IDENTIFICATION OF TUMORS AND TISSUES

The invention provides methods for the use of gene expression measurements to classify or identify tumors in samples obtained from a subject in a clinical setting, such as in cases of formalin fixed, paraffin embedded (FFPE) samples.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
RELATED APPLICATIONS

This application claims benefit of priority to U.S. Provisional Patent Application 60/687,174, filed Jun. 3, 2005, which is hereby incorporated by reference as if fully set forth.

FIELD OF THE INVENTION

This invention relates to the use of gene expression to classify human tumors. The classification is performed by use of gene expression profiles, or patterns, of about 5 to 49 expressed sequences that are correlated with tumors arising from certain tissues as well as being correlated with certain tumor types. The invention also provides for the use of about 5 to 49 specific gene sequences, the expression of which are correlated with tissue source and tumor type in various cancers. The gene expression profiles, whether embodied in nucleic acid expression, protein expression, or other expression formats, may be used to determine a cell containing sample as containing tumor cells of a tissue type or from a tissue origin to permit a more accurate identification of the cancer and thus treatment thereof as well as the prognosis of the subject from whom the sample was obtained.

SUMMARY OF THE INVENTION

This invention relates to the use of gene expression measurements to classify or identify tumors in cell containing samples obtained from a subject in a clinical setting, such as in cases of formalin fixed, paraffin embedded (FFPE) samples as well as fresh samples, that have undergone none to little or minimal treatment (such as simply storage at a reduced, non-freezing, temperature), and frozen samples. The invention thus provides the ability to classify tumors in the real-world conditions faced by hospital and other laboratories which conduct testing on clinical FFPE samples. The samples may be of a primary tumor sample or of a tumor that has resulted from a metastasis of another tumor. Alternatively, the sample may be a cytological sample, such as, but not limited to, cells in a blood sample. In some cases of a tumor sample, the tumors may not have undergone classification by traditional pathology techniques, may have been initially classified but confirmation is desired, or have been classified as a “carcinoma of unknown primary” (CUP) or “tumor of unknown origin” (TUO) or “unknown primary tumor”. The need for confirmation is particularly relevant in light of the estimates of 5 to 10% misclassification using standard techniques. Thus the invention may be viewed as providing means for cancer identification, or CID.

In a first aspect of the invention, the classification is performed by use of gene expression profiles, or patterns, of about 5 to 49 expressed sequences. The gene expression profiles, whether embodied in nucleic acid expression, protein expression, or other markers of gene expression, may be used to determine a cell containing sample as containing tumor cells of a tissue type or from a tissue origin to permit a more accurate identification of the cancer and thus treatment thereof as well as the prognosis of the subject from whom the sample was obtained.

In some embodiments, the invention is used to classify among at least 34 or at least 39 tumor types with significant accuracy in a clinical setting. The invention is based in part on the surprising and unexpected discovery that about 5 to 49 expressed sequences in the human genome are capable of classifying among at least 34, or at least 39, tumor types, as well as subsets of those tumor types, in a meaningful manner. Stated differently, the invention is based in part on the discovery that it is not necessary to use supervised learning to identify gene sequences which are expressed in correlation with different tumor types. Thus the invention is based in part on the recognition that any about 5 to 49 expressed sequences, even a random collection of expressed sequences, has the capability to classify, and so may be used to classify, a cell as being a tumor cell of a tissue or tissue origin. Moreover, relatively few expressed sequences are needed to classify among different tumor types. The ratio of expressed sequences to the number of tumor types that can be classified, based on the expression levels of the sequences, ranges from about 1:2 to about 5:2 or higher as demonstrated herein.

In another aspect, the invention provides for the classifying of a cell containing sample as containing a tumor cell of a tissue type or origin by determining the expression levels of about 5 to 49 transcribed sequences and then classifying the cell containing sample as containing a tumor cell of a plurality (two or more) of tumor types. To classify among 34 to 39 tumor types, and subsets thereof, as few as about any 5 expressed sequences may be used to provide classification in a meaningful manner. It was discovered that the expressed sequences need not be those the expression levels of which are evidently or highly correlated (directly, or indirectly through correlation with another expressed sequence) with any of the tumor types. Thus the invention provides, in yet another embodiment, for the use of the expression levels of genes, the expression levels of which are not strongly correlated with the actual classification of the particular tumor sample, as one of the about 5 to 49 transcribed sequences. All of the genes selected may be such non-correlates, or only a portion of the genes may be non-correlates, typically at least 90%, 85%, 75%, 50% or 25%, as well as portions falling within the ranges created by using any two of the foregoing point examples as endpoints of a range.

The invention is practiced by determining the expression levels of gene sequences where the sequences need not have been selected based on a correlation of their expression levels with the tumor types to be classified. Thus as a non-limiting example, the gene sequences need not be selected based on their correlation values with tumor types or a ranking based on the correlation values. Additionally, the invention may be practice with use of gene expression levels which are not necessarily correlated to one or more other gene expression level(s) used for classification. Thus in some embodiments, the ability for the expression level of one expressed sequence to function in classification is not redundant with (is independent of) the ability of at least one other gene expression level used for classification.

The invention may be applied to identify the origin of a cancer in a patient in a wide variety of cases including, but not limited to, identification of the origin of a cancer in a clinical setting. In some embodiments, the identification is made by classification of a cell containing sample known to contain cancer cells, but the origin of those cells is unknown. In other embodiments, the identification is made by classification of a cell containing sample as containing one or more cancer cells followed by identification of the origin(s) of those cancer cell(s). In further embodiments, the invention is practiced with a sample from a subject with a previous history of cancer, and identification is made by classification of a cell as either being cancer from a previous origin of cancer or a new origin. Additional embodiments include those where multiple cancers found in the same organ or tissue and the invention is used to determine the origin of each cancer, as well as whether the cancers are of the same origin.

The invention is also based in part on the discovery that the expression levels of particular gene sequences can be used to classify among tumor types with greater accuracy than the expression levels of a random group of gene sequences. In one embodiment, the invention provides for the use of expression levels of about 5 to 49 expressed sequences from a first set of 74 expressed sequences in the human genome to classify among at least 39 tumor types with significant accuracy. The invention thus provides for the identification and use of gene expression patterns (or profiles or “signatures”) based on the about 5 to 49 expressed sequences as correlated with at least the 39 tumor types. The invention also provides for the use of about 5 to 49 of the 74 of these expressed sequences to classify among subsets of the 39 tumor types. The ratio of expressed sequences to the number of tumor types, from 2 to 39, that can be classified based on the expression levels of the sequences ranges from about 1:2 to about 5:2 with greater accuracy than the use of a random group of expressed sequences. Depending on the number of tumor types, accuracies ranging from over 75% to 95% may be achieved readily.

In another embodiment, the invention provides for the use of expression levels of about 5 to 49 expressed sequences of a second set of 90 expressed sequences in the human genome to classify among at least 39 tumor types, or subsets thereof, with significant accuracy. 38 of the sequences in this second set are present in the first set of 74 sequences. The expression levels of the about 5 to 49 sequences in the second set may be used in the same manner as described for the first set of 74 sequences. Depending on the number of tumor types, accuracies ranging from about 75% to about 95% may be achieved.

The invention is also based in part upon the discovery that use of about 5 to 49 expressed sequences to classify among 53 tumor types, which include (but is not limited to) the 34 and 39 types described herein, was limited by the number of available samples of some tumor types. As noted hereinbelow, accuracy is linked to the number of available samples of each tumor type such that the ability to classify additional tumor types is readily achieved by the application of increased numbers of each tumor type. Thus while the invention is exemplified by use in classifying among 34 or 39 tumor types as well as subsets of the 34 or 39, about 5 to 49 expressed sequences can also be used to classify among all tumor types with the inclusion of samples of the additional tumor types. Thus the invention also provides for the classification of a tumor as being a type beyond the 34 or 39 types described herein.

The invention is based upon the expression levels of the gene sequences in a set of known tumor cells from different tissues and of different tumor types. These gene expression profiles (of gene sequences in the different known tumor cells/types), whether embodied in nucleic acid expression, protein expression, or other expression formats, may be compared to the expression levels of the same sequences in an unknown tumor sample to identify the sample as containing a tumor of a particular type and/or a particular origin or cell type. The invention provides, such as in a clinical setting, the advantages of a more accurate identification of a cancer and thus the treatment thereof as well as the prognosis, including survival and/or likelihood of cancer recurrence following treatment, of the subject from whom the sample was obtained.

The invention is further based in part on the discovery that use of about 5 to 49 expressed sequences as described herein as capable of classifying among two or more tumor types necessarily and effectively eliminates one or more tumor types from consideration during classification. This reflects the lack of a need to select genes with expression levels that are highly correlated with all tumor types within the range of the classification system. Stated differently, the invention may be practiced with a plurality of genes the expression levels of which are not highly correlated with any of the individual tumor types or multiple types in the group of tumor types being classified. This is in contrast to other approaches based upon the selection and use of highly correlated genes, which likely do not “rule out” other tumor types as opposed to “rule in” a tumor type based on the positive correlation.

The classification of a tumor sample as being one of the possible tumor types described herein to the exclusion of other tumor types is of course made based upon a level of confidence as described below. Where the level of confidence is low, or an increase in the level of confidence is preferred, the classification can simply be made at the level of a particular tissue origin or cell type for the tumor in the sample. Alternatively, and where a tumor sample is not readily classified as a single tumor type, the invention permits the classification of the sample as one of a few possible tumor types described herein. This advantageously provides for the ability to reduce the number of possible tissue types, cell types, and tumor types from which to consider for selection and administration of therapy to the patient from whom the sample was obtained.

The invention thus provides a non-subjective means for the identification of the tissue source and/or tumor type of one or more cancers of an afflicted subject. Where subjective interpretation may have been previously used to determine the tissue source and/or tumor type, as well as the prognosis and/or treatment of the cancer based on that determination, the present invention provides objective gene expression patterns, which may used alone or in combination with subjective criteria to provide a more accurate identification of cancer classification. The invention is particularly advantageously applied to samples of secondary or metastasized tumors, but any cell containing sample (including a primary tumor sample) for which the tissue source and/or tumor type is preferably determined by objective criteria may also be used with the invention. Of course the ultimate determination of class may be made based upon a combination of objective and non-objective (or subjective/partially subjective) criteria.

The invention includes its use as part of the clinical or medical care of a patient. Thus in addition to using an expression profile of genes as described herein to assay a cell containing sample from a subject afflicted with cancer to determine the tissue source and/or tumor type of the cancer, the profile may also be used as part of a method to determine the prognosis of the cancer in the subject. The classification of the tumor/cancer and/or the prognosis may be used to select or determine or alter the therapeutic treatment for said subject. Thus the classification methods of the invention may be directed toward the treatment of disease, which is diagnosed in whole or in part based upon the classification. Given the diagnosis, administration of an appropriate anti-tumor agent or therapy, or the withholding or alternation of an anti-tumor agent or therapy may be used to treat the cancer.

Other clinical methods include those involved in the providing of medical care to a patient based on a classification as described herein. In some embodiments, the methods relate to providing diagnostic services based on expression levels of gene sequences, with or without inclusion of an interpretation of levels for classifying cells of a sample. In some embodiments, the method of providing a diagnostic service of the invention is preceded by a determination of a need for the service. In other embodiments, the method includes acts in the monitoring of the performance of the service as well as acts in the request or receipt of reimbursement for the performance of the service.

The details of one or more embodiments of the invention are set forth in the accompanying drawing and the description below. Other features, objects, and advantages of the invention will be apparent from the drawing and detailed description, and from the claims.

Definitions

As used herein, a “gene” is a polynucleotide that encodes a discrete product, whether RNA or proteinaceous in nature. It is appreciated that more than one polynucleotide may be capable of encoding a discrete product. The term includes alleles and polymorphisms of a gene that encodes the same product, or a functionally associated (including gain, loss, or modulation of function) analog thereof, based upon chromosomal location and ability to recombine during normal mitosis.

A “sequence” or “gene sequence” as used herein is a nucleic acid molecule or polynucleotide composed of a discrete order of nucleotide bases. The term includes the ordering of bases that encodes a discrete product (i.e. “coding region”), whether RNA or proteinaceous in nature. It is appreciated that more than one polynucleotide may be capable of encoding a discrete product. It is also appreciated that alleles and polymorphisms of the human gene sequences may exist and may be used in the practice of the invention to identify the expression level(s) of the gene sequences or an allele or polymorphism thereof. Identification of an allele or polymorphism depends in part upon chromosomal location and ability to recombine during mitosis.

The terms “correlate” or “correlation” or equivalents thereof refer to an association between expression of one or more genes and another event, such as, but not limited to, physiological phenotype or characteristic, such as tumor type.

A “polynucleotide” is a polymeric form of nucleotides of any length, either ribonucleotides or deoxyribonucleotides. This term refers only to the primary structure of the molecule. Thus, this term includes double- and single-stranded DNA and RNA. It also includes known types of modifications including labels known in the art, methylation, “caps”, substitution of one or more of the naturally occurring nucleotides with an analog, and internucleotide modifications such as uncharged linkages (e.g., phosphorothioates, phosphorodithioates, etc.), as well as unmodified forms of the polynucleotide.

The term “amplify” is used in the broad sense to mean creating an amplification product can be made enzymatically with DNA or RNA polymerases. “Amplification,” as used herein, generally refers to the process of producing multiple copies of a desired sequence, particularly those of a sample. “Multiple copies” mean at least 2 copies. A “copy” does not necessarily mean perfect sequence complementarity or identity to the template sequence. Methods for amplifying mRNA are generally known in the art, and include reverse transcription PCR (RT-PCR) and quantitative PCR (or Q-PCR) or real time PCR. Alternatively, RNA may be directly labeled as the corresponding cDNA by methods known in the art.

By “corresponding”, it is meant that a nucleic acid molecule shares a substantial amount of sequence identity with another nucleic acid molecule. Substantial amount means at least 95%, usually at least 98% and more usually at least 99%, and sequence identity is determined using the BLAST algorithm, as described in Altschul et al. (1990), J. Mol. Biol. 215:403-410 (using the published default setting, i.e. parameters w=4, t=17).

A “microarray” is a linear or two-dimensional or three dimensional (and solid phase) array of discrete regions, each having a defined area, formed on the surface of a solid support such as, but not limited to, glass, plastic, or synthetic membrane. The density of the discrete regions on a microarray is determined by the total numbers of immobilized polynucleotides to be detected on the surface of a single solid phase support, such as of at least about 50/cm2, at least about 100/cm2, or at least about 500/cm2, up to about 1,000/cm2 or higher. The arrays may contain less than about 500, about 1000, about 1500, about 2000, about 2500, or about 3000 immobilized polynucleotides in total. As used herein, a DNA microarray is an array of oligonucleotide or polynucleotide probes placed on a chip or other surfaces used to hybridize to amplified or cloned polynucleotides from a sample. Since the position of each particular group of probes in the array is known, the identities of a sample polynucleotides can be determined based on their binding to a particular position in the microarray. As an alternative to the use of a microarray, an array of any size may be used in the practice of the invention, including an arrangement of one or more position of a two-dimensional or three dimensional arrangement in a solid phase to detect expression of a single gene sequence. In some embodiments, a microarray for use with the present invention may be prepared by photolithographic techniques (such as synthesis of nucleic acid probes on the surface from the 3′ end) or by nucleic synthesis followed by deposition on a solid surface.

Because the invention relies upon the identification of gene expression, some embodiments of the invention determine expression by hybridization of mRNA, or an amplified or cloned version thereof, of a sample cell to a polynucleotide that is unique to a particular gene sequence. Polynucleotides of this type contain at least about 16, at least about 18, at least about 20, at least about 22, at least about 24, at least about 26, at least about 28, at least about 30, or at least about 32 consecutive basepairs of a gene sequence that is not found in other gene sequences. The term “about” as used in the previous sentence refers to an increase or decrease of 1 from the stated numerical value. Other embodiments are polynucleotides of at least or about 50, at least or about 100, at least about or 150, at least or about 200, at least or about 250, at least or about 300, at least or about 350, at least or about 400, at least or about 450, or at least or about 500 consecutive bases of a sequence that is not found in other gene sequences. The term “about” as used in the preceding sentence refers to an increase or decrease of 10% from the stated numerical value. Longer polynucleotides may of course contain minor mismatches (e.g. via the presence of mutations) which do not affect hybridization to the nucleic acids of a sample. Such polynucleotides may also be referred to as polynucleotide probes that are capable of hybridizing to sequences of the genes, or unique portions thereof, described herein. Such polynucleotides may be labeled to assist in their detection. The sequences may be those of mRNA encoded by the genes, the corresponding cDNA to such mRNAs, and/or amplified versions of such sequences. In some embodiments of the invention, the polynucleotide probes are immobilized on an array, other solid support devices, or in individual spots that localize the probes.

In other embodiments of the invention, all or part of a gene sequence may be amplified and detected by methods such as the polymerase chain reaction (PCR) and variations thereof, such as, but not limited to, quantitative PCR (Q-PCR), reverse transcription PCR (RT-PCR), and real-time PCR (including as a means of measuring the initial amounts of mRNA copies for each sequence in a sample), optionally real-time RT-PCR or real-time Q-PCR. Such methods would utilize one or two primers that are complementary to portions of a gene sequence, where the primers are used to prime nucleic acid synthesis. The newly synthesized nucleic acids are optionally labeled and may be detected directly or by hybridization to a polynucleotide of the invention. The newly synthesized nucleic acids may be contacted with polynucleotides (containing sequences) of the invention under conditions which allow for their hybridization. Additional methods to detect the expression of expressed nucleic acids include RNAse protection assays, including liquid phase hybridizations, and in situ hybridization of cells.

Alternatively, and in further embodiments of the invention, gene expression may be determined by analysis of expressed protein in a cell sample of interest by use of one or more antibodies specific for one or more epitopes of individual gene products (proteins), or proteolytic fragments thereof, in said cell sample or in a bodily fluid of a subject. The cell sample may be one of breast cancer epithelial cells enriched from the blood of a subject, such as by use of labeled antibodies against cell surface markers followed by fluorescence activated cell sorting (FACS). Such antibodies may be labeled to permit their detection after binding to the gene product. Detection methodologies suitable for use in the practice of the invention include, but are not limited to, immunohistochemistry of cell containing samples or tissue, enzyme linked immunosorbent assays (ELISAs) including antibody sandwich assays of cell containing tissues or blood samples, mass spectroscopy, and immuno-PCR.

The terms “label” or “labeled” refer to a composition capable of producing a detectable signal indicative of the presence of the labeled molecule. Suitable labels include radioisotopes, nucleotide chromophores, enzymes, substrates, fluorescent molecules, chemiluminescent moieties, magnetic particles, bioluminescent moieties, and the like. As such, a label is any composition detectable by spectroscopic, photochemical, biochemical, immunochemical, electrical, optical or chemical means.

The term “support” refers to conventional supports such as beads, particles, dipsticks, fibers, filters, membranes and silane or silicate supports such as glass slides.

“Expression” and “gene expression” include transcription and/or translation of nucleic acid material.

As used herein, the term “comprising” and its cognates are used in their inclusive sense; that is, equivalent to the term “including” and its corresponding cognates.

Conditions that “allow” an event to occur or conditions that are “suitable” for an event to occur, such as hybridization, strand extension, and the like, or “suitable” conditions are conditions that do not prevent such events from occurring. Thus, these conditions permit, enhance, facilitate, and/or are conducive to the event. Such conditions, known in the art and described herein, depend upon, for example, the nature of the nucleotide sequence, temperature, and buffer conditions. These conditions also depend on what event is desired, such as hybridization, cleavage, strand extension or transcription.

Sequence “mutation,” as used herein, refers to any sequence alteration in the sequence of a gene disclosed herein interest in comparison to a reference sequence. A sequence mutation includes single nucleotide changes, or alterations of more than one nucleotide in a sequence, due to mechanisms such as substitution, deletion or insertion. Single nucleotide polymorphism (SNP) is also a sequence mutation as used herein. Because the present invention is based on the relative level of gene expression, mutations in non-coding regions of genes as disclosed herein may also be assayed in the practice of the invention.

“Detection” or “detecting” includes any means of detecting, including direct and indirect determination of the level of gene expression and changes therein.

Unless defined otherwise all technical and scientific terms used herein have the same meaning as commonly understood to one of ordinary skill in the art to which this invention belongs.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a capacity plot for the ability to use the expression levels of subsets of a set of 100 expressed gene sequences to classify among 39 tumor types and subsets thereof. Expression levels of random combinations of 5, 10, 15, 20, 25, 30, 35, 40, 45, and 49 (each sampled 10 times) of the 100 sequences were used with data from tumor types and then used to predict test random sets of tumor samples (each sampled 10 times) ranging from 2 to 39 types. A plot of numbers of tumor types (x-axis) versus prediction accuracies (y-axis) for results using from 5 to 49 genes are shown as non-limiting examples. The data from using 5 genes results in a curve closest to the x-axis while the data from using 49 genes results in a curve farthest from the x-axis. Generally, accuracy improves with higher numbers of gene sequences, where from 30 to 49 gene sequences (the three curves farthest from the x-axis) provides about the same level of accuracy.

FIG. 2 shows an alternative presentation of the data used with respect to FIG. 1. A plot of numbers of gene sequences used, ranging from 5-49 (and in the x-axis), versus prediction accuracies (y-axis) for various representative numbers of tumor types is shown. The plotted lines, from top to bottom, are of the results from 2, 10, 20, 30, and 39 tumor types, respectively.

FIG. 3 provides a further analysis of the ability to use the expression levels of subsets of a set of 100 randomly selected expressed gene sequences to classify among 39 tumor types. The data used with FIGS. 1 and 2 is presented in a plot of the number of tumor types versus the number of gene sequences used at prediction accuracies from 55-70% are shown as non-limiting examples. Generally, accuracy improves with higher numbers of gene sequences.

FIG. 4 shows a capacity plot for the ability to use the expression levels of portions of a first set of 74 expressed gene sequences to classify among 39 tumor types and subsets thereof. Expression levels of random combinations of 5, 10, 15, 20, 25, 30, 35, 40, 45, and 49 (each sampled 10 times) of the 74 sequences were used with data from tumor types and then used to predict test random sets of tumor samples (each sampled 10 times) ranging from 2 to 39 types. A plot of numbers of tumor types versus prediction accuracies for results using from 5 to 49 genes are shown as non-limiting examples. The plotted lines, from top to bottom, are of the results from 49, 40, 30, 20, 10, and gene sequences, respectively.

FIG. 5 shows an alternative presentation of the data used with respect to FIG. 4. A plot of numbers of gene sequences used, ranging from 5-49, versus prediction accuracies for various representative numbers of tumor types is shown. The plotted lines, from top to bottom, are of the results from 2, 10, 20, 30, and 39 tumor types, respectively.

FIG. 6 is analogous to FIG. 3 except with presentation of the data used with FIGS. 4 and 5.

FIG. 7 shows a capacity plot for the ability to use the expression levels of subsets of a set of 90 expressed gene sequences to classify among 39 tumor types and subsets thereof. Expression levels of random combinations of 5, 10, 15, 20, 25, 30, 35, 40, 45, and 49 (each sampled 10 times) of the 90 sequences were used with data from tumor types and then used to predict test random sets of tumor samples (each sampled 10 times) ranging from 2 to 39 types. A plot of numbers of tumor types versus prediction accuracies for results using from 5 to 49 genes are shown as non-limiting examples. The plotted lines, from top to bottom, are of the results from 49, 40, 30, 20, 10, and gene sequences, respectively.

FIG. 8 shows an alternative presentation of the data used with respect to FIG. 7. A plot of numbers of gene sequences used, ranging from 5-49, versus prediction accuracies for various representative numbers of tumor types is shown. The plotted lines, from top to bottom, are of the results from 2, 10, 20, 30, and 39 tumor types, respectively.

FIG. 9 is analogous to FIGS. 3 and 6 except with presentation of the data used with FIGS. 7 and 8.

FIGS. 10A-10D show a “tree” that classifies tumor types covered herein as well as additional known tumor types. It was constructed mainly according to “Cancer, Principles and Practice of Oncology, (DeVito, Hellman and Rosenberg), 6th edition”. Thus beginning with a “tumor of unknown origin” (or “tuo”), the first possibilities are that it is either of a germ cell or non-germ cell origin. If it is the former, then it may be of ovary or testes origin. Within those of testes origin, the tumor may be of seminoma origin or an “other” origin.

If the tumor is of a non-germ cell origin, then it is either of a epithelial or non-epithelial origin. If it is the former, then it is either squamous or non-squamous origin. Squamous origin tumors are of cervix, esophagus, larynx, lung, or skin in origin. Non-squamous origin tumors are of urinary bladder, breast, carcinoid-intestine, cholangiocarcinoma, digestive, kidney, liver, lung, prostate, reproductive system, skin-basal cell, or thyroid-follicular-papillary origin. Among those of digestive origin, the tumors are of small and large bowel, stomach-adenocarcinoma, bile duct, esophagus, gall bladder, and pancreas in origin. The esophagus origin tumors may be of either Barrett's esophagus or adenocarcinoma types. Of the reproductive system origin tumors, they may be of cervix adenocarcinoma type, endometrial tumor, or ovarian origin. Ovarian origin tumors are of the clear, serous, mucinous, and endometroid types.

If the tumor is of non-epithelial origin, then it is of adrenal gland, brain, GIST (gastrointestinal stromal tumor), lymphoma, meningioma, mesothelioma, sarcoma, skin melanoma, or thyroid-medullary origin. Of the lymphomas, they are B cell, Hodgkin's, or T cell type. Of the sarcomas, they are leimyosarcoma, osteosarcoma, soft-tissue sarcoma, soft tissue MFH (malignant fibrous histiocytoma), soft tissue sarcoma synovial, soft tissue Ewing's sarcoma, soft tissue fibrosarcoma, and soft tissue rhabdomyosarcoma types.

DETAILED DESCRIPTION OF MODES OF PRACTICING THE INVENTION

This invention provides methods for the use of gene expression information to classify tumors in a more objective manner than possible with conventional pathology techniques. Thus in a first aspect, the invention provides a method of classifying a cell containing sample as including a tumor cell of (or from) a type of tissue or a tissue origin. The method comprises determining or measuring the expression levels of about five to 49 transcribed sequences from cells in a cell containing sample obtained from a subject, and classifying the sample as containing tumor cells of a type of tissue from a plurality of tumor types based on the expression levels of said sequences. As used herein, “a plurality” refers to the state of two or more.

The classifying is based upon a comparison of the expression levels of the about 5 to 49 transcribed sequences in the cells of the sample to their expression levels in known tumor samples and/or known non-tumor samples. Alternatively, the classifying is based upon a comparison of the expression levels of the about 5 to 49 transcribed sequences to the expression of reference sequences in the same samples, relative to, or based on, the same comparison in known tumor samples and/or known non-tumor samples. Thus as a non-limiting example, the expression levels of the gene sequences may be determined in a set of known tumor samples to provide a database against which the expression levels detected or determined in a cell containing sample from a subject is compared. The expression level(s) of gene sequence(s) in a sample also may be compared to the expression level(s) of said sequence(s) in normal or non-cancerous cells, preferably from the same sample or subject. As described below and in embodiments of the invention utilizing Q-PCR or real time Q-PCR, the expression levels may be compared to expression levels of reference genes in the same sample or a ratio of expression levels may be used.

In practice, the method utilizes a ratio, of transcribed sequences to the number of tumor types classified, ranging from about 1:2 to about 5:2 or higher. Stated differently, the ratio of the number of expression levels needed to the number of tumor types that may be classified based upon those levels, ranges from about 1:2 to about 1:1 to about 3:2 to about 2:1 to about 5:2 or higher. This is reflected by the ability to use as few as about 20 expression levels to classify among 39 tumor types (see FIG. 6). Thus, and based on data as shown in FIGS. 1-9, the invention may be practiced with about 5 to 49 gene sequences within the ratio of genes assessed to tumors classified.

The selection of about 5 to 49 gene sequences to use may be random, or by selection based on various criteria. As one non-limiting example, the gene sequences may be selected based upon unsupervised learning, including clustering techniques. As another non-limiting example, selection may be to reduce or remove redundancy with respect to their ability to classify tumor type. For example, gene sequences are selected based upon the lack of correlation between their expression and the expression of one or more other gene sequences used for classifying. This is accomplished by assessing the expression level of each gene sequence in the expression data set for correlation, across the plurality of samples, with the expression level of each other gene in the data set to produce a correlation matrix of correlation coefficients. These correlation determinations may be performed directly, between expression of each pair of gene sequences, or indirectly, without direct comparison between the expression values of each pair of gene sequences.

A variety of correlation methodologies may be used in the correlation of expression data of individual gene sequences within the data set. Non-limiting examples include parametric and non-parametric methods as well as methodologies based on mutual information and non-linear approaches. Non-limiting examples of parametric approaches include Pearson correlation (or Pearson r, also referred to as linear or product-moment correlation) and cosine correlation. Non-limiting examples of non-parametric methods include Spearman's R (or rank-order) correlation, Kendall's Tau correlation, and the Gamma statistic. Each correlation methodology can be used to determine the level of correlation between the expressions of individual gene sequences in the data set. The correlation of all sequences with all other sequences is most readily considered as a matrix. Using Pearson's correlation as a non-limiting example, the correlation coefficient r in the method is used as the indicator of the level of correlation. When other correlation methods are used, the correlation coefficient analogous to r may be used, along with the recognition of equivalent levels of correlation corresponding to r being at or about 0.25 to being at or about 0.5.

The correlation coefficient may be selected as desired to reduce the number of correlated gene sequences to various numbers. In some embodiments of the invention using r, the selected coefficient value may be of about 0.25 or higher, about 0.3 or higher, about 0.35 or higher, about 0.4 or higher, about 0.45 or higher, or about 0.5 or higher. The selection of a coefficient value means that where expression between gene sequences in the data set is correlated at that value or higher, they are possibly not included in a subset of the invention. Thus in some embodiments, the method comprises excluding or removing (not using for classification) one or more gene sequences that are expressed in correlation, above a desired correlation coefficient, with another gene sequence in the tumor type data set. It is pointed out, however, that there can be situations of gene sequences that are not correlated with any other gene sequences, in which case they are not necessarily removed from use in classification.

Thus the expression levels of gene sequences, where more than about 10%, more than about 20%, more than about 30%, more than about 40%, more than about 50%, more than about 60%, more than about 70%, more than about 80%, or more than about 90% of the levels are not correlated with that of another one of the gene sequences used, may be used in the practice of the invention. Correlation between expression levels may be based upon a value below about 0.9, about 0.8, about 0.7, about 0.6, about 0.5, about 0.4, about 0.3, or about 0.2. The ability to classify among classes with exclusion of the expression levels of some gene sequences is present because expression of the gene sequences in the subset is correlated with expression of the gene sequences excluded from the subset. So no information was lost because information based on the expression of the excluded gene sequences is still represented by sequences retained in the subset. Therefore, expression of the gene sequences of the subset has information content relevant to properties and/or characteristics (or phenotype) of a cell. This has application and relevance to the classification of additional tumor type classes not included as part of the original gene expression data set which can be classified by use of a subset of the invention because based on the redundancy of information between expression of sequences in the subset and sequences expressed in those additional classes. Thus the invention may be used to classify cells as being a tumor type beyond the plurality of known classes used to generate the original gene expression data set.

Selection of gene sequences based upon reducing correlation of expression to a particular tumor type may also be used. This also reflects a discovery of the present invention, based upon the observation that expression levels that were most highly correlated with one or more tumor types was not necessarily of greatest value in classification among different tumor types. This is reflected both by the ability to use randomly selected gene sequences for classification as well as the use of particular sequences, as described herein, which are not expressed with the most significant correlation with one or more tumor types. Thus the invention may be practiced without selection of gene sequences based upon the most significant P values or a ranking based upon correlation of gene expression and one or more tumor types. Thus the invention may be practiced without the use of ranking based methodologies, such as the Kruskal-Wallis H-test.

The gene sequences used in the practice of the invention may include those which have been observed to be expressed in correlation with particular tumor types, such as expression of the estrogen receptor, which has been observed to be expressed in correlation with some breast and ovarian cancers. In some embodiments of the invention, however, the invention is practiced with use of the expression level of at least one gene sequence that has not been previously identified as being associated with any of the tumor types being classified. Thus the invention may be practiced without all of the gene sequences having previously been associated or correlated with expression in the 2 or more (up to 39 or more) tumor types to which a cell containing sample may be classified.

While the invention is described mainly with respect to human subjects, samples from other subjects may also be used. All that is necessary is the ability to assess the expression levels of gene sequences in a plurality of known tumor samples such that the expression levels in an unknown or test sample may be compared. Thus the invention may be applied to samples from any organism for which a plurality of expressed sequences, and a plurality of known tumor samples, are available. One non-limiting example is application of the invention to mouse samples, based upon the availability of the mouse genome to permit detection of expressed murine sequences and the availability of known mouse tumor samples or the ability to obtain known samples. Thus, the invention is contemplated for use with other samples, including those of mammals, primates, and animals used in clinical testing (such as rats, mice, rabbits, dogs, cats, and chimpanzees) as non-limiting examples.

While the invention is readily practiced with the use of cell containing samples, any nucleic acid containing sample which may be assayed for gene expression levels may be used in the practice of the invention. Without limiting the invention, a sample of the invention may be one that is suspected or known to contain tumor cells. Alternatively, a sample of the invention may be a “tumor sample” or “tumor containing sample” or “tumor cell containing sample” of tissue or fluid isolated from an individual suspected of being afflicted with, or at risk of developing, cancer. Non-limiting examples of samples for use with the invention include a clinical sample, such as, but not limited to, a fixed sample, a fresh sample, or a frozen sample. The sample may be an aspirate, a cytological sample (including blood or other bodily fluid), or a tissue specimen, which includes at least some information regarding the in situ context of cells in the specimen, so long as appropriate cells or nucleic acids are available for determination of gene expression levels. The invention is based in part on the discovery that results obtained with frozen tissue sections can be validly applied to the situation with fixed tissue or cell samples and extended to fresh samples.

Non-limiting examples of fixed samples include those that are fixed with formalin or formaldehyde (including FFPE samples), with Boudin's, glutaldehyde, acetone, alcohols, or any other fixative, such as those used to fix cell or tissue samples for immunohistochemistry (IHC). Other examples include fixatives that precipitate cell associated nucleic acids and proteins. Given possible complications in handling frozen tissue specimens, such as the need to maintain its frozen state, the invention may be practiced with non-frozen samples, such as fixed samples, fresh samples, including cells from blood or other bodily fluid or tissue, and minimally treated samples. In some applications of the invention, the sample has not been classified using standard pathology techniques, such as, but not limited to, immunohistochemistry based assays.

In some embodiments of the invention, the sample is classified as containing a tumor cell of a type selected from the following 53, and subsets thereof: Adenocarcinoma of Breast, Adenocarcinoma of Cervix, Adenocarcinoma of Esophagus, Adenocarcinoma of Gall Bladder, Adenocarcinoma of Lung, Adenocarcinoma of Pancreas, Adenocarcinoma of Small-Large Bowel, Adenocarcinoma of Stomach, Astrocytoma, Basal Cell Carcinoma of Skin, Cholangiocarcinoma of Liver, Clear Cell Adenocarcinoma of Ovary, Diffuse Large B-Cell Lymphoma, Embryonal Carcinoma of Testes, Endometrioid Carcinoma of Uterus, Ewings Sarcoma, Follicular Carcinoma of Thyroid, Gastrointestinal Stromal Tumor, Germ Cell Tumor of Ovary, Germ Cell Tumor of Testes, Glioblastoma Multiforme, Hepatocellular Carcinoma of Liver, Hodgkin's Lymphoma, Large Cell Carcinoma of Lung, Leiomyosarcoma, Liposarcoma, Lobular Carcinoma of Breast, Malignant Fibrous Histiocytoma, Medulary Carcinoma of Thyroid, Melanoma, Meningioma, Mesothelioma of Lung, Mucinous Adenocarcinoma of Ovary, Myofibrosarcoma, Neuroendocrine Tumor of Bowel, Oligodendroglioma, Osteosarcoma, Papillary Carcinoma of Thyroid, Pheochromocytoma, Renal Cell Carcinoma of Kidney, Rhabdomyosarcoma, Seminoma of Testes, Serous Adenocarcinoma of Ovary, Small Cell Carcinoma of Lung, Squamous Cell Carcinoma of Cervix, Squamous Cell Carcinoma of Esophagus, Squamous Cell Carcinoma of Larynx, Squamous Cell Carcinoma of Lung, Squamous Cell Carcinoma of Skin, Synovial Sarcoma, T-Cell Lymphoma, and Transitional Cell Carcinoma of Bladder.

In other embodiments of the invention, the sample is classified as containing a tumor cell of a type selected from the following 34, and subsets thereof: adrenal, brain, breast, carcinoid-intestine, cervix (squamous cell), cholangiocarcinoma, endometrium, germ-cell, GIST (gastrointestinal stromal tumor), kidney, leiomyosarcoma, liver, lung (adenocarcinoma, large cell), lung (small cell), lung (squamous), lymphoma (B cell), Lymphoma (Hodgkins), meningioma, mesothelioma, osteosarcoma, ovary (clear cell), ovary (serous cell), pancreas, prostate, skin (basal cell), skin (melanoma), small and large bowel; soft tissue (liposarcoma); soft tissue (MFH or Malignant Fibrous Histiocytoma), soft tissue (Sarcoma-synovial), testis (seminoma), thyroid (follicular-papillary), thyroid (medullary carcinoma), and urinary bladder.

