HEAT EXCHANGER FOR MIXED REFRIGERANT SYSTEMS
A vapor compression cycle is provided including a compressor, condenser, expansion device, and evaporator fluidly connected via one or more fluid conduits, A fluid circulating within the one of more fluid conduits has a high temperature glide. An intermediate heat exchanger has a first part including at least one pass there through and a second part including at least one pass there through. The first part is arranged downstream from the condenser and at least a portion of the fluid output from the condenser is provided to the first part of the intermediate heat exchanger. Within the first part, a temperature of the at least a portion of the fluid output from the condenser is reduced.
This application claims the benefit of U.S. Application No. 62/904,921, filed on Sep. 24, 2019, which is incorporated herein by reference in its entirety.
BACKGROUNDExemplary embodiments disclosed herein relate generally to a refrigeration system, and more particularly, to a refrigeration system suitable for use with a refrigerant mixture having a high temperature glide fluid.
One of the most common technologies in use for residential and commercial refrigeration and air conditioning is the vapor compression refrigerant heat transfer loop. These loops typically circulate a refrigerant having appropriate thermodynamic properties through a loop that comprises a compressor, a heat rejection heat exchanger (i.e., heat exchanger condenser), an expansion device and a heat absorption heat exchanger (i.e., heat exchanger evaporator). Vapor compression refrigerant loops effectively provide cooling and refrigeration in a variety of settings, and in some situations can be run in reverse as a heat pump.
It has been determined that commonly used refrigerants, such as the commonly used R-410A for example, have unacceptable global warming potential (GWP) such that their use will be phased out for many HVAC&R applications. There are some Non-flammable, low GWP refrigerants that could be used to replace the common refrigerant using in most HVAC comfort cooling products but there are not good higher pressure refrigerants and many of the options being evaluated are mixtures that are also mildly flammable and also have higher glides like R-454B.
BRIEF DESCRIPTIONAccording to an embodiment, a vapor compression cycle is provided including a compressor, condenser, expansion device, and evaporator fluidly connected via one or more fluid conduits. A fluid circulating within the one of more fluid conduits has a high temperature glide. An intermediate heat exchanger has a first part including at least one pass there through and a second part including at least one pass there through. The first part is arranged downstream from the condenser and at least a portion of the fluid output from the condenser is provided to the first part of the intermediate heat exchanger. Within the first part, a temperature of the at least a portion of the fluid output from the condenser is reduced.
In addition to one or more of the features described above, or as an alternative, in further embodiments the high temperature glide is at least 2° F.
In addition to one or more of the features described above, or as an alternative, in further embodiments the high temperature glide is at least 5° F.
In addition to one or more of the features described above, or as an alternative, in further embodiments the high temperature glide is at least 10° F.
In addition to one or more of the features described above, or as an alternative, in further embodiments the fluid includes a mixture having two or more distinct fluid components having different boiling temperatures and condensing temperatures.
In addition to one or more of the features described above, or as an alternative, in further embodiments at least one of the two or more distinct fluid components is a refrigerant.
In addition to one or more of the features described above, or as an alternative, in further embodiments the refrigerant is an A2L refrigerant or an A3 refrigerant.
In addition to one or more of the features described above, or as an alternative, in further embodiments the second part of the intermediate heat exchanger is arranged downstream from and in fluid communication with an outlet of the evaporator.
In addition to one or more of the features described above, or as an alternative, in further embodiments within the second part, a temperature of a fluid provided to the second part of the intermediate heat exchanger from the outlet of the evaporator is increased.
In addition to one or more of the features described above, or as an alternative, in further embodiments a first portion of the fluid output from the condenser is provided to the first part of the intermediate heat exchanger and a second portion of the fluid output from the condenser is provided to the second part of the intermediate heat exchanger.
In addition to one or more of the features described above, or as an alternative, in further embodiments comprising another expansion device arranged upstream from and in fluid communication with the second part of the intermediate heat exchanger, wherein the second portion of fluid output from the condenser is provided to the another expansion device.
