REAL-TIME DISPLAY OF TISSUE DEFORMATION BY INTERACTIONS WITH AN INTRA-BODY PROBE
In some embodiments, data sensed and/or operational parameters used during a catheterization procedure are used in the motion frame-rate updating and visual rendering of a simulated organ geometry. In some embodiments, measurements of and/or effects on tissue by sensed and/or commanded probe-tissue interactions are converted into adjustments to the simulated organ geometry, allowing dynamic visual simulation of intra-body states and/or events based on optionally partial and/or non-visual input data. Adjustments to geometry are optionally to 3-D positions of simulated data and/or to simulated surface properties affecting geometrical appearances (e.g., normal mapping). Optionally, the organ geometry is rendered as a virtual material using a software environment (preferably a graphical game engine) which applies simulated optical laws to material appearance parameters affecting the virtual material's visual appearance. Optionally, physiology, motion physics, and/or other physical processes are simulated based on live inputs, as part of assigning geometrical adjustments to the simulated tissue.
Latest Navix International Limited Patents:
This application is a continuation of U.S. patent application Ser. No. 16/349,646 filed on May 14, 2019, which is a National Phase of PCT Patent Application No. PCT/M2017/057175 having International Filing Date of Nov. 16, 2017, which claims the benefit of priority under 35 USC § 119(e) of U.S. Provisional Patent Application Nos. 62/422,705, 62/422,708 and 62/422,713, all filed on Nov. 16, 2016. The contents of the above applications are all incorporated by reference as if fully set forth herein in their entirety.
FIELD AND BACKGROUND OF THE INVENTIONThe present invention, in some embodiments thereof, relates to the field of medical procedures using intrabody probes navigable within intrabody spaces, and more particularly, to presentation of procedure data dynamically acquired during the course of a catheter procedure.
Graphical game engines currently available comprise suites of software-implemented capabilities supporting the dynamic display and updating of simulated three-dimensional scenes. Typically, game engines include API calls supporting the creation and modification of a variety of scene objects (chiefly terrain, various types of physical objects, camera viewpoints, and lighting), a visual rendering pipeline, and optionally further services assisting tasks such as coding, animating, and/or debugging. User inputs are accepted from various user interface devices (including pointer devices, keyboards, game controllers, motion sensors, touch screens and the like) and converted into events in the simulated environment. Well-known game engines include the Unreal® and Unity® graphical game engines (www(dot)unrealengine(dot)com; www(dot)unity3d(dot)com). The rendering pipelines of modern game engines typically include facilities for creating realistic-looking visualizations of scene elements, based on properties assigned to instantiations of data objects representing those scene elements.
Several medical procedures in cardiology and other medical fields comprise the use of catheters to reach tissue targeted for diagnosis and/or treatment while minimizing procedure invasiveness. Early imaging-based techniques (such as fluoroscopy) for navigation of the catheter and monitoring of treatments continue to be refined, and are now joined by techniques such as electromagnetic field-guided position sensing systems. Refinements to techniques for registration of previously imaged (for example, by CT and/or MRI) anatomical features of a patient to electromagnetic field-sensed catheter position are a subject of ongoing research and development, for example as described in International Patent Application No. IB2016/052687 to Schwartz et al. filed May 11, 2016; and International Patent Application No. IB2016/052692 to Schwartz et al. filed May 11, 2016. Intrabody sensing from catheter probes to determine information about, for example, tissue contact and/or lesion assessment, has also been described (e.g., International Patent Application No. PCT IB2016/052690 to Schwartz et al. filed May 11, 2016; and International Patent Application No. IB2016/052686 to Schwartz et al. filed May 11, 2016).
SUMMARY OF THE INVENTIONThere is provided, in accordance with some embodiments of the present disclosure, a method of visually displaying effects of a medical procedure, comprising: receiving interaction data from an intrabody probe indicating touching contacts between the intrabody probe and a body tissue region, wherein the interaction data at least associate the contacts to contacted positions of the body tissue region; adjusting geometrical rendering data representing a shape of the body tissue region to obtain adjusted geometrical rendering data, wherein the adjusting is based on an indication in the interaction data of a change in the shape of the body tissue region due to the contacting; rendering the adjusted geometrical rendering data to a rendered image; and displaying the rendered image.
In some embodiments, the intrabody probe is a catheter probe.
In some embodiments, the geometrical rendering data are adjusted as a function of time relative to a time of occurrence of at least one of the indicated contacts.
In some embodiments, the receiving, the adjusting, and the displaying are performed iteratively for a sequence of contacts for which interaction data is received.
In some embodiments, the adjusting is at a frame rate of 10 frames per second or more.
In some embodiments, the rendering and the displaying are at a frame rate of 10 frames per second or more.
In some embodiments, the geometrical rendering data include a representation of 3-D surface positions and a representation of surface orientations; wherein the two representations each correspond to a same portion of the shape of the body tissue region; and wherein the adjusting comprises adjusting the surface orientation representation to change a geometrical appearance in the rendering.
In some embodiments, the representation of surface orientation is adjusted separately from the representation of 3-D surface positions.
In some embodiments, the extent and degree of the adjusting model a change in a thickness of the body tissue region.
In some embodiments, the interaction data describe an exchange of energy between the intrabody probe and the body tissue region by a mechanism other than contact pressure.
In some embodiments, the adjusting comprises updating the geometrical rendering data based on a history of interaction data describing the exchange of energy.
In some embodiments, the exchange of energy comprises operation of an ablation modality.
In some embodiments, the updating changes an indication of lesion extent in the geometrical rendering data based on the history of interaction data describing the exchange of energy by operation of the ablation modality.
In some embodiments, the updating comprises adjusting the geometrical rendering data to indicate a change in mechanical tissue properties, based on the history of interaction data describing the exchange of energy.
In some embodiments, the ablation energy exchanged between the intrabody probe and the body tissue region comprises at least one of the group consisting of: radio frequency ablation, cryoablation, microwave ablation, laser ablation, irreversible electroporation, substance injection ablation, and high-intensity focused ultrasound ablation.
In some embodiments, the updating comprises adjusting the geometrical rendering data to indicate a change in tissue thickness, based on the history of interaction data describing the exchange of energy.
In some embodiments, effects of the history of interaction data describing the exchange of energy are determined from modelling of thermal effects of the exchange of energy on the body tissue region.
In some embodiments, the modelling of thermal effects accounts for local tissue region properties affecting transfer of thermal energy between the intrabody probe and the body tissue region.
In some embodiments, the adjusting is as a function of time relative to a time of occurrence of at least one of the indicated contacts, and comprises adjusting the geometrical rendering data to indicate gradual development of a change in geometry of the body tissue region as a result of the contacts.
In some embodiments, the gradually developed change in geometry indicates a developing state of edema.
In some embodiments, the method comprises geometrically distorting the rendering of the geometrical rendering data into a swollen appearance, to an extent based on the indicated development of the state of edema.
In some embodiments, the contacts comprise mechanical contacts, and the gradual development of a change in geometry indicates swelling of the body tissue region in response to tissue irritation by the mechanical contacts.
In some embodiments, the contacts comprise an exchange of energy between the intrabody probe and the body tissue region by a mechanism other than contact pressure.
In some embodiments, the interaction data indicate a contact force between the intrabody probe and the body tissue region.
In some embodiments, the interaction data indicate a contact quality between the intrabody probe and the body tissue region.
In some embodiments, the interaction data indicate a geometrical distortion introduced by touching contact between the intrabody probe and the body tissue region.
In some embodiments, the adjusting comprises geometrically distorting the rendering of the geometrical rendering data at a region of touching contact to an extent based on the interaction data.
In some embodiments, the geometrically distorting the rendering of the geometrical rendering data includes geometrically distorting a portion of the geometrical rendering data which is not geometrically corresponding to the portion of the body tissue region from which the interaction data were obtained.
In some embodiments, the interaction data comprises a 2-D image including a cross-sectional view of the body tissue region, and the distorted portion of the geometrical rendering extends out of a plane in the geometrical rendering data corresponding to the plane of the cross-sectional view.
In some embodiments, the interaction data describes injection of a substance from the intrabody probe to the body tissue region, and the adjusting comprises changing a thickness of tissue in the body tissue region, corresponding to an effect of the injection of the substance.
In some embodiments, the rendering includes a view of the intrabody probe. In some embodiments, the rendering is rendered from a viewpoint at least partially defined by a measured position of the intrabody probe relative to a surface of the body tissue region.
In some embodiments, the measured position includes a measured orientation of the intrabody probe.
In some embodiments, the intrabody probe contacts a lumenal surface of the body tissue region.
In some embodiments, the intrabody probe contacts an external surface of an organ comprising the body tissue region.
In some embodiments, the body tissue region comprises a tissue of at least one organ of the group consisting of the heart, vasculature, stomach, intestines, liver and kidney.
In some embodiments, the method further comprises assigning material appearance properties across an extent of the geometrical rendering data, based on the interaction data; and wherein the displaying of the rendered image uses the assigned material appearance properties.
In some embodiments, the rendering comprises a rendering in cross-section of the body tissue region.
In some embodiments, the extent and degree of the adjusting simulate stretching of the body tissue region.
In some embodiments, the geometrical rendering data represent a shape of a body tissue region comprising a heart chamber; and wherein the adjusting comprises adjusting a size of the heart chamber, based on the current heart rate data.
In some embodiments, the adjusting a size of the heart chamber comprises adjusting a size of a lumen of the heart chamber, based on the current heart rate data.
In some embodiments, the adjusting a size of the heart chamber comprises adjusting a thickness of a wall of the heart chamber, based on the current heart rate data.
In some embodiments, the adjusting geometrical rendering data comprises adjusting a position of the intrabody probe in the geometrical rendering data relative to a wall of the heart chamber, based on the current heart rate data.
There is provided, in accordance with some embodiments of the present disclosure, a system for visually displaying effects of interactions between an intrabody probe and a body tissue region, the system comprising computer circuitry configured to: receive interaction data indicating the interactions, and associated to positions on a surface of the body tissue region; adjust geometrical rendering data representing a shape of the body tissue region to obtain adjusted geometric rendering data, wherein the adjusting is based on an indication in the interaction data of a change in the shape of the body tissue region; render the adjusted geometrical rendering data to a rendered image; and present the rendered image.