In further embodiments of the invention, the sample is classified as containing a tumor cell of a type selected from the following 39, and subsets thereof: adrenal gland, brain, breast, carcinoid-intestine, cervix-adenocarcinoma, cervix-squamous, endometrium, gall bladder, germ cell-ovary, GIST, kidney, leiomyosarcoma, liver, lung-adenocarcinoma-large cell, lung-small cell, lung-squamous, lymphoma-B cell, lymphoma-Hodgkin's, lymphoma-T cell, meningioma, mesothelioma, osteosarcoma, ovary-clear cell, ovary-serous, pancreas, prostate, skin-basal cell, skin-melanoma, skin-squamous, small and large bowel, soft tissue-liposarcoma, soft tissue-MFH, soft tissue-sarcoma-synovial, stomach-adenocarcinoma, testis-other (or non-seminoma), testis-seminoma, thyroid-follicular-papillary, thyroid-medullary, and urinary bladder.

The methods of the invention may also be applied to classify a cell containing sample as containing a tumor cell of a tumor of a subset of any of the above sets. The size of the subset will usually be small, composed of two, three, four, five, six, seven, eight, nine, or ten of the tumor types described above. Alternatively, the size of the subset may be any integral number up to the full size of the set. Thus embodiments of the invention include classification among 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, or 52 of the above types. In some embodiments, the subset will be composed of tumor types that are of the same tissue or organ type. Alternatively, the subset will be composed of tumor types of different tissues or organs. In some embodiments, the subset will include one or more types selected from adrenal gland, brain, carcinoid-intestine, cervix-adenocarcinoma, cervix-squamous, gall bladder, germ cell-ovary, GIST, leiomyosarcoma, liver, meningioma, osteosarcoma, skin-basal cell, skin-squamous, soft tissue-liposarcoma, soft tissue-MFH, soft tissue-sarcoma-synovial, testis-other (or non-seminoma), testis-seminoma, thyroid-follicular-papillary, and thyroid-medullary.

Classification among subsets of the above tumor types is demonstrated by the results shown in FIGS. 1-9, where the expression levels of as few as about 5 or more genes sequences can be used to classify among random samples of 2 tumor types among those in the set of 39 listed above. Expression levels of as few as about 20 to 49 can be used to classify among all 39 tumor types with varying degrees of accuracy. The invention may be practiced with the expression levels of about 10 or more, about 15 or more, about 20 or more, about 25 or more, about 30 or more, about 35 or more, about 40 or more, or about 45 or more to 49 transcribed sequences as found in the human “transcriptome” (transcribed portion of the genome). The invention may also be practiced with expression levels of about 10-20 or more, about 20-30 or more, about 30-40 or more, about 40-50 or more, or 49 transcribed sequences. In some embodiments of the invention, the transcribed genes may be randomly picked or include all or some of the specific genes sequences disclosed herein. As demonstrated herein, classification with accuracies of about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, or about 95% or higher can be performed by use of the instant invention.

In other embodiments, the gene expression levels of other gene sequences may be determined along with the above described determinations of expression levels for use in classification. One non-limiting example of this is seen in the case of a microarray based platform to determine gene expression, where the expression of other gene sequences is also measured. Where those other expression levels are not used in classification, they may be considered the results of “excess” transcribed sequences and not critical to the practice of the invention. Alternatively, and where those other expression levels are used in classification, they are within the scope of the invention, where the description of using particular numbers of sequences does not necessarily exclude the use of expression levels of additional sequences. In some embodiments, the invention includes the use of expression level(s) from one or more “excess” gene sequences, such as those which may provide information redundant to one or more other gene sequences used in a method of the invention.

Because classification of a sample as containing cells of one of the above tumor types inherently also classifies the tissue or organ site origin of the sample, the methods of the invention may be applied to classification of a tumor sample as being of a particular tissue or organ site of the patient. This application of the invention is particularly useful in cases where the sample is of a tumor that is the result of metastasis by another tumor. In some embodiments of the invention, the tumor sample is classified as being one of the following 24: Adrenal, Bladder, Bone, Brain, Breast, Cervix, Endometrium, Esophagus, Gall Bladder, Kidney, Larynx, Liver, Lung, Lymph Node, Ovary, Pancreas, Prostate, Skin, Soft Tissue, Small/Large Bowel, Stomach, Testes, Thyroid, and Uterus.

While the invention also provides for classification as one of the above tumor types based upon comparisons to the expression levels of sequences in the 39 tumor types, it is possible that a higher level of confidence in the classification is desired. If an increase in the confidence of the classification is preferred, the classification can be adjusted to identify the tumor sample as being of a particular origin or cell type as shown in FIG. 10. Thus an increase in confidence can be made in exchange for a decrease in specificity as to tumor type by identification of origin or cell type.

The classification of a cell containing sample as having a tumor cell of one of the 39 tumor types above inherently also classifies the tissue or organ site origin of the sample. For example, the identification of a sample as being cervix-squamous necessarily classifies the tumor as being of cervical origin, squamous cell type (and thus epithelial rather than non-epithelial in origin) as shown in FIG. 10. It also means that the tumor was necessarily not germ cell in origin. Thus, the methods of the invention may be applied to classification of a tumor sample as being of a particular tissue or organ site of a subject or patient. This application of the invention is particularly useful in cases where the sample is of a tumor that is the result of metastasis by another tumor.

The practice of the invention to classify a cell containing sample as having a tumor cell of one of the above types is by use of an appropriate classification algorithm that utilizes supervised learning to accept 1) the levels of expression of the gene sequences in a plurality of known tumor types as a training set and 2) the levels of expression of the same genes in one or more cells of a sample to classify the sample as having cells of one of the tumor types. Further discussion of this is provided in the Example section herein. The levels of expression may be provided based upon the signals in any format, including nucleic acid expression or protein expression as described herein.

As would be evident to the skilled practitioner, the range of classification is affected by the number of tumor types as well as the number of samples for each tumor type. But given adequate samples of the full range of human tumors as provided herein, the invention is readily applied to the classification of those tumor types as well as additional types.

Non-limiting examples of classification algorithms that may be used in the practice of the invention include supervised learning algorithms, machine learning algorithms, linear discriminant analysis, attribute selection algorithms, and artificial neural networks (ANN). In preferred embodiments of the invention, a distance-based classification algorithm, such as the k-nearest neighbor (KNN) algorithm, or support vector machine (SVM) are used.

The use of KNN is in some embodiments of the invention and is discussed further as a non-limiting representative example. KNN can be used to analyze the expression data of the genes in a “training set” of known tumor samples including all 39 of the tumor types described herein. The training data set can then be compared to the expression data for the same genes in a cell containing sample. The expression levels of the genes in the sample are then compared to the training data set via KNN to identify those tumor samples with the most similar expression patterns. As a non-limiting example, the five “nearest neighbors” may be identified and the tumor types thereof used to classify the unknown tumor sample. Of course other numbers of “nearest neighbors” may be used. Non-limiting examples include less than 5, about 7, about 9, or about 11 or more “nearest neighbors”.

As a hypothetical example, if the five “nearest neighbors” of an unknown sample are four B cell lymphomas and one T cell lymphoma, then the classification of the sample as being of a B cell lymphoma can be made with great accuracy. This has been used with 84% or greater accuracy, such as 90%, as described in the Examples.

The classification ability may be combined with the inherent nature of the classification scheme to provide a means to increase the confidence of tumor classification in certain situations. For example, if the five “nearest neighbors” of a sample are three ovary clear cell and two ovary serous tumors, confidence can be improved by simply treating the tumors as being of ovarian origin and treating the subject or patient (from whom the sample was obtained) accordingly. See FIG. 10. This is an example of trading off specificity in favor of increased confidence. This provides the added benefit of addressing the possibility that the unknown sample was a mucinous or endometroid tumor. Of course the skilled practitioner is free to treat the tumor as one or both of these two most likely possibilities and proceeding in accordance with that determination.

Because the developmental lineage of tumor cells in certain tumor types (e.g., germ cells) can be complex and involve multiple cell types, FIG. 10 may appear to be oversimplified. However, it serves as a good basis to relate known histopathology and to serve as a “guide tree” for analyzing and relating tumor-associated gene expression signatures.

The inherent nature of the classification scheme also provides a means to increase the confidence of tumor classification in cases wherein the “nearest neighbors” are ambiguous. For example, if the five “nearest neighbors” were one urinary bladder, one breast, one kidney, one liver, and one prostate, the classification can simply be that of a non-squamous cell tumor. Such a determination can be made with significant confidence and the subject or patient from whom the sample was obtained can be treated accordingly. Without being bound by theory, and offered solely to improve the understanding of the invention, the last two examples reflect the similarities in gene expression of cells of a similar cell type and/or tissue origin.

Embodiments of the invention include use of the methods and materials described herein to identify the origin of a cancer from a patient. Thus given a sample containing tumor cells, the tissue origin of the tumor cells is identified by use of the present invention. One non-limiting example is in the case of a subject with an inflamed lymph node containing cancer cells. The cells may be from a tissue or organ that drains into the lymph node or it may be from another tissue source. The present invention may be used to classify the cells as being of a particular tumor or tissue type (or origin) which allows the identification of the source of the cancer cells. In an alternative non-limiting example, the sample (such as that from a lymph node) contains cells, which are first assayed by use of the invention to classify at least one cell as being a tumor cell of a tissue type or origin. This is then used to identify the source of the cancer cells in the sample. Both of these are examples of the advantageous use of the invention to save time, effort, and cost in the use of other cancer diagnostic tests.

In further embodiments, the invention is practiced with a sample from a subject with a previous history of cancer. As a non-limiting example, a cell containing sample (from the lymph node or elsewhere) of the subject may be found to contain cancer cells such that the present invention may be used to determine whether the cells are from the same or a different tissue from that of the previous cancer. This application of the invention may also be used to identify a new primary tumor, such as the case where new cancer cells are found in the liver of a subject who previously had breast cancer. The invention may be used to identify the new cancer cells as being the result of metastasis from the previous breast cancer (or from another tumor type, whether previously identified or not) or as a new primary occurrence of liver cancer. The invention may also be applied to samples of a tissue or organ where multiple cancers are found to determine the origin of each cancer, as well as whether the cancers are of the same origin.

While the invention may be practiced with the use of expression levels of a random group of expressed gene sequences, the invention also provides exemplary gene sequences for use in the practice of the invention. The invention includes a first group of 74 gene sequences from which about 5 to 49 may be used in the practice of the invention. The 5 to 49 gene sequences may be used along with the determination of expression levels of additional sequences so long as the expression levels of gene sequences from the set of 74 are used in classifying. A non-limiting example of such embodiments of the invention is where the expression of from about 5 to 49 of the 74 gene sequences is measured along with the expression levels of a plurality of other sequences, such as by use of a microarray based platform used to perform the invention. Where those other expression levels are not used in classification, they may be considered the results of “excess” transcribed sequences and not critical to the practice of the invention. Alternatively, and where those other expression levels are used in classification, they are within the scope of the invention, where the use of the above described sequences does not necessarily exclude the use of expression levels of additional sequences.

mRNA sequences corresponding to a set of 74 gene sequences for use in the practice of the invention are provided in Example 6 (Sequence Listing) below along with additional identifying information. The listing of the identifying information, including accession numbers and other information, is provided by the following.

>Hs.73995_mRNA_1 gi|190403|gb|M60502.1|HUMPROFILE Human profilaggrin mRNA, 3′ end polyA=1 >Hs.75236_mRNA_4 gi|14280328|gb|AY033998.1| Homo sapiens polyA=3 >Hs.299867_mRNA_1 gi|4758533|ref|NM_004496.1| Homo sapiens hepatocyte nuclear factor 3, alpha (HNF3A), mRNA polyA=3 >Hs.285401_contig1 AI147926|AI880620|AA768316|AA761543|AA279147|AI216016|AI738663|N79248| AI684489|AA960845|AI718599|AI379138|N29366|BF002507|AW044269|R34339|R66326| H04648|R67467|AI523112|BF941500 polyA=2 polyA=3 >Hs.182507_mRNA_1 gi|15431324|ref|NM_002283.2| Homo sapiens keratin, hair, basic, 5 (KRTHB5), mRNA polyA=3 >Hs.292653_contig1 AI200660|AW014007|AI341199|AI692279|AI393765|AI378686|AI695373|AW292108| T10352|R44346|AW470408|AI380925|BF938983|AW003704|H08077|F03856|H08075|F08895| AW468398|AI865976|H22568|AI858374|AI216499 polyA=2 polyA=3 >Hs.97616_mRNA_3 gi|12654852|gb|BC001270.1|BC001270 Homo sapiens clone MGC:5069 IMAGE:3458016 polyA=3 >Hs.123078_mRNA_3 gi|14328043|gb|BC009237.1|BC009237 Homo sapiens clone MGC:2216 IMAGE:2989823 polyA=3 >Hs.285508_contig1 AW194680|BF939744|BF516467 polyA=1 polyA=1 >Hs.183274_contig1 BF437393|BF064008|BF509951|AW134603|AI277015|AI803254|AA887915|BF054958| AI004413|AI393911|AI278517|AW612644|AI492162|AI309226|AI863671|AA448864|AI640165| AA479926|AA461188|AA780161|BF591180|AI918020|AI758226|AI291375|BF001845| BF003064|AI337393|AI522206|BE856784|BF001760|AI280300 FLAG=1 polyA=2 WARN polyA=3 >Hs.334841_mRNA_3 gi|14290606|gb|BC009084.1|BC009084 Homo sapiens clone MGC:9270 IMAGE:3853674 polyA=3 >Hs.3321_contig1 AI804745|AI492375|AA594799|BE672611|AA814147|AA722404|AW170088|D11718| BG153444|AI680648|AA063561|BE219054|AI590287|R55185|AI479167|AI796872|AI018324| AI701122|BE218203|AA905336|AI681917|BI084742|AI480008|AI217994|AI401468 polyA=2 polyA=3 >Hs.306216_singlet1 AW083022 polyA=1 polyA=2 >Hs.99235_contig1 AA456140|AI167259|AA450056 polyA=2 polyA=3 >Hs.169172_mRNA_2 gi|2274961|emb|AJ000388.1|HSCANPX Homo sapiens mRNA for calpain-like protease CANPX polyA=3 >Hs.351486_mRNA_1 gi|16549178|dbj|AK054605.1|AK054605 Homo sapiens cDNA FLJ30043 fis, clone 3NB692001548 polyA=0 >Hs.153504_contig2 BE962007|AW016349|AW016358|AW139144|AA932969|AI025620|AI688744|AI865632| AA854291|AA932970|AU156702|AI634439|AA152496|AI539557|AI123490|AI613215|AI318363| AW105672|AA843483|AI366889|AW181938|AI813801|AI433695|AA934772|N72230| AI760632|BE858965|AW058302|AI760087|AI682077|AA886672|AI350384|AW243848| AW300574|BE466359|AI859529|AI921588|BF062899|BE855597|BE617708 polyA=2 polyA=3 >Hs.199354_singlet1 AI669760 polyA=1 polyA=2 >Hs.162020_contig1 AW291189|AA505872 polyA=2 polyA=3 >Hs.30743_mRNA_3 gi|18201906|ref|NM_006115.2| Homo sapiens preferentially expressed antigen in melanoma (PRAME), mRNA polyA=3 >Hs.271580_contig1 AI632869|AW338882|AW338875|AW613773|AI982899|AW193151|BE206353|BE208200| AI811548|AW264021 polyA=2 polyA=3 >Hs.69360_mRNA_2 gi|14250609|gb|BC008764.1|BC008764 Homo sapiens clone MGC:1266 IMAGE:3347571 polyA=3 >Hs.30827_contig1 H07885|N39347|W85913|AA583408|W86449 polyA=2 polyA=3 >Hs.211593_contig2 BF592799|AI570478|AA234440|R40214|BE501078|AW593784|AI184050|AI284161|W72149| AW780437|AI247981|AW241273|H60824 polyA=2 polyA=3 >Hs.155097_mRNA_1 gi|15080385|gb|BC011949.1|BC011949 Homo sapiens clone MGC:9006 IMAGE:3863603 polyA=3 >Hs.5163_mRNA_1 gi|15990433|gb|BC015582.1|BC015582 Homo sapiens clone MGC:23280 IMAGE:4637504 polyA=3 >Hs.55150_mRNA_1 gi|17068414|gb|BC017586.1|BC017586 Homo sapiens clone MGC:26610 IMAGE:4837506 polyA=3 >Hs.170177_contig3 AI620495|AW291989|AA780896|AA976262|AI298326|BF111862|AW591523|AI922518| AI480280|BF589437|AA600354|AI886238|AA035599|H90049|BF112011|N52601|AI570965| AI565367|AW768847|H90073|BE504361|N45292|AI632075|AA679729|AW168052|AI978827| AI968410|AI669255|N45300|AI651256|AI698970|AI521256|AW078614|AI802070|AI885947| AI342534|AI653624|AW243936|T16586|R15989|AI289789|AI871636|AI718785| AW148847 polyA=2 polyA=3 >Hs.184601_mRNA_5 gi|4426639|gb|AF104032.1|AF104032 Homo sapiens polyA=2 >Hs.351972_singlet1 AA865917 polyA=2 polyA=3 >Hs.5366_mRNA_2 gi|15277845|gb|BC012926.1|BC012926 Homo sapiens clone MGC:16817 IMAGE:3853503 polyA=3 >Hs.18140_contig1 AI685931|AA410954|T97707|AA706873|AI911572|AW614616|AA548520|AW027764| BF511251|AI914294|AW151688 polyA=1 polyA=1 >Hs.133196_contig2 BF224381|BE467992|AW137689|AI695045|AW207361|BF445141|AA405473 polyA=2 WARN polyA=3 >Hs.63325_mRNA_5 gi|15451939|ref|NM_019894.1| Homo sapiens transmembrane protease, serine 4 (TMPRSS4), mRNA polyA=3 >Hs.250692_mRNA_2 gi|184223|gb|M95585.1|HUMHLF Human hepatic leukemia factor (HLF) mRNA, complete cds polyA=3 >Hs.250726_singlet4 AW298545 polyA=2 polyA=3 >Hs.79217_mRNA_2 gi|16306657|gb|BC001504.1|BC001504 Homo sapiens clone MGC:2273 IMAGE:3505512 polyA=3 >Hs.47986_mRNA_1 gi|13279253|gb|BC004331.1|BC004331 Homo sapiens clone MGC:10940 IMAGE:3630835 polyA=3 >Hs.94367_mRNA_1 gi|10440200|dbj|AK027147.1|AK027147 Homo sapiens cDNA: FLJ23494 fis, clone LNG01885 polyA=3 >Hs.49215_contig1 BI493248|N66529|AA452255|BI492877|AW196683|AI963900|BF478125|AI421654|BE466675 polyA=1 polyA=1 >Hs.281587_contig2 R61469|R15891|AA007214|R61471|AI014624|N69765|AW592075|H09780|AA709038| AI335898|AI559229|F09750|R49594|H11055|T72573|AA935558|AA988654|AA826438| AI002431|AI299721 polyA=1 polyA=2 >Hs.79378_mRNA_1 gi|16306528|ref|NM_003914.2| Homo sapiens cyclin A1 (CCNA1), mRNA polyA=3 >Hs.156469_contig2 AI341378|AI670817|AI701687|AI335022|AW235883|AI948598|AA446356 polyA=2 polyA=3 >Hs.6631_mRNA_1 gi|7020430|dbj|AK000380.1|AK000380 Homo sapiens cDNA FLJ20373 fis, clone HEP19740 polyA=3 >Hs.155977_contig1 AI309080|AI313045 polyA=1 WARN polyA=1 >Hs.95197_mRNA_4 gi|5817138|emb|AL110274.1|HSM800829 Homo sapiens mRNA; cDNA DKFZp564I0272 (from clone DKFZp564I0272) polyA=3 >Hs.48956_contig1 N64339|AI569513|AI694073 polyA=1 polyA=1 >Hs.118825_mRNA_10 gi|1495484|emb|X96757.1|HSSAPKK3 H.sapiens mRNA for MAP kinase kinase polyA=3 >Hs.135118_contig3 AI683181|AI082848|AW770198|AI333188|AI873435|AW169942|AI806302|AW340718| BF196955|AA909720 polyA=1 polyA=2 >Hs.171857_mRNA_1 gi|13161080|gb|AF332224.1|AF332224 Homo sapiens testis protein mRNA, partial cds polyA=3 >Hs.18910_mRNA_3 gi|12804464|gb|BC001639.1|BC001639 Homo sapiens clone MGC:1944 IMAGE:2959372 polyA=3 >Hs.194774_mRNA_1 gi|16306633|gb|BC001492.1|BC001492 Homo sapiens clone MGC:1774 IMAGE:3510004 polyA=3 >Hs.127428_mRNA_2 gi|16306818|gb|BC006537.1|BC006537 Homo sapiens clone MGC:1934 IMAGE:2987903 polyA=3 >Hs.126852_contig1 AI802118|BF197404|BF224434|AA931964|AW236083|AI253119|AW614335|AI671372| AI793240|AW006851|AI953604|AI640505|AI633982|AW195809|AI493069|AW058576| AW293622 polyA=2 polyA=3 >Hs.28149_mRNA_1 gi|14714936|gb|BC010626.1|BC010626 Homo sapiens clone MGC:17687 IMAGE:3865868 polyA=3 >Hs.35453_mRNA_3 gi|7018494|emb|AL157475.1|HSM802461 Homo sapiens mRNA; cDNA DKFZp761G151 (from clone DKFZp761G151); partial cds polyA=3 >Hs. 180570_contig1 R08175|AA707224|AA699986|R11209|W89099|T98002|AA494546 polyA=2 polyA=3 >Hs.196270_mRNA_1 gi|11545416|gb|AF283645.1|AF283645 Homo sapiens chromosome 8 map 8q21 polyA=3 >Hs.9030_mRNA_3 gi|12652600|gb|BC000045.1|BC000045 Homo sapiens clone MGC:2032 IMAGE:3504527 polyA=3 >Hs.1282_mRNA_3 gi|4559405|ref|NM_000065.1| Homo sapiens complement component 6 (C6), mRNA polyA=1 >Hs. 268562_mRNA_2 gi|15341874|gb|BC013117.1|BC013117 Homo sapiens clone MGC:8711 IMAGE:3882749 polyA=3 >Hs.151301_mRNA_3 gi|16041747|gb|BC015754.1|BC015754 Homo sapiens clone MGC:23085 IMAGE:4862492 polyA=3 >Hs.111_contig1 AA946776|AW242338|H24274|AI078616 polyA=1 polyA=2 >Hs.150753_contig1 AI123582|AI288234 polyA=0 polyA=0 >Hs.82109_mRNA_1 gi|14250611|gb|BC008765.1|BC008765 Homo sapiens clone MGC:1622 IMAGE:3347793 polyA=3 >Hs.44276_mRNA_2 gi|12654896|gb|BC001293.1|BC001293 Homo sapiens clone MGC:5259 IMAGE:3458115 polyA=3 >Hs .2142_mRNA_4 gi|13325274|gb|BC004453.1|BC004453 Homo sapiens clone MGC:4303 IMAGE:2819400 polyA=3 >Hs.180908_contig1 AA846824|AW611680|AA846182|AA846342|AA846360 polyA=2 polyA=3 >Hs.89436_mRNA_1 gi|16507959|ref|NM_004063.2| Homo sapiens cadherin 17, LI cadherin (liver-intestine) (CDH17), mRNA polyA=1 >Hs.151544_mRNA_8 gi|3153107|emb|AL023657.1|HSDSHP Homo sapiens SH2D1A cDNA, formerly known as DSHP polyA=3 >Hs.1657_contig4 AW473119|AA164586|AI540656|AI758480|AI810941|AI978964|AI675862|AI784397| AW591562|AW514102|AI888116|AI983175|AI634735|AI669577|AI202659|AI910598|AI961352| AI565481|AI886254|AI538838|AA291749|AW571455|AI370308|AI274727|AW473925| AW514787|AI273871|AW470552|AI524356|AI888281|AW089672|AI952766|AW440601| AI654044|AW438839|AI972926 polyA=2 polyA=3 >Hs.35984_mRNA_1 gi|6049161|gb|AF133587.1|AF133587 Homo sapiens chromosome 22 map 22q11.2 polyA=3 >Hs.334534_mRNA_2 gi|17389403|gb|BC017742.1|BC017742 Homo sapiens, clone IMAGE:4391536, mRNA polyA=3 >Hs.60162_mRNA_1 gi|10437644|dbj|AK025181.1|AK025181 Homo sapiens cDNA: FLJ21528 fis, clone COL05977 polyA=3

As would be understood by the skilled person, detection of expression of any of the above identified sequences, or the sequences provided in Example 6 (Sequence Listing) below may be performed by the detection of expression of any appropriate portion or fragment of these sequences. Preferably, the portions are sufficiently large to contain unique sequences relative to other sequences expressed in a cell containing sample. Moreover, the skilled person would recognize that the disclosed sequences represent one strand of a double stranded molecule and that either strand may be detected as an indicator of expression of the disclosed sequences. This follows because the disclosed sequences are expressed as RNA molecules in cells which are preferably converted to cDNA molecules for ease of manipulation and detection. The resultant cDNA molecules may have the sequences of the expressed RNA as well as those of the complementary strand thereto. Thus either the RNA sequence strand or the complementary strand may be detected. Of course is it also possible to detect the expressed RNA without conversion to cDNA.

In some embodiments of the invention, the expression levels of gene sequences is measured by detection of expressed sequences in a cell containing sample as hybridizing to the following oligonucleotides, which correspond to the above sequences as indicated by the accession numbers provided.

>AF133587 CCCGGATCGCCATCAGTGTCATCGAGTTCA AACCCTGAGCCCTTCATTCACCTCTGTGAG >BC017742 TGCCCTTGCTCTGTGTCATCTCAGTCATTT GACTTAGAAAGTGCCCTTCAAAAGGACCCT >BF437393 GGAGGGAGGGCTAATTATATATTTTGTTGT TCCTCTATACTTTGTTCTGTTGTCTGCGCC >AI620495 CAGTTTGGATTGTATAATAACGCCAAGCCC AGTTGTAGTCGTTTGAGTGCAGTAATGAAA >AK000380 AAATCAGAGTAACCCTTTCTGTATTGAGTG CAGTGTTTTTTACTCTTTTCTCATGCACAT >BC009237 TGCCTGGCACAAAGAAGGAAGAATATAAAT GATAGTTCGACTCGTCTGTGGAAGAACTTA >BC008765 AGTCTTTTGCTTTTGGCAAAACTCTACTTA ATCCAATGGGTTTTTCCCTGTACAGTAGAT >BC001504 GGTTACTGTGGGTGGAATAGTGGAGGCCTT CAACTGATTAGACAAGGCCCGCCCACATCT >NM_019894 TAAAATGCACTGCCCTACTGTTGGTATGAC TACCGTTACCTACTGTTGTCATTGTTATTA >BF224381 TTCTCTTTTGGGGGCAAACACTATGTCCTT TTCTTTTTCTAGATACAGTTAATTCCTGGA >AL157475 AAGACCCACACCCTGTAGCAATACCAAGTG CTATTACATAATCAATGGACGATTTATACT >AY033998 AGTGTTGCAAGTTTCCTTTAAAACCAACAA AGCCCACAAGTCCTGAATTTCCCATTCTTA >H07885 GTCACTGTCATAGCAGCTGTGATTTCACAA GGAAGGGTGCTGCAGGGGGACCTGGTTGAT >NM_004496 TTTCATCCAGTGTTATGCACTTTCCACAGT TGGTGTTAGTATAGCCAGAGGGTTTCATTA >AA846824 GGGAAGTAGGGATTATTCGTTTAAATTCAA TCGCGAGCACCAAGTCGGACTGGCCGGGGA >BC017586 GGGACCAGGCCCTGGGACAGCCATGTGGCT CCAAATGACTAAATGTCAGCTCAAAAACCA >AA456140 TCCGTTTATGGAGGCAATTCCATATCCTTT CTTGAACGCACATTCAGCTTACCCCAGAGA >NM_002283 AGAGTTAAGCCACTTCCTGGGTCTCCTTCT TATGACTGTCTATGGGTGCATTGCCTTCTG >AL023657 GTGGCCTGAGTAATGCATTATGGGTGGTTT ACCATTTCTTGAGGTAAAAGCATCACATGA >BC001639 ACACATGCATGTGTCTGTGTATGTGTGAAT GTGAGAGAGACACAGCCCTCCTTTCAGAAG >BC015754 TCTGTAACTGCACAACCCTGGGGTTTGCTG CAGAGCTATTTCTTTCCATGTAAAGTAGTG >AF332224 AAACACTCTTTCCGACTCCAGAGGAGAAGC TGGCAGCTCTCTGTAAGAAATATGCTGATC >BC001270 GCTTCCTCTATCGCCCAATGCAAAATCGAT GAAATGGGGAGTTCTCTGGGCCAGGCCACA >AI147926 GTAGAATCCTCTGTTCATAATGAACAAGAT GAACCAATGTGGATTAGAAAGAAGTCCGAG >AW298545 CTGTTTTAAAACTGAATGGCACGAAATTGT TTTCCTCAACTCGGAGATTCCTGTATGGAG >AI802118 AATAAATAGTAGCTCTGCTGATGATGACGT TGATAACCAAACTGTTCTGTGGTCTTAAGT >AI683181 CAAACAGCCCGGTCTTGATGCAGGAGAGTC TGGAAAAGGAAGAAAATGGTTTCAGTTTCA >M95585 AACATGGACCATCCAAATTTATGGCCGTAT CAAATGGTAGCTGAAAAAACTATATTTGAG >AK027147 TTGTAATCATGCCAATTCCAGATCAATAAC TGCATGTCTGTTCTTTGGTAGAAATAGCTT >AW291189 AAAGATTATTAACCCAAATCACCTTTCTTG CTTACTCCAGATGCCTCAGCCTCTGATATA >AI632869 GACTTCCTTTAGGATCTCAGGCTTCTGCAG TTCTCATGACTCCTACTTTTCATCCTAGTC >BC006537 CTGTATATTTTGCAATAGTTACCTCAAGGC CTACTGACCAAATTGTTGTGTTGAGATGAT >R61469 TGTTCAAACAGACTTTAACCTCTGCATCAT ACTTAACCCTGCGACATGCGTACAGTATGC >BC009084 TGAGTCATATACATTTACTGACCACTGTTG CTTGTTGCTCACTGTGCTGCTTTTCCATGA >N64339 CTGAAATGTGGATGTGATTGCCTCAATAAA GCTCGTCCCCATTGCTTAAGCCTTCAAAAA >AI200660 ATCAAGAAAACCTAATCTTCTGACTCCCAG GCCAGGATGTTTTATTTCTCACATCATGTC >AK054605 TTCATTTCCAAACATCATCTTTAAGACTCC AAGGATTTTTCCAGGCACAGTGGCTCATAC >NM_006115 AGTTAGAAATAGAATCTGAATTTCTAAAGG GAGATTCTGGCTTGGGAAGTACATGTAGGA >X96757 CAATTTTCTTTTTACTCCCCCTCTTAAGGG GGCCTTGGAATCTATAGTATAGAATGAACT >AI804745 GGGTGGAGTTTCAGTGAGAATAAACGTGTC TGCCTTTGTGTGTGTGTATATATACAGAGA >AJ000388 CTCGCTCATTTTTTACCATGTTTTCCAGTC TGTTTAACTTCTGCAGTGCCTTCACTACAC >BC008764 CTTTGGGCCGAGCACTGAATGTCTTGTACT TTAAAAAAATGTTTCTGAGACCTCTTTCTA >AI309080 CTGGACCCTTGGAGCAGTGTTGTGTGAACT TGCCTAGAACTCTGCCTTCTCCGTTGTCAA >AA865917 CCACCTCCTTCGACCTCCACTGCGCCCCAC CTCCCTGCCTGTGTGTGTTATTTCAAAGGA >AA946776 TCTGGCTGGTGGCCTGCGCGAGGGTGCAGT CTTACTTAAAAGACTTTCAGTTAATTCTCA >AF104032 AGATGCTGTCGGCACCATGTTTATTTATTT CCAGTGGTCATGCTCAGCCTTGCTGCTCTG >AW194680 TCCTTCCTCTTCGGTGAATGCAGGTTATTT AAACTTTGGGAAATGTACTTTTAGTCTGTC >BC001293 GTCCTGTCCCTGTCTGGGAGTTGTGTTATT TAAAGATATTCTGTATGTTGTATCTTTTGC >BE962007 ATTATATTTCAGGTGTCCTGAACAGGTCAC TAGACTCTACATTGGGCAGCCTTTAAATAT >BI493248 AGGAATGGTACTACCGTTCCAGATTTTCTG TAATTGCTTCTGCAAAGTAATAGGCTTCTT >AF283645 CTGTACCCAAAGGATGCCAGAATACTAGTA TTTTTATTTATCGTAAACATCCACGAGTGC >AI669760 ATTGCCCCCCTAACCAATCATGCAAACTTT TCCCCCCCTGGGGTAATTCACCAGTTAAAA >BC001492 CCCACAGTATTTAATGCCCTGTCAGTCCCT TCTAGTCTGACTCAATGGTAACTTGCTGTA >BC004453 AAAACCAACTCTCTACTACACAGGCCTGAT AACTCTGTACGAGGCTTCTCTAACCCCTAG >BC010626 CTCAGACTGGGCTCCACACTCTTGGGCTTC AGTCTGCCCATCTGCTGAATGGAGACAGCA >BC013117 CCTAATGGGGATTCCTCTGGTTGTTCACTG CCAAAACTGTGGCATTTTCATTACAGGAGA >BC011949 CACTCACAATTGTTGACTAAAATGCTGCCT TTAAAACATAGGAAAGTAGAATGGTTGAGT >AW083022 CTTTGAAGGGCTGCTGCACATTGTTGAATC CATCGACCTTTAGCTGCAATGGGATCTCTA >R08175 TGCCTCATCGATATTATAGGGGTCCATCAC AACCCAACTGTGTGGCCGGATCCTGAGTCT >NM_000065 AAAACAGACAAAAGCCTTTGCCTTCATGAA GCATACATTCATTCAGGGGTAGACACACAA >AK025181 TAACAAACAAAGGCAGTAGCTCATCACTTG GGTAGCAGGTACCCATTTTAGGACCCTACA >NM_003914 ATATCAGAAGTGCCAATAATCGTCATAGGC TTCTGCACGTTGGATCAACTAATGTTGTTT >AI123582 ATCATAGCCCAACCATGTGAGAAGAAGGAG AAGGCCCCCCTTTCTTCATTAATCTGAAAA >BC004331 GCAGACCATTCTATCATACCTGGCAGGGCT TCTGTTTTATTTTGTAGGCTGGATGCTACC >AI341378 ACTACAAGCCTCTTGTTTTTCACCAAAACC CTACATCTCAGGCTTACTAATTTTTGTGAT >NM_004063 GCCATGCATACATGCTGCGCATGTTTTCTT CATTCGTATGTTAGTAAAGTTTTGGTTATT >BC012926 CACCTATTTATTTTACCTCTTTCCCAAACC TGGAGCATTTATGCCTAGGCTTGTCAAGAA >AL110274 GTGGACATAGCCACTAACCAACTAGTTACC TTTGGACTGCAACAAAAAATGTGAAAATGA >AW473119 ACTTGTAAACCTCTTTTGCACTTTGAAAAA GAATCCAGCGGGATGCTCGAGCACCTGTAA >AI685931 AATTCTCTATAAACGGTTCACCAGCAAACC ACCAATACATTCCATTGTTTGCCTAGAGAG >BF592799 AATGGCCCATGCATGCTGTTTGCAGCAGTC AATTGAGTTGAATTAGAATTCCAACCATAC >BC000045 GAGCTCAGTACTTGCCCTGTGAAAATCCCA GAAGCCCCCGCTGTCAATGTTCCCCATCCA >BC015582 ATGAAGCGGAATTAGGCTCCCGAGCTAAGG GACTCGCCTAGGGTCTCACAGTGAGTAGGA >M60502 AGTGGCTATATCAACATCAGGGCTAGCACA TCTTTCTCTATTATCCTTCTATTGGAATTC

The invention also provides a second group of 90 gene sequences from which about 5 to 49 may be used in the practice of the invention. The about 5 to 49 gene sequences may be used along with the determination of expression levels of additional sequences so long as the expression levels of gene sequences from the set of 90 are used in classifying. A non-limiting example of such embodiments of the invention is where the expression of about 5 to 49 of the 90 gene sequences is measured along with the expression levels of a plurality of other sequences, such as by use of a microarray based platform used to perform the invention. Where those other expression levels are not used in classification, they may be considered the results of “excess” transcribed sequences and not critical to the practice of the invention. Alternatively, and where those other expression levels are used in classification, they are within the scope of the invention, where the use of the above described sequences does not necessarily exclude the use of expression levels of additional sequences.

