eif3f Marcksl1 Il13 Ctla2a Ifi27l2a Eef1b2 Mrgpra2b Jun Itgb6 Cst3 Eif3e S100a11 Srgn Apol9a Sat1 Pabpc1 BC100530 Ccl2 Gzmc Ccl9 Atp5e Chil1 Fos Htra1 Lrp1 Wdr89 Trem1 Ccl3 Tjp1 Ptpro Pfdn5 Csf3r Slc45a3 Cttn Adgre4 Ppib Mmp9 Klk8 Adgrg1 Cybb 2010107E04Rik Fth1 Egr1 H19 Ifi205 Arhgdib Clec4e Junb 5830473C10Rik Pid1 Atp5l Irg1 Serpine1 Ldlrad4 Colec12 Cox5b Steap4 Gchfr Hey1 Ryr1 Gpi1 Clec4d Itm2c Ddit4 Rap1a Atp5h Tnfaip2 Cyp26a1 Cpne5 Nupr1 Atp5d Pglyrp1 Pdcd1lg2 Gm17019 Tspan17 Ssr4 Il1rn Rgs1 Apol9b App Polr1d Hcar2 Chst1 Tspan8 Ifngr1 Eif3k Mxd1 Fcer1a Ikzf4 Mpp1 Tomm7 Cdk2ap2 Slc24a3 Nphs2 Hpse Psmb1 Cxcl3 Angpt1 Speg Pira2 Serf2 Il1r2 Glul Al838599 Rhou Cox7a2l C5ar1 Serpinb1a Abca13 BC028528 mt-Co2 Stfa2 Fosb Irrc36 Pparg mt-Nd1 Gadd45b Tnfaip8 Atp13a4 Slc12a2 Aldoa Slc16a3 Plgrkt Asb17os Ms4a8a Atp5f1 Dusp1 Cited2 Gm9758 Nfil3 Sec61b Rasip1 Itm2b Otop1 Arl5c Atp5o Cd9 Hs6st2 Gdf11 Gm14548 Acbd6 Cebpb Zmat4 Mcam Smpdl3a Ppard Slfn1 Nfkbid Tmem143 Cd300e Npm3 Cd300If Adamts9 Zbtb49 Sowahe Uqcrh Mrgpra2a Rfc2 Fam151a Gpx1 Ndufa6 Ly6g Tsc22d1 Fermt2 F10 Gnb2l1 Cyp4f18 Creb3l1 Ccnb1ip1 Tifa Tma7 Pilra Rgs18 Tchp topic_6 topic_7 topic_8 topic_9 topic_10 Gzmb Prss34 Cd74 Cdkn1a Uba52 Malat1 Mcpt8 H2-Aa Bhlhe40 Gm26917 Slco2b1 Lgals1 H2-Eb1 Hnrnpll AY036118 Fndc5 Ran H2-Ab1 Hist1h1c Gm42418 Xist Stmn1 C1qa Chmp5 Gm10076 Hes1 Akr1c18 C1qb Uap1 Tmsb10 Psd3 Ube2c C1qc Hint2 Gm10073 Gnaz Ms4a3 Apoe Ccdc107 Gm10116 Gm11697 Erh H2-DMb1 Txnl4a mt-Atp8 Srsf5 Ptma Pla2g2d Kmt2e Igkv4-72 Bfsp2 Nme1 H2-DMb2 Maz Vim Lmo4 Ranbp1 Tmem176a Srsf4 Nme2 Gm12840 Cdca3 Cd81 Mrps24 Eno1b Rnf19b Cdca8 H2-DMa Ppm1g Crip1 Zbtb20 Nusap1 Tmem176b Eif4g2 Gm10260 Fosl2 Ppia Cxcl9 Hnrnpr Gm11175 Gm20186 Ccna2 Gm15056 Ifrd1 Hist2h2aa1 Lag3 Tmem160 Mmp14 Ahr Klf2 mt-Nd3 Dut Cxcl16 Yif1a S100a10 Csrp3 Anp32b Spon1 Zfp91 Gm9844 Susd6 Eef1g Dnase1l3 Ankrd12 Gm6576 Smarca1 Ap3s1 Apol7c Anapc5 Gm17275 Ccnd2 Tomm20 Lyz1 Lcp2 Il2rb Nap1l5 Dad1 Acp5 Ids Ahnak Rab4a Nop10 Il22ra2 Alad Snx22 Tpbgl Tacc3 Prg3 Stub1 Ighv9-3 Slc6a6 Lsm6 Aif1 Nabp2 Gm7676 4933407L21Rik Parvg Ms4a7 Scamp1 Gm20721 Grik5 Snrpd2 Mrc1 Sde2 Gm10020 Muc1 Pgam1 Gas1 Wbp2 Igkv4-86 Ssbp3 Uqcr11 Kcnj10 Vat1 Gm9493 Ccdc138 Ndufa12 Ctsh Il22 Gm8186 Smo Gng12 Cp Larp7 Il23r Tgfbr1 Tubb5 Ifi30 Sec31a Pgk1 Zfp941 Banf1 Adamdec1 Ralbp1 Ccr6 Ikzf2 Sumo3 Cd209b Chchd3 Kmo Zfp638 Cel6 Timd4 Tdg Hnrnpa3 Smyd4 Timm17a Axl Ddb1 Ighv11-2 Rgs2 Atp5g1 Rab3il1 Crem Nr1d1 Pdgfrb Mrpl18 Slc1a2 Gpbp1l1 Igkv3-5 Zfr 2810417H13Rik Wnt6 Trp53 Gm28727 Patz1 Cyc1 Cxcl14 Hs6st1 Sik1 Fam120c Srsf6 Il27 Vdac3 Gstp1 Akap13 Tuba1b Sdc4 Neurl3 Hmga1 Ugcg C1qbp Clec9a Hmces Diaph1 H3f3b Klk4 Apo110b Matr3 Styx Cx3cr1 Ppan Lgmn Cmas Gm11127 Dnaja1 Cdk1 Cabp4 Gsk3b Tnfsf13 Stard10 Anp32e Nuak1 Wtap Gm10146 Fam129c Dkc1 Tlr12 Dcun1d5 Sft2d1 K. ILCs PP topic_1 topic_2 topic_3 topic_4 topic_5 topic_6 topic_7 Lgals3 Shisa5 Cel5 Il22 Xcl1 Rgs1 Hes1 Slc6a20a Ltb Gzma S100a4 Gimap4 Txk Calca Ffar2 Bel2 Klrel Ode1 Bcl2a1b Akap13 Il13 Upp1 Tmem123 Klra3 Piwil4 Ctsw Itch Hs3st1 Lrrn2 Eif3l Ccl4 Parvb Cd52 Hist1h1c Areg Serpinb1a Fam173b Klra9 Cd83 B2m Aqr Il4 Ly6g5b Trmt112 Klra7 S100g Bcl2a1d Smad7 Cel1 Ppp1r14c Ciz1 Ms4a4b Sdc4 Gpr55 Plgrkt Hilpda C4b Timm9 Lgals1 Hebp1 Pfn1 Wdr47 Gata3 Id2 Limd2 Tmsb4x Il17f Klrk1 Mndal Homer2 Tgm3 Blmh Cel3 Ptges Hopx Pum2 Ccr4 Pcp4 Mat2b Cd2 Ldhb Coro1a March7 Serpine1 Ucp3 Dpf2 Gzmb Rasl11a Serpinb6b Afg3l2 Hba-a1 Ptprz1 Tia1 Ctla2a Ramp1 Ikzf2 Gimap8 Vps37b Rnase4 H2-D1 H2afz Tnfsf11 Ncr1 Phf3 Ptgir Amical Srsf1 Nkg7 Prr29 Hcst Gimap6 Rxrg Eps8l3 Lias AW112010 Adra1b Serpinb9 Avl9 Samsn1 Rbpms2 Cnih1 Sh2d1a Cldn10 Cd160 Tecpr1 Il17rb Actn2 Supt4a Klra1 Hmgn3 Il2rb Il18r1 Lmo4 Tns4 Spin1 Klrd1 Grb10 Il4ra Tcp11l2 Il5 Cdh10 Poldip3 Ifitm10 Cryaa S100a11 Gramd1a Deptor Asb2 Dctn2 Eomes Ccdc184 Ptma Foxj3 Stxbp6 Rax Aspscr1 Klra4 Nrp1 Sh3bgrl3 Cdk12 Dusp10 Ccr9 Zfp788 Ly6c2 Gpx1 Ms4a6b Fus Lgals7 Ryk 2700094K13Rik Itgam Cd81 Rbm3 Irak2 Scel Cxcr6 Csk Anxa2 Lta Cox8a Lgals8 Ramp3 Krt4 Golga7 Ctsd Cntn1 Lsp1 Jakmip1 Slc7a8 Maf Cd2bp2 Irf8 S100a6 Klrb1f Cdkn1b Furin Cd163l1 Commd2 Tm6sf1 Cd82 Ubald2 Mthfs1 Nfkb1 Prelid2 Rnf8 Clip4 Fam110a Fasl Mkln1 AA467197 Pabpc1l Vars Gfra2 Mrfap1 Cxcr3 Hipk1 Sox8 Rinl Serinc1 Ctla2b Fth1 Phgdh Usp48 Sub1 Ucp2 Prmt3 1700025G04Rik Foxs1 Trac Bclaf1 Gm973 Aqp3 Mrpl15 Klrb1c Espn Serpina3g Dusp11 Gm20186 Krt79 Ino80b Rac3 Igfbp7 Irg1 AU020206 Cntnap2 Ddx25 Golga3 Sema4a Bst2 Nabp1 Atg12 Pparg Zfp414 Rpe Serpinb9b Adm Slc16a6 Snrk Frmd4b S100a10 Nfkbil1 Cma1 5930412G12Rik Cfl1 Peli1 Il9r Hbegf Rbm4b Ugcg Ube2e3 Gm19585 Galnt7 Lrrc52 Gstm5 Tmx3 Klra10 Cpn1 Psmb8 Rbm34 Spty2d1 Gjb2 Bloc1s4 Sgk1 M1ap 1-Sep Git2 Ptpn13 Klrb1b Cct8 Kcnj8 Krt25 Cd274 Esco1 Ccrl2 Amhr2 Zkscan3 Ccr5 Ostf1 Ifngr1 Zfp36l2 Neb F2r Nudt18 Ptprc Nkx6-2 Gimap3 Mxd4 Plaur 6720489N17Rik Polr2j Ly6c1 Ecm1 Lck Taf8 Itk Tg Eif4a2 Gramd3 Ccr6 Psme2 Rhoh Icos Hs6st2 Cs Atp1b1 S100a3 Ckm Ccdc91 Crem Prpsap1 Nae1 Ccr2 Batf3 Cd7 Kdm6a Esm1 Ppt2 Nono Qrfp Chad St8sia4 Nosip Cxcl2 Capg Ikbkg Samd3 Mpzl1 Nhp2 St6galnac3 Gpr65 topic_8 topic_9 topic_10 topic_11 topic_12 Cd74 Junb Gm8730 AY036118 Fos H2-Aa Gadd45b Eef1a1 Gm26917 Dusp1 Malat1 Nfkbia Gm10260 Gm42418 Jun H2-Eb1 Nr4a1 Gm9493 Uba52 Ier2 H2-Ab1 Fosb Gm9843 Gm11175 Egr1 Hspa1a Nfkbid Gm10709 mt-Atp8 Zfp36 Hspa1b Btg2 Gnb2l1 Igkv4-72 Klf6 H2-DMb1 Tgif1 Gm11808 Igkv3-7 Rhob H2-DMb2 Tagap Naca Igkv4-63 Klf2 Gm26825 Pim1 Fau Igkv3-4 Ccl21a Atrx Ubb mt-Co3 Ighv9-3 Cd69 Mef2c Phlda1 mt-Co2 Gm20721 Tsc22d3 Dnajb1 Klf4 Gm2000 Ighv11-2 Rgs2 H2-DMa Jund Eef1b2 Eno1b Oser1 Dcstamp Ier5 Npm1 Gm11127 Tnf H2-Oa Zfp36l1 Eef1g CAAA01147332.1 Mcpt2 Siglecg Maff Gm10036 Igkv4-68 Gm26532 Iglc1 Spry2 Wdr89 Igkv1-110 Egr2 Ly86 Ubc Eif3h Gm8797 Mcpt1 Tnip3 Btg1 Gm6133 Igkv3-5 Thra Cited4 Hspa5 mt-Co1 Igkv6-25 S100a9 Ms4a4c Gem Uqcrh mt-Nd4l Zfp395 Sacs Pnrc1 Cd3g Gm10073 Snhg12 Srrt Tuba1a Hspe1 Siglech Ifitm1 Golga4 Mir142hg Hnrnpa1 Gnai2 Lztfl1 Napsa Tgoln1 Eif3e 1810009A15Rik Polg2 Ctse H1f0 Izumo1r Tsix Pias1 Zfp24 Eif1 Hspa8 Gm28727 H2-T23 Shprh Morf4l2 Atp5a1 Rbm39 Kdm5a Cacybp Sertad1 Eif3f Ier5l Birc3 AC125149.3 Atf4 Cox4i1 Igkv5-39 2900060B14Rik Hspb1 Tuba1c Ccr7 Lyz2 Gm26802 Esd Gm17056 Cct5 Pde4b Dusp6 Arhgap30 Gm10827 Eif3k Myl12b Prrc2b Iglc3 Herpud1 Tpt1 Zg16 Srpr Gm12976 H3f3b Gm10269 Iglv1 Serpina1b Trav11 Sqstm1 Hsp90ab1 Gm10116 Hs3st3a1 Gm37170 Tubb4b Cox7a2l Ighv5-4 Mcpt4 Cdadc1 Bcl10 Plac8 Gclm Chic2 Igkv9-124 Stk24 Fbl Gm17275 4833403J16Rik Gstm1 Plrg1 Cct4 Ighv9-1 Fam21 Ppp1r3d Hnrnpf Eif3m Ndfip1 Cox10 Ltbp2 Ensa Btf3 Ighv1-62-1 Zfp322a Natd1 Tuba4a Snrpe Fabp2 Tgds Calcoco1 Mgat4a Atp5b Nme2 Etaa1 1700030J22Rik Rgcc Gm10263 Ncor1 Dyrk3 Zzz3 Usp37 Gpi1 Igkv5-48 Amn1 Gm6297 Ddx3x Anp32b Coxl6 Hsf1 Lgi4 Csf2 Zfos1 Rapgef6 Hmox2 Antxr1 Atxn1 mt-Atp6 Psap Tmem252

