CANCER TREATMENT APPARATUS
A cancer treatment apparatus including a magnetic field generator that generates a magnetic field of 100 kHz to 300 kHz to be applied to affected tissues.
The present invention relates to a cancer treatment apparatus for suppressing proliferation of cancer cells by applying an alternating magnetic field to affected tissues.
BACKGROUND ARTConventionally, there have been proposed apparatuses for applying an electric field to the affected tissues as cancer treatment apparatuses for highly malignant cancers. PTL 1 discloses an apparatus which selectively destroys or inhibits the growth of rapidly dividing cells located within a target region of a patient and which includes: an AC voltage source; and a plurality of insulated electrodes that are operatively connected to the AC voltage source, wherein each of the electrodes has a surface configured for placing against the patient's body; wherein the AC voltage source and the electrodes are configured so that, when the electrodes are placed against the patient's body, a first AC electric field having a first frequency and a second AC field having a second frequency are imposed sequentially in terms of time in the target region of the patient, wherein the first frequency and the second frequency are different, wherein the first and second electric fields have frequency characteristics that correspond to a vulnerability of the rapidly dividing cells, wherein the first and second electric fields are strong enough to damage, during the late anaphase or telophase stages of cell division, a significant portion of the rapidly dividing cells whose long axis is generally aligned with the lines of force of the electric fields, and wherein the first and second electric fields leave non-dividing cells located within the target region substantially unchanged.
Moreover, PTL 2 proposes an in-vitro method of selectively destroying or inhibiting the growth of parasites located within a target region (1620), including the steps of: capacitively coupling an AC electric field into the target region (1620); and repeating the coupling step until a therapeutically significant portion of the parasites die within the target region (1620), wherein the frequency of the electric field is between 10 MHz and 20 MHz, wherein the strength of the electric field in at least a portion of the target region (1620) is between 0.5 V/cm and 10 V/cm, wherein the electric field damages or disrupts a significant portion of the parasites positioned within the target region (1620), and wherein the electric field leaves non-dividing cells located within the target region (1620) substantially unharmed.
However, with the cancer treatment apparatus which applies the electric field to the affected part, it is necessary to shave the affected part in order to mount electrode section of the apparatus. Additionally, duration to wear the electrode sections is long and it is sometimes necessary to wear the electrode sections for 18 hours or longer. Furthermore, if a patient moves during the time when they wear the apparatus, they are forced to carry a heavy power source. In light of the current use situation of the cancer treatment apparatus, there is a demand for a cancer treatment apparatus which not only has the therapeutic effects, but also is suited for a remission treatment with less burden on patients.
There is another cancer treatment apparatus proposed by PTL 3, that is, a ceramic heating element for a thermotherapy characterized in that the ceramic heating element is ferromagnetic ferrite particles covered with a bioactive inorganic layer and has a very good affinity for surrounding tissues when embedded in a body and generates heat via magnetic induction highly efficiently within an alternating magnetic field. Furthermore, PTL 4 discloses a cancer treatment apparatus characterized in that it includes: a pair of magnetic poles for generating an alternating magnetic field, wherein the magnetic poles are set at positions opposite each other to sandwich an affected part in a manner such that a clearance between them can be freely adjusted; a magnetic field application unit for applying the alternating magnetic field to the pair of magnetic poles; and a magnetic field control module for controlling the alternating magnetic field.
The inventions described in PTL 3 and PTL 4 are embedded in the body for a long period of time and thereby intended for the cancer treatment by means of their hyperthermia effects. However, specific cancer cell cytostatic effects are not disclosed. Therefore, it is desired that the cancer treatment by application of the magnetic field be further studied and a cancer treatment apparatus which exhibits revolutionary effects on highly malignant cancer cells be established based on achievements of such study.
CITATION LIST Patent Literature
- PTL 1: Japanese Patent No. 4750784
- PTL 2: Japanese Patent No. 5485153
- PTL 3: Japanese Patent Application Laid-Open Publication No. H02-88059
- PTL 4: Japanese Patent Application Laid-Open Publication No. H03-158176
It is an object of the present invention to provide a low-cost cancer treatment apparatus suited for a remission treatment.
