MATTRESS
A mattress includes a mattress body, a control unit at the mattress body, a plurality of air conduits defined at the mattress body, and a plurality of air passages extending within the mattress body. The plurality of air conduits is in fluid communication with the control unit and the plurality of air passages such that the plurality of air conduits is configured to convey pressurized air from the control unit to the plurality of air passages. The plurality of air passages can each have an air passage end open at a surface of the mattress body such that pressurized air received from the air conduits is output by the air passages at the surface of the mattress body.
This application claims priority to U.S. provisional patent application No. 63/181,285 filed on Apr. 29, 2021.
TECHNICAL FIELDThis disclosure generally relates to mattresses as well as related mattress systems and methods.
BACKGROUNDA mattress is used to provide a sleeping support surface. However, currently available mattresses can be inefficient in that such mattresses can generally be relatively expensive yet uncomfortable. In particular, many such mattresses can be uncomfortable because the composition of these mattresses can reduce and/or prevent air flow at these mattresses, resulting in uncomfortable temperatures for the user sleeping at these mattresses. Moreover, many of these currently available mattresses can suffer with cleanliness issues.
SUMMARYIn general, various embodiments relating to mattresses as well as related systems and methods are disclosed herein. Mattress embodiments, and related systems and methods, disclosed herein can be useful in providing an enhanced experience for a user sleeping on the mattress. For example, mattress embodiments disclosed herein can facilitate improved air flow at the mattress providing a more comfortable and, in some cases, temperature-controlled experience for the user. In addition, such mattress embodiments disclosed herein that can facilitate improved air flow at the mattress (e.g., via one or more air passages extending within the mattress body and having an air outlet at an exterior surface of the mattress body) can also be useful in reducing instances of sudden infant death syndrome (SIDS) since this improved airflow at the sleeping surface of the mattress can reduce instances of suffocation at the sleeping surface of the mattress. As another example, mattress embodiments disclosed herein can facilitate an improved mattress body composition which can provide a more comfortable sleeping support surface for the user. As a further example, mattress embodiments disclosed herein can increase the sanitary condition of the mattress by resisting the presence of bacteria and other microorganisms at the mattress and resisting the permeation of fluids at the mattress. As a final example, mattress embodiments disclosed herein can be manufactured in a cost-effective and repeatable manner thereby increasing consistency of the mattress while, at the same time, allowing for cost reductions in manufacturing.
One embodiment includes a mattress. This mattress embodiment includes a mattress body, a control unit at the mattress body, a plurality of air conduits defined at the mattress body, and a plurality of air passages extending within the mattress body. The plurality of air conduits is in fluid communication with the control unit. Each one of the plurality of air passages includes an air passage open end at a surface (e.g., external surface, such as a top external surface) of the mattress body, and each one of the plurality of air passages is in fluid communication with at least one of the plurality of air conduits such that the plurality of air conduits are configured to convey pressurized air from the control unit to the plurality of air passages and the plurality of air passages is configured to output the pressurized air from the plurality of air conduits at the surface of the mattress body via the air passage open end at each one of the plurality of air passages.
In a further embodiment of this mattress, the surface of the mattress body at which the plurality of air passages is configured to output the pressurized air is a top surface of the mattress body at which a user would lay when using the mattress.
In a further embodiment of this mattress, the mattress can additionally include a valve. The valve can include a valve inlet portion, a valve outlet portion, and a valve actuator. The valve inlet portion can be in fluid communication with at least one of the plurality of air conduits and the valve outlet portion can be in fluid communication, via the valve actuator, with at least one of the plurality of air passages. The valve actuator can be configured, when actuated, to move between an air retention configuration and an air release configuration. In the air release configuration, the valve actuator is configured to increase an opening at the valve outlet portion, relative to a size of the opening at the valve outlet portion when the valve actuator is in the air retention configuration, to cause an increase in a volume of pressurized air that passes from the valve outlet portion to the at least one of the plurality of air passages. The valve outlet portion is in in fluid communication, via the valve actuator, with a first air passage of the plurality of air passages and a second air passage of the plurality of air passages, and the valve outlet portion is configured to output the pressurized air in a first direction to the first air passage of the plurality of air passages and in a second, different direction to the second air passage of the plurality of air passages. In some such embodiments, the mattress can further include a first air passage connector and a second air passage connector. The first air passage connector fluidly connects the valve outlet portion to the first air passage of the plurality of air passages, and the first air passage connector extends, from the valve outlet portion toward the first air passage of the plurality of air passages, in a direction toward a top surface of the mattress body at which a user would lay when using the mattress. The second air passage connector fluidly connects the valve outlet portion to the second air passage of the plurality of air passages, and the second air passage connector extends, from the valve outlet portion toward the second air passage of the plurality of air passages, in a direction toward the top surface of the mattress body.
