Device and a Method for Improving the Function of a Heart Valve
A medical device is disclosed that reinforces weakened or degenerated areas of at least a portion of a leaflet (24) Of the heart valve. Function of a heart valve is thus improved. The medical device comprises at least a first partly flexible leaflet reinforcement patch (30) having an extension between an inner section (34) and an outer section (32), wherein said outer section (32) is configured to be oriented towards said annulus, and said inner section (34) is configured to be oriented towards said inner section of said valve tissue, and at least a portion of said inner section (34) of said flexible leaflet reinforcement patch (32) having at least one of said plurality of leaflets (24) in juxtaposition to said portion of said inner section (34), and said portion of said inner section (34) being positioned to provide reinforcement to said plurality of leaflets (24).
This application is a continuation of U.S. patent application Ser. No. 16/231,337 filed Dec. 21, 2018, which is a continuation of U.S. patent application Ser. No. 14/357,760 filed May 12, 2014 entitled A Device And A Method For Improving The Function Of A Heart Valve, which is the U.S. National Phase of and claims priority to International Patent Application No. PCT/EP2012/072272, International Filing Date Nov. 9, 2012, entitled A Device And A Method For Improving The Function Of A Heart Valve, which claims benefit of European Patent Application No. EP11188656.0 filed Nov. 10, 2011 entitled A Device And a Method For Improving The Function Of A Heart Valve, and of U.S. Provisional Application Ser. No. 61/558,787, filed Nov. 11, 2011 entitled A Device And a Method For Improving The Function Of A Heart Valve, all of which are incorporated herein by reference in their entireties.
FIELD OF THE INVENTIONThis disclosure pertains in general to the field of medical devices and methods. More particularly, the disclosure relates to a medical device for improving the function of a heart valve, and in particular to improving leaflets thereof.
BACKGROUND OF THE INVENTIONIn some conditions of degenerated heart function, the leaflets do not present a solid surface, as in a degenerative valve disease. The leaflet could also be perforated, with one or several holes, where the blood can flow backwards into the atrium.
Another possibility is that the leaflet is ruptured, most commonly at an edge of a leaflet, resulting in an incomplete coaptation. In some conditions of degenerated heart function, the leaflets do not present a solid surface, e.g. degenerative valve disease. The leaflet could be perforated, with one or several holes, where the blood can flow backwards into the atrium. Another possibility is that the leaflet is ruptured, most commonly at an edge of a leaflet, resulting in an incomplete coaptation.
US2005/0107871 discloses a valve implant or prosthesis which includes a skirt or prosthetic valve leaflet configured to cover one of the leaflets of the valve to be repaired in a patient's heart. In one embodiment, a heart valve prosthesis Includes a curved member and a skirt. The curved member can have first and second ends and be adapted to form a partial ring along a portion of one of the valve annulae in the patient's heart. Alternatively, the curved member can form a full ring that is adapted to extend along the entire valve annulus. The skirt extends along the curved member and depends therefrom. This prosthesis Is especially useful in treating mitral valve insufficiency. In this case, the skirt can be configured so that when the prosthesis Is secured to the mitral valve along the mitral valve annulus, the skirt covers the posterior leaflet and the opposed edges of the skirt and the anterior leaflet coapt. In addition, when the curved member is secured to the posterior portion of the mitral valve annulus, further annulus dilation can be minimized or eliminated.
Hence, a medical device and method would be advantageous, and in particular such a device and method allowing for repair of one or more leaflets of a heart valve, or other related anatomical structures, such as the chordae attached to the ventricular side of leaflets.
From US2004/106989 a support for providing additional strength to existing regurgitant or prolapsed valve leaflets is known. The support restores an otherwise non-functioning, or poorly functioning, native valve to a functioning condition, obviating the need for a complete valve removal or replacement. The support may also be applied to a functioning valve leaflet as a prophylactic measure against future failure. The delivery method includes a delivery mechanism for attaching the support to the native valve leaflet.
However, the support disclosed in this document may not be rigid enough. Furthermore, the support may not be easy to handle by the surgeon during surgery.