Means to Solve the ProblemsA cancer treatment apparatus according to a first embodiment of the present invention includes a magnetic field generator that generates a magnetic field of 100 kHz to 300 kHz to be applied to affected tissues. The present invention is the cancer treatment apparatus which applies the magnetic field of 100 kHz to 300 kHz by placing the magnetic field generator opposite the affected tissues. The present invention can suppress the proliferation of cancer cells by applying the magnetic field from the magnetic field generator to the affected tissues. The magnetic field generator according to the present invention can apply the magnetic field, which is required to obtain a specified operational advantage of the present invention, to an affected part even in a state not in contact with the affected part. Accordingly, the present invention should preferably be used by placing the magnetic field generator opposite the affected tissues in a non-contact state. Incidentally, the temperature of the magnetic field generator upon the generation of the magnetic field is approximately from 30° C. to 39° C., inclusive, so that even if the magnetic field generator contacts the affected tissues, the affected tissues can be treated safely. Therefore, the present invention can be also used in the state where the affected tissues and the magnetic field generator are placed opposite each other and in contact with each other.
The present invention contains the cancer treatment apparatus stated in claim 1, which further includes: a control module that controls an electric current supplied to the magnetic field generator; and a power source that supplies an alternating current to the magnetic field generator on the basis of output from the control module, wherein the control module includes: a cancer type input unit that accepts input of a cancer type of the affected tissues; a storage unit that stores a frequency corresponding to the cancer type; and a controller that refers to the storage unit and sets the frequency corresponding to the cancer type, which is input to the cancer type input unit, to the power source.
The present invention contains the cancer treatment apparatus which further stores application duration corresponding to the cancer type; and the controller refers to the storage unit and outputs information of the application duration corresponding to the cancer type, which is input to the cancer type input unit, to the power source. Accordingly, the present invention can simplify the input of the application duration by an operator and contribute to the reduction of a patient's burden. The present invention contains the cancer treatment apparatus which includes a power switch that starts supplying the alternating current from the power source to the magnetic field generator. The present invention contains the cancer treatment apparatus which controls a temperature of the affected tissues to make it lower than a cancer cell killing temperature. Accordingly, the proliferation of the cancer cells can be suppressed at a temperature lower than the cancer cell killing temperature. The present invention contains the cancer treatment apparatus regarding which the affected tissues are human affected tissues.
The present invention contains the cancer treatment apparatus which includes a cancer type input unit capable of selecting and inputting one cancer type from a group consisting of a glioblastoma, a malignant melanoma, a tongue cancer, a breast cancer, a malignant mesothelioma, a pancreatic cancer, and a human alveolar basal epithelial adenocarcinoma. Regarding cancer treatments, preferred alternating magnetic field conditions to obtain therapeutic effects vary depending on the cancer type. The present invention can intuitively input the frequency and application duration which are suited for the treatment target cancer type and contribute to the reduction of the operator's burden.
According to the present invention, the application duration should preferably be configured as a value within a range of 30 minutes to 180 minutes, inclusive.
Advantageous Effects of the InventionThe present invention can apply a specific alternating magnetic field, which is suited for suppressing the proliferation of the cancer cells, to the affected tissues. Regarding the present invention, the magnetic field generator which applies the magnetic field to the affected tissues can be a non-contact type. The application duration is short and additionally the apparatus is lightweight. Therefore, the present invention is suited for the remission treatment.