In a further embodiment of this mattress, each one of the plurality of air passages includes the air passage open end at a top surface of the mattress body and a second air passage open end at a bottom surface of the mattress body.
In a further embodiment of this mattress, a volumetric ratio of the plurality of air passages to the mattress body is 1.1:1 or more.
In a further embodiment of this mattress, an area defined at a top surface of the mattress body defines a top surface area, and wherein the top surface area has 75% or less of the top surface area made up of the mattress body and 25% or more of the top surface area made up of the plurality of air passages.
In a further embodiment of this mattress, the plurality of air conduits extend from the control unit along a perimeter portion of the mattress body and into a more central region of the mattress body between two or more of the plurality of air passages.
In a further embodiment of this mattress, the mattress body includes a perimeter portion that is more rigid than a more central portion of the mattress body. This perimeter portion can include a plurality of perimeter air passages in fluid communication with at least one of the plurality of air conduits, and the plurality of perimeter air passages can have a smaller cross-sectional area than the plurality of air passages located at the more central portion of the mattress body. In some such embodiments, the plurality of perimeter air passages can be spaced closer to one another than the plurality of air passages located at the more central portion of the mattress body, and the mattress body can make up a greater percentage of a top surface area at the perimeter portion than the plurality of perimeter air passages at the perimeter portion.
In a further embodiment of this mattress, the mattress body is a single, integral piece that includes a fluid impermeable polymer material. In some such embodiments, the singe, integral piece mattress body further includes an antimicrobial additive.
In a further embodiment of this mattress, the mattress body includes a first layer and a second layer integrated with the first layer, and the first layer has a different rigidity than the second layer. In some such embodiments, the first layer is at a top surface of the mattress body and the second layer is located inward within the mattress body and extends from the first layer toward a bottom surface of the mattress body, and this second layer is more rigid than the first layer.
In a further embodiment of this mattress, the mattress further includes a sheet attachment member at the mattress body. The sheet attachment member includes a coupling that projects out from the mattress body and is configured to received and hold a sheet over a top surface of the mattress body.
In a further embodiment of this mattress, the mattress further includes a first sensor type at the mattress body and in communication with the control unit, a second sensor type at the mattress body and in communication with the control unit, a third sensor type at the mattress body and in communication with the control unit, and a fourth sensor type at the mattress body and in communication with the control unit. Each of the first sensor type, the second sensor type, the third sensor type, and the fourth sensor type is configured to sense a different condition. The first sensor type, the second sensor type, and the third sensor type are located adjacent one another at a common region of the mattress body while the fourth sensor type is spaced apart from this common region.
The details of one or more examples are set forth in the accompanying drawings and the description below. Other features, objects, and advantages will be apparent from the description and drawings.
The following drawings are illustrative of particular embodiments of the present invention and, therefore, do not limit the scope of the invention. The drawings are intended for use in conjunction with the explanations in the following description. Embodiments of the invention will hereinafter be described in conjunction with the appended drawings, wherein like numerals denote like elements. The features illustrated in the drawings are not necessarily to scale, though embodiments within the scope of the present invention can include one or more of the illustrated features (e.g., each of the illustrated features) at the scale shown.
The following detailed description is exemplary in nature and is not intended to limit the scope, applicability, or configuration of the invention in any way. Rather, the following description provides some practical illustrations for implementing embodiments of the present invention. Examples of constructions, materials, and/or dimensions are provided for selected elements. Those skilled in the art will recognize that many of the noted examples have a variety of suitable alternatives.