38 members of the set of 90 are included in the first set of 74 described above. The accession numbers of these members in common between the two sets are AA456140, AA846824, AA946776, AF332224, AI620495, AI632869, AI802118, AI804745, AJ000388, AK025181, AK027147, AL157475, AW194680, AW291189, AW298545, AW473119, BC000045, BC001293, BC001504, BC004453, BC006537, BC008765, BC009084, BC011949, BC012926, BC013117, BC015754, BE962007, BF224381, BF437393, BI493248, M60502, NM_000065, NM_003914, NM_004063, NM_004496, NM_006115, and R61469. mRNA sequences corresponding to members of the set of 90 that are not present in the set of 74 gene sequences are also provided in Example 6 (Sequence Listing) along with additional identifying information. The listing of the identifying information for these 52 unique members by accession numbers, as well as corresponding oligonucleotide sequences which may be used in the practice of the invention, is provided by the following.

>R15881 ACTTCTGGTGATGATAAAAATGGTTTTATC ACCCAGATGTGAAAGAAGCTGCCTGTTTAC >AI041545 GTGGTTCTGTAAAAACGCAGAGGAAAAGAG CCAGAAGGTTTCTGTTTAATGCATCTTGCC >NM_024423 TTTATAAGGAAGCAGCTGTCTAAAATGCAG TGGGGTTTGTTTTGCAATGTTTTAAACAGA >AB038160 CTTATGAAGCTGGCCGGGCCACTCACGTTC AATGGTACATCTGGGTCTCTATGTGGTTCT >AK026790 GTGAGCCAGCATTTCCCATAGCTAACCCTA TTCTCTTAGTCTTTCAAAATGTAGAATGGG >BC012727 CTTTACACCTGATAAAATATTTTGCGAAGA GAGGTGTTCTTTTTCCTTACTGGTGCTGAA >BC016451 GCATACATCTCATCCACAGGGGAAGATAAA GATGGTCACACAAACAGTTTCCATAAAGAT >H09748 TGAGTTCAGCATGTGTCTGTCCATTTCATT TGTACGCTTGTTCAAAACCAAGTTTGTTCT >NM_006142 AAGACCGAGACTGAGGGAAAGCATGTCTGC TGGGTGTGACCATGTTTCCTCTCAATAAAG >AF191770 GGCATCTGGCCCCTGGTAGCCAGCTCTCCA GAATTACTTGTAGGTAATTCCTCTCTTCAT >NM_006378 TGGATGTTTGTGCGCGTGTGTGGACAGTCT TATCTTCCAGCATGATAGGATTTGACCATT >BC006819 TCCTGGCAGAGCCATGGTCCCAGGCTTCCC AAAAGTGTTTGTGGCAATTATTCCCCTAGG >X79676 TTTGATGATAGCAGACATTGTTACAAGGAC ATGGTGAGTCTATTTTTAATGCACCAATCT >BC006811 TTCTTCCAGTTGCACTATTCTGAGGGAAAA TCTGACACCTAAGAAATTTACTGTGAAAAA >NM_000198 GAACAATTGTGGTCTCTCTTAACTTGAGGT TCTCTTTTGACTAATAGAGCTCCATTTCCC >AF301598 GTTAAGTGTGGCCAAGCGCACGGCGGCAAG TTTTCAAGCACTGAGTTTCTATTCCAAGAT >NM_002847 CGGCCTACTGAGCGGACAGAATGATGCCAA AATATTGCTTATGTCTCTACATGGTATTGT >NM_004062 CAGGGTGTTTGCCCAATAATAAAGCCCCAG AGAACTGGGCTGGGCCCTATGGGATTGGTA >AW118445 TGTACAGTTTGGTTGTTGCTGTAAATATGG TAGCGTTTTGTTGTTGTTGTTTTTTCATGC >BC002551 TACCAAACTGGGACTCACAGCTTTATTGGG CTTTCTTTGTGTCTTGTGTGTTTCTTTTAT >AA765597 CATTGAGGTTTGGATGGTGGCAGGTAAAAC AGAAAGGCAAGATGTCATCTGACATTAGGC >AL137761 AGTTCAGCACTGTGGTTATCATTGGTGATG CCAGAAAACATTAGTAGACTTAGACAATTG >X78202 TAAAATTTCTTGATTGTGACTATGTGGTCA TATGCCCGTGTTTGTCACTTACAAAAATGT >AK025615 AGCCATCTGGTGTGAAGAACTCTATATTTG TATGTTGAGAGGGCATGGAATAATTGTATT >BC001665 CTTATTGTCACTGGTTAAGAACTTGGCGAG ATTGAAGGGCTTTTGTTATTGTTGTTGGAT >AI985118 CTTTCTAGTGAGCTAACCGTAACAGAGAGC CTACAGGATACACGTGAGATAATGTCACGT >AL039118 TTGTCTTAAAATTTCTTGATTGTGATACTG TGGTCATATGCCCGTGTTTGTCACTTACAA >AA782845 CCTGGGGGAAAGGGGCATTCATGACCTGAA CTTTTTAGCAAATTATTATTCTCAGTTTCC >BC016340 TTCATTAACAGTACTAAGTGGAAGGGATCT GCAGATTCCAAATTGGAATAAGCTCTATCA >AA745593 CCAATGCAGAAGAGTATTAAGAAAGATGCT CAAGTCCCATGGCACAGAGCAAGGCGGGCA >NM_004967 CAAGGCTACGATGGCTATGATGGTCAGAAT TACTACCACCACCAGTGAAGCTCCAGCCTG >BF510316 AGCTCACAGCTGGACAGGTGTTGTATATAG AGTGGAATCTCTTGGATGCAGCTTCAAGAA >AA993639 TCCAAAGTAGAAAGGGTTCTTTTAGAAAAC TTGAAGAATGTGCCTCCTCTTAGCATCTGT >AV656862 GATGCATTTTTCAGTCCCTTTTCAGAGCAA ATGCTTTTGCAATGGTAGTAATGTTTAGTT >X69699 CCTGTGGGGCTTCTCTCCTTGATGCTTCTT TCTTTTTTTAAAGACAACCTGCCATTACCA >BC013282 TTGCACTAAGTCATGCTGTTTCCTCAAAGA AGCTTTGTTTTTTGTTAACGTATTACTCAG >AI457360 CTGGATCCCAGGCCCTGGCACCCCTCAGGA AATACAAGAAAAAGAATATTCACATCTGTT >AW445220 TTAGAGGGGCCACCTATCAACTCATCAGTG TTCAAAGAATATGCTGGGAGCATGGGTGAG >AF038191 GGCCCATTTATGTCCCTCATGTCTCTAGAT TTTCTCGTCACCCAGCCTCAAAAATATATG >X05615 TCCCCAAAAACCTCACCCGAGGCTGCCCAC TATGGTCATCTTTTTCTCTAAAATAGTTAC >BC005364 GAAATTCCTCACACCTTGCACCTTCCCTAC TTTTCTGAATTGCTATGACTACTCCTTGTT >AK025701 TGTCTGTCCACCACGAGATGGGAGGAGGAG AAAAAGCGGTACGATGCCTTCCTGACCTCA >BF446419 GTCTTATCTCTCAGGGGGGGTTTAAGTGCC GTTTGCAATAATGTCGTCTTATTTATTTAG >AK025470 CCGAGTAGTATGGGTCTCTGTGTGAGAAAC CAGGAGATATTTTCATCTTGTTCGGAAATA >BE552004 TTGTGCAAAAGTCCCACAACCTTTCTGGAT TGATAGTTTGTGGTGAAATAAACAATTTTA >H05388 TCCAGTATTCTGCAGGGCCAGTCAGTTGTA CAGAAGTTGGAATATTCTGTTCCAGAATTA >NM_033229 GTCTCGAACAGCGGTTGTTTTTACTTTATT TATCTTAGGCCCTCAGCTCCCTGACGTCCT >BC010437 AGTGAATCTTTTCCTCTTGGTAGCATCAAC ACTGGGGATAAATCAGAACCATTCTGTGGA >AI952953 TGAGAGCCCAGAACAAGAAGGAGCAGAAGG GCACTTTGACCTTCATTATTATGAAAATCA >R45389 GGAAGAACTGATGCTTGCTGCTAACTAAAG TTTTGGATGTATCGATTTAGAGAACCAATT >NM_001337 GAATGAGAGAATAAGTCATGTTCCTTCAAG ATCATGTACCCCAATTTACTTGCCATTACT >AI499593 TACGGAAAGGAAACAGGTTATACTCTTAGA TTTAAAAAGTGAAAGAAACTGCAGGCGCCT

In some embodiments of the invention, the expression levels of gene sequences is measured by detection of expressed sequences in a cell containing sample as hybridizing to the above oligonucleotides, which correspond to sequences in Example 6 (Sequence Listing) as indicated by the accession numbers provided.

In additional embodiments, the invention provides for use of any number of the gene sequences of the set of 74 or the set of 90 in the methods of the invention. Thus anywhere from 1 to all of the 49 gene sequences used in the invention may be from either or both of the above sets. So from one, two, three, four, or five, or more of the about 5 to 49 sequences may be from the set of 74 or the set of 90. Similarly, and where from 10 to 49 sequences are used, six, seven, eight, nine, or ten of the sequences may be from one of these sets.

As used herein, a “tumor sample” or “tumor containing sample” or “tumor cell containing sample” or variations thereof, refer to cell containing samples of tissue or fluid isolated from an individual suspected of being afflicted with, or at risk of developing, cancer. The samples may contain tumor cells which may be isolated by known methods or other appropriate methods as deemed desirable by the skilled practitioner. These include, but are not limited to, microdissection, laser capture microdissection (LCM), or laser microdissection (LMD) before use in the instant invention. Alternatively, undissected cells within a “section” of tissue may be used. Non-limiting examples of such samples include primary isolates (in contrast to cultured cells) and may be collected by any non-invasive or minimally invasive means, including, but not limited to, ductal lavage, fine needle aspiration, needle biopsy, the devices and methods described in U.S. Pat. No. 6,328,709, or any other suitable means recognized in the art. Alternatively, the sample may be collected by an invasive method, including, but not limited to, surgical biopsy.

The detection and measurement of transcribed sequences may be accomplished by a variety of means known in the art or as deemed appropriate by the skilled practitioner. Essentially, any assay method may be used as long as the assay reflects, quantitatively or qualitatively, expression of the transcribed sequence being detected.

The ability to classify tumor samples is provided by the recognition of the relevance of the level of expression of the gene sequences (whether randomly selected or specific) and not by the form of the assay used to determine the actual level of expression. An assay of the invention may utilize any identifying feature of a individual gene sequence as disclosed herein as long as the assay reflects, quantitatively or qualitatively, expression of the gene in the “transcriptome” (the transcribed fraction of genes in a genome) or the “proteome” (the translated fraction of expressed genes in a genome). Additional assays include those based on the detection of polypeptide fragments of the relevant member or members of the proteome. Non-limiting examples of the latter include detection of proteolytic fragments found in a biological fluid, such as blood or serum. Identifying features include, but are not limited to, unique nucleic acid sequences used to encode (DNA), or express (RNA), said gene or epitopes specific to, or activities of, a protein encoded by a gene sequence.

Additional means include detection of nucleic acid amplification as indicative of increased expression levels and nucleic acid inactivation, deletion, or methylation, as indicative of decreased expression levels. Stated differently, the invention may be practiced by assaying one or more aspect of the DNA template(s) underlying the expression of each gene sequence, of the RNA used as an intermediate to express the sequence, or of the proteinaceous product expressed by the sequence, as well as proteolytic fragments of such products. As such, the detection of the presence of, amount of, stability of, or degradation (including rate) of, such DNA, RNA and proteinaceous molecules may be used in the practice of the invention.

In some embodiments, all or part of a gene sequence may be amplified and detected by methods such as the polymerase chain reaction (PCR) and variations thereof, such as, but not limited to, quantitative PCR (Q-PCR), reverse transcription PCR (RT-PCR), and real-time PCR (including as a means of measuring the initial amounts of mRNA copies for each sequence in a sample), optionally real-time RT-PCR or real-time Q-PCR. Such methods would utilize one or two primers that are complementary to portions of a gene sequence, where the primers are used to prime nucleic acid synthesis. The newly synthesized nucleic acids are optionally labeled and may be detected directly or by hybridization to a polynucleotide of the invention. The newly synthesized nucleic acids may be contacted with polynucleotides (containing gene sequences) of the invention under conditions which allow for their hybridization. Additional methods to detect the expression of expressed nucleic acids include RNAse protection assays, including liquid phase hybridizations, and in situ hybridization of cells.

Alternatively, the expression of gene sequences in FFPE samples may be detected as disclosed in U.S. applications 60/504,087, filed Sep. 19, 2003, Ser. No. 10/727,100, filed Dec. 2, 2003, and Ser. No. 10/773,761, filed Feb. 6, 2004 (all three of which are hereby incorporated by reference as if fully set forth). Briefly, the expression of all or part of an expressed gene sequence or transcript may be detected by use of hybridization mediated detection (such as, but not limited to, microarray, bead, or particle based technology) or quantitative PCR mediated detection (such as, but not limited to, real time PCR and reverse transcriptase PCR) as non-limiting examples. The expression of all or part of an expressed polypeptide may be detected by use of immunohistochemistry techniques or other antibody mediated detection (such as, but not limited to, use of labeled antibodies that bind specifically to at least part of the polypeptide relative to other polypeptides) as non-limiting examples. Additional means for analysis of gene expression are available, including detection of expression within an assay for global, or near global, gene expression in a sample (e.g. as part of a gene expression profiling analysis such as on a microarray). Non-limiting examples linear RNA amplification and those described in U.S. patent application Ser. No. 10/062,857 (filed on Oct. 25, 2001), as well as U.S. Provisional Patent Applications 60/298,847 (filed Jun. 15, 2001) and 60/257,801 (filed Dec. 22, 2000), all of which are hereby incorporated by reference in their entireties as if fully set forth.

In embodiments using a nucleic acid based assay to determine expression includes immobilization of one or more gene sequences on a solid support, including, but not limited to, a solid substrate as an array or to beads or bead based technology as known in the art. Alternatively, solution based expression assays known in the art may also be used. The immobilized gene sequence(s) may be in the form of polynucleotides that are unique or otherwise specific to the gene(s) such that the polynucleotides would be capable of hybridizing to the DNA or RNA of said gene(s). These polynucleotides may be the full length of the gene(s) or be short sequences of the genes (up to one nucleotide shorter than the full length sequence known in the art by deletion from the 5′ or 3′ end of the sequence) that are optionally minimally interrupted (such as by mismatches or inserted non-complementary basepairs) such that hybridization with a DNA or RNA corresponding to the genes is not affected. In some embodiments, the polynucleotides used are from the 3′ end of the gene, such as within about 350, about 300, about 250, about 200, about 150, about 100, or about 50 nucleotides from the polyadenylation signal or polyadenylation site of a gene or expressed sequence. Polynucleotides containing mutations relative to the sequences of the disclosed genes may also be used so long as the presence of the mutations still allows hybridization to produce a detectable signal. Thus the practice of the present invention is unaffected by the presence of minor mismatches between the disclosed sequences and those expressed by cells of a subject's sample. A non-limiting example of the existence of such mismatches are seen in cases of sequence polymorphisms between individuals of a species, such as individual human patients within Homo sapiens.

As will be appreciated by those skilled in the art, some gene sequences include 3′ poly A (or poly T on the complementary strand) stretches that do not contribute to the uniqueness of the disclosed sequences. The invention may thus be practiced with gene sequences lacking the 3′ poly A (or poly T) stretches. The uniqueness of the disclosed sequences refers to the portions or entireties of the sequences which are found only in nucleic acids, including unique sequences found at the 3′ untranslated portion thereof. Some unique sequences for the practice of the invention are those which contribute to the consensus sequences for the genes such that the unique sequences will be useful in detecting expression in a variety of individuals rather than being specific for a polymorphism present in some individuals. Alternatively, sequences unique to an individual or a subpopulation may be used. The unique sequences may be the lengths of polynucleotides of the invention as described herein.

In additional embodiments of the invention, polynucleotides having sequences present in the 3′ untranslated and/or non-coding regions of gene sequences are used to detect expression levels in cell containing samples of the invention. Such polynucleotides may optionally contain sequences found in the 3′ portions of the coding regions of gene sequences. Polynucleotides containing a combination of sequences from the coding and 3′ non-coding regions preferably have the sequences arranged contiguously, with no intervening heterologous sequence(s).

Alternatively, the invention may be practiced with polynucleotides having sequences present in the 5′ untranslated and/or non-coding regions of gene sequences to detect the level of expression in cells and samples of the invention. Such polynucleotides may optionally contain sequences found in the 5′ portions of the coding regions. Polynucleotides containing a combination of sequences from the coding and 5′ non-coding regions may have the sequences arranged contiguously, with no intervening heterologous sequence(s). The invention may also be practiced with sequences present in the coding regions of gene sequences.

The polynucleotides of some embodiments contain sequences from 3′ or 5′ untranslated and/or non-coding regions of at least about 16, at least about 18, at least about 20, at least about 22, at least about 24, at least about 26, at least about 28, at least about 30, at least about 32, at least about 34, at least about 36, at least about 38, at least about 40, at least about 42, at least about 44, or at least about 46 consecutive nucleotides. The term “about” as used in the previous sentence refers to an increase or decrease of 1 from the stated numerical value. Other embodiments use polynucleotides containing sequences of at least or about 50, at least or about 100, at least about or 150, at least or about 200, at least or about 250, at least or about 300, at least or about 350, or at least or about 400 consecutive nucleotides. The term “about” as used in the preceding sentence refers to an increase or decrease of 10% from the stated numerical value.

Sequences from the 3′ or 5′ end of gene coding regions as found in polynucleotides of the invention are of the same lengths as those described above, except that they would naturally be limited by the length of the coding region. The 3′ end of a coding region may include sequences up to the 3′ half of the coding region. Conversely, the 5′ end of a coding region may include sequences up the 5′ half of the coding region. Of course the above described sequences, or the coding regions and polynucleotides containing portions thereof, may be used in their entireties.

In another embodiment of the invention, polynucleotides containing deletions of nucleotides from the 5′ and/or 3′ end of gene sequences may be used. The deletions are preferably of 1-5, 5-10, 10-15, 15-20, 20-25, 25-30, 30-35, 35-40, 40-45, 45-50, 50-60, 60-70, 70-80, 80-90, 90-100, 100-125, 125-150, 150-175, or 175-200 nucleotides from the 5′ and/or 3′ end, although the extent of the deletions would naturally be limited by the length of the sequences and the need to be able to use the polynucleotides for the detection of expression levels.

Other polynucleotides of the invention from the 3′ end of gene sequences include those of primers and optional probes for quantitative PCR. Preferably, the primers and probes are those which amplify a region less than about 750, less than about 700, less than about 650, less than about 6000, less than about 550, less than about 500, less than about 450, less than about 400, less than about 350, less than about 300, less than about 250, less than about 200, less than about 150, less than about 100, or less than about 50 nucleotides from the from the polyadenylation signal or polyadenylation site of a gene or expressed sequence. The size of a PCR amplicon of the invention may be of any size, including at least or about 50, at least or about 100, at least about or 150, at least or about 200, at least or about 250, at least or about 300, at least or about 350, or at least or about 400 consecutive nucleotides, all with inclusion of the portion complementary to the PCR primers used.

Other polynucleotides for use in the practice of the invention include those that have sufficient homology to gene sequences to detect their expression by use of hybridization techniques. Such polynucleotides preferably have about or 95%, about or 96%, about or 97%, about or 98%, or about or 99% identity with the gene sequences to be used. Identity is determined using the BLAST algorithm, as described above. The other polynucleotides for use in the practice of the invention may also be described on the basis of the ability to hybridize to polynucleotides of the invention under stringent conditions of about 30% v/v to about 50% formamide and from about 0.01M to about 0.15M salt for hybridization and from about 0.01M to about 0.15M salt for wash conditions at about 55 to about 65° C. or higher, or conditions equivalent thereto.

In a further embodiment of the invention, a population of single stranded nucleic acid molecules comprising one or both strands of a human gene sequence is provided as a probe such that at least a portion of said population may be hybridized to one or both strands of a nucleic acid molecule quantitatively amplified from RNA of a cell or sample of the invention. The population may be only the antisense strand of a human gene sequence such that a sense strand of a molecule from, or amplified from, a cell may be hybridized to a portion of said population. The population preferably comprises a sufficiently excess amount of said one or both strands of a human gene sequence in comparison to the amount of expressed (or amplified) nucleic acid molecules containing a complementary gene sequence.

The invention further provides a method of classifying a human tumor sample by detecting the expression levels of about 5 to 49 transcribed sequences in a nucleic acid or cell containing sample obtained from a human subject, and classifying the sample as containing a tumor cell of a tumor type found in humans to the exclusion of one or more other human tumor types. In some embodiments, the method may be used to classify a sample as being, or having cells of, one of the 53 tumor types listed above to the exclusion of one or more of the other 52. In other embodiments, the method is used to classify a sample as being, or having cells of, one of the 34 tumor types listed above to the exclusion of one or more of the other 33 tumor types. In further embodiments, the method is used to classify a sample as being, or having cells of, one of the 39 tumor types listed above to the exclusion of one or more of the other 38 tumor types.

The invention also provides a method for classifying tumor samples as being one of a subset of the possible tumor types described herein by detecting the expression levels of 50 or more transcribed sequences in a nucleic acid containing tumor sample obtained from a human subject, and classifying the sample as being one of a number of tumor types found in humans to the exclusion of one or more other human tumor types. In some embodiments of the invention, the number of other tumor types is from 1 to about 3, more preferably from 1 to about 5, from 1 to about 7, or from 1 to about 9 or about 10. In other embodiments, the number of tumor types are all of the same tissue or organ origin such as those listed above. This aspect of the invention is related to the above discussion of FIG. 10 and of trading off specificity in favor of increased confidence, and may be advantageously applied to situations where the classification of a sample as a single tumor type is at a level of accuracy or performance that can be improved by classifying the sample as one of a subset of possible tumor types.

In additional embodiments, the invention may be practiced by analyzing gene expression from single cells or homogenous cell populations which have been dissected away from, or otherwise isolated or purified from, contaminating cells of a sample as present in a simple biopsy. One advantage provided by these embodiments is that contaminating, non-tumor cells (such as infiltrating lymphocytes or other immune system cells) may be removed as so be absent from affecting the genes identified or the subsequent analysis of gene expression levels as provided herein. Such contamination is present where a biopsy is used to generate gene expression profiles.

In further embodiments of the invention utilizing Q-PCR or reverse transcriptase Q-PCR as the assay platform, the expression levels of gene sequences of the invention may be compared to expression levels of reference genes in the same sample or a ratio of expression levels may be used. This provides a means to “normalize” the expression data for comparison of data on a plurality of known tumor types and a cell containing sample to be assayed. While a variety of reference genes may be used, the invention may also be practiced with the use of 8 particular reference gene sequences that were identified for use with the set of 39 tumor types. Moreover, the Q-PCR may be performed in whole or in part with use of a multiplex format.

mRNA sequences corresponding to the 8 reference sequences are provided in Example 6 (Sequence Listing) along with additional identifying information. The listing of the identifying information, including accession numbers and other information, is provided by the following.

>Hs.77031_mRNA_1 gi|16741772|gb|BC016680.1|BC016680 Homo sapiens clone MGC:21349 IMAGE:4338754 polyA=3 >Hs.77541_mRNA_1 gi|12804364|gb|BC003043.1|BC003043 Homo sapiens clone MGC:4370 IMAGE:2822973 polyA=3 >Hs.7001_mRNA_1 gi|6808256|emb|AL137727.1|HSM802274 Homo sapiens mRNA; cDNA DKFZp434M0519 (from clone DKFZp434M0519); partial cds polyA=3 >Hs.302144_mRNA_1 gi|11493400|gb|AF130047.1|AF130047 Homo sapiens clone FLB3020 polyA=0 >Hs.26510_mRNA_2 gi|11345385|gb|AF308803.1|AF308803 Homo sapiens chromosome 15 map 15q26 polyA=3 >Hs.324709_mRNA_2 gi|12655026|gb|BC001361.1|BC001361 Homo sapiens clone MGC:2474 IMAGE:3050694 polyA=2 >Hs.65756_mRNA_3 gi|3641494|gb|AF035154.1|AF035154 Homo sapiens chromosome 16 map 16p13.3 polyA=3 >Hs.165743_mRNA_2 gi|13543889|gb|BC006091.1|BC006091 Homo sapiens clone MGC:12673 IMAGE:3677524 polyA=3

Detection of expression of any of the above reference sequences may be by the same or different methodology as for the other gene sequences described above. In some embodiments of the invention, the expression levels of gene sequences is measured by detection of expressed sequences in a cell containing sample as hybridizing to the following oligonucleotides, which correspond to the above sequences as indicated by the accession numbers provided.

>BC006091 TCATCTTCACCAAACCAGTCCGAGGGGTCG AAGCCAGACACGAGAGGAAGAGGGTCCTGG >BC003043 CTCTGCTCCTGCTCCTGCCTGCATGTTCTC TCTGTTGTTGGAGCCTGGAGCCTTGCTCTC >AF130047 TGCTCCCGGCTGTCCTCCTCTCCTCTTCCC TAGTGAGTGGTTAATGAGTGTTAATGCCTA >AF035154 CCCCATCTCTAAAACCAGTAAATCAGCCAG CGAATACCCGGAAGCAAGATGCACAGGCGG >BC001361 CCAGAAACAAGGAAGAGGAAAGACAAAGGG AAGGGACGGGAGCCCTGGAGAAGCCCGACC >AF308803 AAGTACAACCCATGCTGCTAAGATGCGAGC AGGAAGAGGCATCCTTTGCTAAATCCTGTT >BC016680 ACCTCACCCCTGCCCGGCCCAAGCTCTACT TGTGTACAGTGTATATTGTATAATAGACAA >AL137727 TTCCCTTAATTCCTCCTCCCGACCTTTTTT ACCCCCCCAGTTGCAGTATTTAACTGGGCT

In an additional aspect, the methods provided by the present invention may also be automated in whole or in part. This includes the embodiment of the invention in software. Non-limiting examples include processor executable instructions on one or more computer readable storage devices wherein said instructions direct the classification of tumor samples based upon gene expression levels as described herein. Additional processor executable instructions on one or more computer readable storage devices are contemplated wherein said instructions cause representation and/or manipulation, via a computer output device, of the process or results of a classification method.

The invention includes software and hardware embodiments wherein the gene expression data of a set of gene sequences in a plurality of known tumor types is embodied as a data set. In some embodiments, the gene expression data set is used for the practice of a method of the invention. The invention also provides computer related means and systems for performing the methods disclosed herein. In some embodiments, an apparatus for classifying a cell containing sample is provided. Such an apparatus may comprise a query input configured to receive a query storage configured to store a gene expression data set, as described herein, received from a query input; and a module for accessing and using data from the storage in a classification algorithm as described herein. The apparatus may further comprise a string storage for the results of the classification algorithm, optionally with a module for accessing and using data from the string storage in an output algorithm as described herein.

The steps of a method, process, or algorithm described in connection with the embodiments disclosed herein may be embodied directly in hardware, in a software module executed by a processor, or in a combination of the two. The various steps or acts in a method or process may be performed in the order shown, or may be performed in another order. Additionally, one or more process or method steps may be omitted or one or more process or method steps may be added to the methods and processes. An additional step, block, or action may be added in the beginning, end, or intervening existing elements of the methods and processes.

A further aspect of the invention provides for the use of the present invention in relation to clinical activities. In some embodiments, the determination or measurement of gene expression as described herein is performed as part of providing medical care to a patient, including the providing of diagnostic services in support of providing medical care. Thus the invention includes a method in the medical care of a patient, the method comprising determining or measuring expression levels of gene sequences in a cell containing sample obtained from a patient as described herein. The method may further comprise the classifying of the sample, based on the determination/measurement, as including a tumor cell of a tumor type or tissue origin in a manner as described herein. The determination and/or classification may be for use in relation to any aspect or embodiment of the invention as described herein.

The determination or measurement of expression levels may be preceded by a variety of related actions. In some embodiments, the measurement is preceded by a determination or diagnosis of a human subject as in need of said measurement. The measurement may be preceded by a determination of a need for the measurement, such as that by a medical doctor, nurse or other health care provider or professional, or those working under their instruction, or personnel of a health insurance or maintenance organization in approving the performance of the measurement as a basis to request reimbursement or payment for the performance.

The measurement may also be preceded by preparatory acts necessary to the actual measuring. Non-limiting examples include the actual obtaining of a cell containing sample from a human subject; or receipt of a cell containing sample; or sectioning a cell containing sample; or isolating cells from a cell containing sample; or obtaining RNA from cells of a cell containing sample; or reverse transcribing RNA from cells of a cell containing sample. The sample may be any as described herein for the practice of the invention.

In additional embodiments, the invention provides for a method of ordering, or receiving an order for, the performance of a method in the medical care of a patient or other method of the invention. The ordering may be made by a medical doctor, a nurse, or other health care provider, or those working under their instruction, while the receiving, directly or indirectly, may be made by any person who performs the method(s). The ordering may be by any means of communication, including communication that is written, oral, electronic, digital, analog, telephonic, in person, by facsimile, by mail, or otherwise passes through a jurisdiction within the United States.

The invention further provides methods in the processing of reimbursement or payment for a test, such as the above method in the medical care of a patient or other method of the invention. A method in the processing of reimbursement or payment may comprise indicating that 1) payment has been received, or 2) payment will be made by another payer, or 3) payment remains unpaid on paper or in a database after performance of an expression level detection, determination or measurement method of the invention. The database may be in any form, with electronic forms such as a computer implemented database included within the scope of the invention. The indicating may be in the form of a code (such as a CPT code) on paper or in the database. The “another payer” may be any person or entity beyond that to whom a previous request for reimbursement or payment was made.

Alternative, the method may comprise receiving reimbursement or payment for the technical or actual performance of the above method in the medical care of a patient; for the interpretation of the results from said method; or for any other method of the invention. Of course the invention also includes embodiments comprising instructing another person or party to receive the reimbursement or payment. The ordering may be by any communication means, including those described above. The receipt may be from any entity, including an insurance company, health maintenance organization, governmental health agency, or a patient as non-limiting examples. The payment may be in whole or in part. In the case of a patient, the payment may be in the form of a partial payment known as a co-pay.

In yet another embodiment, the method may comprise forwarding or having forwarded a reimbursement or payment request to an insurance company, health maintenance organization, governmental health agency, or to a patient for the performance of the above method in the medical care of a patient or other method of the invention. The request may be by any communication means, including those described above.

In a further embodiment, the method may comprise receiving indication of approval for payment, or denial of payment, for performance of the above method in the medical care of a patient or other method of the invention. Such an indication may come from any person or party to whom a request for reimbursement or payment was made. Non-limiting examples include an insurance company, health maintenance organization, or a governmental health agency, like Medicare or Medicaid as non-limiting examples. The indication may be by any communication means, including those described above.

An additional embodiment is where the method comprises sending a request for reimbursement for performance of the above method in the medical care of a patient or other method of the invention. Such a request may be made by any communication means, including those described above. The request may have been made to an insurance company, health maintenance organization, federal health agency, or the patient for whom the method was performed.

A further method comprises indicating the need for reimbursement or payment on a form or into a database for performance of the above method in the medical care of a patient or other method of the invention. Alternatively, the method may simply indicate the performance of the method. The database may be in any form, with electronic forms such as a computer implemented database included within the scope of the invention. The indicating may be in the form of a code (such as a CPT code) on paper or in the database.

In the above methods in the medical care of a patient or other method of the invention, the method may comprise reporting the results of the method, optionally to a health care facility, a health care provider or professional, a doctor, a nurse, or personnel working therefor. The reporting may also be directly or indirectly to the patient. The reporting may be by any means of communication, including those described above.

The invention further provides kits for the determination or measurement of gene expression levels in a cell containing sample as described herein. A kit will typically comprise one or more reagents to detect gene expression as described herein for the practice of the present invention. Non-limiting examples include polynucleotide probes or primers for the detection of expression levels, one or more enzymes used in the methods of the invention, and one or more tubes for use in the practice of the invention. In some embodiments, the kit will include an array, or solid media capable of being assembled into an array, for the detection of gene expression as described herein. In other embodiments, the kit may comprise one or more antibodies that is immunoreactive with epitopes present on a polypeptide which indicates expression of a gene sequence. In some embodiments, the antibody will be an antibody fragment.

A kit of the invention may also include instructional materials disclosing or describing the use of the kit or a primer or probe of the present invention in a method of the invention as provided herein. A kit may also include additional components to facilitate the particular application for which the kit is designed. Thus, for example, a kit may additionally contain means of detecting the label (e.g. enzyme substrates for enzymatic labels, filter sets to detect fluorescent labels, appropriate secondary labels such as a sheep anti-mouse-HRP, or the like). A kit may additionally include buffers and other reagents recognized for use in a method of the invention.

Having now generally described the invention, the same will be more readily understood through reference to the following examples which are provided by way of illustration, and are not intended to be limiting of the present invention, unless specified.

EXAMPLES Example 1: Information Capacity of Random Gene Sets

Subsets of 100 randomly selected expressed gene sequences used to classify among 39 tumor types were tested for their ability to classify among subsets of the 39 tumor types. The expression levels of random combinations of 5, 10, 15, 20, 25, 30, 35, 40, 45, and 49 (each combination sampled 10 times) of the 100 expressed sequences were used with data from tumor types and then used to predict test random sets of tumor samples (each sampled 10 times) ranging from 2 to all 39 types. FIG. 1 shows the classification capability of various gene sets are shown relative to the number of tumor types classified. As expected, a higher number of gene sequences are needed to classify tumor types with higher accuracies. FIG. 2 shows the classification performance for various numbers of tumor types relative to the number of gene sequences used.

The GenBank accession numbers of the 100 gene sequences are AF269223, BC006286, AK025501, AJ002367, AI469140, AW013883, NM_001238, AI476350, BC006546, AI041212, BF724944, AI376951, R56211, BC006393, X13274, BC001133, N62397, BC000885, AK001588, AK057901, AF146760, AI951287, AK025604, BC007581, BC015025, R43102, AW449550, AI922539, AI684144, AI277662, BC015999, AW444656, BC011612, BC015401, BF447279, BC009956, AL050163, BC001248, BE672684, AL137353, BC001340, U45975, BE856598, BC009060, AL137728, AA713797, AL583913, AK054617, AI028262, AI753041, BG939593, AL080179, AA814915, AF131798, AI961568, BC009849, AK021603, BC012561, AI570494, BC006973, AW294857, BC004952, AK026535, AI923614, AW082090, AI005513, AF339768, AK023167, AF169693, AF076249, BC007662, BC015520, AI814187, AI565381, AW271626, AK024120, AF139065, BC014075, AI887245, AF257081, AI767898, AF070634, AF155132, X69804, U65579, NM_004933, AI655104, AW131780, AI650407, AF131774, AA814057, AJ311123, BC009702, AF264036, AL161961, AJ010857, AF106912, AK023542, AF073518, and D83032. They were indexed from 1 to 100, and representative random sets used in the invention are as follows:

For 2 genes, genes 33 and 63, genes 17 and 72, genes 64 and 21, genes 48 and 25, genes 88 and 54, genes 80 and 32, genes 24 and 99, genes 14 and 31, genes 80 and 23, and genes 18 and 34 were used as the 10 random sets.

For 5 genes, set 1, genes 27, 97, 56, 88, and 50 were used. In set 2, genes 24, 26, 35, 48, and 83 were used. In set 3, genes 46, 62, 75, 91, and 2 were used. In set 4, genes 19, 61, 34, 87, and 13 were used. In set 5, genes 56, 32, 66, 20, and 55 were used. In set 6, genes 90, 21, 6, 78, and 66 were used. In set 7, genes 73, 47, 3, 82, and 86 were used. In set 8, genes 74, 39, 13, 7, and 67 were used. In set 9, genes 34, 1, 24, 85, and 62 were used. In set 10, genes 23, 89, 15, 54, and 98 were used.

For 10 genes, set 1, genes 11, 58, 90, 40, 20, 44, 10, 78, 72, and 74 were used. In set 2, genes 79, 71, 42, 48, 93, 56, 55, 14, 92, and 52 were used. In set 3, genes 62, 53, 52, 19, 98, 26, 76, 65, 33, and 40 were used. In set 4, genes 94, 8, 16, 99, 58, 19, 97, 92, 76, and 86 were used. In set 5, genes 18, 97, 16, 94, 84, 52, 11, 24, 89, and 92 were used. In set 6, genes 12, 42, 45, 51, 2, 75, 63, 28, 13, and 58 were used. In set 7, genes 67, 98, 55, 32, 82, 42, 2, 45, 37, and 23 were used. In set 8, genes 40, 43, 69, 68, 13, 97, 35, 3, 44, and 42 were used. In set 9, genes 69, 47, 96, 80, 100, 50, 42, 26, 65, and 17 were used. In set 10, genes 83, 84, 69, 67, 19, 85, 35, 11, 70, and 64 were used.