In some embodiments, the rendering is performed using a graphical game engine, and the interaction data include sensed positions of the intrabody probe.
In some embodiments, the interaction data include probe-sensed characteristics of tissue in the vicinity of the intrabody probe.
In some embodiments, the interaction data includes operational data describing operation of the intrabody probe to treat tissue.
There is provided, in accordance with some embodiments of the present disclosure, a method of visually displaying a medical procedure, comprising: receiving position data indicating the position of an intracardial probe within a heart; receiving heart rate data for the heart; adjusting geometrical rendering data representing a shape of the heart and a shape and position of the intracardial probe to obtain adjusted geometric rendering data; wherein the adjusting is based on the heart rate data to maintain an accuracy of positioning of the intracardial probe relative to the heart as average size of the heart changes as a function of a heart rate; rendering the adjusted geometrical rendering data to a rendered image; and displaying the rendered image.
Unless otherwise defined, all technical and/or scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the invention pertains. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of embodiments of the invention, exemplary methods and/or materials are described below. In case of conflict, the patent specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and are not intended to be necessarily limiting.
As will be appreciated by one skilled in the art, aspects of the present invention may be embodied as a system, method or computer program product. Accordingly, aspects of the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment (including firmware, resident software, micro-code, etc.) or an embodiment combining software and hardware aspects that may all generally be referred to herein as a “circuit,” “module” or “system.”
Furthermore, some embodiments of the present invention may take the form of a computer program product embodied in one or more computer readable medium(s) having computer readable program code embodied thereon. Implementation of the method and/or system of some embodiments of the invention can involve performing and/or completing selected tasks manually, automatically, or a combination thereof. Moreover, according to actual instrumentation and equipment of some embodiments of the method and/or system of the invention, several selected tasks could be implemented by hardware, by software or by firmware and/or by a combination thereof, e.g., using an operating system.
For example, hardware for performing selected tasks according to some embodiments of the invention could be implemented as a chip or a circuit. As software, selected tasks according to some embodiments of the invention could be implemented as a plurality of software instructions being executed by a computer using any suitable operating system. In an exemplary embodiment of the invention, one or more tasks according to some exemplary embodiments of method and/or system as described herein are performed by a data processor, such as a computing platform for executing a plurality of instructions. Optionally, the data processor includes a volatile memory for storing instructions and/or data and/or a non-volatile storage, for example, a magnetic hard-disk and/or removable media, for storing instructions and/or data. Optionally, a network connection is provided as well. A display and/or a user input device such as a keyboard or mouse are optionally provided as well.
Any combination of one or more computer readable medium(s) may be utilized for some embodiments of the invention. The computer readable medium may be a computer readable signal medium or a computer readable storage medium. A computer readable storage medium may be, for example, but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples (a non-exhaustive list) of the computer readable storage medium would include the following: an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), an optical fiber, a portable compact disc read-only memory (CD-ROM), an optical storage device, a magnetic storage device, or any suitable combination of the foregoing. In the context of this document, a computer readable storage medium may be any tangible medium that can contain, or store a program for use by or in connection with an instruction execution system, apparatus, or device.
A computer readable signal medium may include a propagated data signal with computer readable program code embodied therein, for example, in baseband or as part of a carrier wave. Such a propagated signal may take any of a variety of forms, including, but not limited to, electro-magnetic, optical, or any suitable combination thereof. A computer readable signal medium may be any computer readable medium that is not a computer readable storage medium and that can communicate, propagate, or transport a program for use by or in connection with an instruction execution system, apparatus, or device.
Program code embodied on a computer readable medium and/or data used thereby may be transmitted using any appropriate medium, including but not limited to wireless, wireline, optical fiber cable, RF, etc., or any suitable combination of the foregoing.
Computer program code for carrying out operations for some embodiments of the present invention may be written in any combination of one or more programming languages, including an object oriented programming language such as Java, Smalltalk, C++ or the like and conventional procedural programming languages, such as the “C” programming language or similar programming languages. The program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server. In the latter scenario, the remote computer may be connected to the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN), or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider).
Some embodiments of the present invention may be described below with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems) and computer program products according to embodiments of the invention. It will be understood that each block of the flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to a processor of a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions, which execute via the processor of the computer or other programmable data processing apparatus, create means for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.
These computer program instructions may also be stored in a computer readable medium that can direct a computer, other programmable data processing apparatus, or other devices to function in a particular manner, such that the instructions stored in the computer readable medium produce an article of manufacture including instructions which implement the function/act specified in the flowchart and/or block diagram block or blocks.
The computer program instructions may also be loaded onto a computer, other programmable data processing apparatus, or other devices to cause a series of operational steps to be performed on the computer, other programmable apparatus or other devices to produce a computer implemented process such that the instructions which execute on the computer or other programmable apparatus provide processes for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.
Some embodiments of the invention are herein described, by way of example only, with reference to the accompanying drawings. With specific reference now to the drawings in detail, it is stressed that the particulars shown are by way of example, and for purposes of illustrative discussion of embodiments of the invention. In this regard, the description taken with the drawings makes apparent to those skilled in the art how embodiments of the invention may be practiced.
In the drawings:
The present invention, in some embodiments thereof, relates to the field of medical procedures using intrabody probes navigable within intrabody spaces, and more particularly, to presentation of procedure data dynamically acquired during the course of a catheter procedure.
Overview
An aspect of some embodiments of the current invention relates to the motion frame-rate, real-time display of geometrical effects on a simulation scene comprising simulated tissue, wherein the geometrical effects comprise changes to a geometrical representation of one or more elements in the scene, and wherein the changes are made based on ongoing and/or intermittent measurements of interactions between a catheter probe and the actual tissue being simulated.
Herein, “geometrical effects” optionally comprise one or both of changes to the 3-D position of simulated elements, and changes to the geometrical appearance of simulated elements. Geometrical appearance, as distinct from 3-D position, comprises geometrical that can give a relatively raised, indented, smoothed, irregular, blurred, focused, closer, further, shaded, and/or unshaded appearance to a portion of a surface, without affecting 3-D coordinates of the surface itself. Geometrical appearance optionally comprises features implemented at least in part by computational methods-for example, normal mapping, depth mapping, and/or shadow mapping.
In some embodiments, a software environment specialized for interactive visual simulations (for example a 3-D graphical game engine such as the Unreal® and/or Unity® graphical game engines) is used as a basis for implementing a simulation of a scene comprising simulated tissue (herein, such a scene is referred to as a simulation scene). For rendering images by the game engine's graphics pipeline, geometrical rendering data are optionally supplemented with one or more material appearance properties (preferably a plurality of such properties) that describe how virtual materials such as simulated tissue interact with simulated optical laws and lighting conditions to generate images for display. The geometrical rendering data optionally comprises a geometrical representation of a scene including tissue. In some embodiments, the rendering is implemented, by a rendering pipeline of the graphical game engine.
It should be understood that one or more capabilities used by some embodiments of the present invention and described as implemented by a game engine are optionally provided by alternative implementations not packaged in a game engine distribution, including: use of customized software, firmware and/or hardware; and/or use of separately distributed software libraries. The term “game engine” as used herein should be understood to encompass computer-implemented collections of such typical game engine capabilities as may be used by some embodiments of the present invention (examples of which are described herein), whether or not they have been packaged into a game engine distribution.
As used herein, the term “rendering” refers to the process of generating an image from a 2-D or 3-D model or models by means of one or more computer programs. The model may contain object parameter definitions and/or data structures; for example, geometry, viewpoint, texture, lighting, and/or shading information as a description of the virtual model. The data contained in the model may be passed to a rendering program to be processed and output to a digital image or raster graphics image file. The processing comprises one or more processing stages referred to collectively as a “pipeline”, and carried out by the software and hardware of a rendering device. In some embodiments, the rendering device includes one or more of a general purpose CPU and graphics hardware specialized for use within a rendering pipeline.
In some embodiments, updating of the simulation scene during a procedure is at least partially based on data inputs from one or more data sources supplying data during the procedure (for example, sources of probe-tissue interaction data such as sensing data and/or treatment status data described in relation to
In typical applications of game engines, the simulated world (also referred to herein as a simulated scene) maintained by a game engine does not directly correspond to any simultaneous objective-world state. However, an object of some embodiments of the current invention is to simulate the reality of a clinical situation sufficiently to allow substantially seamless interaction with that reality via a presentation of the scene simulation. In some embodiments, this comprises maintaining and displaying a simulated scene having a useful level of correlation with the changing reality of the actual tissue environment (as reflected in data available to characterize it).
Optionally, usefulness derives from actions which are taken by an operator on the basis of information in the scene simulation presentation which reveals to a catheter operator the changing state of the tissue environment. Potentially, the useful level of correlation with the changing reality of the actual tissue environment allows an operator to realize the state of the tissue or a change in that state, optionally without adding to the scene annotations indicative of such state or state change. Optionally, usefulness derives from the presented scene simulation providing fidelity of representation sufficient that actions the operator takes based on the presented scene simulation produce effects as intended in the corresponding real-world environment. Optionally, the useful level of correlation with the changing reality of the actual tissue environment is a level of correlation sufficient to allow the operator to perform actions within the real-world environment based on the presented scene simulation. The presented scene simulation may include effects simulating results of the actions taken by the operator.
In some embodiments of the invention, a display of a user interface is updated at motion frame rate with rendered images of a simulation scene simulating an intrabody probe (for example, a probe at the end of a catheter) and its tissue environment. The updating optionally indicates changes to an actual intrabody probe and tissue environment which occur as an operator manipulates the actual intrabody probe (wherein the updating is based, e.g., on position data describing the position of the intrabody probe), and/or operates the intrabody probe for treatment and/or diagnostic measurement of the actual tissue environment (wherein the updating is based, e.g., on operational data describing operation of the intrabody probe to treat tissue and/or measure properties of the tissue). In some embodiments, changes are shown in the rendered images as if occurring within the actual material of the tissue environment.
For example, immediate and/or developing effects of ablation are shown by simulating appearance and/or geometrical changes in ablated tissue (in contrast, for example, to marks, icons, and/or symbols indicating ablation events). In some embodiments, tissue is deflected and/or an intrabody probe shape is distorted in rendered images of a simulation scene based on interaction data indicating touching contacts. These and other simulation scene changes (for example, other simulation scene changes as described herein) potentially provide an operator with a sense of presence in the actual tissue region accessed by an intrabody probe, and/or intuitive indications of changing status during a procedure underway.
