TREATMENT OF CYR61- AND VEGF-MEDIATED CONDITIONS

The invention relates generally to the treatment of CYR61- and VEGF-mediated conditions and, more particularly to the treatment of such conditions by administering to an individual a CYR61 downregulator. In one embodiment, the invention provides a method of treating a CYR61-mediated condition in an individual in need of such treatment, the method comprising: administering to the individual an effective amount of at least one CYR61 downregulator (CYR61DR), wherein the effective amount is an amount sufficient to decrease expression of the CYR61 gene in the individual.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a divisional application of co-pending U.S. patent application Ser. No. 14/917,098, filed 7 Mar. 2016, which is the US national phase of then-co-pending International Patent Application Serial No. PCT/US14/54018, filed 4 Sep. 2014, which claims priority to then-co-pending U.S. Provisional Patent Application Ser. No. 61/874,966, filed 6 Sep. 2013, each of which is hereby incorporated herein.

BACKGROUND

The gene cystine-rich, angiogenic inducer, 61 (CYR61) is one member of the CCN gene family, which encode cysteine-rich secreted proteins involved with differentiation and cell growth. CYR61 is known, among other things, to mediate cell adhesion and enhance angiogenesis. Individuals with proliferative diabetic retinopathy (PDR) have been shown to have increased levels of TGB-β, which induces CYR61 expression.

You et al. have shown an ability of the CYR61 protein to induce endothelial cell chemotaxis and tube formation as well as a synergetic effect between CYR61 expression and vascular endothelial growth factor (VEGF) expression. More specifically, You et al. observed significant decreases in both CYR61- and VEGF-induced chemotaxis and tube formation upon the introduction of an anti-CYR61 antibody.

SUMMARY

In one embodiment, the invention provides a method of treating a CYR61-mediated condition in an individual in need of such treatment, the method comprising: administering to the individual an effective amount of at least one CYR61 downregulator (CYR61DR), wherein the effective amount is an amount sufficient to decrease expression of the CYR61 gene in the individual, in particular, though not necessarily, wherein such CYR61DR decreases transcription by at least about 1-½-fold.

In another embodiment, the invention provides a method of treating a VEGF-mediated condition in an individual in need of such treatment, the method comprising: administering to the individual an effective amount of at least one CYR61 downregulator (CYR61DR), wherein the effective amount is an amount sufficient to decrease expression of both the CYR61 gene and the VEGF gene in the individual, in particular, though not necessarily, wherein such CYR61DR decreases transcription by at least about 2-fold.

DETAILED DESCRIPTION

Applicants have unexpectedly discovered that members of two known classes of compounds—anthracyclines and statins—are capable of downregulating expression of the CYR61 gene, making them useful in treating CYR61-mediated conditions. In addition, the synergetic effect of CYR61 expression and VEGF expression makes these compounds similarly useful in the treatment of VEGF-mediated conditions.

Typically, in the practice of this invention, CYR61 gene expression is down regulated at least about 1-½-fold, e.g., 2-fold, i.e., the amount of CYR61 mRNA is at least about 1-½ fold less (e.g., 2-fold less) in treated cells than in untreated cells.

In a study leading to embodiments of the invention, a human retinal pigment epithelial cell line (ARPE-19/HPV16) was separately treated with an anthracycline (doxorubicin or daunorubicin), a statin (simvastatin or lovastatin), or vehicle for 24 hours and gene expression for 22,238 probe sets covering 12,490 genes was generated using an Affymetrix instrument. The effects of these compounds on the expression of CYR61 are shown below in Table 1.

