Cooling Panel for a Melter
A cooling panel for a melter includes first and second outer walls and a plurality of side walls coupled to the first and second outer walls. The first and second outer walls and the plurality of side walls define an interior space. The cooling panel also includes a plurality of baffles disposed in the interior space. The baffles divide the interior space into a plurality of rows, wherein the rows have widths W, and further have first and second longitudinal surfaces and an open transverse surface. The open transverse surfaces of the baffles are spaced away from adjacent side walls by a distance D that is 70% to 80% of the widths W of the rows.
This patent application discloses devices and methods for use in glass manufacturing, and more particularly, devices to provide fluid cooling for a glass melter.
BACKGROUNDGlass manufacturing often occurs at high temperatures that require the equipment used in the glass manufacturing process to withstand harsh conditions. In particular, submerged combustion melting (“SCM”) is a specific type of glass manufacturing, in which an air-fuel or oxygen-fuel mixture is injected directly into a pool of molten glass. As combustion gases forcefully bubble through the molten glass, they create a high-heat transfer rate and turbulent mixing of the molten glass until it achieves a uniform composition. A typical submerged combustion melter has a floor and a vertical burner passage extending through the floor. A burner positioned within the burner passage is submerged in the molten glass.
In order to withstand the harsh conditions within the melter for traditional glass manufacturing or SCM, part or all of the melter's floor, walls, or roof can be fluid-cooled. A portion of the melter's floor, walls, or roof that contacts the molten glass can include a refractory material in order to withstand the high temperatures. Another portion of the melter's floor, walls, or roof can include the fluid-cooling.
BRIEF SUMMARY OF THE DISCLOSUREThe present disclosure embodies a number of aspects that can be implemented separately from or in combination with each other.
In accordance with one aspect of the disclosure, there is a cooling panel for a melter that includes first and second outer walls and a plurality of side walls coupled to the first and second outer walls, defining an interior space, and a plurality of baffles disposed in the interior space, where each baffle includes a plurality of projections. Each of the first and second outer walls has a plurality of openings. Respective openings and projections fit together and are connected from outside of the cooling panel so that the outer walls and the baffles are fixed together, and the side walls are fixed to the outer walls so that the cooling panel is fluid-tight.
In accordance with another aspect of the disclosure, there is provided a cooling panel for a melter that has first and second outer walls and a plurality of side walls, defining an interior space, and a plurality of baffles disposed in the interior space and dividing the interior space into a plurality of rows wherein each row has a width W. Each baffle has first and second longitudinal surfaces and an open transverse surface. Each open transverse surface of each baffle is spaced away from an adjacent side wall by a distance D that is 70% to 80% of the width W of each row.
In accordance with another aspect of the disclosure, there is provided a method of forming a cooling panel having some or all of the features discussed herein. The method includes receiving a plurality of side walls, first and second outer walls each having a plurality of openings, and a plurality of baffles each having a plurality of projections; connecting the first and second walls with the plurality of baffles disposed between the outer walls; and connecting the side walls to the first and second outer walls to fix the sides walls to the outer walls and so that the cooling panel is fluid-tight.
In accordance with one aspect of the disclosure, there is a cooling panel for a melter that includes first and second outer walls and a plurality of side walls coupled to the first and second outer walls, defining an interior space, where the first outer wall includes a plurality of inwardly-facing first grooves, and the second outer wall includes a plurality of inwardly-facing second grooves parallel with the first grooves; and a plurality of baffles disposed in the interior space and carried by the first grooves and the second grooves; wherein a first set of the first grooves and the second grooves extends a length of the cooling panel, and a second set of the first grooves and the second grooves partially extends the length of the cooling panel, and wherein the first set and the second set alternate to create a serpentine fluid flow path in the interior space.
The disclosure, together with additional objects, features, advantages and aspects thereof, will be best understood from the following description, the appended claims and the accompanying drawings, in which:
In accordance with at least one aspect of the disclosure, a cooling panel for a glass melter is provided that is better able to withstand the harsh conditions of the melter than prior cooling panels.