In some embodiments, a smoothly updating, naturalistic appearance of a rendered view of a simulation scene is achieved even when available inputs indicating changes to the simulation scene are incomplete, slowly updating, irregular, and/or lagging (for example, as described in relation to
Optionally, appearances in rendered views of simulation scene objects are moreover “realistic” in some aspects. For example, tissues, in some embodiments, are provided with material appearances that mimic their appearance in life, and to this extent are “realistic”. In some embodiments of the invention, for example, geometrical deformation of tissue in a simulation scene is directly based on deformation measurements, for example, ultrasound images of septal wall deflection during transseptal puncture are optionally converted into movements in three dimensions of a simulated septal wall's deflection.
However, non-realistic material appearances and even objects are optionally or additionally provided to a naturalistic scene. Degree of tissue compression, for example, is optionally used as a visual proxy for probe-tissue contact force (force of touching contact), whether or not the real tissue is indeed compressed.
In some embodiments of the invention, motion due to normal heart pulsations is indicated in the simulation by pulses with corresponding timing; this potentially helps an operator understand the difference between a probe in intermittent wall-touching contact and continuous wall-touching contact. Optionally, however, the amplitude of the simulated pulses is reduced from the real state, to stabilize the visual environment an operator uses for navigation. Additionally or alternatively, some geometrical states (such as degree of vasodilation and/or vasoconstriction) are optionally exaggerated for clarity.
In some embodiments, the size of one or more heart chambers is adjusted based on current heart rate, and/or the size and/or movements of a probe relative to the heart chamber are scaled based on current heart rate. It has been observed that as heart rate increases, the maximum size of the heart between contractions correspondingly decreases. This decrease can also be observed in the sizes adopted by heart chamber at other phases of the heartbeat cycle. For example, in some embodiments, the average rendered size of the heart over the course of a heartbeat cycle is decreased as a function of measured heart rate increase. The average size change is optionally to either a beating or non-beating rendered representation of the heart. Optionally heart wall thickness correspondingly increases with decreasing chamber size. It is a potential advantage to incorporate these dynamic changes in anatomy into a display used by an operator to guide an intrabody probe, and/or to improve the accuracy and/or precision with which actions by and/or through the probe (e.g., contacts and/or treatment administration) are associated to positions on the heart wall.
In another example, visual rendering of blood is preferably suppressed, making visualization possible from within a vascular or cardiac lumen. Optionally, one or more normally invisible tissue properties such as temperature are encoded by visual conventions; appearing as, for example in the case of temperature: ice, flame, smoke, and/or steam. In some embodiments, guiding marks related to planning and/or procedure progress are optionally provided as part of the simulation scene's naturalistic rendering to images.
Among the services provided by some prominent graphical game engines are motion physics simulators (e.g., for modeling collisions, accelerations, elastic deformations, object destruction, and the like). In some embodiments, one or more these motion physics simulators is used to increase the naturalistic impression and/or realistic fidelity of a rendered simulation scene. In some embodiments, one or more of these motion physics simulators is used to increase the naturalistic impression of a scene. Additionally or alternatively, geometrical deformations are used to indicate aspects of a procedure where a probe contacts tissue. As for the case of material appearances, the geometrical deformations may be, but are not necessarily realistic.
A general potential benefit of naturalistic (optionally also realistic) presentation of a scene comprising simulated tissue is to reduce cognitive load on a catheter operator and/or team of operators working with an intra-body probe. Such procedures typically have multiple interacting factors and requirements affecting procedure outcome. These factors and requirements preferably are tracked simultaneously and/or may need to be accounted for with little time for consideration. Examples of these factors and requirements in a standard operating environment optionally include any one or more of the following:
-
- Positions of one or more probes are selected and verified with respect to a procedure plan.
- Results of procedure actions are verified.
- If planned actions and actual procedure actions begin to diverge, adjustments may be made on the fly.
- Similarly, actual procedure results may not match planned results.
- Some parts of the procedure optionally rely on discovering tissue states and locations, for example, based on sensing from the catheter probe.
- Such discovery steps are preferably performed quickly and without undue repetition of catheter motions.
- Particularly after plan and procedure diverge, relative timing of past procedure steps can be critical for deciding what current and/or following steps are optimal. For example, edema that gradually develops following lesioning (as in certain ablation procedures) can interfere with further lesioning, potentially leading to a need to adjust parameters and/or positions away from those first planned if there is a delay or error in an earlier phase of the procedure.
- Similarly, the interpretation of sensing data is optionally dependent on the timing and/or results of previous actions. For example, a detected current impulse block in heart tissue may be correlated with the recent history of lesioning in an area to determine if the impulse block is more likely to be permanent (e.g., pre-existing, or in a well-lesioned area) or temporary (e.g., in a region where inactivation, for example, due to use of a lesioning modality, is potentially reversible).
In some embodiments of the current invention, immediate visual presentation of material appearance helps to control the complexity these factors can create. Potentially, a naturalistic display of information is more immediately understood by the clinical personnel, and/or intuitively draws attention to clinically relevant state updates. For example, instead of the operator team having to consider and/or calculate whether a previously lesioned tissue region was lesioned long enough ago to have converted to edematous tissue: in some embodiments, the edema is directly displayed as edematous tissue. Where a continuous lesion is planned, likely gaps in lesion extent can be directly seen in their overall context in the scene simulation, helping to guide the decision as to whether and/or how the procedure should be adapted to compensate.
A naturalistic presentation of catheter procedure information also contrasts, for example, with the presentation of this information using graphs and/or symbols. Familiarization with more abstract symbols, measures and graphs potentially requires prolonged training. An extra level of symbolic abstraction also potentially slows recognition by the physician of important changes in the state of the catheter interface or the tissue.
In some embodiments of the invention, a substantially continuous stream of input data describing a tissue region and/or probe interactions with it is used as a basis for correspondingly continuous updating of a scene simulating the tissue region. Optionally, the input data comprise only partial and/or indirect description of the tissue region. For example, spatially partial input data (such as from a cross-sectional image) is used in some embodiments to infer spatial changes over a larger region (such as a three-dimensional space extending outside the cross-sectional image). In another example, sensed pressure data from a catheter probe is optionally converted into corresponding movements in three-dimensional space of pressed-against tissue in the simulation scene. In some embodiments, effects on tissue by energy delivered from a lesioning probe are optionally simulated in a scene based on a model of energy dispersion in the tissue (e.g., thermal modeling, optionally thermal modeling incorporating information from anatomical data), and knowing a few parameters about how the energy was delivered (e.g., how long, with what energy, where, and/or with what efficacy).
In some embodiments, sensed input data is used as a basis for updating the state of the scene-representation of the probe itself. For example, sensed input data is used to adjust the position of the probe's scene representation, and/or to control the parameters of a viewpoint used in creating a rendered image of the simulation scene, wherein the viewpoint is defined by a position of the probe. In some embodiments, sensed input data (e.g., indicating tissue contact force and/or quality) is used as a basis for changing the shape of a simulated probe. The shape may be adjusted based, for example, on a mechanical model of the actual probe and/or a catheter or other device that carries the probe (e.g., a mechanical model which models the flexibility and geometry of the actual probe and/or associated carrying device). For example, some probes such as lasso electrode probes comprise a flexible portion that can be bent in response to the forces of touching contact. In another example, an otherwise stiff probe may be carried on a flexible member such as a catheter used to manipulate the probe. In some embodiments, sensed input data indicates forces applied to the actual probe, and the simulated probe is modified in response to the indicated forces according to the parameters of the mechanical model. The modification may also take into account other data, for example, a position of the probe itself, geometry of the chamber in which the probe is positioned, and/or a position of an aperture via which a probe is passed into a heart chamber or other body lumen. Potentially, the modeling allows a changing simulated probe shape to indicate changes to the actual intrabody probe in use, without requiring direct measurement of the actual intrabody probe's shape (e.g., by imaging).
Additionally or alternatively, in some embodiments, correlation between a simulation scene and the actual tissue region it represents is maintained at least in part by treating occasional inputs as describing events that (in the real world) trigger and/or entail certain predictable consequences to follow. In the simulation scene, the input optionally acts as a trigger for software routines that simulate those consequences. In some embodiments, longer-term effects of lesioning are optionally simulated by a physiological simulation. For example, a simulation converts estimated lesion damage into parameters for a script describing the gradual onset of tissue edema as it appears in rendered views of the simulation scene.
In some embodiments, moreover, partial and/or occasional inputs optionally guide calibration of the simulation scene maintained by the game engine so that it better-corresponds to the state of the actual tissue region. For example, sensing of tissue state or position directly using the probe as a sensing modality (additionally or optionally by another sensing modality, such as ECG, monitoring of patient hydration, or an intermittently acquired image) is optionally used to update a model state, potentially restoring and/or improving a degree of synchronization between the actual tissue region and the simulation scene.
Before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not necessarily limited in its application to the details of construction and the arrangement of the components and/or methods set forth in the following description and/or illustrated in the drawings. The invention is capable of other embodiments or of being practiced or carried out in various ways.
Methods and Systems for Visual Modeling of Probe-Tissue Interactions and Their Effects
Reference is now made to
-
- Receiving interaction data between probe 11 and tissue (at block 110).
- Calculating geometrical effects altering a scene, the geometrical effects being indicated by the interaction data (at block 112).
- Rendering the altered scene for visual presentation (block 114).
Illustrating examples of systems configured for carrying out this method, further reference is made to
Receipt of Interaction Data
The flowchart of
The interaction data, in some embodiments, comprise data indicating and/or numerically describing characteristics of interactions between probe 11 and tissue region 7; including, for example, positions of the probe and/or of contacts between the probe and the tissue region, contact characteristics characterizing a contact between the probe and the tissue region, measurements taken by the probe (for example, measurements of the physiological state and/or dielectric properties of the tissue region), and/or actions of the probe (e.g., operations comprising delivery of treatment). Optionally, interaction data comprise imaging data obtained during probe-tissue interactions.