In addition to one or more of the features described above, or as an alternative, in further embodiments the first part of the intermediate heat exchanger and the another expansion device are arranged in parallel.
In addition to one or more of the features described above, or as an alternative, in further embodiments the first portion of fluid output from the condenser is mixed with the second portion of fluid output from the condenser directly upstream from the compressor.
In addition to one or more of the features described above, or as an alternative, in further embodiments the second portion of fluid output from the condenser is configured to bypass the expansion device and the evaporator.
In addition to one or more of the features described above, or as an alternative, in further embodiments the intermediate heat exchanger is a refrigerant to refrigerant heat exchanger.
In addition to one or more of the features described above, or as an alternative, in further embodiments the intermediate heat exchanger is a liquid suction heat exchanger.
The following descriptions should not be considered limiting in any way. With reference to the accompanying drawings, like elements are numbered alike:
A detailed description of one or more embodiments of the disclosed apparatus and method are presented herein by way of exemplification and not limitation with reference to the Figures.
Referring now to
Various types of refrigerants are available for use in a vapor compression cycle. These refrigerants may include either a single fluid, or alternatively, may include a fluid mixture or blend including two or more distinct fluid components. The distinct components of these refrigerant blends can have different boiling temperatures and condensing temperatures, and can result in a temperature glide as shown in
Temperature glide is defined as the temperature difference between the starting and ending temperature of a refrigerant phase change within a system at a constant pressure. In existing HVAC&R systems, the refrigerant typically used is either an azeotropic refrigerant or a near-azeotropic refrigerant blend. An azeotropic refrigerant is typically a single refrigerant fluid and does not experience a temperature glide and the boiling and condensing temperature of each component are close in temperature. A near-azeotropic refrigerant blend experiences a very small amount of temperature glide as it condenses and evaporates in a vapor compression cycle, such as less than one degree for example. Accordingly, the temperature glide of a near-azeotropic refrigerant blend does not significantly impact the operation of the vapor compression cycle.
In embodiments where the fluid configured to circulate through the vapor compression cycle is a refrigerant mixture or blend having a high temperature glide, the refrigerant blend is considered zeotropic. As used herein, the term “high temperature glide” includes refrigerant blends having a temperature glide of at least two degrees, such as at least three degrees, at least four degrees, at least five degrees, or at least ten degrees for example. In such embodiments, a refrigerant of the refrigerant blend can also be an A2L refrigerant or an A3 refrigerant. In an embodiment, the refrigerant blend includes refrigerant R-454B; however, it should be understood that R-454B is intended as an example, and the zeotropic refrigerant or refrigerant blend disclosed herein is not limited to this specific refrigerant. Although a refrigerant blend is described herein as having a high temperature glide, it should be understood that other suitable refrigerants, fluids, or mixtures thereof that similarly have a high temperature glide are also within the scope of the disclosure.
An example of a temperature enthalpy diagram of a refrigerant mixture or blend having high glide is illustrated in
With reference now to
In the illustrated, non-limiting embodiment of
As the condensed refrigerant blend passes through the first part of the intermediate heat exchanger 40, heat transfers from the condensed refrigerant blend to the vaporized or gaseous refrigerant blend output from the evaporator 38. As a result of this heat transfer, the condensed liquid refrigerant blend is further subcooled, such as below the ambient temperature. At the same time, the vaporized refrigerant blend is superheated, thereby allowing the evaporator 38 to run at or near a fully saturated condition, which enhances operation of the evaporator.
In another embodiment, illustrated in
The subcooled first portion of the refrigerant blend RM1 may then be provided to one or more downstream components, such as the expansion device 36, evaporator 38, and/or compressor 32 for example. The second portion of the refrigerant blend RM2 output from the intermediate heat exchanger 40 is rejoined with the first portion of the refrigerant blend RM1 when the first portion of the refrigerant blend RM1 has a generally gaseous configuration. In an embodiment, the first portion and the second portion of the refrigerant blend RM1, RM2 are joined directly upstream from the inlet of the compressor 32. The refrigerant can then be sent to the compressor 32 suction or it can be introduced into an economizer port of the compressor 32 which is part way thru the compression process.