For 15 genes, set 1, genes 98, 81, 43, 63, 18, 56, 19, 97, 47, 13, 48, 99, 75, 45, and 83 were used. In set 2, genes 5, 72, 31, 59, 81, 40, 92, 3, 23, 50, 57, 74, 62, 21, and 93 were used. In set 3, genes 11, 69, 91, 100, 38, 1, 73, 64, 90, 26, 62, 2, 37, 23, and 18 were used. In set 4, genes 76, 9, 53, 4, 11, 41, 77, 44, 87, 51, 54, 49, 43, 56, and 67 were used. In set 5, genes 55, 34, 13, 89, 52, 74, 96, 80, 48, 22, 31, 39, 43, 91, and 54 were used. In set 6, genes 59, 88, 15, 90, 4, 73, 93, 7, 10, 18, 98, 83, 43, 3, and 5 were used. In set 7, genes 68, 91, 77, 33, 88, 94, 95, 41, 46, 27, 36, 51, 97, 7, and 2 were used. In set 8, genes 7, 10, 78, 40, 70, 84, 55, 1, 98, 22, 99, 91, 8, 17, and 89 were used. In set 9, genes 65, 10, 38, 8, 77, 98, 37, 43, 93, 99, 86, 16, 82, 27, and 9 were used. In set 10, genes 97, 27, 78, 38, 24, 19, 55, 47, 77, 13, 45, 25, 43, 70, and 68 were used.

For 20 genes, set 1, genes 41, 94, 38, 76, 35, 65, 92, 26, 49, 7, 85, 54, 77, 66, 98, 15, 86, 69, 70, and 67 were used. In set 2, genes 43, 87, 1, 81, 7, 14, 94, 28, 25, 55, 100, 41, 18, 47, 96, 89, 26, 53, 29, and 32 were used. In set 3, genes 48, 80, 90, 99, 50, 98, 36, 91, 6, 41, 61, 96, 74, 66, 9, 5, 16, 18, 20, and 1 were used. In set 4, genes 49, 58, 73, 24, 94, 22, 41, 52, 18, 19, 63, 91, 74, 37, 59, 95, 53, 87, 72, and 13 were used. In set 5, genes 67, 74, 2, 98, 46, 69, 5, 42, 22, 66, 60, 20, 100, 80, 24, 76, 63, 9, 39, and 15 were used. In set 6, genes 10, 74, 50, 92, 69, 68, 52, 56, 63, 71, 11, 17, 29, 64, 88, 59, 25, 94, 35, and 57 were used. In set 7, genes 97, 72, 16, 19, 14, 42, 70, 31, 29, 13, 22, 37, 95, 69, 87, 39, 18, 81, 58, and 100 were used. In set 8, genes 5, 3, 18, 91, 77, 19, 82, 31, 92, 22, 93, 45, 76, 84, 46, 100, 53, 99, 89, and 42 were used. In set 9, genes 62, 3, 85, 37, 34, 93, 52, 40, 74, 25, 86, 57, 33, 60, 20, 77, 78, 17, 28, and 13 were used. In set 10, genes 22, 26, 23, 39, 35, 10, 43, 32, 65, 38, 54, 45, 8, 17, 90, 20, 83, 60, 6, and 58 were used.

For 25 genes, set 1, genes 21, 28, 50, 27, 8, 48, 74, 80, 38, 96, 71, 15, 89, 84, 32, 26, 55, 36, 29, 68, 13, 7, 18, 63, and 72 were used. In set 2, genes 61, 38, 59, 92, 3, 80, 33, 68, 79, 70, 44, 26, 95, 63, 85, 27, 60, 43, 75, 96, 42, 99, 58, 48, and 91 were used. In set 3, genes 75, 83, 78, 5, 99, 56, 26, 36, 57, 23, 37, 28, 88, 16, 63, 2, 72, 59, 9, 80, 52, 91, 62, 3, and 27 were used. In set 4, genes 48, 75, 84, 83, 88, 29, 13, 9, 98, 6, 31, 63, 45, 5, 51, 52, 39, 22, 100, 91, 74, 12, 94, 21, and 8 were used. In set 5, genes 79, 84, 47, 43, 26, 37, 46, 19, 85, 91, 2, 10, 81, 89, 38, 71, 17, 57, 7, 93, 31, 87, 29, 78, and 73 were used. In set 6, genes 62, 93, 83, 42, 97, 96, 78, 98, 47, 22, 67, 48, 89, 95, 24, 81, 16, 45, 8, 90, 66, 64, 2, 3, and 58 were used. In set 7, genes 100, 34, 58, 28, 104, 35, 88, 76, 6, 30, 83, 81, 67, 36, 39, 87, 66, 45, 20, 15, 86, 56, 55, and 95 were used. In set 8, genes 17, 43, 50, 63, 47, 58, 95, 32, 79, 60, 16, 91, 86, 22, 97, 21, 9, 55, 72, 78, 77, 45, 100, 14, and 30 were used. In set 9, genes 24, 67, 60, 94, 59, 14, 70, 84, 8, 89, 63, 23, 39, 11, 81, 42, 33, 3, 12, 93, 54, 35, 78, 73, and 90 were used. In set 10, genes 11, 2, 19, 62, 13, 51, 30, 80, 81, 82, 52, 34, 67, 57, 25, 95, 93, 39, 26, 48, 44, 89, 61, 17, and 18 were used.

For 30 genes, set 1, genes 30, 97, 54, 21, 34, 9, 56, 71, 62, 14, 24, 23, 89, 61, 76, 41, 29, 67, 94, 22, 88, 4, 40, 33, 38, 78, 82, 66, 84, and 100 were used. In set 2, genes 89, 41, 56, 43, 98, 44, 35, 26, 19, 86, 15, 67, 8, 69, 3, 76, 48, 17, 55, 31, 25, 91, 72, 36, 18, 82, 37, 50, 9, and 75 were used. In set 3, genes 28, 39, 78, 15, 65, 93, 66, 29, 88, 35, 49, 69, 50, 9, 53, 80, 81, 95, 76, 44, 48, 64, 83, 11, 70, 33, 73, 96, 56, and 92 were used. In set 4, genes 4, 2, 19, 6, 11, 84, 94, 44, 60, 37, 29, 97, 53, 83, 98, 45, 65, 9, 85, 35, 20, 89, 10, 17, 23, 74, 70, 41, 18, and 76 were used. In set 5, genes 27, 4, 43, 1, 10, 95, 88, 74, 77, 47, 63, 81, 31, 9, 41, 100, 87, 57, 8, 79, 24, 6, 26, 20, 55, 61, 34, 42, 25, and 39 were used. In set 6, genes 47, 67, 98, 56, 37, 44, 5, 70, 48, 12, 20, 86, 83, 89, 27, 59, 19, 54, 69, 97, 43, 71, 58, 82, 8, 50, 51, 10, 25, and 72 were used. In set 7, genes 100, 99, 37, 58, 44, 60, 39, 3, 59, 96, 50, 68, 94, 69, 83, 90, 17, 4, 5, 67, 88, 56, 29, 79, 23, 1, 38, 25, 49, and 74 were used. In set 8, genes 26, 23, 58, 47, 6, 68, 41, 31, 16, 64, 19, 75, 36, 32, 87, 2, 12, 97, 73, 21, 53, 78, 15, 94, 1, 20, 79, 81, 70, and 7 were used. In set 9, genes 61, 48, 78, 75, 12, 36, 37, 66, 91, 2, 92, 32, 8, 26, 6, 82, 14, 68, 4, 88, 39, 89, 43, 41, 40, 87, 69, 74, 42, and 9 were used. In set 10, genes 58, 99, 60, 39, 50, 25, 22, 57, 48, 85, 24, 10, 97, 68, 36, 38, 93, 62, 52, 56, 34, 18, 32, 64, 95, 81, 74, 88, 61, and 96 were used.

For 35 genes, set 1, genes 52, 68, 22, 92, 43, 75, 20, 62, 15, 76, 99, 61, 64, 36, 12, 66, 24, 21, 31, 88, 25, 6, 93, 91, 55, 74, 69, 90, 23, 4, 80, 72, 97, 58, and 1 were used. In set 2, genes 48, 21, 68, 16, 96, 10, 1, 69, 36, 20, 3, 14, 59, 53, 12, 84, 90, 17, 9, 65, 4, 32, 75, 81, 88, 37, 38, 5, 94, 60, 64, 45, 7, 43, and 55 were used. In set 3, genes 33, 95, 59, 86, 83, 76, 36, 55, 90, 22, 62, 98, 34, 46, 4, 87, 5, 66, 38, 78, 97, 100, 71, 25, 30, 2, 21, 99, 12, 54, 9, 14, 81, 32, and 52 were used. In set 4, genes 27, 64, 40, 59, 63, 100, 50, 19, 1, 10, 96, 2, 34, 28, 67, 26, 87, 41, 15, 57, 33, 11, 94, 66, 82, 6, 52, 55, 84, 47, 97, 83, 80, 62, and 5 were used. In set 5, genes 99, 86, 92, 72, 83, 48, 79, 46, 91, 2, 90, 9, 23, 44, 85, 31, 38, 81, 76, 54, 71, 14, 3, 13, 62, 11, 39, 4, 95, 36, 20, 30, 75, 63, and 51 were used. In set 6, genes 41, 89, 81, 29, 86, 95, 34, 42, 50, 9, 45, 21, 64, 84, 74, 91, 69, 98, 57, 79, 39, 87, 93, 63, 26, 82, 2, 59, 30, 71, 83, 38, 77, 24, and 73 were used. In set 7, genes 87, 60, 59, 98, 43, 38, 28, 64, 29, 92, 22, 27, 40, 33, 69, 71, 73, 79, 15, 70, 32, 90, 76, 93, 6, 50, 55, 9, 49, 54, 36, 5, 48, 19, and 10 were used. In set 8, genes 100, 70, 98, 79, 91, 23, 37, 29, 73, 65, 78, 31, 3, 11, 30, 51, 16, 40, 95, 94, 62, 38, 67, 39, 82, 72, 22, 5, 87, 57, 6, 75, 35, 99, and 46 were used. In set 9, genes 46, 61, 59, 86, 29, 74, 56, 89, 52, 26, 54, 20, 84, 97, 33, 71, 14, 36, 38, 49, 28, 60, 19, 90, 11, 42, 87, 92, 82, 21, 94, 3, 22, 2, and 39 were used. In set 10, genes 31, 76, 77, 27, 72, 38, 42, 36, 53, 82, 61, 39, 98, 81, 34, 80, 22, 100, 8, 32, 17, 21, 28, 56, 59, 29, 55, 5, 62, 40, 90, 87, 24, 68, and 37 were used.

For 40 genes, set 1, genes 64, 50, 46, 22, 51, 6, 47, 12, 2, 30, 45, 7, 63, 55, 91, 90, 80, 49, 71, 8, 79, 82, 77, 76, 97, 5, 95, 11, 32, 70, 20, 62, 38, 26, 41, 58, 44, 87, 35, and 23 were used. In set 2, genes 44, 26, 16, 12, 30, 45, 71, 90, 37, 68, 32, 70, 58, 43, 51, 6, 62, 92, 87, 20, 56, 5, 47, 48, 86, 29, 98, 22, 59, 76, 8, 79, 64, 14, 50, 3, 54, 83, 96, and 80 were used. In set 3, genes 20, 34, 57, 70, 39, 15, 25, 33, 78, 51, 87, 46, 67, 80, 28, 52, 66, 72, 22, 88, 97, 3, 90, 6, 82, 42, 41, 94, 85, 61, 54, 84, 14, 9, 81, 19, 7, 91, 23, and 40 were used. In set 4, genes 61, 46, 64, 71, 35, 58, 100, 23, 95, 17, 87, 68, 54, 8, 50, 4, 27, 49, 47, 52, 53, 28, 24, 34, 45, 2, 89, 48, 3, 65, 42, 9, 92, 36, 6, 84, 51, 60, 77, and 94 were used. In set 5, genes 28, 97, 21, 43, 22, 89, 94, 87, 99, 5, 4, 20, 13, 61, 37, 42, 72, 62, 7, 12, 31, 23, 60, 98, 48, 38, 53, 56, 29, 69, 26, 82, 24, 74, 86, 10, 67, 2, 47, and 46 were used. In set 6, genes 12, 74, 96, 77, 78, 72, 53, 87, 47, 29, 40, 98, 52, 22, 69, 3, 58, 97, 60, 48, 55, 80, 57, 39, 50, 89, 71, 9, 63, 51, 21, 23, 73, 32, 20, 19, 25, 5, 38, and 46 were used. In set 7, genes 88, 79, 54, 44, 37, 36, 32, 91, 47, 50, 60, 92, 82, 80, 46, 19, 98, 20, 76, 29, 9, 95, 2, 77, 97, 74, 90, 73, 100, 1, 34, 85, 24, 71, 57, 99, 68, 13, 43, and 53 were used. In set 8, genes 23, 39, 7, 64, 20, 27, 69, 43, 38, 89, 50, 3, 16, 79, 83, 72, 65, 66, 32, 30, 100, 82, 28, 22, 54, 84, 53, 75, 59, 37, 34, 49, 12, 86, 71, 97, 26, 88, 70, and 57 were used. In set 9, genes 74, 96, 80, 39, 40, 82, 38, 56, 35, 93, 55, 73, 44, 17, 81, 27, 2, 83, 65, 89, 76, 8, 18, 45, 58, 77, 14, 49, 21, 6, 4, 92, 33, 13, 12, 88, 98, 24, 84, and 36 were used. In set 10, genes 35, 77, 48, 62, 26, 12, 41, 68, 81, 5, 37, 70, 28, 72, 50, 83, 64, 99, 74, 57, 84, 76, 52, 14, 87, 97, 3, 31, 73, 58, 44, 24, 15, 66, 45, 91, 4, 32, 46, and 49 were used.

For 45 genes, set 1, genes 52, 97, 84, 72, 96, 34, 18, 38, 88, 80, 91, 49, 71, 64, 93, 26, 62, 40, 68, 29, 67, 39, 60, 9, 13, 74, 95, 99, 27, 47, 25, 45, 31, 8, 69, 17, 75, 53, 51, 12, 23, 1, 6, 30, and 50 were used. In set 2, genes 97, 80, 55, 32, 94, 84, 28, 3, 6, 48, 17, 41, 65, 37, 79, 34, 61, 83, 35, 49, 27, 38, 43, 2, 24, 77, 25, 71, 58, 14, 8, 30, 46, 98, 82, 75, 22, 72, 26, 74, 93, 66, 73, 1, and 53 were used. In set 3, genes 64, 45, 38, 92, 23, 74, 66, 60, 100, 3, 82, 20, 54, 11, 19, 16, 80, 86, 14, 75, 62, 10, 52, 47, 13, 31, 35, 53, 41, 9, 79, 39, 17, 22, 99, 58, 46, 83, 43, 40, 44, 90, 95, 12, and 81 were used. In set 4, genes 20, 66, 9, 24, 16, 76, 99, 42, 86, 58, 15, 93, 48, 28, 26, 50, 68, 12, 2, 37, 82, 36, 27, 57, 45, 41, 32, 1, 52, 54, 30, 39, 7, 100, 59, 23, 94, 75, 8, 60, 55, 34, 38, 29, and 87 were used. In set 5, genes 66, 88, 73, 53, 51, 69, 36, 87, 78, 40, 58; 76, 31, 65, 56, 42, 100, 68, 5, 18, 17, 91, 45, 22, 74, 82, 1, 44, 67, 43, 10, 63, 79, 92, 6, 72, 80, 75, 9, 30, 19, 61, 99, 3, and 38 were used. In set 6, genes 75, 66, 84, 59, 9, 70, 100, 27, 79, 41, 73, 67, 23, 39, 28, 68, 21, 69, 38, 72, 86, 82, 36, 46, 77, 34, 47, 54, 13, 16, 7, 88, 22, 26, 4, 89, 55, 24, 61, 12, 35, 50, 95, 92, and 80 were used. In set 7, genes 59, 86, 10, 29, 53, 88, 43, 64, 11, 13, 19, 17, 36, 65, 73, 94, 20, 51, 80, 24, 66, 83, 44, 47, 21, 6, 52, 82, 69, 54, 100, 28, 18, 34, 35, 30, 74, 91, 49, 46, 60, 5, 38, 71, and 2 were used. In set 8, genes 77, 32, 55, 44, 6, 98, 94, 19, 10, 71, 72, 85, 67, 75, 78, 88, 90, 58, 89, 27, 69, 42, 31, 47, 1, 37, 52, 7, 57, 45, 11, 83, 49, 46, 34, 64, 14, 24, 87, 9, 56, 8, 20, 36, and 15 were used. In set 9, genes 4, 27, 83, 61, 46, 15, 35, 26, 51, 54, 23, 38, 100, 7, 42, 58, 44, 8, 22, 37, 20, 89, 56, 91, 70, 29, 11, 19, 87, 99, 21, 65, 72, 75, 49, 40, 45, 30, 43, 48, 63, 3, 18, 74, and 1 were used. In set 10, genes 68, 19, 90, 52, 55, 23, 17, 53, 3, 2, 74, 82, 26, 88, 48, 6, 8, 43, 15, 73, 57, 67, 85, 91, 13, 44, 81, 1, 75, 33, 51, 21, 4, 41, 77, 86, 40, 18, 31, 78, 92, 10, 64, 99, and 69 were used.

Classification of subsets of the 39 tumor types was performed with use of random selections of tumor types from the group of 39. The expression levels of gene sequence sets as described herein were used to classify random combinations of tumor types. Different random sets of tumor types were used with each of the sets of 100, 74, and 90 gene sequences as described in these examples. Representative, and non-limiting, examples of random sets of from 2 to 20 tumor types used are as follows, where the set of 39 tumor types were indexed from 1 to 39.

For 2 tumor types, set 1 used types 26 and 16. Set 2 used types 8 and 5. Set 3 used types 39 and 8. Set 4 used types 27 and 23. Set 5 used types 8 and 19. Set 6 used 12 and 21. Set 7 used types 30 and 15. Set 8 used types 30 and 5. Set 9 used types 18 and 22. Set 10 used types 27 and 26.

For 4 tumor types, set 1 used types 20, 35, 15 and 7. Set 2 used types 36, 1, 28 and 19. Set 3 used types 13, 4, 12 and 21. Set 4 used types 12, 33, 14 and 28. Set 5 used types 6, 28, 5 and 37. Set 6 used types 5, 25, 36 and 15. Set 7 used types 12, 26, 21 and 19. Set 8 used types 19, 3, 20 and 17. Set 9 used types 18, 10, 8 and 9. Set 10 used types 28, 20, 2 and 22.

For 6 tumor types, set 1 used types 27, 3, 10, 39, 11 and 20. Set 2 used types 33, 10, 20, 32, 13 and 19. Set 3 used types 31, 27, 18, 39, 8 and 16. Set 4 used types 25, 28, 10, 12, 7 and 39. Set 5 used types 14, 13, 28, 24, 30 and 36. Set 6 used types 9, 24, 8, 17, 36 and 26. Set 7 used types 20, 1, 34, 26, 6 and 19. Set 8 used types 12, 13, 3, 17, 34 and 22. Set 9 used types 7, 1, 17, 13, 20 and 34. Set 10 used types 5, 11, 25, 29, 28 and 35.

For 8 tumor types, set 1 used types 34, 33, 28, 3, 23, 25, 9 and 29. Set 2 used types 27, 8, 38, 28, 20, 14, 12 and 9. Set 3 used types 29, 21, 19, 1, 13, 26, 11 and 31. Set 4 used types 25, 17, 7, 20, 34, 8, 28 and 10. Set 5 used types 36, 28, 35, 26, 2, 8, 29 and 7. Set 6 used types 10, 23, 2, 27, 33, 21, 25 and 35. Set 7 used types 10, 18, 38, 2, 6, 7, 19 and 32. Set 8 used types 11, 37, 6, 28, 3, 9, 2 and 16. Set 9 used types 22, 2, 10, 8, 17, 19 and 33. Set 10 used types 35, 39, 8, 10, 37, 4, 36 and 6.

For 10 tumor types, set 1 used types 25, 10, 26, 2, 32, 31, 39, 23, 22 and 18. Set 2 used types 12, 35, 6, 16, 20, 3, 39, 36, 11 and 2. Set 3 used types 34, 1, 15, 29, 5, 39, 2, 12, 25 and 18. Set 4 used types 10, 8, 14, 18, 31, 19, 23, 20, 32 and 33. Set 5 used types 10, 18, 37, 15, 4, 35, 33, 24, 39 and 20. Set 6 used types 22, 16, 4, 3, 18, 21, 1, 25, 37 and 13. Set 7 used types 14, 6, 28, 18, 11, 13, 2, 32, 33 and 19. Set 8 used types 39, 2, 38, 4, 34, 8, 25, 6, 32 and 35. Set 9 used types 3, 10, 11, 16, 6, 15, 18, 14, 12 and 26. Set 10 used types 24, 25, 21, 9, 36, 29, 20, 39, 10 and 37.

For 12 tumor types, set 1 used types 26, 20, 4, 12, 2, 31, 38, 18, 16, 39, 3 and 33. Set 2 used types 25, 16, 4, 9, 29, 27, 14, 24, 21, 7, 23 and 2. Set 3 used types 31, 18, 23, 13, 25, 1, 29, 21, 35, 10, 32 and 39. Set 4 used types 8, 34, 23, 9, 35, 14, 25, 21, 2, 33, 18 and 28. Set 5 used types 6, 11, 21, 8, 5, 7, 19, 32, 3, 13, 36 and 9. Set 6 used types 12, 33, 14, 26, 27, 15, 2, 21, 36, 35, 9 and 39. Set 7 used types 26, 29, 32, 17, 31, 19, 6, 5, 20, 34, 2 and 24. Set 8 used types 17, 12, 8, 22, 28, 9, 27, 29, 14, 35, 4 and 32. Set 9 used types 29, 9, 36, 23, 33, 18, 21, 35, 3, 6, 2 and 1. Set 10 used types 1, 3, 35, 29, 22, 27, 8, 23, 2, 36, 14 and 19.

For 14 tumor types, set 1 used types 9, 26, 38, 25, 31, 3, 15, 14, 17, 33, 12, 35, 39 and 16. Set 2 used types 1, 26, 16, 25, 20, 12, 14, 37, 38, 24, 23, 33, 27 and 35. Set 3 used types 11, 21, 35, 38, 32, 34, 27, 39, 16, 15, 4, 5, 13 and 18. Set 4 used types 27, 5, 13, 28, 18, 17, 15, 20, 29, 37, 21, 36, 25 and 14. Set 5 used types 5, 12, 17, 9, 25, 21, 33, 37, 8, 15, 24, 3, 34 and 28. Set 6 used types 11, 19, 34, 26, 9, 6, 32, 14, 27, 29, 30, 16, 24 and 17. Set 7 used types 31, 26, 11, 18, 19, 20, 9, 8, 5, 36, 12, 6, 27 and 38. Set 8 used types 20, 17, 11, 5, 15, 9, 2, 39, 34, 24, 27, 26, 35 and 10. Set 9 used types 1, 14, 39, 30, 17, 6, 10, 35, 31, 33, 15, 29, 32 and 7. Set 10 used types 1, 19, 24, 28, 34, 12, 13, 18, 32, 11, 14, 21, 22 and 25.

For 16 tumor types, set 1 used types 27, 15, 8, 12, 6, 20, 26, 19, 25, 2, 37, 38, 7, 39, 4 and 33. Set 2 used types 17, 18, 28, 5, 6, 31, 25, 13, 8, 20, 37, 36, 35, 9, 23 and 27. Set 3 used types 23, 37, 34, 14, 16, 27, 32, 33, 21, 38, 4, 30, 24, 22, 17 and 25. Set 4 used types 7, 37, 38, 21, 34, 31, 32, 25, 10, 36, 19, 11, 6, 26, 18 and 35. Set 5 used types 9, 32, 12, 24, 20, 13, 38, 21, 39, 23, 36, 18, 37, 22, 5 and 3. Set 6 used types 14, 21, 5, 17, 6, 20, 18, 35, 22, 10, 3, 23, 13, 2, 34 and 26. Set 7 used types 1, 8, 19, 6, 9, 39, 28, 18, 13, 31, 14, 16, 37, 12, 3 and 25. Set 8 used types 32, 36, 28, 38, 9, 33, 2, 5, 4, 11, 19, 18, 13, 8, 12 and 3. Set 9 used types 9, 14, 10, 5, 28, 32, 23, 6, 39, 3, 17, 8, 19, 1, 31 and 12. Set 10 used types 4, 34, 11, 6, 38, 19, 7, 20, 23, 3, 25, 37, 26, 1, 15 and 12.

For 18 tumor types, set 1 used types 15, 24, 39, 35, 7, 30, 16, 13, 20, 3, 26, 4, 12, 10, 34, 25, 21 and 28. Set 2 used types 21, 23, 29, 11, 10, 19, 13, 28, 4, 20, 17, 24, 30, 12, 39, 34, 31 and 9. Set 3 used types 7, 17, 27, 6, 30, 8, 22, 2, 32, 26, 21, 14, 4, 38, 1, 35, 16 and 28. Set 4 used types 17, 13, 20, 33, 10, 3, 16, 22, 1, 38, 2, 9, 28, 5, 6, 19, 12 and 11. Set 5 used types 4, 35, 21, 25, 18, 17, 8, 14, 31, 30, 9, 1, 2, 23, 36, 29, 32 and 37. Set 6 used types 17, 34, 2, 18, 19, 15, 16, 13, 4, 24, 5, 35, 6, 22, 28, 37, 38 and 1. Set 7 used types 34, 26, 12, 25, 27, 3, 17, 7, 2, 32, 9, 36, 21, 19, 22, 8, 20 and 29. Set 8 used types 12, 34, 38, 25, 17, 22, 14, 39, 10, 7, 31, 2, 3, 11, 29, 30, 16 and 24. Set 9 used types 13, 26, 27, 14, 5, 10, 8, 7, 16, 30, 37, 4, 6, 35, 28, 1, 36 and 20. Set 10 used types 15, 2, 17, 23, 26, 28, 36, 38, 12, 6, 19, 37, 20, 14, 9, 39, 11 and 21.

For 20 tumor types, set 1 used types 25, 13, 21, 15, 37, 20, 12, 28, 9, 10, 26, 22, 14, 24, 16, 7, 39, 34, 33 and 4. Set 2 used types 20, 17, 10, 27, 19, 28, 5, 1, 23, 21, 38, 7, 13, 22, 32, 31, 9, 4, 3 and 24. Set 3 used types 17, 13, 7, 20, 11, 38, 34, 3, 15, 12, 5, 39, 9, 10, 4, 35, 27, 6, 21 and 33. Set 4 used types 6, 13, 17, 26, 1, 7, 33, 5, 10, 32, 3, 23, 35, 4, 14, 28, 12, 38, 8 and 27. Set 5 used types 10, 23, 9, 38, 5, 29, 12, 27, 25, 6, 7, 26, 37, 31, 24, 36, 19, 15, 16 and 11. Set 6 used types 30, 24, 21, 11, 23, 25, 8, 9, 7, 31, 27, 5, 14, 29, 1, 19, 16, 12, 22 and 17. Set 7 used types 26, 13, 23, 19, 22, 11, 25, 21, 33, 20, 6, 17, 2, 10, 31, 34, 27, 37, 7 and 9. Set 8 used types 30, 1, 38, 7, 31, 37, 11, 25, 6, 19, 28, 33, 17, 29, 10, 27, 16, 3, 14 and 15. Set 9 used types 15, 19, 26, 24, 5, 33, 11, 2, 13, 18, 31, 22, 32, 20, 23, 6, 10, 25, 36 and 3. Set 10 used types 24, 25, 21, 29, 14, 18, 31, 2, 20, 39, 23, 9, 38, 12, 6, 32, 22, 26, 33 and 7.

Example 4: Specified Gene Sets

A first set of 74 genes and a second set of 90 genes, where the two sets have 38 members in common, were used in the practice of the invention.

Random subsets of about 5 to 49 members of the set of 74 expressed gene sequences were evaluated in a manner analogous to that described in Example 3. Again, the expression levels of random combinations of 5, 10, 15, 20, 25, 30, 35, 40, 45, and 49 (each combination sampled 10 times) of the 74 expressed sequences were used with data from tumor types and then used to predict test random sets of tumor samples (each sampled 10 times) ranging from 2 to all 39 types. The resulting data are shown in FIGS. 4-6.

The members of the 74 gene sequences were indexed from 1 to 74, and representative random sets used in the invention are as follows:

For 2 genes, set 1, genes 64 and 6 were used. For set 2, genes 64 and 13 were used. For set 3, genes 67 and 51 were used. For set 4, genes 51 and 29 were used. For set 5, genes 46 and 12 were used. For set 6, genes 68 and 65 were used. For set 7, genes 6 and 28 were used. For set 8, genes 9 and 55 were used. For set 9, genes 55 and 71 were used. For set 10, genes 63 and 39 were used.

For 5 genes, set 1, genes 8, 64, 50, 54, and 4 were used. In set 2, genes 39, 17, 45, 34, and 15 were used. In set 3, genes 10, 4, 61, 21, and 55 were used. In set 4, genes 59, 37, 21, 23, and 64 were used. In set 5, genes 69, 8, 25, 59, and 63 were used. In set 6, genes 45, 71, 19, 59, and 38 were used. In set 7, genes 21, 43, 14, 48, and 30 were used. In set 8, genes 73, 35, 36, 10, and 9 were used. In set 9, genes 62, 28, 11, 70, and 64 were used. In set 10, genes 8, 16, 70, 18, and 59 were used.

For 10 genes, set 1, genes 49, 72, 38, 68, 52, 21, 1, 10, 2, and 40 were used. In set 2, genes 54, 70, 28, 64, 68, 41, 44, 20, 7, and 2 were used. In set 3, genes 71, 49, 51, 11, 18, 53, 8, 42, 36, and 58 were used. In set 4, genes 72, 15, 35, 3, 23, 8, 2, 48, 22, and 65 were used. In set 5, genes 44, 19, 6, 22, 38, 5, 37, 9, 30, and 14 were used. In set 6, genes 15, 27, 3, 10, 31, 19, 44, 39, 48, and 46 were used. In set 7, genes 70, 30, 9, 33, 63, 71, 32, 34, 20, and 7 were used. In set 8, genes 45, 29, 54, 58, 15, 21, 68, 5, 42, and 62 were used. In set 9, genes 74, 17, 66, 46, 10, 8, 63, 5, 24, and 2 were used. In set 10, genes 33, 2, 34, 19, 60, 71, 42, 51, 70, and 66 were used.

For 15 genes, set 1, genes 13, 22, 26, 67, 64, 40, 68, 71, 4, 28, 24, 33, 46, 69, and 41 were used. In set 2, genes 10, 1, 14, 70, 71, 64, 46, 67, 45, 48, 65, 74, 34, 49, and 37 were used. In set 3, genes 58, 30, 44, 40, 51, 36, 33, 60, 39, 21, 54, 64, 25, 13, and 35 were used. In set 4, genes 63, 70, 60, 32, 31, 16, 49, 65, 38, 5, 72, 47, 40, 2, and 46 were used. In set 5, genes 43, 6, 40, 13, 39, 72, 68, 41, 27, 73, 36, 25, 33, 34, and 1 were used. In set 6, genes 68, 67, 71, 59, 73, 62, 31, 43, 7, 44, 21, 48, 54, 58, and 6 were used. In set 7, genes 16, 50, 61, 62, 27, 2, 21, 1, 41, 28, 68, 35, 17, 47, and 46 were used. In set 8, genes 27, 18, 44, 66, 2, 20, 53, 64, 46, 70, 57, 7, 51, 10, and 45 were used. In set 9, genes 65, 8, 43, 23, 50, 46, 21, 41, 44, 3, 31, 17, 7, 66, and 70 were used. In set 10, genes 16, 14, 61, 51, 39, 33, 43, 31, 53, 65, 74, 42, 29, 9, and 11 were used.

For 20 genes, set 1, genes 14, 60, 6, 71, 74, 16, 62, 39, 56, 44, 32, 72, 18, 42, 66, 49, 1, 9, 69, and 21 were used. In set 2, genes 23, 1, 7, 27, 26, 71, 12, 4, 22, 69, 62, 44, 6, 25, 57, 28, 33, 9, 21, and 51 were used. In set 3, genes 46, 48, 29, 54, 55, 69, 73, 47, 6, 27, 24, 21, 15, 43, 45, 7, 62, 25, 22, and 74 were used. In set 4, genes 12, 65, 24, 73, 45, 57, 49, 63, 61, 1, 58, 10, 2, 18, 8, 51, 67, 69, 59, and 13 were used. In set 5, genes 33, 43, 9, 52, 54, 38, 8, 16, 48, 1, 39, 60, 17, 6, 15, 66, 68, 63, 37, and 42 were used. In set 6, genes 43, 19, 44, 28, 56, 34, 66, 42, 73, 40, 65, 38, 54, 20, 51, 37, 30, 35, 53, and 61 were used. In set 7, genes 61, 6, 20, 4, 34, 53, 70, 38, 35, 46, 36, 16, 1, 23, 68, 12, 59, 71, 65, and 14 were used. In set 8, genes 25, 68, 69, 3, 33, 49, 19, 56, 54, 4, 32, 6, 45, 16, 67, 52, 65, 14, 12, and 40 were used. In set 9, genes 47, 7, 36, 32, 61, 74, 14, 45, 26, 51, 69, 12, 41, 42, 64, 25, 27, 57, 23, and 58 were used. In set 10, genes 27, 13, 3, 17, 51, 7, 37, 43, 20, 12, 52, 21, 25, 2, 5, 32, 62, 47, 4, and 26 were used.

For 25 genes, set 1, genes 57, 61, 31, 38, 3, 7, 72, 43, 32, 23, 28, 71, 48, 17, 2, 49, 10, 30, 66, 12, 69, 41, 20, 63, and 68 were used. In set 2, genes 18, 54, 47, 57, 24, 42, 66, 46, 16, 58, 37, 60, 62, 9, 2, 27, 36, 52, 13, 32, 45, 6, 43, 21, and 56 were used. In set 3, genes 47, 48, 52, 16, 56, 54, 42, 37, 17, 41, 35, 21, 6, 9, 63, 10, 49, 68, 23, 25, 70, 3, 58, 2, and 31 were used. In set 4, genes 50, 10, 25, 16, 68, 15, 29, 73, 27, 63, 3, 17, 28, 66, 19, 13, 4, 9, 36, 48, 23, 57, 59, 26, and 14 were used. In set 5, genes 40, 39, 43, 49, 66, 15, 14, 29, 36, 21, 19, 44, 72, 58, 69, 12, 11, 9, 37, 46, 32, 51, 3, 24, and 6 were used. In set 6, genes 42, 49, 44, 32, 46, 35, 70, 40, 3, 21, 11, 67, 25, 56, 37, 43, 60, 55, 16, 27, 30, 53, 63, 23, and 33 were used. In set 7, genes 70, 27, 68, 17, 64, 65, 18, 69, 10, 67, 42, 23, 48, 14, 31, 11, 55, 25, 52, 34, 13, 45, 12, 29, and 47 were used. In set 8, genes 48, 10, 17, 27, 25, 55, 12, 62, 30, 65, 15, 49, 70, 14, 54, 24, 33, 26, 50, 60, 6, 40, 67, 11, and 2 were used. In set 9, genes 41, 47, 24, 59, 7, 44, 2, 67, 12, 19, 13, 17, 35, 56, 28, 14, 61, 15, 60, 58, 1, 64, 31, 45, and 23 were used. In set 10, genes 42, 72, 41, 38, 57, 27, 4, 13, 9, 43, 34, 28, 8, 62, 64, 46, 12, 70, 21, 66, 16, 7, 48, 3, and 54 were used.

For 30 genes, set 1, genes 16, 47, 67, 9, 22, 10, 64, 72, 46, 6, 60, 74, 3, 68, 57, 63, 14, 54, 58, 30, 28, 18, 70, 73, 52, 39, 34, 61, 12, 21 were used. In set 2, genes 18, 1, 44, 24, 68, 26, 62, 10, 47, 67, 37, 55, 32, 35, 34, 14, 49, 30, 17, 16, 51, 45, 74, 31, 9, 57, 66, 39, 53, and 8 were used. In set 3, genes 58, 45, 55, 39, 22, 32, 9, 49, 31, 13, 51, 56, 28, 12, 3, 59, 74, 35, 42, 67, 69, 47, 66, 18, 52, 57, 43, 5, 26, and 4 were used. In set 4, genes 45, 1, 74, 12, 18, 23, 59, 27, 38, 40, 72, 56, 50, 20, 52, 32, 5, 16, 9, 21, 60, 64, 49, 70, 30, 61, 6, 10, 31, and 24 were used. In set 5, genes 60, 53, 7, 32, 73, 25, 69, 48, 17, 45, 16, 3, 14, 9, 37, 41, 72, 43, 68, 39, 20, 51, 59, 23, 6, 15, 74, 19, 31, and 66 were used. In set 6, genes 47, 54, 9, 38, 60, 33, 40, 12, 57, 45, 26, 56, 11, 27, 67, 25, 69, 59, 68, 7, 61, 72, 23, 21, 28, 48, 29, 65, 37, and 15 were used. In set 7, genes 21, 42, 30, 57, 65, 59, 53, 74, 45, 66, 68, 41, 19, 24, 8, 10, 61, 43, 38, 67, 37, 47, 40, 22, 63, 35, 70, 72, 5, and 6 were used. In set 8, genes 58, 11, 28, 36, 24, 34, 53, 9, 44, 23, 51, 70, 22, 17, 15, 59, 5, 60, 1, 64, 21, 50, 35, 52, 31, 43, 38, 39, 32, and 62 were used. In set 9, genes 43, 30, 63, 7, 60, 40, 39, 1, 48, 17, 69, 57, 6, 62, 19, 38, 36, 13, 66, 64, 25, 31, 65, 47, 27, 16, 53, 68, 37, and 41 were used. In set 10, genes 22, 17, 4, 2, 37, 16, 49, 7, 63, 64, 14, 15, 74, 43, 25, 54, 46, 50, 53, 67, 39, 62, 59, 10, 55, 72, 65, 52, 58, and 19 were used.