System 1 of
Position data: In some embodiments (optionally), position data is sensed by use of an electromagnetic field navigation subsystem, comprising body surface electrodes 5, field generator/measurer 10, position analyzer 20, and sensing electrodes 3 (for example, sensing electrodes 3 located on catheter probe 11). The electromagnetic field navigation subsystem operates by inducing at least one time-varying electromagnetic (EM) field 4 (for example, three crossing EM fields, each of a different frequency) across a region of body 2 including a body tissue region 7 that is targeted to be navigated by catheter 9 and catheter probe 11. Typically, the time varying EM field is induced with a total inter-electrode voltage of one volt or less, at a frequency of between about 10 kHz and about 1 MHz. Voltages sensed at different positions by sensing electrodes 3 are characteristic of corresponding intrabody positions, allowing conversion by position analyzer 20, for example of voltage measurements to position information (for example, after exploration of an intrabody region 7 using the probe 11, and/or initially based on EM fields simulated with respect to a particular configuration of electrodes and anatomical data 31).
In some embodiments of the invention, position sensing at least partially comprises sensing of the relative position of a catheter probe 11 and a surface of tissue region 7; for example, by sensing of the dielectric environment of a sensing electrode 3 of catheter probe 11.
Imaging data: Additionally or alternatively, in some embodiments, there is provided an imaging modality 6, which may include, for example, an ultrasound modality and/or a fluoroscopy modality. Imaging modality 6 is configured to monitor body tissue region 7 during use of the catheter probe. Characteristics monitored by imaging modality 6 optionally comprise position information of the probe and/or of tissue affected by operation of the probe. In some embodiments, the imaging modality is in continuous, real-time (e.g., 5, 10, 15, 20, 30, 60 or more images per second) use during at least some phase of a procedure. Optionally, system 1 continuously processes changes in images produced by imaging modality 6 for immediate display (within a few milliseconds, for example, within 250 milliseconds) at user interface 55.
Additionally or alternatively, in some embodiments, imaging modality 6 operates less frequently (for example, once every minute to every five minutes, or at another interval). An infrequently updating imaging modality 6 is optionally used for providing periodic “key frames” used to synchronize and/or verify display of simulated states of tissue region 7 and/or catheter 9. Optionally, imaging information provides indirect information about elements in the scene simulation—for example, displacement of an organ boundary imaged with relatively high contrast optionally provides information about the displacement of a less clearly visualized organ in communication with the organ boundary. Also for example, data imaged in a tissue cross-section optionally provides information which can be extrapolated to regions outside of the cross-section. Optionally, an imaging modality is used only briefly during a procedure, for example, during a particular phase of a procedure such as a septal crossing.
Dielectric tissue property sensing: In some embodiments, dielectric property measurements (e.g., of impedance behavior of the electrical fields) providing indications of tissue state, and/or of tissue-probe contacts, are made by dielectric property analyzer 22. The measurements, in some embodiments, use sensing electrodes 3 (or a subset thereof) to determine impedance behavior of electromagnetic fields generated in conjunction with field generator/measurer 10, and optionally body surface electrodes 5. Dielectric distance sensing has already been mentioned in connection with the discussion of position data. Additionally or alternatively, in some embodiments, dielectric property sensing is used to distinguish, for example, the state of tissue as healthy, fibrotic, edematous, charred or charring, and/or electrophysiologically active (or capable of being so, e.g., retaining cellular integrity after attempted ablation). In some embodiments, dielectric property sensing identifies and/or verifies tissue type(s) in a sensed region. Dielectric property sensing for such properties is described, for example, in International Patent Application Nos. PCT/IB2016/052690 and PCT/M2016/052686, the contents of which are incorporated by reference herein in their entirety.
General sensing: In some embodiments, other sensor information (sensed by optional other sensor(s) 14 on catheter probe 11) is used as interaction data. For example, a force sensor may provide information on contact between a catheter probe 11 and its environment. The information may include indication that the contact has happened, and optionally with what degree of force.
Additionally or alternatively, contact quality and/or contact force information is provided from sensing electrodes 3, based on impedance measurements and/or sensing of dielectric properties. For example, where a surface of tissue region 7 and an electrode 3 of a catheter probe 11 are in contact, dielectric sensing optionally is used to provide an indication of contact quality (optionally as related to a corresponding contact force), for example as described in International Patent Application No. PCT/IB2016/052686, the contents of which are included by reference herein in their entirety. Contact quality may include dielectric and/or impedance sensing of the tissue environment of one or more electrodes, based on which force, pressure, area, and/or angle of contact between electrodes and the tissue environment is inferred, relatively and/or absolutely.
In some embodiments, other sensor(s) 14 comprise a temperature sensor, flow sensor, and/or another sensor configured to provide information about the environment of the catheter probe 11.
Treatment interactions: In some embodiments, a treatment element 8 is provided on catheter probe 11. The interaction data (for example, treatment status data 1102 of
Treatment element 8 is optionally a probe for ablation treatment using an ablation modality; for example, one or more of the following ablation modalities: radio frequency ablation, cryoablation, microwave ablation, laser ablation, irreversible electroporation, substance injection ablation, and/or high-intensity focused ultrasound ablation. In some embodiments, treatment element 8 is also used as a sensing electrode 3 (for example, in RF ablation, a treatment delivery electrode may also be used to sense the effect of local dielectric properties on measured electrical field impedance). Optionally, treatment element 8 is operated in conjunction with a treatment controller 13, configured to provide treatment element 8 with functions such as power, control (e.g., of signal frequency, phase, and/or timing), and/or monitoring. In some embodiments, the treatment element 8 is configured to deliver a treatment other than ablation (for example, temporary activation or inactivation of tissue activity) using heat, cold, electrical current, sound radiation and/or light radiation.
Optionally, treatment element 8 comprises an injection apparatus, used to inject a treatment substance, and/or a substance used in diagnosis such an imaging tracer. In some embodiments, the injected substance comprises ethyl alcohol, Botox, living cells, and/or growth factor. Optionally, the injected substance comprises a radiolabeled substance, an immunosubstance, and/or a radiopaque trace substance. Optionally, treatment element 8 comprises a tool for manipulating tissue (e.g., grasping, holding, sampling, cutting, attaching, and/or suturing). Data indicating operations of treatment element 8 (and/or the rest of a treatment delivery system, for example, including a treatment controller 13) are optionally available within system 1, and in particular available to modules of interaction analyzer 21, as treatment status data 1102 (
Interaction data relating to the interactions of a treatment element 8 with a target tissue region 7 include, for example, duration of operation, time of operation, nature and/or concentration of substances delivered, quantities of substances delivered, and/or power and/or frequencies of an exchange of energy between the treatment element 8 and tissue region 7 by a mechanism other than contact pressure (e.g., energy delivered for heating, energy removed for cooling, and/or energy delivered for disruption of structure). Optionally, operational settings are combined with information about the position and/or environment of treatment element 8 in order to derive interaction data. In some embodiments, such combination is performed by one or more of simulators 1110 of
It should be understood that not every source of interaction data described in relation to
Moreover, it should be understood that computation-performing and/or control operation-performing modules are optionally implemented by any suitable combination of shared and/or dedicated processing units and/or controllers. For example, implementations of treatment controller 13, position analyzer 20, and/or interaction analyzer 21 optionally comprise one shared processing unit, or any other suitable number of shared and/or dedicated processing units.
Optionally, the flowchart continues with block 112. In some embodiments, certain types of interaction data (such as inputs indicating onset of ablation treatment) branch additionally or alternatively to
Geometrical Effects and Rendering of Virtual Materials
At block 112 of
In further explanation of the distinction between adjustment of geometric points as such, and geometrical effects which affect the apparent position of geometrical points in a rendering, reference is now made to
Additionally or alternatively, geometrical appearance is changed (e.g., from a flat appearance to an indented appearance) by assigning to the surface of each rendered region within indentation 905 a suitable orientation (for purposes of rendering), chosen to optically mimic the angle the surface would have if the 3-D flat geometry 901 comprised a geometrically indented region like that of 3-D indented geometry 903; but without necessarily changing the 3-D geometry to which it maps. By convention, the surface orientation is represented by the orientation of a vector normal to (sticking straight out of) the surface.
For example, normal maps 902, 904 indicate by shading a changing elevation angle of a normal to the surface throughout region 906 (white is 90° elevation of the normal, while successively darker values represent successively decreased elevation values). Though not shown in the figure, normal maps 902, 904 preferably include representation of azimuth, e.g., azimuth mapped from 0°-360° around concentric circumferences of indentation 905. Surface orientation as represented by a normal map does not necessarily follow the geometrical surface orientation (for example,
To render the effects of a normal map, a rendering pipeline typically takes into account at least the relative angle of each surface normal and a light source in order to determine how much light is received at the camera. Then, for example (and other things being equal): when the relative angle is low, the surface is brighter; when the relative angle is high, the surface is darker. Optionally, the normal mapping algorithm also takes into account camera position and/or viewing angle-dependent surface reflection/scattering properties of the surface.
Normal mapping uses include, for example: to create the appearance of surface irregularities where the 3-D geometrical data has none, to exaggerate the 3-D appearance of shapes in the 3-D geometrical data, and/or to smooth transitions between polygons where the 3-D geometrical data describes abrupt changes (for example, between polygons in a mesh). In connection with some embodiments of the present invention, normal mapping (and a normal map, supplied as part of the geometrical rendering data 1121) has particular application for the showing of tissue deformations such as swelling (e.g., to indicate tissue damage) and indentation (e.g., to indicate probe-tissue contact). Embodiments optionally implemented with the use of normal mapping are described, for example, in relation to
Herein, 3-D structure rendered in a scene (in particular, 3-D data defining organ structure) is geometrically represented by geometrical rendering data 1121. 3-D positions are one part of the geometrical rendering data. Data used to affect geometrical appearance such as by use of normal maps (apart from use to define fine-grain texture) are considered to comprise a second part of the geometrical rendering data 1121.
In some embodiments, the geometrical rendering data 1121 comprise mesh data; for example as commonly used in defining structures for computerized visual rendering of 3-D structures. Geometrical rendering data 1121 specify positions (and usually also connections among positions, and/or positions joined by the extent of a common surface and/or material volume), corresponding to positions of surfaces of a target body tissue region to be visually rendered for presentation. Optionally, the geometry of positions interior to the surface is also defined and/or represented. For example, presentation optionally includes the use of transparency and/or cross-sectional views, whereby an interior portion of a tissue region is made visible.
