COMBINED ORTHODONTIC MOVEMENT OF TEETH WITH AIRWAY DEVELOPMENT THERAPY

- uLab Systems, Inc.

Systems, devices and methods are disclosed for reshaping airways concurrently with dental and/or orthodontic treatment. The systems can have a series of two or more oral appliances configured to progressively reposition the maxillary and mandibular teeth in two or more successive steps. Each oral appliance in the series can have one or more maxillary blocks, one or more mandibular blocks, a maxillary oral tray, and a mandibular oral tray. One or more maxillary blocks can be attached to or integrated with the maxillary oral tray. One or more mandibular blocks can be attached to or integrated with the mandibular oral tray. The maxillary and mandibular oral trays can be configured to move one or more teeth from a tooth first position to a tooth second position. The maxillary and mandibular blocks can be configured to interact with one another to treat sleep breathing disorders.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a divisional of U.S. patent application Ser. No. 15/710,604 filed Sep. 20, 2017, which claims the benefit of priority to U.S. Provisional Application No. 62/397,749 filed Sep. 21, 2016, the contents of each of which are incorporated herein by reference in their entirety for all purposes.

BACKGROUND 1. Technical Field

Systems, devices and methods for reshaping airways are disclosed. More specifically, systems, devices and methods are disclosed for reshaping airways concurrently with dental and/or orthodontic treatment.

2. Background of the Art

Airway disorders affect a large portion of the population and are regarded as multifactorial conditions with a multitude of etiologies and treatment modalities. Orthodontic treatment can aid in the development of the airway a treatment modality for airway disorders, the current invention allows for the combined use of orthodontic and airway treatment modalities.

Airway disorders affect a significant population with estimates of the 3% of pediatric population and 10% of the adult population. Morbidity from airway disorders ranges from mental and physical deterioration to disabling illnesses or even death. In children, physical and cognitive development can be delayed or stunted. Adult manifestations can include tiredness, somnolence, memory loss and sleep disorders. The airway is shaped by various craniofacial structures. Evaluation of craniofacial structures is therefore of paramount importance in treating airway disorders. Orthodontic treatment can manipulate craniofacial structures to reshape and open the airway of both pediatric and adult patients. Combining oral airway devices with orthodontic treatment can help not only orthodontic issues but the overall health of the patient. Results of this combined therapy by manipulating not only the dental arches but also the drape of the soft tissue that establishes airway size, shape and volume.

Obstructive sleep apnea (OSA) is a major health risk that various oral and dental appliances have been addressing for years. However, these appliances merely address the symptoms associated with OSA—they are not therapeutic in nature. The present disclosure addresses these deficiencies by combining orthodontic and OSA treatments. Treating OSA concurrently with orthodontic treatment can advantageously ease symptoms associated with OSA while attaining a therapeutic result of the airway condition by enlarging or otherwise reshaping the airway.

Comprehensive dental treatments should include consideration of the structures involved, including the airway. The present invention allows the dental provider to combine airway development therapy, obstructive sleep apnea and orthodontic treatment to end with a result that considers a beautiful smile with a patent airway day and night. The invention allows for numerous different treatment philosophies for OSA and airway development to be treated with orthodontic aligners simultaneously. This includes but is not limited to mandibular advancement style appliances, palatal and mandibular expanders using the orthodontic aligners. By manipulating the 3D models the aligners can act both as orthodontic movers of teeth along with ideal positioning of the jaws to open the airway.

A need exists to combine orthodontic and/or dental treatment with OSA appliances. The advantages of combining these modalities include: (1) opening the airway due to orthodontic advancing and/or widening of the arches to potentially cure the disease or at least lessen the symptoms, (2) OSA appliances worn exclusively at night can cause temporomandibular joint dysfunction or myofascial pain dysfunction, which can be advantageously addressed by the daytime and nighttime appliances disclosed herein, (3) existing OSA devices can cause morning malalignment of the teeth and/or with prolong use cause orthodontic problems which by design can be prevented or otherwise mitigated with the oral appliances disclosed herein, (4) the oral appliances disclosed herein can be titrated over a series of two or more steps for ideal mandibular advancement and/or opening with the software and/or different ramp designs which can encourage true hinge rotation as well as translation of the temporomandibular joint, and/or (5) the oral appliances disclosed herein can allow free mandibular motion while having the ability to hold the joint in a fixed position if necessary for the desired treatment or comfort of the patient.

BRIEF SUMMARY OF THE INVENTION

This disclosure relates generally to the combined orthodontic movement and/or dental treatment of teeth, airway development and treatment of sleep breathing disorders.

More specifically, orthodontic and/or dental airway development systems, apparatuses and methods of using the same are disclosed. The airway development systems and apparatuses disclosed can concurrently move teeth and reshape the airway. The airway development systems and apparatuses disclosed can concurrently advance the mandible and reshape the airway. The airway development systems apparatuses disclosed can concurrently expand the hard and/or soft palate and reshape the airway. The airway development systems and apparatuses disclosed can concurrently whiten teeth and reshape the airway. The airway development systems and apparatuses disclosed can concurrently clean teeth and reshape the airway. The airway development systems and apparatuses disclosed can concurrently move teeth, advance the mandible, expand the hard and/or soft palate, whiten teeth, apply hygienic treatment, reshape the airway, or any combination thereof.

The airway development systems and apparatuses can have dental trays and/or orthodontic aligner trays. The airway development systems and apparatuses can have airway development blocks. The airway development blocks can be attached to or integrated with one or more trays.

Oral appliances for the treatment of sleep breathing disorders are disclosed. For example, an oral appliance is disclosed that can have one or more maxillary blocks. The oral appliance can have one or more mandibular blocks. The oral appliance can have a maxillary oral tray. One or more maxillary blocks can be attached to or integrated with the maxillary oral tray. The oral appliance can have a mandibular oral tray. One or more mandibular blocks can be attached to or integrated with the mandibular oral tray. The maxillary and mandibular oral trays configured to move one or more teeth from a tooth first position to a tooth second position. Each maxillary block can have a maxillary block guide surface. Each mandibular block can have a mandibular block guide surface. Each maxillary block guide surface can be opposed to and configured to interact with at least one mandibular block guide surface to at least one of move one or more teeth, advance a mandible, increase an interocclusal separation between a maxillary dentition and a mandibular dentition, and expand a palate.

Systems for the treatment of sleep breathing disorders are disclosed. For example a system is disclosed that can have a series of two or more oral appliances configured to progressively reposition the maxillary and mandibular teeth in two or more successive steps. Each oral appliance in the series can have one or more maxillary blocks. Each oral appliance in the series can have one or more mandibular blocks. Each oral appliance in the series can have a maxillary oral tray. One or more maxillary blocks can be attached to or integrated with the maxillary oral tray. Each oral appliance in the series can have a mandibular oral tray. One or more mandibular blocks can be attached to or integrated with the mandibular oral tray. The maxillary and mandibular oral trays can be configured to move one or more teeth from a tooth first position to a tooth second position. Each maxillary block can have a maxillary block guide surface. Each mandibular block can have a mandibular block guide surface. Each maxillary block guide surface can be opposed to and configured to interact with at least one mandibular block guide surface to at least one of move one or more teeth, advance a mandible, increase an interocclusal separation between a maxillary dentition and a mandibular dentition, and expand a palate.

Methods of treating sleep breathing disorders are disclosed. For example, a method is disclosed that can include providing a series of two or more oral appliances configured to progressively reposition the maxillary and mandibular teeth in two or more successive steps. Each oral appliance in the series can have one or more maxillary blocks. Each oral appliance in the series can have one or more mandibular blocks. Each oral appliance in the series can have a maxillary oral tray. One or more maxillary blocks can be attached to or integrated with the maxillary oral tray. Each oral appliance in the series can have a mandibular oral tray. One or more mandibular blocks can be attached to or integrated with the mandibular oral tray. The maxillary and mandibular oral trays can be configured to move one or more teeth from a tooth first position to a tooth second position. Each maxillary block can have a maxillary block guide surface. Each mandibular block can have a mandibular block guide surface. Each maxillary block guide surface can opposed to and configured to interact with at least one mandibular block guide surface to at least one of move one or more teeth, advance a mandible, increase an interocclusal separation between a maxillary dentition and a mandibular dentition, and expand a palate.

BRIEF DESCRIPTION OF THE DRAWINGS

The drawings shown and described are exemplary embodiments and non-limiting. Like reference numerals indicate identical or functionally equivalent features throughout.

FIG. 1 illustrates isometric views of a variation of airway development blocks of an oral appliance.

FIG. 2 illustrates a top elevational view of the oral appliance of FIG. 1.

FIG. 3 illustrates a side isometric view of the oral appliance of FIG. 1 in an assembled configuration under compression.

FIG. 4 illustrates a schematic of a variation of an aligner on teeth.

FIG. 5 illustrates a schematic of a variation of a maxillary aligner on teeth that has a variation of an airway development block.

FIG. 6 illustrates a schematic of a variation of maxillary and mandibular aligners on teeth with each having a variation of an airway development block.

FIG. 7 illustrates a schematic of a variation of a series of oral appliances.

FIG. 8 illustrates a variation of a process for making a variation of an oral appliance.

DETAILED DESCRIPTION

Systems, devices and methods are disclosed that can concurrently reshape and/or maintain the airway, apply orthodontic treatment, apply dental treatment, or any combination thereof. The systems, devices and methods disclosed can apply orthodontic treatment to any craniofacial structure, including the dentition, the palate, the maxilla, the mandible, or any combination thereof. The systems, devices and methods disclosed can apply any dental treatment to the teeth, including whitening treatments, cleaning treatments, gingival recession treatments, or any combination thereof. For example, systems, devices and methods are disclosed that can concurrently move one or more teeth, advance the mandible, retrude the mandible, expand the hard and/or soft palate, whiten teeth, clean teeth, treat gum line recession, reshape the airway, maintain the airway, or any combination thereof.

The disclosed systems, devices and methods can orthodontically reshape the airway by manipulating one or more craniofacial structures. The airway can be reshaped into a more open configuration by widening the dental arches, by increasing the interocclusal distance between the upper and lower teeth and/or by advancing the lower jaw. The airway can be reshaped concurrently with the orthodontic treatment of, for example, misaligned teeth, malocclusions, and/or narrow arches. Additionally or alternatively, the airway can be reshaped concurrently with a teeth whitening, cleaning and/or gingival recession treatment.

More particularly, oral appliances are disclosed that can reshape and/or maintain the airway to treat sleep breathing disorders (SBD) such as obstructive sleep apnea (OSA) and snoring. The oral appliances disclosed can reshape the airway by simultaneously manipulating one or more craniofacial structures and moving teeth, cleaning teeth, whitening teeth, or any combination thereof. The oral appliances disclosed can treat SBD and snoring with various orthodontic treatment modalities, for example, mandibular advancement, palatal expansion and/or mandibular expansion. The oral appliances disclosed can simultaneously provide both orthodontic and SBD treatment and result in more properly aligned teeth and a more open airway. The oral appliances disclosed can simultaneously provide dental whitening, dental cleaning and/or gingival recession treatments in combination with SBD treatment and result in whiter teeth, cleaner teeth, healthier gums, fresher breath, and a more open airway.

System and Apparatus

SBD appliance therapy can be combined with the orthodontic movement of teeth, for example, with orthodontic aligner treatment. The SBD appliances disclosed can simultaneously reposition the jaw and orthodontically move teeth, for example, by virtue of their combination with aligner treatment. The systems disclosed however, not only simply allow for their combination, the systems also advantageously allow for their treatments to be coordinated with one another.

FIG. 1 illustrates a variation of a customizable oral appliance 10 for reshaping and/or maintaining the airway. The appliance 10 can have one or more maxillary blocks 12 and one or more mandibular blocks 14. For example, the appliance 10 can have 1 to 6 maxillary blocks 12 and 1 to 6 mandibular blocks 14. The number of maxillary blocks 12 can be less than, equal to, or greater than the number of mandibular blocks 14. For example, FIG. 1 illustrates that the appliance 10 can have two maxillary blocks 12 and two mandibular blocks 14. As another example, the appliance 10 can have one maxillary block 12 and two mandibular blocks 14 or vice versa. The appliance 10 can have one, two, three, four, or five more maxillary blocks 12 than mandibular blocks 14 or vice versa. The appliance 10 can have one or more maxillary blocks 12 and no mandibular blocks 14 or one or more mandibular blocks 14 and no maxillary blocks 12. The blocks 12, 14 can be placed in a person's oral cavity.