SUMMARY OF THE INVENTIONAccordingly, embodiments of the present disclosure preferably seeks to mitigate, alleviate or eliminate one or more deficiencies, disadvantages or issues in the art, such as the above-identified, singly or in any combination by providing a device and a method, that improves the function of a heart valve comprised of valve tissue including an annulus at an outer section of the valve tissue and a plurality of leaflets at an inner section of the valve tissue, according to the appended patent claims.
According to a first aspect of the disclosure, a medical device is provided for improving the function of a heart valve. The medical device has a flexible leaflet reinforcement patch, which has at least partly an extension between an inner portion and an outer portion thereof. The outer portion of the flexible leaflet reinforcement patch is during use oriented towards the annulus of a cardiac valve, away from one or more of a plurality of leaflets thereof. The inner portion is oriented towards the inner section of leaflet tissue of the cardiac valve. The inner portion of the leaflet is oriented towards the centre of the valve. At least a part of the inner portion of the flexible leaflet reinforcement patch is in juxtaposition to at least one leaflet. The inner part of the flexible leaflet reinforcement patch, which is in juxtaposition to at least one of the leaflets is positioned in such a manner that it provides reinforcement to at least a portion of one of the plurality of leaflets.
According to a second aspect of the disclosure, a method for improving the function of a heart valve is provided. By placing the flexible leaflet reinforcement patch in such a manner as to orient its outer section towards the annulus and to orient the inner section towards an inner section of the valve tissue a circumferential proportion of the heart valve and leaflets are engaged with the flexible leaflet reinforcement patch. The flexible leaflet reinforcement patch is placed so that it has at least a portion of one of the plurality of leaflets in juxtaposition, so as to provide reinforcement to the leaflet portion or portions.
According to a third aspect of the disclosure, a medical device for improving the function of a heart valve, comprising valve tissue including an annulus and a plurality of leaflets is provided. The medical device comprises a tissue anchoring unit, such as a first loop-shaped support, configured to abut a first side of the heart valve. The medical device further comprises a first flexible leaflet reinforcement patch, being connected by a connection portion to the abutted tissue anchoring unit, and at least a portion of the leaflet reinforcement patch is in juxtaposition with at least one leaflet. The flexible leaflet reinforcement patch is configured to provide reinforcement to the at least one leaflet.
Further embodiments are defined in the dependent claims, wherein features for the second and subsequent aspects of the disclosure are as for the first aspect mutatis mutandis.
Some embodiments have a tissue anchoring unit that is connected to the outer surface of the flexible leaflet reinforcement patch. The tissue anchoring unit, when in use, secures the flexible leaflet reinforcement patch to the adjacent tissue and/or annulus, in such a manner that the flexible leaflet reinforcement patch is prevented from dislocating itself, without loss of the desired reinforcement function. Hence, the flexible leaflet reinforcement patch will be less affected by the forces of the pulsatile blood flow and the dynamics of the beating heart, which would dislocate the flexible leaflet reinforcement patch otherwise.
The tissue anchoring unit for some embodiments is a loop-shaped support. This gives a more rigid construction that abuts against the whole extension of adjacent valve tissue, e.g. the annulus. The medical device is easier to handle by the surgeon during surgery.
Some embodiments have a tissue anchoring unit which has fastening units as glue, spikes, prongs, points, hooks, clasps or hasps. These fastenings units further secure attachment of the medical device to adjacent valve tissue, e.g. annulus. The fastening units are in some embodiments made of a biocompatible material. In other embodiments these fastening units are made of biodegradable material or bioabsorbable material. The latter embodiments act to reinforce the leaflets during a restricted period of time, as and when required.
Some embodiments have portions of the flexible leaflet reinforcement patch at least partly extending from the outer section of the valve tissue to a free edge of a leaflet. These embodiments will reinforce the whole radial extension of the leaflet, e.g. by patching over the sewing line where a leaflet section has been removed and the opposing cut edges have been surgically attached together.
Some embodiments have the thickness of the flexible leaflet reinforcement patch thinner than the extension of flexible leaflet reinforcement patch. The thickness of the flexible leaflet reinforcement patch is for some embodiments at least partly uniform. This does not restrain and affect the natural movement of the leaflet during heart movements. Having the flexible leaflet reinforcement patch at least uniform in thickness allows for individual patient configuration to facilitate that the flexible leaflet reinforcement patch's thickness reinforces weakened or degenerated areas of at least a portion of a leaflet.