As briefly described in the background, harsh environments within a melter for glass manufacturing, particularly in SCM, can lead to wear, cracking, erosion, and/or failure of the melter's floor, walls, or roof. The melter's floor, walls, or roof can be constructed of panels that include a steel portion and a refractory material portion coupled to the steel portion, where the refractory portion contacts a molten material within the melter. Temperatures in the melter can be between approximately 1300-1500 degrees Celsius (° C.) or higher. The refractory material portion can better withstand the high temperatures within the melter and may have a thickness in the range of 0.1-3.0 inches, including all ranges, subranges, and values therebetween. However, due to the harsh conditions, the panels and even the refractory material can be susceptible to wear, cracking, erosion, and/or failure because of its direct contact with the molten material (e.g., molten glass).
Accordingly, a melter having at least one cooling panel is disclosed. Each cooling panel requires less time than conventionally fabricated panels to position internal baffles, assemble and weld each panel, and reduces the likelihood of error. Projections on each baffle fit into corresponding openings in outside walls and can be welded using plug welds. No fillet welds are required inside the cooling panels because each baffle can be welded from the outside using plug welds. Each outside wall, side wall, and baffle can be laser cut with the required openings and projections and require no layout time.
Additionally, each cooling panel can include fluid flow paths that can be configured to reduce stagnant areas of fluid flow and minimize surface hot spots on the hot side of each cooling panel. The fluid flow paths can also be configured to reduce pressure drop of the coolant. Each cooling panel can include an inlet at the bottom and an outlet at the top, which reduces risk of developing an air pocket in the top of the panel. Moreover, each cooling panel can be configured to be the same size and/or interchangeable, which also allows different configurable locations for an access door and/or melter exits.
Further, each cooling panel may be fabricated as a single monolithic part, which can improve conduction heat transfer. When fabricated as a single monolithic part, each cooling panel can include flow passages with fluid flow paths optimized for convective heat transfer and for minimizing pressure drop through the cooling panel. The flow passages can be configured to withstand higher pressure than conventional panels, which allows the use of cooling fluids other than water. Also, the flow passages may include internal features that can be configured to enhance heat transfer, which can be done by changing the cross-sectional area of the flow path and/or by changing centerline distance between each flow passage.
The melter 10 can comprise at least one cooling panel 12 configured to both provide structure to the melter and to cool a portion of the molten material 16 and form the frozen material layer 18 coupled to each cooling panel 12. In a specific embodiment, the floor, the walls, and the roof of the melter 10 can include interchangeable cooling panels, as depicted in
As illustrated in
The first openings 28 and the second openings 44 are depicted as holes or slots, although other configurations may be included. Even though the first openings 28 and the second openings 44 are depicted as having a circular cross-section or as slots, they could also be configured with a variety of cross-sections and/or shapes, including oval, rectangular, square, triangular, other types of polygons, or the like.
As illustrated in
The openings 28, 44 and the projections 48, 52 can be configured to fit together (e.g., a loose fit, an interference fit, and so forth) and connect from outside of the cooling panel 12, requiring no welds (e.g., fillet welds) within the cooling panel 12. In this way, the first and second outer walls 20, 22 and the baffles 24 can be fixed (e.g., coupled) together, and the side walls 34, 36, 38, 40 can be fixed to the first and second outer walls 20, 22 so that the cooling panel 12 is fluid-tight.
Additionally, each baffle 24 can comprise a pair of longitudinal surfaces including a first longitudinal surface 54 and an opposing second longitudinal surface 56. Each baffle 24 can also include an open transverse surface 58 configured to not be coupled to anything else (e.g., exposed to coolant). While the open transverse surface 58 in
In the cooling panel 12, the first and second outer walls 20, 22, the side walls 34, 36, 38, 40, and the baffles 24 can define an interior space 62 in which the coolant can flow through a serpentine fluid flow path 60. The baffles 24 function to divide the interior space 62 into a plurality of rows (e.g., row 64), where each row can be parallel with a longitudinal axis A and can have a width W. The width W can be between baffles 24 or between one baffle 24 and an adjacent side wall 36, 40. In order to provide a uniform width W for each row 64, the width W between baffles 24 may be the same as the width W between the one baffle 24 and the adjacent side wall 36, 40.
