ASSEMBLY OF SYSTEM FOR HOOP BENDING
A tube bending system having a frame, one or more static dies, one or more sliding dies and one or more motors for bending tubes, such as metal tubes, in the form of hoops to create a framework for a greenhouse. The system may include separately leveled frames including a central frame supporting the middle of an arch die, and a pair of lateral frames supporting the lateral sides of the die. An apex clamp on the central frame holds the middle of a straight tube blank against the arch die, while a pair of bending carriages on the lateral frames are displaced to bend the tube blank around the arch die. The apex clamp may move both vertically and longitudinally to cycle between holding the tube blank against the arch die, ejecting the bent tube from the die, and retracting to enable placement of another straight tube.
This application is a continuation-in-part of U.S. Provisional application Ser. No. 17/410,992, filed Aug. 24, 2021, which claims priority from U.S. Provisional Application No. 63/076,636, filed Sep. 10, 2020, of which are incorporated herein by reference in their entirety.
A portion of the disclosure of this patent document contains material which is subject to copyright protection. This patent document may show and/or describe matter which is or may become trade dress of the owner. The copyright and trade dress owner has no objection to the facsimile reproduction by anyone of the patent disclosure as it appears in the Patent and Trademark Office patent files or records, but otherwise reserves all copyright and trade dress rights whatsoever.
BACKGROUND FieldThis disclosure relates to bending systems and methods such as for bending tubes and, in particular, to a system and method for bending tubes into partial hoops for grow houses.
Description of the Related ArtBent metal tubing has various uses, including providing an underlying structure for greenhouse roofs, tunnels, or canopies (“hoop houses”). Although these structures are typically relatively low cost and easy to construct, the difficulty of bending metal tubes appropriately and efficiently has led to such structures being both expensive and labor intensive to construct.
The most commonly used method to bend metal tubing is through the use of a tubing roller. A tubing roller generally consists of a large wheel with a hand crank. The metal tube is placed in a cavity at the bottom of the large wheel, and the user must then crank the wheel using the hand crank in order to shape the tubing (with the tubing passing through the roller multiple times, depending on the desired radius). This method, however, is very inefficient, as it requires a large amount of physical labor and is very time-consuming.
Another common method for bending metal tubing is utilizing a three-roll bender, which generally consists of three smaller wheels and a hand crank. Specifically, a metal tube is generally placed within a gap located between the three wheels and a hand crank or motor actuated in order to shape the tubing. Depending on the desired radius, the tubing is typically passed through the bender multiple times. Although the three-roll bender is less labor intensive than the tubing roller, it is still overly time intensive methods for bending metal tubing.
SUMMARYA tube bending system as shown in the figures has a frame, one or more static dies, one or more sliding dies and one or more motors. The bending device may be constructed mostly of steel. The bending device may be used to bend tubes, such as metal tubes, in the form of hoops. The hoops may be set up in a field to create a framework for a greenhouse.
The tube bending system may include a series of separate and separately leveled frames that together define a support platform for an arch die. A central frame supports the middle of the arch die, and a pair of lateral frames support the lateral sides of the die. An apex clamp on the central frame holds the middle of a straight tube blank against an apex point on the arch die, while a pair of bending carriages on the lateral frames are displaced to bend the tube blank around the arch die. The apex clamp may move both vertically and longitudinally to cycle between holding the tube blank against the arch die, ejecting the bent tube from the die, and retracting to enable placement of another straight tube.
Throughout this description, elements appearing in figures are assigned three-digit reference designators, where the most significant digit is the figure number and the two least significant digits are specific to the element. An element that is not described in conjunction with a figure may be presumed to have the same characteristics and function as a previously-described element having a reference designator with the same least significant digits.
DETAILED DESCRIPTIONDescription of Apparatus
Referring now to the figures and, initially, to
The arch die 22 is supported in a horizontal orientation across several discrete stationary frame members. More particularly, a stationary central frame 30 has a table surface or horizontal platform 32 on which is mounted a central portion of the arch die 22. The convex outer surface of the arch die 22 has a vertical thickness at least as tall as a tube blank B placed on the horizontal platform 32, as seen in
The central frame 30 and lateral frames 34 are desirably constructed of a series of struts welded or fastened together in generally rectilinear combinations; the struts in the illustrated embodiment are shown as square metallic tubes, but may also be tubular or other suitable variant. The materials used for the struts may be galvanized steel, aluminum, or the like. The horizontal platforms 32, 36 may be formed from a variety of materials, including metal, plywood, etc. In one embodiment, the platforms 32, 36 are formed of a wire mesh for the sake of weight savings and visibility below the platforms.