The mattress 100 can include a mattress body 105. In some examples, the mattress body 105 can be a single, integral piece. For example, the mattress body 105 can be made as a single, integral piece via a casting (e.g., injection molding) or additive (e.g., three-dimensional printing) manufacturing process. The mattress body 105 can be made of one or more of a variety of materials. For example, the mattress body 105 can be a single, integral piece that includes a polymer material (e.g., an elastomer, such as silicone, in some cases a transparent or translucent silicone material). The polymer material included at the mattress body 105 can be a fluid impermeable polymer material (e.g., silicone). For instance, to form the single, integral piece mattress body 105, a polymer material can be poured into a mold and cured to form the mattress body 105, or a polymer material can be used as a feedstock material that is additively fused together during an additive manufacturing process. The mattress body 105 can be made in a variety of sizes, including, as one example, a full-size crib bed typically having a width of 26-30 inches and a length of 50-54 inches.
In certain embodiments, such as that shown in
In some embodiments, to help improve sanitation at the mattress 100, the mattress body 105 can have an antimicrobial function. In particular, the mattress body 105 can include one or more antimicrobial additives. For example, the mattress body 105 can include both a polymer material and an antimicrobial additive. For instance, when included, the antimicrobial additive can be an antimicrobial metal present at the mattress body 105 along with the polymer material (e.g., silicone). The antimicrobial metal could be one or more of silver, copper, and nickel. The presence of an antimicrobial additive at the mattress body 105 can help to resist the presence of bacteria or other microorganisms at the mattress body 105. Moreover, when the mattress body 105 also includes a fluid impermeable polymer material, the mattress body 105 can resist the permeation of fluids into the mattress body 105 and instead cause such fluid to run off of the surface of the mattress body 105. This fluid impermeability of the mattress body 105 may also be useful to resist the presence of one or more pests (e.g., bed bugs, ring worms) at the mattress body 105 since the fluid impermeability of the mattress body 105 can act to prevent such pests from penetrating into the interior of the mattress body 105. Thus, the mattress body 105 can help to improve sanitary conditions at the mattress 100 by resisting the presence of bacteria or other microorganisms and reducing fluid and/or pest permeation at the mattress body 105.
The mattress 100 can also include a plurality of air passages 110. The air passages 110 can be defined at the mattress body 105. For instance, as illustrated, the air passages 110 can be spaced apart by the mattress body 105 which can extend between the air passages 110. In the illustrated embodiment of the mattress 100, the air passages 110 can extend through the mattress body 105, such as seen in
In the illustrated embodiment of the mattress 100, the air passages 110 can define a cross-section width of 0.1 inch to 10 inches, 0.5 inch to 5 inches, 0.75 inch to 2.5 inch, or 1 to 2 inches. Also in the illustrated embodiment, the air passages 110 are defined by the mattress body 105 in a generally hexagon cross-sectional shape. Also in the illustrated embodiment, each air passage 110 can have a uniform hexagon cross-sectional shape along the height 113 of the air passage 110. Though, in other embodiments, the air passages 110 can take a variety of shapes, including other polygon shapes, at the first and second air passage ends 111, 112 and/or along the height 113 of the air passage 110 (e.g., a varying cross-sectional shape and/or cross-sectional diameter of the air passage 110 along the height 113).
The presence of the air passages 110 at the mattress body 105 can act to reduce the volume of the mattress body 106 making up the mattress 100. For example, in some embodiments of the mattress 100, the volumetric ratio of the air passages 110 to the mattress body 105 at the mattress 100 can be 1:1; 1.1:1; 1.2:1; 1.3:1; 1.4:1; 1.5:1; 1.6:1; 1.7:1; 1.8:1; 1.9:1; or 2:1 or more. The noted volumetric ratios of the air passages 110 to the mattress body 105 at the mattress 100 can be measured when the mattress 100 is in an unloaded state (e.g., when a user is not applying force at (e.g., laying on) the mattress 100).