In manufacturing and/or construction of the cooling panel 12, the cooling panel 12 can be formed so that the first and second openings 28, 44 and the projections 48, 52 fit together, respectively, in order to secure the first and second outer walls 20, 22 to the baffles 24. In an example, the first and second openings 28, 44 and the projections 48, 52 can be held together by clamps until welds have been made and connected together from outside of the cooling panel 12 so that no interior welds are necessary within the cooling panel 12. Once a baffle 24 has been coupled to an outer wall, the other of the first and second outer walls 20, 22 can include one or more holes that matches the location of the baffles 24, and the other of the first and second outer walls 20, 22 can be placed on top of the baffles 24 for welding, for example plug welding or a weld at the holes, to couple to the baffles 24. The plug welding would occur from outside of the cooling panel 12. Subsequently, the side walls 34, 36, 38, 40 can be welded, for example fillet welded or welded along a joint between two parts at an angle to each other, to the first and second outer walls 20, 22 to form a fluid-tight cooling panel 12.
With conventional technology, a cooling panel would typically be constructed such that baffles were welded, for example stitch welded or intermittently welded, along a joint between a respective baffle and one of the first and second outer walls from within the interior space. These internal welds have been necessary to hold the baffles in place prior to attaching the first and/or second outer walls.
With the disclosed first and second openings 28, 44 and projections 48, 52, the first and second outer walls 20, 22 and the baffles 24 can be fitted together without needing to internally weld either of the first and second outer walls to the baffles 24 before also fitting the other of the first and second outer walls 20, 22 to the baffles 24. This can save time and cost in construction. This construction also can reduce the chance for any errors in positioning the first and second outer walls 20, 22 and the baffles 24 together. All welds can be made from outside the cooling panel 12 such that a liquid-tight joint results. Additionally, the first and second outer walls 20, 22 and the baffles 24 can be more easily cut, including being laser-cut, to the correct geometries.
In the embodiment shown in
Additionally, to assist in holding the refractory material 74 on the second outer wall 22, the second outer wall 22 can include a first outer edge 80 disposed and extending about the perimeter 42 of the second outer wall 22 so that the first outer edge 80 extends about the refractory material 74. By using the one or more protrusions 78 and/or the first outer edge 80, the refractory material 74 can be protected and better secured to the second outer wall 22. One of ordinary skill in the art will understand that, in some instances, the refractory material 74, the one or more protrusions 78, and the first outer edge 80 may also be included in the first outer wall 20. It will be appreciated that the cooling panel 12 may also be formed without any refractory material 74, the protrusions 78, and/or the first outer edge 80.
In
In some implementations, the melter 10 and/or one or more cooling panels 12 may include various temperature sensors. For example, one or more temperature sensors can detect the temperature within the portions of the molten material 16, the frozen material layer 18, a surface of a cooling panel 12, and/or temperature of the coolant. In other implementations, the cooling panel 12 does not include any temperature sensors for directly measuring the temperature within the portions of the molten material 16 nor does it include any temperature sensors for directly measuring the temperature of the coolant. In this implementation, various pipes, conduits, or the like (not shown) that can be adjacent to the cooling panel 12 and that route the coolant may include one or more temperature sensors for detecting and/or measuring the coolant temperature. The temperature measurements within the various pipes, conduits, or the like can provide an indirect temperature measurement of the temperature of the coolant when it is in the cooling panel 12. Of course, it will be appreciated that the cooling panel 12 can also be constructed to include various temperature sensors (e.g., a thermocouple) that directly detect and measure, for example, the temperature of the molten material 16, a surface of the molten material 16, the frozen material layer 18, the cooling panel 12, and/or the temperature of the coolant.