As seen in
The apex clamp 40 incorporates a reciprocating movement mechanism 48 adapted to displace the clamp end 44 to and from a clamping position both longitudinally and vertically. More particularly, the clamp end 44 has a starting position for placement of a tube blank B on the horizontal platform between the clamp end and the apex point 24, as seen in
As shown in
With reference back to
Each railway 60 extends longitudinally along the majority of its length, and then course inward to end at a generally lateral orientation at the ending location 64. That is, each railway 60 forms somewhat of a J-shape and makes an approximately 90° bend at the end.
As seen in
As shown in
With reference back to
Each chain 74 is fixed to a fitting on the bending carriage 66 to drive the bending carriage along the railway 60, mentioned above. The railway 66 in turn is positioned such that the fitting and guard wall 84 pulls the chain 74 off each gear 90 as the bending carriage 66 passes by that gear to avoid contact between the fitting and gear. This can be seen in the lower portion of
The railways 64 form a J-shape such that each of the bending carriages 66 travels longitudinally from the starting location 62 and then undergoes a relatively sharp inward turn to the ending location 64. In this regard, the illustrated tubular bars 80 are each segmented into a straight portion and a curved portion, held together in alignment by suitable mounting cleats, and the like. As shown in
Initially, it is understood that the three frames 30, 34 are relatively placed on a surface and leveled. Then, the arch die 22 is secured across the horizontal platforms of the three frames 30, 34. A linear tube blank clamped against the apex point 24 and supported across the horizontal platforms of the central 30 and lateral frames 34 can thus be bent into a partial hoop by longitudinally forward movement of the bending carriages 66 with the central and lateral frames remaining stationary.
Initially,
The control unit 56 includes a processor and programming configured to coordinate activation of the linear actuators and drive mechanism in a predetermined sequence to: a) displace the apex clamp longitudinally forward from its starting position to its clamping position, b) displace both bending carriages longitudinally forward from the starting locations to the ending locations, c) displace both bending carriages longitudinally rearward from the ending locations to the starting locations, d) displace the apex clamp vertically upward to lift and expel the partial hoop from contact with the convex outer surface, and e) displace the apex clamp downward and longitudinally rearward to its starting position.
The control unit 56 may include software and/or hardware for providing functionality and features described herein. The control unit 56 may therefore include one or more of: logic arrays, memories, analog circuits, digital circuits, software, firmware, and processors such as microprocessors, field programmable gate arrays (FPGAs), application specific integrated circuits (ASICs), programmable logic devices (PLDs) and programmable logic arrays (PLAs). The hardware and firmware components of the control unit 56 may include various specialized units, circuits, software and interfaces for providing the functionality and features described here.
To commence the sequence,
Both
Closing Comments
Throughout this description, the embodiments and examples shown should be considered as exemplars, rather than limitations on the apparatus and procedures disclosed or claimed. Although many of the examples presented herein involve specific combinations of method acts or system elements, it should be understood that those acts and those elements may be combined in other ways to accomplish the same objectives. Acts, elements and features discussed only in connection with one embodiment are not intended to be excluded from a similar role in other embodiments.
As used herein, “plurality” means two or more. As used herein, a “set” of items may include one or more of such items. As used herein, whether in the written description or the claims, the terms “comprising”, “including”, “carrying”, “having”, “containing”, “involving”, and the like are to be understood to be open-ended, i.e., to mean including but not limited to. Only the transitional phrases “consisting of” and “consisting essentially of”, respectively, are closed or semi-closed transitional phrases with respect to claims. Use of ordinal terms such as “first”, “second”, “third”, etc., in the claims to modify a claim element does not by itself connote any priority, precedence, or order of one claim element over another or the temporal order in which acts of a method are performed, but are used merely as labels to distinguish one claim element having a certain name from another element having a same name (but for use of the ordinal term) to distinguish the claim elements. As used herein, “and/or” means that the listed items are alternatives, but the alternatives also include any combination of the listed items.