FIG. 1 illustrates that the appliance 10 can have a first maxillary block 12a and a second maxillary block 12b. Anatomically, the maxillary first block 12a can be a left block and the maxillary second block 12b can be a right block, or vice versa. The maxillary first and second blocks 12a, 12b can be configured to be placed on a lateral left and right side, respectively, of a maxillary dental arch. The appliance 10 can have a first mandibular block 14a and a second mandibular block 14b. Anatomically, the mandibular first block 14a can be a left block and the mandibular second block 14b can be a right block, or vice versa. The mandibular first and second blocks 14a, 14b can be configured to be placed on a lateral left and right side, respectively, of a mandibular dental arch.

FIG. 1 illustrates that the blocks 12, 14 can each have a buccal side 16, a lingual side 18, an anterior portion 20, a posterior portion 22 and teeth surfaces 24. Each maxillary block 12 can have a maxillary tooth surface 24a and/or a mandibular tooth surface 24b. Each mandibular block 14 can have a maxillary tooth surface 24a and/or a mandibular tooth surface 24b. The surfaces 24 can conform to surfaces of the teeth and/or can have a geometry to orthodontically move one or more teeth from one position to another. One or more of the surfaces 24 of maxillary and mandibular blocks can be configured to have a friction fit over a portion of one or more teeth.

The maxillary tooth surfaces 24a of the maxillary blocks 12 can have a surface geometry configured to move one or more maxillary teeth from a first position to a second position. The mandibular tooth surfaces 24b of the maxillary blocks 12 can be flat (e.g., as shown in FIG. 1) or can have a surface geometry configured to move one or more mandibular teeth from a first position to a second position. The mandibular tooth surfaces 24b of the mandibular blocks 14 can have a surface geometry configured to move one or more mandibular teeth from a first position to a second position. The maxillary tooth surfaces 24a of the mandibular blocks 14 can be flat (e.g., as shown in FIG. 1) or can have a surface geometry configured to move one or more maxillary teeth from a first position to a second position.

A series of blocks 12, 14 can be designed to progressively reposition the maxillary and/or mandibular teeth in two or more successive steps, for example, as disclosed in PCT Publication WO 2016/004415 and U.S. application Ser. No. 15/386,280 (published as US 2017/0100214) in relation to orthodontic trays, both of which are herein incorporated by reference in their entireties for all purposes. Each block 12, 14 in a series can have a surface 24 that has a geometry that corresponds to an intermediate or end tooth arrangement intended for the block 12, 14 in the series. The blocks 12, 14 can be sufficiently resilient to accommodate or conform to misaligned teeth, but apply sufficient force against the misaligned teeth to reposition the teeth to the intermediate or end arrangement as desired for the particular treatment step. A series of blocks 12, 14 can have geometries selected to progressively reposition teeth from a first arrangement through one or more successive intermediate arrangements to a final arrangement. Each block in the series can have the same or different dimensions than one or more other blocks in the series, as described below. A series of blocks 12, 14 can have 1 to 100 maxillary blocks 12 and 1 to 100 mandibular blocks 14, for example, 1 to 55 maxillary blocks 12 and 1 to 55 mandibular blocks 14, 1 to 50 maxillary blocks 12 and 1 to 50 mandibular blocks 14, 1 to 45 maxillary blocks 12 and 1 to 45 mandibular blocks 14, 1 to 40 maxillary blocks 12 and 1 to 40 mandibular blocks 14, less than 40 maxillary blocks 12 and less than 40 mandibular blocks, or any combination thereof. For example, a series of blocks can have 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50 maxillary blocks 12 and 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50 mandibular blocks 14. The number of maxillary blocks 12 can be the same or different as the number mandibular blocks 14 in a series.

FIG. 1 illustrates that the maxillary blocks 12 can each have one or more maxillary block guide surfaces 26 (e.g., 1 to 6 or more maxillary guide surfaces 26) and that the mandibular blocks 14 can each have one or more mandibular block guide surfaces 28 (e.g., 1 to 6 or more mandibular guide surfaces 28). The guide surfaces 26, 28 are variously referred to throughout as ramps, stops, disclusion surfaces, expansion surfaces, resting surfaces and/or other similar terms. The guide surfaces 26 can be on any part or define any surface of the blocks 12, 14, for example, the anterior and/or posterior portions 20, 22 of the maxillary and mandibular blocks 12, 14.

FIG. 1 illustrates that the anterior portion 20 of the maxillary blocks 12 can have one maxillary guide surface 26 and that the posterior portion 22 of the mandibular blocks 14 can have one mandibular guide surface 28. For example, FIG. 1 illustrates that the maxillary first and second blocks 12a, 12b can have maxillary first and second guide surfaces 26a, 26b, respectively, and that the mandibular first and second blocks 14a, 14b can have mandibular first and second guide surfaces 28a, 28b, respectively. The exact number and orientation of the guide surfaces 26, 28 can be customizable and depend on a person's tolerance for the blocks 12, 14, craniofacial structure, teeth alignment, orthodontic treatments being applied, dental treatment being applied or any combination thereof, each factor being critical to the design of the blocks 12, 14. Each block in a series can have the same or different number and/or orientation of guide surfaces 28a, 28b as one or more other blocks in the series.

While FIG. 1 illustrates that the anterior portions 20 of the maxillary blocks 12 and the posterior portions 22 of the mandibular blocks 14 have the guide surfaces 26, 28 (e.g., guide surfaces 26a, 26b, 28a, 28b), the anterior and/or posterior portion 20, 22 of each of the maxillary and mandibular blocks can have one or more guide surfaces in addition to or in lieu of the guide surfaces 26, 28 shown in FIG. 1. For example, the posterior portions 22 of the maxillary blocks 12 can have guide surfaces and/or the anterior portions 20 of the mandibular blocks 14 can have guide surfaces. However, the anterior and/or posterior portions 20, 22 of the maxillary and/or mandibular blocks 12 need not have a guide surface. For example, FIG. 1 illustrates that the posterior portions 22 of the maxillary blocks 12 and the anterior portions 20 of the mandibular blocks 14 can have ends that do not have a guide surface. FIG. 1 illustrates that the ends of the posterior portions 22 of the maxillary blocks 12 and the anterior portions 20 of the mandibular blocks 14 can have a flat or curved surface with a portion that is perpendicular or nearly perpendicular to an occlusal plane.

Each guide surface (e.g., guide surfaces 26, 28) can be paired with an opposing (also referred to as cooperating, interacting, engaging, contacting, or interfering) guide surface. For example, the blocks 12, 14 can be paired such that their corresponding guide surfaces 26, 28 form one or more corresponding guide surfaces pairs 26-28. Each guide surface in a guide surface pair can be configured to interact with its opposing guide surface. For example, the opposing guide surfaces of a guide surface pair 26-28 can be configured to slidably engage or otherwise move relative to one another and/or be configured to rest against each other or otherwise inhibit or prevent movement relative to one another. At least a portion of each guide surface, including the entire guide surface, can be configured to contact at least a portion of its opposing guide surface, including the entire opposing guide surface, such that any portion 100% or less is appreciated. FIG. 1 illustrates that the two left blocks 12a, 14a can form a left guide surface pair 26a-28a and that the two right blocks 12b, 14b can form a right guide surface pair 26b-28b. The maxillary and mandibular guide surfaces 26a, 28a of the left pair 26a-28a can be designed to interact with each other and the maxillary and mandibular guide surfaces 26b, 28b of the right pair 26b-28b can be designed to interact with each other. Each guide surface 26, 28 can interact with its opposing guide surface in a self-guided manner. The guide surfaces 26, 28 can position the mandible in the anatomically correct joint position while the teeth are moving orthodontically.

Each guide surface 26, 28 can be or have one or more planar surfaces (e.g., 1 to 50 planar surfaces). For example, FIG. 1 illustrates that each guide surface 26, 28 can have one planar surface. However, the guide surfaces 26, 28 can have any surface geometry, including planar, curved (e.g., one or more concave and/or convex portions), polygonal (e.g., any combination of two or more planes), irregular, or any combination thereof. Thus, although the guide surfaces 26, 28 can function as guide planes and may be planar in general characteristics, strict conformity with flatness associated with a plane is not required.

The guide surfaces 26, 28 can be angled such that they define one or more inclined, horizontal, and/or declined planar surfaces. The guide surfaces 26, 28 can be at one or more angles relative to, for example, a reference plane, reference surface, or reference axis. FIG. 1 illustrates that the maxillary guide surfaces 26 (e.g., the maxillary first and second guide surfaces 26a, 26b) can each be at maxillary guide surface angle 30. The maxillary guide surface angle 30 can be the angle formed between the maxillary guide surfaces 26 and a reference plane, reference surface, or reference axis such as the maxillary tooth surface 24a (or an occlusal plane), maxillary orthodontic aligner (not shown), or any combination thereof. The maxillary guide surface angle 30 can be from about 0 degrees to about 90 degrees or more broadly from about 0 degrees to about 150 degrees. For angles greater than 90 degrees, the maxillary guide surface 26 can face toward as opposed to away from the maxillary dentition. For example, the maxillary guide surface angle 30 can be from about 15 degrees to about 75 degrees, from about 40 degrees to about 50 degrees, from about 30 degrees to about 60 degrees, from about 20 degrees to about 70 degrees, or from about 10 degrees to about 80 degrees, including every 1 degree increment within these ranges; for example, the maxillary guide surface angle 30 can be about 0 degrees, about 5 degrees, about 10 degrees, about 15 degrees, about 20 degrees, about 25 degrees, about 30 degrees, about 35 degrees, about 40 degrees, about 45 degrees, about 50 degrees, about 55 degrees, about 60 degrees, about 65 degrees, about 70 degrees, about 75 degrees, about 80 degrees, about 85 degrees, about 90 degrees, about 130 degrees, about 135 degrees, about 140 degrees, about 145 degrees, or about 150 degrees. Angles within these ranges and/or having these values can advantageously allow the maxillary and mandibular blocks 12, 14 to slidably engage or otherwise move relative to one another and/or rest against each other or otherwise inhibit or prevent movement relative to one another. Angles within these ranges and/or having these values can advantageously allow the maxillary and mandibular blocks 12, 14 to contact (e.g., slidably contact) each other to move and/or maintain the mandible into a forward position and/or to increase and/or maintain the interocclusal separation between the maxillary and mandibular dental arches. Angles within these ranges and/or having these values can therefore advantageously facilitate the reshaping of the airway into a more open configuration (e.g., from a less open first configuration to a more open second configuration). Each maxillary block 12 in a series can have the same or different maxillary guide surface angle 30 as one or more other maxillary blocks 12 in the series.

FIG. 1 illustrates that the mandibular guide surfaces 28 (e.g., the mandibular first and second guide surfaces 28a, 28b) can each be at a mandibular guide surface angle 32. The mandibular guide surface angle 32 can be the angle formed between the mandibular guide surfaces 28 and a reference plane, reference surface, or reference axis such as the mandibular tooth surface 24b (or an occlusal plane), mandibular orthodontic aligner (not shown), or any combination thereof. The mandibular guide surface angle 32 can be from about 0 degrees to about 90 degrees or more broadly from about 0 degrees to about 150 degrees. For angles greater than 90 degrees, the mandibular guide surface 28 can face toward as opposed to away from the mandibular dentition. For example, the mandibular guide surface angle 32 can be from about 15 degrees to about 75 degrees, from about 40 degrees to about 50 degrees, from about 30 degrees to about 60 degrees, from about 20 degrees to about 70 degrees, or from about 10 degrees to about 80 degrees, including every 1 degree increment within these ranges; for example, the mandibular guide surface angle 32 can be about 0 degrees, about 5 degrees, about 10 degrees, about 15 degrees, about 20 degrees, about 25 degrees, about 30 degrees, about 35 degrees, about 40 degrees, about 45 degrees, about 50 degrees, about 55 degrees, about 60 degrees, about 65 degrees, about 70 degrees, about 75 degrees, about 80 degrees, about 85 degrees, about 90 degrees, about 130 degrees, about 135 degrees, about 140 degrees, about 145 degrees, or about 150 degrees. Angles within these ranges and/or having these values can advantageously allow the maxillary and mandibular blocks 12, 14 to slidably engage or otherwise move relative to one another and/or rest against each other or otherwise inhibit or prevent movement relative to one another. Angles within these ranges and/or having these values can advantageously allow the maxillary and mandibular blocks 12, 14 to contact (e.g., slidably contact) each other to move and/or maintain the mandible into a forward position and/or to increase and/or maintain the interocclusal separation between the maxillary and mandibular dental arches. Angles within these ranges and/or having these values can therefore advantageously facilitate the reshaping of the airway into a more open configuration (e.g., from a less open first configuration to a more open second configuration). Each mandibular block 14 in a series can have the same or different maxillary guide surface angle 32 as one or more other mandibular blocks in the series.