The additional embodiments discussed below may be similar in many respects to the embodiments illustrated in
As shown in
In addition to additively manufacturing the first and second outer walls 120, 122, side walls 134, 136, 138, 140, and baffles 124, the single monolithic structure 188 can also include one or more protrusions 178 and/or a first outer edge 180 extending from one of the first and second outer walls 120, 122, as shown in
During manufacturing by way of additive manufacturing, three-dimensional printing, rapid prototyping, or a combination thereof, the cooling panel can be formed to include the first and second outer walls 120, 122, side walls 134, 136, 138, 140, and baffles 124, one or more protrusions 178, first and second outer edges 180, 182, refractory material 174, rows 164, and/or internal features 190. In some instances, some of these parts may not be formed as part of the single monolithic structure 188. By additively manufacturing some or all of these parts of the cooling panel 112, they can form intricate passages optimized for heat transfer. For example, the cooling panel 112 can be optimized for conductive heat transfer, or direct transfer of kinetic energy. The cooling panel 112 can also be optimized for convective heat transfer, or indirect fluid transfer as warmer fluid rises and cooler fluid falls in a bulk fluid, and/or to minimize the pressure drop within the cooling panel 112.
Additionally, having a cooling panel 112 comprising a single monolithic structure 188 can allow the various components to withstand greater pressures and use coolants that may not be possible with other manufacturing techniques. Some exemplary coolants that may be used within the cooling panel 112 may include super critical carbon dioxide (scCO2), ionic fluid, molten salts, or the like. Further, the possible intricate geometries can be optimized to reduce any stagnant coolant areas and/or hot spots within the cooling panel 112, for example around the connections and/or turns from one row 164 to the next. The baffles 124 may withstand the internal pressures of the cooling panel 112 better through additive manufacturing as opposed to welding because the maximum internal pressure for welded baffles may depend on the thicknesses of the first and second outer walls and the width between the baffles.
In the embodiment shown in
Each wall extension 205 serves to provide protection to the refractory material 274 when the door 201 is opened. By protecting the refractory material 274, the one or more wall extensions 205 reduce cost and downtime of the melter 10 because repair time of damaged refractory is prevented and/or minimized.
With general reference to
In addition to the features of any or all of the cooling panel 312b shown,
Illustrated in
The second grooves 499 can be formed in the second outer wall 422 and can be aligned along longitudinal axis A and parallel to each other and/or some of the side walls (e.g., side walls 436, 440). Some of the second grooves 499 can extend the length of the second outer wall 422, and some of the second grooves 499 can extend only partially the length of the second outer wall 420. In
As illustrated in
In manufacturing and/or construction of the cooling panel 412, the cooling panel 412 can be formed so that the first grooves 498 and the second grooves 499 are configured to correspond with and carry the baffles 424, respectively, in order to secure the first and second outer walls 20, 22 to the baffles 24. In some implementations, the baffles 424 may be placed before the second outer wall 422 is coupled to the side walls 434, 436, 438, 440. In other implementations, the first outer wall 420 and the second outer wall 422 may be coupled to the side walls (e.g., side walls 434, 436, 440) and one side wall (e.g., side wall 438) may not yet be coupled to the first outer wall 420 and the second outer wall 422. In this implementation, the baffles 424 may be positioned between the first outer wall 420 and the second outer wall 422 by inserting each baffle 424 into the side of the cooling panel 412 where the side wall 438 is not yet coupled. The baffles 424 can be inserted or slid into a respective first groove 498 and a corresponding second groove 499 until the baffle 424 reaches the end of the respective first groove 498 and second groove 499 and/or the side wall 434. The side wall (e.g., side wall 438) may then be coupled to the first outer wall 420, the second outer wall 422, and side walls 436, 440, and the baffles 424 can form the serpentine fluid flow path 460. It will be appreciated that other arrangements and fluid flow paths may be implemented other than a serpentine-type configuration. The cooling panel 412 may also include the coolant inlet 430 and the coolant outlet 432 for passing a coolant into and from the cooling panel 412.
Method 500 can include a step 502 of receiving a plurality of side walls 34, 36, 38, 40, first and second outer walls 20, 22 each having a plurality of first and second openings 28, 44, respectively, and a plurality of baffles 24 each having a plurality of projections 48, 52. Second, the method 400 can include a step 504 of connecting the first and second openings 28, 44 and projections 48, 52 together, respectively, from outside of the cooling panel 12 so that the baffles 24 are disposed between the first and second outer walls 20, 22. Subsequently, the method 500 can include a step 506 of connecting the side walls 34, 36, 38, 40 to the first and second outer walls 20, 22 so that the cooling panel 12 is fluid-tight. This method may not include forming any interior welds within the cooling panel 12, and especially not before the step of connecting the first and second openings 28, 44 and projections 48, 52 together.