Claims
1. An assembly of a tube bending system for bending tube blanks into partial hoops, comprising:
- a) a discrete central frame having a horizontal platform;
- b) an arch die having a curved shape with two sides curving away from a central apex point to end points and a convex outer surface opposite a concave inner surface, a central portion of the arch die being fixedly mounted on the horizontal platform of the central frame, a longitudinal plane being defined radially through the apex point and bisecting the two sides and extending through a central vertical axis of the curved shape, wherein the convex outer surface is vertically dimensioned at least as tall as a tube blank placed on the horizontal platform of the central frame;
- c) an apex clamp extending above the horizontal platform of the central frame and having a clamp end projecting longitudinally toward the apex point on the convex outer surface of the arch die, the clamp end having a clamping position configured to hold a tube blank against the apex point;
- d) a pair of discrete lateral frames separate from and positioned on opposite lateral sides of the central frame, each lateral frame having a horizontal platform on which is fixedly mounted one of the two sides of the arch die, the lateral frames being spaced apart from the central frame such that a linear tube blank clamped against the apex point may be supported across the horizontal platforms of the central and lateral frames, wherein the lateral frames are physically connected to the central frame solely by the arch die;
- e) a bending carriage arranged to reciprocate longitudinally along each of the lateral frames, the bending carriages each having mounted thereon an upper roller sized to contact a lateral end of a linear tube blank and bend the tube blank around the arch die and into a partial hoop when the bending carriages are displaced longitudinally forward; and
- f) a drive mechanism on each lateral frame for longitudinally reciprocating the bending carriage, wherein a linear tube blank clamped against the apex point and supported across the horizontal platforms of the central and lateral frames may be bent into a partial hoop by longitudinally forward movement of the bending carriages with the central and lateral frames remaining stationary.
2. The assembly of claim 1, wherein the horizontal platforms of the central frame and lateral frames are each separately adjustable in elevation and horizontal angle.
3. The assembly of claim 1, wherein each lateral frame supports a railway extending longitudinally forward from a starting location approximately laterally even with the apex clamp to an ending location laterally even with or slightly past respective terminal ends of the two sides of the arch die, and the bending carriages are arranged to reciprocate longitudinally along each of the railways.
4. The assembly of claim 3, wherein the railway on each lateral frame extends longitudinally forward from the starting location in a line to an intermediate location, and then curls laterally inward toward the longitudinal plane to the ending location such that displacement of the bending carriages to their ending location bends the lateral ends of the tube blank to a greater extent than a mid-portion.
5. The assembly of claim 4, wherein each of the lateral frames has a fixed end die mounted above the respective horizontal platform and positioned to be aligned with an end point of the arch die, the end dies having outer surfaces which form continuations of the convex outer surface of the arch die and curve or angle inwardly, such that when the bending carriages are displaced to their ending locations the tube blank is bent around the end dies.
6. The assembly of claim 4, wherein the railway on each lateral frame is defined by a pair of spaced apart tubular guides, and wherein each of the bending carriages has a pair of lower rollers on each lateral side that engage the tubular guides for smooth displacement along the railways.
7. The assembly of claim 1, wherein each lateral frame has a motor mounted thereon that drives a chain and a plurality of gears mounted on the lateral frame and spaced apart in a plane around which the chain is guided, the chain being fixed to the bending carriage to drive the bending carriage along the lateral frame, and the plurality of gears includes a plurality of fixed gears and at least one gear that is located outside a loop of the chain and mounted for movement to enable tightening of the chain.
8. The assembly of claim 7, wherein the bending carriages are displaced along each lateral frame such that the bending carriage pulls the chain off each gear as the bending carriage passes by that gear to avoid contact between the bending carriage and gear.
9. The assembly of claim 1, wherein the apex clamp being mounted on a reciprocating movement mechanism adapted to displace the clamp end from its clamping position both longitudinally and vertically upward, the clamp end having a starting position for placement of a tube blank on the horizontal platform between the clamp end and the apex point.
10. The assembly of claim 9, wherein the clamp end includes a concave forward shape which matches an outer diameter of the tube blank to securely clamp the tube blank against the apex point and reliably lift and expel the partial hoop from contact with the convex outer surface of the arch die.
11. The assembly of claim 9, wherein the reciprocating movement mechanism of the apex clamp has a linear actuator for displacing the clamp end longitudinally, and a linear actuator for displacing the clamp end vertically.
12. The assembly of claim 11, wherein the reciprocating movement mechanism includes a control processor and programming configured to coordinate activation of the linear actuators and drive mechanism in a predetermined sequence to: a) displace the apex clamp longitudinally forward from its starting position to its clamping position, b) displace both bending carriages longitudinally forward from the starting locations to the ending locations, c) displace both bending carriages longitudinally rearward from the ending locations to the starting locations, d) displace the apex clamp vertically upward to lift and expel the partial hoop from contact with the convex outer surface, and e) displace the apex clamp downward and longitudinally rearward to its starting position.