For 35 genes, set 1, genes 4, 43, 55, 49, 13, 26, 32, 21, 18, 50, 14, 20, 65, 7, 24, 52, 58, 8, 30, 37, 54, 71, 2, 31, 44, 61, 66, 67, 28, 39, 10, 70, 17, 19, and 45 were used. In set 2, genes 14, 13, 67, 21, 48, 28, 69, 47, 50, 3, 68, 63, 22, 41, 60, 61, 5, 44, 56, 65, 7, 66, 15, 6, 45, 2, 36, 5, 30, 72, 34, 46, 24, 29, and 12 were used. In set 3, genes 67, 25, 58, 11, 17, 16, 3, 69, 21, 1, 59, 26, 72, 41, 47, 2, 34, 24, 10, 19, 33, 5, 50, 9, 71, 20, 62, 8, 68, 61, 23, 37, 35, 60, and 32 were used. In set 4, genes 5, 30, 14, 1, 59, 27, 28, 51, 55, 61, 18, 37, 17, 73, 6, 44, 67, 12, 35, 11, 53, 72, 70, 25, 21, 7, 34, 13, 74, 43, 52, 39, 54, 2, and 19 were used. In set 5, genes 56, 64, 58, 35, 1, 23, 43, 4, 73, 28, 54, 6, 51, 68, 49, 37, 16, 71, 3, 21, 48, 69, 70, 10, 26, 22, 50, 44, 2, 60, 38, 40, 66, 63, and 65 were used. In set 6, genes 72, 49, 51, 44, 19, 28, 1, 11, 3, 40, 33, 41, 70, 29, 48, 62, 50, 4, 47, 60, 68, 10, 61, 32, 20, 13, 22, 59, 65, 64, 67, 21, 35, 39, and 24 were used. In set 7, genes 14, 35, 31, 20, 8, 59, 50, 15, 52, 62, 19, 30, 71, 68, 72, 47, 38, 74, 36, 49, 73, 22, 41, 25, 69, 16, 32, 24, 51, 43, 65, 3, 6, 53, and 29 were used. In set 8, genes 22, 44, 23, 9, 26, 56, 72, 59, 35, 61, 51, 69, 64, 30, 53, 27, 11, 55, 39, 67, 48, 28, 14, 10, 8, 12, 40, 24, 57, 34, 50, 32, 42, 41, and 38 were used. In set 9, genes 15, 7, 27, 6, 67, 9, 26, 57, 30, 37, 58, 23, 42, 11, 36, 52, 32, 29, 62, 21, 41, 61, 64, 18, 40, 35, 66, 1, 2, 56, 16, 3, 55, 10, and 51 were used. In set 10, genes 9, 14, 71, 25, 44, 37, 49, 46, 66, 53, 7, 33, 22, 12, 73, 50, 27, 24, 13, 5, 41, 51, 61, 16, 28, 56, 23, 20, 10, 8, 70, 48, 42, 52, and 34 were used.

For 40 genes, set 1, genes 26, 36, 43, 30, 62, 19, 20, 51, 41, 71, 1, 63, 10, 56, 65, 17, 15, 50, 5, 35, 4, 54, 12, 70, 48, 31, 47, 37, 34, 8, 3, 69, 40, 44, 46, 59, 61, 74, 23, 27 were used. In set 2, genes 1, 4, 38, 24, 37, 69, 21, 52, 13, 2, 63, 51, 30, 16, 27, 58, 74, 20, 32, 53, 59, 31, 50, 10, 42, 8, 54, 36, 5, 47, 70, 41, 12, 46, 28, 19, 35, 9, 61, and 48 were used. In set 3, genes 35, 48, 40, 47, 20, 67, 57, 72, 15, 17, 46, 37, 9, 2, 60, 30, 65, 49, 29, 64, 16, 21, 7, 74, 61, 11, 58, 71, 62, 23, 24, 55, 3, 53, 52, 27, 18, 50, 25, and 66 were used. In set 4, genes 35, 10, 59, 19, 27, 40, 30, 4, 9, 52, 2, 29, 26, 41, 55, 17, 13, 53, 71, 63, 58, 44, 45, 62, 70, 16, 64, 48, 43, 8, 38, 72, 49, 37, 18, 36, 74, 42, 46, and 54 were used. In set 5, genes 16, 61, 1, 10, 20, 51, 22, 6, 43, 65, 66, 24, 30, 9, 14, 40, 32, 74, 18, 71, 15, 28, 52, 31, 56, 55, 23, 4, 58, 36, 60, 54, 25, 63, 27, 64, 50, 29, 44, and 45 were used. In set 6, genes 15, 30, 3, 50, 61, 47, 13, 48, 45, 17, 46, 10, 28, 37, 8, 54, 9, 5, 63, 18, 39, 49, 34, 68, 14, 23, 43, 11, 1, 51, 56, 67, 20, 57, 6, 19, 25, 31, 21, and 12 were used. In set 7, genes 45, 73, 53, 29, 35, 56, 70, 51, 30, 59, 49, 22, 6, 43, 28, 31, 40, 4, 66, 25, 37, 19, 12, 65, 26, 74, 46, 50, 23, 62, 17, 69, 36, 41, 34, 27, 67, 7, 24, and 13 were used. In set 8, genes 62, 30, 38, 41, 18, 13, 49, 71, 68, 47, 50, 70, 66, 5, 23, 33, 27, 56, 6, 7, 34, 28, 26, 58, 53, 46, 16, 52, 72, 42, 10, 54, 67, 64, 12, 8, 19, 57, 73, and 17 were used. In set 9, genes 11, 32, 48, 54, 42, 67, 13, 53, 21, 44, 57, 22, 40, 12, 5, 29, 69, 37, 17, 39, 45, 73, 60, 26, 14, 72, 4, 59, 24, 46, 18, 51, 36, 61, 35, 9, 19, 16, 38, and 28 were used. In set 10, genes 58, 1, 55, 59, 11, 63, 3, 26, 49, 69, 34, 47, 65, 46, 14, 39, 5, 67, 16, 66, 64, 38, 44, 32, 15, 22, 19, 71, 23, 52, 45, 53, 48, 8, 60, 73, 9, 30, 25, and 37 were used.

For 45 genes, set 1, genes 26, 21, 17, 34, 19, 27, 6, 61, 24, 42, 3, 60, 70, 43, 54, 13, 9, 20, 28, 58, 12, 23, 33, 4, 63, 56, 67, 1, 11, 68, 41, 59, 45, 5, 48, 32, 10, 44, 16, 65, 51, 62, 22, 38, and 74 were used. In set 2, genes 21, 41, 67, 5, 51, 53, 28, 25, 31, 60, 52, 17, 50, 11, 29, 45, 2, 32, 71, 13, 68, 22, 74, 33, 48, 56, 62, 42, 26, 14, 61, 23, 9, 46, 66, 10, 64, 59, 54, 69, 27, 47, 44, 34, and 40 were used. In set 3, genes 68, 48, 43, 74, 17, 4, 49, 34, 38, 60, 12, 42, 18, 5, 51, 32, 1, 57, 9, 11, 30, 13, 37, 15, 29, 33, 44, 20, 55, 70, 45, 41, 24, 56, 35, 52, 59, 7, 25, 2, 31, 64, 71, 22, and 39 were used. In set 4, genes 44, 61, 51, 69, 65, 72, 29, 57, 40, 62, 66, 63, 67, 55, 74, 14, 56, 11, 16, 58, 1, 15, 3, 48, 42, 7, 8, 30, 18, 19, 23, 60, 4, 10, 21, 43, 12, 37, 32, 25, 22, 50, 34, 59, and 2 were used. In set 5, genes 67, 54, 33, 41, 5, 61, 3, 10, 2, 71, 73, 53, 25, 42, 44, 23, 9, 38, 45, 62, 32, 46, 40, 8, 66, 49, 16, 24, 68, 69, 21, 52, 20, 6, 48, 11, 57, 39, 22, 31, 63, 36, 34, 35, and 17 were used. In set 6, genes 43, 45, 19, 17, 4, 58, 37, 7, 42, 52, 2, 62, 25, 66, 24, 15, 22, 74, 68, 67, 8, 1, 33, 70, 31, 50, 64, 14, 61, 51, 6, 38, 35, 39, 72, 5, 27, 36, 11, 18, 12, 48, 46, 54, and 71 were used. In set 7, genes 41, 45, 58, 11, 66, 26, 53, 13, 60, 4, 65, 18, 67, 73, 28, 55, 56, 57, 29, 68, 23, 19, 42, 17, 22, 62, 61, 10, 43, 64, 38, 71, 7, 40, 16, 34, 74, 12, 37, 8, 63, 44, 49, 47, and 3 were used. In set 8, genes 47, 40, 59, 14, 50, 71, 1, 57, 19, 28, 6, 34, 68, 4, 30, 20, 31, 33, 38, 39, 17, 41, 24, 65, 70, 61, 3, 35, 45, 11, 9, 8, 73, 42, 26, 23, 46, 72, 25, 64, 16, 53, 62, 18, and 7 were used. In set 9, genes 61, 5, 69, 22, 7, 17, 26, 13, 2, 30, 55, 33, 47, 14, 59, 32, 9, 44, 23, 45, 42, 25, 15, 57, 48, 50, 1, 68, 18, 72, 46, 73, 67, 36, 63, 60, 28, 21, 20, 8, 29, 35, 37, 38, and 71 were used. In set 10, genes 22, 31, 58, 50, 64, 11, 17, 67, 41, 2, 21, 4, 61, 70, 54, 3, 71, 25, 40, 43, 69, 38, 9, 73, 45, 16, 34, 10, 7, 52, 35, 19, 66, 24, 5, 60, 18, 14, 59, 32, 68, 15, 56, 63, and 65 were used.

A similar experiment was performed with random subsets of about 5 to 49 members of the set of 90 expressed gene sequences. Again, the expression levels of random combinations of 5, 10, 15, 20, 25, 30, 35, 40, 45, and 49 (each combination sampled 10 times) of the 90 expressed sequences were used with data from tumor types and then used to predict test random sets of tumor samples (each sampled 10 times) ranging from 2 to all 39 types. The resulting data are shown in FIGS. 7-9.

The members of the 90 gene sequences were indexed from 1 to 90, and representative random sets used in the invention are as follows:

For 2 genes, set 1, genes 30 and 72 were used. For set 2, genes 65 and 88 were used. For set 3, genes 76 and 88 were used. For set 4, genes 5 and 86 were used. For set 5, genes 30 and 32 were used. For set 6, genes 6 and 59 were used. For set 7, genes 57 and 2 were used. For set 8, genes 49 and 28 were used. For set 9, genes 37 and 35 were used. For set 10, genes 34 and 18 were used.

For 5 genes set 1, genes 1, 83, 59, 36, 66, and 88 were used. In set 2, genes 58, 13, 59, 22, and 64 were used. In set 3, genes 46, 72, 51, 88, and 14 were used. In set 4, genes 23, 74, 22, 27, and 20 were used. In set 5, genes 58, 54, 78, 87, and 50 were used. In set 6, genes 59, 6, 56, 78, and 9 were used. In set 7, genes 30, 78, 69, 83, and 21 were used. In set 8, genes 5, 39, 54, 56, and 55 were used. In set 9, genes 9, 70, 54, 67, and 43 were used. In set 10, genes 80, 81, 63, 90, and 53 were used.

For 10 genes, set 1, genes 70, 17, 45, 5, 2, 37, 6, 76, 39, and 14 were used. In set 2, genes 54, 16, 80, 26, 15, 45, 50, 8, 73, and 48 were used. In set 3, genes 66, 87, 31, 74, 37, 45, 19, 1, 70, and 7 were used. In set 4, genes 85, 17, 78, 61, 23, 59, 27, 18, 58, and 24 were used. In set 5, genes 44, 89, 36, 76, 49, 3, 21, 24, 38, and 69 were used. In set 6, genes 32, 72, 55, 2, 86, 81, 53, 45, 17, and 74 were used. In set 7, genes 27, 55, 62, 33, 32, 84, 21, 45, 23, and 7 were used. In set 8, genes 62, 45, 68, 31, 69, 39, 33, 63, 19, and 22 were used. In set 9, genes 71, 39, 11, 56, 88, 80, 37, 77, 62, and 35 were used. In set 10, genes 38, 83, 41, 47, 66, 87, 10, 4, 88, and 22 were used.

For 15 genes, set 1, genes 61, 17, 64, 14, 1, 41, 72, 47, 69, 48, 49, 70, 12, 20, and 35 were used. In set 2, genes 26, 49, 69, 31, 84, 42, 24, 56, 82, 12, 29, 2, 21, 15, and 71 were used. In set 3, genes 54, 62, 8, 32, 58, 65, 39, 44, 35, 22, 34, 77, 43, 83, and 75 were used. In set 4, genes 62, 50, 57, 80, 28, 83, 32, 56, 14, 2, 3, 48, 67, 79, and 72 were used. In set 5, genes 55, 58, 77, 68, 90, 76, 17, 72, 85, 34, 43, 33, 62, 6, and 64 were used. In set 6, genes 41, 63, 90, 9, 25, 35, 2, 14, 65, 87, 11, 36, 10, 79, and 17 were used. In set 7, genes 69, 89, 77, 33, 71, 4, 6, 46, 72, 13, 68, 81, 31, 50, and 32 were used. In set 8, genes 29, 69, 34, 47, 32, 52, 63, 73, 23, 25, 33, 10, 37, 17, and 55 were used. In set 9, genes 24, 13, 45, 17, 51, 48, 20, 30, 29, 40, 53, 19, 88, 76, and 28 were used. In set 10, genes 86, 33, 19, 4, 84, 25, 78, 29, 88, 10, 7, 67, 85, 45, and 8 were used.

For 20 genes, set 1, genes 57, 78, 43, 50, 14, 71, 56, 25, 80, 31, 88, 4, 49, 13, 3, 38, 32, 8, 52, and 75 were used. In set 2, genes 84, 46, 23, 85, 55, 82, 56, 83, 48, 89, 8, 60, 21, 40, 20, 17, 87, 24, 34, and 39 were used. In set 3, genes 72, 88, 53, 46, 82, 9, 34, 21, 76, 24, 14, 35, 90, 31, 58, 30, 15, 41, 7, and 28 were used. In set 4, genes 22, 62, 21, 3, 45, 50, 58, 72, 69, 82, 49, 42, 47, 9, 15, 59, 17, 24, 40, and 52 were used. In set 5, genes 71, 18, 74, 53, 43, 75, 76, 54, 63, 64, 10, 5, 90, 51, 31, 58, 28, 35, 70, and 23 were used. In set 6, genes 7, 30, 77, 25, 17, 16, 35, 68, 56, 37, 78, 87, 45, 8, 42, 82, 72, 23, 58, and 54 were used. In set 7, genes 3, 58, 67, 5, 87, 62, 56, 88, 73, 50, 22, 52, 10, 60, 57, 42, 46, 26, 7, and 82 were used. In set 8, genes 63, 19, 22, 13, 82, 12, 44, 52, 8, 90, 35, 81, 79, 15, 83, 76, 51, 27, 45, and 56 were used. In set 9, genes 65, 34, 76, 81, 58, 86, 83, 46, 40, 55, 48, 42, 57, 70, 21, 72, 71, 17, 22, and 24 were used. In set 10, genes 34, 74, 2, 53, 76, 73, 19, 72, 88, 87, 44, 70, 40, 39, 22, 45, 83, 77, 30, and 46 were used.

For 25 genes, set 1, genes 13, 77, 22, 85, 58, 8, 23, 2, 40, 81, 50, 31, 14, 41, 21, 52, 6, 74, 11, 17, 83, 7, 9, 19, 18 were used. In set 2, genes 3, 12, 8, 87, 34, 75, 31, 88, 77, 39, 40, 60, 54, 9, 37, 5, 51, 53, 32, 35, 66, 4, 26, 59, and 29 were used. In set 3, genes 29, 41, 44, 56, 88, 72, 90, 6, 19, 63, 42, 24, 49, 70, 39, 17, 82, 13, 9, 4, 51, 40, 22, 71, and 25 were used. In set 4, genes 70, 82, 55, 43, 40, 32, 16, 13, 22, 41, 7, 85, 46, 42, 73, 76, 14, 60, 50, 72, 5, 81, 67, 57, and 83 were used. In set 5, genes 88, 83, 53, 26, 29, 4, 38, 71, 11, 66, 14, 89, 39, 34, 84, 41, 7, 64, 87, 3, 67, 43, 50, 79, and 6 were used. In set 6, genes 88, 16, 83, 4, 7, 39, 56, 82, 10, 20, 87, 79, 3, 35, 76, 49, 43, 11, 74, 13, 48, 22, 64, 34, and 89 were used. In set 7, genes 6, 64, 39, 50, 44, 46, 61, 28, 79, 43, 35, 85, 48, 9, 59, 47, 57, 5, 24, 33, 80, 11, 42, 20, and 26 were used. In set 8, genes 59, 24, 46, 33, 50, 71, 53, 21, 86, 10, 75, 23, 74, 60, 43, 22, 16, 62, 85, 79, 81, 34, 73, 2, and 1 were used. In set 9, genes 68, 11, 64, 54, 37, 28, 44, 73, 83, 89, 2, 41, 59, 75, 21, 23, 88, 71, 34, 29, 1, 47, 84, 60, and 72 were used. In set 10, genes 5, 12, 60, 84, 32, 58, 70, 2, 38, 42, 24, 13, 85, 10, 49, 90, 55, 81, 39, 27, 65, 56, 31, 34, and 57 were used.

For 30 genes, set 1, genes 24, 88, 10, 69, 64, 8, 19, 54, 80, 70, 11, 9, 29, 56, 36, 79, 30, 65, 2, 58, 23, 74, 41, 16, 77, 4, 78, 14, 85, and 32 were used. In set 2, genes 73, 27, 19, 52, 87, 51, 63, 4, 76, 64, 90, 81, 42, 47, 9, 62, 40, 65, 83, 30, 39, 59, 10, 11, 54, 44, 43, 6, 86, and 41 were used. In set 3, genes 28, 47, 41, 8, 24, 54, 26, 49.61, 17, 46, 64, 20, 16, 1, 33, 82, 79, 85, 5, 86, 69, 31, 65, 83, 7, 67, 35, 48, and 57 were used. In set 4, genes 13, 21, 83, 35, 47, 57, 8, 66, 75, 17, 38, 70, 39, 23, 9, 1, 2, 28, 68, 81, 36, 80, 52, 22, 44, 37, 85, 15, 72, and 86 were used. In set 5, genes 81, 20, 36, 89, 13, 14, 46, 58, 59, 62, 28, 7, 1, 25, 35, 83, 26, 50, 51, 15, 16, 56, 71, 5, 47, 6, 78, 80, 85, and 84 were used. In set 6, genes 68, 74, 73, 89, 38, 72, 33, 35, 15, 79, 3, 37, 23, 67, 10, 62, 64, 77, 44, 60, 75, 7, 51, 12, 46, 76, 81, 26, 42, and 6 were used. In set 7, genes 34, 55, 62, 40, 78, 35, 76, 30, 21, 77, 46, 71, 66, 69, 63, 81, 51, 38, 84, 53, 82, 89, 29, 14, 36, 45, 60, 7, 52, and 27 were used. In set 8, genes 56, 12, 35, 79, 57, 4, 16, 9, 24, 58, 40, 72, 80, 67, 23, 76, 88, 69, 52, 78, 32, 47, 14, 46, 64, 83, 17, 59, 81, and 20 were used. In set 9, genes 73, 27, 12, 58, 54, 62, 48, 43, 16, 41, 49, 84, 9, 75, 13, 50, 19, 3, 76, 78, 56, 68, 71, 25, 24, 60, 18, 35, 45, and 51 were used. In set 10, genes 82, 21, 24, 85, 51, 18, 72, 28, 89, 22, 34, 4, 53, 75, 83, 23, 50, 5, 42, 13, 88, 63, 40, 64, 38, 35, 39, 44, 59, and 70 were used.

For 35 genes, set 1, genes 2, 69, 70, 89, 9, 11, 5, 17, 63, 18, 12, 59, 58, 85, 26, 71, 61, 10, 3, 1, 22, 79, 84, 30, 48, 82, 38, 44, 56, 42, 88, 6, 60, 14, and 28 were used. In set 2, genes 84, 81, 88, 46, 12, 50, 38, 78, 62, 48, 19, 43, 26, 66, 4, 20, 40, 58, 9, 52, 87, 47, 6, 55, 21, 75, 31, 77, 57, 53, 45, 34, 30, 32, and 39 were used. In set 3, genes 6, 3, 22, 89, 8, 78, 87, 71, 42, 63, 18, 40, 68, 77, 64, 88, 5, 58, 43, 72, 80, 10, 21, 56, 11, 59, 61, 2, 19, 76, 30, 20, 14, 69, and 35 were used. In set 4, genes 55, 42, 89, 41, 56, 33, 24, 28, 15, 61, 63, 18, 90, 60, 35, 76, 70, 52, 8, 1, 64, 23, 13, 39, 71, 31, 3, 81, 10, 34, 66, 44, 16, 7, and 78 were used. In set 5, genes 59, 58, 12, 50, 47, 42, 28, 22, 76, 54, 1, 18, 7, 53, 68, 73, 20, 67, 14, 72, 23, 13, 39, 10, 70, 55, 45, 17, 31, 51, 80, 3, 24, 30, and 46 were used. In set 6, genes 53, 66, 26, 3, 73, 47, 61, 63, 51, 41, 29, 5, 19, 10, 57, 22, 64, 11, 34, 89, 43, 24, 31, 60, 27, 76, 17, 86, 70, 81, 50, 46, 36, 14, and 45 were used. In set 7, genes 18, 88, 90, 13, 73, 81, 64, 56, 84, 2, 4, 22, 3, 25, 35, 54, 89, 86, 27, 41, 6, 34, 38, 14, 74, 36, 59, 8, 40, 55, 42, 83, 39, 44, and 60 were used. In set 8, genes 46, 32, 22, 15, 67, 89, 14, 5, 70, 39, 49, 9, 84, 71, 12, 78, 27, 86, 26, 57, 20, 43, 58, 87, 42, 8, 31, 1, 54, 62, 69, 40, 29, 52, and 64 were used. In set 9, genes 3, 39, 55, 25, 90, 10, 9, 77, 62, 78, 18, 12, 58, 51, 22, 67, 7, 61, 59, 35, 52, 4, 65, 38, 32, 71, 87, 88, 63, 50, 73, 70, 44, 45, and 84 were used. In set 10, genes 65, 54, 51, 38, 40, 5, 43, 71, 34, 30, 22, 6, 36, 64, 63, 13, 70, 85, 21, 88, 77, 86, 79, 66, 25, 18, 26, 19, 76, 56, 23, 60, 75, 2, and 49 were used.

For 40 genes, set 1, genes 81, 80, 68, 77, 17, 71, 34, 33, 48, 88, 90, 32, 23, 2, 38, 59, 75, 82, 50, 56, 12, 36, 6, 87, 72, 37, 26, 15, 35, 66, 13, 76, 55, 3, 78, 18, 52, 47, 73, and 20 were used. In set 2, genes 11, 65, 27, 44, 88, 49, 55, 57, 1, 72, 9, 28, 56, 67, 13, 58, 42, 36, 8, 31, 40, 14, 26, 35, 62, 22, 19, 84, 78, 21, 2, 41, 74, 71, 52, 30, 25, 76, 85, and 63 were used. In set 3, genes 50, 22, 10, 54, 9, 51, 15, 34, 29, 35, 76, 89, 33, 6, 88, 56, 36, 70, 87, 40, 83, 62, 1, 42, 25, 78, 30, 26, 44, 60, 69, 47, 49, 31, 18, 59, 37, 52, 61, and 17 were used. In set 4, genes 27, 33, 7, 89, 36, 59, 48, 42, 66, 39, 90, 52, 2, 14, 30, 80, 9, 56, 21, 87, 65, 67, 41, 73, 82, 20, 4, 46, 5, 84, 88, 15, 44, 58, 78, 85, 3, 64, 6, and 8 were used. In set 5, genes 43, 24, 86, 29, 46, 90, 40, 1, 71, 57, 12, 84, 69, 19, 42, 62, 28, 35, 5, 63, 52, 17, 39, 4, 67, 81, 50, 47, 61, 54, 87, 70, 77, 6, 10, 38, 37, 79, 31, and 36 were used. In set 6, genes 28, 5, 78, 85, 16, 20, 36, 52, 43, 29, 67, 83, 12, 79, 84, 8, 81, 46, 11, 3, 54, 86, 10, 60, 71, 51, 39, 53, 59, 69, 44, 61, 7, 56, 27, 50, 66, 70, 1, and 25 were used. In set 7, genes 39, 47, 48, 24, 25, 3, 41, 16, 65, 73, 63, 14, 70, 57, 12, 64, 90, 23, 27, 38, 66, 71, 54, 21, 83, 28, 72, 53, 11, 30, 80, 15, 6, 88, 89, 85, 81, 61, 78, and 34 were used. In set 8, genes 61, 8, 57, 16, 24, 64, 48, 36, 58, 28, 27, 40, 70, 77, 25, 76, 52, 35, 62, 4, 60, 7, 54, 37, 11, 20, 72, 34, 56, 78, 10, 86, 51, 29, 84, 47, 30, 21, 59, and 67 were used. In set 9, genes 67, 3, 83, 33, 35, 26, 25, 79, 68, 19, 18, 84, 14, 58, 66, 57, 1, 2, 27, 64, 23, 24, 76, 81, 17, 37, 38, 30, 45, 75, 49, 39, 5, 53, 43, 15, 51, 40, 69, and 12 were used. In set 10, genes 39, 77, 29, 70, 85, 45, 54, 79, 31, 43, 15, 11, 47, 83, 76, 21, 67, 14, 4, 19, 49, 42, 18, 13, 12, 7, 88, 8, 3, 35, 81, 55, 71, 60, 72, 57, 46, 40, 56, and 32 were used.

For 45 genes, set 1, genes 7, 63, 45, 87, 19, 55, 36, 42, 9, 4, 79, 68, 46, 35, 40, 80, 59, 58, 38, 17, 50, 30, 13, 39, 33, 84, 34, 64, 2, 57, 24, 88, 65, 16, 53, 18, 28, 8, 60, 15, 43, 73, 77, 20, and 78 were used. In set 2, genes 70, 19, 81, 68, 38, 35, 48, 9, 53, 11, 73, 42, 54, 28, 32, 40, 60, 88, 25, 7, 67, 17, 36, 51, 44, 46, 10, 89, 14, 80, 39, 41, 27, 8, 75, 47, 61, 57, 59, 76, 86, 65, 63, 74, and 77 were used. In set 3, genes 55, 24, 63, 17, 32, 81, 2, 67, 51, 85, 27, 46, 60, 90, 25, 35, 58, 11, 47, 33, 73, 3, 74, 52, 15, 86, 6, 78, 36, 66, 57, 13, 49, 28, 75, 70, 4, 77, 43, 26, 61, 64, 20, 1, and 23 were used. In set 4, genes 49, 72, 13, 51, 55, 11, 29, 5, 43, 44, 40, 6, 38, 67, 47, 35, 36, 28, 81, 24, 80, 32, 16, 88, 63, 87, 86, 79, 21, 1, 30, 10, 62, 58, 23, 12, 78, 26, 69, 56, 85, 42, 17, 84, and 39 were used. In set 5, genes 53, 33, 18, 65, 22, 83, 50, 88, 76, 40, 82, 68, 85, 5, 63, 45, 78, 16, 42, 54, 27, 66, 70, 74, 7, 51, 89, 64, 49, 37, 84, 86, 34, 39, 80, 31, 61, 87, 69, 4, 81, 30, 14, 41, and 29 were used. In set 6, genes 7, 60, 38, 14, 73, 9, 79, 81, 22, 10, 85, 51, 40, 87, 3, 26, 57, 56, 12, 72, 39, 59, 63, 28, 64, 71, 69, 21, 67, 48, 50, 66, 46, 88, 11, 13, 24, 8, 58, 75, 2, 41, 5, 44, and 55 were used. In set 7, genes 15, 65, 31, 19, 11, 38, 2, 9, 64, 66, 22, 35, 49, 3, 77, 43, 32, 56, 39, 54, 80, 21, 6, 40, 27, 86, 10, 16, 70, 30, 85, 23, 26, 4, 55, 73, 42, 13, 41, 68, 29, 57, 28, 72, and 58 were used. In set 8, genes 83, 27, 9, 62, 84, 78, 13, 5, 74, 55, 12, 34, 58, 3, 67, 57, 24, 45, 42, 47, 75, 25, 29, 44, 46, 61, 56, 70, 86, 37, 14, 49, 60, 89, 28, 72, 59, 38, 2, 81, 50, 7, 6, 21, and 82 were used. In set 9, genes 7, 10, 35, 14, 79, 66, 33, 52, 16, 55, 68, 59, 57, 19, 11, 47, 22, 38, 61, 30, 71, 50, 63, 88, 53, 80, 6, 54, 77, 21, 37, 84, 9, 65, 12, 49, 40, 73, 76, 2, 28, 29, 3, 72, and 18 were used. In set 10, genes 12, 19, 9, 80, 84, 15, 7, 2, 39, 21, 48, 40, 51, 69, 74, 83, 5, 66, 27, 26, 89, 60, 4, 86, 41, 44, 35, 10, 76, 53, 63, 16, 37, 79, 11, 42, 68, 3, 59, 82, 77, 73, 85, 67, and 14 were used.

For 49 genes, set 1, genes 84, 47, 56, 1, 18, 21, 57, 54, 27, 89, 44, 85, 64, 10, 77, 34, 65, 66, 80, 70, 46, 23, 53, 61, 24, 81, 43, 35, 30, 74, 83, 51, 20, 17, 72, 4, 49, 68, 60, 28, 67, 19, 42, 55, 73, 36, 7, 39, and 33 were used. In set 2, genes 47, 29, 58, 36, 21, 53, 40, 7, 83, 77, 24, 89, 71, 64, 60, 4, 37, 86, 27, 57, 62, 63, 72, 1, 88, 78, 68, 17, 51, 16, 82, 42, 81, 18, 32, 49, 55, 10, 11, 66, 35, 23, 70, 20, 61, 25, 48, 43, and 54 were used. In set 3, genes 54, 2, 62, 67, 44, 25, 8, 53, 86, 33, 75, 32, 45, 76, 43, 65, 59, 58, 42, 64, 47, 78, 3, 57, 71, 88, 14, 23, 51, 83, 1, 41, 7, 56, 40, 20, 39, 72, 70, 19, 5, 35, 50, 82, 37, 48, 15, 31, and 16 were used. In set 4, genes 35, 65, 48, 43, 69, 62, 64, 74, 82, 39, 37, 1, 88, 45, 66, 12, 79, 55, 38, 84, 17, 30, 25, 26, 89, 56, 28, 57, 59, 34, 85, 14, 47, 44, 41, 19, 60, 20, 73, 2, 63, 75, 49, 80, 58, 77, 27, 54, and 29 were used. In set 5, genes 64, 51, 36, 12, 84, 24, 65, 47, 88, 26, 10, 19, 73, 90, 35, 53, 18, 55, 80, 70, 79, 82, 87, 77, 15, 85, 83, 7, 72, 1, 6, 57, 38, 45, 74, 33, 62, 86, 31, 69, 27, 14, 4, 29, 54, 44, 63, 78, and 42 were used. In set 6, genes 24, 39, 85, 42, 88, 32, 65, 23, 6, 75, 53, 77, 64, 90, 13, 82, 47, 31, 48, 8, 78, 67, 63, 44, 26, 40, 14, 34, 18, 59, 2, 17, 20, 56, 83, 68, 86, 9, 38, 73, 89, 55, 29, 69, 72, 16, 28, 51, and 81 were used. In set 7, genes 32, 70, 57, 67, 1, 73, 52, 38, 65, 83, 5, 40, 49, 31, 66, 85, 6, 82, 12, 48, 89, 3, 19, 41, 62, 16, 46, 61, 24, 18, 55, 30, 33, 56, 68, 20, 81, 10, 86, 9, 15, 63, 78, 22, 75, 14, 13, 43, and 77 were used. In set 8, genes 17, 30, 47, 85, 7, 3, 6, 35, 76, 77, 25, 86, 36, 75, 44, 29, 69, 60, 63, 64, 82, 51, 19, 68, 41, 28, 73, 18, 10, 26, 42, 78, 67, 12, 80, 33, 13, 57, 38, 87, 49, 59, 74, 50, 90, 46, 8, 81, and 4 were used. In set 9, genes 20, 76, 42, 36, 66, 21, 8, 28, 22, 15, 56, 5, 2, 86, 17, 62, 23, 1, 80, 73, 52, 83, 32, 65, 44, 82, 35, 60, 47, 90, 74, 9, 84, 50, 4, 77, 55, 57, 19, 71, 25, 48, 81, 53, 34, 38, 3, 37, and 16 were used. In set 10, genes 84, 87, 3, 41, 36, 71, 33, 57, 85, 26, 53, 22, 82, 31, 2, 45, 24, 18, 37, 35, 77, 20, 63, 25, 6, 17, 58, 7, 9, 49, 28, 76, 79, 67, 13, 80, 66, 5, 43, 4, 74, 75, 21, 86, 23, 39, 42, 27, and 54 were used.

Example 5: PCR Based Detection

As noted above, the determination or measurement of gene expression may be performed by PCR, such as the use of quantitative PCR. Detecting expression of about 5 to 49 expressed sequences in the human genome may be used in such embodiments of the invention. Additionally, expression levels of about 5 to 49 gene sequences in the set of 74, the set of 90, or a combination set of the two (with a total of 126 gene sequences given the presence of 38 gene sequences in common between the two sets) may also be used. The invention contemplates the use of quantitative PCR to measure expression levels, as described above, of about 5 to 49 of 87 gene sequences, all of which are present in either the set of 74 or the set of 90. Of the 87 gene sequences, 60 are present in the set of 74, and 63 are present in the set of 90. The identifiers/accession numbers of the 87 gene sequences are AA456140, AA745593, AA765597, AA782845, AA865917, AA946776, AA993639, AB038160, AF104032, AF133587, AF301598, AF332224, AI041545, AI147926, AI309080, AI341378, AI457360, AI620495, AI632869, AI683181, AI685931, AI802118, AI804745, AI952953, AI985118, AJ000388, AK025181, AK027147, AK054605, AL023657, AL039118, AL110274, AL157475, AW118445, AW194680, AW291189, AW298545, AW445220, AW473119, AY033998, BC000045, BC001293, BC001504, BC001639, BC002551, BC004331, BC004453, BC005364, BC006537, BC006811, BC006819, BC008764, BC008765, BC009084, BC009237, BC010626, BC011949, BC012926, BC013117, BC015754, BC017586, BE552004, BE962007, BF224381, BF437393, BF446419, BF592799, BI493248, H05388, H07885, H09748, M95585, N64339, NM_000065, NM_001337, NM_003914, NM_004062, NM_004063, NM_004496, NM_006115, NM_019894, NM_033229, R15881, R45389, R61469, X69699, and X96757.

The use of from about 5 to 49 of these sequences in the practice of the invention may include the use of expression levels measured for reference gene sequences as described herein. In some embodiments, the reference gene sequences are one or more of the 8 disclosed herein. The invention contemplates the use of one or more of the reference sequences identified by AF308803, AL137727, BC003043, BC006091, and BC016680 in PCR or QPCR based embodiments of the invention. Of course all 5 of these reference sequences may also be used in combination.