The present invention treats cancer without a use of any heat generation medium. The heat generation medium referred to here is, for example, a heating element that exhibits porcelain induction heat generation by a magnetic field. An embodiment of the present invention will be explained with reference to
Regarding numerical values indicated in columns of the frequency and the application duration in
Furthermore, when it is designed so that a plurality of application modes can be set for the same disease name, it is also preferable that a mode name be assigned to the disease name as illustrated in
When “Glioblastoma Mode 2” is input to the cancer type input unit 401 (S610), the cancer type parameter which is a combination of the frequency of 227 kHz and the application duration of 30 minutes per one application is evoked from the memory 502 via the first input unit 403 and the frequency N and the application duration Td are set respectively upon application of the magnetic field (S620). After placing the affected part opposite the magnetic field generator 200 and switching the power switch 402 to ON, the power source 300 is notified of supply of an alternating current at the frequency of 227 kHz via the first output unit 503 and the second input unit 404 from the power source 300 to the magnetic field generator 200 and the supply of the electric current is started (S630). Consequently, the magnetic field generator 200 starts applying the alternating magnetic field to the affected tissues. Incidentally, at the same time as the start of the electric current supply, the timer 504 starts measuring elapsed time Tv from the start of the electric current supply (S640). The electric current continues to be supplied until the elapsed time Tv becomes equal to the application duration Td (30 minutes in this embodiment), that is, while Tv≠Td (S660). After the elapse of 30 minutes from the start of the electric current supply, that is, when the elapsed time Tv becomes equal to the application duration Td (Tv=Td) (S670), the power source 300 is notified of the completion of the application duration via the second output unit 505, the electric current supply to the magnetic field generator 200 is stopped, and the application of the magnetic field to the affected part is terminated (S680). Regarding stoppage of the electric current supply, a mechanism for forcibly stopping the supply may be provided within the apparatus, or a notification means such as an alarm may be provided and the supply may be stopped manually.
The frequency parameter which is stored in the memory according to the present invention should preferably be a value within the range of 100 kHz to 300 kHz, inclusive. When the frequency parameter is less than 100 kHz, any significant cancer cell cytostatic effect will not be obtained even if the magnetic field is applied. When the frequency parameter exceeds 300 kHz, there is a possibility that the effect might attenuate. Also, as compared to the case where the frequency parameter is equal to or less than 300 kHz, there is a possibility that the temperature of the magnetic field generator might increase. The frequency at which the cancer cell cytostatic effect may tend to appear easily varies depending on the cancer type of a magnetic field application target. Regarding values stored in the memory as the frequency parameter for a glioblastoma, a malignant melanoma, a tongue cancer, a breast cancer, and a malignant mesothelioma, it is possible to store values which are dispersed at regular intervals, for example, every 50 kHz, that is, 100 kHz, 150 kHz, 200 kHz, 250 kHz, and 300 kHz. Alternatively, specific values such as 196 kHz, 227 kHz, 280 kHz, and 389 kHz may be stored or the respective parameters may be dispersed at irregular intervals and stored with reference to a specified frequency for each cancer type. For example, it is an embodiment where a relatively small interval(s) is set around a most preferred value and a relatively large interval(s) is set around a maximum value and a minimum value.
The application duration parameter stored in the memory according to the present invention should preferably be a value within the range of 30 minutes to 180 minutes, inclusive. When the application duration is less than 30 minutes, any significant cancer cell cytostatic effect will not be obtained even if the magnetic field is applied. If the present invention is used for 30 minutes or longer, the significant cancer cell cytostatic effect will be obtained even if the application duration is equal to or less than 180 minutes. Therefore, when using the present invention, it is unnecessary to apply the magnetic field to the affected part for a long period of time and the patient's burden can be thereby reduced. Additionally, since operating time of the present invention per patient is short, a plurality of patients can take turns using one apparatus of the present invention in one day. Furthermore, since the present invention can be used in the state of placing the affected tissues not in contact with the magnetic field generator, hygienic maintenance required when the user is switched is easy. As a result, the present invention contributes to cost reduction.
The application duration which brings about the cancer cell cytostatic effect in a preferable manner varies depending on the cancer type and the frequency. When the application duration is stored in the memory as the application duration parameter for the glioblastoma, malignant melanoma, tongue cancer, breast cancer, and malignant mesothelioma, it is possible to store, as an example, 30 minutes, 45 minutes, 60 minutes, 120 minutes, and 180 minutes. The frequency and the application duration may be set individually. In that case, a first cancer type input unit for setting the frequency and a second cancer type input unit for setting the application duration may be provided. In that case, as a result of input to the first and second cancer type input units, the frequency parameter and the application duration parameter are evoked individually from the memory and the specified frequency and application duration are set respectively. From the viewpoint of convenience of the present invention, it is preferable as explained with reference to
Furthermore, it is also preferable that according to the present invention, the number of times of applications be set according to the size of the relevant tumor, its progression, and the condition of the patient such as their physical condition. Therefore, it is also preferable that the present invention be configured to be capable of storing a parameter of the number of times of applications in the memory and setting the number of times of applications by making an input to the cancer type input unit. Furthermore, if the cancer type parameter is combined with the parameter of the number of times of applications, the frequency parameter, and the application duration parameter, not only the frequency and the application duration, but also the number of times of applications can be set by one input. Accordingly, the present invention can prevent errors in a magnetic field application schedule and further reduce the user's burden of operation.