13. A method of assembly and operation of a tube bending system for bending tube blanks into partial hoops, comprising:
- a) placing a stationary central frame having a horizontal platform on a surface;
- b) placing a pair of stationary lateral frames separate from the central frame on the surface on opposite lateral sides of and spaced from the central frame;
- c) placing an arch die on the horizontal platforms of the central and lateral frames, the arch die having a curved shape with two sides curving away from a central apex point to end points and a convex outer surface opposite a concave inner surface, a longitudinal plane being defined radially through the apex point and bisecting the two sides and extending through a central vertical axis of the curved shape;
- d) fixedly mounting a central portion of the arch die onto the horizontal platform of the central frame, the convex outer surface of the arch die being vertically dimensioned at least as tall as a tube blank placed on the horizontal platform;
- e) fixedly mounting one of the two sides of the arch die onto the horizontal platform of each lateral frame, wherein the lateral frames are physically connected to the central frame solely by the arch die;
- f) holding a tube blank against the apex point of the arch die with an apex clamp extending above the horizontal platform of the central frame and having a clamp end projecting longitudinally toward the apex point on the convex outer surface of the arch die, the clamp end having a clamping position configured to hold a tube blank against the apex point;
- g) wherein the lateral frames are spaced apart from the central frame such that a linear tube blank clamped against the apex point is supported across the horizontal platforms of the central and lateral frames;
- h) providing a bending carriage and a drive mechanism therefor on each lateral frame, each bending carriage being arranged to reciprocate longitudinally along each of the lateral frames, and the bending carriages each having mounted thereon an upper roller sized to contact a lateral end of a linear tube blank;
- i) clamping a linear tube blank against the apex point and supporting lateral sides of the tube blank across the horizontal platforms of the lateral frames; and
- j) longitudinally displacing both bending carriages forward with the central and lateral frames remaining stationary to bend the tube blank into a partial hoop.
14. The method of claim 13, wherein the apex clamp is mounted on a reciprocating movement mechanism adapted to displace the clamp end from its clamping position both longitudinally and vertically upward, the clamp end having a starting position for placement of a tube blank on the horizontal platform between the clamp end and the apex point, the method including lifting and expelling the partial hoop from contact with the convex outer surface of the arch die using the apex clamp.
15. The method of claim 14, wherein the clamp end includes a concave forward shape which matches an outer diameter of the tube blank to securely clamp the tube blank against the apex point and reliably lift and expel the partial hoop from contact with the convex outer surface of the arch die.
16. The method of claim 13, wherein the horizontal platforms of the central frame and lateral frames are each separately adjustable in elevation and horizontal angle, the method including adjusting the horizontal platforms of the central frame and lateral frames to be coplanar.
17. The method of claim 16, wherein the step of adjusting includes using a laser sight.
18. The method of claim 13, wherein the railway on each lateral frame extends longitudinally forward from the starting location in a line to an intermediate location, and then curls laterally inward toward the longitudinal plane to the ending location such that displacement of the bending carriages to their ending location bends the lateral ends of the tube blank to a greater extent than a mid-portion.
19. The method of claim 13, wherein each lateral frame has a motor mounted thereon that drives a chain and a plurality of gears mounted on the lateral frame and spaced apart in a plane around which the chain is guided, the chain being fixed to the bending carriage to drive the bending carriage along the railway, wherein the railway is positioned such that the bending carriage pulls the chain off each gear as the bending carriage passes by that gear to avoid contact between the bending carriage and gear.
20. The method of claim 13, wherein the reciprocating movement mechanism of the apex clamp has a linear actuator for displacing the clamp end longitudinally, and a linear actuator for displacing the clamp end vertically, and the reciprocating movement mechanism includes a control processor and programming configured to coordinate activation of the linear actuators and drive mechanism in a predetermined sequence to: a) displace the apex clamp longitudinally forward from its starting position to its clamping position, b) displace both bending carriages longitudinally forward from the starting locations to the ending locations, c) displace both bending carriages longitudinally rearward from the ending locations to the starting locations, d) displace the apex clamp vertically upward to lift and expel the partial hoop from contact with the convex outer surface, and e) displace the apex clamp downward and longitudinally rearward to its starting position.
Type: Application
Filed: Apr 27, 2022
Publication Date: Aug 11, 2022
Inventors: Joseph Gover (Simi Valley, CA), Tony Stephens (Simi Valley, CA)
Application Number: 17/730,461