Surfaces represented are optionally external (e.g., organ surfaces; not necessarily surfaces visible externally to the body) and/or internal (e.g., lumenal) surfaces of the target body tissue region. In some embodiments, geometrical rendering data 1121 are derived from anatomical data 31; for example, appropriately segmented 3-D medical image data. In some embodiments, anatomical data 31 include specification of tissue region thicknesses, for example, thicknesses of heart walls. Heart wall thickness is optionally obtained from, for example: atlas information (optionally for a population corresponding to the current patient), modified atlas information (for example, scaled according to anatomical landmark correspondence, heart rate, and/or point observations), and/or imaging of the patient (for example, one or more of CT, MRI, and/or nuclear imaging techniques).
Moreover, in some embodiments, the appearance of the raw geometrical rendering data 1121 that is finally presented by a user interface 55 is also determined in part by the assignment to the geometry of material appearance properties (MAPs); that is, properties affecting the appearance of materials represented in the rendered image. As the term is used herein, MAPs comprise any properties associated to positions (typically positions of a “virtual material”, as next described) in a virtual environment for visual rendering according to simulated optical laws, and which affect how a surface and/or its enclosed volume are visualized within a 3-D rendered space. For example, MAPs may define color, texture, transparency, translucency, scattering, reflectance properties, and the like. MAPs are usually but not only assigned to surface positions defined by the geometrical rendering data. MAPs are optionally assigned to volumes defined by surfaces specified by the geometrical rendering data 1121. MAPs can also be assigned to the virtual environment (e.g., as lighting parameters) in such a way that they selectively affect material appearance at different positions. In some embodiments of the current invention, MAPs are used to in part define surface textures, for example by use of bump mapping (a type of normal mapping technique).
Creating the visual rendering in some embodiments may include surfaces and/or volumes comprising “virtual material”; for example, a virtual material having a visual appearance of myocardial tissue, and used in the representation of a heart wall defined by two surfaces. A virtual material, in some embodiments, is subject to simulated optical rules approximating processes such as reflection, scattering, transparency, shading, and lighting. Not every optical rule used in visual rendering is a copy of a real-world physical process; the art of computer rendering includes numerous techniques (for achieving both realistic and deliberately unrealistic results) that apply simulated optical rules that have no direct physical equivalent. Normal mapping has already been mentioned as a technique which can be applied to change a texture and/or geometrical appearance. Another example of a simulated optical rule is ambient occlusion. Ambient occlusion is an efficiently calculable method of simulating the effect of ambient lighting, but the occlusion is defined as a mapped property of an object's surface, rather than as an effect of light emitted from positions in the environment.
A virtual material optionally also defines material properties that are not directly either geometrical or “of appearance”, for example, density, viscosity, thermal properties, and/or elastic properties. Insofar as these properties do in turn (in a given embodiment) affect the definition of MAPs (for example, via calculations of one or more simulators 1110), they are optionally treated as parts of material appearance properties data 1122, without actually comprising MAPs in themselves. Additionally or alternatively, non-appearance properties, particularly those that affect how geometry changes (such as thickness, density, velocity, viscosity, and/or elasticity), are optionally considered part of the geometrical rendering data 1121 insofar as they affect geometrically apparent behaviors of the material (e.g., how the material changes in shape).
Calculation of Geometrical Effects from Interaction Data
In some embodiments of the invention, geometrical effects of tissue-probe interactions on a simulated tissue region are assigned based on the output of one or more simulators 1110 (
In some embodiments, sensing data 1101 and/or treatment status data 1102 (i.e., data describing the operation of a treatment modality) are used directly or indirectly as input to one or more simulators 1110 (e.g., simulators 1111, 1112, 1113, and/or 1114) that make adjustments to a modeled appearance state 1120 of the tissue based on inputs received, and one or more simulated aspects of tissue physiology, geometry, and/or mechanics. The modeled appearance state 1120 includes the geometrical rendering data 1121 and material appearance properties data 1122 in a form suitable for being operated on by the simulators 1110; it may also be or comprise a renderable model state 1103 suitable for rendering for presentation, or else be convertible to a renderable model state 1103. In some embodiments, modeled appearance state also includes data indicating the probe state 1123.
Simulators 1110 also optionally receive as starting input anatomical data 31 and/or tissue state data 1104. In addition to adjusting the modeled appearance state 1120, simulators 1110 optionally maintain their own internal or mutually shared simulation states. In some embodiments, simulators 1110 use motion simulation services exposed by a graphical game engine that can produce geometrical changes to a scene based, for example, on simulated collisions among scene elements, gravity effects, velocity, momentum, and/or elasticity.
Operations of some exemplary simulators 1111, 1112, 1113, and/or 1114 are described in the context of the examples of
In relation to
Direct sensing input: In some embodiments, adjustment of the simulation scene is implemented based directly on sensing data 1101. For example, a pressure reading from a pressure sensor 14 is optionally mapped directly to a geometrical displacement according to the measured pressure.
Additionally or alternatively, in some embodiments, a more involved simulation is performed; wherein probe interaction with a virtual material representing tissue is, in at least one aspect, physically and/or physiologically simulated in order to produce a new modeled appearance state.
Physiologically interpreted sensing input: In some embodiments, the use of sensing data 1101 by a simulator is indirect after interpretation by one or more physiology trackers 1106. Physiology tracker 1106, in some embodiments, is a module which accepts sensing data 1101 and generates an assessment of current physiological state based on the sensing data 1101. For example, in some embodiments, sensing data 1101 comprises dielectric measurements that physiology tracker 1106 is configured to convert into assessment of tissue state, for example fibrotic, healthy, or edematous; for example as described in International Patent Application No. PCT/IB2016/052690, the contents of which are included by reference herein in their entirety. Optionally or alternatively, electrical activity originating in tissue indicating a functional state (e.g., general capacity to support electrical activity, and/or feature of the activity itself) is measured and used as sensing input.
The output of the physiology tracker 1106 from one or more of these inputs is optionally in terms of one or more states such as tissue thickness (e.g., heart wall thickness), lesion depth, lesion volume, degree of lesion transmurality, characterization of tissue edema, characterization of functional activity and/or inactivation, a classification as to a potential for tissue charring, and/or a classification as to a potential for or occurrence of steam pop. “Steam pop” is a phenomenon occurring during ablation with an audible popping noise and/or spike in impedance, which is apparently due to sudden release of steam after excessive heating, associated with risk of perforation.
These outputs are optionally provided to a physiology simulator 1114 and/or an ablation physics simulator 1112, configured to convert such states into MAPs, other virtual material properties, and/or geometrical effects that indicate the tissue state(s) calculated from the measurements. Optionally, the tissue state interpreted from the sensing input also affects mechanical properties used, for example, by a contact physics simulator 1111 and/or an injection simulator 1113. It is a potential advantage to implement a physiological tracker 1106 as a distinct module that can be treated as a computational “service” to any appropriate simulator 1110. However, it should be understood that physiological tracker 1106 is optionally implemented as part of one or more simulators 1110 producing changes to a modeled appearance state 1120. In this case, the module configuration is more like that of direct sensing input, with the simulation of appearance integrated with physiological interpretation of the sensing data.
Positionally interpreted sensing input: In some embodiments, the use of sensing data 1101 by a simulator is indirect after interpretation by a probe position tracker 1107. Probe position tracker 1107, in some embodiments, is a module that accepts appropriate sensing data 1101 (e.g., electromagnetic field navigation data, acoustic tracking data, and/or imaging data) and converts it to a measurement of the position (e.g., a measurement of the location and/or a measurement of the orientation) of a probe such as catheter probe 11, for example as described in International Patent Application No. PCT/1132016/052687. It optionally comprises position analyzer 20. Optionally, position tracker 1107 implements processing to massage outputs of position analyzer 20 in view of the current state of the scene simulation—for example, to recalibrate sensed position data to positions compatible with the scene simulation. Optionally, position tracker 1107 integrates position data from a plurality of position inputs.
Optionally position determination includes determination of tissue contact force and/or quality, using a force sensor on the probe, and/or for example as described in International Patent Application No. PCT/IB2016/052686, the contents of which are included by reference herein in their entirety. Additionally or alternatively, on-line imaging data (e.g., ultrasound and/or angiographic images) are used, intermittently and/or continuously, to determine and/or verify probe position.
Probe position determinations are optionally used as inputs to any of simulators 1110; for example in order to assign particular positions to measurements of other tissue states/properties, and/or to help characterize changes induced by probe interactions with tissue (e.g. geometrical distortions of tissue introduced by touching contact with the probe, and/or simulated effects of treatment procedures). It is a potential advantage to implement probe position tracker 1107 as a distinct module that can be treated as a computational “service” to any appropriate simulator 1110. However, it should be understood that probe position tracker 1107 is optionally implemented as part of one or more simulators 1110 producing changes to a modeled appearance state 1120 maintained by interaction analyzer 21.
Treatment status input: In some embodiments, simulation is implemented based on treatment status data 1102. Treatment status data 1102 include data indicating the operation and/or status of a treatment modality—for example, power, control parameters (e.g., of signal frequency, phase, and/or timing), and/or monitoring data. Optionally, treatment status data are applied directly to modeled appearance state 1120; for example, as an indentation or other deformation at a position of treatment modality activation. Additionally or alternatively, in some embodiments, at least one aspect of the tissue and/or tissue/probe interaction is physically and/or physiologically simulated in order to produce a new modeled appearance state 1120, based on the treatment status data.
For example, in some embodiments, a physiology simulator 1114 receives input indicating that a probe-delivered treatment operation has occurred at some particular position (optionally along with parameters of the treatment operation). Physiology simulator 1114 is optionally configured to model the reaction of tissue to the treatment, instantaneously (for example, due directly to energy delivered by an ablation treatment), and/or over time (for example, as an edematous reaction develops in the minutes following an ablation treatment). In another example, an injection simulator 1113 receives treatment status data indicating that a material injection is occurring. Injection simulator 1113 is optionally configured to model an appropriate reaction of tissue to the injected substance (e.g., swelling to indicate the injected volume, and/or to indicate injury response to the injection). The reaction is optionally immediate, and/or includes a slow-developing component as the material diffuses from the injection site. Optionally, changes in geometry due to the addition of material volume to the tissue are also modeled.