TABLE 5 The enriched peaks and their associated genes in the intestinal KLRG1 + ILC2s stimulated in vitro with α-CGRP or control, related to FIG. 6. Peaks enriched in ILC2s treated Gene with α-CGRP 0610009L18Rik 84328 (−4512), 84336 (−139), 84337 (+789), 84339 (+1590), 84340 (+4057) 0610010K14Rik 78877 (−2199) 1110008F13Rik 16421 (+331) 1110037F02Rik 25171 (−31942) 1110065P20Rik 29118 (−661) 1600029D21Rik 61961 (−17707) 1700011E24Rik 115690 (+143781) 1700011H14Rik 97385 (+71505) 1700017B05Rik 62437 (−5689) 1700021F05Rik 69422 (−8) 1700025G04Rik 5808 (+12) 1700034J05Rik 46595 (+7037) 1700040L02Rik 70667 (+254838) 1700056E22Rik 8006 (+165268), 8004 (+229579) 1700060C20Rik 16591 (−8759), 16596 (+12303) 1700101G07Rik 17691 (−600954) 1700106J16Rik 80781 (+204591), 80785 (+232776) 1700112E06Rik 96208 (+879765) 1810013L24Rik 105927 (+884) 2310015B20Rik 70735 (−23766) 2410127L17Rik 121182 (−31040) 2610002J02Rik 31919 (−15877) 2610507B11Rik 79746 (+526) 2610524H06Rik 36919 (−936) 2810025M15Rik 6281 (−31463) 2810403A07Rik 21226 (+1528) 3110018I06Rik 89138 (+7546) 3110021A11Rik 44783 (+926) 3110079O15Rik 3284 (+89139) 3930402G23Rik 54431 (−77281), 54430 (−76792), 54412 (−66834), 54409 (−64079), 54395 (−54062), 54392 (−53111), 54391 (−52665), 54365 (+207770) 4833420G17Rik 95571 (−32739) 4921513D11Rik 114933 (+72723) 4921513I03Rik 73819 (+130219) 4930404H24Rik 16106 (−48419) 4930426L09Rik 9753 (−43) 4930432M17Rik 23061 (+44725) 4930438A08Rik 77812 (−35454) 4930447C04Rik 86799 (+153671) 4930524B15Rik 75933 (−75371) 4930538K18Rik 28775 (+13346) 4930597O21Rik 42288 (−101856), 42274 (−819) 4931440P22Rik 20165 (+154) 4932438H23Rik 109571 (−4035), 109563 (+12493) 4933406P04Rik 68275 (+162741) 4933415A04Rik 76309 (−420) 5031425E22Rik 32592 (+17874) 5033430I15Rik 92261 (+115889) 5730507C01Rik 85150 (+95808) 5830418K08Rik 60145 (−136432) 5930422O12Rik 55096 (+88982) 8430427H17Rik 16137 (+355), 16136 (+809) 8430432A02Rik 1106 (−413) 9230102O04Rik 9123 (−108534) 9230109A22Rik 101059 (−263217), 101021 (+4006) 9430020K01Rik 115987 (+603), 115988 (+19036) 9930013L23Rik 50858 (−30655) 9930021J03Rik 121699 (−559) A1bg 102424 (+66950) A230083G16Rik 45188 (+912) A330050F15Rik 114458 (+1922) A3galt2 29324 (−31257) A630091E08Rik 51231 (+28383) A930004D18Rik 9612 (−10247) A930011G23Rik 35707 (−44408) AI118078 62238 (+514) AI314180 26741 (−30), 26740 (+518) AI481877 26785 (−21190) AI593442 62110 (+491132) AW554918 116568 (+3191) Abca1 26454 (−36323) Abca2 10018 (−136), 10019 (+412) Abcb1a 32308 (+53254), 32311 (+63017), 32314 (+115280) Abcb1b 32308 (−84816), 32311 (−75053), 32314 (−22790), 32323 (+41708) Abcb4 32323 (−53862), 32330 (+330) Abcc1 106302 (+610) Abcc3 81037 (−80045) Abcd3 23064 (+78627) Abhd12b 86641 (−42098), 86642 (−36811) Abhd17c 50858 (+34736) Abi1 9858 (+877) Ablim1 123468 (−139686) Abr 79500 (−133068), 79499 (−114022) Acadl 2425 (−33360) Acads 36984 (+27907) Acer2 27375 (+9351) Acot1 87778 (−10085) Acot11 28098 (−36161), 28075 (+49934) Acot2 87778 (+11556) Acot7 31732 (+998) Acox2 95628 (+43905) Acoxl 14900 (+200492) Acpp 65638 (+30745) Acsl6 77479 (−16096) Actb 39157 (+3897), 39156 (+4467), 39153 (+5862) Actbl2 95067 (+233930) Actc1 14137 (+1837) Actg1 84340 (−4193), 84339 (−1726), 84337 (−925), 84336 (+3), 84328 (+4376), 84327 (+5002), 84315 (+43313) Actn4 48096 (−10570) Actr3 4201 (+8619) Actr8 96616 (+13886), 96618 (+15186), 96620 (+15722) Acvr1c 11959 (+169986) Acvr2a 11599 (−404201) Adam10 64023 (+865) Adam9 54836 (−232) Adamts17 49598 (+272963) Adamts20 104685 (−2322) Adamts14 21722 (+21507) Adarb1 71056 (−1257) Adck1 88222 (+106440) Adcy1 75018 (−395889), 75023 (−389427), 75025 (−388199), 75026 (−387948), 75027 (−387534), 75031 (−384813), 75032 (−384150), 75034 (−382941), 75035 (−381981), 75049 (−294451) Adcy9 105732 (−36090) Add1 33368 (+1175) Add2 42992 (−3093) Add3 123123 (+1079) Adnp 17613 (+89724) Adnp2 119244 (−47152) Adora2a 70877 (+3550), 70883 (+9781) Adprhl2 29227 (+20268) Aebp2 46123 (−2515), 46145 (+27408), 46154 (+50763) Aff1 35968 (+737), 35989 (+102286) Aff3 805 (−10925) Aff4 77169 (+903) Agap1 3452 (−324213), 3462 (−123) Agap2 74129 (+25249) Agfg1 3005 (+290) Aggf1 94171 (+45691) Agl 23011 (−6108) Agpat3 71188 (−54322) Ahdc1 29863 (+1030) Ahnak 120568 (+1978) Aifm2 70260 (−5342) Akap12 67491 (−166178), 67489 (−154343), 67472 (+118704), 67471 (+120447) Akap6 86127 (−55095), 86148 (+129795) Akap7 68683 (+2009), 68661 (+129124) Akirin1 29069 (−46) Akt2 47896 (+880) Aktip 57460 (+330) Aldhla2 64058 (−35278) Alg13 125856 (+208421) Alg2 26376 (+105378) Alkbh2 36832 (−2753) Alkbh5 78047 (+934) Alpk3 50691 (−62915) Alpl 30624 (+88307) Amfr 57537 (−563) Amhr2 105535 (−34087) Amph 90502 (+5864) Anapc10 56727 (+139316) Ank 101132 (+345) Ankfy1 79054 (−81509) Ankrd1 122084 (−229547) Ankrd13a 36902 (−1131) Ankrd13c 24665 (+15755) Ankrd17 35316 (−1041) Ankrd44 1743 (+82) Ankrd50 19362 (+20660), 19352 (+111205), 19347 (+204372) Ankrd52 74367 (+302) Ankrd55 95165 (+151125) Ankrd63 14313 (+900), 14312 (+1153) Ankrd9 89484 (−109) Anks6 26337 (−186) Ano10 67120 (+129511) Ano6 104731 (+96795) Ano8 56380 (+8369) Anp32a 63022 (+169356) Anp32b 26257 (+1755) Anxa11 96387 (−11647) Aoah 90599 (−701636) Aoc2 82182 (−1278) Aox3l1 1853 (+25522), 1854 (+26224) Ap1ar 23241 (−133) Ap3s1 117687 (+1181) Ap5b1 120131 (−292), 120132 (+140) Apbb2 34670 (−801), 34654 (+97117) Apoa1 61750 (−208151), 61758 (−181311) Apoh 83155 (−17034) Apol8 103355 (+203) Apool 125496 (+43) Apopt1 89594 (+9634) Aqp9 64058 (−17222) Arap1 51577 (−4794) Arap2 34198 (−748) Arcn1 61597 (−62) Areg 35399 (+1475) Arfgef1 101 (+214) Arg1 68683 (−369685), 68661 (−242570) Arhgap12 116032 (+542212), 116031 (+542705) Arhgap17 52743 (+151504) Arhgap23 81476 (−10297) Arhgap27 82468 (−35972), 82452 (−743) Arhgap39 103308 (−4968) Arhgap5 86106 (−11528), 86127 (+128211) Arhgdia 84386 (−86), 84385 (+473) Arhgef33 115026 (+84450) Arid1a 30025 (−64017), 30018 (−788) Arid1b 110306 (+736), 110308 (+1738), 110309 (+2355) Arid2 104731 (−399935) Arid4a 86713 (+727), 86714 (+1083) Arid5b 70667 (−8332), 70620 (+151409) Arl5a 11801 (+38247) Arl6ip4 38003 (+71621) Armc2 69276 (+129756) Arntl 52206 (+813) Arrb1 51359 (+914) Arrdc4 49719 (−152) Art2b 51617 (+102758) Asap1 102684 (+48795) Asap2 85161 (−35783), 85164 (+471) Asb17 24619 (+5560) Asb2 88929 (+21768) Ascc1 70055 (−34060) Ascl2 53960 (+1067) Ascl4 72076 (+25046) Aspg 89642 (+33750) Asphd2 36675 (+9705) Asxl1 16106 (+98526) Atad2b 84775 (+628) Atf1 105215 (+545) Atf4 103787 (+3742) Atg12 117687 (−1519) Atg14 97330 (−81294), 97318 (+43834), 97317 (+45922) Atg4b 3743 (−78) Atl1 86614 (+42) Atp10a 49309 (+703) Atp12a 97846 (−88711) Atp13a1 56058 (+828) Atp1a1 22210 (+110520) Atp1b1 6755 (−23507), 6753 (−389) Atp2b1 72899 (−44), 72900 (+559) Atp6v1a 107942 (+112880) Atp6v1c2 85112 (+57031) Atp8b3 71468 (+43050) Atr 65233 (−4464), 65236 (+900) Atrn 15125 (−62), 15126 (+441), 15130 (+47709) Atxn7l3 82305 (−525) Auh 92779 (−45201), 92778 (−43991) Aven 14105 (+17028), 14107 (+20022) Axin1 111319 (+2129) Axin2 83174 (+853), 83175 (+1280) Azi2 66721 (+13005) B3galt6 32044 (−402) B3galtl 39702 (+368) B3gnt2 75639 (+168113) B630019K06Rik 123796 (+609), 123797 (+1146) BC005537 90992 (−729) BC005764 71278 (+18677) BC018507 93512 (−295) BC023829 124712 (−393) BC034090 6118 (+9525) BC055111 28067 (+2930) BC067074 95292 (+292356) BC107364 21849 (+145742) Baalc 101720 (+33833) Bag3 53303 (+32297) Bahcc1 84315 (+72282), 84327 (+110593) Bai2 29573 (−33573) Barhl2 36181 (+482683) Basp1 101062 (−784), 101059 (+1388) Batf 88020 (−25571) Baz2a 74305 (−60) Baz2b 12041 (−118876) Bcas1 17789 (+52796), 17788 (+53298) Bcl11b 89138 (+507424) Bcl2l11 14900 (−70919), 14914 (+1408) Bcl7c 53181 (−4359) Bend6 427 (−231) Bhlha9 79499 (−49029), 79500 (−29983) Bhlhe40 44086 (−177943) Bloc1s4 33510 (+52608) Bmp2 15394 (−411468) Bmp8a 29056 (−322084), 29005 (−72526) Bmpr1a 96994 (−491) Bmpr2 2025 (−610) Bola3 42808 (+335), 42809 (+7332) Boll 1789 (−87) Bora 99645 (−130) Bptf 83029 (+103878) Brd2 112457 (+679), 112446 (+10617) Brd3 10227 (−303) Brd7 57364 (+51) Brf1 89763 (+15074) Bri3 39315 (+736) Brwd1 110080 (+41533) Btbd1 50782 (−257) Btbd17 83423 (+9318) Btbd2 71510 (−8750) Btbd6 89763 (+8984) Btc 35399 (+261823) Btf3l4 28307 (+52132) Btrc 122720 (+173971) Bzw1 1853 (−89288), 1854 (−88586) C130057N11Rik 16200 (−126047) C1qtnf9 98100 (+3091) C2cd2l 61509 (−45) C2cd4c 71233 (+18558) C2cd5 46249 (+106157) Cab39 3080 (−24) Cab39l 98003 (+115330) Cables1 116231 (−42562) Cabyr 116303 (−96962) Cacna1a 57101 (+224303) Cacna1d 96671 (+319870) Cacna1f 123715 (+11275) Cacna1g 81037 (+1079) Cacng1 83112 (+131259), 83110 (+143818) Cacng5 83141 (−338398) Cadm4 47605 (+3383) Calb2 58190 (−9503) Calca 52371 (−9991), 52367 (+4726) Calcb 52371 (−72295) Calcrl 13183 (−46178), 13182 (−45893) Calm1 88525 (−14923) Camsap2 5111 (+376) Camta1 31658 (−235) Cand1 73729 (−147) Capn13 114705 (+145746) Capza2 40093 (+906) Car8 24897 (+880669) Carhsp1 105900 (+5465) Casc1 46389 (+86196) Casc3 81805 (−8376) Cass4 17813 (+2909) Casz1 31331 (+96556), 31332 (+97481) Catsper2 14532 (+37) Cbfa2t3 59252 (−1672) Cbx2 84107 (+957) Cbx4 84123 (+29276) Cbx8 84123 (−15976) Ccar1 70362 (−27) Ccdc112 117644 (−182333) Ccdc113 57707 (−26) Ccdc167 111926 (+46865) Ccdc23 28775 (+9375) Ccdc32 14354 (+6081) Ccdc6 70718 (+370), 70735 (+83797) Ccdc64 37103 (+194) Ccdc64b 110999 (−8813) Ccdc71l 85555 (−39047), 85562 (+1990) Ccdc83 51073 (−79700) Ccdc88a 75833 (+333), 75834 (+131048) Cck 67038 (+67224) Ccnj 122311 (+633) Ccr8 66901 (+6675) Ccsap 59470 (+316) Ccser2 97043 (−64625) Cct8 109359 (−53) Cd101 22177 (−25901), 22175 (−23137) Cd180 94665 (+212637) Cd247 6884 (−70) Cd24a 69427 (+271), 69428 (+604) Cd274 121613 (+18642) Cd7 84481 (+21500) Cd81 53979 (+3221) Cd83 92015 (+538590) Cd93 15804 (−78749) Cdadc1 98003 (+41525) Cdan1 14493 (−74800) Cdc40 69165 (+177699) Cdc42bpa 7649 (−537), 7650 (−135) Cdc42bpg 120301 (+327) Cdc42se2 77558 (−103) Cdca4 89708 (−953) Cdh17 25239 (+62479) Cdk17 72296 (+1803) Cdk2ap1 38035 (−56315) Cdk5r1 80064 (+327) Cdkn1a 111808 (−16697), 111820 (+23162) Cdkn2aip 55629 (−314) Cdkn2b 27577 (+11) Cdon 61056 (+310) Cdv3 65583 (+32810) Cdyl 91520 (+82370) Cebpb 17525 (+32) Celf1 13335 (−167) Celf5 71769 (+12001) Celf6 62669 (+158) Celsr3 66037 (+788) Cenpv 78273 (−40) Cep120 117853 (−88216) Cep170b 89682 (−33515) Cep76 118561 (+28863) Cep78 120998 (−13406) Cers2 21679 (+529) Cgref1 33016 (−4388) Chd2 49807 (−16892), 49777 (+34724) Chd7 24960 (−153484), 24984 (+203), 25004 (+104971), 25005 (+108758), 25030 (+197591), 25061 (+383019) Chdh 96635 (−3540), 96671 (+24593) Chka 119808 (−83160) Chmp4b 16200 (+8068) Chmp6 84216 (−253063) Chrd 106690 (+71603) Chst10 821 (+99) Chst14 14354 (+96815) Cic 47728 (−128) Cited2 67943 (−39215) Ckap5 13391 (−19164) Clasp2 66317 (−22232) Clcf1 119913 (+1420) Clcn2 106684 (−1605) Clec16a 105995 (+102985) Clic1 112655 (+287) Clic4 30355 (−132), 30310 (+106721) Clic5 113142 (+521526) Clip1 37864 (−323) Clk2 21257 (−1457) Clk3 62515 (−74) Clnk 33779 (−766803), 33765 (−755566), 33741 (−740455), 33731 (−733236) Clstn1 31374 (−44475), 31380 (+203) Clvs1 25004 (−473425), 25005 (−469638), 25030 (−380805), 25061 (−195377) Clybl 100431 (−69754) Cmah 90955 (+296404) Cmas 46200 (+3524) Cmc1 66734 (−76439), 66721 (+96576) Cmip 58662 (−95547), 58676 (+333), 58689 (+30434), 58731 (+122279) Cmtm4 57758 (−260) Cnih 97207 (+62) Cnn3 23051 (+15980) Cnnm2 122943 (+1158), 122950 (+57771), 122952 (+75919), 122973 (+103921), 122974 (+107347) Cnnm3 592 (+809) Cnnm4 589 (−104) Cnot6 76773 (+5766), 76772 (+6690) Cnot7 55454 (−853) Cnot8 77768 (−57539) Cntn2 4789 (+22023) Cobll1 12317 (−42) Coch 86020 (+55) Cog3 99322 (−97) Cog6 19630 (+717630) Col14a1 102053 (−111186) Col17a1 123068 (+41047) Col5a1 10259 (−121335) Col8a2 29227 (+14642) Colgalt2 5838 (+51900) Commd6 99761 (+3077) Cops4 35784 (+51380) Cops5 90 (−1702) Coro2b 63022 (+26359) Cox4i1 59005 (+10363) Cox5a 62466 (+1145) Cpe 55896 (−14695) Cpeb4 75933 (+17995) Cpn1 122563 (+27176) Cpn2 107107 (+79926) Cpne5 111823 (+81256) Cpox 108727 (+6627) Cradd 72508 (+143746) Cramp1l 111194 (−717) Creb3 26019 (−1073) Creb3l1 13435 (+60824) Crebbp 105722 (−831) Creld1 44295 (+11105) Crem 115875 (−35074), 115859 (+37043) Crispld2 58880 (−80566) Crtc3 50610 (−159) Cry1 72054 (−880) Cryaa 112146 (+165145), 112151 (+170166) Cryzl1 109662 (+34071) Csf2ra 123656 (+1173) Csnk1d 84481 (−26588) Csnk1g3 117853 (−29344), 117883 (+82074) Cspp1 90 (+1611) Csrnp1 66851 (−7694) Csrnp2 105255 (−57) Ctdp1 119331 (−241609) Ctdsp1 66790 (+225) Ctf1 53181 (+556) Ctgf 68584 (+40696) Ctif 119004 (+328415) Ctla2a 93257 (+3530) Ctnnb1 66992 (−3) Ctnnbip1 31374 (+23927) Cttnbp2 40133 (−327500), 40132 (−327205) Ctu2 59218 (+7846) Cul1 41303 (+575), 41318 (+105759) Cul2 115875 (−48599) Cul4a 54532 (−69), 54533 (+652), 54534 (+26777) Cul5 62157 (−2508) Cxadr 109216 (+15558) Cxcr4 4524 (−151682), 4523 (−151327), 4522 (−151056), 4514 (−147226), 4482 (−14132) Cxxc5 116976 (−55780), 117023 (+46496) Cyb561 82727 (−2397) Cyp17a1 122915 (+52881) Cyp1b1 114933 (+15641) Cyp2r1 52367 (−68659) Cysltr2 98981 (+121958), 98980 (+122429) Cystm1 117071 (−62291) Cyth1 84008 (+68087), 83995 (+113015) Cyth2 48916 (−204) Cytip 11959 (−27414) D10Wsu52e 72076 (+4286) D16Ertd472e 109216 (+259603) D1Ertd622e 3835 (+1003), 3834 (+1146) D5Ertd579e 33510 (−23093) D630003M21Rik 16596 (+24910) D830014E11Rik 36142 (−116115), 36153 (−78231) D930028M14Rik 47705 (+29157) Dag1 65954 (−16664) Dand5 57140 (+9578) Dapk3 71675 (+8936), 71676 (+10434), 71677 (+11324), 71679 (+14520) Daxx 112386 (+1443) Dbf4 32279 (−894) Dcaf10 26167 (+1614) Dcbld1 69716 (+493) Dcun1d4 34960 (+11495) Dda1 56380 (+8499) Ddit4 70055 (−17009) Ddost 30714 (−35320) Ddx18 4179 (−39705) Ddx59 5114 (+320) Ddx60 55887 (−136733) Dedd2 47705 (+38245) Dek 92343 (+37) Dennd2a 41056 (+106664) Dennd4c 27362 (+2113) Dennd5a 51971 (−8577) Dennd6a 96426 (+380) Depdc1b 94939 (+74455) Derl1 102129 (+196203) Dgat1 103231 (+12070) Dgkd 3338 (−116) Dgkz 13435 (−13251) Dhcr24 28067 (+53270) Dhx40 80575 (−54597) Diap3 99610 (+462543) Disc1 59572 (+388267) Dkk4 54726 (+26300) Dlgap1 114458 (−983546) Dmbx1 28512 (−23291) Dmxl1 117724 (+135855) Dnahc17 84008 (−51196), 83995 (−6268) Dnajb14 23887 (+3626) Dnajc11 31666 (+904) Dnajc12 70409 (−8904) Dnajc13 65638 (−60156) Dnajc25 26766 (+280) Dnajc3 100110 (+987) Dnase1l1 124857 (+3556) Dner 3015 (−14170) Dnmbp 122563 (−46988) Dnmt3a 84644 (−233387) Dock3 65772 (−38375) Dock8 121440 (+53900) Donson 109662 (−6139), 109657 (+30732) Dopey1 64864 (+410) Dot1l 71557 (+1085) Dpm1 17631 (−978) Dppa2 108167 (−10407) Dppa4 108167 (+16335) Dpt 6755 (−314870) Dpysl4 53587 (+43970) Dqx1 42752 (+123) Drd3 107917 (−64292) Dtl 8260 (+149454) Dtnb 84644 (+1252) Dtnbp1 92081 (−3047) Dusp1 111351 (−26972) Dusp10 8045 (+23153), 8059 (+113062), 8060 (+113414) Dusp14 80310 (−832), 80305 (+12203) Dusp16 45819 (+75737) Dusp26 55063 (−63849) Dusp5 123192 (−104881), 123212 (−32065) Dusp7 65703 (+471) Dvl3 106656 (+501), 106657 (+838) Dync1h1 89392 (−109795) Dynll2 80725 (−15444), 80724 (−35) Dyrk1a 110004 (+150909) E030011O05Rik 65312 (+31340) E030025P04Rik 83193 (−109700), 83175 (+222740) E130304I02Rik 48500 (+421) E2f3 91064 (+343), 91063 (+883) Ebf1 76366 (−72983) Ebi3 113937 (+486) Echdc3 8724 (−109715) Ect2l 67999 (+96380) Edem3 5714 (−139246) Edil3 93882 (+12376) Ednrb 99870 (+192732) Efna5 114232 (−212140), 114231 (−201402) Efna5 114239 (−2963), 114232 (+62470), 114231 (+73208) Efs 97692 (+723) Egln1 59554 (+27097) Egln3 86265 (−439035), 86220 (−255275), 86191 (−109417) Ehd2 47047 (−2262) Eif3k 48096 (+8904) Eif4h 38417 (+8940) Eif5 89562 (+3773) Eif5b 787 (+594) Elac1 118855 (−4689) Elf2 19500 (−809), 19499 (−246) Elf4 124426 (−969), 124425 (−158), 124424 (+391) Elk3 72296 (+148456) Elmo1 90599 (+1864) Elmsan1 87848 (−67517), 87840 (−26742) Elovl7 94923 (+403) Emb 95446 (−186553) Eml1 89292 (+29804) Emr1 114193 (−42522) En2 32869 (−71576) Enah 7901 (−71387) Enoph1 35731 (−97) Enpp1 68584 (+76020) Enpp6 55572 (−245699) Eogt 43646 (+42153) Eomes 66734 (−251825), 66764 (+4148) Epas1 115543 (+25522), 115556 (+35286) Epc2 11695 (+50) Epdr1 90590 (+101205) Ephb3 106690 (−400025) Epn2 78125 (−18186) Eps15 28361 (+636) Eps15l1 56525 (−73), 56504 (+90163) Ercc3 116627 (−75300) Ergic1 111353 (−12149) Erich1 54620 (−120) Erich2 12500 (+29360) Erv3 15232 (−43388) Esrp1 25171 (−67233) Etos1 53339 (+126073) Ets2 110057 (+152348), 110063 (+185876) Eva1c 109525 (−385) Evl 89292 (−102100) Exoc6 122190 (−115170) Eya2 17111 (+4445), 17112 (+18240) Ezh2 41318 (+34951) Ezr 110510 (−44626) F2r 94185 (+54558) F2rl1 94185 (−38661) F3 23061 (−7495), 23064 (+13138) F5 6727 (+39488) F730035P03Rik 51388 (−41000) F830045P16Rik 15056 (+151123) Faah 28512 (+54709) Faim 65375 (−21087) Fam101a 38091 (−134250), 38112 (+49362) Fam102a 10847 (−116) Fam105b 101163 (−98) Fam120a 92404 (−6851) Fam122a 121412 (−220) Fam129a 5714 (+44755) Fam129c 56404 (−1558) Fam131a 106677 (−1617) Fam131b 41228 (+46) Fam132b 3574 (+14303) Fam13b 116834 (−528) Fam151a 28075 (+16023) Fam160b1 123468 (−5291), 123480 (+7775), 123482 (+14339), 123483 (+30232) Fam161a 75722 (+136588) Fam168b 484 (+367) Fam171a2 82335 (+9245) Fam174b 49807 (−181669) Fam189a2 121391 (−144197) Fam19a4 43646 (−46618) Fam212b 22468 (+21623) Fam219b 62466 (−15151) Fam222a 36866 (+15655), 36872 (+48790) Fam46a 64849 (−202755), 64825 (+6859), 64824 (+7329) Fam49b 102684 (−273676) Fam53a 33269 (+133251) Fam53b 53449 (−11022) Fam65b 90955 (−14824) Fam72a 4704 (−2600) Fam76b 60018 (+70446) Fam78a 10714 (+44925) Fam83d 16651 (−86636), 16701 (+408) Fam83h 103134 (−5827) Fam84b 102424 (−29240) Fam86 105854 (−146773), 105844 (−113039), 105843 (−112018), 105838 (−96450), 105835 (−42) Farp1 100220 (+274579) Fasl 6556 (+37650) Fbrsl1 36476 (+31272), 36472 (+71481) Fbxl14 44738 (+688) Fbxl17 114273 (+139) Fbxl18 39157 (−7436), 39156 (−6866), 39153 (−5471) Fbxl21 93052 (−19890), 93057 (−16660), 93058 (−15262) Fbxl3 99815 (−194) Fbxo11 115774 (−56925) Fbxo16 98430 (+77107) Fbxo21 37174 (+25544) Fbxo22 62228 (−58846) Fbxo34 97317 (+49951), 97318 (+52039) Fbxo47 81591 (−74933), 81585 (−61961), 81584 (−59173) Fbxo6 31292 (−127) Fbxw7 20874 (−241213) Fbxw8 37192 (+85984) Fcgr1 21849 (−12595), 21846 (+15778) Fem1c 117644 (+31710) Fermt1 15394 (−194785) Fermt2 97188 (+130083) Fes 50483 (−11720), 50482 (−11343), 50481 (−10858), 50479 (−9638), 50477 (−8702), 50476 (−8048), 50473 (−6222), 50472 (−5282), 50471 (−5100), 50470 (−4632), 50469 (−3691), 50468 (−3073), 50467 (−2157), 50466 (−1444), 50460 (+1991), 50456 (+4043), 50455 (+4415), 50454 (+4964), 50453 (+5304), 50452 (+5461), 50451 (+6122), 50450 (+6814), 50449 (+7008), 50448 (+8241) Fgf9 97977 (−590) Fhad1 31088 (−413) Fkbp4 45428 (−58) Fkbp6 38470 (+63530) Fkrp 47217 (−1523) Fli1 60770 (+31652) Flii 78054 (−678) Flot1 112845 (−155) Flot2 79694 (+414) Flt1 39498 (+294848) Fmnl3 105111 (+74099) Fndc3a 98981 (−217153), 98980 (−216682), 98943 (+90) Fndc3b 18886 (−893), 18885 (−499) Fnip2 20671 (+231535), 20629 (+324127) Fosb 47399 (+1345) Fosl2 33164 (−2760), 33165 (−1851) Foxc1 91248 (−173945) Foxf2 91248 (+6885) Foxk2 84514 (+5034), 84519 (+34504) Foxl2 65375 (+9679) Foxn2 115774 (−318495) Foxn3 88439 (+168522) Foxo1 19617 (+931), 19630 (+31256) Foxo6 28836 (−118484) Foxp4 113559 (−352) Frmd3 27209 (+217793) Frmd4a 8585 (+512) Frmd4b 43727 (+170316) Frmd8 120211 (+41483), 120195 (+78474), 120194 (+78862), 120193 (+80132) Frrs1 23011 (−63953) Fry 39703 (−141361) Fsd1l 26479 (+306) Ftsjd1 58190 (−40251) Ftsjd2 111924 (−22532), 111926 (+9549) Furin 50490 (−1487), 50489 (−356), 50483 (+3096), 50482 (+3473), 50481 (+3958), 50479 (+5178), 50477 (+6114), 50476 (+6768), 50473 (+8594), 50472 (+9534), 50471 (+9716) Fut8 87205 (+357) Fxr1 19130 (+495) Fzd5 2371 (−36) Fzd6 101720 (−39358), 101722 (+317) Fzd9 38470 (−35231) Gabrr2 25612 (−29264) Gad1 12500 (−23863) Gadd45a 42295 (−3678), 42288 (+39029) Gadl1 66527 (−520916) Galk1 83633 (−7446) Galnt1 116519 (+999) Galnt2 59486 (+957) Galnt4 72948 (−50) Gan 58662 (+3337) Gata3 9087 (+4898), 9078 (+9764), 9076 (+11737), 9075 (+11926), 9074 (+12534), 9056 (+21995) Gatsl2 38338 (+67124) Gcat 103611 (−27699) Gcsh 58648 (−77404) Gfm2 94336 (−24) Gfod1 91913 (+41931) Gfra4 15130 (+88478) Git2 36902 (−51) Gjb2 97904 (+125) Gjd2 14137 (−37431) Glcci1 39887 (+781) Glce 62956 (−52144) Glg1 58250 (+109703) Gls2 74334 (+917) Gltp 36888 (−2782) Gm10113 92261 (+109906) Gm10146 71188 (−40794) Gm10234 43638 (+292572) Gm10322 69980 (−100888) Gm10335 67862 (−495717) Gm10463 33165 (−1453), 33164 (−544) Gm10517 7955 (−453) Gm10655 62815 (+1550), 62776 (+329329) Gm10699 54620 (−14) Gm10766 14832 (−589) Gm11077 46145 (−78377), 46154 (−55022) Gm11114 64774 (−812952), 64811 (−124907), 64812 (−111346), 64819 (−26378), 64824 (+7022), 64825 (+7492) Gm11146 109179 (+574310) Gm11444 80411 (+5562) Gm11696 83219 (+266) Gm17669 118561 (+50086) Gm20388 58880 (+1031) Gm20458 16943 (+385) Gm20503 26766 (+242) Gm2178 96421 (+13239) Gm21988 78877 (−161) Gm3086 86615 (−50504) Gm355 14914 (−463762) Gm4968 45379 (+200568) Gm4980 51375 (−33432) Gm5148 19362 (−738021), 19352 (−647476), 19347 (−554309), 19283 (+83416) Gm5258 3160 (+16358) Gm5277 20551 (−55923) Gm5475 105245 (+937) Gm5634 123797 (+69476) Gm5784 85150 (−776313) Gm6020 123656 (+43355) Gm6583 36675 (−26475) Gm6658 57425 (−837) Gm711 10173 (−1249) Gm766 46225 (−66066), 46200 (+44180) Gm7854 33824 (+885) Gm8214 8006 (−186112), 8004 (−121801) Gm8225 111351 (−7269), 111353 (+6580) Gm8226 64774 (+75846), 64811 (+763891), 64812 (+777452), 64819 (+862420) Gm8765 92500 (+403259), 92501 (+403540) Gm9754 37192 (+4114) Gm9869 62776 (−204664) Gm9912 24417 (−144363) Gm9920 102053 (−82982) Gm9945 77217 (−389) Gm9958 