Some embodiments have the inner portion of the flexible leaflet reinforcement patch that will grow into a leaflet where the flexible leaflet reinforcement patch is in juxtaposition against the leaflet. This gives a permanent reinforcement of the leaflet area. Furthermore, some embodiments have its inner portion made of a biocompatible material. As such the medical device will not interfere with the valve tissue, avoiding rejection reactions, and/or avoids causing of blood clotting, embolies, blood cavitations, or turbulences in the blood flow passing the heart valve.
Some embodiments have the inner portion of the flexible leaflet reinforcement patch made of a biodegradable material and/or a bio absorbable material. These embodiments will give a temporary reinforcement of the leaflet area until the leaflet is restored to a healthy condition. The time span of the temporary reinforcement is controlled upon specification of the biodegradable material and/or a bio absorbable material.
Some embodiments have fastening units at the inner portion of the flexible leaflet reinforcement patch in juxtaposition to the leaflet. These fastening units are e.g. glue, spikes, prongs, points, hooks, clasps or hasps. In use these fastening units prevent the leaflet reinforcement patch from vertically dislocating until the leaflet has firmly grown into the leaflet or the leaflet reinforcement patch is absorbed or degraded.
Some embodiments have an inner portion of the flexible leaflet reinforcement patch for attaching a first end of a string. The other end of the string is to be connected to a cardiac structure other than a leaflet. These embodiments preserve the natural leaflet if securing in the free edge of the leaflet is prevented due to e.g. degeneration of the leaflet. In some embodiments the cardiac structure is a papillary muscle and the string is a chordae replacement unit. In use, these embodiments maintain the natural dynamics of the heart, while replacing one or several chordae with one or several replacement units. These strings are made of biocompatible material, such as artificial or biological material.
Some embodiments have at least one string extending from the inner portion of the flexible leaflet reinforcement patch. The free end of the string is in use connected to a cardiac structure other than a leaflet. These embodiments preserve the natural leaflet if securing in the free edge of the leaflet is prevented due to e.g. degeneration of the leaflet. In some embodiments the free end of the string is connected to the papillary muscle. Moreover, in use these embodiments maintain the natural dynamics of the heart while adding one or several artificial chordae as replacement units.
Some embodiments provide a method for anchoring the flexible leaflet reinforcement patch in the heart valve tissue including a tissue anchoring unit. The flexible leaflet reinforcement patch will thus be securely attached to the adjacent heart tissue and also make the flexible leaflet reinforcement patch less affected by the dynamic forces of pulsatile blood flow and dynamic movements of the beating heart.
Some embodiments provide for a method for placing the flexible leaflet reinforcement patch's inner section in juxtaposition against at least a portion of at least one of the leaflets. The placement includes connecting at least one string to a cardiac structure other than a leaflet.
Some embodiments have a first loop-shaped support which in use abuts a first side of the heart valve. Connected to the first loop-shaped support is a first flexible leaflet reinforcement patch at a connecting surface. When first loop-shaped support is abutting the heart valve, the first flexible leaflet reinforcement patch is arranged so that in use, the patch is in juxtaposition to at least a portion of one of the leaflets. The connected flexible leaflet reinforcement patch is configured to provide reinforcement to at least one of the leaflets.
Some embodiments have a tissue anchoring unit, which in use anchor the medical device to a first side of the heart valve. To the anchoring unit a flexible leaflet reinforcement patch is attached, and the flexible leaflet reinforcement patch has a leaflet in juxtaposition to the inner section. When in use, the section in juxtaposition is arranged against at least a portion of at least one leaflet, when the anchoring unit is fixed in the heart valve. The flexible leaflet reinforcement patch reinforces at least one of the leaflets when in juxtaposition to the leaflet.
Some embodiments have a first loop-shaped support as the tissue anchoring unit. The first loop-shaped support gives enhanced rigidity to the medical device and furthermore makes the device more manageable at implantation. Moreover, the medical device will be juxtaposed with valve tissue throughout the circumferential extension of the anchoring unit.