FIG. 1 illustrates that the maxillary and mandibular guide surface angles 30, 32 of a maxillary and mandibular block pair (e.g., pair 12a-14a, pair 12b-14b) can be any two complementary or nearly complementary angles. For example, the first and second block pairs 12a-14a and 12b-14b can have angle pairs (listed as angle-angle, in degrees) of about 45-45, 40-50, 35-55, 30-60, 25-65, 20-70, 15-75, 10-80, 5-85, or vice versa—about 45-45, 50-40, 55-35, 60-30, 65-25, 70-20, 75-15, 80-10, 85-5. The maxillary blocks 12 can have the first listed complementary angle and the mandibular blocks 14 can have the second listed complementary angle in each of the angle-angle pairs. The mandibular blocks 14 can have the first listed complementary angle and the maxillary blocks 12 can have the second listed complementary angle in each of the angle-angle pairs. In this way, the maxillary and mandibular blocks 12, 14 can form cooperating pairs of blocks 12-14 and guide surfaces 26-28 as described above. However, the maxillary and mandibular guide surface angles 30, 32 can be non-complementary and still enable one or more portions of each of the guide surfaces 26, 28 to cooperate with one another. Moreover, the guide surfaces 26, 28 need not form surface angles 30, 32—which can occur where, for example, the guide surfaces are irregular, curved, polygonal, or any combination thereof, yet still advantageously be configured to interact and function as guide surfaces.

FIG. 1 illustrates that the maxillary first and second blocks 12a, 12b can have maxillary first and second guide surface angles 30a, 30b, respectively. The maxillary first and second guide surface angles 30a, 30b can be the same or different from one another. For example, the maxillary first guide surface angle 30a can be less than, equal to, or greater than the maxillary second guide surface angle 30b. The maxillary first guide surface angle 30a can be from about 1 degree to about 90 degrees greater or less than the maxillary second guide surface angle 30b, more narrowly from about 1 degree to about 45 degrees greater or less than the maxillary second guide surface angle 30b, more narrowly yet from about 1 degree to about 30 degrees greater or less than the maxillary second guide surface angle 30b, still more narrowly from about 1 degree to about 15 degrees greater or less than the maxillary second guide surface angle 30b, yet still more narrowly from about 1 degree to about 5 degrees greater or less than the maxillary second guide surface angle 30b, or vice versa.

FIG. 1 illustrates that the mandibular first and second blocks 14a, 14b can have mandibular first and second guide surface angles 32a, 32b, respectively. The mandibular first and second guide surface angles 32a, 32b can be the same or different from one another. For example, the mandibular first guide surface angle 32a can be less than, equal to, or greater than the mandibular second guide surface angle 32b. The mandibular first guide surface angle 32a can be from about 1 degree to about 90 degrees greater or less than the mandibular second guide surface angle 32b, more narrowly from about 1 degree to about 45 degrees greater or less than the mandibular second guide surface angle 32b, more narrowly yet from about 1 degree to about 30 degrees greater or less than the mandibular second guide surface angle 30b, still more narrowly from about 1 degree to about 15 degrees greater or less than the mandibular second guide surface angle 32b, yet still more narrowly from about 1 degree to about 5 degrees greater or less than the mandibular second guide surface angle 32b, or vice versa.

FIG. 1 illustrates that the maxillary guide surfaces 26 can extend away from an occlusal surface of the maxillary dentition and/or from a maxillary oral tray (not shown, e.g., a maxillary orthodontic tray), for example, toward the mandible. The mandibular guide surfaces 28 can extend away from an occlusal surface of the mandibular dentition and/or a mandibular oral tray (not shown, e.g., a mandibular orthodontic tray), for example, toward the maxilla. Each guide surface (e.g., guide surfaces 26, 28) can have a first end and a second end. The first and second ends can be the base of the guide surface and the second end can be the top of the guide surface. The base of the maxillary guide surface 26 can be closer to a surface of a maxillary tooth and/or maxillary oral tray than the top of the maxillary guide surface 26 and the base of the mandibular guide surface 28 can be closer to a surface of a mandibular tooth and/or mandibular oral tray than the top of the mandibular guide surface 28. For example, FIG. 1 illustrates that the bases of the maxillary and mandibular guide surfaces 26, 28 can be proximate to and extend from maxillary and mandibular occlusal surfaces, respectively, toward the opposing dentition; however, one or more of the bases can be offset from the occlusal surface or oral tray such that the offset base(s) are separated from the dentition or a surface of a maxillary or mandibular oral tray by about 0.5 mm to about 50 mm. The tops can be proximate to or separated from (e.g., by about 0.5 mm to about 50 mm) the opposing dentition. FIG. 1 illustrates that the tops of the mandibular guide surfaces 28 can be configured to be proximate the maxillary detention and/or oral tray and that the tops of the maxillary guide surfaces 26 can be configured to be separated from the mandibular dentition and/or oral tray.

The guide surfaces 26, 28 can extend along any portion of a length of a block, for example, 100% or less, 75% or less, 50% or less, 25% or less. For example, FIG. 1 illustrates that each guide surface 26, 28 can extend about 33% along a length of its respective block, thereby advantageously providing a large guide surface. Guide surfaces 26, 28 that extend along greater than about 10% of a length of a block can advantageously enable each block 12, 14 in a treatment series to be used for greater treatment period before a user graduates to the next block. Guide surfaces greater than this 10% threshold can reduce the number of blocks 12, 14 required in a treatment series. Guide surfaces greater than this 10% threshold can increase user comfort and tolerance for user error. Although not illustrated, each maxillary ramp 26 can extend about 100% along the length of a maxillary block 12, for example, from a maxillary block first end to a maxillary block second end such that the maxillary blocks 12 have a shape of a triangular wedge when viewed from the side. Similarly, each mandibular ramp 28 can extend about 100% along the length of a mandibular block 14, for example, from a mandibular block first end to a mandibular block second end such that the mandibular blocks 14 have a shape of a triangular wedge when viewed from the side.

FIG. 1 illustrates that the maxillary and mandibular guide surfaces 26, 28 can be sloped longitudinally such that the angles 30, 32 are the angles that are formed as the guide surfaces 26, 28 extend longitudinally across the blocks 12, 14, for example, from the anterior portion 20 to the posterior portion 22 of the blocks 12, 14. As a result, the guide surfaces 26, 28 can form one or more longitudinal slopes. Additionally or alternatively, the maxillary and mandibular guide surfaces 26, 28 can be sloped transversely such that the angles 30, 32 can be the angles that are formed as the maxillary guide surfaces 26 extend laterally across the block, for example, from a first lateral side to a second lateral side (e.g., left to right and/or right to left) of the blocks 12, 14, or from a longitudinal center to a first and/or second lateral side of the blocks 12, 14. As a result, the guide surfaces 26, 28 can form one or more transverse slopes. Each guide surface 26, 28 can have a longitudinal and/or transverse slope. The longitudinal and transverse guide surfaces can have the same or different slope from one another. For example, one or more guide surfaces can have a longitudinal slope of about 35 degrees and a transverse slope of about 20 degrees. The one or more longitudinal slopes can reshape the airway by advancing the mandible. The one or more transverse slopes can reshape the airway by causing palatal expansion, for example, by exerting an outward force on the dentition. Each block in a series can have the same or different longitudinal and/or transverse slope(s) as one or more other blocks in the series.

FIG. 1 illustrates the relative positions of the maxillary and mandibular blocks 12, 14 relative to the maxillary and mandibular dental arches, respectively. The maxillary blocks 12 (e.g., maxillary first and second blocks 12a, 12b) can be configured to overlay one or more posterior teeth and/or one or more anterior teeth. The maxillary blocks 12 can be configured to overlay a central incisor, a lateral incisor, a canine, one or more premolars, one or more molars, or any combination thereof. FIG. 1 illustrates that the maxillary first and second blocks 12a, 12b can overlay a portion of the posterior ends of the maxillary dental arch, for example, the second and third molars. The mandibular blocks 14 (e.g., mandibular first and second blocks 14a, 14b) can be configured to overlay one or more posterior teeth and/or one or more anterior teeth. The mandibular blocks 14 (e.g., mandibular first and second blocks 14a, 14b) can be configured to overlay a central incisor, a lateral incisor, a canine, one or more premolars, one or more molars, or any combination thereof. FIG. 1 illustrates that the mandibular first and second blocks 14a, 14b can overlay the posterior ends and an anterior portion of the mandibular dental arch, for example, the second premolar and the first, second and third molars. Each block in a series can have the same or different relative position as one or more other blocks in the series.

The location of the maxillary and/or mandibular blocks 12, 14 relative to a dentition and/or to each other can be determined by a dentist, orthodontist, one or more computer algorithms, or a combination thereof. For example, a computer program can be used to retrieve data from oral data acquisition devices (e.g., scanners, x-ray devices, cameras) to record and measure orthodontic malocclusions and teeth misalignments. A computer program can be used to retrieve data from oral data acquisition devices to record and measure the orthodontic correction of malocclusions and misalignments during treatment.

FIGS. 2 and 3 illustrate that the maxillary blocks 12 (e.g., maxillary first and second blocks 12a, 12b) can each have a length 12L, a width 12W and a height 12H. The length 12L can be from about 1 mm to about 50 mm, including every 0.5 mm increment between about 1 mm and about 50 mm, for example, about 15.0 mm. The width 12W can be from about 1 mm to about 30 mm, including every 0.5 mm increment between about 1 mm and about 30 mm, for example, 8.0 mm. The height 12H can be from about 1 mm to about 50 mm, including every 0.5 mm increment between about 1 mm and about 50 mm, for example, 18 mm. Each maxillary block 12 in a series can have the same or different length 12L, width 12W, and/or height 12H as one or more other maxillary blocks 12 in the series. The lengths 12L of multiple or successive maxillary blocks 12 can each have the same length or one or more different lengths 12L. For example, the lengths 12L of multiple or successive maxillary blocks 12 can become progressively longer, progressively shorter, follow another progressive pattern (e.g., increase and/or decrease), or remain constant. For example, the lengths 12L of the maxillary blocks 12 in a series can increase from about 15.0 mm to about 20.0 mm, vice versa (e.g., decrease from about 15.0 mm to about 10.0 mm), increase from about 15.0 to about 18.0 mm and then decrease to about 16.5 mm, or remain constant at about 15.0 mm. pnThe widths 12W of multiple or successive maxillary blocks 12 can each have the same width or one or more different widths 12W. For example, the widths 12W of multiple or successive maxillary blocks 12 can become progressively longer, progressively shorter, follow another progressive pattern (e.g., increase and/or decrease), or remain constant. For example, the widths 12W of the maxillary blocks 12 in a series can increase from about 8.0 mm to about 13.0 mm, vice versa (e.g., decrease from about 8.0 mm to about 3.0 mm), increase from about 8.0 to about 11.0 mm and then decrease to about 10.0 mm, or remain constant at about 8.0 mm. The heights 12H of multiple or successive maxillary blocks 12 can each have the same height or one or more different heights 12H. The height 12H can be a maximum height. For example, the heights 12H of multiple or successive maxillary blocks 12 can become progressively longer, progressively shorter, follow another progressive pattern (e.g., increase and/or decrease), or remain constant. For example, the heights 12H of the maxillary blocks 12 in a series can increase from about 10.0 mm to about 15.0 mm, vice versa (e.g., decrease from about 15.0 mm to about 10.0 mm), increase from about 8.0 to about 11.0 mm and then decrease to about 10.0 mm, or remain constant at about 10.0 mm.