Example 6: mRNA Sequences (Sequence Listing)

>Hs.73995_mRNA_1 gi|190403|gb|M60502.1 HUMPROFILE Human profilaggrin mRNA 3′ end polyA = 1 GGCCACTCTGCAGACAGCTCCAGACAATCAGGCACTCGTCACACAGAGTCTTCCTCTCGT GGACAGGCTGCGTCATCCCATGAACAGGCAAGATCAAGTGCAGGAGAAAGACATGGATCC CACCACCAGCAGTCAGCAGACAGCTCCAGACACGCAGGCATTGGGCACGGACAAGCTTCA TCTGCAGTCAGAGACAGTGGACACCGAGGGTACAGAGGTAGTCAGGCCACTGACAGTGAG GGACATTCAGAAGACTCAGACACACAGTCAGTGTCAGCACAGGGACAAGCTGGGCCCCAT CAGCAGAGCCACCAAGAGTCCGCACGTGGCCAGTCAGGGGAAAGCTCTGGACGTTCAGGG TCTTTCCTCTACCAGGTGAGCACTCATGAACAGTCTGAGTCCACCCATGGACAGTCTGTG CCCAGCACTGGAGGAAGACAAGGATCCCACCATGATCAGGCACAAGACAGCTCCAGGCAC TCAGCATCCCAAGAGGGTCAGGACACCATTCGTGGACACCCGGGGCCAAGCAGAGGAGGA AGACAGGGGTCCCACCACGAGCAATCGGTAGATAGGTCTGGACACTCAGGGTCCCATCAC AGCCACACCACATCCCAGGGAAGGTCTGATGCCTCCCGTGGGCAGTCAGGATCCAGAAGT GCAAGCAGACAAACACATGACCAGGAACAATCAGGAGACGGCTCTAGGCACTCAGGGTCG CGTCATCAGGAAGCTTCCTCTTGGGCCGACAGCTCTAGACACTCACAGGCAGTCCAGGGA CAATCAGAGGGGTCCAGGACAAGCAGGCGCCAGGGATCCAGTGTTAGCCAGGACAGTGAC AGTCAGGGACACTCAGAAGACTCTGAGAGGCGGTCTGGGTCTGCTTCCAGAAACCATCGT GGATCTGCTCAGGAGCAGTCAAGAGATGGCTCCAGACACCCCAGGTCCCATCACGAAGAC AGAGCCGGTCACGGGGACTCTGCAGAGAGCTCCAGACAATCAGGCACTCATCATGCAGAG AATTCCTCTGGTGGACAGGCTGCATCATCCCATGAACAGGCAAGATCAAGTGCAGGAGAG AGACATGGATCCCACTACCAGCAGTCAGCAGACAGCTCCAGACACTCAGGCATTGGGCAC GGACAAGCTTCATCTGCAGTCAGAGACAGTGGACACCGAGGGTCCAGTGGTAGTCAGGCC AGTGACAATGAGGGACATTCAGAAGACTCAGACACACAGTCAGTGTCAGCCCACCGACAG GCTGGGCGCCATCACGAGAGCCACCAAGAGTCCACACGTGGCCGGTCACGAGGAAGGTCT GGACGTTCAGGGTCTTTCCTCTACCAGGTGAGCACTCATGAACAGTCTGAGTCTGCCCAT GGACGGGCTGGGCCCAGTACTGGAGGAAGACAAGGATCCCGCCACGAGCAGGCACGAGAC AGCTCCAGGCACTCAGCGTCCCAAGAGGGTCAGGACACCATTCGTGGACACCCGGGGTCA AGGAGAGGAGGAAGACAGGGATCCTACCACGAGCAATCGGTAGATAGGTCTGGACACTCA GGGTCCCATCACAGCCACACCACATCCCAGGGAAGGTCTGATGCCTCCCATGGGCAGTCA GGATCCAGAAGTGCAAGCAGAGAAACACGTAATGAGGAACAGTCAGGAGACGGCTCCAGG CACTCAGGGTCGCGTCACCATGAAGCTTCCACTCAGGCTGACAGCTCTAGACACTCACAG TCCGGCCAGGGTGAATCAGCGGGGTCCAGGAGAAGCAGGCGCCAGGGATCCAGTGTTAGC CAGGACAGTGACAGTGAGGCATACCCAGAGGACTCTGAGAGGCGATCTGAGTCTGCTTCC AGAAACCATCATGGATCTTCTCGGGAGCAGTCAAGAGATGGCTCCAGACACCCCGGATCC TCTCACCGCGATACAGCCAGTCATGTACAGTCTTCACCTGTACAGTCAGACTCTAGTACC GCTAAGGAACATGGTCACTTTAGTAGTCTTTCACAAGATTCTGCGTATCACTCAGGAATA CAGTCACGTGGCAGTCCTCACAGTTCTAGTTCTTATCATTATCAATCTGAGGGCACTGAA AGGCAAAAAGGTCAATCAGGTTTAGTTTGGAGACATGGCAGCTATGGTAGTGCAGATTAT GATTATGGTGAATCCGGGTTTAGACACTCTCAGCACGGAAGTGTTAGTTACAATTCCAAT CCTGTTCTTTTCAAGGAAAGATCTGATATCTGTAAAGCAAGTGCGTTTGGTAAAGATCAT CCAAGGTATTATGCAACGTATATTAATAAGGACCCAGGTTTATGTGGCCATTCTAGTGAT ATATCGAAACAACTGGGATTTAGTCAGTCACAGAGATACTATTACTATGAGTAAGAAATT AATGGCAAAGGAATTAATCCAAGAATAGAAGAATGAAGCAAGTTCACTTTCAATCAAGAA ACTTCATAATACTTTCAGGGAAGTTATCTTTTCCTGTCAATCTGTTTAAAATATGCTATA GTATTTCATTAGTTTGGTGGTAACTTATTTTTATTGTGTAATGATCTTTAAACGCTATAT TTCAGAAATATTAAATGGAAGAAATCAATATCATGGAGAGCTAACTTTAGAAAACTAGCT GGAGTATTTTAGGAGATTCTGGGTCAAGTAATGTTTTATGTTTTTGAAAGTTTAAGTTTT AGACACTCCCCAAATTTCTAAATTAATCTTTTTCAGAAATATCGAAGGAGCCAAAAATAT AAAACAGTTCTGATATCCAAAGTGGCTATATCAACATCAGGGCTAGCACATCTTTCTCTA TTATCCTTCTATTGGAATTCTAGTATTCTGTATTCAAAAAATCATCTTGGACATAATTAA TATTTTAGTAAGCTGCATCTAAATTAAAAATAAACTATTCATCATATAAT >Hs.75236_mRNA_4 gi|14280328|gb|AY033998.1|Homo sapiens polyA = 3 TAGAATCGGGGGTTTCAGCTCACTGCTCCTTTTCTTTTTTTTCTTTCTCTCCCCCGCCCA CCCCCCCAAAAATAATTGATTTGCTTTACAATCATCCACACTGTGTTTTGTGGATCTTTA ATTATATATAACAATAGTAGTCATTTTAAATATATATTCTGAAATCTTTGCAAATTTTAA CAGAAGAGTCGAAGCTCTGCGAGACCCAATATTTGCCAATAAGAATGGTTATGATAATTA GCACCATGGAGCCTCAGGTGTCAAATGGTCCGACATCCAATACAAGCAATGGACCCTCCA GCAACAACAGAAACTGTCCTTCTCCCATGCAAACAGGGGCAACCACAGATGACAGCAAAA CCAACCTCATCGTCAACTATTTACCCCAGAATATGACCCAAGAAGAATTCAGGAGTCTCT TCGGGAGCATTGGTGAAATAGAATCCTGCAAACTTGTGAGAGACAAAATTACAGGACAGA GTTTAGGGTATGGATTTGTTAACTATATTGATCCAAAGGATGCAGAGAAAGCCATCAACA CTTTAAATGGACTCAGACTCCAGACCAAAACCATAAAGGTCTCATATGCCCGTCCGAGCT CTGCCTCAATCAGGGATGCTAACCTCTATGTTAGCGGCCTTCCCAAAACCATGACCCAGA AGGAACTGGAGCAACTTTTCTCGCAATACGGCCGTATCATCACCTCACGAATCCTGGTTG ATCAAGTCACAGGAGTGTCCAGAGGGGTGGGATTCATCCGCTTTGATAAGAGGATTGAGG CAGAAGAAGCCATCAAAGGGCTGAATGGCCAGAAGCCCAGCGGTGCTACGGAACCGATTA CTGTGAAGTTTGCCAACAACCCCAGCCAGAAGTCCAGCCAGGCCCTGCTCTCCCAGCTCT ACCAGTCCCCTAACCGGCGCTACCCAGGTCCACTTCACCACCAGGCTCAGAGGTTCAGGC TGGACAATTTGCTTAATATGGCCTATGGCGTAAAGAGACTGATGTCTGGACCAGTCCCCC CTTCTGCTTGTTCCCCCAGGTTCTCCCCAATTACCATTGATGGAATGACAAGCCTTGTGG GAATGAACATCCCTGGTCACACAGGAACTGGGTGGTGCATCTTTGTCTACAACCTGTCCC CCGATTCCGATGAGAGTGTCCTCTGGCAGCTCTTTGGCCCCTTTGGAGCAGTGAACAACG TAAAGGTGATTCGTGACTTCAACACCAACAAGTGCAAGGGATTCGGCTTTGTCACCATGA CCAACTATGATGAGGCGGCCATGGCCATCGCCAGCCTCAACGGGTACCGCCTGGGAGACA GAGTGTTGCAAGTTTCCTTTAAAACCAACAAAGCCCACAAGTCCTGAATTTCCCATTCTT ACTTACTAAAATATATATAGAAATATATACGAACAAAACACACGCGCGCACACACACACA TACACGAAAGAGAGAGAAACAAACTTTTCAAGGCTTATATTCAACCATGGACTTTATAAG CCAGTGTTGCCTAAGTATTAAAACATTGGATTATCCTGAGGTGTACCAGGAAAGGATTTT ATAATGCTTAGAAAAAAAAAAAAAAAAAAAA >Hs.299867_mRNA_1 gi|4758533|ref|NM_004496.1 Homo sapiens hepatocyte nuclear factor 3, alpha (HNF3A), mRNA polyA = 3 TCCAGGAATCGATAGTGCATTCGTGCGCGCGGCCGCCCGTCGCTTCGCACAGGGCTGGAT GGTTGTATTGGGCAGGGTGGCTCCAGGATGTTAGGAACTGTGAAGATGGAAGGGCATGAA ACCAGCGACTGGAACAGCTACTACGCAGACACGCAGGAGGCCTACTCCTCGGTCCCGGTC AGCAACATGAACTCAGGCCTGGGCTCCATGAACTCCATGAACACCTACATGACCATGAAC ACCATGACTACGAGCGGCAACATGACCCCGGCGTCCTTCAACATGTCCTATGCCAACCCG GCCTTAGGGGCCGGCCTGAGTCCCGGCGCAGTAGCCGGCATGCCGGGGGGCTCGGCGGGC GCCATGAACAGCATGACTGCGGCCGGCGTGACGGCCATGGGTACGGCGCTGAGCCCGAGC GGCATGGGCGCCATGGGTGCGCAGCAGGCGGCCTCCATGATGAATGGCCTGGGCCCCTAC GCGGCCGCCATGAACCCGTGCATGAGCCCCATGGCGTACGCGCCGTCCAACCTGGGCCGC AGCCGCGCGGGCGGCGGCGGCGACGCCAAGACGTTCAAGCGCAGTTACCCGCACGCCAAG CCGCCCTACTCGTACATCTCGCTCATCACCATGGCCATCCAGCGGGCGCCCAGCAAGATG CTCACGCTGAGCGAGATCTACCAGTGGATCATGGACCTCTTCCCCTATTACCGGCAGAAC CAGCAGCGCTGGCAGAACTCCATCCGCCACTCGCTGTCCTTCAATGACTGCTTCGTCAAG GTGGCACGCTCCCCGGACAAGCCGGGCAAGGGCTCCTACTGGACGCTGCACCCGGACTCC GGCAACATGTTCGAGAACGGCTGCTACTTGCGCCGCCAGAAGCGCTTCAAGTGCGAGAAG CAGCCGGGGGCCGGCGGCGGGGGCGGGAGCGGAAGCGGGGGCAGCGGCGCCAAGGGCGGC CCTGAGAGCCGCAAGGACCCCTCTGGCGCCTCTAACCCCAGCGCCGACTCGCCCCTCCAT CGGGGTGTGCACGGGAAGACCGGCCAGCTAGAGGGCGCGCCGGCCCCGGGCCCGGCCGCC AGCCCCCAGACTCTGGACCACAGTGGGGCGACGGCGACAGGGGGCGCCTCGGAGTTGAAG ACTCCAGCCTCCTCAACTGCGCCCCCCATAAGCTCCGGGCCCGGGGCGCTGGCCTCTGTG CCCGCCTCTCACCCGGCACACGGCTTGGCACCCCACGAGTCCCAGCTGCACCTGAAAGGG GACCCCCACTACTCCTTCAACCACCCGTTCTCCATCAACAACCTCATGTCCTCCTCGGAG CAGCAGCATAAGCTGGACTTCAAGGCATACGAACAGGCACTGCAATACTCGCCTTACGGC TCTACGTTGCCCGCCAGCCTGCCTCTAGGCAGCGCCTCGGTGACCACCAGGAGCCCCATC GAGCCCTCAGCCCTGGAGCCGGCGTACTACCAAGGTGTGTATTCCAGACCCGTCCTAAAC ACTTCCTAGCTCCCGGGACTGGGGGGTTTGTCTGGCATAGCCATGCTGGTAGCAAGAGAG AAAAAATCAACAGCAAACAAAACCACACAAACCAAACCGTCAACAGCATAATAAAATCCA ACAACTATTTTTATTTCATTTTTCATGCACAACCTTGCCCCCAGTGCAAAAGACTGTTAC TTTATTATTGTATTCAAAATTCATTGTGTATATTACTACAAAGACGGCCCCAAACCAATT TTTTTCCTGCGAAGTTTAATGATCCACAAGTGTATATATGAAATTCTCCTCCTTCCTTGC CCCCCTCTCTTTCTTCCCTCTTGGCCCTCCAGACATTCTAGTTTGTGGAGGGTTATTTAA AAAACAAAAAGGAAGATGGTCAAGTTTGTAAAATATTTGTTTGTGCTTTTCCCCCCTCCT TACCTGACCCCCTACGAGTTTACAGGCTTGTGGCAATACTCTTAACCATAAGAATTGAAA TGGTGAAGAAACAAGTATACACTAGAGGCTCTTAAAAGTATTGAAAAGACAATACTGCTG TTATATAGCAAGACATAAACAGATTATAAACATCAGAGCCATTTGCTTCTCAGTTTACAT TTCTGATACATGCAGATAGCAGATGTCTTTAAATGAAATACATGTATATTGTGTATGGAC TTAATTATGCACATGCTCAGATGTGTAGACATCCTCCGTATATTTACATAACATATAGAG GTAATAGATAGGTGATATACGTGATACGTTCTCAAGAGTTGCTTGACCGAAAGTTACAAG GACCCCAACCCCTTTGCTCTCTACCCACAGATGGCCCTGGGAACAATCCTCAGGAATTGC CCTCAAGAACTCGCTTCTTTGCTTTGAGAGTGCCATGGTCATGTCATTCTGAGGTACATA ACACATAAATTAGTTTCTATGAGTGTATACCATTTAAAGATTTTTTCAGTAAAGGGAATA TTACATGTTGGGAGGAGGAGATAAGTTATAGGGAGCTGGATTTCAAACGGTGGTCCAAGA TTCAAAAATCCTATTGATAGTGGCCATTTTAATCATTGCCATCGTGTGCTTGTTTCATCC AGTGTTATGCACTTTCCACAGTTGGTGTTAGTATAGCCAGAGGGTTTCATTATTATTTCT CTTTGCTTTCTCAATGTTAATTTATTGCATGGTTTATTCTTTTTCTTTACAGCTGAAATT GCTTTAAATGATGGTTAAAATTACAAATTAAATTGGGAATTTTTATCAATGTGATTGTAA TTAAAAATATTTTGATTTAAATAACAAAAATAATACCAGATTTTAAGCCGCGGAAAATGT TCTTGATCATTTGCAGTTAAGGACTTTAAATAAATCAAATGTTAACAAAAAA >Hs.285401_contig1 AI147926|AI880620|AA768316|AA761543|AA279147|AI216016|AI738663|N79248|AI684 489|AA960845|AI718599|AI379138|N29366|BF002507|AW044269|R34339|R66326|H0464 8|R67467|AI523112|BF941500 polyA = 2 polyA = 3 TGTTTTTCTAGTTCATTTTGTGTTTCCAACTTTTCATGTAAAATTTTAATTATTTTTGAA TGTGTGGATGTGAGACTGAGGTGCCTTTTGGTACTGAAATTCTTTTTCCATGTACCTGAA GTGTTACTTTTGTGATATAGGAAATCCTTGTATATATACTTTATTGGTCCCTAGGCTTCC TATTTTGTTACCTTGCTTTCTCTATGGCATCCACCATTTTGATTGTTCTACTTTTATGAT ATGTTTTCATAAGTGGTTAAGCAAGTATTCTCGTTACTTTTGCTCTTAAATCCCTATTCA TTACAGCAATGTTGGTGGTCAAAGAAAATGATAAACAACTTGAATGTTCAATGGTCCTGA AATACATAACAACATTTTAGTACATTGTAAAGTAGAATCCTCTGTTCATAATGAACAAGA TGAACCAATGTGGATTAGAAAGAAGTCCGAGATATTAATTCCAAAATATCCAGACATTGT TAAAGGGAAAAAATTGCAATAAAATATTTGTAACATAAAAAAAAAAAAAAAAAAAAAAAA >Hs.182507_mRNA_1 gi|15431324|ref|NM_002283.2|Homo sapiens keratin, hair, basic, 5 (KRTHB5), mRNA polyA = 3 AGCTCTCCCCACCAATAAAAGGACCAGGGAGGATCAGAGAGAGCAGAAGGATCCTGAGCC TCGCACTCTGCCGCCCGCACCACCTTCCGCTGCCTCTCAGACTCTGCTCAGCCTCACACG ATGTCGTGCCGCTCCTACAGGATCAGCTCAGGATGCGGGGTCACCAGGAACTTCAGCTCC TGCTCAGCTGTGGCCCCCAAAACTGGCAACCGCTGCTGCATCAGCGCCGCCCCCTACCGA GGGGTGTCCTGCTACCGAGGGCTGACGGGCTTCGGCAGCCGCAGCCTCTGCAACCTGGGC TCCTGCGGGCCCCGGATAGCTGTAGGTGGCTTCCGAGCCGGCTCCTGCGGACGCAGCTTC GGCTACCGCTCCGGGGGCGTGTGCGGACCCAGCCCCCCATGCATCACTACCGTGTCGGTC AACGAGAGCCTCCTCACGCCCCTCAACCTGGAGATCGACCCCAACGCACAGTGCGTGAAG CAGGAGGAGAAGGAGCAGATCAAGTCCCTCAACAGCAGGTTCGCGGCCTTCATCGACAAG GTGCGCTTCCTGGAGCAGCAGAACAAGCTGCTGGAGACCAAGTGGCAGTTCTACCAGAAC CAGCGCTGCTGCGAGAGCAACCTGGAGCCACTGTTCAGTGGCTACATCGAGACTCTGCGG CGGGAGGCCGAGTGCGTGGAGGCCGACAGCGGGAGGCTGGCCTCAGAGCTCAACCATGTG CAGGAGGTGCTGGAGGGCTACAAGAAGAAGTATGAAGAGGAGGTGGCCCTGAGAGCCACA GCAGAGAATGAGTTTGTCGTTCTAAAGAAGGACGTGGACTGTGCCTACCTGCGGAAATCA GACCTGGAGGCCAATGTGGAGGCCCTGGTGGAGGAGTCTAGCTTCCTGAGGCGCCTCTAT GAAGAGGAGATCCGCGTTCTCCAAGCCCACATCTCAGACACCTCGGTCATAGTCAAGATG GACAACAGCCGAGACCTGAACATGGACTGCATCATCGCTGAGATCAAGGCTCAGTATGAC GATGTTGCCAGCCGCAGCCGGGCCGAGGCTGAGTCCTGGTACCGTAGCAAGTGTGAGGAG ATGAAGGCCACGGTGATCAGGCATGGGGAGACCCTGCGCCGCACCAAGGAGGAGATCAAC GAGCTGAACCGCATGATCCAGAGGCTGACGGCCGAGATTGAGAATGCCAAGTGCCAGCGT GCCAAGCTGGAGGCTGCTGTGGCTGAGGCAGAGCAGCAGGGTGAGGCGGCCCTCAGCGAT GCCCGCTGCAAGCTGGCTGAGCTGGAGGGCGCCCTGCAGAAGGCCAAGCAGGACATGGCC TGCCTGCTCAAGGAGTACCAGGAGGTGATGAACTCCAAGCTGGGCCTGGACATCGAGATC GCCACCTACAGGCGCCTGCTGGAGGGCGAGGAACACAGGCTGTGTGAAGGTGTGGGCTCT GTGAATGTCTGTGTCAGCAGCTCCCGTGGTGGAGTCTCCTGTGGGGGCCTCTCCTACAGC ACCACCCCAGGGCGCCAGATCACTTCTGGCCCCTCAGCCATAGGCGGCAGCATCACGGTG GTGGCCCCTGACTCCTGTGCCCCCTGCCAGCCTCGTTCCTCCAGCTTCAGCTGCGGGAGT AGCCGGTCGGTCCGCTTTGCCTAGTAGAGTCATGGAGCCAGGGCTTCCTGCCAAGCACCT GCCTGCCTGCATCACTGCACTGAATGGCATGTGAATGGAAAATGTGTGCTTGCTTCCAGA ATCTTCTGGATGTTCCTACAGAGGGAAAGACCTACAGAGGGAAAGACCCTCGGGCCGCTC CCCTGCGCCTTTTCATGCTAGGGAGATGCATCCTAGTTGTCCTCCTGGCAGCTGTTTTCA GAGGCATTCCCAGCCCTTCACTTAACTCCTACTTAGCTCCAAAATACCTGTATCCAATTT GTATTATTCCCCCAGCTCTCAGGGACAAGACCAGTCCCCCAGCGTGGTGGTCAGCACGGA AGCTCCACCTTCTGGGTGGAGGCGCCATCCTAACCATCCAGCCAGGCCACCCACAACCCG AGAATCAGGGAGAAAGTCCCTCCCCAGCAGCCCCCTCCTCCTGGCTGGGAAGAATGGTCC CCCAGCAAGCACTTGCCTGTTCATTCCCGTTCATGTTTTGCTTCTCTCTCAGACTGCCTT CCTGCTTCTGGGCTAACCTGTTCCAGCCAGGCTCCTCATGTGACCTCGCAGTTGAGAAGC CCATTATCGTGGGGCATCCTTTTGCCTACAGCCCCTGGTTAGGGCACTTTGGACAGGTCT TGCTATTCAGTGAACCTTTGTACATTTCAAAGAAGACTCCATGGCTGCTCCAGATGCCCC CTTGCTGGGTGCAGGTGGGGACTGTCCAATGCAGAGCTGGCGGGACAGAGAGTTAAGCCA CTTCCTGGGTCTCCTTCTTATGACTGTCTATGGGTGCATTGCCTTCTGGGTTGTCTCGAT CTGTGTTTCAATAAATGCCGCTGCAATGCAAAAAAAAAAAAAAAAAAA >Hs.292653_contig1 AI200660|AW014007|AI341199|AI692279|AI393765|AI378686|AI695373|AW292108|T10 352|R44346|AW470408|AI380925|BF938983|AW003704|H08077|F03856|H08075|F08895| AW468398|AI865976|H22568|AI858374|AI216499 polyA = 2 polyA = 3 CAATCAGTGAAAATTCTATATTCCTTTGGCATTTTTGTGACATATTCAATTCAGTTNTAT GTTCCAGCAGAGATCATTATCCCTGGGATCACATCCAAATTTCATACTAAATGGAAGCAA ATCTGTGAATTTGGGATAAGATCCTTCTTGGTTAGTATTACTTGCGCCGGAGCAATGTCT TATTCCTCGTTTAGACATTGTGATTTCCTTCGTTGGAGCTGTGAGCAGCAGCACATTGGC CCTAATCCTGCCACCTTTGGTTGAAATTCTTACATTTTCGAAGGAACATTATAATATATG GATGGTCCTGAAAAATATTTCTATAGCATTCACTGGAGTTGTTGGCTTCTTATTAGGTAC ATATATAACTGTTGAAGAAATTATTTATCCTACTCCCAAAGTTGTAGCTGGCACTCCACA GAGTCCTTTTCTAAATTTGAATTCAACATGCTTAACATCTGGTTTGAAATAGTAAAAGCA GAATCATGAGTCTTCTATTTTTGTCCCATTTCTGAAAATTATCAAGATAACTAGTAAAAT ACATTGCTATATACATAAAAATGGTAACAAACTCTGTTTTCTTTGGCACGATATTAATAT TTTGGAAGTAATCATAACTCTTTACCAGTAGTGGTAAACCTATGAAAAATCCTTGCTTTT AAGTGTTAGCAATAGTTCAAAAAATTAAGTTCTGAAAATTGAAAAAATTAAAATGTAAAA AAATTAAAGAATAAAAATACTTCTATTATTCTTTTATCTCAGTAAGAAATACCTTAACCA AGATATCTCTCTTTTATGCTACTCTTTTGCCACTCACTTGAGAACAGAATAGGATTTCAA CAATAAGAGAATAAAATAAGAACATGTATAACAAAAAGCTCTCTCCAGATCATCCCTGTG AATGCCAAAGTAAACTTTATGTACAGTGTAAAAAAAAAAAAATCTCAGTTATGTTTTTAT TAGCCAAATTCTAATGATTGGCTCCTGGAAGTATAGAAAACTCCCATTAACATAATATAA GCATCAGAAAATTGCAAACACTAGAATTAATTTTACACTCTAATGGTAGTTGATCTTCAT AGTCAAGAGGCACTGTTCAAGATCATGACTTAGTGTTTCAATGAAATTTGAAAAGGGACT TTAAAACTTATCCAGTGCAACTCCCTTGTTTTTCGTCAGAGGAAAAGGAGGCCTAGAAAG GTTAAGTAACTTGGTCGAGACCACTCAGCCTTGAGATCAAGAAAACCTAATCTTCTGACT CCCAGGCCAGGATGTTTTATTTCTCACATCATGTCCAAGAAAAAGAATAAATTATGTTCA GCTTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA >Hs.97616_mRNA_3 gi|12654852|gb|BC001270.1|BC001270 Homo sapiens clone MGC:5069 IMAGE:3458016 polyA = 3 CGGAGGCGGCGCCGACGGGGACTGCTGAGGCGCGCAGAGGGTCGGCGGCGCCCGGGAGCC TGTCGCTGGCGCGGTCCGGGCGGGAGGCTCGGCGGCGGGCGGCAGCATGTCGGTGGCGGG GCTGAAGAAGCAGTTCTACAAGGCGAGCCAGCTGGTCAGTGAGAAGGTCGGAGGGGCCGA GGGGACCAAGCTGGATGATGACTTCAAAGAGATGGAGAAGAAGGTGGATGTCACCAGCAA GGCGGTGACAGAAGTGCTGGCCAGGACCATCGAGTACCTGCAGCCCAACCCAGCCTCGCG GGCTAAGCTGACCATGCTCAACACGGTGTCCAAGATCCGGGGCCAGGTGAAGAACCCCGG CTACCCGCAGTCGGAGGGGCTTCTGGGCGAGTGCATGATCCGCCACGGGAAGGAGCTGGG CGGCGAGTCCAACTTTGGTGACGCATTGCTGGATGCCGGCGAGTCCATGAAGCGCCTGGC AGAGGTGAAGGACTCCCTGGACATCGAGGTCAAGCAGAACTTCATTGACCCCCTCCAGAA CCTGTGCGAGAAAGACCTGAAGGAGATCCAGCACCACCTGAAGAAACTGGAGGGCCGCCG CCTGGACTTTGACTACAAGAAGAAGCGGCAGGGCAAGATCCCCGATGAGGAGCTACGCCA GGCGCTGGAGAAGTTCGAGGAGTCCAAGGAGGTGGCAGAAACCAGCATGCACAACCTCCT GGAGACTGACATCGAGCAGGTGAGTCAGCTCTCGGCCCTGGTGGATGCACAGCTGGACTA CCACCGGCAGGCCGTGCAGATCCTGGACGAGCTGGCGGAGAAGCTCAAGCGCAGGATGCG GGAAGCTTCCTCACGCCCTAAGCGGGAGTATAAGCCGAAGCCCCGGGAGCCCTTTGACCT TGGAGAGCCTGAGCAGTCCAACGGGGGCTTCCCCTGCACCACAGCCCCCAAGATCGCAGC TTCATCGTCTTTCCGATCTTCCGACAAGCCCATCCGGACCCCTAGCCGGAGCATGCCGCC CCTGGACCAGCCGAGCTGCAAGGCGCTGTACGACTTCGAGCCCGAGAACGACGGGGAGCT GGGCTTCCATGAGGGCGACGTCATCACGCTGACCAACCAGATCGATGAGAACTGGTACGA GGGCATGCTGGACGGCCAGTCGGGCTTCTTCCCGCTCAGCTACGTGGAGGTGCTTGTGCC CCTGCCGCAGTGACTCACCCGTGTCCCCGCCCCGCCCCTCCGTCCACACTGGCCGGCACC CCCTGCTGGGTCTCCTGCATTCCACGGAGCCCCTGCTGCCAGGGCGGTGTCTGAGCCTGC CGGCGCCACCTGGGCCCCGGCCCTTGAGGTACTCCCTGAGCAGGACCCCACACTTGGGTG GGGGGGCTTATCTGGGTGGGTGGGGATGCCTGTTTACACTAGCGCTGACTCCCAACGGTG ACGGCTCCCTTCCCCACTCCATGGCGCCAGCCTCCTCCCCCGCTCCCCAACTTCTCGCCC AGCTGGCCGAGGCGGGGCAACACTAAGGTGCTCTTAGAAACACTAATGTTCCTCTGGGGC AGCCCCCACCTCCGTCCTGACCCGACGGGGGCCCGGCCCACTGCCTACCCTCGAGTCCCG CAGCCTTAACAGGATGGGATCGAGGGTCCCCATGGGGTGGCTCAGAGATAGGACCCTGGT TTTAAATCCCTCCCAGCCTGGTGCTGGTGATGGGCCCTGGCCCTACTCCAGGGCCAATGC ACCCCCGCCTCACACACGCACTCCTTCTCCTCAAGGCCAGGGCAGAGGGCCTCACCGCCT CCCGGGCCTGCTGTCAGCTTGCAGCCCGGGGACAGAGGCCAGCTGGGATCTGCCTGAGGA CAGAGAACATGGTCTCCTGCAGGGCCCTGCCTCCCAAGCCCCGCCCTCAGAAAGCCAAGT ACCTTTTCAGCTTTTTAACTGCCCCCATCCCAACCCAGGGAGGCCTGTGTCACTCTGGCA CAAGCTGCCACCACCAGCCACCCACACCCACCCCAGCACACCTCACACGGGACCACAGCC GCGCTGCCGAGGGCCAAGCACAAAGGTTCCAGTGAGCGCATGTCCCAGCCCCTGGTGGCC AGGCTCCCCTTGCTGAGCCGCTGCCACTTCACCCTGTGGGAAGTGGCCCCAGCCATCTCC TCTAGACCAAGGCAGGCAGCCCCGACATCTGCTTCCTCTATCGCCCAATGCAAAATCGAT GAAATGGGGAGTTCTCTGGGCCAGGCCACATTCACATTCCCCTCCCCCTGTGGTCCAGTG AAGCCTCCGGACCCCAGGCTCTGCTCTGCCCTGCCCTGCACCCCCCTCGTCAGAAGTACA TGAGGGGCGCAGAGATGAGCACACAGCTTTGGGCACGGTCCAGGGCAAACTGAAATGTAC GCCTGAATTTTGTAAACAGAAGTATTAAATGTCTCTTTCTACAAAAAAAAAAAAAAAAAA >Hs.123078_mRNA_3 gi|14328043|gb|BC009237.1|BC009237 Homo sapiens clone MGC:2216 IMAGE:2989823 polyA = 3 GGCACGAGGGAGGTGCAGAGCTGAGAATGAGGCGATTTCGGAGGATGGAGAAATAGCCCC GAGTCCCGTGGAAAATGAGGCCGGCGGACTTGCTGCAGCTGGTGCTGCTGCTCGACCTGC CCAGGGACCTGGGCGGAATGGGGTGTTCGTCTCCACCCTGCGAGTGCCATCAGGAGGAGG ACTTCAGAGTCACCTGCAAGGATATTCAACGCATCCCCAGCTTACCGCCCAGTACGCAGA CTCTGAAGCTTATTGAGACTCACCTGAGAACTATTCCAAGTCATGCATTTTCTAATCTGC CCAATATTTCCAGAATCTACGTATCTATAGATGTGACTCTGCAGCAGCTGGAATCACACT CCTTCTACAATTTGAGTAAAGTGACTCACATAGAAATTCGGAATACCAGGAACTTAACTT ACATAGACCCTGATGCCCTCAAAGAGCTCCCCCTCCTAAAGTTCCTTGGCATTTTCAACA CTGGACTTAAAATGTTCCCTGACCTGACCAAAGTTTATTCCACTGATATATTCTTTATAC TTGAAATTACAGACAACCCTTACATGACGTCAATCCCTGTGAATGCTTTTCAGGGACTAT GCAATGAAACCTTGACACTGAAGCTGTACAACAATGGCTTTACTTCAGTCCAAGGATATG CTTTCAATGGGACAAAGCTGGATGCTGTTTACCTAAACAAGAATAAATACCTGACAGTTA TTGACAAAGATGCATTTGGAGGAGTATACAGTGGACCAAGCTTGCTGCTGCCTCTTGGAA GAAAGTCCTTGTCCTTTGAGACTCAGAAGGCCCCAAGCTCCAGTATGCCATCATGATGCC TGCTAAGGCAGCCACCTTGGTGTACATGCTCACAGAGGCTCTGTTCATGGAGCAGCTGCT GTTTGAAAAATTTTGAAATGCAAGATCCACAACTAGATGGAAGGCACTCTAGTCTTTGCA GAAAAAAATGTACCTGAATGTACATTGCACAATGCCTGGCACAAAGAAGGAAGAATATAA ATGATAGTTCGACTCGTCTGTGGAAGAACTTACAATCATGGGGAAAGATGGAATAAAAAC ATTTTTTAAACAGCAAAAAAAAAAAAAAAAAA >Hs.285508_contig1 AW194680|BF939744|BF516467 polyA = 1 polyA = 1 CCCCAGCCCCACTCACCCACCCTCCTTCCCACCAGCCTGCTCTCCGCAGGCCCACTGTCT TTGGGTTTAATGACGTCTCTTCTCTGTGGAACTTCACGATTCCTTCCCACGGTCAACTCG GGACCTCCCAGCGACCACTGCAGCCTGCGGACGAGGCCGGGACTTGGCCGAGCGGATCCT AATAAGGGGAAAATGGTAAATGCAAACGTCCCGTTACAATTTTACCGCCAGTGTGCTGTC GTTCCCCCTCCCCCTCTCCGAGTCCTCGTGGGGACACGGCGGGGTCTGTAGGAAGTTGGG CCGGGTTGGGGGTTGCTAGAAGGCGCTGGTGTTTTGCTCTGAGTTTTAAGAGATCCCTTC CTTCCTCTTCGGTGAATGCAGGTTATTTAAACTTTGGGAAATGTACTTTTAGTCTGTCAT ATCAAGGCATGAGTCACTGTCTTTTTTTGTGTGAATAAATGGTTTCTAGTACAATGGA >Hs.183274_contig1 BF437393|BF064008|BF509951|AW134603|AI277015|AI803254|AA887915|BF054958|AI0 04413|AI393911|AI278517|AW612644|AI492162|AI309226|AI863671|AA448864|AI6401 65|AA479926|AA461188|AA780161|BF591180|AI918020|AI758226|AI291375|BF001845| BF003064|AI337393|AI522206|BE856784|BF001760|AI280300 FLAG = 1 polyA = 2 WARN polyA = 3 GCGGCCGCCCGCACGTCCGCGGGTCCCGGCCGCGCCGCCGCCGCGCGCCCCTGCCCGAGA GAGCTCTGGCCCCGCTAGCGGGGCCAGGAGCCGGGCCTCCCACCGCAGCGTCCCCCGCCG CGCCAGTCCCCGCTAGTGGTAGTATCTCGTAATAGCTTCTGTGTGTGAGCTACCGTGGAT CTCCTTCCCTTCTCTTGGGGGCCGGGGGGAAAGAAAAGGATTTAAGCAAAGGCTCCCTCG CCCTGTGAGGGCGAGCGGCAAAGGCCCGGCTGAGCCCCCCATGCCCCTCCCCTCCCCGTG