The number of times of applications according to the present invention should preferably be once a day or may be one day per week or also preferably be consecutive five days or more per week. For example, when the number of times of applications is set as consecutive five days, the magnetic field can be applied according to the present invention by setting the application start day as the 1st day, applying the magnetic field once every day from the 1st day to the 5th day, and not applying the magnetic field on the 6th day and the 7th day. Since the application duration per one application according to the present invention is short, it hardly becomes the user's burden even if the number of times of applications increases. Furthermore, the definition of the number of times of applications is not limited to the number of times per week. Specifically speaking, the number of times of applications may be set for a cycle such as per five days or per two weeks.
It is preferable that a coil be used as the magnetic field generator according to the present invention. Examples of the shape of the coil can include a helical type and a disc type.
The magnetic field generator according to the present invention may be configured so that the coil of a single shape is secured; however, it is preferable that coils of a plurality of shapes be made replaceable. Accordingly, the magnetic field generator can be formed by selecting and attaching the coil of a preferred shape to the site of the affected part, depending on whether the affected part is located at any one of a head, four limbs, a torso, and other sites. As a result, the magnetic field can be applied more efficiently to the affected part. The present invention can be used as it is placed opposite the affected tissues and without contacting the affected tissues. Additionally, as the magnetic field generator includes a replaceable coil, its versatility can be further enhanced. Also, the coil to be secured to the magnetic field generator may be a combination of a plurality of coils with different properties.
Incidentally, the control module 400 may not include the power switch 402 or the timer 504. In this case, the configuration of the control module 400 is as illustrated in
Furthermore, the cancer treatment apparatus 100 may be configured so that the control module 400 is not included and the magnetic field generator 200 generates the magnetic field at a fixed frequency of any value from 100 kHz to 300 kHz. The configuration of the cancer treatment apparatus 100 in this case is as illustrated in
Furthermore, the control module 400 may control the temperature of the affected tissues to become lower than a cancer cell killing temperature. Specifically speaking, a temperature range of 40° C. to 43° C. is known as the cancer cells killing temperature, so that the control module 400 may control the temperature of the affected tissues to become lower than 40° C. In this case, the control module 400 specifies conditions to apply the magnetic field and duration when the magnetic field may be continuously radiated for each cancer type, by referring to a database prepared in advance; and radiation duration, that is, the duration set to the timer 504 is set to be less than the duration obtained from the database.
EXAMPLESThe present invention will be explained by using an example in which a copper-made, helical-type coil (inner diameter of a helical part: 4 cm; outer diameter of the helical part: 5 cm; the number of elements 430,998/the number of nodes 137,055; and conductivity: 1.673e-8 [ohm m]) is used as the magnetic field generator. Unless particularly explained, the electric current supplied to the magnetic field generator is 250 A. This example is Example 1. However, the present invention is not limited to Example 1 as long as it exerts its operational advantages. No heat generation medium was used in any of the examples including Example 1. In other words, in none of the examples described below, no heat generation medium is placed around or inside the cells.
1. Magnetic Flux Density of Example 1<Measurement Conditions for Magnetic Flux Density>
Simulation Software: JMAG Designer 14.1
Solver: 3D FEM (Finite Element Method)
Simulation Type: Magnetic Field Analysis (Frequency Response)
2. Confirmation of Cancer Cell Cytostatic EffectThe cancer cell cytostatic effect of Example 1 was observed with respect to normal cells and cancer cells. The application was performed by placing a petri dish, in which the relevant cells were sowed, inside the helical part of the coil.
[2.1 Normal Cells]
<Culture Condition 1>
Dyed 1×105 cells/4-cm dish using Calcein-AM by Sigma (to dye living cells) and propidium iodide (to dye nuclei and check dead cells) were sowed and cultured for 24 hours.