FIGS. 2 and 3 illustrate that the mandibular blocks 14 (e.g., mandibular first and second blocks 14a, 14b) can each have a length 14L, a width 14W and a height 14H. The length 14L can be from about 1 mm to about 50 mm, including every 0.5 mm increment between about 1 mm and about 50 mm, for example, about 35.0 mm. The width 14W can be from about 1 mm to about 30 mm, including every 0.5 mm increment between about 1 mm and about 30 mm, for example, 8.0 mm. The height 12H can be from about 1 mm to about 50 mm, including every 0.5 mm increment between about 1 mm and about 50 mm, for example, 9 mm. Each mandibular block 14 in a series can have the same or different length 14L, width 14W, and/or height 14H as one or more other mandibular blocks 14 in the series. The lengths 14L of multiple or successive mandibular blocks 14 can each have the same length or one or more different lengths 14L. For example, the lengths 14L of multiple or successive mandibular blocks 14 can become progressively longer, progressively shorter, follow another progressive pattern (e.g., increase and/or decrease), or remain constant. For example, the lengths 14L of the mandibular blocks 14 in a series can increase from about 35.0 mm to about 40.0 mm, vice versa (e.g., decrease from about 35.0 mm to about 30.0 mm), increase from about 35.0 to about 38.0 mm and then decrease to about 36.5 mm, or remain constant at about 35.0 mm. The widths 14W of multiple or successive mandibular blocks 14 can each have the same width or one or more different widths 14W. For example, the widths 14W of multiple or successive mandibular blocks 14 can become progressively longer, progressively shorter, follow another progressive pattern (e.g., increase and/or decrease), or remain constant. For example, the widths 14W of the mandibular blocks 14 in a series can increase from about 8.0 mm to about 13.0 mm, vice versa (e.g., decrease from about 8.0 mm to about 3.0 mm), increase from about 8.0 mm to about 11.0 mm and then decrease to about 10.0 mm, or remain constant at about 8.0 mm. The heights 14H of multiple or successive mandibular blocks 14 can each have the same height or one or more different heights 14H. The height 14H can be a maximum height. For example, the heights 14H of multiple or successive mandibular blocks 14 can become progressively longer, progressively shorter, follow another progressive pattern (e.g., increase and/or decrease), or remain constant. For example, the heights 14H of the mandibular blocks 14 in a series can increase from about 3.0 mm to about 8.0 mm, vice versa (e.g., decrease from about 3.0 mm to about 0.5 mm), increase from about 3.0 mm to about 6.0 mm and then decrease to about 4.5.0 mm, or remain constant at about 3.0 mm.

The length 12L can be greater than, equal to, or less than the length 14L. For example, FIG. 2 illustrates that the length 12L can be less than the length 14L. The width 12W can be greater than, equal to, or less than the width 14W. For example, FIG. 2 illustrates that the width 12W can be about equal to the width 14W. The height 12H can be greater than, equal to, or less than the height 14H. For example, FIG. 2 illustrates that the height 12H can be less than the height 14H. Each block 12, 14 can have one or more lengths, widths, heights, or any combination thereof.

FIG. 3 illustrates that the guide surfaces 26 (e.g., guide surface 26b) can have a guide surface length 26L and that the guide surfaces 28 (e.g., guide surface 28b) can have a guide surface length 28L. The surface length 26L can be from about 1 mm to about 50 mm, including every 0.5 mm increment between about 1 mm and about 50 mm, for example, about 5 mm, about 6 mm, about 7 mm, about 8 mm, about 9 mm, about 10 mm, about 11 mm, about 12 mm, about 13 mm, about 14 mm, about 15 mm, about 16 mm, about 17 mm, about 18 mm, about 19 mm, about 20 mm. The surface length 28L can be from about 1 mm to about 50 mm, including every 0.5 mm increment between about 1 mm and about 50 mm, for example, about 5 mm, about 6 mm, about 7 mm, about 8 mm, about 9 mm, about 10 mm, about 11 mm, about 12 mm, about 13 mm, about 14 mm, about 15 mm, about 16 mm, about 17 mm, about 18 mm, about 19 mm, about 20 mm. Each block in a series can have the same or different guide surface length 26L as one or more other blocks in the series. The guide surface lengths 26L of multiple or successive maxillary blocks 12 can each have the same length or one or more different lengths 26L. For example, the guide surface lengths 26L of multiple or successive maxillary blocks 12 can become progressively longer, progressively shorter, follow another progressive pattern (e.g., increase and/or decrease), or remain constant. For example, the guide surface lengths 26L of the maxillary blocks 12 in a series can increase from about 10.0 mm to about 20.0 mm, vice versa (e.g., decrease from about 10.0 mm to about 5.0 mm), increase from about 10.0 to about 13.0 mm and then decrease to about 5.0 mm, or remain constant at about 10.0 mm. The guide surface lengths 28L of multiple or successive mandibular blocks 14 can each have the same length or one or more different lengths 28L. For example, the guide surface lengths 28L of multiple or successive mandibular blocks 12 can become progressively longer, progressively shorter, follow another progressive pattern (e.g., increase and/or decrease), or remain constant. For example, the guide surface lengths 26L of the mandibular blocks 12 in a series can increase from about 10.0 mm to about 20.0 mm, vice versa (e.g., decrease from about 10.0 mm to about 5.0 mm), increase from about 10.0 to about 13.0 mm and then decrease to about 5.0 mm, or remain constant at about 10.0 mm.

FIG. 3 illustrates that one or more of the maxillary and mandibular blocks 12, 14 can have a free surface 25 (also referred to as a hanging surface) positioned opposite a tooth surface 24 (e.g., tooth surface 24a and/or 24b) that is configured to not contact an opposing block (e.g., any surface of the opposing block), an opposing dental or orthodontic tray, an opposing dentition, or any combination thereof. For example, FIG. 1 illustrates that one or more maxillary blocks 12 can have a free surface 25. The maxillary first block 12a can have a maxillary first block hanging surface 25a and/or the maxillary second block 12b can have a maxillary second block hanging surface 25b. A hanging surface 25 can advantageously provide more space for the tongue in the oral cavity, increase the size of the airway and help keep open the airway. Additionally or alternatively, a hanging surface can advantageously inhibit or prevent the blocks 12, 14 from triggering a person's gag reflex, for example, by reducing the size of the oral appliance 10 positioned in the back of the oral cavity.

FIG. 3 illustrates that a gap can form between a free hanging surface 25 (e.g., the maxillary second block hanging surface 25b) and an opposing dentition (e.g., the mandibular dentition). The gap can be from about 0 mm to about 50 mm, more narrowly from about 1 mm to about 20 mm, yet more narrowly from about 1 mm to about 15 mm, yet still more narrowly from about 1 mm to about 10 mm, including every 0.5 mm increment within these ranges, for example, about 5 mm, about 6 mm, about 7 mm, about 8 mm, about 9 mm, about 10 mm. The gap can be the shortest distance between the free surface 25 and the opposing dental tray, orthodontic tray, or teeth. The gap can be the greatest distance between the free surface 25 and the opposing dental tray, orthodontic tray, or teeth. The gap can be measured between any point on an opposing dental tray, orthodontic tray, or teeth to any point on the hanging surface 25. The point on the hanging surface may or may not correspond with a point that is closest to or farthest from the opposing dental tray, orthodontic tray, or teeth.

FIG. 3 illustrates a variation of the relative positions of the maxillary and mandibular blocks 12, 14 to one another when the jaw is in a closed position. FIG. 3 illustrates that when the jaw is fully closed at least a portion of a posterior portion 22 of the maxillary blocks 12 (e.g., the maxillary first and second blocks 12a, 12b) can be posterior to at least a portion of a posterior portion 22 of the mandibular blocks 14 (e.g., the mandibular first and second blocks 14a, 14b), or vice versa (if, for example, the positions of the blocks 12, 14 are reversed such that the maxillary blocks 12 are placed in their same relative positions on the mandibular dental arch and the mandibular blocks 14 are place in their same relative positions on the maxillary dental arch). For example, FIG. 3 illustrates that the maxillary blocks 12 do not extend anterior to the top of the ramp of the mandibular blocks 14, and are accordingly posterior to the remaining portion of the mandibular blocks 14.

The dimensions and relative positions of the blocks 12, 14 disclosed herein will depend on, and can be customized to accommodate, for example, a person's airway, dental and/or orthodontic needs, their anatomy, the number of blocks in a series, the number oral trays in a series, or any combination thereof; thus, although various positions, ranges and values are disclosed, each permutation of the disclosed positions, ranges and values and equivalents thereof is considered critical to the overall design of the oral appliance 10, as each combination of dimensions and positions, when used together to reposition the jaw, adjust the bite, and/or reshape and/or maintain a person's airway, is critical to providing the treatment desired. Additionally, each block in a series can have any combination of the dimensions and positions disclosed, as the design of each block in a series will depend on a person's unique dentition and other craniofacial structures as well as the implemented orthodontic and/or SBD treatment plan. If the foregoing disclosure yet lacks clarity, every permutation of block dimensions and positions within the ranges and values disclosed is hereby explicitly disclosed, for example, in 0.1 mm increments, such that any combination of block dimensions and/or relative positions is claimable.

The first and second maxillary blocks 12a, 12b can be connected via one or more maxillary connectors. The maxillary connector(s) can be a wire, resilient wire, polymer strand, resilient polymer strand, dental tray, orthodontic tray, or any combination thereof that conform to, extend along, or wrap around a buccal side, a lingual side, and/or an occlusal surface of at least a portion of the maxillary dental arch. A first end of the maxillary connector(s) can be attached to or integrated with any portion of the maxillary first or second block 12a, 12b and a second end of the maxillary connector(s) can be attached to or integrated with any portion of the other of the maxillary first or second block 12a, 12b. The maxillary connector(s) can be used to stabilize the first and second maxillary blocks 12a, 12b. The maxillary connector(s) can be designed and/or manipulated (e.g., progressively manipulated over a series of treatments) to orthodontically move maxillary teeth. The first and second mandibular blocks 14a, 14b can be connected via one or more mandibular connectors. The mandibular connector(s) can be a wire, resilient wire, polymer strand, resilient polymer strand, dental tray, orthodontic tray, or any combination thereof that conform to, extend along, or wrap around a buccal side, a lingual side and/or an occlusal surface of at least a portion of the mandibular dental arch. A first end of the mandibular connector(s) can be attached to or integrated with any portion of the mandibular first or second block 14a, 14b and a second end of the mandibular connector(s) can be attached to or integrated with any portion of the other of the mandibular first or second block 14a, 14b. The mandibular connector(s) can be used to stabilize the first and second mandibular blocks 14a, 14b. The mandibular connector(s) can be designed and/or manipulated (e.g., progressively manipulated over a series of treatments) to orthodontically move mandibular teeth. Orthodontic and dental trays are individually and collectively referred to throughout as oral trays such that an oral tray can be an orthodontic and/or a dental tray, for example, an aligner (also referred to as an orthodontic tray), a whitening tray, or an orthodontic teeth whitening aligner that is configured to move and whiten at least one tooth. Oral trays are also referred to as aligners and aligner components throughout.

The blocks 12, 14 can be attached to or integrated with a maxillary and/or mandibular oral tray. For example, the maxillary blocks 12 can be integrated with a maxillary and/or mandibular oral tray and/or the mandibular blocks 14 can be integrated with a maxillary and/or mandibular oral tray. A series of oral trays can be designed to progressively reposition the maxillary and/or mandibular teeth in two or more successive steps, for example, as disclosed in PCT Publication WO 2016/004415 and U.S. application Ser. No. 15/386,280 (published as US 2017/0100214), both of which have been incorporated herein by reference in their entireties for all purposes. Each oral tray in a series can have a tooth surface that has a geometry that corresponds to an intermediate or end tooth arrangement intended for the oral tray in the series. The oral trays can be sufficiently resilient to accommodate or conform to misaligned teeth, but apply sufficient force against the misaligned teeth to reposition the teeth to the intermediate or end arrangement as desired for the particular treatment step. A series of oral trays can have geometries selected to progressively reposition teeth from a first arrangement through one or more successive intermediate arrangements to a final arrangement. A series of trays can have 1 to 100 maxillary trays and 1 to 100 mandibular trays, for example, 1 to 55 maxillary trays and 1 to 55 mandibular trays, 1 to 50 maxillary trays and 1 to 50 mandibular trays, 1 to 45 maxillary trays and 1 to 45 mandibular trays, 1 to 40 maxillary trays and 1 to 40 mandibular trays, less than 40 maxillary trays 12 and less than 40 mandibular trays, including every 1 tray increment within these ranges, or any combination thereof. For example, a series of trays can have 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50 maxillary trays and 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50 mandibular trays. The number of maxillary trays can be the same or different as the number mandibular trays in a series.