TABLE 1 CYR61 Downregulation Probe Rank amplitude CYR61DR conc. Vehicle Fold 210764_s_at 22272 −1.92489 Doxorubicin HCl 10 uM water −52.25522567 201289_at 22282 −1.96653 Doxorubicin HCl 10 uM water −118.510009 201289_at 22255 −1.37773 Simvastatin 10 uM DMSO −5.428077844 210764_s_at 22262 −1.3931 Simvastatin 10 uM DMSO −5.590871643 210764_s_at 22239 −1.8272 Daunorubicin HCl 10 uM water −22.14814815 201289_at 22278 −1.92127 Daunorubicin HCl 10 uM water −49.80655405 210764_s_at 22264 −1.29662 Lovastatin 10 uM Ethanol −4.686826466 201289_at 22271 −1.41167 Lovastatin 10 uM Ethanol −5.798905376 210764_s_at 22267 −1.87549 Idarubicin HCl 10 uM Methanol −31.12593366 201289_at 22273 −1.89929 Idarubicin HCl 10 uM Methanol −38.71800218

As can be seen from Table 1, anthracyclines and statins are capable of significant downregulation of CYR61. Within these results, anthracycline downregulation is approximately an order of magnitude or more greater than statin downregulation. Nevertheless, the differences in potential side effects and drug interactions, as well as the extent of CYR61 downregulation desired, make either or both classes of compounds desirable in some circumstances.

Anthracyclines suitable for use according to embodiments of the invention include, for example, doxorubicin, daunorubicin, epirubicin, idarubicin, valrubicin, and mitoxantrone. Statins suitable for use according to embodiments of the invention include, for example, simvastatin, pravastatin, fluvastatin, atrovastatin, cerivastatin, lovastatin, mevastatin, pitavastatin, and rosuvastatin.

According to some embodiments of the invention, one or more anthracycline and/or one or more statin may be administered to an individual in an amount sufficient to affect downregulation of CYR61 and/or VEGF. For example, in one embodiment, an individual may be administered doxorubicin, daunorubicin, or both. In another embodiment, an individual may be administered doxorubicin, a statin, or both.

Conditions that may be treated with one or more CYR61DR include those conditions involving neovascularization and/or inflammation, including, for example, proliferative diabetic retinopathy, neovascular glaucoma, macular degeneration, inflammatory neovascularization, Crohn's disease, ulcerative colitis, retinal neovascularization, retinal vascular disorders, tumor vascularization, cancer angiogenesis, metastasis, rheumatoid arthritis, and fibrosis.

CYR61DRs may be administered to the individual to be treated in the form of a pharmaceutical composition. Pharmaceutical compositions to be used according to various embodiments of the invention comprise a therapeutically effective amount of CYR61DRs or an active metabolite of a CYR61DR, or a pharmaceutically acceptable salt or other form (e.g., a solvate) thereof, together with one or more pharmaceutically acceptable excipients or carriers. The phrase “pharmaceutical composition” refers to a composition suitable for administration in medical use. It should be appreciated that the determinations of proper dosage forms, dosage amounts, and routes of administration for a particular patient are within the level of ordinary skill in the pharmaceutical and medical arts.

Administration may be oral but other routes of administration may also be employed, e.g., intravitreal, parenteral, nasal, buccal, transdermal, sublingual, intramuscular, intravenous, rectal, vaginal, etc. Solid dosage forms for oral administration include capsules, tablets, pills, powders, and granules. In such solid dosage forms, the compound is admixed with at least one inert pharmaceutically-acceptable excipient such as (a) fillers or extenders, as for example, starches, lactose, sucrose, glucose, mannitol, and silicic acid, (b) binders, as for example, carboxymethylcellulose, alginates, gelatin, polyvinylpyrrolidone, sucrose, and acacia, (c) humectants, as for example, glycerol, (d) disintegrating agents, as for example, agar-agar, calcium carbonate, potato or tapioca starch, alginic acid, certain complex silicates, and sodium carbonate, (e) solution retarders, as for example paraffin, (f) absorption accelerators, as for example, quaternary ammonium compounds, (g) wetting agents, as for example, cetyl alcohol, and glycerol monostearate, (h) adsorbents, as for example, kaolin and bentonite, and (i) lubricants, as for example, talc, calcium stearate, magnesium stearate, solid polyethylene glycols, sodium lauryl sulfate, or mixtures thereof. In the case of capsules, tablets, and pills, the dosage forms may also comprise buffering agents. Solid dosage forms such as tablets, drages, capsules, pills, and granules also can be prepared with coatings and shells, such as enteric coatings and others well known in the art. The solid dosage form also may contain opacifying agents, and can also be of such composition that they release the active compound or compounds in a certain part of the intestinal tract in a delayed manner. Examples of embedding compositions which can be used are polymeric substances and waxes. The active compounds can also be in micro-encapsulated form, if appropriate, with one or more of the above-mentioned excipients. Such solid dosage forms may generally contain from 1% to 95% (w/w) of the active compound. In certain embodiments, the active compound ranges from 5% to 70% (w/w).