More specifically, the presence of the air passages 110 at the mattress body 105 can reduce the surface area of the mattress body 105 at the top surface 106 of the mattress body 105. For example, for an area 104 defined at the top surface 106 of the mattress body 105: the mattress body 105 can make up 75% or less of the area 104 at the top surface 106 and air (via the air passages 110) can make up 25% or more of the area 104 at the top surface 106; the mattress body 105 can make up 60% or less of the area 104 at the top surface 106 and air (via the air passages 110) can make up 40% or more of the area 104 at the top surface 106; the mattress body 105 can make up 50% or less of the area 104 at the top surface 106 and air (via the air passages 110) can make up 50% or more of the area 104 at the top surface 106; the mattress body 105 can make up 40% or less of the area 104 at the top surface 106 and air (via the air passages 110) can make up 60% or more of the area 104 at the top surface 106; the mattress body 105 can make up 30% or less of the area 104 at the top surface 106 and air (via the air passages 110) can make up 70% or more of the area 104 at the top surface 106; the mattress body 105 can make up 25% or less of the area 104 at the top surface 106 and air (via the air passages 110) can make up 75% or more of the area 104 at the top surface 106. Thus, the air passages 110 at the top surface 106 of the mattress body 105 can act to reduce the area at the top surface 106 made up by the mattress body 105. The area 104 can be a non-perimeter area at the top surface 106 of the mattress body 105.
The mattress 100 can further include a control unit 115. As described elsewhere herein, the control unit 115 can be configured to control one or more functions of one or more components of the mattress 100. As such, the control unit 115 can include, for instance, a non-transitory computer readable storage article having computer executable instructions, a programmable processor coupled to the non-transitory computer readable storage article and configured to execute the computer executable instructions, a pump, a power source (e.g., rechargeable battery), and/or a transceiver (e.g., wireless transceiver) for signal communication with a remote device. The control unit 115 can be included, at least in part, at the mattress body 105. For example, the mattress body 105 can define a recess 116 and the control unit 115 can be embedded within the mattress body 105 at the recess 116 defined at the mattress body 105. In the illustrated embodiment of the mattress 100, the control unit 115 is embedded within the mattress body 105 adjacent the bottom surface 107 of the mattress body 105 and adjacent a foot end of the mattress body 105 (e.g., generally opposite a head end of the mattress body 105).
The perimeter portion 120 can be more rigid than non-perimeter portions (e.g., a central portion, e.g., the area 104 of the mattress body bounded by the perimeter portion 120) of the mattress body 105. In particular, as shown in the example of
To help facilitate air flow at the mattress 100, the support body 130 can include support body air passages 136. In some embodiments, the support body 130 includes the support body air passages 136 in the same configuration as the air passages 110 defined at the mattress body 105. The support body 130 can be positioned relative to the mattress body 105 such that the air passages 110, defined by the mattress body 105, are aligned with the support body air passages 136. More specifically, the support body air passages 136 can have an end 137 defined at the side 134 and this end 137 can be generally aligned, and interface with, the respective end 112 of the air passage 110. In this way, the support body 130 can reduce obstruction of air flow via the air passages 110 and, thereby, can facilitate air flow within the mattress body 105. In addition, in some embodiments, the support body 130 can include support body air passages 136 at one or more side surfaces 138 of the support body 130.
The support base 130 can define a height 139 extending between the side 134 and the side 135. The height 139 of the support base 130 can vary in different embodiments, for example from two inches to sixty inches, four inches to forty inches, six inches to thirty-six inches. The height 139 of the support base 130 can be useful in creating sufficient air volume inside of the support base 130 to facilitate the air transfer function between the mattress body 105 and the support base 130. As such, a height 139 of the support base greater than approximately six inches may be sufficient, depending on the embodiment of the mattress 100, to provide this air transfer.
As noted, in the illustrated embodiment, the support base 130 can include multiple support base members 131, 132, 133 as shown in
As shown in the example of
This air encountering the user at the top surface 106, via the air passages 110, can help to provide a controlled temperature experience for the user. For example, the control unit 115 can include a heating element and/or a cooling element. In operation, a user can provide temperature control input to the control unit 115. In response to the temperature control input, the control unit 115 can act to draw in ambient air, pass this ambient air through the heating element or cooling element (e.g., depending on the temperature control input relative to the temperature of the drawn-in ambient air), pressurize this ambient air via the pump at the control unit 115, and output the heated or cooled pressurized air to the air conduits 140 which in turn can deliver the heated or cooled pressurized air to the air passages 110 to thereby provide a controlled temperature experience corresponding to the temperature control input provided by the user.