35316 (+22) Gmcl1 43101 (−1) Gmeb1 29746 (−9818), 29743 (−4599) Gna13 83219 (+557) Gnai1 32386 (+350143), 32385 (+379568) Gnal 118501 (+45829), 118502 (+47696) Gnaq 120998 (−134436), 121017 (+539) Gnat3 32383 (−1918), 32385 (+18224), 32386 (+47649) Gng12 42274 (+943) Gng13 111246 (−116736), 111252 (−103555), 111255 (−52981) Gng5 24342 (+1054) Gnl3 96799 (−913) Gnpda1 117249 (−9728) Gnpnat1 97188 (−11233), 97184 (+5709) Gnptab 72162 (+323) Gns 73873 (+54115) Golga4 66764 (−23826) Golm1 93206 (+72509) Gpbp1 95067 (+1168) Gpc1 3679 (+140) Gpd1 105165 (−11672) Gpd2 11870 (−114082) Gpr112 124613 (−4391) Gpr15 108727 (+41889) Gpr158 9799 (+596421) Gpr34 123996 (−111340) Gpsm1 10106 (+659) Gpx4 71361 (+675) Gramd1c 107942 (−9989) Grap 78125 (−55394) Grb7 81694 (+13328), 81695 (+14653), 81720 (+44918) Grik5 47683 (−855) Grlf1 47176 (−328) Grn 82335 (+8122) Grsf1 35267 (−674), 35266 (−76) Gsg2 79119 (−36) Gtdc1 11509 (−66839) Gtf3a 39436 (−44431) Gtpbp1 103713 (+32752) Gucd1 70902 (+104859) Gyg 18698 (−346) Gzmb 97846 (−14097) H1foo 44519 (+49026) H2-Ke6 112423 (+12) H2-Oa 112446 (+18790) H2-T24 112891 (+26710) H3f3b 83633 (+7797) Haao 115317 (−340072), 115302 (−315074) Hand1 77733 (−79722) Hapln1 93882 (−706749), 93897 (+198854) Hcn1 95552 (+40226) Hcn3 21257 (−3142) Hdac4 3605 (−121873) Hdac4 3605 (+95344) Hdac7 104891 (+44820) Heatr3 57330 (+48) Hectd1 86066 (−1144), 86065 (+241) Hectd3 28624 (+642) Helz 83110 (+24744), 83112 (+37303) Hes1 107075 (−56585), 107077 (−55562), 107085 (−1019), 107107 (+122266) Hey1 18339 (−101121), 18337 (−99877), 18336 (−99224), 18327 (−10338), 18326 (−2886) Hhex 122190 (+2361) Hhip 56727 (+206870) Hif1a 86987 (−3566), 86991 (+1304), 87004 (+35512) Hip1r 37900 (+547), 37916 (+25136), 37917 (+25591), 37919 (+26244), 37920 (+27395), 37922 (+28488), 37923 (+28907), 37924 (+29155), 37925 (+29550), 37926 (+29804), 37927 (+30037), 37928 (+30358), 37930 (+31219), 37931 (+31609), 37932 (+32128), 37949 (+44161) Hipk3 13951 (−170) Hist2h2bb 21846 (+8439) Hivep2 67830 (−180), 67831 (+133), 67862 (+60982) Hk2 42699 (−105612) Hlx 8060 (+584824), 8059 (+585176), 8045 (+675085) Hmgb1 39638 (−54) Hmgb2 55776 (+960) Hmgxb4 56600 (+30484) Hmx2 53378 (+436) Hnrnpa0 93122 (−456) Hnrnpa3 12810 (+567) Hnrnpd 35707 (+205485) Hnrnph3 70377 (+39596) Hnrnpk 93154 (+947) Hnrpdl 35731 (−675) Hnrpll 114968 (+46) Hook3 54986 (−2148) Hormad2 74657 (+179358) Hps1 122487 (−412133) Hps4 36674 (+298) Hpse2 122487 (+196202) Hs2st1 24211 (+162378) Hs3st1 33779 (+1019), 33765 (+12256), 33741 (+27367), 33731 (+34586) Hs6st1 526 (−114) Hsd17b4 117768 (−87168) Hsf1 103231 (+22436) Hsf2bp 112165 (+160425) Hsf4 57808 (+699) Hspa13 108901 (−95102) Hspa1b 112614 (+6630) Hspb3 95299 (+33139) Htra2 42752 (−3396) Ibtk 64849 (+214274) Icmt 31780 (+15805) Icos 2158 (+25755) Idh2 50367 (−60979) Ier2 57101 (+23185) Ier5l 10487 (+2157), 10486 (+4030) Iffo2 30840 (−193046) Ifit1 122056 (+21423) Ifne 27519 (−59413) Ift140 111194 (−444) Ift172 33058 (+11382) Igf1r 49644 (−108777), 49648 (−40814), 49653 (−14) Igfbp4 81890 (+1793) Igsf23 47518 (+17363) Igsf3 22210 (+116958) Ikzf3 81720 (+54048), 81695 (+84313), 81694 (+85638) Il10 4615 (+44544) Il12rb2 42316 (+108091) Il17ra 44862 (+936) Il17rb 96635 (+3413), 96620 (+14837), 96618 (+15373), 96616 (+16673) Il18bp 51697 (+46961) Il1b 15056 (−14340) Il1r2 940 (−134444) Il27ra 57012 (+14948) Il2rb 103482 (+14779) Il3 77479 (−20829) Il4ra 52817 (−3779) Il5 77316 (+6031) Il6st 95165 (−35432) Il9 93058 (−24983), 93057 (−23585), 93052 (−20355) Ilkap 3574 (+18050) Impa2 118523 (+636) Impad1 24770 (+13) Impdh2 65993 (−38603) Ina 122943 (−251931), 122950 (−195318), 122952 (−177170), 122973 (−149168), 122974 (−145742) Ino80d 2242 (+542) Inpp5f 53303 (−55480) Insig1 32869 (+22708) Insl6 121578 (+46396), 121574 (+54008) Ipmk 70775 (+28402), 70778 (+50474) Ipo5 100185 (+502) Irf1 77316 (−43189) Irf2 55572 (+1483) Irf2bp2 59689 (−251373) Irf2bpl 88145 (−1861) Irf5 40369 (+2288) Irf8 59005 (−57705) Irg1 99792 (−64111), 99800 (−17450) Irgm2 77812 (+24317) Irs2 54431 (+2720), 54430 (+3209), 54412 (+13167), 54409 (+15922), 54395 (+25939), 54392 (+26890), 54391 (+27336) Isoc1 118067 (+447) Itgb6 12140 (−207690) Itgb7 105484 (+25965) Itm2b 99150 (−9066), 99147 (−3533), 99111 (+51159) Itpk1 88842 (−14920) Itpr1 44086 (+269568) Jag1 15557 (−120478), 15549 (−809), 15546 (+1095) Jak1 27833 (−17) Jak2 121560 (−95), 121561 (+302), 121574 (+19520), 121578 (+27132) Jarid2 92015 (−407126) Jdp2 88020 (+61682) Jhdm1d 41029 (−94938), 41011 (−72) Kank1 121440 (−183546) Kansl1l 2407 (−147) Katnal1 39588 (+332021) Kcmf1 42567 (−499), 42566 (+25), 42565 (+367) Kcna3 22612 (+472) Kcne3 51444 (−131) Kcnh8 113837 (−818874), 113868 (−542871) Kcnj1 60770 (+115752) Kcnj6 110004 (+276777) Kcnma1 96208 (+903827) Kctd17 103470 (+19270) Kctd6 95628 (+1300) Kdm3b 116851 (+431), 116852 (+2473), 116857 (+7844) Kdm4c 27209 (−20699) Kdm6b 78729 (−4447) Keap1 60310 (+115), 60291 (+71892) Kif17 30714 (+7178) Kif19a 83423 (+21190) Kif26a 89642 (−5802) Kif2a 94848 (−923) Kif5c 11711 (+481) Kif6 113665 (+566802) Kif7 50303 (−7294) Klc1 89594 (−35954) Klf12 99695 (+368034), 99659 (+849636) Klf13 49412 (−207) Klf2 56504 (+12278) Klf3 34286 (−572640), 34353 (−310798), 34404 (+822) Klf4 26546 (−869), 26523 (+180431) Klf5 99659 (+1469), 99695 (+483071) Klhl21 31683 (+1063) Klhl8 35989 (+54811) Kpna1 107624 (+1322), 107629 (+44826) Kpna2 83029 (−28708), 83018 (+41831) Krt78 105445 (−34026) Krt8 105445 (+16029) Krtcap3 33058 (+28026) Ktn1 97330 (−14028), 97338 (+194382) Lama5 18143 (+32) Lamc2 5895 (+128917) Lamp1 54534 (−26737) Lamtor3 23887 (−47225) Larp1 77733 (−97195), 77768 (+37550) Lat2 38417 (−15385) Lbx1 122683 (+10538) Lca5l 110097 (+20922) Lclat1 114705 (+145556) Lcor 122388 (+576) Ldb2 33897 (+561237) Lemd2 111467 (−107) Lemd3 73830 (+927) Leng9 46780 (−1782) Letmd1 105248 (−25263), 105253 (−5300) Lgi1 122221 (+13854) Lhx1 80333 (−268690) Lif 74657 (+3830) Lin7c 14062 (+411) Lmf1 111246 (+21258), 111252 (+34439), 111255 (+85013) Lmnb1 118014 (+29740) Lmo4 24211 (−205486), 24155 (−2793), 24153 (−1725), 24150 (+889), 24149 (+1765), 24147 (+3258), 24144 (+5129), 24142 (+7286), 24131 (+13736), 24130 (+14242), 24128 (+15590), 24127 (+16663), 24126 (+17072), 24125 (+18086) Lmod3 43727 (−194445) Lnp 12768 (+471) Lnx2 39457 (+16405) Loh12cr1 45819 (+75948) Lonrf1 55383 (−4) Lonrf2 805 (+285323) Lor 21511 (+1717), 21510 (+2165) Lpgat1 8284 (+464) Lrcol1 36472 (+22926), 36476 (+63135) Lrmp 46389 (+3035) Lrp1 74252 (−794), 74249 (+16455) Lrp4 13391 (+69658) Lrrc10b 120668 (+7492) Lrrc2 66212 (+2240) Lrrc32 51231 (+40383) Lrrc57 14481 (+30809) Lrrc58 107709 (+887) Lrrc66 34960 (+140008) Lrrc8d 36142 (+8427), 36153 (+46311) Ly9 7277 (−29588) Lysmd4 49598 (−109910) Macf1 29056 (+19024), 29005 (+268582) Maea 33256 (+9055) Maf 58532 (−118) Maff 103656 (+2419), 103662 (+12261) Malt1 118405 (+1547) Mamdc2 121354 (+166230) Mamstr 48875 (−4528) Mania 69821 (+4) Man1a2 22140 (−675) Man1c1 30172 (−67) Man2a2 50460 (−16223), 50456 (−14171), 50455 (−13799), 50454 (−13250), 50453 (−12910), 50452 (−12753), 50451 (−12092), 50450 (−11400), 50449 (−11206), 50448 (−9973) Map10 59584 (−98526) Map1lc3b 59096 (+1038), 59103 (+60158) Map2k1 63217 (−75) Map2k4 78453 (+107684) Map3k1 95112 (−540), 95085 (+121370) Map3k2 116627 (+1911) Map3k5 68241 (+900) Map4k2 120306 (−1076), 120308 (+1268) Map4k4 915 (−134), 940 (+49411) Map4k5 86615 (−19769), 86614 (+53) Map7 68275 (+1082) Mapk1ip1 53575 (−828) Mapkapk2 4615 (+33178) Mapkapk3 65772 (+19593) Mapkapk5 37480 (−95) March3 118014 (+187995) March6 101327 (−506) March7 12041 (−84824), 12049 (+42) Marcksl1 29469 (+949) Mark3 89562 (−32636) Marveld3 58185 (+44668) Mast4 94716 (−32555), 94665 (+428265) Mbnl1 20008 (+601) Mbp 119422 (+14106), 119423 (+14523), 119445 (+59382) Mc2r 118689 (+81820) Mc5r 118689 (+9828) Mcl1 21722 (+7631) Mdh1 75607 (+1009) Mdm1 73612 (−76882) Med13l 37242 (+612) Med4 99150 (−115712) Mef2d 21115 (+644) Melk 26105 (−29539) Men1 120302 (−3564) Mepce 38809 (−156) Mesdc1 50843 (−125) Mettl10 53449 (+28123) Mettl16 79203 (−30716) Mettl24 69164 (+366), 69165 (+22162) Mex3b 50809 (−199) Mfrp 61466 (−12672) Mfsd10 33368 (+62141) Mfsd11 83775 (−678) Mfsd6 1512 (+88255) Mgat4a 733 (+11370) Micall1 103630 (+620) Micu2 97974 (−55) Mier1 27986 (−860), 27987 (+3749), 27988 (+4220) Mier3 95085 (+1445) Mill2 47298 (−132) Mipep 98100 (−13341) Mknk2 71510 (+10472) Mkrn1 41056 (−30741) Mlec 36999 (+5705), 36997 (+6549) Mll3 32849 (−438) Mllt10 9619 (−183) Mmp17 38256 (−59734) Mmp25 110999 (−6441), 110998 (+170), 110989 (+27995), 110988 (+30995) Moap1 88842 (+23871) Mob3c 28500 (−76) Mocs3 17631 (+735) Mon2 74044 (+43), 74030 (+88635), 74029 (+90447) Mphosph8 97874 (+108549) Mpnd 113949 (+9331) Mppe1 118502 (+109798), 118501 (+111665) Mpzl1 6848 (−62436) Mrc2 82684 (−107737) Mrm1 80333 (+24810) Mroh8 16473 (+464) Mrpl33 33086 (−17537) Mrpl37 28122 (+154342) Mrps28 18339 (+155758), 18337 (+157002), 18336 (+157655), 18327 (+246541) Mrps30 95552 (+744546) Mrps6 109692 (+820) Msh4 24619 (+56369) Msh5 112655 (−3631) Msi2 80831 (−3064), 80785 (+239094), 80781 (+267279) Msl1 81805 (+1013) Msr1 55412 (+648947) Msrb3 73819 (+3108) Mta2 120549 (−612) Mtap 27519 (−197508) Mtfr2 68324 (+222696) Mthfd1l 67491 (+127020), 67489 (+138855) Mtif3 39457 (−96396) Mum1 71419 (+937) Mvb12b 11028 (+614) Mxi1 123123 (−168982) Myl1 2425 (+48506) Myo15b 83614 (+8007) Myo16 54365 (+448115) Myo1b 1362 (+406084) Myo1d 80090 (−549) Myo3a 9799 (−263540) Myo3b 12482 (+30601), 12488 (+86092) Myo6 64602 (−97125) Myocd 78453 (−410672) Myrf 120653 (−3634) Mzt1 99645 (−161) N4bp2l1 39720 (−102) Naa30 97385 (+1325) Naa35 93206 (+17980) Naa38 40132 (−6505), 40133 (−6210) Nab2 74271 (−4874) Nabp1 1362 (−31445), 1347 (+3206), 1346 (+3563), 1339 (+10951), 1337 (+12296) Naif1 10806 (+670) Nampt 85562 (−439641), 85585 (+6826) Nans 26257 (−36591) Narg2 63742 (−222953), 63759 (−107593), 63817 (−69288), 63869 (−33432), 63870 (−33081), 63907 (−6717) Ncald 101658 (−140149) Ncl 3160 (+19830) Ncoa2 203 (−123050), 189 (+471), 143 (+145545) Ncoa3 17173 (−34) Ncoa7 68827 (−1045) Ncor2 38164 (−88490), 38112 (+126405) Ndfip1 117249 (−70244) Neb 11801 (−47856) Nedd9 91818 (−149000) Neu1 112614 (+21355) Neu3 51388 (+5929) Neurog3 70274 (+63332) Nfatc1 119336 (−765), 119335 (−25), 119331 (+1767) Nfib 27226 (−343716) Nfic 71769 (−43535), 71756 (−3515) Nfil3 92779 (+6211), 92778 (+7421) Nfix 57140 (−39849) Nfrkb 60677 (−104490) Nfyc 28876 (−60) Ngef 3284 (+14467) Nicn1 65954 (−9866) Nin 86642 (−14498), 86641 (−9211) Ninj1 92417 (+123), 92418 (+593) Nipal3 30382 (+55196) Nipbl 100765 (−125422) Nkd2 93562 (−60291) Nkx1-1 33269 (−62408) Nkx2-3 122507 (−4177) Nlrp3 77927 (−37) Nmnat2 5876 (−52901), 5877 (−52214), 5895 (+102429) Nmrk1 121181 (−121), 121182 (+7790) Nmrk2 71679 (+3599), 71677 (+6795), 71676 (+7685), 71675 (+9183) Nmt2 8430 (+341) Nnat 16518 (−58614) Nnmt 61919 (−225200) Noxa1 9946 (−16266) Npas2 840 (+6) Npas3 86148 (−419499) Npepps 81456 (−130) Npnt 23426 (+202765) Npr3 100906 (−77875) Nr1d2 95816 (+21) Nr2f6 56367 (−855) Nr3c1 117442 (−30157), 117432 (−3721), 117431 (−3215) Nr3c2 56618 (−2672), 56619 (−2409) Nr4a2 11870 (−9177), 11862 (+390) Nr4a3 26393 (−1791), 26394 (−740) Nradd 66161 (+87335) Nrarp 9946 (−69343) Nrd1 28336 (+89538), 28338 (+93959) Nrde2 88525 (−25568) Nrf1 40455 (+664) Nrxn3 88222 (−328191) Nsa2 94336 (−28) Nsd1 92905 (+2065), 92906 (+2582) Nsun7 34654 (+261652) Nt5e 64886 (−1479) Ntng2 10352 (−4396) Nubpl 86106 (+406812) Nudtl5 99189 (−4528) Nudt3 111537 (−4139) Nudt4 72576 (−1570) Numa1 51697 (+1351) Nup214 10714 (+64422) Nxn 79460 (−483) Nxph4 74249 (−70134) Nxt1 15804 (−150289) Nyx 123996 (+54639) Oaz1 71578 (−199) Obfc1 123043 (+8852), 123038 (+17995) Oit3 69980 (−73397) Olfr1025-ps1 12768 (−11341550) Olfr1026 12768 (−11346893) Olfr1028 12768 (−11374688) Olfr1029 12768 (−11398836) Olfr1030 12768 (−11402935) Olfr1031 12768 (−11415442) Olfr1257 13263 (+2674) Olfr1258 13263 (−46201) Onecut3 71468 (+1239) Opa1 107075 (+429421), 107077 (+430444) Orc5 32592 (−865670) Os9 74129 (+17004) Osbpl9 28338 (+107658), 28336 (+112079) Osgin2 25353 (−55624) Ostf1 121181 (−40) Otp 94137 (−83187) Otud1 9775 (+367) Otx2 97366 (+203347) Pabpc1 101499 (−30086), 101493 (−3265) Pabpc1l 16906 (+28587) Pabpc2 117442 (−256108) Pacs1 120075 (−1118) Pacs2 89771 (+472) Pafah1b1 79203 (−15444), 79202 (+140) Paip1 95569 (+314), 95570 (+615), 95571 (+1098) Pak6 14312 (+39507) Palld 55887 (−31267) Palm3 57012 (+6156) Pan3 39498 (+1002) Pank2 15172 (+68245) Pank4 31859 (−2031) Papd5 57336 (+591) Papss1 23417 (−12087) Pard3 59733 (−16060) Pard3b 2158 (−624872), 2206 (+28) Pard6b 17613 (+36384) Parp10 103173 (+12390) Parp11 45379 (−19399) Parp8 95446 (−8556), 95445 (−346) Paxbp1 109563 (−12109), 109560 (−1197), 109552 (+8500), 109547 (+23840), 109546 (+24577) Pbrm1 96799 (−2745) Pbx3 11042 (+128) Pcgf5 122084 (−60357) Pcid2 54533 (−930), 54532 (−209) Pcif1 16997 (+58) Pcnp 108588 (+54708) Pcsk7 61721 (+316) Pdcd1 3767 (−22417) Pdcd1lg2 121613 (−24822) Pdcd6ip 66317 (−10997) Pde1a 13070 (−56965) Pde2a 51617 (+27883) Pde4a 60291 (+1726) Pde4b 27900 (+256628), 27930 (+331977) Pde4d 95003 (−131542) Pde4d 95003 (+241176) Pde7b 68324 (+154563) Pde8a 50717 (+416) Pdgfc 20738 (+992) Pdia2 111319 (+58270) Pdia3 14532 (−20) Pdia6 85112 (+1127) Pdik1l 30118 (+49) Pdk1 12603 (+475) Pdlim1 122249 (−896) Pdp1 25239 (+145801) Pdpr 58245 (+523), 58250 (+54872) Pds5b 39740 (+702) Pdzd8 123565 (−4459) Peli2 97338 (−262731) Perp 68055 (+153951), 68056 (+154497), 68057 (+155057) Pex14 31332 (+197966), 31331 (+198891) Pfn2 19802 (−944), 19801 (−466) Pglyrp3 21510 (+66394), 21511 (+66842) Phc1 45048 (−1727) Phc2 29324 (+39206) Phlda3 5051 (+54) Phlpp2 58185 (+48889) Phtf1 22360 (−52395) Phtf2 32420 (−179) Pi4k2b 34011 (+630) Pias3 21922 (+427) Piezo1 59218 (+67340) Pigc 6592 (−81136) Pik3cg 85555 (−130998) Pik3r1 94561 (+113330) Pip4k2a 9753 (−174) Pithd1 30464 (−1011) Pitpnb 36533 (−231979), 36559 (−122701) Pitpnm2 38003 (+28698) Pkd1l2 58648 (+11508) Pkd2l2 116815 (−28663) Pkn2 24090 (−134887) Pkn3 10442 (−12286) Pla2g4a 5619 (−48882) Plac8 35784 (+2556) Plagl2 16076 (−59) Plat 54756 (−187) Plau 96057 (+34) Plaur 47593 (−2903), 47596 (+4) Plcb3 120378 (−1133) Plcg1 16730 (+335) Plcg2 58689 (−210838), 58731 (−118993) Plec 103173 (−24708) Plekha5 46075 (+456) Plekhg2 47965 (−5307) Plekhh1 87278 (+459) Plekhm1 82468 (+15792) Plin1 50303 (+11296) Plxdc1 81591 (+27312), 81585 (+40284), 81584 (+43072) Plxnc1 72508 (−235773) Plxnd1 44522 (−115), 44519 (+1041) Pm20d2 25623 (−27) Pmepa1 17946 (+476) Pnn 86417 (−75) Pofut1 16076 (−48) Polb 54726 (+3094) Pold4 119913 (−16241) Poldip3 104152 (−1096) Pole4 42654 (+15842) Poll 122720 (+22826) Polr2h 106684 (+57) Pou3f1 29080 (+14219) Ppa1 70251 (+6332) Ppa2 23520 (+539) Ppapdc1b 54918 (−116322) Pparg 44451 (+97334) Ppcdc 62437 (+171826) Ppfibp1 46595 (+58796) Ppif 96375 (+66615) Ppm1a 86799 (+3024) Ppm1h 74029 (+307276), 74030 (+309088) Ppp1ca 119903 (+4247) Ppp1r12a 73132 (−510), 73134 (+669) Ppp1r14a 48134 (−187) Ppp1r14b 120378 (−4126) Ppp1r16b 16651 (+16059) Ppp1r3e 97682 (+250) Ppp2r2d 53575 (+729) Ppp2r3a 65524 (−42) Ppp2r4 10486 (+54130), 10487 (+56003) Ppp2r5a 8260 (−29040) Ppp2r5c 89392 (+5918) Ppp2r5e 87037 (−176) Ppp3cb 95993 (−22) Ppp4r4 88963 (+346) Ppt2 112553 (−3977) Pqlc1 119255 (+37) Prc1 50419 (+20142) Prdm10 60677 (+1164) Prdm14 143 (−101375) Prdx6 6475 (+970) Prdx6b 13070 (−327074) Prep 69597 (+560) Prex1 17353 (−5038) Prickle1 104667 (−638) Prima1 88929 (−92083) Prkaca 57002 (+3913) Prkar2b 85532 (−53) Prkca 83155 (−34331), 83141 (+94168) Prkcd 96760 (−17079) Prkcq 9170 (−798219) Prl5a1 91022 (+615460) Prnp 15232 (−6793) Prob1 116952 (−7) Prom2 14868 (−17994) Prorsd1 75834 (+10327) Prpf40b 105111 (+1112) Prph2 113406 (+98704) Prr3 112891 (−13614) Prrt1 112553 (+1592) Prrt3 44295 (+7416) Prx 47882 (−8285) Psd2 117023 (−88516) Psma7 18124 (−707), 18123 (+20) Psmg1 110080 (−49954), 110063 (+103009), 110057 (+136537) Pspc1 97874 (+1519) Ptbp1 71278 (+1530) Pten 121936 (+684) Ptges3 74305 (−24) Ptgfrn 22177 (+54821), 22175 (+57585) Ptgr2 87840 (−64475), 87848 (−23700) Ptgs2 5619 (−89952) Ptms 45188 (+171) Ptp4a1 390 (+331) Ptplad1 63283 (+79) Ptpn13 35938 (+170453) Ptpn9 62411 (+738), 62412 (+1208) Pura 117070 (+317), 117071 (+5386) Pvr 47518 (−12220) Pxdc1 91387 (+254453) Qrich1 65993 (+4753) Rab10 84594 (+2236) Rab24 92906 (+109616), 92905 (+110133) Rab28 33804 (−183) Rab2a 24960 (+1793) Rab38 50985 (+882843) Rab43 43275 (−907) Rab44 111820 (−20915), 111823 (+21485) Rab8b 63609 (−11084) Rabgef1 38316 (+16990) Rad23b 26523 (+1992) Rad51d 80158 (+3859) Rad9a 119903 (+5198) Raf1 44483 (−669) Rai1 77976 (+730) Rala 90485 (−3990) Ramp1 3533 (+123) Ramp3 75018 (+9079), 75023 (+15541), 75025 (+16769), 75026 (+17020), 75027 (+17434), 75031 (+20155), 75032 (+20818), 75034 (+22027), 75035 (+22987), 75049 (+110517) Ran 38238 (+776) Rap1a 22468 (+75108) Rap1b 73612 (−218970) Rap1gap 30624 (+27324) Rapgef2 20671 (−191284), 20629 (−98692), 20551 (+196603) Rara 81848 (−4304) Rasa2 65312 (−89770), 65290 (−2363) Rasl11a 39436 (+59155) Rassf3 73873 (+57045) Rassf5 4675 (+492) Rb1 99111 (−8290) Rbbp6 52715 (+464) Rbbp8 116231 (+163382) Rbfa 119244 (+2024) Rbm11 108872 (+778) Rbm34 59733 (−76917) Rbm5 65869 (+35101) Rbms1 12162 (−1), 12140 (+81791) Rbpms 55137 (−788) Rcan3 30382 (−5574) Rcc2 30908 (+702) Rccd1 50419 (+9832) Rcor3 8336 (−217) Rcsd1 6848 (+11117) Rdh10 247 (−387), 248 (+30) Rdx 62088 (+876) Rec8 97760 (+956) Reep2 116852 (−61177), 116857 (−55806) Reep5 116815 (−7345), 116813 (−2450) Reps1 67985 (+73), 67986 (+305), 67999 (+23015) Ret 44674 (−724), 44673 (+339) Retsat 42515 (+16916) Rev3l 69021 (−212) Rffl 80158 (−57724) Rft1 96760 (−29459) Rftn1 113665 (+8700) Rgl1 5838 (+173487) Rgma 49777 (+131502) Rgr 97043 (+15575) Rgs10 53290 (−434) Rgs13 5522 (+99924) Rgs2 5522 (−73287), 5496 (+150165) Rgs9 83193 (+44060) Rhd 30206 (+15092) Rif1 11768 (−45) Rilpl2 38051 (+32125) Rims4 16883 (−33260) Ring1 112423 (−3364) Ripk2 25353 (+94135) Rit1 21226 (−29516) Rlf 28924 (−28) Rmi1 93154 (−201) Rnf125 116416 (+25939) Rnf138 116416 (−13765) Rnf139 102254 (+186) Rnf144b 92344 (+16) Rnf145 76366 (+25370) Rnf157 83698 (−609) Rnf170 54986 (+2004) Rnf19a 101467 (−88) Rnf2 5695 (−119) Rnf207 31780 (+5576) Rnf214 61721 (−8) Rnf24 15175 (+317), 15172 (+22136) Rnf38 26105 (−103729) Rnf8 111924 (+23273) Rnpepl1 3692 (−171) Rock2 85082 (+519) Rora 63742 (+521167), 63759 (+636527), 63817 (+674832), 63869 (+710688), 63870 (+711039), 63907 (+737403) Rpl10-ps3 61961 (−131851) Rpl24 108588 (+8756) Rpl31 854 (+371) Rpl7 248 (−1142), 247 (−725) Rplp0 37078 (−3141) Rplp1 62921 (+2901), 62920 (+3692), 62917 (+4724), 62916 (+5288), 62915 (+5758), 62914 (+6164), 62913 (+6370), 62872 (+250317), 62826 (+534160) Rpn2 16473 (+26) Rpp40 91520 (+164127) Rprd1b 16547 (+86109), 16548 (+86471), 16549 (+87150), 16550 (+87504), 16552 (+88442), 16556 (+93960), 16562 (+104572) Rps19bp1 103787 (+5063) Rps27l 63609 (−15297) Rps3a3 94939 (−279792) Rps6 27362 (+106659) Rps6ka1 30025 (+70169) Rpsa-ps10 24417 (+743762) Rptor 84216 (+57598) Rragd 25608 (+621) Rrbp1 15677 (+952) Rrm2b 101658 (+28521) Rsbn1 22360 (+1595) Rsph3b 110510 (+121115) Rtfdc1 17813 (−43747) Rtkn2 70620 (+147747) Rtn2 47399 (+26038) Rtp3 66212 (+35928) Rttn 119641 (−71444) Rufy2 70376 (+253), 70377 (+4056) Runx3 30310 (+45441) Rwdd3 23032 (+66637) Rxfp2 39703 (+99894) Rxra 10259 (+87889) Rxrb 112423 (−3768) Ryk 65563 (+477), 65564 (+25239) Ryr3 14107 (+517345), 14105 (+520339) Sacs 98127 (+100510) Samd1 57002 (−20781) Samd8 96140 (+919) Samsn1 108901 (+47387) Sap30l 77726 (−94), 77728 (+924) Sar1a 70251 (−25426) Satb1 113868 (−350216), 113837 (−74213), 113821 (−1140), 113808 (+18721), 113774 (+96215), 113760 (+579153) Sbf2 52021 (+360795) Sbno1 38035 (+14928) Sc4mol 55896 (+26057) Sc5d 61379 (+55503) Scaf4 109507 (−57) Scaf8 110250 (+810) Scarb1 38164 (+73390) Scgb1a1 120568 (+96696) Scgb3a1 76772 (+42423), 76773 (+43347) Scmh1 28836 (−41314) Scn1b 48351 (−649) Scrib 103134 (+54429) Scrt1 103244 (−181) Scyl1 120211 (−62390), 120195 (−25399), 120194 (−25011), 120193 (−23741) Sdf4 32044 (+169) Sdk1 39081 (+2254) Sdpr 1337 (+176977), 1339 (+178322), 1346 (+185710), 1347 (+186067) Sec63 69363 (+929) Sel1l 88339 (−974456) Sema3f 65869 (−25426) Sema4b 50367 (−10470) Sema4f 42699 (+59703) Senp6 64602 (+1003) 11-Sep 35502 (−53227) Serac1 110446 (+15877) Serbp1 42316 (+1118) Serpinb9 91329 (+4649) Serpinb9b 91329 (−19517) Serpine1 38686 (−19494) Serpine2 2814 (+181) Sertad1 47882 (+4129) Sesn1 69276 (+78050) Sesn3 60018 (−378139) Set 10442 (+4445) Setd2 66161 (+4461) Setd8 38051 (+6311) Sf1 120308 (−21262) Sf3a2 71557 (−41907) Sfmbt2 9170 (+1713) Sfswap 38256 (+23249) Sgcg 98127 (+19523) Sgip1 27900 (−248732), 27930 (−173383) Sgms2 23417 (−167794) Sgpl1 70180 (−3) Sgsm2 79223 (−276) Sh2b1 52911 (−214) Sh3bp4 3447 (+582), 3452 (+60183) Sh3gl1 113949 (+18103) Sh3glb1 24270 (−3317) Sh3pxd2a 123043 (−63757), 123038 (−54614) Sidt2 61728 (+8273), 61727 (+9003) Sik1 112165 (−18291), 112161 (−1229), 112160 (−965), 112151 (+7693), 112146 (+12714) Sik2 62043 (−1190) Sik3 61750 (+7609), 61758 (+34449) Sin3a 62412 (−80223) Sipa1l2 59584 (−78582), 59572 (+50248) Sirt1 70409 (−38624), 70408 (−35) Skap1 81310 (−428) Ski 31919 (−11534) Skida1 9612 (+1067) Skil 19058 (−30), 19059 (+656) Slain1 99870 (+1213) Slamf7 7277 (+12020) Slc10a1 87621 (+21243) Slc10a6 35938 (+33758) Slc11a2 105253 (−40679), 105248 (−20716), 105245 (−29) Slc12a2 118056 (+678) Slc15a1 100268 (+106144) Slc16al2 122056 (+84995) Slc19a2 6727 (−57720) Slc1a3 100765 (+140879) Slc22a23 91387 (−53036) Slc24a2 27375 (+346730) Slc25a24 22851 (+102), 22852 (+695), 22864 (+92667) Slc25a25 10806 (+295) Slc25a29 89340 (+40960) Slc25a33 31435 (−1499) Slc25a38 66901 (−11566) Slc25a39 82324 (−560) Slc25a40 32279 (+760) Slc25a51 26167 (+65046) Slc2a1 28757 (+3131) Slc30a5 94561 (−821460) Slc35d1 27988 (+95306), 27987 (+95777) Slc35e2 31982 (+38) Slc35g1 122221 (−117344) Slc36a4 60168 (+431) Slc37a3 41029 (+75980) Slc44a1 26454 (−244195) Slc44a3 23051 (+89823) Slc48a1 104891 (+2592) Slc4a1ap 33086 (+69405) Slc4a7 95742 (+707) Slc5a11 52743 (+3598) Slc5a3 109692 (+768) Slc5a9 28421 (+181516) Slc9a6 124597 (+955) Slco2a1 65564 (−148333) Slco2b1 51375 (+47555) Slco3a1 49870 (+129921) Slco6c1 3835 (−532818), 3834 (−532675) Slk 123068 (+71028) Slmap 96421 (+7102) Slx4ip 15546 (+223381) Smad2 119091 (+646), 119092 (+846) Smad7 119004 (+1752) Smagp 105272 (−579) Smap1 357 (−120) Smarcd1 105165 (+3556) Smarcd2 82787 (−85) Smc5 121354 (−8215) Smco4 60145 (−11267) Smcr7 78054 (−457) Smg7 5877 (−24719), 5876 (−24032) Smim6 83614 (−42398) Smndc1 123212 (−106471), 123192 (−33655) Smox 15196 (+359) Smurf2 83018 (−37240) Snap23 14481 (+10809) Snapc1 86991 (−55322), 87004 (−21114) Snrk 67120 (+47524) Snta1 16174 (+4) Sntb2 58060 (+35196) Snx13 85658 (+501) Snx18 95299 (−11973), 95292 (+9124) Snx21 16974 (−69), 16975 (+53) Socs1 105995 (+137187) Socs2 72539 (+787) Socs6 119641 (−6024) Socs7 81476 (+42685) Sod1 109479 (−78332), 109486 (−43058) Son 109657 (+10154) Sorl1 61379 (−84500), 61371 (+15767), 61351 (+89969) Sos1 115026 (+88596) Sowaha 77217 (+497) Sowahb 35502 (−40345) Sox4 91022 (+195769) Sp1 105535 (+4952) Sp3 12650 (+695) Sp5 12482 (−348024), 12488 (−292533) Spata1 24342 (−1135) Spata32 82414 (+149) Spata6 28421 (+1418) Spcs3 55701 (+2673), 55698 (+5359) Spen 31030 (−2508) Spesp1 62956 (+159429) Spin1 92500 (−32777), 92501 (−32496) Spint2 48133 (+122) Spocd1 29573 (+3870) Sppl3 36940 (+781), 36984 (+80302) Sprtn 59554 (+24271) Spry1 19283 (+1036) Sptan1 10432 (−225), 10433 (+364) Sptb 87136 (−58) Sptssa 86265 (+13677), 86220 (+197437), 86191 (+343295) Spty2d1 49029 (+856) Spz1 94012 (+21260) Src 16518 (+83052) Srek1 94716 (+407444) Srgap2 4704 (+2058) Sri 32270 (−75693) Srl 105732 (+67177) Srp9 7901 (−33383) Srrd 36674 (−353) Srrm2 111037 (+1676) Srsf1 80725 (−44396) Srsf11 24665 (+73470) Srsf2 83775 (−78) Srsf3 111808 (+41609) Srsf5 87621 (+1156) Srsf6 16763 (+595) Srsf9 37039 (−97) SS18l1 18123 (−96), 18124 (+631) Ssbp3 28098 (−75463), 28122 (+1056) Ssh1 36823 (−162), 36822 (+81) Ssh2 79577 (+377) St8sia1 46249 (−29498), 46225 (+93996) St8sia2 49870 (−411011) Stard3nl 90590 (−122873), 90502 (+441517) Stard7 14832 (+392) Stat5b 82066 (−580) Steap4 32270 (+20362) Stim1 51748 (−511), 51751 (+800) Stk11 71377 (−3940) Stk24 100268 (−19775), 100267 (−133), 100220 (+69191) Stk32c 53587 (+58546) Strn4 47217 (+763) Stt3b 66527 (−77227) Stx6 6118 (+64512) Stxbp1 10923 (−204) Styx 97184 (+31620) Sub1 100906 (+12509) Sucla2 99189 (+105), 99191 (+732) Suclg2 43638 (+104114) Suco 6592 (−11389) Sugt1 99559 (−57900), 99572 (−45883) Sun2 103718 (−64), 103713 (+18894) Supt3 113142 (−67054) Surf4 10173 (+1108) Suv420h1 119808 (+1495) Svil 115988 (−266575), 116001 (+561) Swap70 52021 (+32424) Syne2 87054 (−663) Synj1 109552 (−24735), 109547 (−9395), 109546 (−8658), 109542 (−900) Synj2 110446 (+122461) Synm 49648 (−152271), 49644 (−84308) Synrg 80305 (+91726) Syp 123715 (−20097) Sypl 85585 (−126730) Syt7 120668 (+60865) Sytl2 51073 (−35514) Tacc2 53339 (+69095) Tacr1 42654 (+234612) Taf12 29746 (−12705) Taf3 9123 (+56069) Taf4a 18116 (−258) Taf6l 120516 (−35) Tagln 61728 (−10646), 61727 (−9916) Tapt1 33897 (−11864), 33895 (−531) Taz 124857 (−4582) Tbc1d1 34286 (+71432), 34353 (+333274) Tbc1d24 111095 (−1361) Tbc1d30 73854 (+182) Tbc1d4 99761 (−28576) Tbc1d5 113808 (−634640), 113774 (−557146), 113760 (−74208) Tbc1d7 91913 (−90882) Tbc1d8 860 (+24) Tbca 94137 (+3497) Tbck 23426 (+63134) Tbl1xr1 18782 (+780) Tbx2 80411 (+12220) Tcam1 82787 (−3691) Tceb2 111037 (+24116) Tec 34840 (+37194) Tesc 37174 (−25429) Tet3 42809 (+84897) Tex15 55096 (−52853) Tex261 42856 (−161) Tex35 6281 (−272244) Tfpi 13183 (+3691), 13182 (+3976) Tgfa 43009 (+303) Tgfbr1 26376 (+15733) Tgif2 16415 (+541) Tgm2 16591 (−36814), 16562 (+13143), 16556 (+23755), 16552 (+29273), 16550 (+30211), 16549 (+30565), 16548 (+31244), 16547 (+31606) Tgoln1 42515 (+1609) Th 53960 (−68183) Thap4 3743 (+11) Theg 71233 (−8129) Thsd7b 4482 (−666922), 4514 (−533828), 4522 (−529998), 4523 (−529727), 4524 (−529372) Tiam1 109486 (−202985), 109479 (−167711) Tigit 107917 (−33745) Tiparp 20165 (+815) Tjp2 121391 (+49738) Tle1 27208 (−927) Tle3 62815 (−2742), 62826 (+6993), 62872 (+290836), 62913 (+534783), 62914 (+534989), 62915 (+535395), 62916 (+535865), 62917 (+536429), 62920 (+537461), 62921 (+538252) Tle4 120977 (−115648) Tlk1 12531 (−207) Tlk2 82684 (+3382) Tlx1 122683 (+76037) Tm2d2 54836 (−57) Tm9sf2 100431 (+4902) Tmc6 83908 (+125007) Tmcc3 72440 (+496) Tmco6 117139 (−561) Tmem11 78066 (+351) Tmem120b 37767 (+740) Tmem135 50985 (+25671) Tmem154 20874 (+44741) Tmem17 75639 (+179897) Tmem170b 91818 (−103034) Tmem182 1095 (+69596) Tmem184b 103662 (+43501), 103656 (+53343) Tmem186 105900 (−28976) Tmem194b 1512 (+8502) Tmem201 31428 (−107) Tmem216 120678 (+428) Tmem242 110309 (+442831), 110308 (+443448) Tmem245 26623 (−59) Tmem247 115543 (−137919), 115556 (−128155) Tmem248 38316 (−15593) Tmem260 97366 (+17784) Tmem41b 51971 (+17404) Tmem50a 30206 (+35396) Tmem57 30205 (−567) Tmem60 32420 (+112) Tmem81 4789 (+14687) Tmprss1bnl 35235 (−61297) Tmprss11e 35235 (+8156) Tmprss6 103482 (−11653), 103470 (+20736) Tmtc2 73080 (+1404) Tnfaip3 68057 (+15282), 68056 (+15842), 68055 (+16388) Tnfaip8 117724 (−50699), 117768 (+21466) Tnfrsf18 32059 (+2189), 32063 (+5402), 32064 (+5620) Tnfrsf22 54048 (−17478) Tnfrsf23 54048 (+18733) Tnfrsf9 31621 (+27948) Tnfsf18 6556 (+256190) Tnk2 107387 (−105) Tnpo3 40369 (+80974) Tnrc6c 83908 (+1343) Tns4 81890 (+46269) Tob1 81004 (+861) Tom1 56600 (−9846) Tomm20 59689 (+101014) Tomm20l 86714 (−94355) Tomm34 16906 (+17065) Topbp1 65583 (+27755) Tor2a 10911 (+441) Tox 24897 (−367573) Tpbpb 93257 (−28248) Tpgs2 116568 (−3204) Tpm4 56458 (+586) Tprn 9991 (+426) Trabd 104517 (+540) Traf3 89524 (+520) Traf7 111131 (−129) Trak1 67019 (+401), 67038 (+130913) Tram1 203 (+92731) Trappc6b 86416 (+45) Trim24 40884 (+809) Trim27 90679 (+766) Trim56 38686 (+24441) Trim62 29353 (+981) Trim67 59545 (+275) Trim8 122870 (−126) Trio 101264 (−271) Triobp 103611 (+55451) Trip12 3015 (+128913) Trip13 93562 (+29845) Trp53bp2 7955 (+301) Trp53rk 17353 (−74897) Trpc5 125856 (+161947) Trps1 101872 (+126712) Trpv4 36872 (+41615), 36866 (+74750) Trub1 123480 (−84122), 123482 (−77558), 123483 (−61665) Tsc22d3 125744 (+804) Tsen2 44451 (−25264) Tshz3 48520 (+225) Tspan15 70274 (+34804) Tsr1 79223 (−742) Tssc4 53979 (−13289) Tsx 125302 (+54744) Ttbk2 14493 (+44287) Ttc28 36533 (+218982), 36559 (+328260) Ttc39c 116303 (+1018) Ttc7 115690 (+1074) Ttc8 88427 (−144), 88439 (+304663) Ttll10 32064 (+19033), 32063 (+19251), 32059 (+22464) Ttyh1 46765 (−99) Tusc3 55412 (+10164) Txk 34840 (−78485) Txndc9 787 (−1289) Tysnd1 70260 (+19793) Ubac2 100311 (+980) Ubash3b 61371 (−950468), 61351 (−876266) Ubc 38193 (−1553) Ube2cbp 64864 (−2614) Ube2d2a 116975 (+511), 116976 (+2479) Ube2d3 23606 (−13) Ube2e3 12923 (+98) Ube2g1 79054 (+1214) Ube2j1 25612 (+2319) Ube2q2 62227 (+881), 62228 (+1225) Ube2r2 25868 (+481) Ube2w 260 (+152), 259 (+741) Ubl3 39588 (−43838) Ubr2 113406 (+1369) Ubr4 30840 (+1015) Ubtd2 76012 (+604) Ubtf 82317 (−358), 82315 (+787) Ubxn2a 84772 (−27) Uchl5 5496 (+76718) Ugcg 26785 (−29084), 26789 (+499) Unc119b 36999 (−17499), 36997 (−16655) Unc50 733 (+94695) Ung 36832 (+543) Upb1 70877 (−86418), 70883 (−80187), 70902 (+5611) Upf1 56168 (−190) Upp1 75060 (+493) Urod 28624 (−1546) Usf2 48316 (−723), 48315 (−74) Usp12 39417 (−4644) Usp2 61466 (+22149) Usp24 28031 (+386) Usp25 109179 (+13715) Usp6nl 8724 (−29985) Ust 67653 (−157) Utp11l 29080 (+21736) Uts2 31621 (−48959) Uvrag 51281 (+45806) Uvssa 33256 (−34076) Vamp3 31641 (−112) Vamp4 6635 (−265) Vapa 114343 (−101) Vav1 114193 (+37064) Vav3 22864 (−124837) Vcan 93897 (+3019) Vdac3 54723 (−278) Vegfc 55698 (+447106), 55701 (+449792) Vmn1r238 115859 (−139049) Vps37a 55454 (+374) Vps37b 37972 (−1709), 37949 (+14471), 37932 (+26504), 37931 (+27023), 37930 (+27413), 37928 (+28274), 37927 (+28595), 37926 (+28828), 37925 (+29082), 37924 (+29477), 37923 (+29725), 37922 (+30144), 37920 (+31237), 37919 (+32388), 37917 (+33041), 37916 (+33496) Vps4a 58060 (−60275) Wasf2 29863 (−117969) Wbp1l 122915 (+20979) Wbp4 99572 (−60540), 99559 (−48523) Wbscr16 38338 (+9939) Wdpcp 75607 (−1051) Wdr1 33618 (−790) Wdr45b 84519 (+64447), 84514 (+93917) Wdr5b 107624 (−56553), 107629 (−13049) Wdr78 27986 (−479) Whsc1 33295 (−157) Whsc1l1 54918 (+1458) Wnk1 44805 (−98) Wnk2 92404 (+173146) Wnt11 51281 (+256493) Wrb 110097 (+25928) Wtap 110718 (−370) Wwc2 55643 (−570) Xirp1 66851 (+38654) Xpo1 75722 (−106066) Yes1 33210 (+491) Ypel2 80575 (+131414) Ypel4 13213 (−14) Ypel5 114620 (+824) Yrdc 29118 (+641) Ythdc2 117607 (+304) Ythdf2 29742 (+79) Ywhab 16883 (−43017), 16892 (+558) Ywhaz 101552 (+875), 101499 (+155479) Yy1 89338 (−65), 89340 (+1950) Zbed3 94171 (+4424) Zbtb1 87097 (−174), 87099 (+941) Zbtb16 61919 (+5592) Zbtb18 7544 (−2614) Zbtb2 67471 (+1332), 67472 (+3075) Zbtb22 112386 (−5283) Zbtb42 89682 (+9819) Zbtb46 18258 (−73) Zbtb48 31683 (+17795) Zc3h12c 62110 (−20186), 62107 (−791), 62106 (−314) Zc3h15 13095 (+494) Zc3havl 40909 (+27399), 40906 (+32662) Zc3hav1l 40909 (−27945), 40906 (−22682), 40892 (+734) Zcchc13 125302 (−161375) Zcchc14 59103 (+2275), 59096 (+61395) Zcchc24 96387 (−61680), 96375 (+8071) Zcwpw1 38809 (−979) Zdhhc18 29977 (−86), 29975 (+564) Zdhhc21 27226 (+10649) Zdhhc23 107937 (−2159), 107936 (−1337) Zeb1 116031 (+1533), 116032 (+2026) Zeb2 11509 (+186082) Zfand5 121232 (+698) Zfp125 85161 (−175098) Zfp217 17789 (−232354), 17788 (−231852) Zfp236 119492 (−118181), 119445 (+158190), 119423 (+203049), 119422 (+203466) Zfp318 113325 (+849) Zfp326 36181 (+99189) Zfp335 17007 (+423) Zfp358 54189 (+373) Zfp36 47965 (+1715) Zfp36l2 115317 (+1085), 115302 (+26083) Zfp395 98430 (−14868), 98438 (+326) Zfp428 47605 (−21664) Zfp507 48500 (−25) Zfp516 119492 (−99964), 119527 (+37277) Zfp532 118405 (−147720) Zfp574 47683 (−4022) Zfp583 46932 (+42918) Zfp592 50689 (−119), 50690 (+214), 50691 (+1004) Zfp64 17691 (−25855) Zfp651 67072 (+353) Zfp652 81208 (+862) Zfp661 14868 (+27633) Zfp664 38091 (+6506) Zfp667 46932 (+1788) Zfp691 28757 (+62353) Zfp740 105484 (+1361) Zfp746 41384 (−59) Zfp777 41379 (−456) Zfyve16 94012 (−24104) Zfyve9 28307 (−57606) Zhx2 102129 (+1550) Zkscan16 26748 (+88) Zmym5 97882 (−1112), 97881 (−100) Zmynd8 17112 (+211141), 17111 (+224936) Zscan10 110988 (+13418), 110989 (+16418) Zswim6 94888 (+313) Zxdc 43436 (+873) Zyg11b 28253 (−621) Zyx 41233 (−643)