More specifically, the method 500 can include the first and second openings 28, 44 including slots, and the projections 48, 52 including tabs, so that a plurality of first projections 48 extend from the first side 46 of each baffle 24 to fit in the openings 28 of the first outer wall 20 and so that a plurality of projections 52 extend from the second side 50 of each baffle 24 to fit in the openings 44 of the second outer wall 22. Subsequently, the first and second openings 28, 44 and the respective projections 48, 52 can be plug welded together, respectively, from outside of the cooling panel 12. Further, the side walls 34, 36, 38, 40 can be fillet welded to both of the first and second outer walls 20, 22, also from outside the cooling panel 12.
Next, the method 500 may include a step 508 of attaching the coolant inlet and outlet 30, 32 to one of the first and/or second outer walls 20, 22 so that the coolant inlet 30 is attached to the bottom portion 68 of the cooling panel 12, and the coolant outlet 32 is attached to the top portion 70 of the cooling panel 12. By attaching the coolant inlet 30 to the bottom portion 68 (e.g., a bottom corner), the coolant can be fed into the bottom portion 68 and forced or pumped upwards within the cooling panel 12 and through the fluid flow path 60 so that it exits at the top portion 70 (e.g., a top corner). This flow pattern can reduce the risk of developing an air pocket at the top portion 70, which otherwise might occur if the coolant started at the top portion 70 and flowed downward by way of gravity and/or pumping. Such an air pocket can expand over time and eventually cause the cooling panel 12 to operate inefficiently, develop cracks or breaks, and/or otherwise require repair or replacement. Reducing the risk of developing an air pocket can also reduce the pressure drop of the coolant within the cooling panel 12 and assist in a more uniform and continuous coolant flow rate.
The method 500 may include a step 510 of forming the one or more protrusions 78 on one of the first and second outer walls 20, 22 (e.g., the second outer wall 22). The method 500 may also include a step 512 of disposing and/or casting the refractory material 74 onto the one or more protrusions 78 so that the one or more protrusions 78 are embedded into the refractory material 74. As discussed above, the one or more protrusions 78 can assist in holding the refractory material 74 to the one of the first and second outer walls 20, 22 and/or in protecting the refractory material 74 from cracking, chipping, breaking, or otherwise becoming damaged during use of the melter 10.
Optionally, the method 500 may include the step 514 of attaching one or more forms 96 to at least one side wall 28, 30, 32, 34 of the cooling panel 12 to assist in disposing the refractory material 74 on to one of the first and second outer walls 20, 22. Once the one or more forms 96 are attached to the respective side walls, the method 500 may include the step 512 of disposing and/or casting the refractory material 74 onto the one or more protrusions 78 so that the one or more protrusions 78 are embedded into the refractory material 74. After the refractory material 74 is solidified or otherwise set, the method 500 may further include the step 516 of removing the one or more forms 96 from the at least one side wall 28, 30, 32, 34 of the cooling panel 12. In this way, the forms 96 are not a permanent part of the cooling panel 12, but rather part of an intermediate structure of the cooling panel 12, and simply assist in its construction. The optional first and second outer edges 80, 82 can also be attached as part of the construction, having any or all of the features discussed herein.
As shown in
Because the desired geometry is created through this build up process, it is possible to create three dimensional structures having geometries that are not feasible and/or otherwise possible through other types of manufacturing, including welding various parts together, for example the cooling panel 112 illustrated in
It will be appreciated that the cooling panel 12, 112, 212, 312, 412 can be included in any part of the melter 10, and there can be as many cooling panels 12, 112, 212, 312, 412 as desired. In one aspect, the melter 10 includes ten cooling panels 12, 112, 212, 312, 412 that are identical. Having multiple identical cooling panels 12, 112, 212, 312, 412 allows the advantage of easier manufacturing of at least a portion of the cooling panels 12, 112, 212, 312, 412 within the melter 10. It will be appreciated that all cooling panels 12, 112, 212, 312, 412 in the melter 10 could be identical to each other. Additionally, the melter 10 can also include more cooling panels 12, 112, 212, 312, 412 that are similar, but not identical, to each other. In one aspect, the melter 10 includes fourteen cooling panels 12, 112, 212, 312, 412 in addition to the ten identical cooling panels 12, 112, 212, 312, 412 that are in accordance with various aspects of this disclosure; however, each of the fourteen cooling panels 12, 112, 212, 312, 412 are unique to any other cooling panels 12, 112, 212, 312, 412 within the melter 10 in some way. It will be appreciated that all cooling panels 12, 112, 212, 312, 412 in the melter 10 could be similar, but not identical, to each other.