To enhance the temperate controlled experience, the mattress body 105 can include multiple zones 160, 161. The zones 160, 161 can be spaced apart from one another along the mattress body 105. Each zone 160, 161 can include at least one air conduit 140 and at least one valve 150. Each zone 160, 161 can be independently controlled via the control unit 115. For example, a user can provide a first zone temperature control input to the control unit 115. In response to the first zone temperature control input, the control unit 115 can act to draw in ambient air, pass this ambient air through the heating element or cooling element (e.g., depending on the first zone temperature control input relative to the temperature of the drawn-in ambient air), pressurize this ambient air via the pump at the control unit 115, and output the heated or cooled pressurized air to the air conduit(s) 140 of the zone 160 which in turn can deliver the heated or cooled pressurized air to the air passage(s) 110 located at the zone 160. Similarly, the user can provide a second zone temperature control input to the control unit 115. The second zone temperature control input can specify a different output air temperature than the first zone temperature control input. In response to the second zone temperature control input, the control unit 115 can act to draw in ambient air, pass this ambient air through the heating element or cooling element (e.g., depending on the second zone temperature control input relative to the temperature of the drawn-in ambient air), pressurize this ambient air via the pump at the control unit 115, and output the heated or cooled pressurized air (e.g., at a different temperature than the output pressurized air at the zone 160) to the air conduit(s) 140 of the zone 161 which in turn can deliver the heated or cooled pressurized air to the air passage(s) 110 located at the zone 161. Thus, the zone control configuration can provide a user with a differential controlled temperature experience at separate zones spaced apart along the mattress body 105. In some embodiments, the control unit may include multiple pumps so that each zone can have a dedicated pump and, thereby, allow for the differential controlled temperature experience generally simultaneously at the different zones 160, 161.
To facilitate user control input at the mattress 100, the control unit 115 can be in communication (e.g., wireless communication) with a remote user device, such as a smart phone or tablet that executes, via a programmable processor, computer-executable instructions stored thereat in a non-transitory storage medium. This can allow the user to provide the user control input (e.g., the first and second zone temperature control inputs) at the remote user device which in turn can transmit a corresponding control signal to the control unit 115 instructing the control unit 115 to execute a control function corresponding to the user control input.
As another example, the mattress body 105 could include a speaker and/or one or more light elements. With respect to the speaker, when present, the user can likewise provide a user sound control input at the remote user device which in turn can transmit a corresponding control signal to the control unit 115 instructing the control unit 115 to execute a sound control function at the speaker (e.g., turn on/off the speaker, adjust the volume of the speaker, change the type of sound output at the speaker) corresponding to the user sound control input. Similarly, with respect to the one or more light elements, when present, the user can likewise provide a user light control input at the remote user device which in turn can transmit a corresponding control signal to the control unit 115 instructing the control unit 115 to execute a light control function at the one or more light elements (e.g., turn on/off one or more of the light elements, adjust the brightness of the one or more light elements, change a color of one or more of the light elements) corresponding to the user light control input.
In embodiments of the mattress 100 that includes different zones 160, 161, the sensors 170 can be located at each of the different zones 160, 161. In this way, the sensors 170 can collect data independently at the different zones 160, 161. For example, a first temperature sensor can be located at the first zone 160 and a second temperature sensor can be located at the second zone 161. The first temperature sensor can transmit temperature data relating to the first zone 160 to the control unit 115, and, in response, the control unit 115 can compare the temperature data relating to the first zone 160 to a preset temperature for the first zone 160 and, when the temperature data relating to the first zone 160 differs from the preset temperature for the first zone 160, act to adjust the temperature at the first zone 160 by delivering heated or cooled air to the first zone 160 via the air passages 110 located at the first zone 160. Similarly, the second temperature sensor can transmit temperature data relating to the second zone 161 to the control unit 115, and, in response, the control unit 115 can compare the temperature data relating to the second zone 161 to a preset temperature for the second zone 161 and, when the temperature data relating to the second zone 161 differs from the preset temperature for the second zone 161, act to adjust the temperature at the second zone 161 by delivering heated or cooled air to the second zone 161 via the air passages 110 located at the second zone 161. As such, in this embodiment, the control unit 115 can use data generated by the sensors 170 to perform one or more independent operations (e.g., temperature control operation) at a particular zone 160, 161 in an automated manner.