In some embodiments, the flexible leaflet reinforcement patch has a plurality of separate flexible leaflet reinforcement patch units. In use these individual extending flexible leaflet reinforcement patch units independently extend towards the centre of the valve. An induced dislocation of a single leaflet reinforcement patch unit is effectively isolated and thus will not pull and dislocate adjacent leaflet reinforcement patch units.
For some embodiments, the thickness of the leaflet reinforcement patch is at least partly uniform. The leaflet reinforcement patch does not affect the natural movement of the leaflet by adding extra weight or rigidity at portion of the leaflet, where it is not needed.
In some embodiments the leaflet reinforcement patch extends at least partly to the free edge of at least one of the plurality of leaflets.
In some embodiments, the whole extension of the leaflet will be covered and reinforced by the leaflet reinforcement patch.
Some embodiments provide for a catheter-based delivery without leakage or regurgitation.
Some embodiments provide for sealing of the area between a stent and a replacement heart valve.
Some embodiments provide good adherence between two metal parts and sealing of the area between the two metal parts, at a target site, such as a mitral valve.
Embodiments provide for advantageous medical devices and/or methods for facilitating and/or providing treatment of regurgitation of mitral and tricuspid valves.
It should be emphasized that the term “comprises/comprising” when used in this specification is taken to specify the presence of stated features, integers, steps or components but does not preclude the presence or addition of one or more other features, integers, steps, components or groups thereof.
These and other aspects, features and advantages of the embodiments that the disclosure is capable of will be apparent and elucidated from the following description of embodiments of the present disclosure, reference being made to the accompanying drawings, in which
Specific embodiments of the disclosure now will be described with reference to the accompanying drawings. This disclosure may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art. The terminology used in the detailed description of the embodiments illustrated in the accompanying drawings is not intended to be limiting of the disclosure. In the drawings, like numbers refer to like elements.
The description is illustrated with reasoning using the mitral valve as a starting point. However it should be understood that the methods and devices of this disclosure could be applied also to e.g. the tricuspid valve, the aortic valve or the pulmonary valve.
In an embodiment of the disclosure according to
Some embodiments have a tissue anchoring unit 35, shown in
The tissue anchoring unit 35 for some of the embodiments is a first loop-shaped support. The loop-shaped support presents a more rigid construction and also provides an abutment against the whole extension of the annulus, which further contributes to the rigidity of the construction. The rigidity of the loop-shaped support can be soft or very firm depending on the material, e.g. plastic, shape memory polymer, cloth or fabric, multilayered stitched and reinforced, and metal, such as titanium, stainless steel or nitinol. The gained rigidity may potentially yield the medical device to be easier to handle in the surgical situation with regards to implantation of the medical device.
The tissue anchoring unit 35 has fastening units in some embodiments. The fastening units are glue, spikes, prongs, points, hooks, clasps or hasps. The fastening units will further firmly secure attachment of the medical device to adjacent valve tissue and are in some embodiments made of a biocompatible material. In other embodiments these fastening units are made of biodegradable material or bioabsorbable material. By having fastening units of biodegradable material or bioabsorbable material, a time dependent attachment of the flexible leaflet reinforcement patch 30 due to the speed of degradation and/or absorption is possible. Until the inner portion is securely incorporated into the leaflets, the fastening units hold the outer sections of the leaflet reinforcement patch, adjacent to the annulus. The desired position of the inner portion is preserved and will be incorporated into the surrounding tissue.
In one embodiment depicted in
Shown in
The surgical procedure is illustrated in
In an embodiment according to
The material of the flexible leaflet reinforcement patch 30 is flexible in at least two aspects; firstly not to negatively affect the natural movement of the leaflet during the cycle of a heart beat, secondly to allow, at implantation of the medical device, adjustment of the medical device to properly match the anatomic structure of the implantation site. This latter flexibility of the leaflet reinforcement patch is due to expected anatomic variations between different patients.