Presentation of Visual Rendering
At block 114, in some embodiments, a rendering of the modeled appearance state is created for presentation.
In some embodiments of the invention, geometrical effects on a simulated tissue region are assigned based on the output of one or more simulators 1110 (
In some embodiments, sensing data 1101 and/or treatment status data 1102 are used directly or indirectly as input to one or more simulators 1110 (e.g., simulators 1111, 1112, 1113, and/or 1114) that make adjustments to a modeled appearance state 1120 of the tissue based on inputs received, and one or more simulated aspects of tissue physiology, geometry, and/or mechanics. Simulators 1110 also optionally receive as starting input anatomical data 31 and/or tissue state data 1104. In addition to adjusting the modeled appearance state 1120, simulators 1110 optionally maintain their own internal or mutually shared simulation states. In some embodiments, simulators 1110 use motion simulation services exposed by a graphical game engine that can produce geometrical changes to a scene based, for example, on simulated collisions among scene elements, gravity effects, velocity, momentum, and/or elasticity.
Operations of some exemplary simulators 1111, 1112, 1113, and/or 1114 are described herein in the context of the examples of
In some embodiments of the invention, a modeled appearance state 1120 is converted to a renderable model state 1103 and provided to a display module 1130 that converts (renders) the renderable model state into at least one image comprising a visually rendered representation of the intrabody region 7. Optionally, modeled appearance state 1120 is directly represented as a renderable model state 1103 (this is a potential advantage for tighter integration of the simulation with a game engine driving its rendering and presentation). The at least one image is displayed by one or more graphical displays of a user interface 55. User interface 55, in some embodiments, comprises one or more displays, for example a computer monitor, virtual reality goggles, and/or 2-D or 3-D projection device. Preferably, user interface 55 also comprises one or more user input devices that can be used for tasks such as selecting operating modes, preferences, and/or display views. It is noted that insofar as catheter probe position sensing affects simulation and/or display, catheter probe manipulation also acts as a special form of user input device; but for purposes of the descriptions herein such catheter probe sensing inputs should be considered distinct from inputs provided through user interface 55.
In some embodiments, the display module 1130 renders from one, two, three, or more viewpoints simultaneously. In some embodiments, rendering is performed (and the resulting images are displayed) at a frame rate sufficient to produce perceived motion (herein, such a frame rate is termed a motion frame rate)—for example, at least 10-15 frames per second; and optionally at least, for example, 15, 20, 30, 50, 60, or 100 frames per second (fps), or another greater or intermediate value. Within this range, lower frame rates (e.g. 10-20 fps) tend to give the appearance of “choppy” motion, with apparent motion growing increasingly fluid with rates up to at least 30-60 fps. More fluid motion is potentially less fatiguing and/or more precise for guiding actions based on events in the simulation scene. Still higher frame rates (above the nominal frequency of visual flicker fusion) add the potential advantage of increasingly convincing presentation of very rapid motion (e.g., reducing visual appearance of discrete-position motion “trails”). Trans-flicker fusion frequency frame rates are optionally preferred for immersive, virtual reality (VR) user interface implementations; higher frame rates potentially help mitigate VR motion sickness.
In some embodiments of the invention, display module 1130 includes a computer-implemented software module comprising the rendering pipeline 1230 of a 3-D graphics engine 1200 (software environment) such as is provided with graphical game engines such as the Unreal® or Unity® graphical game engine, or another game engine. Some general aspects of 3-D graphical game engines are discussed in relation to
Optionally, some functions of interaction analyzer 21 (for example, any of simulators 1110) are provided as functions (e.g. classes, hook implementations, etc.) making use of the application programming interface (API) of such a 3-D graphics engine 1200.
Ending the presentation of
Use of a Graphical Game Engine in Real-Time Anatomical Navigation
Continuing reference to
In some embodiments, sensing data 1101 and/or treatment status data 1102 are used directly or indirectly as input to one or more simulators 1110 (e.g., simulators 1111, 1112, 1113, and/or 1114) that make adjustments to a modeled appearance state 1120 of the tissue based on inputs received, and one or more simulated aspects of tissue physiology, geometry, and/or mechanics. Simulators 1110 also optionally receive as starting input anatomical data 31 and/or tissue state data 1104. In addition to adjusting the modeled appearance state 1120, simulators 1110 optionally maintain their own internal or mutually shared simulation states. In some embodiments, simulators 1110 use motion simulation services exposed by a graphical game engine that can produce geometrical changes to a scene based, for example, on simulated collisions among scene elements, gravity effects, velocity, momentum, and/or elasticity.
Operations of some exemplary simulators 1111, 1112, 1113, and/or 1114 are described in the context of the examples of
Reference is now made to
In some embodiments of the invention, a graphical game engine 1200 is used not only to render images (for example as described in relation to block 114 of
In broad outline, a graphical game engine 1200 comprises a collection of computer software components exposing one or more application programming interfaces (APIs) for use in describing, instantiating (initializing and maintaining), continuously updating, rendering, and/or displaying of scene elements 1220. Examples of graphical game engines include the Unreal® and Unity® graphical game engines.
The scene elements 1220 provided for the operations of graphical game engine 1200 optionally include, for example, descriptions of terrain 1221, objects 1224, cameras 1223, and/or elements for lighting 1222. In some embodiments of the present disclosure, definitions of scene elements 1220 are derived from geometrical rendering data 1121 and/or MAPs data 1122. Definitions are optionally expressed in terms of geometrical-type scene data 1225 (e.g. model assets, shapes, and/or meshes), and/or appearance-type scene data 1226 (e.g., image assets, materials, shaders, and/or textures). In some embodiments, geometrical rendering data 1121 and MAPs data 1122 are initially produced already in a format that is directly used by graphical game engine 1200.
In some embodiments, scene elements 1220 are provided with simulated dynamic behaviors by an iterated series of calculated scene adjustments 1210. Scene adjustments 1210 are optionally implemented by a variety of software components for e.g., motion physics services 1212, collision detection service 1213, and/or scripts 1211. These are examples; graphical game engines 1200 optionally implement additional services, e.g., “destructibility”. Scripts 1211 can be provided to simulate, for example, autonomous behaviors and/or the effects of triggered events. Scripts 1211 are optionally written in a general-purpose computer language taking advantage of APIs of the graphical gaming engine 1200, and/or in a scripting language particular to an environment provided by the core graphical gaming engine 1200. Graphical gaming engines optionally also accept integration with plugin software modules (plugins, not shown) that allow extending the functionality of the core graphical game engine 1200 in any of its functional aspects. For purposes of the descriptions provided herein, plugins that perform functions related to updating the scene state are also encompassed within the term “script” 1211. In some embodiments, all or part of any of simulators 1110 is implemented as a script 1211.
For purposes of descriptions herein, scripts 1211 (optionally including plugins) and scene elements 1220 are considered part of the graphical game engine 1200 as a functional unit. Optionally, for example where reference is made particularly to the off-the-shelf graphical game engine apart from specialized adaptations for uses described herein, the term “core graphical game engine” is used.
For interactivity, graphical game engines 1200 accept user input 1214 (optionally including, but not limited to, inputs from user interface 55 devices such as mouse, keyboard, touch screen, game controller, and/or hand motion detector; and for some embodiments of the current invention, optionally including data provided as input that indicate probe positions, treatment modality operation, etc.).
A typical graphical game engine also includes a rendering pipeline 1230 that may include one or more stages of 3-D rendering, effects application, and/or post-processing, yielding at least one stream of frame-rate images 1240. In some embodiments, the stages of the rendering pipeline 1230 include modules that implement simulated optical algorithms—not necessarily directly based on real-world physical laws—generally selected to produce a rendered result that visually gives to elements in the rendered scene the appearance of material substances.
Table 1 includes some examples of how graphical game engine features and concepts are optionally used in some embodiments of the current invention:
Independently Time-Evolving Probe-Tissue Interactions
Reference is now made to
In some embodiments of the invention, simulation of probe-tissue interactions includes simulation of tissue effects (e.g., injury response) developing substantially independently of continuing inputs from probe-tissue interaction data. In some embodiments, the flowchart of
The flowchart optionally begins after a triggering probe-tissue interaction has occurred which is to be modeled as provoking changes to the scene which continue after the trigger time to. For example, an input indicating that ablation energy has been delivered triggers the operations of the flowchart.
Optionally, operations of the flowchart of
At block 120, in some embodiments, one or more geometries and/or geometrical appearances are set to an initial state (an existing state is optionally used as the initial state) and a simulation function is selected and assigned to change the geometries and/or geometrical appearances as a function of time according to parameters set from inputs describing the probe-tissue interaction. These inputs may be included in the interaction data received at block 110. In some embodiments, the simulation function is configured to evolve according to the state of a timer.
For example, in some embodiments, a physiology simulator 1114 is configured to emulate effects of edema developing post-ablation, based on parameters such as the position, amount of energy delivery, and/or duration of energy delivery causing the ablation. Edema is optionally modeled to develop over the course of several minutes (for example, 2, 5, 10, 15, 20 or another number of minutes). Optionally, modeled changes in geometry and/or geometrical appearance simulate changes in muscle tone, e.g., vasodilation or vasoconstriction. The geometry and/or geometrical appearance is optionally modeled to show thickening and/or thinning, increase and/or decrease in surface height variation over a surface area, and/or another deformation, for example: dimpling, puckering, “goose-pimpling”, stretching, collapsing, expanding, distending, and/or shrinking. Lumenal structures optionally show change in cross-sectional shape (e.g., radius).
Optionally, one or more MAPs are changed in coordination with change in geometry and/or geometrical appearance. Adjusted MAPs optionally include, for example, those that can be modified to show increasing “redness” of the tissue with time to indicate swelling, “whiteness” or “greyness” to indicate loss of perfusion, color change to indicate change in temperature, etc.