The trays can orthodontically move the teeth into one or more correct physiological positions. For example, the trays can orthodontically move the teeth into one or more positions that physiologically allows for a more open airway.

Each tray in a series can be configured to move one or more teeth, or one or more trays in a series can be configured to not move any teeth. For example, where the mandibular teeth are in a desired alignment but the position of the maxillary teeth are still in need of an adjustment, the mandibular tray can be configured to maintain the position of the mandibular teeth and the maxillary tray can be configured to move one or more maxillary teeth. The blocks 12, 14 can be modular such that they can be removably attached to a maxillary and/or mandibular oral tray, for example, to an orthodontic tray and/or to a dental tray (i.e., any tray without an orthodontic function). The blocks 12, 14 can be attached to one or multiple oral trays with one or multiple attachment mechanisms (also referred to as anchors), such as clasps, clips, hooks, elastic hooks, barbs, spurs, fasteners, or any combination thereof. Additionally or alternatively, the blocks 12, 14 can fit over a portion of an oral tray with a friction fit and/or a snap fit. For example, the oral tray can have a ridge over which the blocks 12, 14 can be snapped. The ridge can extend at least partially along a surface of the oral tray. A first end (e.g., a base) of each maxillary block 12 can be anchored to a maxillary oral tray. A second end (e.g., a top portion) of each maxillary block 12 can be anchored to a mandibular oral tray. A first end (e.g., a base) of each mandibular block 14 can be anchored to a mandibular oral tray. A second end (e.g., a top portion) of each mandibular block 14 can be anchored to a maxillary oral tray. A modular block design can be especially advantageous where a series of orthodontic trays are designed as disclosed in WO 2016/004415, as the modular design can allow the reuse and/or repositioning of the blocks 12, 14 along the arch of the maxillary and/or mandibular dentition on a single aligner or on multiple successive aligners. The modular design can advantageously allow the repositioning of one or more blocks 12, 14 from a first position on an oral tray to one or more other positions on the oral tray different from the first position. For example, the modular design can allow the repositioning each block (e.g., blocks 12 and/or 14) in a series 1 to 100 times on one or multiple oral trays, including every increment of 1 between 1 and 100. A modular design can also advantageously allow a series of blocks to be mixed and matched with each oral tray in an oral tray series.

One or both guide surfaces of a guide surfaces pair 26-28 (e.g., pair 26a-28a and/or pair 26b-28b) can have a coating or otherwise comprise a material which permits relative motion between two opposed guide surfaces in a first direction and resists relative motion between two opposed guide surfaces in a second direction opposite the first direction. For example, the mandibular blocks 14 can be configured to engage the maxillary blocks 12 and slide forward along the guide surfaces 26 of the maxillary blocks 12 upon the application of a compressive force between two opposing maxillary and mandibular blocks 12, 14 (e.g., upon closing the jaw from an open position or by otherwise “biting down” on the blocks 12, 14). As another example, the mandibular blocks 14 can be configured to engage the maxillary blocks 12 and slide forward along the guide surfaces 26 of the maxillary blocks 12 in a first direction when the jaw relaxes or is voluntarily opened and then relaxed and be prevented or inhibited from sliding along the guide surfaces 26 in a second direction opposite the first direction. The guide surfaces (e.g., guide surfaces 26 and/or 28) can have a first coefficient of friction associated with movement of the mandibular blocks 12 in a first direction and a second coefficient of friction associated with movement of the mandibular blocks 12 in a second direction opposite the first direction. The second coefficient of friction can be greater than the first coefficient of friction. The first and second coefficients of friction can be static coefficients of friction μs. The first and second coefficients of friction can be kinetic coefficients of friction μk.

One or both guide surfaces of a guide surface pair 26-28 (e.g., pair 26a-28a and/or pair 26b-28b) can have a coating or otherwise comprise a material (e.g., an adhesive or a ferromagnetic material) which inhibits relative motion between two opposed guide surfaces when they interact. Additionally or alternatively, one or more magnets can be placed in the blocks 12, 13 such that the maxillary blocks 12 magnetically attract the mandibular blocks 14 and vice versa.

The maxillary and mandibular blocks 12, 14 can comprise a thermoplastic material. The maxillary and mandibular blocks 12, 14 can be thermoformed with the aid of a computer algorithm. The maxillary and mandibular aligners can comprise a thermoplastic material. The maxillary and mandibular aligners can be thermoformed with the aid of a computer program. The maxillary blocks 12 and the maxillary aligners can be attached to, integrated with, or monolithically formed with one another. The mandibular blocks 14 and the mandibular aligners can be attached to, integrated with, or monolithically formed with one another.

The maxillary and mandibular blocks 12, 14 can be rigid such that they resist deformation under pressure or semi-rigid such that they permit deformation and/or are compliant under pressure. Semi-rigid and/or compliant materials can advantageously increase user comfort and prevent, inhibit, or limit sleep bruxism.

The blocks 12, 14 can be solid or hollow. For example, the blocks 12, 14 can have one or more airway channels (e.g., 1 to 10 or more airway channels). The airway channels can extend at least partially laterally and/or at least partially longitudinally through the blocks 12, 14. The airway channels can extend through the blocks 12, 14 from the buccal side 16 to the lingual side 18. The airway channels can extend through the blocks 12, 14 from an anterior side to a posterior side. One or more of the airway channels of a maxillary block 12 can be at least partially aligned (e.g., partially or completely collinear) with one or more channels of a mandibular block 14. Each channel can have an anterior end and a posterior end. A posterior end of the channel of an anterior block (e.g., the mandibular blocks 14 in FIG. 1) can overlap completely or partially with an anterior end of the channel of a posterior block (e.g., the maxillary blocks 12 in FIG. 1). The posterior ends of the airway channels of the posterior blocks (e.g., the maxillary blocks 12 in FIG. 1) can be directed toward the pharynx to facilitate inhalation and exhalation. A posterior portion of the airway channels in the posterior blocks (e.g., the maxillary blocks 12 in FIG. 1) can be curved such that the posterior ends of the posterior blocks are directed toward the pharynx or the base of the tongue. The airway channels can be straight, curved, tapered, or any combination thereof.

A cooperating pair of blocks 12-14 can have 1 to 10 or more airway channels. For example, the cooperating pair of blocks 12a-14a and 12b-14b can each have one maxillary airway channel and two mandibular airway channels extending at least partially longitudinally and/or laterally through the blocks 12a, 12b, 14a, 14b. One of the mandibular airway channels can be at least partially aligned with the maxillary airway channel. The three airway channels (the one maxillary and two mandibular channels) can thereby advantageously form two airway channels from an anterior portion of the oral appliance 10 to a posterior portion of the oral appliance 10. The one or more airway channels in the oral appliance 10 can decrease the amount of dead space in the oral cavity by increasing the size of the oral cavity available for airflow through the oral cavity by allowing air to flow through the blocks 12, 14. By increasing the volume in the oral cavity available for airflow, the one or more airway channels can advantageously reduce the amount of respiratory effort required for inhalation and exhalation and/or decrease the velocity of the air passing through oral cavity, and can therefore, in turn, prevent, inhibit, and/or reduce the likelihood of an SBD event and/or the occurrence of snoring. The one or more airway channels can and/or can help prevent, inhibit, and/or reduce SBD and/or snoring.

The airway channels can be substantially the same size as the block or any lesser size, collectively or individually. For example, a transverse and/or longitudinal cross-sectional area of the airway channels can be about 1% to about 100% of a transverse and/or longitudinal cross-sectional area of the blocks 12, 14, more narrowly from about 1% to about 95%, more narrowly still from about 1% to about 90%, including every 1% increment within these ranges, for example, about 25%, 50%, 75%, 90%, or 95%. A length of the airway channels can be about 1% to about 100% of a length of the blocks 12, 14, more narrowly from about 1% to about 90%, more narrowly still from about 1% to about 80%, including every 1% increment within these ranges, for example, about 25%, 50%, 75%, or 95%. The airway channels can extend laterally across the blocks 12, 14 such that the airway channels extend across about 1% to about 100% the width of a block, more narrowly from about 1% to about 90%, more narrowly still from about 1% to about 80%, including every 1% increment within these ranges, for example, about 25%, 50%, 75%, or 95%.

One or more sensors can be positioned in one or multiple airway channels, integrated into a wall of one or multiple airway channels, integrated or positioned on an outer surface of one or multiple blocks 12, 14, integrated in one or multiple blocks 12, 14, integrated or positioned on one or more oral trays, or any combination thereof. The one or more sensors can be flow sensors, pressure sensors, temperature sensors, or any combination thereof. The sensor(s) can be in communication with a controller configured to activate an alarm when an obstruction is detected, for example, when a flow sensor detects a stoppage or reduction in flow that exceeds a time interval threshold, when a pressure sensor detects a drop in pressure that exceeds a pressure drop threshold, when a temperature sensor detects a temperature increase of exhaled or oral cavity air that exceeds a temperature threshold, or any combination thereof. The alarm can be auditory and/or tactile (e.g., vibration), and can be emitted from an alarm mechanism, including, for example, the controller. The controller can be integrated with the oral device 10 or be in wireless communication therewith. The controller can be configured to communicate an alarm signal to a smartphone or other computing device which can process the signal and emit an auditory and/or tactile alarm. The alarm can be configured to wake a person up from a potentially dangerous SBD event. One or more sensors (e.g., one or more pressure sensors) can be in communication with the controller to detect whether the oral appliance 10 is properly or improperly positioned. The controller can be configured to activate an alarm if the oral appliance 10 is improperly positioned, for example, if it becomes dislodged when a person is sleeping (e.g., if one or more pressure sensors detect a pressure drop that exceeds a pressure drop threshold).

Method of Use

The oral appliance 10, or a series of oral appliances 10, can be placed in an oral cavity as shown in FIG. 3.

The blocks 12, 14 can facilitate or otherwise encourage a person to open their mouth and/or move their mandible forward, for example, due to the size and/or shape of the blocks 12, 14 and/or due the interaction between the blocks 12, 14 when a person opens their mouth and/or bites down on the blocks after the oral appliance is placed in the oral cavity. The size of the blocks 12, 14 can cause a person to open their mouth at least as wide as the smallest thickness of the blocks 12, 14 (e.g., the length, width, and/or height of the blocks) to accommodate placement of the blocks 12, 14 in the oral cavity.

The size and/or shape of the blocks 12, 14 can be configured to encourage a person to move their mandible forward with or without biting down on the blocks 12, 14. For example, the blocks 12, 14 can interact to move the mandible forward when a person bites down on the blocks 12, 14. However, a person can use the blocks 12, 14 with or without moving their mandible forward. The size and/or shape of the blocks 12, 14 can be configured to advance a person's mandible. The size and/or shape of the blocks 12, 14 can be configured to not advance a person's mandible.

The size and/or shape of the blocks 12, 14 can cause a mandible to advance from a retruded position, neutral position, or advanced position. The size and/or shape of the blocks 12, 14 can prevent, inhibit, or limit mandibular retrusion relative to a retruded position, neutral position, or advanced position of the mandible, whether such a position is a natural position of a person, or whether it is caused by the blocks 12, 14. In this way, the blocks 12, 14 can be configured to interact with one another to reshape and/or maintain the airway and prevent, inhibit, or limit the airway from partially and/or entirely closing to treat SBD, for example, from a partially or entirely open configuration. Such an arrangement can advantageously provide SBD treatment by repositioning the jaw and/or by opening up the airway.