In some embodiments, the flexible leaflet reinforcement patch 30 also has a thickness, which is thinner than the extension of the flexible leaflet reinforcement patch 30. The thickness of the flexible leaflet reinforcement patch 30 is at least partly non-uniform, such that the flexible leaflet reinforcement patch 30 is e.g. thicker at certain areas in juxtaposition to the flexible leaflet reinforcement patch 30, i.e. where a larger force is anticipated or another higher demand is likely. Thus, the leaflet reinforcement patch can be devised with a variation in thickness so as to be precisely tailored to the specific need required. With similar reasoning, a thinner proportion of a segment of the flexible leaflet reinforcement patch 30 may be advantageous, e.g. to not prevent the natural movement of the leaflet where no reinforcement is required. The thickness of the flexible leaflet reinforcement patch 30 is configured at least partly to be appositioned with weakened or degenerated areas of at least a portion the leaflets.
Some embodiments have an inner section 34 of the flexible leaflet reinforcement patch 30, which is incorporated into at least one of the plurality of leaflets. These embodiments give a permanent reinforcement of the leaflet area where the flexible leaflet reinforcement patch 30 has been integrated. Furthermore, some embodiments have the inner section 34 made of a biocompatible material. As such the medical device will not inflict with and/or cause blood clotting. In addition, in some embodiments the inner section 34 of the flexible leaflet reinforcement patch 30 is made of a biodegradable material and/or a bioabsorbable material. These choices of material provide a temporary reinforcement of the leaflet area until the leaflet is restored to a healthy condition, which may be beneficial in some circumstances, e.g. for young patients, whose hearts are still growing, since in young patients, with growing hearts, a non-degradable or non-absorbable leaflet reinforcement patch may disturb the growth of the heart valve. The time span of the temporary reinforcement may be controlled upon choice of specification of the biodegradable material and/or the bio absorbable material.
Some embodiments provide for a leaflet in juxtaposition to a portion of the flexible leaflet reinforcement patch's inner section 34 by comprising fastening means, e.g. glue, spikes, prongs, points, hooks, clasps or hasps. By having such fastening means for portions of the flexible leaflet reinforcement patches 30 in juxtaposition to the leaflet, the leaflet reinforcement patch is prevented from vertically dislocating until the leaflet reinforcement patch is firmly integrated into the leaflet or the flexible leaflet reinforcement patch 30 is absorbed or degraded properly.
In an embodiment shown in
In some embodiments, the anchoring unit 35 is a first loop-shaped support, which is configured to abut a first side of the heart valve, and a first leaflet reinforcement patch 30 is connected at a connection surface to the first loop-shaped support. The first leaflet reinforcement patch 30 has a leaflet in juxtaposition to a section of the leaflet reinforcement patch which is configured to be arranged in juxtaposition against at least a portion of at least one of the leaflets when the first loop-shaped support is abutting the heart valve. The connected leaflet reinforcement patch is configured to provide reinforcement to at least one of the leaflets.
It should be understood that the cross-section of the first loop-shaped support is not limited to a circular shape.
In another embodiment according to
In another embodiment according to
In
In the embodiments disclosed above, the anchoring unit 35 has only one loop-shaped support. However, it should be understood that the anchoring unit 35 in some embodiments also may have further loop-shaped supports.
The method above is not limited to open surgery; it should be clear for the skilled person in the art that a catheter-based procedure is within the scope of the method.
In one embodiment of this disclosure, a second flexible leaflet reinforcement patch 114 is positioned at a target site at an inside of a cardiac valve, preferably with an opposing first flexible leaflet reinforcement patch 30. The first flexible leaflet reinforcement patch 30 may be omitted in some embodiments. Due to the second flexible leaflet reinforcement patch 114, it will be possible to improve tightness of the valve and reduce or avoid leakage or regurgitation of the valve, since the second flexible leaflet reinforcement patch 114 will seal the valve area from the cardiac chamber towards the atrial side of the valve. The leaflet reinforcement is improved by the second flexible leaflet reinforcement patch 114, in particular during systolic high pressure in the cardiac chamber.
Regarding ways of entering the heart valve of interest both transapical, as well as through the arterial venous system are potential procedures for the method.
Another approach that can be taken is the epicardial access approach, which is an approach in which a device can be inserted via the left internal mammary puncture from the left arm, i.e. there is no need for any sub-xiphoid incision. Thus, the epicardial access approach is a minimally invasive approach.