No significant cytostatic effect could not be confirmed as illustrated in
[2.2 Cancer Cells]
Experiments to check the cancer cell cytostatic effect of the present invention of Example 1 regarding the cancer cells were conducted about human glioblastoma cells (U87), human malignant melanoma cells (SK-MEL-24), human tongue cancer (squamous cell neoplasm) cells (OSC-19), human breast cancer cells (MCF7), and human epithelial cell line derived from a lung carcinoma tissue (A549). An alternating magnetic field transistor inverter (Hot Shot, Ameritherm Inc., New York, U.S.A.) was used in the confirmatory experiments. The coil was as described earlier.
[2.2.1 Human Glioblastoma Cells (U87)]
Regarding the human glioblastoma cells (U87), a significant increase of the number of dead cells was observed as illustrated in
[2.2.2 Human Malignant Melanoma Cells (SK-MEL-24)]
Five pieces of data indicated in
Regarding the human malignant melanoma cells (SK-MEL-24), a significant increase of the number of dead cells was observed as illustrated in
[2.2.3 Human Tongue Cancer (Squamous Cell Carcinoma) Cells (OSC-19)]
Five pieces of data indicated in
Regarding the human tongue cancer cells (OSC-19) a significant increase of the number of dead cells was observed as illustrated in
[2.2.4 Human Breast Cancer Cells (MCF7)]
Five pieces of data indicated in
Regarding the human breast cancer cells (MCF7), a significant increase of the number of dead cells was observed as illustrated in
[2.2.5 Human Epithelial Cell Line Derived from a Lung Carcinoma Tissue (A549)]
Five pieces of data indicated in
Regarding the human epithelial cell line derived from a lung carcinoma tissue (A549), a significant increase of the number of dead cells was observed as illustrated in
The proliferation of the cancer cells is suppressed by applying the magnetic field at a specific frequency corresponding to the cancer type. Particularly, the present invention which has been illustrated by the examples above can exert the excellent cancer cell cytostatic effect through a combination of the specific frequency and the application duration. Accordingly, not only the cancer cell cytostatic effect is enhanced, but also the reduction of the user's burden is realized by setting the cancer type parameter, which is the combination of the specific frequency and the application duration, and thereby making it possible to easily apply a specified magnetic field. Therefore, the present invention should preferably be configured to store such a parameter, which is the combination of the specific frequency and the application duration, in the memory by associating the parameter with the cancer type. Consequently, an input to the cancer type input unit evokes an arbitrary cancer type parameter, which is set as a desired cancer type parameter, and the electric current is supplied to the magnetic field generator based on a set value. As a result, the present invention can generate an appropriate magnetic field to achieve the cytostatic effect for the desired cancer type and can easily achieve the cancer cell cytostatic effect by applying the magnetic field.
[2.3 Influence of Magnetic Field Application on Cell Division of Cancer Cells]
When the cells were cultured without applying the magnetic field (Comparative Example 1-12a), the cell division was observed at positions indicated with white arrows as shown in
[2.4 Influence of Magnetic Field Application on Cancer Cells]
[2.5 Temperature Change of Cancer Cells by Magnetic Field Application]
A subcutaneous tumor model was prepared by transplanting the human glioblastoma cells (U87) at 5×106/mouse under the skin of a femoral region of a female 5-week-old Balb-c nude mouse. A transplanted area of the tumor model was placed opposite the magnetic field generator of Example 1 and the magnetic field was applied to the transplanted area, and changes in the temperature of the tumor model were observed. The application of the magnetic field was performed at the frequency of 227 kHz for 30 minutes.
[2.6 Confirmation of Tumor Proliferation Suppressing Effect]
Tumor models of the human tongue cancer (squamous cell carcinoma) cells (OSC-19), the human glioblastoma cells (U87), the human breast cancer (MDAMB231), the human pancreatic cancer cells (PANC1), and the human the malignant mesothelioma cells (Meso-1) were prepared respectively and the tumor proliferation suppressing effect by the application of the magnetic field using Example 1 was checked. Enlargement of the tumor was evaluated based on a volume change. Regarding the volume of the tumor, the tumor size of each individual of the tumor model was measured with a vernier caliper and a value obtained by converting the tumor size into the volume according to Expression (1) and Expression (2) was defined as the tumor volume.