Solid compositions for oral administration can be formulated in a unit dosage form, each dosage containing from about 1 mg to about 500 mg of active ingredient. The term “unit dosage form” refers to physically discrete units suitable as unitary dosages for human subjects and other mammals, each unit containing a predetermined quantity of active ingredient calculated to produce the desired effect over the course of a treatment period, in association with the required pharmaceutical carrier. CYR61DRs can be formulated, e.g., in a unit dosage form that is a capsule having 1-500 mg of active in addition to excipients.

Liquid dosage forms for oral administration include pharmaceutically-acceptable emulsions, solutions, suspensions, syrups, and elixirs. In addition to the compound or composition, the liquid dosage forms may contain inert diluents commonly used in the art, such as water or other solvents, solubilizing agents and emulsifiers, as for example, ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propyleneglycol, 1,3-butyleneglycol, dimethylformamide, oils, in particular, cottonseed oil, groundnut oil, corn germ oil, olive oil, castor oil and sesame oil, glycerol, tetrahydrofurfuryl alcohol, polyethyleneglycols and fatty acid esters of sorbitan or mixtures of these substances. Besides such inert diluents, the composition can also include adjuvants, such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, and perfuming agents.

In some embodiments of the invention, CYR61DRs are provided in a liquid form and administered to an individual intravitreally.

While this invention has been described in conjunction with the specific embodiments outlined above, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art or are otherwise intended to be embraced. Accordingly, the embodiments of the invention as set forth above are intended to be illustrative, not limiting. Various changes may be made without departing from the spirit and scope of the invention as defined in the following claims. All patents, patent application, scientific articles and other published documents cited herein are hereby incorporated in their entirety for the substance of their disclosures.

Claims

1. A method of treating a VEGF-mediated condition in an individual in need of such treatment, the method comprising:

administering to the individual an effective amount of at least one CYR61 downregulator (CYR61DR),
wherein the effective amount is an amount sufficient to decrease expression of the VEGF gene in the individual.

2. The method of claim 1, wherein the at least one CYR61DR is selected from a group consisting of: anthracyclines and statins.

3. The method of claim 2, wherein the at least one CYR61DR includes at least one anthracycline selected from a group consisting of: doxorubicin, daunorubicin, epirubicin, idarubicin, valrubicin, and mitoxantrone.

4. The method of claim 2, wherein the at least one CYR61DR includes at least one statin selected from a group consisting of: simvastatin, pravastatin, fluvastatin, atrovastatin, cerivastatin, lovastatin, mevastatin, pitavastatin, and rosuvastatin.

5. The method of claim 1, wherein administering includes intravitreally administering.

6. The method of claim 1, wherein administering includes orally administering.

7. A method of treating a VEGF-mediated condition in an individual in need of such treatment, the method comprising:

administering to the individual an effective amount of at least one CYR61 downregulator (CYR61DR),
wherein the effective amount is an amount sufficient to decrease expression of the CYR61 gene and the VEGF gene in the individual.
Patent History
Publication number: 20220401464
Type: Application
Filed: Aug 25, 2022
Publication Date: Dec 22, 2022
Inventors: Mihael H. POLYMEROPOULOS (Potomac, MD), Louis William LICAMELE (Potomac, MD), Christian LAVEDAN (Potomac, MD)
Application Number: 17/822,263
Classifications
International Classification: A61K 31/704 (20060101); A61K 31/40 (20060101); A61K 31/405 (20060101); A61K 31/22 (20060101); A61K 31/44 (20060101); A61K 31/505 (20060101); A61K 31/47 (20060101); A61K 31/136 (20060101); A61K 31/365 (20060101); A61K 31/366 (20060101); A61K 9/00 (20060101); A61K 31/351 (20060101);