In the embodiment shown at
As shown in
The valve actuator 153 can be configured, when actuated, to move between an air retention configuration and an air release configuration. For example, when pressurized air enters the valve 150 at the valve inlet portion 151, this pressurized air flows into contact with the valve actuator 153 at the valve outlet portion 152. As sufficient pressurized air (e.g., a predetermined volume of air pressurized at or above a predetermined air pressure) contacts the valve actuator 153, this pressurized air can act to move the valve actuator 153 from the air retention configuration to the air release configuration. In the air release configuration, the valve actuator 153 can increase the opening at the valve outlet portion 152, relative to the size of the opening at the valve outlet portion 152 when the valve actuator 153 is in the air retention configuration, so as to increase the volume of pressurized air that passes from the valve outlet portion 152 to the one or more air passages 110. Similarly, when the volume and/or pressure of the air contacting the valve actuator 153 reduces below the predetermined volume and/or the predetermined air pressure, the valve actuator 153 can move from the air release configuration to the air retention configuration at which the valve actuator can decrease the opening at the valve outlet portion 152, relative to the size of the opening at the valve outlet portion 152 when the valve actuator 153 is in the air release configuration, so as to decrease the volume of pressurized air that passes from the valve outlet portion 152 to the one or more air passages 110. As such, the valve actuator 153 can be biased to the air retention configuration and moved from the air retention configuration to the air release configuration as a result of sufficient pressurized air (e.g., the predetermined volume of air pressurized at or above the predetermined air pressure) contacting the valve actuator 153.
In the illustrated embodiment, the valve outlet portion 152 is in fluid communication with each of multiple air passages 110 via a respective air passage connector 154. In some embodiments, the air passage connectors 154 can be configured to act as a diverter so as to distribute air output from the valve outlet portion 152 in one or more directions of the adjacent air passages 110. For example, the air passage connector 154 can extend from the valve outlet portion 152 to a respective air passage 110 and, thereby, serve to convey air output from the valve 150 to the respective air passage 110. In the embodiment shown, one or more of the air passage connectors 154 can extend from the valve outlet portion 152 to a respective air passage 110 in a direction toward the top surface 106 of the mattress body 105. For example, two of the air passage connectors 154 shown in
As
Various non-limiting exemplary embodiments have been described. It will be appreciated that suitable alternatives are possible without departing from the scope of the examples described herein.
Claims
1. A mattress comprising:
- a mattress body;
- a control unit at the mattress body;
- a plurality of air conduits defined at the mattress body, wherein the plurality of air conduits is in fluid communication with the control unit; and
- a plurality of air passages extending within the mattress body, wherein each one of the plurality of air passages includes an air passage open end at a surface of the mattress body, wherein each one of the plurality of air passages is in fluid communication with at least one of the plurality of air conduits such that the plurality of air conduits are configured to convey pressurized air from the control unit to the plurality of air passages and the plurality of air passages is configured to output the pressurized air from the plurality of air conduits at the surface of the mattress body via the air passage open end at each one of the plurality of air passages.
2. The mattress of claim 1, wherein the surface of the mattress body at which the plurality of air passages is configured to output the pressurized air is a top surface of the mattress body at which a user would lay when using the mattress.
3. The mattress of claim 1, further comprising:
- a valve, the valve including a valve inlet portion, a valve outlet portion, and a valve actuator, wherein the valve inlet portion is in fluid communication with at least one of the plurality of air conduits and the valve outlet portion is in fluid communication, via the valve actuator, with at least one of the plurality of air passages.