As described above, one or more maxillary blocks 12 can cooperate with one or more mandibular blocks 14 to reposition the jaw, adjust the bite, and/or reshape and/or maintain the airway. FIG. 3 illustrates that the blocks 12, 14 can cooperate with one another to move the mandible forward. FIG. 3 also illustrates that the blocks 12, 14 can cooperate with one another to reshape the airway into one or more open configurations, for example, by increasing the interocclusal separation between maxillary and mandibular dentitions. The blocks 12, 14 can be designed to maintain the mandible in one or more forward positions when the blocks 12, 14 are engaged with one another. The blocks 12, 14 can also be designed to maintain the airway in one or more open configurations, including one or more reshaped configurations caused at least partially by the interaction of the blocks 12, 14. The blocks 12, 14 can interact with one another to reshape the airway by repositioning (also referred to as displacing) the mandible relative to the maxilla. For example, the blocks 12, 14 can be configured to move the mandible forward and/or increase the interocclusal separation between the maxillary and mandibular dental arches when the blocks 12, 14 interact with one another. Such displacement can advantageously reposition the jaw, adjust the bite, and/or reshape the airway and cause the airway to become more open—thus providing SBD treatment.

The blocks 12, 14 can interact with one another to adjust the bite by maintaining a neutral position (e.g., non-advanced position) or a displaced position (e.g., advanced position) of the mandible relative to the maxilla. The blocks 12, 14 can also interact with one another to maintain an open airway by maintaining a neutral position (e.g., non-advanced) or a displaced position (e.g., advanced position) of the mandible relative to the maxilla. For example, the blocks 12, 14 can prevent, inhibit, or limit posterior movement of the mandible and/or a reduction of the interocclusal distance when the mandible is in a neutral and/or displaced position. Such mandibular support can advantageously treat SBD by training the jaw to return to a new, or modified, neutral position. Such mandibular support can also advantageously prevent, inhibit, or limit the tongue from falling back and collapsing the airway. A neutral position is considered any natural occlusal position. A displaced position is considered any non-displaced position, for example, any advanced and/or retruded position, natural or imposed. The blocks 12, 14 can cause a displaced mandibular position to become a new natural occlusal position, for example, by orthodontically manipulating (e.g., progressively manipulating with a series of trays and/or blocks) craniofacial structures over time such that the mandible and associated structures acquire a new equilibrium (e.g., neutral) position.

The blocks 12, 14 can interact with one another to widen the maxillary (also referred to as superior or upper) dental arch and/or the mandibular (also referred to as inferior or lower) dental arch. For example, the blocks 12, 14 can have one or more transverse slopes that can interact with one another to widen the hard and/or soft palates. Such widening can advantageously reshape the airway and cause it to become more open. Widening the mandibular dental arch can increase the size of the sublingual space and decrease the amount of obstruction the tongue causes in the oral cavity. Widening the maxillary dental arch can cause palatal expansion and thereby increase the size of the oral cavity.

The blocks 12, 14 can interact to move the mandible forward, temporarily or permanently. The blocks 12, 14 can also interact to cause the airway to develop a more open configuration, temporarily or permanently. The blocks 12, 14 can be configured to temporarily or permanently manipulate craniofacial structures.

The one or more guide surface pairs 26-28 of the oral appliance 10 (e.g., pair 26a-28a and/or pair 26b-28b) can interact in such a manner to prevent, inhibit, or limit posterior movement of the mandible and associated structures (e.g., the tongue), for example, to SBD. The maxillary and mandibular guide surfaces 26, 28 can be configured to interact with one another or to otherwise contact each other throughout treatment or only during a portion thereof. As described above, the blocks 12, 14 can be configured to interact in a self-guided manner.

FIG. 3 illustrates that a cooperating pair of guide surfaces 26b, 28b can interact to advance the mandible into a forward position (also referred to as advanced). FIG. 3 also illustrates that such advancement can increase the interocclusal distance between the dental arches, but the SBD appliance 10 can advance the mandible without increasing the interocclusal distance as well. Where there is an increase in the interocclusal distance, the resultant interocclusal distance can be greater than the natural interocclusal distance that would otherwise result between the arches if the jaw were simply advanced without the use of guide surfaces 26, 28. For example, the resultant interocclusal distance can be greater than the natural interocclusal separation that the alignment of the anterior teeth causes when the mandible is advanced when clenched. Where the anterior teeth do not produce natural disclusion upon the advancement of the mandible, the resultant interocclusal distance that results can be due solely to one or more cooperating pairs of guide surfaces 26, 28 when the mandible is advanced.

FIG. 3 illustrates that the closing of the jaws with a cooperating pair of guide surfaces 26, 28 can advance the mandible forward an advancement distance 34. The advancement distance 34 can be from about 0 mm to about 30 mm, more narrowly from about 0 mm to about 20 mm, yet more narrowly from about 0 mm to about 10 mm, yet still more narrowly from about 5 mm to about 10 mm, including every 0.25 mm increment within these ranges, for example, about 5 mm, about 6 mm, about 7 mm, about 8 mm, about 9 mm, about 10 mm, about 11 mm, about 12 mm, about 13 mm, about 14 mm, about 15 mm, about 16 mm, about 17 mm, about 18 mm, about 19 mm, about 20 mm. FIG. 3 illustrates that the cooperating pair of guide surfaces 26, 28 can advance the mandible forward a sufficient advancement distance 34 to artificially create an underbite (also referred to as a Class III malocclusion). For example, the cooperating pair of guide surfaces 26, 28 can advance the mandible forward such that the maxillary incisors are within the anterior perimeter (as opposed to posterior where the molars are) of the mandibular incisors by, for example, from about 0.5 mm to about 5.0 mm, including every 0.25 mm increment within this range.

The closing of the jaws with a cooperating pair of guide surfaces 26, 28 can increase the interocclusal distance 36 between the dental arches from about 0 mm to about 60 mm, more narrowly from about 0 mm to about 50 mm, more narrowly from about 0 mm to about 40 mm, yet more narrowly from about 0 mm to about 30 mm, yet still more narrowly from about 0 mm to about 20 mm, yet more narrowly still from about 0 mm to about 10 mm, including every 0.25 mm increment within these ranges, for example, about 30 mm, about 31 mm, about 32 mm, about 33 mm, about 34 mm, about 35 mm, about 36 mm, about 37 mm, about 38 mm, about 39 mm, about 40 mm. The range of natural disclusion can range from 0 mm to about 10 mm, including every 0.25 mm increment within this range. The interocclusal distance 36 can be the height 12H of a maxillary block 12, the height 14H of a mandibular block 14, or a combination thereof.

At least a portion of each pair of cooperating guide surfaces 26, 28 (e.g., guide surfaces 26b, 28b) can contact each other when the jaw is being closed, for example from an open configuration to a closed (or less open) configuration. At least a portion of each pair of opposing guide surfaces 26, 28 can slidably contact each other such that at least a portion of the guide surfaces 26, 28 slide past one another to advance the mandible and increase the interocclusal distance when the jaw is closed, for example, from an open configuration to a less open configuration. The cooperating guide surfaces can have a contact length that ranges from 0 mm when not in contact to about 1 mm to about 30 mm when in contact, including every 0.5 mm increment within this range. The contact length can increase from 0 mm to a maximum contact length as the mandible is closed against the maxilla, or equivalently, as the mandibular dentition is closed against the maxillary dentition. FIG. 3 illustrates that the cooperating guide surfaces 26, 28 can have a maximum contact length of about 3 mm to about 15 mm, including every 0.5 mm increment within this range, for example, 12 mm. The maximum contact length can be the entire length or only part of the length of one or both of the cooperating guide surfaces 26, 28. FIG. 3 illustrates that the maximum contact length can be the length of the maxillary guide surfaces 26. Alternatively or additionally, at least a portion of each pair of opposing guide surface 26, 28 can be configured to not slidably contact each other, but rather merely rest against each another when the jaw is open to prevent, inhibit, or limit retrusion of the mandible.

For example, when the jaws are partially or fully closed, at least a portion of each pair of cooperating guide surfaces 26, 28 (e.g., guide surfaces 26b, 28b) can contact its opposing guide surface such that at least one of the guide surfaces 26, 28 prevents, inhibits, or limits posterior movement of the mandible. For example, FIG. 3 illustrates that the maxillary second guide surface 26b can interfere with (e.g., prevent, inhibit, or limit) any posterior movement of the mandibular second guide surface 28b, thereby interfering with any posterior movement of the mandibular second block 14b and the mandible.

The maxillary and mandibular blocks 12, 14 can cooperate to allow the mandible to move in multiple directions when the jaws are in a fully closed position, for example, side-to-side, front-to-back, and/or up-and-down (or in any three mutually orthogonal reference planes). For example, the blocks 12, 14 can have a movement tolerance of about 1 mm to about 5 mm (e.g., including every 0.25 mm increment within this range) along three or fewer reference planes/axes to advantageously maximize comfort, reduce the likelihood of the SBD device 10 from causing new SBD issues, minimize sleep bruxism, and/or inhibit the blocks 12, 14 from becoming dislodged while concurrently treating SBD and/or snoring. The posterior guide surface of a posterior-anterior guide surface pair can, for example, resist but allow posterior movement of the anterior guide surface. The posterior and anterior guide surfaces can be any two opposing surfaces, for example, the maxillary second guide surface 26b and the mandibular second guide surface 28b pair, with the maxillary second guide surface 26b being posterior to the mandibular second guide surface 28b. Alternatively or additionally, the posterior guide surface can freely allow posterior movement of the anterior guide surface over the tolerance range and then begin to resist further posterior movement.

For example, the posterior and anterior guide surfaces (e.g., posterior guide surfaces 26 and anterior guide surfaces 28) can be partially or entirely coated with the coating described above. The maxillary and mandibular guide surface angles 30, 32 can have angles that self-guide the mandible to return to a more forward position when the mandible moves posteriorly. The maxillary and mandibular blocks 12, 14 can cooperate to allow the mandible to have six degrees of freedom when the jaw is being opened and closed. The maxillary and mandibular blocks 12, 14 can be locked together when the mandible is in an advanced position, and allow movement within the tolerance range within one, two, three, four, five, and/or six degrees of freedom.

Alternatively or additionally, the oral appliances 10 disclosed herein can allow free mandibular motion except for the retrusion prevented, inhibited, or limited by two opposed guide surface pairs 26, 28 when they are in a position to interact with one another.

As described above, a series of blocks 12, 14 can be designed and applied or used over time to move one or more teeth, advance and/or maintain a position of the mandible, increase the interocclusal distance 36 and/or widen the hard and/or soft palates in two or more successive steps in a series. Exemplary dimensional variations are disclosed below, but these are in no way limiting, as every permutation of the dimensions and relative positions herein disclosed is appreciated, for example, including every 0.25 mm increment or 0.5% increment within the dimensional ranges disclosed herein. Successive dimensional changes can advantageously achieve the desired treatment in each step in a series. Each block 12, 14 in a series can have guide surface angles 30, 32 that correspond to an intermediate or end mandible advancement position or interocclusal distance intended for the block 12, 14 in the series. Each block 12, 14 in a series can have block lengths, widths and heights 12L, 14L, 12W, 14W, 12H, 14H that correspond to an intermediate or end mandible advancement position or interocclusal distance intended for the block 12, 14 in the series. Each block 12, 14 in a series can have guide surface lengths 26L, 28L that correspond to an intermediate or end mandible advancement position or interocclusal distance intended for the block 12, 14 in the series. Each block 12, 14 in a series can be configured to contact a different portion or a length of a guide surface of an opposing block. Each block 12, 14 in a series can have a longitudinal and/or transverse slope that corresponds to an intermediate or end mandible advancement position or interocclusal distance intended for the block 12, 14 in the series. One or more of the dimensions disclosed can be increased, decreased, or remain unchanged from one treatment step to the next treatment step (i.e., one or more dimensions can remain unchanged between two treatment steps). For example, one or more dimensions can be increased and/or decreased from a first dimension to a second dimension between two treatment steps (e.g., between a first treatment step and a second treatment step with no treatment step between the first and second treatment steps, or between any two treatment steps) such that the second dimension is about 0.5 mm to about 40 mm greater than or less than the value of the first dimension in the first treatment step than in the second (e.g., subsequent) treatment step, for example, every 0.25 mm increment between 0.5 mm and 40 mm (e.g., 0.5 mm, 1.0 mm, 1.5 mm, 2.0 mm, 2.5 mm, 3.0 mm, 3.5 mm, 4.0 mm, 4.5 mm, 5.0 mm and so on). For example, one or more dimensions can be increased and/or decreased from a first dimension to a second dimension between two treatment steps (e.g., between a first treatment step and a second treatment step with no treatment step between the first and second treatment steps, or between any two treatment steps) such that the second dimension is about 1% to about 500% greater than or less than the value of the first dimension in the first treatment step than in the second (e.g., subsequent) treatment step, for example, every 1% increment between 1% and 500% (e.g., 1%, 5%, 10%, 15%, 20%, 25%, 30%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 100%, 125%, 150%, 175% and so on).