TAAAAAGCCTCCTTGTGCAATTGTCTTTTTTTTCCTTTGAACGTGCTTCTTTGTAATGAC CAAGGTACCGATTTCTGCTAAGTTCTCCCAACAACATGAAACTGCCTATTCACGCCGTAA TTCTTTCTGTCTCCCTTCTCTCTCTCTCTCTCGCTCGCTCGCTCTCGCTCTCGCTCTCTC TCGCTGCGTCCTCATTTCCCCTCCCAATCCTCTCTCCCCTCTGCAACCCCCCAGCTCGCT GGCTTTCTCTCTGGCTTCTCTCTTTTCCTCCTCCACCCACCCCCTTTGGTTTGACAATTT TGTCTTAAGTGTTTCTCAAAAGAGGTTACTTTAGTTAGCATGCGCGCTGTGGGCAATTGT TACAAGTGTTCTTAGGTTTACTGTGAAGAGAATGTATTCTGTATCCGTGAATTGCTTTAT GGGGGGGAGGGAGGGCTAATTATATATTTTGTTGTTCCTCTATACTTTGTTCTGTTGTCT GCGCCTGAAAAGGGCGGAAGAGTTACAATAAAGTTTACAAGCGAGAACCCGAAAAAAAAA AAAAA >Hs.334841_mRNA_3 gi|14290606|gb|BC009084.1|BC009084 Homo sapiens clone MGC:9270 IMAGE:3853674 polyA = 3 CACCAGCACAGCAAACCCGCCGGGATCAAAGTGTACCAGTCGGCAGCATGGCTACGAAAT GTGGGAATTGTGGACCCGGCTACTCCACCCCTCTGGAGGCCATGAAAGGACCCAGGGAAG AGATCGTCTACCTGCCCTGCATTTACCGAAACACAGGCACTGAGGCCCCAGATTATCTGG CCACTGTGGATGTTGACCCCAAGTCTCCCCAGTATTGCCAGGTCATCCACCGGCTGCCCA TGCCCAACCTGAAGGACGAGCTGCATCACTCAGGATGGAACACCTGCAGCAGCTGCTTCG GTGATAGCACCAAGTCGCGCACCAAGCTGGTGCTGCCCAGTCTCATCTCCTCTCGCATCT ATGTGGTGGACGTGGGCTCTGAGCCCCGGGCCCCAAAGCTGCACAAGGTCATTGAGCCCA AGGACATCCATGCCAAGTGCGAACTGGCCTTTCTCCACACCAGCCACTGCCTGGCCAGCG GGGAAGTGATGATCAGCTCCCTGGGAGACGTCAAGGGCAATGGCAAAGGGGGTTTTGTGC TGCTGGATGGGGAGACGTTCGAGGTGAAGGGGACATGGGAGAGACCTGGGGGTGCTGCAC CGTTGGGCTATGACTTCTGGTACCAGCCTCGACACAATGTCATGATCAGCACTGAGTGGG CAGCTCCCAATGTCTTACGAGATGGCTTCAACCCCGCTGATGTGGAGGCTGGACTGTACG GGAGCCACTTATATGTATGGGACTGGCAGCGCCATGAGATTGTGCAGACCCTGTCTCTAA AAGATGGGCTTATTCCCTTGGAGATCCGCTTCCTGCACAACCCAGACGCTGCCCAAGGCT TTGTGGGCTGCGCACTCAGCTCCACCATCCAGCGCTTCTACAAGAACGAGGGAGGTACAT GGTCAGTGGAGAAGGTGATCCAGGTGCCCCCCAAGAAAGTGAAGGGCTGGCTGCTGCCCG AAATGCCAGGCCTGATCACCGACATCCTGCTCTCCCTGGACGACCGCTTCCTCTACTTCA GCAACTGGCTGCATGGGGACCTGAGGCAGTATGACATCTCTGACCCACAGAGACCCCGCC TCACAGGACAGCTCTTCCTCGGAGGCAGCATTGTTAAGGGAGGCCCTGTGCAAGTGCTGG AGGACGAGGAACTAAAGTCCCAGCCAGAGCCCCTAGTGGTCAAGGGAAAACGGGTGGCTG GAGGCCCTCAGATGATCCAGCTCAGCCTGGATGGGAAGCGCCTCTACATCACCACGTCGC TGTACAGTGCCTGGGACAAGCAGTTTTACCCTGATCTCATCAGGGAAGGCTCTGTGATGC TGCAGGTTGATGTAGACACAGTAAAAGGAGGGCTGAAGTTGAACCCCAACTTCCTGGTGG ACTTCGGGAAGGAGCCCCTTGGCCCAGCCCTTGCCCATGAGCTCCGCTACCCTGGGGGCG ATTGTAGCTCTGACATCTGGATTTGAACTCCACCCTCATCACCCACACTCCCTATTTTGG GCCCTCACTTCCTTGGGGACCTGGCTTCATTCTGCTCTCTCTTGGCACCCGACCCTTGGC AGCATGTACCACACAGCCAAGCTGAGACTGTGGCAATGTGTTGAGTCATATACATTTACT GACCACTGTTGCTTGTTGCTCACTGTGCTGCTTTTCCATGAGCTCTTGGAGGCACCAAGA AATAAACTCGTAACCCTGTCCTTCAAAAAAAAAAAAAAAAA >Hs.3321_contig1 AI804745|AI492375|AA594799|BE672611|AA814147|AA722404|AW170088|D11718BG153 444|AI680648|AA063561|BE219054|AI590287|R55185|AI479167|AI796872|AI018324A 1701122|BE218203|AA905336|AI681917B1084742|AI480008|AI217994|AI401468 polyA = 2 polyA = 3 CCGGAGATAACTTGAGGGCTATAGAGGACCGGCTAATACTGGTCCTGAATTTGGCTTCAG GCCTCACCAACCAAGTGGCCGTGGCCTTGCCGTCTTGCCCGTCGGCCCCCGGTGAGGCCT GGACCCCTGGGGTCCCGGCACCAGGCCCCGGCTTCCGACCCTGGCAGAAGCCCAAGATCT GGTCCCTCGCGGAGACTGCCACAAGCCCCGGACACCCGCGCCGGCTCGCCTCCCGGCGCG GGGGGGTCTCCACCGGGGGGCAACGGTCGCGCCTTTCCGCCCTGCAGCTCTCTCCGGGCC GCCGCCGCCGCCGCCGCTCACAGACTGGTCTCAGCGCCGCTGGGCAAGTTCCCGGCTTGG ACCAACCGGCCGTTTCCAGGCCCACCGCCCGGCCCCCGCCCGCACCCGCTCTCCCTGCTG GGCTCTGCCCCTCCGCACCTGCTGGGACTTCCCGGAGCCGCGGGCCACCCGGCTGCCGCC GCCGCCTTCGCTCGGCCAGCGGAGCCCGAAGGCGGAACAGATCGCTGTAGTGCCTTGGAA GTGGAGAAAAAGTTACTCAAGACAGCTTTCCATCCCGTGCCCAGGCGGCCCCAGAACCAT CTGGACGCCGCCCTGGTCTTATCGGCTCTCTCCTCATCCTAGTTCTTTAAAAAAAAACAA AAAAACAAAAAAAACTTTTTTTAATCGTTGTAATAATTGTATAAAAAAAATCGCTCTGTA TAGTTACAACTTGTAAGCATGTCCGTGTATAAATACCTAAAAGCAAAACTAAACAAAGAA AGTAAGAAAAAGAAATAAAACCAGTCCTCCTCAGCCCTCCCCAAGTCGCTTCTGTGGCAC CCCGCATTCGCTGTGAGGTTTGTTTGTCCGGTTGATTTTGGGGGGTGGAGTTTCAGTGAG AATAAACGTGTCTGCCTTTGTGTGTGTGTATATATACAGAGAAATGTACATATGTGTGAA CCAAATTGTACGAGAAAGTATCTATTTTTGGCTAAATAAATGAGCTGCTGCCACTTTGAC TATAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA >Hs.306216_singlet1 AW083022 polyA = 1 polyA = 2 TATGAGCACCTTCACATGGATCCACTTGAGGAAAGAAGGTGGACCGAATTTGTAAACGGT GTGCAGCAATATATATCAATTCGTTCTGAGATAATCGCCACTTACGCTCTCTGTGGTTTT GCCAATATCGGGTCCCTAGGAATCGTGATCGGCGGACTCACATCCATGGCTCCTTCCAGA AAGCGTGATATCGCCTCGGGGGCAGTGAGAGCTCTGATTGCGGGGACCGTGGCCTGCTTC ATGACAGCCTGCATCGCAGGCATACTCTCCAGCACTCCTGTGGACATCAACTGCCATCAC GTTTTAGAGAATGCCTTCAACTCCACTTTCCCTGGAACCCCAACCAAGGGTGATAGCTTG TTGCCAAAGTCTGTTGAGCAGCCCTGTTGCCCAGGGTCCTGGTGAAGTCATCCCAGGAGG AAACCCCAGTCTGTATTCTTTGAAGGGCTGCTGCACATTGTTGAATCCATCGACCTTTAG CTGCAATGGGATCTCTAATACATTTTGAGGTCAGCCACTTCTCCAGTGGAACTCTGAAGT ACAGATGCTGAATTTTCTGCTTTGGAAAGAAAAAAAA >Hs.99235_contig1 AA456140|AI167259|AA450056 polyA = 2 polyA = 3 ACTCGGCATGTGATGAACACCCATAGTTAAGAAACCATGGAGCAAGAAAGCTTGTGGAAA GTCTCTCTCCTTCCTCATAAGACATGCACACTAATACACATACACACCAAAAAATTACAC ATTTTAAAACTGCTAAGCTTGGATTTAACTGAATCATATATCTTTTATCATGTTATCCTA AAAGTGAGAAGACATAACCAAGACATGGAAATAAATGTGAAAGCTGGAGCCGAAGAGTCA ZVAGAGCTAAAAAATTAAGTCTAGAACATTCTATGAGGATAGTATAAATAAAAAGAAATAC AGTCTAGACATGCTGCAAGGAAAGAAGATTCTAAAGTCCGTTTATGGAGGCAATTCCATA TCCTTTCTTGAACGCACATTCAGCTTACCCCAGAGAGCAAGTGAGGCAATCTGGCAAAAG ATTAATAAAGATGTAAACCCCTGGAAAAAAAAAAAA >Hs.169172_mRNA_2 gi|2274961|emb|AJ000388.1|HSCANPX Homo sapiens mRNA for calpain-like protease CANPX polyA = 3 GAATTCGGCACGAGATAGTTTTCAGGTTAAGAAAGCCAGAATCTTTGTTCAGCCACACTG ACTGAACAGACTTTTAGTGGGGTTACCTGGCTAACAGCAGCAGCGGCAACGGCAGCAGCA GCAGCAGCAGCAGCAGCAGCAGCAGCAGGGCTCCTGGGATAACTCAGGCATAGTTCAACA CTATGGGTCCTCCTCTGAAGCTCTTCAAAAACCAGAAATACCAGGAACTGAAGCAGGAAT GCATCAAAGACAGCAGACTTTTCTGTGATCCAACATTTCTGCCTGAGAATGATTCTCTTT TCTACTTCCGACTGCTTCCTGGAAAGGTGGTGTGGAAACGTCCCCAGGACATCTGTGATG ACCCCCATCTGATTGTGGGCAACATTAGCAACCACCAGCTGACCCAAGGGAGACTGGGGC ACAAGCCAATGGTTTCTGCATTTTCCTGTTTGGCTGTTCAGGAGTCTCATTGGACAAAGA CAATTCCCAACCATAAGGAACAGGAATGGGACCCTCAAAAAACAGAAAAATACGCTGGGA TATTTCACTTTCGTTTCTGGCATTTTGGAGAATGGACTGAAGTGGTGATTGATGACTTGT TGCCCACCATTAACGGAGATCTGGTCTTCTCTTTCTCCACTTCCATGAATGAGTTTTGGA ATGCTCTGCTGGAAAAAGCTTATGCAAAGCTGCTAGGCTGTTATGAGGCCCTGGATGGTT TGACCATCACTGATATTATTGTGGACTTCACGGGCACATTGGCTGAAACTGTTGACATGC AGAAAGGAAGATACACTGAGCTTGTTGAGGAGAAGTACAAGCTATTCGGAGAACTGTACA AAACATTTACCAAAGGTGGTCTGATCTGCTGTTCCATTGAGTCTCCCAATCAGGAGGAGC AAGAAGTTGAAACTGATTGGGGTCTGCTGAAGGGCCATACCTATACCATGACTGATATTC GCAAAATTCGTCTTGGAGAGAGACTTGTGGAAGTCTTCAGTGCTGAGAAGGTGTATATGG TTCGCCTGAGAAACCCCTTGGGAAGACAGGAATGGAGTGGCCCCTGGAGTGAAATTTCTG AAGAGTGGCAGCAACTGACTGCATCAGATCGCAAGAACCTGGGGCTTGTTATGTCTGATG ATGGAGAGTTTTGGATGAGCTTGGAGGACTTTTGCCGCAACTTTCACAAACTGAATGTCT GCCGCAATGTGAACAACCCTATTTTTGGCCGAAAGGAGCTGGAATCGGTGTTGGGATGCT GGACTGTGGATGATGATCCCCTGATGAACCGCTCAGGAGGCTGCTATAACAACCGTGATA CCTTCCTGCAGAATCCCCAGTACATCTTCACTGTGCCTGAGGATGGGCACAAGGTCATTA TGTCACTGCAGCAGAAGGACCTGCGCACTTACCGCCGAATGGGAAGACCTGACAATTACA TCATTGGCTTTGAGCTCTTCAAGGTGGAGATGAACCGCAAATTCCGCCTCCACCACCTCT ACATCCAGGAGCGTGCTGGGACTTCCACCTATATTGACACCCGCACAGTGTTTCTGAGCA AGTACCTGAAGAAGGGCAACTATGTGCTTGTCCCAACCATGTTCCAGCATGGTCGCACCA GCGAGTTTCTCCTGAGAATCTTCTCTGAAGTGCCTGTCCAGCTCAGGGAACTGACTCTGG ACATGCCCAAAATGTCCTGCTGGAACCTGGCTCGTGGCTACCCGAAAGTAGTTACTCAGA TCACTGTTCACAGTGCTGAGGACCTGGAGAAGAAGTATGCCAATGAAACTGTAAACCCAT ATTTGGTCATCAAATGTGGAAAGGAGGAAGTCCGTTCTCCTGTCCAGAAGAATACAGTTC ATGCCATTTTTGACACCCAGGCCATTTTCTACAGAAGGACCACTGACATTCCTATTATAG TACAGGTCTGGAACAGCCGAAAATTCTGTGATCAGTTCTTGGGGCAGGTTACTCTGGATG CTGACCCCAGCGACTGCCGTGATCTGAAGTCTCTGTACCTGCGTAAGAAGGGTGGTCCAA CTGCCAAAGTCAAGCAAGGCCACATCAGCTTCAAGGTTATTTCCAGCGATGATCTCACTG AGCTCTAAATCTGCAATCCCAGAGAATCCTGACAAAGCGTGCCACCCTTTTATTTTCCGT CAGGTGCCAGGTCTTAGTTAAGATTCACAATCTTTAGAAAGAATGAGATTCACAATAATT AACTCTTCCTCTCTTCTGATAAATTCCCCATACCTCCCAATCCAAGTAGCATCTGTAGCT ACATAACCTATATACCTCCAGCAGCTGGACATGGGGAGCGACAGTCCTATCTAGACATCA TACACATTTGCCAAGAAAGGATCTCTGGGGCTTCCGGGGGTGAGATTCAAGCAGGACAAT AACAAGAGGCTGGACACCCTACAGATGTCTTTGATGTTTTCAGTTGTTTGATATATCTCC CCTGTAGGGCATGTTGAGGAAGGAGGAGGGCTGATCAAGGCCAAGCTGGTCTAGCCTGAC ATCCTAGCTCCTGACTGAACACTATAGACTTCCCAGCAGCATTTTCACCCAGCAGCCAGA GCCGGCTTTAAGTCCCCAACCCTTACAGACACCACTGCCACCACCACCAACCACGACCAC CACCACCACCACCACTCACCACCATCATCACCTCCGGAAAGTGTAGTCCTGCCCTAACCC TAACCCCAAGTCACCCCCCACAGTAAATTTTACCTTCATGTTGAGAAAGCTTCCTGGTGC TTAATCAAGAGCTGGAGTTCAATGAGTCCTAGACAGTGAGAGGGGCCTGAGCTTCAGCTC AATGGAAGCCTGCTGTGTGCTCACAAGACGGAAAAGTGGAAGAAGCTGCAGTGGGAGACA AAGCCTCGGTCCCCCACCCATCCACACACACCTACACTCACACACGCGCACATGGGCGCG CAACGGAACTACCATTTCAGGCAGTCAGTGGGCAAGAGGAAAGATAAGTAAGTACCATAC ACACCTTAAAAGATGAGGAGAATTCATCCAGACATATTACAGCCAGTTTGGGGCCCCTGA CTTGCAATGTGAAACCTCTTCGCTTGCTGCTAGGTTTACAAACAAGCCCATTGTTCCTGT GCCTCCTAATATTCATTTGTTACTGAAGGACCCCATCTGGGGACTTGAGACTTTGGTCCC AGCCCAGACGCCTCAGACTGGTCTCAAAGTCAAGCAAGGCTTCACATCAGCTGCAAGTGT TAGTTTGCCAGCGCATGATCTCACTGAGCTTCTACAGAATCTGCAATCCCAGAGTCAATC ATGACGAAATGTACGTCCCACCATCTTAACCTATCAACTTTCTGCCCCTCCTTCAAGGCC CAGTATAAATGCCACCTCCTCCATGAAGCCTTCCCTAATTCCACCCCAAACCCCCACCTT CAACAATATTTCAACGCTTCTGCAATGATGAAAAAGAAACATAGTTGTAGTACTTAGCCT ACCTAGACCAGCAAGCATTCATTTTTAGCTCGCTCATTTTTTACCATGTTTTCCAGTCTG TTTAACTTCTGCAGTGCCTTCACTACACTGCCTTACATAAACCAAATCACAATAAAGTTC ATATTCAGTACAATTAAAAAAAAAAAAA >Hs.351486_mRNA_1 gi|16549178|dbj|AK054605.1|AK054605 Homo sapiens cDNA FLJ30043 fis, clone 3NB692001548 polyA = 0 TATGCAAGTGTTTAACAGATGCTTCACTATTAAAATATTTTCCCCCCAAGTCTCAAATAT TGAAGAATCTCTAACCAGGGACACCAGTCCCTACGAAGACCTTGGGCGATTTTGAAGTGC GGGCACCTCGATTCCCCGAATCTGTAGTGTGGCTGGTATCGGTGTTCCCCTGGTTTAACT AGCCTGTTTGAAGGCACAGATCATTCATGGGGAAGTATAACCGAATCCAGTCCTCTCCAC CGCCTGGGGATCTTCACTTTCGCAGTCTACGACTGCCTGTGACTCCAGAAAGACAAACTG CAGATTGGCCAAGATGGGGAAATTGAGGCAGAGAAGCCAAGACATGTGCTAAAGGTCATG CAGGCTATGAATGGAGCTGGAATGTGAACGCAGGCCATATGACCCCAGAGCCCATGTTCT TGAACCCTTAGAAAGACAGCAGCAACACACCTGGTGCAGCAGCTGCTTAGTTGGAGTGGC TGACAAGGAGAGAATGATTTCCAGGAAGAGCGGAACACATATGGAAGGCCTTAGCTTATC TTTAGCGCCTCATACACCCGTTCTGGACTTCAGAAAGGCCAGTGAGTGGGATTAGGCCTC AGAGATAGGATGTCAGTCCCAGTGAGGGATGGCCTAGAGCATTCTTTAATTCTTTCCTTT GGGTCACACATAAGAAACAATTTTCCAGCACTGATGAGTGTTATTAACAATGAGATGGGA TAGAATTTAGTTTTCCCTATGGCTGTGCTTCAAAAATAGAAAAGCTGTCTTTTCTCTGGA ATGATTGAATGAAGCTCTGGGGAGGAAAAGGTGGATTGGCAGATCTCTTAAAGGAAGCTT CTCCTTCTAGGCACTATTCTAAGGCTTAATATTTTAACTCCCTATATTAACCTAGTTCAA CTAAACAGTGATCTGAGTAATTTTATTTTTATTAAAGCTCAGATCAAAATGCCATTAACA TTGATTGAGAAAATCAAAGGAATCTTTGATGTGAGTGGTTAAATTGCTGAATTATTTCAG TCCCATACCCTCACAGCATGAGTACCTGATCTGATAGACTTCTTTGGAATTCCTTTTTTG TTTGAGACAGAGTCTTGCTCTGTCGCCCAGGCTGGAGTGCAGCGGTGTGATCTCAACCAT TGCAACCTCCACCTCCCAGGTTCAGGTGATTCTCATGCCTCAGCCTCCTGAGTAGCTGGG ATTACAGATGTGCACCACCATGCCCGGCTAATTATTTTGTATCTTTAGTAGAGATGAAGT TTTGCCATGTGGGCCAGGCTGTTCTCAAACTACTGGCCTCAAGTGATCTGCCCGCCTCGG CCTCCCAGACTGCTGGGATTACAGGCGTGAGGCACCGTGCCTGGCTGGGATTCCATAATA AATCCCTCTGTGTCTATTTCTTTTTTCAAATATAATTTTCTTCATTTCCAAACATCATCT TTAAGACTCCAAGGATTTTTCCAGGCACAGTGGCTCATACCTGTAATCCCATTGCTTGGA GAGGCCAAGGTGGAAGTTCATTTGAGGCCAGGAGTTCGAGACCAGGTGGGCAACATAGTG AAACCTTGTCTCTACAACAT >Hs.153504_contig2 BE962007|AW016349|AW016358|AW139144|AA932969|AI025620|AI688744|AI865632|AA8 54291|AA932970|AU156702|AI634439|AA152496|AI539557|AI123490|AI613215|AI3183 63|AW105672|AA843483|AI366889|AW1819381AI813801|AI433695|AA934772|N72230|AT 760632|BE858965|AW058302|AI760087|AI682077|AA886672|AI350384|AW243848|AW300 574|BE466359|AI859529|AI921588|BF062899|BE855597 BE617708 polyA = 2 polyA = 3 TGTTTATATAACTGTGTTCGTTTTTGTTGTTCCGTCCCGTCGTCCTTGTAGACTCTCATC CTCGTGTGTTTTGGACCCTCCAGGGGTGACATCGGGTCTTGTGTTCAGCTCTCCTGGACT GTTATTCCTTGTCCGCGTGTTCGTGTTAGACATTGTCCACGATCTGTATCATGCCTATGT CTCACTTTGGTCTCTTATTTCAGCGTGAACACTATAGTTCCAAGTTTGTTCGGATAATTC TGATTCTTGTCACCAGCGTGAGATTTCAACAGAACTTGTTTGGAACAAATACTCACTTAA AACTTCAGCAGAAGAAAAATTACTTAGTCCTTAGGCCAACCAATTTAACTGCAGTGTCAT GTTTCACAGGCCTTCCTACATTTAGAAATCGTCACACAGCTGTGATAAGAGTAGATTATT TTACTATGAAATAATTCTGAATAGATGAAAGCATAAAATGTGAGAAACTGAATGTATTAT TCAGGAAGAATACTGAGTGCCTTCATTTAACTAAAGTTGAATGTAAAAGTCAATTTGCAC TTCTTTATAATCCTCTGGTTTAGAATTATAAATTGTTAAAACCTTGATAATTGTCATTTA ATTATATTTCAGGTGTCCTGAACAGGTCACTAGACTCTACATTGGGCAGCCTTTAAATAT GATTCTTTGTAATGCTAAATAGCCTTTTTTTCTCTTTTTACTGCAACTTAATATTTCTAT TTAGAACACAGAAAATGAAAATATTTAGAATAAGTTGTACATTTGATGACAAATAAATCA CTATTAAAATAAAAAAAAAAAAAAAAAAA >Hs.199354_singletl AI669760 polyA = 1 polyA = 2 AGGAACCCCTGTGGGAAAGGTTTAAACCTATkAACAGTGCCCCCTTTGGCTCCTCCTCCCT TGGCGGAATGGGTTCCTGGACCATGTGCATTTCANTGGGCCATGGGATTTACATTTCCTT GCATCCCCAGGTGGTTTGATCCCTGCCAGGGCCCCTTCCTTCCTGCTCATGGTTTTCAGG GGGCCTGATCATGGAAAGTAAGGGGGTTGGGCCTTCCCTTTTGGGGGTGAACCCTGACTC CATCCCCCTATTGCCCCCCTAACCAATCATGCAAACTTTTCCCCCCCTGGGGTAATTCAC CAGTTAAAAAAAGCTTTTTTTAAATGTTTTGTTTTGGGGGGGGGGCAGGGCCCCCTTTTT GTTTTTTTAAGGAGTTGGTTTTGGTTTTTGGCTGATGTTTTGTTTTTTAACATGCCCCCA GTTTGTAAGGCCAAAGGTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAA >Hs.162020_contig1 AW291189|AA505872 polyA = 2 polyA = 3 TAAGCTTTAAAGGCTCTGTGTTAGGGCATAGTCTAGAAACATGGGGCCCAAGGGCACCGG GAAAACTTACAAAGGGAAGAGATGGAACTGGGAGGGTTCAAGCTACCAGTTCCATCTCTC CATGTTTTAGAGAATTGGGGCACTAAGTCAGCCAGGTAAGGTCAGGTCAGAGGAGGGCCC GGATGAAGCATGAGATGCAGAGGGACAGTGCGTGAATGGAGACCTTGGGTAGCACCAACG TGTAGCGGCAGAGGTGGGGTGGATGTGGCTGATGTCAGGGAGAGAATGGGGAGCATGCAC AGGGCTCAGTCTTATACATACATTGAAAATCCTTTAGCCTTTCAAAGATTATTAACCCAA ATCACCTTTCTTGCTTACTCCAGATGCCTCAGCCTCTGATATAATTGCTAAGTATCTGCC GTGTTAAAAATAAACATTTGAGAATCAAAAAAAAAAAAAAAAA >Hs.30743_mRNA_3 gi|18201906|ref|NM_006115.2|Homo sapiens preferentially expressed antigen in melanoma (FRAME), mRNA polyA = 3 GCTTCAGGGTACAGCTCCCCCGCAGCCAGAAGCCGGGCCTGCAGCGCCTCAGCACCGCTC CGGGACACCCCACCCGCTTCCCAGGCGTGACCTGTCAACAGCAACTTCGCGGTGTGGTGA ACTCTCTGAGGAAAAACCATTTTGATTATTACTCTCAGACGTGCGTGGCAACAAGTGACT GAGACCTAGAAATCCAAGCGTTGGAGGTCCTGAGGCCAGCCTAAGTCGCTTCAAAATGGA ACGAAGGCGTTTGTGGGGTTCCATTCAGAGCCGATACATCAGCATGAGTGTGTGGACAAG CCCACGGAGACTTGTGGAGCTGGCAGGGCAGAGCCTGCTGAAGGATGAGGCCCTGGCCAT TGCCGCCCTGGAGTTGCTGCCCAGGGAGCTCTTCCCGCCACTCTTCATGGCAGCCTTTGA CGGGAGACACAGCCAGACCCTGAAGGCAATGGTGCAGGCCTGGCCCTTCACCTGCCTCCC TCTGGGAGTGCTGATGAAGGGACAACATCTTCACCTGGAGACCTTCAAAGCTGTGCTTGA TGGACTTGATGTGCTCCTTGCCCAGGAGGTTCGCCCCAGGAGGTGGAAACTTCAAGTGCT GGATTTACGGAAGAACTCTCATCAGGACTTCTGGACTGTATGGTCTGGAAACAGGGCCAG TCTGTACTCATTTCCAGAGCCAGAAGCAGCTCAGCCCATGACAAAGAAGCGAAAAGTAGA TGGTTTGAGCACAGAGGCAGAGCAGCCCTTCATTCCAGTAGAGGTGCTCGTAGACCTGTT CCTCAAGGAAGGTGCCTGTGATGAATTGTTCTCCTACCTCATTGAGAAAGTGAAGCGAAA GAAAAATGTACTACGCCTGTGCTGTAAGAAGCTGAAGATTTTTGCAATGCCCATGCAGGA TATCAAGATGATCCTGAAAATGGTGCAGCTGGACTCTATTGAAGATTTGGAAGTGACTTG TACCTGGAAGCTACCCACCTTGGCGAAATTTTCTCCTTACCTGGGCCAGATGATTAATCT GCGTAGACTCCTCCTCTCCCACATCCATGCATCTTCCTACATTTCCCCGGAGAAGGAAGA GCAGTATATCGCCCAGTTCACCTCTCAGTTCCTCAGTCTGCAGTGCCTGCAGGCTCTCTA TGTGGACTCTTTATTTTTCCTTAGAGGCCGCCTGGATCAGTTGCTCAGGCACGTGATGAA CCCCTTGGAAACCCTCTCAATAACTAACTGCCGGCTTTCGGAAGGGGATGTGATGCATCT GTCCCAGAGTCCCAGCGTCAGTCAGCTAAGTGTCCTGAGTCTAAGTGGGGTCATGCTGAC CGATGTAAGTCCCGAGCCCCTCCAAGCTCTGCTGGAGAGAGCCTCTGCCACCCTCCAGGA CCTGGTCTTTGATGAGTGTGGGATCACGGATGATCAGCTCCTTGCCCTCCTGCCTTCCCT GAGCCACTGCTCCCAGCTTACAACCTTAAGCTTCTACGGGAATTCCATCTCCATATCTGC CTTGCAGAGTCTCCTGCAGCACCTCATCGGGCTGAGCAATCTGACCCACGTGCTGTATCC TGTCCCCCTGGAGAGTTATGAGGACATCCATGGTACCCTCCACCTGGAGAGGCTTGCCTA TCTGCATGCCAGGCTCAGGGAGTTGCTGTGTGAGTTGGGGCGGCCCAGCATGGTCTGGCT TAGTGCCAACCCCTGTCCTCACTGTGGGGACAGAACCTTCTATGACCCGGAGCCCATCCT GTGCCCCTGTTTCATGCCTAACTAGCTGGGTGCACATATCAAATGCTTCATTCTGCATAC TTGGACACTAAAGCCAGGATGTGCATGCATCTTGAAGCAACAAAGCAGCCACAGTTTCAG ACAAATGTTCAGTGTGAGTGAGGAAAACATGTTCAGTGAGGAAAAAACATTCAGACAAAT GTTCAGTGAGGAAAAAAAGGGGAAGTTGGGGATAGGCAGATGTTGACTTGAGGAGTTAAT GTGATCTTTGGGGAGATACATCTTATAGAGTTAGAAATAGAATCTGAATTTCTAAAGGGA GATTCTGGCTTGGGAAGTACATGTAGGAGTTAATCCCTGTGTAGACTGTTGTAAAGAAAC TGTTGAAAATAAAGAGAAGCAATGTGAAGCAAAAAAAAAAAAAAAAAA >Hs.271580_contig1 AI632869|AW338882|AW338875|AW613773|AI982899|AW193151|BE206353|BE208200|AI8 11548|AW264021 polyA = 2 polyA = 3 AACACAGCCCTACCAANCAATGATGACCAGTGGAAAACAATGAAGTCACCAAACCCTGGA CAGGGCTCATGCTCCAGGACAANTTGCTGTGGCGTAAATGGTCCATCAGACTGGCAAAAA TACACATCTGCCTTCCGGACTGAGAATAATGATGCTGACTATCCCTGGCCTCGTCAATGC TGTGTTATGAACAATCTTAAAGAACCTCTCAACCTGGAGGCTTGTAAACTAGGCGTGCCT GGTTTTTATCACAATCAGGGCTGCTATGAACTGATCTCTGGTCCAATGAACCGACACGCC TGGGGGGTTGCCTGGTTTGGATTTGCCATTCTCTGCTGGACTTTTTGGGTTCTCCTGGGT ACCATGTTCTACTGGAGCAGAATTGAATATTAAGCATAAAGTGTTGCCACCATACCTCCT TCCCCGAGTGACTCTGGATTTGGTGCTGGAACCAGCTCTCTCCTAATATTCCACGTTTGT GCCCCACACTAACGTGTGTGTCTTACATTGCCAAGTCAGATGGTACGGACTTCCTTTAGG ATCTCAGGCTTCTGCAGTTCTCATGACTCCTACTTTTCATCCTAGTCTAGCATTCTGCAA CATTTATATAGACTGTTGAAAGGAGAATTTGAAAAATGCATAATAACTACTTCCATCCCT GCTTATTTTTAATTTGGGAAAATAAATACATTCGAAGGAAAAAAAAA >Hs.69360_mRNA_2 gi|14250609|gb|BC008764.11BC008764 Homo sapiens clone MGC:1266 IMAGE:3347571 polyA = 3 GGCACGAGGGCGAAATTGAGGTTTCTTGGTATTGCGCGTTTCTCTTCCTTGCTGACTCTC CGAATGGCCATGGACTCGTCGCTTCAGGCCCGCCTGTTTCCCGGTCTCGCTATCAAGATC CAACGCAGTAATGGTTTAATTCACAGTGCCAATGTAAGGACTGTGAACTTGGAGAAATCC TGTGTTTCAGTGGAATGGGCAGAAGGAGGTGCCACAAAGGGCAAAGAGATTGATTTTGAT GATGTGGCTGCAATAAACCCAGAACTCTTACAGCTTCTTCCCTTACATCCGAAGGACAAT CTGCCCTTGCAGGAAAATGTAACAATCCAGAAACAAAAACGGAGATCCGTCAACTCCAAA ATTCCTGCTCCAAAAGAAAGTCTTCGAAGCCGCTCCACTCGCATGTCCACTGTCTCAGAG CTTCGCATCACGGCTCAGGAGAATGACATGGAGGTGGAGCTGCCTGCAGCTGCAAACTCC CGCAAGCAGTTTTCAGTTCCTCCTGCCCCCACTAGGCCTTCCTGCCCTGCAGTGGCTGAA ATACCATTGAGGATGGTCAGCGAGGAGATGGAAGAGCAAGTCCATTCCATCCGAGGCAGC TCTTCTGCAAACCCTGTGAACTCAGTTCGGAGGAAATCATGTCTTGTGAAGGAAGTGGAA AAAATGAAGAACAAGCGAGAAGAGAAGAAGGCCCAGAACTCTGAAATGAGAATGAAGAGA GCTCAGGAGTATGACAGTAGTTTTCCAAACTGGGAATTTGCCCGAATGATTAAAGAATTT CGGGCTACTTTGGAATGTCATCCACTTACTATGACTGATCCTATCGAAGAGCACAGAATA TGTGTCTGTGTTAGGAAACGCCCACTGAATAAGCAAGAATTGGCCAAGAAAGAAATTGAT GTGATTTCCATTCCTAGCAAGTGTCTCCTCTTGGTACATGAACCCAAGTTGAAAGTGGAC TTAACAAAGTATCTGGAGAACCAAGCATTCTGCTTTGACTTTGCATTTGATGAAACAGCT TCGAATGAAGTTGTCTACAGGTTCACAGCAAGGCCACTGGTACAGACAATCTTTGAAGGT GGAAAAGCAACTTGTTTTGCATATGGCCAGACAGGAAGTGGCAAGACACATACTATGGGC GGAGACCTCTCTGGGAAAGCCCAGAATGCATCCAAAGGGATCTATGCCATGGCCTCCCGG GACGTCTTCCTCCTGAAGAATCAACCCTGCTACCGGAAGTTGGGCCTGGAAGTCTATGTG ACATTCTTCGAGATCTACAATGGGAAGCTGTTTGACCTGCTCAACAAGAAGGCCAAGCTG CGCGTGCTGGAGGACGGCAAGCAACAGGTGCAAGTGGTGGGGCTGCAGGAGCATCTGGTT AACTCTGCTGATGATGTCATCAAGATGATCGACATGGGCAGCGCCTGCAGAACCTCTGGG CAGACATTTGCCAACTCCAATTCCTCCCGCTCCCACGCGTGCTTCCAAATTATTCTTCGA GCTAAAGGGAGAATGCATGGCAAGTTCTCTTTGGTAGATCTGGCAGGGAATGAGCGAGGC GCGGACACTTCCAGTGCTGACCGGCAGACCCGCATGGAGGGCGCAGAAATCAACAAGAGT CTCTTAGCCCTGAAGGAGTGCATCAGGGCCCTGGGACAGAACAAGGCTCACACCCCGTTC CGTGAGAGCAAGCTGACACAGGTGCTGAGGGACTCCTTCATTGGGGAGAACTCTAGGACT TGCATGATTGCCACGATCTCACCAGGCATAAGCTCCTGTGAATATACTTTAAACACCCTG AGATATGCAGACAGGGTCAAGGAGCTGAGCCCCCACAGTGGGCCCAGTGGAGAGCAGTTG