4. The mattress of claim 3, wherein the valve actuator is configured, when actuated, to move between an air retention configuration and an air release configuration, wherein, in the air release configuration, the valve actuator is configured to increase an opening at the valve outlet portion, relative to a size of the opening at the valve outlet portion when the valve actuator is in the air retention configuration, to cause an increase in a volume of pressurized air that passes from the valve outlet portion to the at least one of the plurality of air passages.
5. The mattress of claim 3, wherein the valve outlet portion is in in fluid communication, via the valve actuator, with a first air passage of the plurality of air passages and a second air passage of the plurality of air passages, and wherein the valve outlet portion is configured to output the pressurized air in a first direction to the first air passage of the plurality of air passages and in a second, different direction to the second air passage of the plurality of air passages.
6. The mattress of claim 5, further comprising:
- a first air passage connector fluidly connecting the valve outlet portion to the first air passage of the plurality of air passages, the first air passage connector extending, from the valve outlet portion toward the first air passage of the plurality of air passages, in a direction toward a top surface of the mattress body at which a user would lay when using the mattress; and
- a second air passage connector fluidly connecting the valve outlet portion to the second air passage of the plurality of air passages, the second air passage connector extending, from the valve outlet portion toward the second air passage of the plurality of air passages, in a direction toward the top surface of the mattress body.
7. The mattress of claim 1, wherein each one of the plurality of air passages includes the air passage open end at a top surface of the mattress body and a second air passage open end at a bottom surface of the mattress body.
8. The mattress of claim 1, wherein a volumetric ratio of the plurality of air passages to the mattress body is 1.1:1 or more.
9. The mattress of claim 1, wherein an area defined at a top surface of the mattress body defines a top surface area, and wherein the top surface area has 75% or less of the top surface area made up of the mattress body and 25% or more of the top surface area made up of the plurality of air passages.
10. The mattress of claim 1, wherein the plurality of air conduits extend from the control unit along a perimeter portion of the mattress body and into a more central region of the mattress body between two or more of the plurality of air passages.
11. The mattress of claim 1, wherein the mattress body includes a perimeter portion that is more rigid than a more central portion of the mattress body.
12. The mattress of claim 11, wherein the perimeter portion includes a plurality of perimeter air passages in fluid communication with at least one of the plurality of air conduits, and wherein the plurality of perimeter air passages have a smaller cross-sectional area than the plurality of air passages located at the more central portion of the mattress body.
13. The mattress of claim 12, wherein the plurality of perimeter air passages are spaced closer to one another than the plurality of air passages located at the more central portion of the mattress body.
14. The mattress of claim 13, wherein the mattress body makes up a greater percentage of a top surface area at the perimeter portion than the plurality of perimeter air passages at the perimeter portion.
15. The mattress of claim 1, wherein the mattress body is a single, integral piece that includes a fluid impermeable polymer material.
16. The mattress of claim 15, wherein the singe, integral piece mattress body further includes an antimicrobial additive.
17. The mattress of claim 1, wherein the mattress body includes a first layer and a second layer integrated with the first layer, wherein the first layer has a different rigidity than the second layer.
18. The mattress of claim 17, wherein the first layer is at a top surface of the mattress body and the second layer is located inward within the mattress body and extends from the first layer toward a bottom surface of the mattress body, and wherein the second layer is more rigid than the first layer.
19. The mattress of claim 1, further comprising:
- a sheet attachment member at the mattress body, the sheet attachment member includes a coupling that projects out from the mattress body and is configured to received and hold a sheet over a top surface of the mattress body.
20. The mattress of claim 1, further comprising:
- a first sensor type at the mattress body and in communication with the control unit;
- a second sensor type at the mattress body and in communication with the control unit;
- a third sensor type at the mattress body and in communication with the control unit; and
- a fourth sensor type at the mattress body and in communication with the control unit,
- wherein each of the first sensor type, the second sensor type, the third sensor type, and the fourth sensor type is configured to sense a different condition, and wherein the first sensor type, the second sensor type, and the third sensor type are located adjacent one another at a common region of the mattress body while the fourth sensor type is spaced apart from the common region.
Type: Application
Filed: Apr 22, 2022
Publication Date: Nov 3, 2022
Inventor: Zachariah Clarence Holtquist (Seminole, FL)
Application Number: 17/726,599