Tumor volume (TV) (mm3)=length×(width)2/2 (1)
Rate of tumor volume (%)=TV/TV(day1)×100 (2)
[2.6.1 Tumor of Human Tongue Cancer (Squamous Cell Carcinoma) Cells (OSC-19)]
The human tongue cancer (squamous cell carcinoma) cells (OSC-19) were transplanted at 1×106/mouse under the skin of a femoral region of a female 5-week-old Balb-c nude mouse in order to prepare subcutaneous tumor models using immunodeficient mice. The population was divided into two groups and the magnetic field was applied to individuals belonging to a first group by using Example 1. The first group was defined as an AMF group (Example 1-1501). The alternating magnetic field was applied to the tumor of the AMF group (Example 1-1501) at the frequency of 227 kHz for 30 minutes per day for consecutive five days from the 1st day to the 5th day by setting the next day of the transplantation as the 1st day. No application was performed for individuals belonging to the second group. The second group was defined as a Control group (Comparative Example 1-1500). The tumor size of each individual belonging to the AMF group (Example 1-1501) and the Control group (Comparative Example 1-1500) was measured every day and was converted into the tumor volume according to Expression (1) and Expression (2).
Referring to
[2.6.2 Tumor of Human Glioblastoma Cells (U87)]
As a result of comparison of the changes in the tumor volume of each example and the comparative example indicated in
As indicated in
The present invention has the continuous effect of suppressing the proliferation of the tumor volume even with one application of the magnetic field. Also, the substantivity of the tumor volume proliferation suppressing effect enhances as the number of times of applications is increased. As indicated in
Therefore, the present invention may be configured so that the number of times of applications can be set by inputting the cancer type to the cancer type input unit.
[2.6.3 Tumor of Human Breast Cancer (MDAMB231)]
A human breast cancer (MDAMB231) was transplanted at 5×106/mouse under the skin of a femoral region of a female 5-week-old Balb-c nude mouse in order to prepare subcutaneous tumor models using immunodeficient mice. The population was divided into two groups and the magnetic field was applied to individuals belonging to a first group a total of 10 times for consecutive 5 days after the transplantation (from the 7th day), two days with no application, and then again for consecutive 5 days by using Example 1. The first group was decided as an AMF group (Example 1-2101). The magnetic field was applied once per day for Example 1-2101; and regarding each one application, the frequency was 227 kHz and the application duration was 30 minutes. The magnetic field was not applied to individuals belonging to a second group. The second group was decided as a CTRL group (Comparative Example 1-2100). The tumor size of each individual belonging to the AMF group (Example 1-2101) and the CTRL group (Comparative Example 1-2100) was measured every day for consecutive 14 days after the transplantation (from the 7th day) with the vernier caliper and was converted into the volume according to Expression (1) and Expression (2).
[2.6.4 Tumor of Human Pancreatic Cancer Cells (PANC1)]
Human pancreatic cancer cells (PANC1) were transplanted at 5×106/mouse under the skin of a femoral region of a female 5-week-old Balb-c nude mouse in order to prepare subcutaneous tumor models using immunodeficient mice. The population was divided into two groups and the magnetic field was applied to individuals belonging to a first group a total of 10 times for consecutive 5 days after the transplantation (from the 7th day), two days with no application, and then again for consecutive 5 days by using Example 1. The first group was decided as an AMF group (Example 1-2201). The magnetic field was applied once per day for Example 1-2201; and regarding each one application, the frequency was 227 kHz and the application duration was 30 minutes. The magnetic field was not applied to individuals belonging to a second group. The second group was decided as a CTRL group (Comparative Example 1-2200). The tumor size of each individual belonging to the AMF group (Example 1-2201) and the CTRL group (Comparative Example 1-2200) was measured every day for consecutive 14 days after the transplantation (from the 7th day) with the vernier caliper and was converted into the volume according to Expression (1) and Expression (2).