As another example: in some embodiments, geometrical effects are applied to indicate contractile state (for example, of cardiac muscle, or gastrointestinal tract motion). Optionally, simulations of contraction are triggered by measurements of heartbeat and/or pulse phase, and/or of autonomic nervous system activity. The geometrical effects are preferably simulated to be in synchrony with what is expected to be actually occurring in the tissue that the simulation describes. However, the simulation is optionally different from reality in one or more respects; for example, amplitude is optionally adjusted. Larger-adjusted amplitude potentially emphasizes activity (e.g., vasoconstriction is exaggerated for clarity); smaller-adjusted amplitude potentially reduces distracting effects of activity (e.g., heart contraction is shown with reduced amplitude).
In some embodiments of the invention, dynamic adjustment of heart size in a rendered view of a simulated scene is based on heart rate. Optionally, this is implemented by dynamic adjustment of the geometrical rendering data representing the heart shape. In some embodiments, the adjusting comprises adjusting a static size of one or more heart chambers (e.g., a lumenal volume of the heart chambers, and/or a lumenal dimension of the heart chambers). In some embodiments, the adjusting comprises selecting a range of heart chamber sizes simulated cyclically over the course of each heartbeat cycle, e.g., between changing minimum and/or maximum sizes.
In some embodiments of the invention, the adjustment of heart chamber size to larger or smaller sizes is accompanied by corresponding inverse adjustment of heart wall sizes to smaller or greater thicknesses.
A potential advantage of these adjustments is to increase an accuracy and/or precision with which an intrabody probe (and in particular, an intracardial catheter probe) can be positioned, and/or with which the position of such a probe can be determined. In particular, positioning precision/accuracy with respect to one or more particular regions of heart wall tissue is potentially improved; for example, a nearest and/or a pointed-at region of heart wall tissue. A pointed at location is located along a longitudinal axis extending through the probe tip.
This in turn potentially increases certainty of achieving targeted effects of treatment administration (e.g., ablation), and/or of evaluating those treatment effects. Adjustment of a display to maintain an accuracy of positioning of the intracardial probe relative to the heart is implemented, in some embodiments, using one or more of the following methods. Optionally, positioning changes of a probe relative to a heart wall due to heart size changes are at least partially represented to an operator by simulating relative movements and/or scaling of a rendered representation of an intrabody probe in a display, while suppressing at least part of the size changes undergone by the actual heart chamber represented in the display. For example, if heart chamber beats are at least partially suppressed, then changing actual probe position relative to the beating heart chamber walls is optionally displayed by movements of the probe itself. Optionally, for example, if inter-pulse heart chamber size changes (e.g., due to heartbeat rate changes) are at least partially suppressed: scaling of detected intracardial probe movements is adjusted in a display so that relative positions of heart wall and probe remain synchronized between the actual tissue and probe pair, and a display of a simulated tissue and probe pair.
In some embodiments, the wave pattern to be simulated is determined at least in part from direct measurements of impulse wave propagation. In some embodiments, the wave pattern is simulated from a generic heart tissue or other tissue model. Optionally, the wave pattern is adapted according to knowledge about tissue state, for example, to indicate regions of weak and/or slow propagation attributed to states of fibrosis, perfusion state, and/or denervation. Optionally, moreover, the degree of impulse transmission is itself modulated in simulations managed by physiology simulator 1114; for example, to reflect transmission effects of treatment activities such as lesioning, tissue cooling, injections, etc.
At block 122, in some embodiments, the current state of the geometry and/or geometrical appearance (optionally including changes to MAPs) is rendered to a visual representation of the tissue with which the interaction occurred. In some embodiments, the rendering makes use of 3-D graphics engine, for example as described in relation to display module 1130, and/or in relation to
At block 124, in some embodiments, the timer is incremented.
At block 126, in some embodiments, a decision is made as to whether the loop is to continue (returning to block 120), or is terminated (stopping the flowchart). Time-evolving geometry and/or geometrical appearance optionally evolve, for example, cyclically (for example, repeating a movement pattern), transiently (disappearing at the end of a generation cycle, for example, in a simulation of cooling from a heated condition or re-warming from a cooled condition), and/or to a new steady-state appearance (for example, edema that develops to a fully developed state during a period after ablation, and then persists beyond the period during which the tissue is simulated).
It should be understood that sensing feedback is optionally integrated with the flowchart of
Modes of Simulating Geometrical Effects
Cross-Sectional Perspective Views of Single-Lesion Progress
Reference is now made to
In appearance,
This has a potential advantage for allowing the indentation size to be clearly seen (as a deflection of the surface boundary 203). Optionally, the cross-sectional view also displays information about achieved lesion parameters such as lesion depth and/or lesion transmurality. Where cross-section is shown, transformation of geometrical position data is preferably used to show indentation changes. Geometrical appearance changes (e.g., by manipulation of normal mapping) are optionally used as well; but preferably not used alone, since the edge-on view of a cross-section highlights the spatial position of surface contours.
Additionally or alternatively, in some embodiments of the invention, transparency effects are applied to allow seeing into a targeted volume of tissue. For example, before ablation begins, a local region of tissue selected by the position of probe 202 is shown with increased transparency. Optionally, as portions of the tissue become lesioned, they are represented in simulated display as more opaque; creating an ablation “island” that directly shows the progress of lesioning. A potential advantage of the transparency approach is to allow representation of lesioning progress from any arbitrary 3-D point of view including the targeted tissue region.
In
In some embodiments, this progression is based on inputs describing the operation of the treatment modality (ablation, in the illustrated example). For example, inputs describing power, duration, and/or contact quality are factored into a simulation (e.g., by an ablation physics simulator 1112) linked to how the tissue is displayed in its geometrical and/or material appearances. Optionally, operation of an ablation physics simulator 1112 includes thermal modeling (thermal simulation), based on local tissue region properties, for example, of local tissue type, thickness, thermal conductivity, and/or thermal exchange (e.g., between tissue and flowing blood). In some embodiments, at least part of the information providing local tissue type and/or thickness is obtained based on dielectric properties calculated from measurements of an alternating electromagnetic field obtained from a sensing electrode 3 at or near the position of the lesion 209.
In some embodiments, calculated dielectric properties are used as indications of lesion state (e.g., size, transmurality, completeness and/or irreversibility), for example as described in International Patent Application No. PCT/IB32016/052690, the contents of which are incorporated by reference herein in their entirety. In in vitro studies, accuracy of transmurality has been found to be about ±1 mm. In prospective in vivo studies, 100% sensitivity and specificity in predicting lesion transmurality was found, while in humans, at least 90% specificity and sensitivity was found. Specificity is the percentage of actually well-ablated areas that were dielectrically identified as well-ablated; sensitivity is the percentage of actually partially ablated areas that were dielectrically identified as partially ablated.
Additionally or alternatively, the progression during lesioning is based on inputs describing sensed data reflecting one or more treatment effects, for example, measured temperature and/or changes in dielectric properties as tissue begins to break down. In general, probe-based temperature sensing, where available, is limited in resolution and/or depth, so that completely sensing-based adjustment may be difficult or impossible to obtain. However, sensed data may nevertheless be used as input to an ablation physics simulator 1112 that extrapolates lesion state through a 3-D block of tissue. Optionally, the extrapolated state is used as a corrective and/or calibrating input to an ablation physics simulator 1112.
In some embodiments, one or more additional indications of house lesioning is proceeding are provided as part of the rendered image. For example, in
Simulation of Tissue “Tenting”
Reference is now made to
In some embodiments of the invention, the geometry of a three-dimensional simulation of a tissue wall region 50 is updated for displaying at a motion frame rate. The frame updating may be based on information received from one or more sensing modalities. The information may be received as catheter probe 11 interacts with a tissue wall. The two figure series of
The sensing modalities optionally comprise modalities that are non-imaging in nature (e.g., catheter probe position tracking data, and/or probe-sensed parameter time-course data), and/or comprise images giving incomplete view coverage of the simulated tissue region (for example, cross-sectional images). New sensing data is optionally acquired faster, slower, or at the same rate as the simulation appearance is updated.
Simulation and visualization updating is optionally in correspondence with states indicated by recently sensed data. For example when sampling is slow and/or intermittent, the current simulation state is optionally extrapolated from recent data according to one or more trends therein. Optionally, simulation updating is delayed from the acquisition of real-time data (for example, delayed to a buffer of at least two recent samples, and/or for example, by up to about 250 msec), which optionally allows smoothing interpolation between actually measured sensing data points in exchange for a certain amount of lag.
The X-axes of graphs 310 of
In some embodiments of the invention, probe-tissue contacts causing and/or represented by geometrical tissue deformations within the body are measured using one or more sensing modalities (for example, sensing by a force sensor, by sensing of impedance properties, or another sensing modality) that are only partially indicative of the overall geometrical effects of the contact. In some embodiments, the one or more sensing modalities provide information as to the variation over time of a limited number of parameters communicated in the interaction data; for example, one, two, three, or more parameters.
For example, in some embodiments, sensing information that encodes position of probe 11 is available. The position of probe 11 may be indicated by the interactive information absolutely and/or relative to the tissue portion represented by rendered tissue region 50. In some embodiments, the sensing information may be indicative of contact quality and/or contact force measured to exist between probe 11 and the tissue portion represented by rendered tissue region 50. In some embodiments, these measurements are used to guide changes made to simulated tissue region 50 and rendered probe 11A, and the model rendered in turn to a sequence of images that visually simulate geometrical effects associated with the sensed information.
In some embodiments, the simulated model comprises a mechanical model of a tissue wall, including, for example, properties of tissue wall thickness, elasticity, density, velocity, and/or viscosity suitable to the tissue being simulated. Simulation of deformations optionally comprises applying a force commensurate with sensed forces and/or positions. Preferably, simulated geometrical effects are generated to faithfully visualize those effects that are actually occurring. In such embodiments, a mechanical model of the tissue wall is preferably provided with parameter values yielding realistic-looking behavior in reaction to applied simulated force and/or displacement. Graphical game engines commonly expose services for the simulation of physical interactions of scene elements, providing a potential advantage for ease of implementation.
Optionally or additionally, simulated geometrical effects may convey to an operator information about the contact, even though actual geometrical distortions (e.g., geometrical distortions introduced by touching contact with a probe, which may comprise pressing on tissue by the probe) are potentially different than the simulation shows: e.g., smaller in size, and/or modeled to simply indicate stages in deformation, without quantitative fidelity. In such embodiments, a simulated mechanical model is optionally implemented with parameters giving model behaviors that are potentially different from the actual case. Optionally, the model is implemented more simply; for example, as a mapping of a range of geometrically distorted wall shapes to one or more corresponding ranges of sensed input values.