A vapor compression cycle 30 as illustrated and described herein has enhanced performance when used with a refrigerant blend having a high temperature glide compared to a basic vapor compression system. Further, in embodiments where the HVAC&R system is a split system having long fluid lines, the subcooling of the refrigerant within the intermediate heat exchanger 40 may additionally reduce the refrigerant charge.
The term “about” is intended to include the degree of error associated with measurement of the particular quantity based upon the equipment available at the time of filing the application.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the present disclosure. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, element components, and/or groups thereof.
While the present disclosure has been described with reference to an exemplary embodiment or embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the present disclosure. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the present disclosure without departing from the essential scope thereof. Therefore, it is intended that the present disclosure not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this present disclosure, but that the present disclosure will include all embodiments falling within the scope of the claims.
Claims
1. A vapor compression cycle comprising:
- a compressor, condenser, expansion device, and evaporator fluidly connected via one or more fluid conduits;
- a fluid circulating within the one of more fluid conduits, wherein the fluid has a high temperature glide; and
- an intermediate heat exchanger having a first part including at least one pass there through and a second part including at least one pass there through, wherein the first part is arranged downstream from the condenser and at least a portion of the fluid output from the condenser is provided to the first part of the intermediate heat exchanger, wherein within the first part, a temperature of the at least a portion of the fluid output from the condenser is reduced.
2. The vapor compression cycle of claim 1, wherein the high temperature glide is at least 2° F.
3. The vapor compression cycle of claim 1, wherein the high temperature glide is at least 5° F.
4. The vapor compression cycle of claim 1, wherein the high temperature glide is at least 10° F.
5. The vapor compression cycle of claim 1, wherein the fluid includes a mixture having two or more distinct fluid components having different boiling temperatures and condensing temperatures.
6. The vapor compression cycle of claim 5, wherein at least one of the two or more distinct fluid components is a refrigerant.
7. The vapor compression cycle of claim 5, wherein the refrigerant is an A2L refrigerant or an A3 refrigerant.
8. The vapor compression cycle of claim 1, wherein the second part of the intermediate heat exchanger is arranged downstream from and in fluid communication with an outlet of the evaporator.
9. The vapor compression cycle of claim 8, wherein within the second part, a temperature of a fluid provided to the second part of the intermediate heat exchanger from the outlet of the evaporator is increased.
10. The vapor compression cycle of claim 1, wherein a first portion of the fluid output from the condenser is provided to the first part of the intermediate heat exchanger and a second portion of the fluid output from the condenser is provided to the second part of the intermediate heat exchanger.
11. The vapor compression cycle of claim 10, further comprising another expansion device arranged upstream from and in fluid communication with the second part of the intermediate heat exchanger, wherein the second portion of fluid output from the condenser is provided to the another expansion device.
12. The vapor compression cycle of claim 11, wherein the first part of the intermediate heat exchanger and the another expansion device are arranged in parallel.
13. The vapor compression cycle of claim 10, wherein the first portion of fluid output from the condenser is mixed with the second portion of fluid output from the condenser directly upstream from the compressor.
14. The vapor compression cycle of claim 10, wherein the second portion of fluid output from the condenser is configured to bypass the expansion device and the evaporator.
15. The vapor compression cycle of claim 10, wherein the intermediate heat exchanger is a refrigerant to refrigerant heat exchanger.
16. The vapor compression cycle of claim 10, wherein the intermediate heat exchanger is a liquid suction heat exchanger.
Type: Application
Filed: Sep 18, 2020
Publication Date: Aug 11, 2022
Inventor: Richard G. Lord (Murfreesboro, TN)
Application Number: 17/763,048