[2.6.5 Tumor of Human Glioblastoma Cells (U87) (Brain Tumor Models)]
The population was divided into two groups and the magnetic field was applied to individuals belonging to a first group (the number of individuals: 6) by supplying an electric current of 250 A by using Example 1. The first group was decided as Example 1-1805. The magnetic field was applied once per day for Example 1-1805; and regarding each one application, the frequency was 227 kHz and the application duration was 30 minutes. The magnetic field was applied for consecutive 5 days from the 0th day (from the 0th day to the 4th day), no application was applied on the 5th day and the 6th day, and then the magnetic field was applied again from the 7th day to the 11th day. In other words, the magnetic field was applied to Example 1-1805 10 times. The magnetic field was not applied to individuals belonging to a second group (the number of individuals: 6). The second group was decided as Comparative Example 1-1800.
Fluorescent imaging of Example 1-1805 and Comparative Example 1-1800 was performed by using an ultrasensitive CCD camera and an image analysis equipment (equipment name: IVIS imaging system). The tumor proliferation suppressing effect was evaluated based on a value of the amount of luminescence (photons/second); and a smaller amount of luminescence was judged to have the tumor proliferation suppressing effect. One fluorescent image of the individuals belonging to Example 1-1805 and one fluorescent image of the individuals belonging to Comparative Example 1-1800 were extracted respectively and are shown in
Furthermore,
Overall Survival Rate (%)=The Number of All Dead Individuals/6×100 (3)
Regarding Comparative Example 1-1800 as indicated in
Furthermore, human glioblastoma cells (U251) were used instead of the human glioblastoma cells (U87) and a similar observation was performed. Conditions other than the cell type are similar to those of the brain tumor models of the human glioblastoma cells (U87) as indicated in
[2.6.6 Tumor of Malignant Mesothelioma Cells (Meso-1)]
The tumor size of each individual belonging to Example 1-1901 and Comparative Example 1-1900 was measured on the transplantation day, the 2nd day, the 4th day, and the 6th day with the vernier caliper and was converted into the volume according to Expression (1) and Expression (2).
Side effects caused by the applications of the magnetic field by using the magnetic field generator of Example 1 were observed. Female 5-week-old Balb-c nude mice were divided into an AMF group to which the magnetic field was to be applied, and a CTRL group to which the magnetic field was to be not applied; and regarding each of the AMF group and the CTRL group, a group for transplanting a tumor under the skin and a group for transplanting the tumor inside the cranium were formed. The CTRL group will not be described below in detail, but corresponding individuals were prepared for the comparison with the AMF group. The AMF group to which the tumor was transplanted under the skin was further divided into a once-a-week group to which the magnetic field was applied once in a week, and a 5-times-a-week group to which the magnetic field was applied five times in a week; and an observation was performed after the elapse of 15 days after the transplantation. Specifically speaking, regarding the once-a-week group of the AMF group with the subcutaneous implant, the magnetic field was applied a total of twice; and regarding the 5-times-a-week group of the same AMF group, the magnetic field was applied a total of 10 times. Regarding the AMF group with the tumor transplanted within the cranium, the magnetic field was applied five times in a week, that is, a total of 40 times, and an observation was performed after the elapse of 90 days.
In any one of these cases, the magnetic field was applied for 30 minutes each time and the frequency was 227 kHz. The observation was performed via, for example, body weight measurement, blood drawing, and external observation; and specifically speaking, clinical signs, skin disorder, body weight, food intake, biological functions, kidney functions, panhemocytes, white blood cells, hemoglobin, blood platelets, and liver functions were evaluated.
The influence of the application of the alternating magnetic field on reactive oxygen was observed with respect to the human glioblastoma cells (U87), the human glioblastoma cells (U251), the human breast cancer cells (MDAMB231), and the human pancreatic cancer cells (PANC1). Each type of these cells was divided into an AMF group to which the magnetic field was applied, and a CTRL group to which the magnetic field was not applied. Regarding the CTRL group, the alternating magnetic field was applied at 227 kHz for 30 minutes and the reactive oxygen was measured after the elapse of 24 hours.
The present invention exhibits the cancer cell cytostatic effect and the tumor proliferation suppressing effect even on different species from the species explained in the aforementioned examples, for example, on humans. Specifically speaking, the present invention includes a method for treating human cancer cells by using the aforementioned cancer treatment apparatus 100. In other words, the present invention includes a human treatment method which is a method for treating humans by using the cancer treatment apparatus 100.