The disclosure has been presented in conjunction with several illustrative embodiments, and additional modifications and variations have been discussed. Other modifications and variations readily will suggest themselves to persons of ordinary skill in the art in view of the foregoing discussion. For example, the subject matter of each of the embodiments is hereby incorporated by reference into each of the other embodiments, for expedience. The drawings are not necessarily shown to scale. The disclosure is intended to embrace all such modifications and variations as fall within the spirit and broad scope of the appended claims.
Claims
1. A cooling panel for a melter, comprising:
- first and second outer walls and a plurality of side walls coupled to the first and second outer walls, defining an interior space; and
- a plurality of baffles disposed in the interior space and dividing the interior space into a plurality of rows wherein the rows have widths W, and wherein the baffles have first and second longitudinal surfaces and an open transverse surface;
- wherein the open transverse surfaces of the baffles are spaced away from adjacent side walls by a distance D that is 70% to 80% of the widths W of the rows.
2. The cooling panel of claim 1, wherein the first and second walls, the plurality of side walls, and the plurality of baffles are a single monolithic structure so that there are no welds within the cooling panel.
3. The cooling panel of claim 2, wherein the single monolithic structure is formed by way of additive manufacturing.
4. The cooling panel of claim 2, wherein the single monolithic structure includes one or more protrusions extending from one of the first and second outer walls, and a first outer edge extending about a perimeter of the one of the first and second outer walls.
5. The cooling panel of claim 4, further comprising a second outer edge extending about a perimeter of the other of the first and second outer walls wherein the second outer edge forms one or more internal apertures.
6. The cooling panel of claim 2, wherein at least one row of the plurality of rows of the single monolithic structure includes a longitudinal axis and an internal feature extending along the longitudinal axis so that the internal feature divides the at least one row into two portions, and the internal feature being part of the single monolithic structure.
7. The cooling panel of claim 6, wherein the internal feature comprises a fin.
8. A method comprising:
- forming the cooling panel of claim 1 by way of a process selected from the group consisting of additive manufacturing, three-dimensional printing, rapid prototyping, and a combination thereof.
9. The method of claim 8, wherein the method does not include welding.
10. The method of claim 8, wherein the step of forming the cooling panel includes forming one or more protrusions extending from one of the first and second outer walls and a first outer edge extending about a perimeter of the one of the first and second outer walls.
11. The method of claim 8, wherein the step of forming the cooling panel includes forming at least one row of the plurality of rows to include a longitudinal axis and an internal feature extending along the longitudinal axis so that the internal feature divides the at least one row into two portions.
12. A cooling panel for a melter, comprising:
- first and second outer walls and a plurality of side walls coupled to the first and second outer walls, defining an interior space, where the first outer wall includes a plurality of inwardly-facing first grooves, and the second outer wall includes a plurality of inwardly-facing second grooves parallel with the first grooves; and
- a plurality of baffles disposed in the interior space and carried by the first grooves and the second grooves;
- wherein a first set of the first grooves and the second grooves extends a length of the cooling panel, and a second set of the first grooves and the second grooves partially extends the length of the cooling panel, and
- wherein the first set and the second set alternate to create a serpentine fluid flow path in the interior space.
Type: Application
Filed: Jun 14, 2022
Publication Date: Sep 29, 2022
Inventors: Shane T. Rashley (Bowling Green, OH), Robert Kuhlman (Dundee, MI), David Soley (Swanton, OH), Jian Jiao (Perrysburg, OH), Walter Anderson (Maumee, OH), Susan L. Smith (Rossford, OH)
Application Number: 17/839,804