Additionally or alternatively, in some embodiments, image information at least partially describing geometrical changes is available to the operator. The image information may be spatially incomplete: for example, an ultrasound cross-section that illustrates deformation in a planar cross-section of the tissue wall portion that an intrabody probe is penetrating. In some embodiments, an imaging modality other than ultrasound is used, for example, X-ray fluoroscopy. Preferably, the imaging modality provides images at a rate sufficient to guide manipulation of the catheter probe 11, but this can optionally be a rate below motion frame rate; for example, at least 2-5 Hz.
Turning now to the images in sequence,
In
Additionally or alternatively, the ultrasound image of
In the second set in the sequence (
In the third set in the sequence, (
Contact Simulation—Example of Simulation
Reference is now made to
Full geometrical deformation, including mesh deformation, is described herein in relation to the examples of
In
In
The normal-mapped mode of representing geometrical deformation is of potential use to an operator for helping to gauge contact quality before lesioning, particularly in views having a substantial elevation angle above the contacted surface. Optionally, views using normal mapping-type indentation are presented alongside views where 3-D geometrical distortion is used (for example, in cross-section, as discussed in relation to
Physiological Simulation—Example of Simulation
Reference is now made to
In
In
Example of Probe-Determined Camera Perspective
Reference is now made to
In some embodiments, a camera viewpoint 1154 is defined (e.g., as part of the definition of a camera 1223,
It may be noted that rendered catheter probe 11A appears in rendered image 1150 in a position similar to the position of hand-held tools seen in some “first-person” games, wherein a tool is shown on the screen in a position as if held before otherwise unseen avatar whose eyes define the camera position. In some embodiments of the present invention, this viewpoint configuration provides a potential advantage for obtaining a clear view of the field of operation of the probe, e.g., when it contacts tissue.
Optionally, registration between the probe and the viewpoint may comprise any other suitable combination of position and orientation. For example, looking back along a catheter is potentially useful for obtaining a sense of what freedom exists in how the catheter probe can be presently positioned. Looking at the catheter itself from a more distant position potentially provides an improved sense of how the catheter relates to its overall surroundings. In some embodiments, viewpoint optionally shifts (automatically and/or under manual control) depending on what action is being performed; for example, a probe-mounted view like that of
General
It is expected that during the life of a patent maturing from this application many relevant catheter probes will be developed; the scope of the term catheter probe is intended to include all such new technologies a priori.
As used herein with reference to quantity or value, the term “about” means “within ±10% of”.
The terms “comprises”, “comprising”, “includes”, “including”, “having” and their conjugates mean: “including but not limited to”.
The term “consisting of” means: “including and limited to”.
The term “consisting essentially of” means that the composition, method or structure may include additional ingredients, steps and/or parts, but only if the additional ingredients, steps and/or parts do not materially alter the basic and novel characteristics of the claimed composition, method or structure.
As used herein, the singular form “a”, “an” and “the” include plural references unless the context clearly dictates otherwise. For example, the term “a compound” or “at least one compound” may include a plurality of compounds, including mixtures thereof.
The words “example” and “exemplary” are used herein to mean “serving as an example, instance or illustration”. Any embodiment described as an “example” or “exemplary” is not necessarily to be construed as preferred or advantageous over other embodiments and/or to exclude the incorporation of features from other embodiments.
The word “optionally” is used herein to mean “is provided in some embodiments and not provided in other embodiments”. Any particular embodiment of the invention may include a plurality of “optional” features except insofar as such features conflict.
As used herein the term “method” refers to manners, means, techniques and procedures for accomplishing a given task including, but not limited to, those manners, means, techniques and procedures either known to, or readily developed from known manners, means, techniques and procedures by practitioners of the chemical, pharmacological, biological, biochemical and medical arts.
As used herein, the term “treating” includes abrogating, substantially inhibiting, slowing or reversing the progression of a condition, substantially ameliorating clinical or aesthetical symptoms of a condition or substantially preventing the appearance of clinical or aesthetical symptoms of a condition.
Throughout this application, embodiments of this invention may be presented with reference to a range format. It should be understood that the description in range format is merely for convenience and brevity and should not be construed as an inflexible limitation on the scope of the invention. Accordingly, the description of a range should be considered to have specifically disclosed all the possible subranges as well as individual numerical values within that range. For example, description of a range such as “from 1 to 6” should be considered to have specifically disclosed subranges such as “from 1 to 3”, “from 1 to 4”, “from 1 to 5”, “from 2 to 4”, “from 2 to 6”, “from 3 to 6”, etc.; as well as individual numbers within that range, for example, 1, 2, 3, 4, 5, and 6. This applies regardless of the breadth of the range.
Whenever a numerical range is indicated herein (for example “10-15”, “10 to 15”, or any pair of numbers linked by these another such range indication), it is meant to include any number (fractional or integral) within the indicated range limits, including the range limits, unless the context clearly dictates otherwise. The phrases “range/ranging/ranges between” a first indicate number and a second indicate number and “range/ranging/ranges from” a first indicate number “to”, “up to”, “until” or “through” (or another such range-indicating term) a second indicate number are used herein interchangeably and are meant to include the first and second indicated numbers and all the fractional and integral numbers therebetween.
Although the invention has been described in conjunction with specific embodiments thereof, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art. Accordingly, it is intended to embrace all such alternatives, modifications and variations that fall within the spirit and broad scope of the appended claims.
It is the intent of the Applicant(s) that all publications, patents and patent applications referred to in this specification are to be incorporated in their entirety by reference into the specification, as if each individual publication, patent or patent application was specifically and individually noted when referenced that it is to be incorporated herein by reference. In addition, citation or identification of any reference in this application shall not be construed as an admission that such reference is available as prior art to the present invention. To the extent that section headings are used, they should not be construed as necessarily limiting. In addition, any priority document(s) of this application is/are hereby incorporated herein by reference in its/their entirety.
It is appreciated that certain features of the invention, which are, for clarity, described in the context of separate embodiments, may also be provided in combination in a single embodiment. Conversely, various features of the invention, which are, for brevity, described in the context of a single embodiment, may also be provided separately or in any suitable subcombination or as suitable in any other described embodiment of the invention. Certain features described in the context of various embodiments are not to be considered essential features of those embodiments, unless the embodiment is inoperative without those elements.
Claims
1. A method of visually displaying effects of a medical procedure, comprising:
- receiving interaction data from an intrabody probe indicating touching contacts between the intrabody probe and a body tissue region, wherein the interaction data at least associate the contacts to contacted positions of the body tissue region;
- adjusting geometrical rendering data representing a shape of the body tissue region to obtain adjusted geometrical rendering data, wherein the adjusting is based on an indication in the interaction data of a change in the shape of the body tissue region due to the contacting;
- rendering the adjusted geometrical rendering data to a rendered image; and
- displaying the rendered image;
- wherein the geometrical rendering data are adjusted as a function of time since occurrence of an indicated contact.
2. The method of claim 1, wherein the receiving, the adjusting, and the displaying are performed iteratively for a sequence of contacts for which interaction data is received.
3. The method of claim 1, wherein the adjusting is as a function of time relative to a time of occurrence of at least one of the indicated contacts, and comprises adjusting the geometrical rendering data to indicate gradual development of a change in geometry of the body tissue region as a result of the contacts.
4. The method of claim 3, wherein the gradually developed change in geometry indicates a developing state of edema.
5. The method of claim 4, comprising geometrically distorting the rendering of the geometrical rendering data into a swollen appearance, to an extent based on the indicated development of the state of edema.
6. The method of claim 3, wherein the contacts comprise mechanical contacts, and the gradual development of a change in geometry indicates swelling of the body tissue region in response to tissue irritation by the mechanical contacts.
7. The method of claim 3, wherein the contacts comprise an exchange of energy between the intrabody probe and the body tissue region by a mechanism other than contact pressure.
8. The method of claim 1, wherein the extent and degree of the adjusting model a change in a thickness of the body tissue region.
9. The method of claim 1, wherein the interaction data describe an exchange of energy between the intrabody probe and the body tissue region by a mechanism other than contact pressure.
10. The method of claim 9, wherein the adjusting comprises updating the geometrical rendering data based on a history of interaction data describing the exchange of energy.
11. The method of claim 10, wherein the exchange of energy comprises operation of an ablation modality.
12. The method of claim 11, wherein the updating changes an indication of lesion extent in the geometrical rendering data based on the history of interaction data describing the exchange of energy by operation of the ablation modality.
13. The method of claim 11, wherein the updating comprises adjusting the geometrical rendering data to indicate a change in mechanical tissue properties, based on the history of interaction data describing the exchange of energy.
14. The method of claim 11, wherein the ablation energy exchanged between the intrabody probe and the body tissue region comprises at least one of the group consisting of: radio frequency ablation, cryoablation, microwave ablation, laser ablation, irreversible electroporation, substance injection ablation, and high-intensity focused ultrasound ablation.
15. The method of claim 10, wherein the updating comprises adjusting the geometrical rendering data to indicate a change in tissue thickness, based on the history of interaction data describing the exchange of energy.
16. The method of claim 10, wherein effects of the history of interaction data describing the exchange of energy are determined from modelling of thermal effects of the exchange of energy on the body tissue region.
17. The method of claim 16, wherein the modelling of thermal effects accounts for local tissue region properties affecting transfer of thermal energy between the intrabody probe and the body tissue region.
18. The method of claim 9, wherein the exchange of energy between the intrabody probe and the body tissue region induces edema, and the adjusting comprises adjusting the geometrical rendering data to indicate the edema.
19. The method of claim 1, wherein the body tissue region comprises a tissue of at least one organ of the group consisting of the heart, vasculature, stomach, intestines, liver and kidney.
20. The method of claim 1, further comprising assigning material appearance properties across an extent of the geometrical rendering data, based on the interaction data; and wherein the displaying of the rendered image uses the assigned material appearance properties.
Type: Application
Filed: Mar 23, 2022
Publication Date: Jul 7, 2022
Applicant: Navix International Limited (Road Town)
Inventors: Yizhaq SHMAYAHU (Ramat-HaSharon), Yitzhack SCHWARTZ (Haifa)
Application Number: 17/701,830