In a treatment series, the blocks 12, 14 can move one or more teeth, reposition the mandible, adjust the bite, adjust the interocclusal distance, and/or widen the hard and/or soft palates to an intermediate or end arrangement as desired in one or more treatment steps in a series. The blocks 12, 14 can progressively move teeth, increase and/or decrease the advancement distance 34, increase and/or decrease the interocclusal distance 36, widen the hard and/or soft palates, adjust the bite, or any combination thereof. For example, the blocks 12, 14 in a series can progressively increase the advancement distance 34 from a first distance to a second distance greater than the second distance. The blocks 12, 14 in a series can progressively decrease the advancement distance 34 from the second distance to a third distance less than the second distance and greater than the first distance. As another example, the blocks 12, 14 in a series can progressively increase the interocclusal distance 36 from a first distance to a second distance greater than the first distance. The blocks 12, 14 in a series can progressively decrease the interocclusal distance 36 from the second distance to a third distance less than the second distance and greater than the first distance. As another example, the blocks 12, 14 in a series can progressively increase the width of a palate from a first width to a second width greater than the first width. The design of a series of blocks can advantageously reduce the initial shock of treatment to the affected craniofacial (e.g., mandible, dental arches, airway, palate) structures potentially caused by the blocks 12, 14 and therefore make the treatment more comfortable. Exemplary dimensional variations are disclosed below, but these are in no way limiting, as every permutation of the dimensions and relative positions herein disclosed is appreciated, for example, including every 0.25 mm increment or 0.5% increment within the dimensional ranges disclosed herein. One or more of the dimensions disclosed can be increased, decreased, or remain unchanged from one treatment step to the next treatment step (i.e., one or more dimensions can remain unchanged between two treatment steps). Such craniofacial dimensions (e.g., dimensions 34 and 36) can be increased and/or decreased from a first dimension to a second dimension between two treatment steps (e.g., between a first treatment step and a second treatment step with no treatment step between the first and second treatment steps, or between any two treatment steps) such that the second dimension is about 0.5 mm to about 40 mm greater than or less than the value of the first dimension in the first treatment step than in the second (e.g., subsequent) treatment step, for example, every 0.5 mm increment between 0.5 mm and 40 mm (e.g., 0.5 mm, 1.0 mm, 1.5 mm, 2.0 mm, 2.5 mm, 3.0 mm, 3.5 mm, 4.0 mm, 4.5 mm, 5.0 mm and so on). Such craniofacial dimensions (e.g., dimensions 34 and 36) can be increased and/or decreased from a first dimension to a second dimension between two treatment steps (e.g., between a first treatment step and a second treatment step with no treatment step between the first and second treatment steps, or between any two treatment steps) such that the second dimension is about 1% to about 500% greater than or less than the value of the first dimension in the first treatment step than in the second (e.g., subsequent) treatment step, for example, every 1% increment between 1% and 500% (e.g., 1%, 5%, 10%, 15%, 20%, 25%, 30%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 100%, 125%, 150%, 175% and so on).

FIG. 4 illustrates a variation of an aligner 38 on teeth. The aligner 38 can have the properties of the oral trays described herein. For example, the aligner 38 can be a maxillary dentition aligner 38a or a mandibular dentition aligner 38b. The aligner 38 can have an inner surface and an outer surface. The inner surface can define a tooth-receiving cavity. The inner surface can be configured to contact one or more teeth. The inner surface can have a geometry configured to move one or more maxillary or mandibular teeth from a first position to a second position, for example, by exerting a force on one or more teeth (e.g., from an interference fit configured to move one or more teeth). The aligner 38 can fit over all or a subset of teeth in the maxillary and/or mandibular dentition.

A series of aligners 38 (e.g., maxillary and/or mandibular aligners 38a, 38b) can be designed and applied or used over time in order to reposition one or more maxillary and/or mandibular teeth in two or more successive steps, for example, as disclosed in PCT Publication WO 2016/004415 and U.S. application Ser. No. 15/386,280 (published as US 2017/0100214), both of which have been incorporated herein by reference in their entireties for all purposes. As described above, each aligner 38 in a series can have an inner surface that has a geometry that corresponds to an intermediate or end tooth arrangement intended for each aligner 38 in the series. The aligners 38 can be sufficiently resilient to accommodate or conform to misaligned teeth, but apply sufficient force against the misaligned teeth to reposition the teeth to the intermediate or end arrangement as desired for the particular treatment step. A series of aligners 38 can have geometries selected to progressively reposition teeth from a first arrangement through one or more successive intermediate arrangements to a final arrangement.

SBD appliance therapy can be combined with orthodontic aligner treatment as described above, for example, with an aligner 38 (e.g., a maxillary and/or mandibular aligner 38a, 38b). As further described above, one or more airway development blocks 12 and/or 14 (also referred to as guides) can be directly or indirectly attached to or integrated with an aligner 38 (e.g., a maxillary and/or mandibular aligner 38a, 38b). The one or more maxillary blocks 12 can be monolithically formed with a maxillary aligner 38a. The one or more mandibular blocks 14 can be monolithically formed with a mandibular aligner 38a.

FIG. 5 illustrates that a maxillary aligner 38a can have a maxillary guide 12 that has a guide surface 26. The guide 12 can be on an anterior or posterior portion of the maxillary aligner 38a. For example, FIG. 5 illustrates that the guide 12 can be on an anterior portion of the aligner 38a. The guide 12 can be one of the block 12, 14 described above with reference to FIGS. 1-3, and can be integrated with the aligner 38a as shown in FIG. 5.

FIG. 6 illustrates that the guide 12 can be on a posterior portion of the aligner 38a. The aligner 38a can advantageously orthodontically move teeth concurrently with treating SBD, for example, by interacting with a mandibular aligner 38b. For example, FIG. 6 illustrates a jaw in a closed position having a maxillary aligner 38a and a mandibular aligner 38b with posterior guides 12, 14, where the posterior guides 12, 14 are interacting to keep the jaw in a closed position with more space between the upper and lower dentition than would otherwise occur without the posterior guides 12, 14. The guides 12, 14 can be the blocks 12, 14 described above with reference to FIGS. 1-3, and can be integrated with the aligners 38a, 38b, respectively, as shown in FIG. 6.

FIGS. 1-3, 5 and 6 each illustrate device components comprising angled surfaces and disclusion ramps such as airway development blocks 12, 14 that can be combined with the aligner 38 in FIG. 4 to concurrently provide SBD treatment along with the orthodontic movement of teeth. However, all types of SBD appliance therapy can be combined with orthodontic aligner treatment shown in FIG. 4, including other mandibular advancement appliances (e.g., Herbst appliances, elastic mandibular advancement (EMA) appliances), as well as, for example, stabilization splints (e.g., nightguards, day guards), deprogrammers (e.g., anterior deprogrammers), flat planes, and full contact splints with anterior guidance. For example, the aligner 38 can be combined with, attached to, removably attached to, or integrated with these other types of devices. The aligner 38 can replace the teeth (e.g., occlusal) engagement portions of these other types of SBD devices/components so that each appliance 10 can provide orthodontic treatment (e.g., orthodontically move teeth) in addition to providing SBD treatment. Such orthodontic/SBD appliances can advantageously orthodontically move the teeth into a position that is physiologically correct for the craniofacial musculature during SBD treatment with an SBD appliance. The maxillary and mandibular aligner components and/or the SBD components of these oral appliances 10 can comprise a thermoplastic material that can, for example, be thermoformed with the aid of a computer program.

A maxillary component (e.g., maxillary block 12a and/or maxillary aligner 38a) can be attached to a mandibular component (e.g., mandibular block 12b and/or mandibular aligner 38b), for example, via an attachment mechanism. The attachment mechanism can be an interference fit (also referred to as a friction fit), snap fit, tether, band, elastic band, hook, elastic hook, or any combination thereof. For example, the maxillary blocks 12 and/or the maxillary aligners 38a can have a male component (e.g., a protrusion) and the mandibular blocks 14 and/or the mandibular aligners 38b can have a female component (e.g., a recess or a hole) configured to receive the protrusion via an interference fit or a snap fit, or vice versa. The male component can have a form factor that is slightly larger than the female component to generate an interference fit. For example, the protrusion can have a form factor that is slightly larger than the recess or hole such that an interference fit is produced when the protrusion is inserted into the recess or hole. The male component can have a form factor that is slightly smaller than the female component to generate an interference fit. For example, the protrusion can have a form factor that is slightly smaller than the recess or hole such that an interference fit is produced when the protrusion is inserted into the recess or hole. A maxillary block 12a can be attached to a mandibular block 12b and/or to a mandibular aligner 38b via the attachment mechanism. A maxillary aligner 38a can be attached to a mandibular block 12b and/or to a mandibular aligner 38b via the attachment mechanism.

The device 10 can have one or more attachment mechanisms, for example a first attachment mechanism for the left maxillary and mandibular components and/or a second attachment mechanism for the right maxillary and mandibular components. The attachment mechanism can have one, two, three, four, five, and/or six degrees of freedom. The attachment mechanism can partially or completely restrict movement of the jaw in one or more degrees of freedom. The attachment mechanism can help keep the jaw in a desired arrangement, for example, a desired open and/or closed position to treat SBD. The freedom of movement allowed by the attachment mechanism desirably enables the device 10 to treat SBD and simultaneously prevent or inhibit the onset of temporomandibular joint dysfunction (TMD). TMD can be caused by locking the jaw into a position or otherwise restricting movement of the jaw. The jaw movement permitted by the attachment between the maxillary component (e.g., maxillary block 12 and/or maxillary aligner 38a) and the mandibular component (e.g., mandibular block 14 and/or mandibular aligner 38b) via the attachment mechanism when the device 10 is in use can help prevent or otherwise inhibit the user from developing problems with their temporomandibular joint. Alternatively or additionally, the attachment mechanism can have zero degrees of freedom and completely restrict motion of the lower jaw.

Different blocks 12 and/or aligners 38 in a series can have different degrees of freedom when in an attached configuration. Changing the motion permitted by the jaw during treatment with different appliances 10 in the series can desirably prevent or inhibit the user from developing TMD. The appliances 10 in the series can restrict movement of the lower jaw differently than one or more preceding appliances 10 and/or differently than one or more subsequent appliances 10. The amount of movement or the degrees of freedom can be changed for every appliance 10 in the series, or every 2-50 appliances 10 in the series, including every 1 appliance increment within this range, for example, every 5 appliances 10.

When the maxillary and mandibular components are in an attached configuration, the attachment mechanism can prevent the jaw from moving (e.g., opening or closing vertically or moving from side to side) and/or can limit the amount by which the lower jaw is able to move, for example, by preventing or limiting the amount of relative movement between the aligners 38 and/or between one or more aspects of the SBD devices or components of the appliance 10. When the maxillary and mandibular components are attached to one another, the attachment mechanism can prevent all movement of the lower jaw (e.g., by preventing all relative movement between the aligners 38). When the maxillary and mandibular components are attached to one another, the attachment mechanism can allow the lower jaw to have one, two, three, four, five, or six degrees of freedom such that the lower jaw is translatable along and/or rotatable about one, two, and/or three axes (e.g., along and/or about one, two, and/or three mutually perpendicular axes such as x, y, and/or z Cartesian axes). To permit the lower jaw to move, the attachment mechanism can permit relative movement between the aligners 38 and/or between one or more aspects of the SBD devices or components of the appliance 10. For example, when the maxillary and mandibular components are in an attached configuration, the attachment mechanism can permit the lower jaw to translate from about 0.5 mm to about 5 mm, including every 0.5 mm increment within this range, for example, about 2.0 mm, along one, two, or three axes. For example, when the maxillary and mandibular components are in an attached configuration, the attachment mechanism can permit the lower jaw to rotate from about 1 degree to about 30 degrees, including every 1 degree increment within this range, for example, about 10 degrees, about one, two, or three axes.