REFERENCES

  • Amara, S. G., Jonas, V., Rosenfeld, M. G., Ong, E. S., and Evans, R. M. (1982). Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products. Nature 298, 240-244.
  • Artis, D., and Spits, H. (2015). The biology of innate lymphoid cells. Nature 517, 293-301. Assas, B. M., Pennock, J. I., and Miyan, J. A. (2014). Calcitonin gene-related peptide is a key neurotransmitter in the neuro-immune axis. Front Neurosci 8, 23.
  • Bielecki, P., Riesenfeld, S. J., Kowalczyk, M. S., Amezcua Vesely, M. C., Kroehling, L., Yaghoubi, P., Dionne, D., Janet, A., Steach, H. R., McGee, H. M., et al. (2018). Skin inflammation driven by differentiation of quiescent tissue-resident ILCs into a spectrum of pathogenic effectors. bioRxiv.
  • Biton, M., Haber, A. L., Rogel, N., Burgin, G., Beyaz, S., Schnell, A., Ashenberg, O., Su, C. W., Smillie, C., Shekhar, K., et al. (2018). T Helper Cell Cytokines Modulate Intestinal Stem Cell Renewal and Differentiation. Cell 175, 1307-1320 e1322.
  • Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent Dirichlet allocation. J Mach Learn Res 3, 993-1022.
  • Blondel, V. D., GuillaumeT, J., Lambiotte, R., and Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment 2008.
  • Brandt, E. B., Strait, R. T., Hershko, D., Wang, Q., Muntel, E. E., Scribner, T. A., Zimmermann, N., Finkelman, F. D., and Rothenberg, M. E. (2003). Mast cells are required for experimental oral allergen-induced diarrhea. The Journal of clinical investigation 112, 1666-1677.
  • Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y., and Greenleaf, W. J. (2013). Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nature methods 10, 1213-1218.
  • Burton, O. T., Medina Tamayo, J., Stranks, A. J., Miller, S Koleoglou, K. J., Weinberg, E. O., and Oettgen, H. C. (2018). IgE promotes type 2 innate lymphoid cells in murine food allergy. Clin Exp Allergy 48, 288-296.
  • Butler, A., Hoffman, P., Smibert, P., Papalexi, E., and Satija, R. (2018). Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol 36, 411-420.
  • Cardoso, V., Chesne, J., Ribeiro, H., Garcia-Cassani, B., Carvalho, T., Bouchery, T., Shah, K., Barbosa-Morais, N. L., Harris, N., and Veiga-Fernandes, H. (2017). Neuronal regulation of type 2 innate lymphoid cells via neuromedin U. Nature 549, 277-281.
  • Chatterjee, T. K., Moy, J. A., Cai, J. J., Lee, H. C., and Fisher, R. A. (1993). Solubilization and characterization of a guanine nucleotide-sensitive form of the calcitonin gene-related peptide receptor. Mol Pharmacol 43, 167-175.
  • Chen, C., Grennan, K., Badner, J., Zhang, D., Gershon, E., Jin, L., and Liu, C. (2011). Removing batch effects in analysis of expression microarray data: an evaluation of six batch adjustment methods. PloS one 6, e17238.
  • Chesne, J., Cardoso, V., and Veiga-Fernandes, H. (2018). Neuro-immune regulation of mucosal physiology. Mucosal Immunol.
  • Dey, K. K., Hsiao, C. J., and Stephens, M. (2017). Visualizing the structure of RNA-seq expression data using grade of membership models. PLoS genetics 13, e1006599.
  • Ding, J., Condon, A., and Shah, S. P. (2018). Interpretable dimensionality reduction of single cell transcriptome data with deep generative models. Nature communications 9, 2002.
  • Ding, J., Shah, S., and Condon, A. (2016). densityCut: an efficient and versatile topological approach for automatic clustering of biological data. Bioinformatics 32, 2567-2576.
  • Dumais, S. T., Furnas, G. W., Landauer, T. K., and Harshman, R. (1990). Indexing by Latent Semantic Analysis. Journal of the American Society for Information Science 41, 391-407.
  • duVerle, D. A., Yotsukura, S., Nomura, S., Aburatani, H., and Tsuda, K. (2016). CellTree: an R/bioconductor package to infer the hierarchical structure of cell populations from single-cell RNA-seq data. BMC Bioinformatics 17, 363.
  • Edvinsson, L. (2018). CGRP Antibodies as Prophylaxis in Migraine. Cell 175, 1719.
  • Finak, G., McDavid, A., Yajima, M., Deng, J., Gersuk, V., Shalek, A. K., Slichter, C. K., Miller, H. W., McElrath, M. J., Prlic, M., et al. (2015). MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol 16, 278.
  • Gerbe, F., Sidot, E., Smyth, D. J., Ohmoto, M., Matsumoto, I., Dardalhon, V., Cesses, P., Gamier, L., Pouzolles, M., Brulin, B., et al. (2016). Intestinal epithelial tuft cells initiate type 2 mucosal immunity to helminth parasites. Nature 529, 226-230.
  • Gieseck, R. L., 3rd, Wilson, M. S., and Wynn, T. A. (2018). Type 2 immunity in tissue repair and fibrosis. Nature reviews Immunology 18, 62-76.
  • Godinho-Silva, C., Cardoso, F., and Veiga-Fernandes, H. (2018). Neuro-Immune Cell Units: A New Paradigm in Physiology. Annual review of immunology.
  • Haber, A. L., Biton, M., Rogel, N., Herbst, R. H., Shekhar, K., Smillie, C., Burgin, G., Delorey, T. M., Howitt, M. R., Katz, Y., et al. (2017). A single-cell survey of the small intestinal epithelium. Nature 551, 333-339.
  • Haghverdi, L., Lun, A. T. L., Morgan, M. D., and Marioni, J. C. (2018). Batch effects in singlecell RNA-sequencing data are corrected by matching mutual nearest neighbors. Nat Biotechnol 36, 421-427.
  • Hammad, H., and Lambrecht, B. N. (2015). Barrier Epithelial Cells and the Control of Type 2 Immunity. Immunity 43, 29-40.
  • Heng, T. S., Painter, M. W., and Immunological Genome Project, C. (2008). The Immunological Genome Project: networks of gene expression in immune cells. Nature immunology 9, 1091-1094.
  • Hepworth, M. R., Monticelli, L. A., Fung, T. C., Ziegler, C. G., Grunberg, S., Sinha, R., Mantegazza, A. R., Ma, H. L., Crawford, A., Angelosanto, J. M., et al. (2013). Innate lymphoid cells regulate CD4+ T-cell responses to intestinal commensal bacteria. Nature 498, 113-117.
  • Howitt, M. R., Lavoie, S., Michaud, M., Blum, A. M., Tran, S. V., Weinstock, J. V., Gallini, C. A., Redding, K., Margolskee, R. F., Osborne, L. C., et al. (2016). Tuft cells, taste-chemosensory cells, orchestrate parasite type 2 immunity in the gut. Science 351, 1329-1333.
  • Huang, Y., Guo, L., Qiu, J., Chen, X., Hu-Li, J., Siebenlist, U., Williamson, P. R., Urban, J. F., Jr., and Paul, W. E. (2015). IL-25-responsive, lineage-negative KLRG1(hi) cells are multipotential ‘inflammatory’ type 2 innate lymphoid cells. Nature immunology 16, 161-169.
  • Huang, Y., Mao, K., Chen, X., Sun, M. A., Kawabe, T., Li, W., Usher, N., Zhu, J., Urban, J. F., Jr., Paul, W. E., et al. (2018). S1P-dependent interorgan trafficking of group 2 innate lymphoid cells supports host defense. Science 359, 114-119.
  • Klein, M., Vaeth, M., Scheel, T., Grabbe, S Baumgrass, R., Berberich-Siebelt, F., Bopp, T., Schmitt, E., and Becker, C. (2012). Repression of cyclic adenosine monophosphate upregulation disarms and expands human regulatory T cells. Journal of immunology 188, 1091-1097.
  • Kloepfer, K. M., Olenec, J. P., Lee, W. M., Liu, G., Vrtis, R. F., Roberg, K. A., Evans, M. D., Gangnon, R. E., Lemanske, R. F., Jr., and Gem, J. E. (2012). Increased H1N1 infection rate in children with asthma. Am J Respir Crit Care Med 185, 1275-1279.
  • Klose, C. S. N., Mahlakoiv, T., Moeller, J. B., Rankin, L. C., Flamar, A. L., Kabata, H., Monticelli, L. A., Moriyama, S., Putzel, G. G., Rakhilin, N., et al. (2017). The neuropeptide neuromedin U stimulates innate lymphoid cells and type 2 inflammation. Nature 549, 282-286.
  • Korsunsky, I., Fan, J., Slowikowski, K., Zhang, F., Wei, K., Baglaenko, Y., Brenner, M., Loh, P.-R., and Raychaudhuri, S. (2018). Fast, sensitive, and flexible integration of single cell data with Harmony. bioRxiv, 461954.
  • Kotas, M. E., and Locksley, R. M. (2018). Why Innate Lymphoid Cells? Immunity 48, 1081-1090.
  • Langmead, B., and Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nature methods 9, 357-359.
  • Langmead, B., Trapnell, C., Pop, M., and Salzberg, S. L. (2009). Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10, R25.
  • Levine, J. H., Simonds, E. F., Bendall, S. C., Davis, K. L., Amir el, A. D., Tadmor, M. D., Litvin, O., Fienberg, H. G., Jager, A., Zunder, E. R., et al. (2015). Data-Driven Phenotypic Dissection of AML Reveals Progenitor-like Cells that Correlate with Prognosis. Cell 162, 184-197. Li, B., and Dewey, C. N. (2011). RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12, 323.
  • Lin, Y., Ghazanfar, S., Wang, K., Gagnon-Bartsch, J. A., Lo, K. K., Su, X., Han, Z.-G., Ormerod, J. T., Speed, T. P., Yang, P., et al. (2018). scMerge: Integration of multiple single-cell transcriptomics datasets leveraging stable expression and pseudo-replication. bioRxiv, 393280.
  • Locksley, R. M. (2010). Asthma and allergic inflammation. Cell 140, 777-783.
  • Madamanchi, A. (2007). Beta-adrenergic receptor signaling in cardiac function and heart failure. Mcgill J Med 10, 99-104.
  • Manis, J. P., Tian, M., and Alt, F. W. (2002). Mechanism and control of class-switch recombination. Trends in immunology 23, 31-39.
  • Martinez, V. G., and O'Driscoll, L. (2015). Neuromedin U: a multifunctional neuropeptide with pleiotropic roles. Clin Chem 61, 471-482.
  • McLean, C. Y., Bristor, D., Hiller, M., Clarke, S. L., Schaar, B. T., Lowe, C. B., Wenger, A. M., and Bejerano, G. (2010). GREAT improves functional interpretation of cis-regulatory regions. Nat Biotechnol 28, 495-501.
  • Molofsky, A. B., Savage, A. K., and Locksley, R. M. (2015). Interleukin-33 in Tissue Homeostasis, Injury, and Inflammation. Immunity 42, 1005-1019.
  • Moriyama, S., Brestoff, J. R., Flamar, A. L., Moeller, J. B., Klose, C. S. N., Rankin, L. C., Yudanin, N. A., Monticelli, L. A., Putzel, G. G., Rodewald, H. R., et al. (2018). beta2-adrenergic receptormediated negative regulation of group 2 innate lymphoid cell responses. Science 359, 1056-1061.
  • Mowat, A. M., and Agace, W. W. (2014). Regional specialization within the intestinal immune system. Nature reviews Immunology 14, 667-685.
  • Neill, D. R., Wong, S. H., Bellosi, A., Flynn, R. J., Daly, M., Langford, T. K., Bucks, C., Kane, C. M., Fallon, P. G., Pannell, R., et al. (2010). Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature 464, 1367-1370.
  • Nussbaum, J. C., Van Dyken, S. J., von Moltke, J., Cheng, L. E., Mohapatra, A., Molofsky, A. B., Thornton, E. E., Krummel, M. F., Chawla, A., Liang, H. E., et al. (2013). Type 2 innate lymphoid cells control eosinophil homeostasis. Nature 502, 245-248.
  • Oh-hashi, Y., Shindo, T., Kurihara, Y., Imai, T., Wang, Y., Morita, H., Imai, Y., Kayaba, Y., Nishimatsu, H., Suematsu, Y., et al. (2001). Elevated sympathetic nervous activity in mice deficient in alphaCGRP. Circ Res 89, 983-990.
  • Painter, M. W., Davis, S., Hardy, R. R., Mathis, D., Benoist, C., and Immunological Genome Project, C. (2011). Transcriptomes of the B and T lineages compared by multiplatform microarray profiling. Journal of immunology 186, 3047-3057.
  • Picelli, S., Bjorklund, A. K., Faridani, O. R., Sagasser, S., Winberg, G., and Sandberg, R. (2013). Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nature methods 10, 1096-1098.
  • Price, A. E., Liang, H. E., Sullivan, B. M., Reinhardt, R. L., Eisley, C. J., Erle, D. J., and Locksley, R. M. (2010). Systemically dispersed innate IL-13-expressing cells in type 2 immunity.
  • Proceedings of the National Academy of Sciences of the United States of America 107, 11489-11494.
  • Pulendran, B., and Artis, D. (2012). New paradigms in type 2 immunity. Science 337, 431-435. Ricardo-Gonzalez, R. R., Van Dyken, S. J., Schneider, C., Lee, J., Nussbaum, J. C., Liang, H. E., Vaka, D., Eckalbar, W. L., Molofsky, A. B Erle, D. J., et al. (2018). Tissue signals imprint ILC2 identity with anticipatory function. Nature immunology 19, 1093-1099.
  • Robinette, M. L., Fuchs, A., Cortez, V. S., Lee, J. S., Wang, Y., Durum, S. K., Gilfillan, S., Colonna, M., and Immunological Genome, C. (2015). Transcriptional programs define molecular characteristics of innate lymphoid cell classes and subsets. Nature immunology 16, 306-317.
  • Robinson, M. D., McCarthy, D. J., and Smyth, G. K. (2010). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139-140.
  • Rodriguez, G., Ross, J. A., Nagy, Z. S., and Kirken, R. A. (2013). Forskolin-inducible cAMP pathway negatively regulates T-cell proliferation by uncoupling the interleukin-2 receptor complex. The Journal of biological chemistry 288, 7137-7146.
  • Rowe, R. K., and Gill, M. A. (2015). Asthma: the interplay between viral infections and allergic diseases. Immunol Allergy Clin North Am 35, 115-127.
  • Rydyznski, C. E., Cranert, S. A., Zhou, J. Q., Xu, H., Kleinstein, S. H., Singh, H., and Waggoner, S. N. (2018). Affinity Maturation Is Impaired by Natural Killer Cell Suppression of Germinal Centers. Cell reports 24, 3367-3373 e3364.
  • Schep, A. N., Wu, B., Buenrostro, J. D., and Greenleaf, W. J. (2017). chromVAR: inferring transcription-factor-associated accessibility from single-cell epigenomic data. Nature methods 14, 975-978.
  • Schneider, C. A., Rasband, W. S., and Eliceiri, K. W. (2012). NIH Image to Image.” 25 years of image analysis. Nature methods 9, 671-675.
  • Shao, J., and Sheng, H. (2010). Amphiregulin promotes intestinal epithelial regeneration: roles of intestinal subepithelial myofibroblasts. Endocrinology 151, 3728-3737.
  • Soneson, C., and Robinson, M. D. (2018). Bias, robustness and scalability in single-cell differential expression analysis. Nature methods 15, 255-261.
  • Spencer, S. P., Wilhelm, C., Yang, Q., Hall, J. A., Bouladoux, N., Boyd, A., Nutman, T. B., Urban, J. F., Jr., Wang, J., Ramalingam, T. R., et al. (2014). Adaptation of innate lymphoid cells to a micronutrient deficiency promotes type 2 barrier immunity. Science 343, 432-437.
  • Stork, P. J., and Schmitt, J. M. (2002). Crosstalk between cAMP and MAP kinase signaling in the regulation of cell proliferation. Trends Cell Biol 12, 258-266.
  • Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalexi, E., Mauck, W. M., Stoeckius, M., Smibert, P., and Satija, R. (2018). Comprehensive integration of single cell data. bioRxiv, 460147.
  • Sui, P., Wiesner, D. L., Xu, J., Zhang, Y., Lee, J., Van Dyken, S., Lashua, A., Yu, C., Klein, B. S., Locksley, R. M., et al. (2018). Pulmonary neuroendocrine cells amplify allergic asthma responses. Science.
  • Tanay, A., and Regev, A. (2017). Scaling single-cell genomics from phenomenology to mechanism. Nature 541, 331-338.
  • Taylor, S., Huang, Y., Mallett, G., Stathopoulou, C., Felizardo, T. C., Sun, M. A., Martin, E. L., Zhu, N., Woodward, E. L., Elias, M. S., et al. (2017). PD-1 regulates KLRG1+ group 2 innate lymphoid cells. The Journal of experimental medicine 214, 1663-1678.
  • Tordesillas, L., Benin, M. C., and Sampson, H. A. (2017). Immunology of Food Allergy. Immunity 47, 32-50.
  • Veiga-Fernandes, H., and Mucida, D. (2016). Neuro-Immune Interactions at Barrier Surfaces. Cell 165, 801-811. 23 von Moltke, J., Ji, M., Liang, H. E., and Locksley, R. M. (2016). Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit. Nature 529, 221-225.
  • Wagner, A., Regev, A., and Yosef, N. (2016). Revealing the vectors of cellular identity with single-cell genomics. Nat Biotechnol 34, 1145-1160.
  • Wallrapp, A., Riesenfeld, S. J., Burkett, P. R., Abdulnour, R. E., Nyman, J., Dionne, D., Hofree, M., Cuoco, M. S., Rodman, C., Farouq, D., et al. (2017). The neuropeptide NMU amplifies ILC2-driven allergic lung inflammation. Nature 549, 351-356.
  • Welch, J., Kozareva, V., Ferreira, A., Vanderburg, C., Martin, C., and Macosko, E. (2018). Integrative inference of brain cell similarities and differences from single-cell genomics. bioRxiv, 459891.
  • Wolock, S. L., Lopez, R., and Klein, A. M. (2018). Scrublet: computational identification of cell doublets in single-cell transcriptomic data. bioRxiv, 357368.
  • Zeisel, A., Hochgerner, H., Lonnerberg, P., Johnsson, A., Memic, F., van der Zwan, J., Haring, M., Braun, E., Borm, L. E., La Manno, G., et al. (2018). Molecular Architecture of the Mouse Nervous System. Cell 174, 999-1014 e1022.
  • Zhang, Y., Liu, T., Meyer, C. A., Eeckhoute, J., Johnson, D. S., Bernstein, B. E., Nusbaum, C., Myers, R. M., Brown, M., Li, W., et al. (2008). Model-based analysis of ChIP-Seq (MACS). Genome Biol 9, R137.