The present disclosure has been described above with reference to specific embodiments. However, other embodiments than the above described are equally possible within the scope of the disclosure. Different method steps than those described above, may be provided within the scope of the disclosure. A radially outwardly oriented sealing flange may be added to an anchoring unit, in order to further improve sealing efficiency.
The different features and steps of the disclosure may be combined in other combinations than those described. The scope of the disclosure is only limited by the appended patent claims.
More generally, those skilled in the art will readily appreciate that all parameters, dimensions, materials, and configurations described herein are meant to be exemplary and that the actual parameters, dimensions, materials, and/or configurations will depend upon the specific application or applications for which the teachings of the present disclosure is/are used.
Claims
1-12. (canceled)
13. A method for improving the function of a heart valve comprising an annulus and a plurality of leaflets, the method comprising:
- placing a flexible leaflet reinforcement patch, having an extension between an inner section and an outer section thereof, to orient the outer section towards the annulus and to orient the inner section towards the leaflets,
- placing at least a portion of at least one of said plurality of leaflets in juxtaposition with a portion of the inner section so that the flexible leaflet reinforcement patch provides reinforcement to at least one of the plurality of leaflets, wherein the flexible leaflet reinforcement patch is flexible to follow the movement of the leaflets;
- attaching a first end of a string to the inner section; and
- connecting a second end of said string to chordae or a papillary muscle within a left ventricle.
14. The method according to claim 13, wherein the string is a chordae replacement unit.
15. The method according to claim 13, wherein placing the flexible leaflet reinforcement patch comprises placing a tissue anchoring unit in abutment with the annulus, and wherein the outer section of the flexible leaflet reinforcement patch is attached to the tissue anchoring unit.
16. The method according to claim 15, wherein the tissue anchoring unit is connected to said outer section such that the flexible leaflet reinforcement patch extends from an inner periphery of the tissue anchoring unit towards a center of the heart valve.
17. The method according to claim 16, wherein the flexible leaflet reinforcement patch extends from the tissue anchoring unit at least partly to a free edge of said at least one leaflet.
18. The method according to claim 17, wherein the first end of the string is attached to the inner section so that the first end is positioned towards said free edge.
19. The method according to claim 13, wherein the first end of the string is connected transversally through the leaflet to the inner section.
20. The method according to claim 13, wherein the first end of the string is attached to the inner section so that the string is positioned on the leaflet between a free edge of said at least one leaflet and the inner section.
21. The method according to claim 13, comprising attaching a plurality of strings between the inner section and the chordae or a papillary muscle.
22. The method according to claim 19, comprising:
- attaching a first string transversally through the leaflet to the inner section, and
- attaching a second string to the inner section so that the second string is positioned on the leaflet, between a free edge of said at least one leaflet and the inner section.
23. The method according to claim 20, comprising:
- attaching a first string transversally through the leaflet to the inner section, and
- attaching a second string to the inner section so that the second string is positioned on the leaflet, between a free edge of said at least one leaflet and the inner section.
24. The method according to claim 21, comprising:
- attaching a first string transversally through the leaflet to the inner section, and
- attaching a second string to the inner section so that the second string is positioned on the leaflet, between a free edge of said at least one leaflet and the inner section.
25. The method according to claim 21, comprising attaching a first string to the inner section and chordae, and attaching a second string to the inner section and to a papillary muscle.
26. The method according to claim 13, comprising replacing a plurality of chordae with said string or a plurality of strings.
27. The method according to claim 15, wherein the tissue anchoring unit is a loop-shaped support surrounding the inner and outer sections of the flexible leaflet reinforcement patch.
28. The method according to claim 15, wherein the tissue anchoring unit provides an abutment against the whole extension of the annulus.
29. The method according to claim 13, wherein the string is made of a biocompatible material.
30. The method according to claim 13, wherein the string is made of artificial and/or biological material.
31. The method according to claim 13, wherein a thickness of the flexible leaflet reinforcement patch is thinner than the extension of the flexible leaflet reinforcement patch.
32. The method according to claim 13, wherein a thickness of the flexible leaflet reinforcement is at least partly non-uniform.
Type: Application
Filed: Mar 14, 2022
Publication Date: Jul 14, 2022
Inventor: Olli Keränen (Bjarred)
Application Number: 17/693,689