The attachment mechanism can impart a restorative force to the lower jaw to return to a neutral position (e.g., the desired position) once displaced (e.g., translated and/or rotated) away from the neutral position. Additionally or alternatively, the attachment mechanism can include one or more elastic bands and/or guide surfaces apart from the attachment mechanism to impart a restorative force or otherwise encourage a return to the neutral position.

The aligners described herein can form a friction fit with the dentition. The friction fit can be non-uniformly spread across the aligners to apply different forces to different teeth, thereby enabling different teeth to be orthodontically moved by different amounts, with the amounts being proportionate to the various (e.g., different) forces applied across the dentition.

Two sets of oral appliances 10 can be made for every stage of treatment: one for daytime use and one for nighttime use. The daytime oral appliances 10 can orthodontically move teeth with or without SBD treatment. For example, the daytime oral appliances 10 can have an SBD component that is smaller than the nighttime oral appliances 10, or the daytime oral appliances 10 can omit the SBD component altogether. The nighttime oral appliances 10 can concurrently treat SBD and orthodontically move teeth. The nighttime oral appliances can have an SBD component. Each daytime oral appliance 10 in a series can be designed to open and/or advance the lower jaw less than the corresponding nighttime oral appliance 10 in the series, or not at all. The daytime and nighttime appliances can have the same corresponding stage of orthodontic treatment. The daytime stage of orthodontic treatment can be less aggressive (e.g., apply less force to the teeth) than the nighttime stage of orthodontic treatment. Alternatively or additionally, only one series of oral appliances 10 can be made for every step of treatment (as opposed to two parallel series of appliances—one for day use and one for night use). For example, one or more of the locked configurations of the appliance 10 in each step of a series can be for daytime use and one or more of the locked configurations of the appliance 10 in each step of a series can be for nighttime use.

FIG. 7 illustrates a schematic of a variation of a series 200 of oral appliances 10. The oral appliance series 200 can have ND daywear oral appliances 10 in a daytime series 200D and/or can have NN nightwear oral appliances 10 in a nighttime series 200N, where ND and NN can each be between 1 and 100, including every increment of 1 within this range. ND can be the same or different from NN. The dimensions of the daytime and nighttime oral appliances 10 in each step of the series 200 can be the same or different than one another. The daytime and nighttime oral appliances 10 in each step of the series 200 can advance the jaw as described above, for example, by the same amount. For example, FIG. 7 illustrates that steps 1-4 of the series 200 can each progressively move the jaw forward by about 1.0 mm, by about 0.5 mm, by about 0.5 mm, and by about 1.0 mm, respectively, which is represented in FIG. 7 by arrows 201, 202, 203, and 204, respectively. FIG. 7 illustrates the relative positions of the maxillary aligner and SBD components (e.g., aligner 38a and SBD components 12) relative to the mandibular aligner and SBD components (e.g., aligner 38b and SBD components 14).

Method of Making

FIG. 8 illustrates a variation of a process 100 of making the oral appliance 10. A computer program can be used to retrieve data from data acquisition devices (e.g., oral scanners, x-ray devices, cameras) to record and measure orthodontic malocclusions and teeth misalignments. Step 102 illustrates that after a digital model of the dentition is obtained, the digital models for the lower and upper arches can be loaded, e.g., into a computer. Step 104 illustrates that the bite registration can be set and a model of the appliance 10 can be created. The desired treatment can be simulated in step 106, including, for example, mandibular advancement, palatal expansion, teeth movement, or any combination thereof. The TMJ temporal bone, disc and mandibular head relationship can be checked in step 108, for example, when mandibular advancement is simulated in step 106. If the check is satisfactory, the process can move on to step 110, otherwise the process can return to step 106 and run one or more additional simulations. Based at least partly on the simulation(s) and check(s) in steps 106 and 108, an algorithm can be configured to design one or more aspects of the SBD components (e.g., guide surfaces 26, 28) in step 110 to effect the desired mandibular advancement. Step 112 illustrates that the blocks 12, 14 and/or oral trays can be designed that have the guide surfaces 26, 28 designed in step 110. Step 112 also illustrates that an optional elastic hook can be designed to prevent the jaw from opening and moving away from the maxillary blocks 12 when a person is sleeping. Step 114 illustrates that the blocks 12, 14 and/or oral trays designed in step 112 can move one or more teeth to a new arch occlusion based on a new arch relationship at least partly determined by the algorithm. The process 100 can be used to create one oral appliance 10 or a series of oral appliances 10.

Software can be used to manipulate digital impressions (scans) of the dental arches to incrementally move the teeth as well as designing the functional applications for daytime and/or nighttime use on a 3D printed model for appliance fabrication utilizing traditional vacu-form technique or direct to print appliances.

Using the process 100 in FIG. 8, an oral appliance 10 and/or a series of oral appliances 10 can be designed by the computer algorithm based on data the algorithm receives and processes from one or multiple data acquisition devices (e.g., scanners, x-ray devices, cameras) that can individually or collectively form a digital impression of an oral cavity and the dentition therein. For example, the dimensions of the oral appliance 10 in each step, including the SBD components (e.g., maxillary and mandibular blocks 12, 14, or one or more aspects thereof, including the oral trays) and/or the aligner components (e.g., maxillary and mandibular aligners 38a, 38b) can be determined from data received from the data acquisition devices. The algorithm in process 100 can combine orthodontic aligners with multiple different discipline SBD treatments, for example, to adjust the bite, restore some or all of the teeth, and move the teeth into a more desirable position.

For example, the data retrieved from the data acquisition devices can be used to measure orthodontic malocclusions, determine orthodontic corrections for the malocclusions while simultaneously treating SBD, for example, by designing a series of oral appliances 10 that can progressively treat SBD (or SBD symptoms) concurrently with a progressive orthodontic movement of teeth. Computer software can be used to determine the orthodontic movements of the teeth in one or more steps of a series. Computer software can be used to design the appliances 10. Computer software can be used to manufacture 3D models or directly print appliances 10. Models of the appliances 10 can be created by using computer software to incrementally move the teeth digitally and then print a 3D model from which an orthodontic aligner can be fabricated. Alternatively or additionally, the aligners can be fabricated directly with a 3D printer using computer software. The orthodontic aligner can be altered or otherwise modified on the occlusal surface to create the desired SBD treatment appliance 10 while the orthodontic movement is concurrently occurring. Giving the dentist or orthodontist the ability to treat SBD simultaneously with the orthodontic movement of teeth via a computer program that converts data received from one or more data acquisition devices into a series of successive orthodontic/SBD appliances 10 can advantageously open up many new treatment protocols for dentists and orthodontists to use to serve their patients.

The claims are not limited to the exemplary embodiments shown in the drawings, but instead may claim any feature disclosed or contemplated in the disclosure as a whole. Any elements described herein as singular can be pluralized (i.e., anything described as “one” can be more than one). Any species element of a genus element can have the characteristics or elements of any other species element of that genus. Some elements may be absent from individual figures for reasons of illustrative clarity. The above-described configurations, elements or complete assemblies and methods and their elements for carrying out the disclosure, and variations of aspects of the disclosure can be combined and modified with each other in any combination. All devices, apparatuses, systems, and methods described herein can be used for medical (e.g., diagnostic, therapeutic or rehabilitative) or non-medical purposes.

Claims

1. A system for treating a sleep breathing disorder, the system comprising:

a nighttime oral appliance and a daytime oral appliance,
wherein the nighttime oral appliance is configured to increase an interocclusal separation between maxillary teeth and mandibular teeth more than the daytime oral appliance, and/or
wherein the nighttime oral appliance is configured to advance a mandible more than the daytime oral appliance or by the same amount as the daytime oral appliance.

2. The system of claim 1, wherein the nighttime oral appliance and the daytime oral appliance are configured to orthodontically move teeth.

3. The system of claim 1, wherein the daytime oral appliance is configured to orthodontically move teeth with less force than the nighttime oral appliance.

4. The system of claim 1, wherein the daytime oral appliance has a component for treating the sleep breathing disorder that is smaller than a component of the nighttime oral appliance.

5. The system of claim 4, wherein the component of the daytime oral appliance comprises a maxillary block or a mandibular block, and wherein the component of the nighttime oral appliance comprises a maxillary block or a mandibular block.

6. The system of claim 5, wherein the maxillary block or the mandibular block of the daytime oral appliance is removably attachable to the daytime oral appliance, and wherein the maxillary block or the mandibular block of the nighttime oral appliance is removably attachable to the nighttime oral appliance.

7. The system of claim 1, further comprising a first stage of treatment and a second stage of treatment, wherein the first stage of treatment comprises the nighttime oral appliance, and wherein the second stage of treatment comprises the daytime oral appliance.

8. The system of claim 1, wherein the nighttime oral appliance and the daytime oral appliance are a first nighttime oral appliance and a first daytime oral appliance, respectively, and wherein the system further comprises a second nighttime oral appliance and a second daytime oral appliance.

9. The system of claim 8, wherein the second nighttime oral appliance is configured to increase the interocclusal separation between the maxillary teeth and the mandibular teeth more than the second daytime oral appliance, and/or

wherein the second nighttime oral appliance is configured to advance the mandible more than the second daytime oral appliance or by the same amount as the second daytime oral appliance.

10. The system of claim 8, further comprising a first stage of treatment and a second stage of treatment, wherein the first stage of treatment comprises the first nighttime oral appliance and the first daytime oral appliance, and wherein the second stage of treatment comprises the second nighttime oral appliance and the second daytime oral appliance.

11. A method of treating a sleep breathing disorder, the method comprising:

increasing an interocclusal separation between maxillary teeth and mandibular teeth more with a nighttime oral appliance than with a daytime oral appliance.

12. The method of claim 11, further comprising advancing a mandible more with the nighttime oral appliance than with the daytime oral appliance.

13. The method of claim 11, further comprising advancing a mandible with the nighttime oral appliance and with the daytime oral appliance.

14. The method of claim 11, further comprising orthodontically moving teeth with the nighttime oral appliance and with the daytime oral appliance.

15. The method of claim 14, wherein orthodontically moving teeth with the nighttime oral appliance and with the daytime oral appliance comprises orthodontically moving the teeth with less force with the daytime oral appliance than with the nighttime oral appliance.

16. The method of claim 11, wherein the nighttime oral appliance and the daytime oral appliance are a first nighttime oral appliance and a first daytime oral appliance, respectively, and wherein the method further comprises increasing the interocclusal separation between the maxillary teeth and the mandibular teeth more with a second nighttime oral appliance than with a second daytime oral appliance.

17. The method of claim 16, further comprising advancing a mandible more with the first nighttime oral appliance than with the first daytime oral appliance; and

advancing the mandible more with the second nighttime oral appliance than with the second daytime oral appliance.

18. The method of claim 16, further comprising orthodontically moving teeth with the first nighttime oral appliance and with the first daytime oral appliance; and

orthodontically moving the teeth with the second nighttime oral appliance and with the second daytime oral appliance.

19. The method of claim 16, further comprising a first stage of treatment and a second stage of treatment, wherein the first stage of treatment comprises the first nighttime oral appliance and the first daytime oral appliance, and wherein the second stage of treatment comprises the second nighttime oral appliance and the second daytime oral appliance.

20. A method of treating a sleep breathing disorder, the method comprising:

increasing an interocclusal separation between maxillary teeth and mandibular teeth more with an oral appliance during nighttime than during daytime,
wherein during nighttime a maxillary block and a mandibular block are attached to the oral appliance, and
wherein during daytime the maxillary block and the mandibular block are detached from the oral appliance.
Patent History
Publication number: 20220265395
Type: Application
Filed: May 10, 2022
Publication Date: Aug 25, 2022
Applicant: uLab Systems, Inc. (Memphis, TN)
Inventor: Michael I. FALKEL (Carmel, CA)
Application Number: 17/662,819
Classifications
International Classification: A61C 7/36 (20060101); A61C 7/00 (20060101); A61C 7/08 (20060101); A61C 7/10 (20060101); A61F 5/058 (20060101); A61F 5/56 (20060101);