According to the present invention, the preferred alternating magnetic field for suppressing the tumor proliferation of various cancer types can be applied to the affected tissues for preferred application duration by intuitive and simple operation of devices such as a keyboard and a mouse, and a touch panel. The application duration is short, and the power consumption is small. In addition, the present invention is lightweight. Accordingly, the present invention is a low-cost, highly convenient cancer treatment apparatus. Furthermore, since the affected tissues does not contact the magnetic field generator, the cancer treatment apparatus according to the present invention can be hygienically shared between a plurality of diseased persons.
INDUSTRIAL APPLICABILITYThe present invention is particularly suited for the remission treatment of highly malignant cancers.
The disclosure of the following priority application is herein incorporated by reference. Japanese Patent Application No. 2016-228164 (filed on Nov. 24, 2016)
REFERENCE SIGNS LIST
- 100: cancer treatment apparatus
- 200: magnetic field generator
- 300: power source
- 400: control module
- 401: cancer type input unit
- 402: power switch
- 403: first input unit
- 404: second input unit
- 501: controller
- 502: memory
- 503: first output unit
- 504: timer
- 505: second output unit
- 600: coil
- 601: inner diameter face (0-mm surface) of coil
Claims
1. A cancer treatment apparatus for treating a cancer comprising:
- a magnetic field generator that generates a magnetic field of which a frequency is ranged from 100 kHz to 300 kHz to be applied to affected tissues;
- a power source that generates an alternating current to be supplied to the magnetic field generator, and
- a control module that controls the alternating current supplied from the power source to the magnetic field generator, wherein
- the control module controls the alternating current such that a magnetic flux density of the magnetic field, which is generated by the magnetic field generator, is a predetermined value,
- a frequency and size of the alternating current supplied to the magnetic field generator varies in correspondence with output from the control module,
2. The cancer treatment apparatus according to claim 1, wherein
- the control module controls the power source to maintain a temperature of the affected tissues lower than a cancer cell killing temperature.
3. The cancer treatment apparatus according to claim 1, wherein
- the affected tissues are human affected tissues.
4. The cancer treatment apparatus according to claim 1, wherein
- the predetermined value of the magnetic flux density is at least 18 mT or larger.
5-10. (canceled)
11. A treatment method for treating a cancer comprising:
- applying an alternating magnetic field to affected tissues.
12. The treatment method for treating the cancer according to claim 11, wherein
- a frequency of the magnetic field is ranged from 100 kHz to 300 kHz.
13. The treatment method for treating the cancer according to claim 11, wherein
- a frequency and size of the magnetic field is varied.
14. The treatment method for treating the cancer according to claim 11, further comprising
- without using any heat generation medium; and
- not using heat-generating effect of the affected tissues due to the irradiation of the magnetic field for treatment.
15. The treatment method for treating the cancer according to claim 11, wherein
- a magnetic flux density of the magnetic field is a predetermined.
16. The treatment method for treating the cancer according to claim 11, wherein
- the predetermined value of the magnetic flux density is at least 18 mT or larger.
17. The treatment method for treating the cancer according to claim 11, further comprising
- controlling a power source to generate an alternating current to be supplied to a magnetic field generator such that the magnetic field is generated using the alternating current.
18. The treatment method for treating the cancer according to claim 11, further comprising:
- inputting a cancer type of the affected tissues wherein the cancer type, which is input, is defined as an input cancer type,
- determining the frequency of the magnetic field in correspondence with the input cancer type.
19. The treatment method for treating the cancer according to claim 11, wherein
- type of the cancer is a glioblastoma, a malignant melanoma, a tongue cancer, a breast cancer, a malignant mesothelioma, a pancreatic cancer, or a human alveolar basal epithelial adenocarcinoma.
Type: Application
Filed: Jun 9, 2022
Publication Date: Oct 6, 2022
Inventors: Yoshihiro ISHIKAWA (Yokohama-shi), Masanari UMEMURA (Yokohama-shi), Taisuke AKIMOTO (Yokohama-shi)
Application Number: 17/837,001