Various modifications and variations of the described methods, pharmaceutical compositions, and kits of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific embodiments, it will be understood that it is capable of further modifications and that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention that are obvious to those skilled in the art are intended to be within the scope of the invention. This application is intended to cover any variations, uses, or adaptations of the invention following, in general, the principles of the invention and including such departures from the present disclosure come within known customary practice within the art to which the invention pertains and may be applied to the essential features herein before set forth.

Claims

1. A method of maintaining or inducing homeostasis of intestinal ILC2 cells in a subject at risk for or having aberrant activation and expansion of the intestinal ILC2 cells, comprising:

administering CGRP, or a CGRP receptor agonist, or a combination thereof to the subject.

2. The method of claim 1, wherein the aberrant activation and expansion of the intestinal ILC2 cells is induced by IL-25.

3. The method of claim 1 or 2, wherein the CGRP is administered intravenously, intraperitoneally, intragastrically, or orally.

4. The method of any of claims 1 to 3, wherein the subject has an allergy or history of allergic symptoms.

5. The method of claim 4, wherein the allergy is a food allergy.

6. The method of claim 4 or 5, wherein the allergy is caused by an allergen that induces epithelial cells in the gut to release IL-25.

7. The method of any of claims 1 to 6, wherein CGRP is administered after the subject has contacted or ingested an allergen.

8. The method of any of claims 1 to 7, wherein the CGRP is administered before an inflammatory response.

9. The method of any of claims 1 to 7, wherein CGRP is administered upon detecting an inflammatory response.

10. The method of any of claims 1 to 9, wherein the subject does not have an infection, such as a helminth infection.

11. The method of any of claims 1 to 10, further comprising administering to the subject one or more agents capable of modulating expression, activity or function of one or more genes selected from the group consisting of: Gpr65, Pdcd1, Crem, Egln3, Adora2a, Rgs2, Gna15, Adrb2, Gadd45a, Areg, Hif1a, Dusp1, Pde4b, Cdkn1a, Akap12 and Il5.

12. A method of maintaining or inducing homeostasis of intestinal ILC2 cells in a subject at risk for or having aberrant activation and expansion of the intestinal ILC2 cells, comprising: administering to a subject in need thereof, one or more agents capable of modulating expression, activity or function of one or more genes selected from the group consisting of: Gpr65, Pdcd1, Crem, Egln3, Adora2a, Rgs2, Gna15, Adrb2, Gadd45a, Areg, Hif1a, Dusp1, Pde4b, Cdkn1a, Akap12 and Il5.

13. The method of claim 11 or 12, wherein the method comprises activating a cAMP response module, wherein the cAMP module comprises one or more genes selected from the group consisting of: Adrb2, Adora2a, Pde4b, Akap12, Areg, Crem and Il5.

14. The method of claim 13, wherein the one or more agents comprises an adenylate cyclase activator.

15. The method of claim 14, wherein the agent is forskolin.

16. The method of claim 11 or 12, wherein the one or more agents comprises an agonist of PD-1.

17. The method of claim 11 or 12, wherein the one or more agents comprises an agonist of GPR65.

18. The method of any of claims 12 to 17, wherein the subject has an allergy or history of allergic symptoms.

19. The method of claim 18, wherein the allergy is a food allergy.

20. The method of claim 18 or 19, wherein the allergy is caused by an allergen that induces epithelial cells in the gut to release IL-25.

21. The method of any of claims 12 to 20, wherein the subject does not have an infection, such as a helminth infection.

22. A method of modulating an ILC2 inflammatory response, comprising:

administering to a population of cells comprising ILC2s, mast cells, Th2 cells and/or fibroblasts one or more agents capable of modulating expression, activity or function of one or more biological programs characterized by ILC Topic 2, myeloid cell Topic 1, T cell Topic 5 or stromal cell Topic 4,
wherein ILC Topic 2 comprises one or more genes or polypeptides selected from the group consisting of: Calca, Hs3st1, Areg, Il13, Il4, Ccl1, Hes1, Il17rb, Lgals7, Homer2, Il5, Gata3, Deptor, Ptpn13, Ly6a, Hba-a1, Kcnn4, Ccr4, Rxrg, Sub1, 1700061F12Rik, Cntnap2, AA467197, Ptgir, Il10, Nfkb1, Lmo4, Pparg, Plaur, Il9r, Serpine1, Scel, Bmp7, Neb, Sox8, Lpcat2, Samsn1, Alox5, Gpr65, Abhd17c, Gm20186, Gm973, Epas1, Ccr8, D430036J16Rik, Cd6, Stxbp6, 9230102O04Rik, Furin and Klf5,
wherein myeloid cell Topic 1 comprises one or more genes or polypeptides selected from the group consisting of: Cpa3, Cma1, Mcpt4, Tpsb2, Fcer1a, Hs3st1, Gata2, Cited4, Cyp11a1, Tph1, Furin, Rab27b, Slc45a3, Ccl1, Il13, Il1rl1, Itga2b, Cited2, Fam110c, Creb3l1, Rgs13, Tpsab1, Cyp26a1, Serpinb1a, Slc18a2, Gmpr, Rprm, Ero1l, Il4, Cd200r3, Glul, Kit, Lat, Alox5, Gchfr, mt-Atp6, Lat2, Prss34, Poln, Klk8, 4932438H23Rik, Slc6a13, Avil, Socs2, Smco4, Ier3, Lxn, Gpr171, Adk and Gata1,
wherein T cell Topic 5 comprises one or more genes or polypeptides selected from the group consisting of: 1700061F12Rik, Il13, Scin, Lgmn, Hlf, Smco4, Npnt, Il17rb, Deptor, Gata3, Gm2a, Il6, Il17a, Ltb4r1, Fgl2, Areg, Fbxl21, AA467197, Il1rl1, Me1, Gm5544, Tmem159, Rasgrp4, 1700012B07Rik, 1700113H08Rik, St6galnac5, Il4, Chdh, Slco2b1, Ccr9, Epas1, Grp, Lztfl1, Gm10369, Kif19a, Tenm4, Serpinf1, Gnb2, Ubox5, Plcl1, Rab31, Ffar2, Slx1b, Asb2, Zfp85, Tmsb4x, Hdc, Pxdc1, Heatr1 and Lgals7, and
wherein stromal cell Topic 4 comprises one or more genes or polypeptides selected from the group consisting of: Ccl21a, Cxcl13, Clu, Ccl19, Acta2, Mfge8, Apoe, Tagln, Cxcl1, Cilp, Ccl2, Il33, Cxcl12, Actg2, Serpina3n, Ccl7, Bst1, Serpina1a, Fmod, Grem1, Serpina1b, Slc36a2, Cnn1, Myh11, Art2b, Actc1, AI838599, Serpina1c, Cr2, Gxylt2, Crym, Dclk1, Serpina1d, Myl9, Parm1, Gm16685, Postn, Chrdl1, Colq, Csn2, Prss12, H2-M2, Trf, Sostdc1, Dsc3, Ctgf, Thbs4, Pcdh15, Rtn4r and A230065H16Rik.

23. The method of claim 22, wherein the one or more biological programs are suppressed, whereby an ILC2 inflammatory response is decreased.

24. The method of claim 22 or 23, wherein the one or more agents modulate the expression, activity or function of one or more genes or polypeptides in ILC Topic 2, myeloid cell Topic 1, T cell Topic 5 or stromal cell Topic 4.

25. The method of any of claims 22 to 24, wherein the population of cells is present in the gut of a subject in need thereof.

26. The method of any of claims 22 to 24, wherein the population of cells is an in vitro population of cells.

27. The method of claim 26, wherein the population of cells is an intestinal organoid.

28. The method of any of claims 12 to 27, wherein the one or more agents comprise an antibody, small molecule, small molecule degrader, genetic modifying agent, antibody-like protein scaffold, aptamer, protein, or any combination thereof.

29. The method of claim 28, wherein the genetic modifying agent comprises a CRISPR system, RNAi system, a zinc finger nuclease system, a TALE, or a meganuclease.

30. The method of claim 29, wherein the CRISPR system is a Class I or Class II CRISPR system.

31. The method of claim 30, wherein the Class II system comprises a Class 2, Type II Cas polypeptide.

32. The method of claim 31, wherein the Type II Cas is a Cas9.

33. The method of claim 30, wherein the Class II system comprises a Class 2, Type V Cas polypeptide.

34. The method of claim 33, wherein the Type V Cas is Cas12a or Cas12b.

35. The method of claim 30, wherein the Class II system comprises a Class 2, Type VI Cas polypeptide.

36. The method of claim 35, wherein the Type VI Cas is Cas13a, Cas13b, Cas13c or Cas13d.

37. The method of claim any of claims 30 to 36, wherein the CRISPR system comprises a dCas fused or otherwise linked to a nucleotide deaminase.

38. The method of claim 37, wherein the nucleotide deaminase is a cytidine deaminase or an adenosine deaminase.

39. A method of quantitating a type 2 immune response comprising determining the ILC2 frequency, wherein increased frequency of ILC2s as compared to a control frequency is associated with an increased type 2 immune response.

40. The method of claim 39, further comprising determining the frequency of one or more cells selected from the group consisting of: mast cells, macrophages, neutrophils, and CD11b+CD103+ dendritic cells, wherein increased frequency of mast cells, macrophages and/or neutrophils, and/or decreased frequency of CD11b+CD103+ dendritic cells as compared to a control frequency is associated with an increased type 2 immune response.

41. A method of quantitating a type 2 immune response, comprising:

determining the expression of one or more genes selected from Table 3 or determining the frequency of the cell types expressing the one or more genes selected from Table 3, wherein changes in expression or frequency according to Table 3 is associated with an increased type 2 immune response.

42. The method of claim 41, further comprising determining the expression of:

one or more genes in ILC2s selected from the group consisting of: Hes1, Il13, Lif, Areg and Il4;
one or more genes in mast cells selected from the group consisting of: Mcpt4, Tph1, Mcpt1, Cma1, and Furin;
one or more genes in macrophages selected from the group consisting of: Irf7, Isg15, Irf8, Irf1, Ccl7, Ccl2, Cxcl12, Pf4 and Ccl24; and/or
one or more genes in plasma cells selected from the group consisting of: Ifi27, Ifitm3, Ifnar1, Ighg1 and Ighe,
wherein increased or decreased expression in the cell type according to FIG. 9B or 9C is associated with an increased type 2 immune response.

43. A method of quantitating a type 2 immune response comprising determining the frequency of IL-33+PDPN+ fibroblasts in a subject having an allergy, wherein increased frequency of IL-33+PDPN+ fibroblasts is associated with an increased type 2 immune response.

44. The method of claim 1, wherein CGRP is a polypeptide comprising the amino acid sequence of SEQ ID NO: 1 (acdtatcv thrlagllsr sggvvknnfv ptnvgskaf).

45. The method of claim 44, wherein the CGRP sequence is modified to increase stability of the polypeptide.

46. The method of any one of the preceding claims, wherein the intestinal ILCs are KLRGHi ST2−ILCs.

47. The method of any of claims 39 to 43, comprising detecting a type 2 immune response in a subject in need thereof, wherein when an increased type 2 immune response is detected, the subject is treated according to any of claim 1, 11-17, 22-25 or 28-38.

48. The method of any one of the preceding claims, wherein IBD is treated.

49. The method of claim 48, wherein IBD comprises a disease selected from the group consisting of ulcerative colitis (UC), Crohn's Disease, collagenous colitis, lymphocytic colitis, ischemic colitis, diversion colitis, Behcet's syndrome, infective colitis, indeterminate colitis, and other disorders characterized by inflammation of the mucosal layer of the large intestine or colon.

50. A method of screening for one or more agents capable of modulating an ILC2 immune response, comprising:

administering to a population of cells comprising ILC2s, mast cells, Th2 cells and/or fibroblasts one or more agents; and detecting expression, activity or function of one or more biological programs characterized by ILC Topic 2, myeloid cell Topic 1, T cell Topic 5 or stromal cell Topic 4,
wherein ILC Topic 2 comprises one or more genes or polypeptides selected from the group consisting of: Calca, Hs3st1, Areg, Il13, Il4, Ccl1, Hes1, Il17rb, Lgals7, Homer2, Il5, Gata3, Deptor, Ptpn13, Ly6a, Hba-a1, Kcnn4, Ccr4, Rxrg, Sub1, 1700061F12Rik, Cntnap2, AA467197, Ptgir, Il10, Nfkb1, Lmo4, Pparg, Plaur, Il9r, Serpine1, Scel, Bmp7, Neb, Sox8, Lpcat2, Samsn1, Alox5, Gpr65, Abhd17c, Gm20186, Gm973, Epas1, Ccr8, D430036J16Rik, Cd6, Stxbp6, 9230102O04Rik, Furin and Klf5,
wherein myeloid cell Topic 1 comprises one or more genes or polypeptides selected from the group consisting of: Cpa3, Cma1, Mcpt4, Tpsb2, Fcer1a, Hs3st1, Gata2, Cited4, Cyp11a1, Tph1, Furin, Rab27b, Slc45a3, Ccl1, Il13, Il1rl1, Itga2b, Cited2, Fam110c, Creb3l1, Rgs13, Tpsab1, Cyp26a1, Serpinb1a, Slc18a2, Gmpr, Rprm, Ero1l, Il4, Cd200r3, Glul, Kit, Lat, Alox5, Gchfr, mt-Atp6, Lat2, Prss34, Poln, Klk8, 4932438H23Rik, Slc6a13, Avil, Socs2, Smco4, Ier3, Lxn, Gpr171, Adk and Gata1,
wherein T cell Topic 5 comprises one or more genes or polypeptides selected from the group consisting of: 1700061F12Rik, Il13, Scin, Lgmn, Hlf, Smco4, Npnt, Il17rb, Deptor, Gata3, Gm2a, Il6, Il17a, Ltb4r1, Fgl2, Areg, Fbxl21, AA467197, 1r11, Me1, Gm5544, Tmem159, Rasgrp4, 1700012B07Rik, 1700113H08Rik, St6galnac5, Il4, Chdh, Slco2b1, Ccr9, Epas1, Grp, Lztfl1, Gm10369, Kif19a, Tenm4, Serpinf1, Gnb2, Ubox5, Plcl1, Rab31, Ffar2, Slx1b, Asb2, Zfp85, Tmsb4x, Hdc, Pxdc1, Heatr1 and Lgals7, and
wherein stromal cell Topic 4 comprises one or more genes or polypeptides selected from the group consisting of: Ccl21a, Cxcl13, Clu, Ccl19, Acta2, Mfge8, Apoe, Tagln, Cxcl1, Cilp, Ccl2, Il33, Cxcl12, Actg2, Serpina3n, Ccl7, Bst1, Serpina1a, Fmod, Grem1, Serpina1b, Slc36a2, Cnn1, Myh11, Art2b, Actc1, AI838599, Serpina1c, Cr2, Gxylt2, Crym, Dclk1, Serpina1d, Myl9, Parm1, Gm16685, Postn, Chrdl1, Colq, Csn2, Prss12, H2-M2, Trf, Sostdc1, Dsc3, Ctgf, Thbs4, Pcdh15, Rtn4r and A230065H16Rik.
Patent History
Publication number: 20220143148
Type: Application
Filed: Mar 13, 2020
Publication Date: May 12, 2022
Inventors: Aviv Regev (Cambridge, MA), Heping Xu (Cambridge, MA), Jiarui Ding (Cambridge, MA), Ramnik Xavier (Cambridge, MA)
Application Number: 17/438,972
Classifications
International Classification: A61K 38/23 (20060101); A61P 37/00 (20060101); C12N 15/11 (20060101); C12N 9/22 (20060101);