ATTCAAATGGAAACAGAAGAGATGGAAGCCTGCTCTAACGGGGCGCTGATTCCAGGCAAT TTATCCAAGGAAGAGGAGGAACTGTCTTCCCAGATGTCCAGCTTTAACGAAGCCATGACT CAGATCAGGGAGCTGGAGGAGAAGGCTATGGAAGAGCTCAAGGAGATCATACAGCAAGGA CCAGACTGGCTTGAGCTCTCTGAGATGACCGAGCAGCCAGACTATGACCTGGAGACCTTT GTGAACAAAGCGGAATCTGCTCTGGCCCAGCAAGCCAAGCATTTCTCAGCCCTGCCAGAT GTCATCAAGGCCTTGCGCCTGGCCATGCAGCTGGAAGAGCAGGCTAGCAGACAAATAAGC AGCAAGAAACGGCCCCAGTGACGACTGCAAATAAAAATCTGTTTGGTTTGACACCCAGCC TCTTCCCTGGCCCTCCCCAGAGAACTTTGGGTACCTGGTGGGTCTAGGCAGGGTCTGAGC TGGGACAGGTTCTGGTAAATGCCAAGTATGGGGGCATCTGGGCCCAGGGCAGCTGGGGAG GGGGTCAGAGTGACATGGGACACTCCTTTTCTGTTCCTCAGTTGTCGCCCTCACGAGAGG AAGGAGCTCTTAGTTACCCTTTTGTGTTGCCCTTCTTTCCATCAAGGGGAATGTTCTCAG CATAGAGCTTTCTCCGCAGCATCCTGCCTGCGTGGACTGGCTGCTAATGGAGAGCTCCCT GGGGTTGTCCTGGCTCTGGGGAGAGAGACGGAGCCTTTAGTACAGCTATCTGCTGGCTCT AAACCTTCTACGCCTTTGGGCCGAGCACTGAATGTCTTGTACTTTAAAAAAATGTTTCTG AGACCTCTTTCTACTTTACTGTCTCCCTAGAGATCCTAGAGGATCCCTACTGTTTTCTGT TTTATGTGTTTATACATTGTATGTAACAATAAAGAGAAAAAATAAAAAAAAAAAAAAAAA AAAAAAAAAAAA >Hs.30827_contig1 H07885|N39347|W85913|AA583408|W86449 polyA = 2 polyA = 3 ATCGGACTTCGGTNAACTNTGGCAAGGATTGGACAGNCTAGGTAGGCTAAATGTGTGCTC TGTCCCTGTTTGCTTCAACAGAGGAGCAAGCCTCAGCTGAGAAGGAGGGCACNTGGAACA CCTAGCTCCTCCCGTGATTCCCCAAACCCATAACATTCTTCCATAGGGCTGGAACCAGTG CCCCGTCCTGACAGGGATGAAAAGTGAACCCCTCAGGTCAGGAGAGGCCAGAGTTGAGGT TCTGCCACTTCCTGTCCCTGGGGAGCCACTCAAGTTACCAGGGCTACCGGCTGAAATAAA TCTTTTCCGGGTAGGGTCAAGGGCAGTGTGTTCCAAGGCAACTGATGTAGGCCAGTTGCG TGACTCCAGGTTTGTCCTGGTACTCAGTGGGTCCAATCACCTGGCATTGATCACCTGGCA TTGATCAGCACCCACCCCACCCCTGAGGCTTGCCCAGCCCCCAGGCCCTCAGATCCCTGC TCTTCCTGCCTTTCCTGCCCATGTGTCACCCAGCACCCAAGGTTCAGTGACACAGGGTGG TTTGGAGCTGGTCACTGTCATAGCAGCTGTGATTTCACAAGGAAGGGTGCTGCAGGGGGA CCTGGTTGATGGGGAGTGGGAAGGGGAAGGAATAAAGAGATCTTCCTCAGGTAAAAAAAA AAAAAAAAAA >Hs.211593_contig2 BF592799|AI570478|AA234440|R40214|BE501078|AW593784|AI184050| AI284161|W72149|AW780437|AI247981|AW241273|H60824 polyA = 2 polyA = 3 ACCTCGTTTGCTCCCAGTTACTTCTTATCTGGAGCAGTAATGTAGTCCACTTCACTCATG CCTACCCCGCGTGTCTCGTCTCCTGACATGTCTCACAGACGCTCCTGAAGTTAGGTCATT ACCTAACCCATAGTTATTTACCTTGAAAGATGGGTCTCCGCACTTGGAAAGGTTTCAAGA CTTGATACTGCAATAAATTATGGCTCTTCACCTGGGCGCCAACTGCTGATCAACGAAATG CTTGTTGAATCAGGGGCAAACGGAGTACAGACGTCTCAAGACTGAAACGGCCCCATTGCC TGGTCTAGTAGCGGATCTCACTCAGCCGCAGACAAGTAATCACTAACCCGTTTTATTCTA TTCCTATCTGTGGATGTGTAAATGGCTGGGGGGCCAGCCCTGGATAGGTTTTTATGGGAA TTCTTTACAATAAACATAGCTTGTAACTTGAGATCTACAAATCCATTCATCCTGATTGGG CATGAAATCCATGGTCAAGAGGACAAGTGGAAAGTGAGAGGGAAGGTTTGCTAGACACCT TCGCTTGTTATCTTGTCAAGATAGAAAAGATAGTATCATTTCACCCTTGCCAGTAAAAAC CTTTCCATCCACCCATTCTCAGCAGACTCCAGTATTGGCACAGTCACTCACTGCCATTCT CACACTATAACAAGAAAAGAAATGAAGTGCATAAGTCTCCTGGGAAAAGAACCTTAACCC CTTCTCGTGCCATGACTGGTGATTTCATGACTCATAAGCCCCTCCGTAGGCATCATTCAA GATCAATGGCCCATGCATGCTGTTTGCAGCAGTCAATTGAGTTGAATTAGAATTCCAACC ATACATTTTAAAGGTATTTGTGCTGTGTGTATATTTTGATAAAATGTTGTGACTTCATGG CAAACAGGTGGATGTGTAAAAATGGAATAAAAAAAAAAAAAGAGTCAAAAAAAAAAAAAA AATT >Hs.155097_mRNA_1 gi|15080385|gb|BC011949.1|BC011949 Homo sapiens clone MGC:9006 IMAGE:3863603 polyA = 3 GGCGCCCAAGCCGCCGCCGCCAGATCGGTGCCGATTCCTGCCCTGCCCCGACCGCCAGCG CGACCATGTCCCATCACTGGGGGTACGGCAAACACAACGGACCTGAGCACTGGCATAAGG ACTTCCCCATTGCCAAGGGAGAGCGCCAGTCCCCTGTTGACATCGACACTCATACAGCCA AGTATGACCCTTCCCTGAAGCCCCTGTCTGTTTCCTATGATCAAGCAACTTCCCTGAGGA TCCTCAACAATGGTCATGCTTTCAACGTGGAGTTTGATGACTCTCAGGACAAAGCAGTGC TCAAGGGAGGACCCCTGGATGGCACTTACAGATTGATTCAGTTTCACTTTCACTGGGGTT CACTTGATGGACAAGGTTCAGAGCATACTGTGGATAAAAAGAAATATGCTGCAGAACTTC ACTTGGTTCACTGGAACACCAAATATGGGGATTTTGGGAAAGCTGTGCAGCAACCTGATG GACTGGCCGTTCTAGGTATTTTTTTGAAGGTTGGCAGCGCTAAACCGGGCCTTCAGAAAG TTGTTGATGTGCTGGATTCCATTAAAACAAAGGGCAAGAGTGCTGACTTCACAAACTTTG CAGCTCGTGGCCTCCTTCCTGAATCCCTGGATTACTGGACCTACCCAGGCTCACTGACCA CCCCTCCTCTTCTGGAATGTGTGACCTGGATTGTGCTCAAGGAACCCATCAGCGTCAGCA GCGAGCAGGTGTTGAAATTCCGTAAACTTAACTTCAATGGGGAGGGTGAACCCGAAGAAC TGATGGTGGACAACTGGCGCCCAGCTCAGCCACTGAAGAACAGGCAAATCAAAGCTTCCT TCAAATAAGATGGTCCCATAGTCTGTATCCAAATAATGAATCTTCGGGTGTTTCCCTTTA GCTAAGCACAGATCTACCTTGGTGATTTGGACCCTGGTTGCTTTGTGTCTAGTTTTCTAG ACCCTTCATCTCTTACTTGATAGACTTACTAATAAAATGTGAAGACTAGACCAATTGTCA TGCTTGACACAACTGCTGTGGCTGGTTGGTGCTTTGTTTATGGTAGTAGTTTTTCTGTAA CACAGAATATAGGATAAGAAATAAGAATAAAGTACCTTGACTTTGTTCACAGCATGTAGG GTGATGAGCACTCACAATTGTTGACTAAAATGCTGCCTTTAAAACATAGGAAAGTAGAAT GGTTGAGTGCAAATCCATAGCACAAGATAAATTGAGCTAGTTAAGGCAAATCAGGTAAAA TAGTCATGATTCTATGTAATGTAAACCAGAAAAAATAAATGTTCATGATTTCAAGATGTT ATATTAAAGAAAAACTTTAAAAATTATTATATATTTATAGCAAAGTTATCTTAAATATGA ATTCTGTTGTAATTTAATGACTTTTGAATTACAGAGATATAAATGAAGTATTATCTGTAA AAATTGTTATAATTAGAGTTGTGATACAGAGTATATTTCCATTCAGACAATATATCATAA CTTAATAAATATTGTATTTTAGATATATTCTCTAATAAAATTCAGAATTCTAAAAAAAAA AAAAAAAA >Hs.5163_mRNA_1 gi|15990433|gb|BC015582.1|BC015582 Homo sapiens clone MGC:23280 IMAGE:4637504 polyA = 3 GGCACGAGGCATGGAGGCGCTGCTGCTGGGCGCGGGGTTGCTGCTGGGCGCTTACGTGCT TGTCTACTACAACCTGGTGAAGGCCCCGCCGTGCGGCGGCATGGGCAACCTGCGGGGCCG CACGGCCGTGGTCACGGGTGAGTGCGGAGGCGGGTGAGTGCGAGCTGGCGGGGCGCGCGG AGAGGAGGCCGGGCCGGCGGTAGCAGCGGCCCGCCGGGCTCAGCTCAGCTCGGCTCCCGC CCGCGGTCCGCAGGCGCCAACAGCGGCATCGGAAAGATGACGGCGCTGGAGCTGGCGCGC CGGGGAGCGCGCGTGGTGCTGGCCTGCCGCAGCCAGGAGCGCGGGGAGGCGGCTGCCTTC GACCTCCGCCAGGAGAGTGGGAACAATGAGGTCATCTTCATGGCCTTGGACTTGGCCAGT CTGGCCTCGGTGCGGGCCTTTGCCACTGCCTTTCTGAGCTCTGAGCCACGGTTGGACATC CTCATCCACAATGCCGGTATCAGTTCCTGTGGCCGGACCCGTGAGGCGTTTAACCTGCTG CTTCGGGTGAACCATATCGGTCCCTTTCTGCTGACACATCTGCTGCTGCCTTGCCTGAAG GCATGTGCCCCTAGCCGCGTGGTGGTGGTAGCCTCAGCTGCCCACTGTCGGGGACGTCTT GACTTCAAACGCCTGGACCGCCCAGTGGTGGGCTGGCGGCAGGAGCTGCGGGCATATGCT GACACTAAGCTGGCTAATGTACTGTTTGCCCGGGAGCTCGCCAACCAGCTTGAGGCCACT GGCGTCACCTGCTATGCAGCCCACCCAGGGCCTGTGAACTCGGAGCTGTTCCTGCGCCAT GTTCCTGGATGGCTGCGCCCACTTTTGCGCCCATTGGCTTGGCTGGTGCTCCGGGCACCA AGAGGGGGTGCCCAGACACCCCTGTATTGTGCTCTACAAGAGGGCATCGAGCCCCTCAGT GGGAGATATTTTGCCAACTGCCATGTGGAAGAGGTGCCTCCAGCTGCCCGAGACGACCGG GCAGCCCATCGGCTATGGGAGGCCAGCAAGAGGCTGGCAGGGCTTGGGCCTGGGGAGGAT GCTGAACCCGATGAAGACCCCCAGTCTGAGGACTCAGAGGCCCCATCTTCTCTAAGCACC CCCCACCCTGAGGAGCCCACAGTTTCTCAACCTTACCCCAGCCCTCAGAGCTCACCAGAT TTGTCTAAGATGACGCACCGAATTCAGGCTAAAGTTGAGCCTGAGATCCAGCTCTCCTAA CCCTCAGGCCAGGATGCTTGCCATGGCACTTCATGGTCCTTGAAAACCTCGGATGTGTGC GAGGCCATGCCCTGGACACTGACGGGTTTGTGATCTTGACCTCCGTGGTTACTTTCTGGG GCCCCAAGCTGTGCCCTGGACATCTCTTTTCCTGGTTGAAGGAATAATGGGTGATTATTT CTTCCTGAGAGTGACAGTAACCCCAGATGGAGAGATAGGGGTATGCTAGACACTGTGCTT CTCGGAAATTTGGATGTAGTATTTTCAGGCCCCACCCTTATTGATTCTGATCAGCTCTGG AGCAGAGGCAGGGAGTTTGCAATGTGATGCACTGCCAACATTGAGAATTAGTGAACTGAT CCCTTTGCAACCGTCTAGCTAGGTAGTTAAATTACCCCCATGTTAATGAAGCGGAATTAG GCTCCCGAGCTAAGGGACTCGCCTAGGGTCTCACAGTGAGTAGGAGGAGGGCCTGGGATC TGAACCCAAGGGTCTGAGGCCAGGGCCGACTGCCGTAAGATGGGTGCTGAGAAGTGAGTC AGGGCAGGGCAGCTGGTATCGAGGTGCCCCATGGGAGTAAGGGGACGCCTTCCGGGCGGA TGCAGGGCTGGGGTCATCTGTATCTGAAGCCCCTCGGAATAAAGCGCGTTGACCGCCAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA >Hs.55150_mRNA_1 gi|17068414|gb|BC017586.1|BC017586 Homo sapiens clone MGC:26610 IMAGE:4837506 polyA = 3 AGCGGTGGAGAAAAGGCAGAACCAGAGTAGAGATTGACAGTGAGCTGAGCCAATCAGGCT GTGAATCTGCAGCAGTGATCCCAGGTCCTCCAATTAATACTAAGAGAGTGGACCAGGGCC CCTGAGGAAGACAGATGGCAGGGACAGCGCGCCATGACCGAGAGATGGCGATCCAGGCCA AGAAAAAGCTCACCACGGCCACCAACCCCATTGAAAGACTCCGACTGCAGTGCCTGGCCA GGGGCTCTGCTGGGATCAAAGGACTTGGCAGAGTGTTTAGAATTATGGATGACGATAATA ATCGAACCCTTGATTTTAAAGAATTTATGAAAGGGTTAAATGATTATGCTGTGGTCATGG AAAAAGAAGAGGTGGAAGAACTTTTCCGGAGGTTTGATAAAGATGGAAATGGAACAATAG ACTTCAATGAATTTCTTCTCACATTAAGACCTCCAATGTCCAGAGCCAGAAAAGAGGTAA TCATGCAAGCTTTTAGAAAGTTAGACAAGACTGGAGATGGTGTTATAACAATCGAAGACC TTCGTGAAGTATATAATGCAAAACACCACCCAAAGTACCAGAATGGGGAATGGAGTGAGG AACAAGTATTTAGGAAATTTCTGGATAACTTTGATTCACCCTATGACAAAGATGGATTGG TGACCCCTGAGGAGTTCATGAACTACTATGCAGGTGTGAGCGCATCCATTGACACTGATG TGTACTTCATCATCATGATGAGAACCGCCTGGAAGCTTTAAGCACATGACCTGGGGACCA GGCCCTGGGACAGCCATGTGGCTCCAAATGACTAAATGTCAGCTCAAAAACCAGAATCGT ATTTGATTTCACACTCATCCTAATGTTTTTTTCTGTGTCAAAATATTGCATTTTCTGGGG CCAAAAAACAGGCAGAAATAAAAGACATTGAGTAGTCAAAAAAAAAAAAAAAA >Hs.170177_contig3 AI620495|AW291989|AA780896|AA976262|AI298326|BF111862|AW591523|AI922518|AI4 80280|BF589437|AA600354|AI886238|AA035599|H90049|BF112011|N52601|AI570965|A 1565367|AW768847|H90073|BE504361|N45292|AI632075|AA679729|AW168052|AI978827 |AI968410|AI669255|N45300|AI651256|AI698970|AI521256|AW078614|AI802070|AI88 5947|AI342534|AI653624|AW243936|T16586|R15989|AI289789|AI871636|AI718785|AW 148847 polyA = 2 polyA = 3 TAGAGCATTAAAATAACTATCAGGCAGAAGAATCTTTCTTCTCGCCTAGGATTTCAGCCA TGCGCGCGCTCTCTCTCTTTCTCTCTCTTTTCCTCTCTCTCCCTCTTTCTAGCCTGGGGC TTGAATTTGCATGTCTAATTCATTTACTCACCATATTTGAATTGGCCTGAACAGATGTAA ATCGGGAAGGATGGGAAAAACTGCAGTCATCAACAATGATTAATCAGCTGTTGCAGGCAG TGTCTTAAGGAGACTGGTAGGAGGAGGCATGGAAACCAAAAGGCCGTGTGTTTAGAAGCC TAATTGTCACATCAAGCATCATTGTCCCCATGCAACAACCACCACCTTATACATCACTTC CTGTTTTAAGCAGCTCTAAAACATAGACTGAAGATTTATTTTTAATATGTTGACTTTATT TCTGAGCAAAGCATCGGTCATGTGTGTATTTTTTCATAGTCCCACCTTGGAGCATTTATG TAGACATTGTAAATAAATTTTGTGCAAAAAGGACTGGAAAAATGAACTGTATTATTGCAA TTTTTTTTTGTAAAAGTAGCAGTTTGGTATGAGTTGGCATGCATACAAGATTTACTAAGT GGGATAAGCTAATTATACTTTTTGTTGTGGATAAACAAATGCTTGTTGATAGCCTTTTTC TATCAAGAAACCAAGGAGCTAATTATTAATAACAATCATTGCACACTGAGTCTTAGCGTT TCTGATGGAAACAGTTTGGATTGTATAATAACGCCAAGCCCAGTTGTAGTCGTTTGAGTG CAGTAATGAAATCTGAATCTAAAATAAAAACAAGATTATTTTTGTCAAAAAAAAAAAAAA AAAAAAAAAA >Hs.184601_mRNA_5 gi|4426639|gb|AF104032.1|AF104032 Homo sapiens polyA = 2 GCGGCGCGCACACTGCTCGCTGGGCCGCGGCTCCCGGGTGTCCCAGGCCCGGCCGGTGCG CAGAGCATGGCGGGTGCGGGCCCGAAGCGGCGCGCGCTAGCGGCGCCGGCGGCCGAGGAG AAGGAAGAGGCGCGGGAGAAGATGCTGGCCGCCAAGAGCGCGGACGGCTCGGCGCCGGCA GGCGAGGGCGAGGGCGTGACCCTGCAGCGGAACATCACGCTGCTCAACGGCGTGGCCATC ATCGTGGGGACCATTATCGGCTCGGGCATCTTCGTGACGCCCACGGGCGTGCTCAAGGAG GCAGGCTCGCCGGGGCTGGCGCTGGTGGTGTGGGCCGCGTGCGGCGTCTTCTCCATCGTG GGCGCGCTCTGCTACGCGGAGCTCGGCACCACCATCTCCAAATCGGGCGGCGACTACGCC TACATGCTGGAGGTCTACGGCTCGCTGCCCGCCTTCCTCAAGCTCTGGATCGAGCTGCTC ATCATCCGGCCTTCATCGCAGTACATCGTGGCCCTGGTCTTCGCCACCTACCTGCTCAAG CCGCTCTTCCCCACCTGCCCGGTGCCCGAGGAGGCAGCCAAGCTCGTGGCCTGCCTCTGC GTGCTGCTGCTCACGGCCGTGAACTGCTACAGCGTGAAGGCCGCCACCCGGGTCCAGGAT GCCTTTGCCGCCGCCAAGCTCCTGGCCCTGGCCCTGATCATCCTGCTGGGCTTCGTCCAG ATCGGGAAGGGTGATGTGTCCAATCTAGATCCCAACTTCTCATTTGAAGGCACCAAACTG GATGTGGGGAACATTGTGCTGGCATTATACAGCGGCCTCTTTGCCTATGGAGGATGGAAT TACTTGAATTTCGTCACAGAGGAAATGATCAACCCCTACAGAAACCTGCCCCTGGCCATC ATCATCTCCCTGCCCATCGTGACGCTGGTGTACGTGCTGACCAACCTGGCCTACTTCACC ACCCTGTCCACCGAGCAGATGCTGTCGTCCGAGGCCGTGGCCGTGGACTTCGGGAACTAT CACCTGGGCGTCATGTCCTGGATCATCCCCGTCTTCGTGGGCCTGTCCTGCTTCGGCTCC GTCAATGGGTCCCTGTTCACATCCTCCAGGCTCTTCTTCGTGGGGTCCCGGGAAGGCCAC CTGCCCTCCATCCTCTCCATGATCCACCCACAGCTCCTCACCCCCGTGCCGTCCCTCGTG TTCACGTGTGTGATGACGCTGCTCTACGCCTTCTCCAAGGACATCTTCTCCGTCATCAAC TTCTTCAGCTTCTTCAACTGGCTCTGCGTGGCCCTGGCCATCATCGGCATGATCTGGCTG CGCCACAGAAAGCCTGAGCTTGAGCGGCCCATCAAGGTGAACCTGGCCCTGCCTGTGTTC TTCATCCTGGCCTGCCTCTTCCTGATCGCCGTCTCCTTCTGGAAGACACCCGTGGAGTGT GGCATCGGCTTCACCATCATCCTCAGCGGGCTGCCCGTCTACTTCTTCGGGGTCTGGTGG AAAAACAAGCCCAAGTGGCTCCTCCAGGGCATCTTCTCCACGACCGTCCTGTGTCAGAAG CTCATGCAGGTGGTCCCCCAGGAGACATAGCCAGGAGGCCGAGTGGCTGCCGGAGGAGCA TGCGCAGAGGCCAGTTAAAGTAGATCACCTCCTCGAACCCACTCCGGTTCCCCGCAACCC ACAGCTCAGCTGCCCATCCCAGTCCCTCGCCGTCCCTCCCAGGTCGGGCAGTGGAGGCTG CTGTGAAAACTCTGGTACGAATCTCATCCCTCAACTGAGGGCCAGGGACCCAGGTGTGCC TGTGCTCCTGCCCAGGAGCAGCTTTTGGTCTCCTTGGGCCCTTTTTCCCTTCCCTCCTTT GTTTACTTATATATATATTTTTTTTAAACTTAAATTTTGGGTCAACTTGACACCACTAAG ATGATTTTTTAAGGAGCTGGGGGAAGGCAGGAGCCTTCCTTTCTCCTGCCCCAAGGGCCC AGACCCTGGGCAAACAGAGCTACTGAGACTTGGAACCTCATTGCTACGACAGACTTGCAC TGAAGCCGGACAGCTGCCCAGACACATGGGCTTGTGACATTCGTGAAAACCAACCCTGTG GGCTTATGTCTCTGCCTTAGGGTTTGCAGAGTGGAAACTCAGCCGTAGGGTGGCACTGGG AGGGGGTGGGGGATCTGGGCAAGGTGGGTGATTCCTCTCAGGAGGTGCTTGAGGCCCCGA TGGACTCCTGACCATAATCCTAGCCCTGAGACACCATCCTGAGCCAGGGAACAGCCCCAG GGTTGGGGGGTGCCGGCATCTCCCCTAGCTCACCAGGCCTGGCCTCTGGGCAGTGTGGCC TCTTGGCTATTTCTGTGTCCAGTTTTGGAGGCTGAGTTCTGGTTCATGCAGACAAAGCCC TGTCCTTCAGTCTTCTAGAAACAGAGACAAGAAAGGCAGACACACCGCGGCCAGGCACCC ATGTGGGCGCCCACCCTGGGCTCCACACAGCAGTGTCCCCTGCCCCAGAGGTCGCAGCTA CCCTCAGCCTCCAATGCATTGGCCTCTGTACCGCCCGGCAGCCCCTTCTGGCCGGTGCTG GGTTCCCACTCCCGGCCTAGGCACCTCCCCGCTCTCCCTGTCACGCTCATGTCCTGTCCT GGTCCTGATGCCCGTTGTCTAGGAGACAGAGCCAAGCACTGCTCACGTCTCTGCCGCCTG CGTTTGGAGGCCCCTGGGCTCTCACCCAGTCCCCACCCGCCTGCAGAGAGGGAACTAGGG CACCCCTTGTTTCTGTTGTTCCCGTGAATTTTTTTCGCTATGGGAGGCAGCCGAGGCCTG GCCAATGCGGCCCACTTTCCTGAGCTGTCGCTGCCTCCATGGCAGCAGCCAAGGACCCCC AGAACAAGAAGACCCCCCCGCAGGATCCCTCCTGAGCTCGGGGGGCTCTGCCTTCTCAGG CCCCGGGCTTCCCTTCTCCCCAGCCAGAGGTGGAGCCAAGTGGTCCAGCGTCACTCCAGT GCTCAGCTGTGGCTGGAGGAGCTGGCCTGTGGCACAGCCCTGAGTGTCCCAAGCCGGGAG CCAACGAAGCCGGACACGGCTTCACTGACCAGCGGCTGCTCAAGCCGCAAGCTCTCAGCA AGTGCCCAGCGGAGCCTGCCGCCCCCACCTGGGCACCGGGACCCCCTCACCATCCAGTGG GCCCGGAGAAACCTGATGAACAGTTTGGGGACTCAGGACCAGATGTCCGTCTCTCTTGCT TGAGGAATGAAGACCTTTATTCACCCCTGCCCCGTTGCTTCCCGCTGCACATGGACAGAC TTCACAGCGTCTGCTCATAGGACCTGCATCCTTCCTGGGGACGAATTCCACTCGTCCAAG GGACAGCCCACGGTCTGGAGGCCGAGGACCACCAGCAGGCAGGTGGACTGACTGTGTTGG GCAAGACCTCTTCCCTCTGGGCCTGTTCTCTTGGCTGCAAATAAGGACAGCAGCTGGTGC CCCACCTGCCTGGTGCATTGCTGTGTGAATCCAGGAGGCAGTGGACATCGTAGGCAGCCA CGGCCCCGGGTCCAGGAGAAGTGCTCCCTGGAGGCACGCACCACTGCTTCCCACTGGGGC CGGCGGGGCCCACGCACGACGTCAGCCTCTTACCTTCCCGCCTCGGCTAGGGGTCCTCGG GATGCCGTTCTGTTCCAACCTCCTGCTCTGGGACGTGGACATGCCTCAAGGATACAGGGA GCCGGCGGCCTCTCGACGGCACGCACTTGCCTGTTGGCTGCTGCGGCTGTGGGCGAGCAT GGGGGCTGCCAGCGTCTGTTGTGGAAAGTAGCTGCTAGTGAAATGGCTGGGGCCGCTGGG GTCCGTCTTCACACTGCGCAGGTCTCTTCTGGGCGTCTGAGCTGGGGTGGGAGCTCCTCC GCAGAAGGTTGGTGGGGGGTCCAGTCTGTGATCCTTGGTGCTGTGTGCCCCACTCCAGCC TGGGGACCCCACTTCAGAAGGTAGGGGCCGTGTCCCGCGGTGCTGACTGAGGCCTGCTTC CCCCTCCCCCTCCTGCTGTGCTGGAATTCCACAGGGACCAGGGCCACCGCAGGGGACTGT CTCAGAAGACTTGATTTTTCCGTCCCTTTTTCTCCACACTCCACTGACAAACGTCCCCAG CGGTTTCCACTTGTGGGCTTCAGGTGTTTTCAAGCACAACCCACCACAACAAGCAAGTGC ATTTTCAGTCGTTGTGCTTTTTTGTTTTGTGCTAACGTCTTACTAATTTAAAGATGCTGT CGGCACCATGTTTATTTATTTCCAGTGGTCATGCTCAGCCTTGCTGCTCTGCGTGGCGCA GGTGCCATGCCTGCTCCCTGTCTGTGTCCCAGCCACGCAGGGCCATCCACTGTGACGTCG GCCGACCAGGCTGGACACCCTCTGCCGAGTAATGACGTGTGTGGCTGGGACCTTCTTTAT TCTGTGTTAATGGCTAACCTGTTACACTGGGCTGGGTTGGGTAGGGTGTTCTGGCTTTTT TGTGGGGTTTTTATTTTTAAAGAAACACTCAATCATCCTAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA >Hs.351972_singlet1 AA865917 polyA = 2 polyA = 3 GGGACTTGGAAAGGGGAACTGGGATTTGGGGAGGGGCTGGAGGACTTCCGCACGCTTCCA CCTCCTTCGACCTCCACTGCGCCCCACCTCCCTGCCTGTGTGTGTTATTTCAAAGGAAAA GAACAAAAGGAATAAATTTTCTAAGCTCTTTAAAAAAAAAAAAAAAAAAAAAAAAA >Hs.5366_mRNA_2 gi|15277845|gb|BC012926.1|BC012926 Homo sapiens clone MGC: 16817 IMAGE:3853503 polyA = 3 GCAGGCTCTGCCTGTGGCCACTAGCAGAGAAGCTGCTGTCCTTCCACCACCAGCACCGGA CCACCTGCTCCAAGACCAGCCTCCTGGGGGGACCAGGCACCCGGCCTTCACTGGCACCCA GGGAGCCGTCCTCAGCAGCGTCAACATGTCAAGGCCCAGCAGCAGAGCCATTTACTTGCA CCGGAAGGAGTACTCCCAGAACCTCACCTCAGAGCCCACCCTCCTGCAGCACAGGGTGGA GCACTTGATGACATGCAAGCAGGGGAGTCAGAGAGTCCAGGGGCCCGAGGATGCCTTGCA GAAGCTGTTCGAGATGGATGCACAGGGCCGGGTGTGGAGCCAAGACTTGATCCTGCAGGT CAGGGACGGCTGGCTGCAGCTGCTGGACATTGAGACCAAGGAGGAGCTGGACTCTTACCG CCTAGACAGCATCCAGGCCATGAATGTGGCGCTCAACACATGTTCCTACAACTCCATCCT GTCCATCACCGTGCAGGAGCCGGGCCTGCCAGGCACTAGCACTCTGCTCTTCCAGTGCCA GGAAGTGGGGGCAGAGCGACTGAAGACCAGCCTGCAGAAGGCTCTGGAGGAAGAGCTGGA GCAAAGCAGACCTCGACTTGGAGGCCTTCAGCCAGGCCAGGACAGATGGAGGGGGCCTGC TATGGAAAGGCCGCTCCCTATGGAGCAGGCACGCTATCTGGAGCCGGGGATCCCTCCAGA ACAGCCCCACCAGAGGACCCTAGAGCACAGCCTCCCACCATCCCCAAGGCCCCTGCCACG CCACACCAGTGCCCGAGAACCAAGTGCCTTTACTCTGCCTCCTCCAAGGCGGTCCTCTTC CCCCGAGGACCCAGAGAGGGACGAGGAAGTGCTGAACCATGTCCTAAGGGACATTGAGCT GTTCATGGGAAAGCTGGAGAAGGCCCAGGCAAAGACCAGCAGGAAGAAGAAATTTGGGAA AAAAAACAAGGACCAGGGAGGTCTCACCCAGGCACAGTACATTGACTGCTTCCAGAAGAT CAAGTACAGCTTCAACCTCCTGGGAAGGCTGGCCACCTGGCTGAAGGAGACAAGTGCCCC TGAGCTCGTACACATCCTCTTCAAGTCCCTGAACTTCATCCTGGCCAGGTGCCCTGAGGC TGGCCTAGCAGCCCAAGTGATCTCACCCCTCCTCACCCCTAAAGCTATCAACCTGCTACA GTCCTGTCTAAGCCCACCTGAGAGTAACCTTTGGATGGGGTTGGGCCCAGCCTGGACCAC TAGCCGGGCCGACTGGACAGGCGATGAGCCCCTGCCCTACCAACCCACATTCTCGGATGA CTGGCAACTTCCAGAGCCCTCCAGCCAAGCACCCTTAGGATACCAGGACCCTGTTTCCCT TCGGCGGGGAAGTCATAGGTTAGGGAGCACCTCACACTTTCCTCAGGAGAAGACACACAA CCATGACCCTCAGCCTGGGGACCCCAACTCCAGGCCCTCCAGCCCCAAACCTGCCCAGCC AGCCCTGAAAATGCAAGTCTTGTACGAGTTTGAAGCTAGGAACCCACGGGAACTGACTGT GGTCCAGGGAGAGAAGCTGGAGGTTCTGGACCACAGCAAGCGGTGGTGGCTGGTGAAGAA TGAGGCGGGACGGAGCGGCTACATTCCAAGCAACATCCTGGAGCCCCTACAGCCGGGGAC CCCTGGGACCCAGGGCCAGTCACCCTCTCGGGTTCCAATGCTTCGACTTAGCTCGAGGCC TGAAGAGGTCACAGACTGGCTGCAGGCAGAGAACTTCTCCACTGCCACGGTGAGGACACT TGGGTCCCTGACGGGGAGCCAGCTACTTCGCATAAGACCTGGGGAGCTACAGATGCTATG TCCACAGGAGGCCCCACGAATCCTGTCCCGGCTGGAGGCTGTCAGAAGGATGCTGGGGAT AAGCCCTTAGGCACCAGCTTAGACACCTCCAAGAACCAGGCCCCGCTGATGCAAGATGGC AGATCTGATACCCATTAGAGCCCCGAGAATTCCTCTTCTGGATCCCAGTTTGCAGCAAAC CCCACACCCCAGCTCACACAGCAAAAACAATGGACAGGCCCAGAGGGTGAAGCAAACAGT GTCCCTTCTGGCTGTGTTGGAGCCTCCCCAGTAACCACCTATTTATTTTACCTCTTTCCC AAACCTGGAGCATTTATGCCTAGGCTTGTCAAGAATCTGTTCAGTCCCTCTCCTTCTCAA TAAAAGCATCTTCAAGCTTGAAAAAAAAAAAAAAA >Hs.18140_contig1 AI685931|AA410954|T97707 AA706873|AI911572 AW614616|AA548520|AW027764|BF511 251|AI914294|AW151688 polyA = 1 polyA = 1 CCTTCCATTGAATTCCACCAGACACATTCAGGTTANCTTCGTAATGTCTTCATATGAGTA TCAATCAACACCTTCCCCAACTCAATTGTACTAGGTTGTAGAGCACAAGGATGGTCTCGT GCTGCTCTGTGGCACCTGTGCCTACACTGCTCTGAGCTTTGAGGAGGCTGCTCTCTTTGC TGACCCCATGATCTTTTCTGCCCTTCTGTTAAGGGCATTGGCCACAGCAACGGGGCAAAT GCCCCAAGCTGGCTGTAAGTGACCCATCCCTTTGGCTCCCATGATTAGACCAAGGAGAGG CATGGGGTCCAGCTGAGCCATTCAGAACCATTCCTTAGCATTTTCCACTCAAAGGTTAGA GATGAGATTTTCTCTTCCCAAGGCTACCTCTGGCCATGGTTCCAGCTTCATGGGGGCAAT GGGATTAGGAAAATGAGGTCAACCTGCAAAGGAAAGCAGATGCAAGAGATGGAGACAGAA TGGGGGTGTCCTGGGGATCTTGGAGCCTGAATTCATTGGCACAAAAGGCAGCAGCATCCT CACTGTATCTGCAGTCCATTTGGACTCAATAAAAACTTTGAAAGTCACATGTGTTATGGA ATTCCTTCTCAGTGACACATTCATCTGTGCTCAGTTGTCCCAGCAAGGGTCAGCCCCTCA TACCCCTGCAGCATCCGCTGCTATGAAGCAGAGCTGTAAACGCCCTCCCTGTGTATAGGA AAAGCTACATGGAGCAAATCCTCCTGCCTGAAGAAGTGCATCTCAGCATCACTTCAGCTG TCGGGGCATTTGTGGGGAGAACCAGACCACCTCTGCGGAAGGCAGCAGACCCTCTTCCAG CCATGGATGGAGTTGAATTCTCTATAAACGGTTCACCAGCAAACCACCAATACATTCCAT TGTTTGCCTAGAGAGAAATTTAAAAATATVATAAATGTTCACTTAT >Hs.133196_contig2 BF224381BE467992|AW137689|AI695045|AW207361|BF445141|AA405473 polyA = 2 WARN polyA = 3 TGCGGCCGCGGCATGAAAGGCGGCGAGGAGAGGCAGCACTGCTGCTCTTGACTTCTGAGC AGGGCTTAGAGAGCCTGCCCCGGCTTAAGCCGAGCTGCTGGTGCTGACCCTGAGCGCCGA GTCCGCGAGCTCTGAGTCCGGAGCCTCCCAGCCGTGGAGCCGTGGGATGAGGGGGGCGTT GGGGGACAGGGCAAAGTCGATCTTGGTTGTACAGCCGCCCGATCCTAGCGCGGAGCTGCG AGCCTGACCGGCCGCGTCTGGCATGGTCAGAGAAAGAATTTTCTTTTCCCAACTCCGGCT TTTGGTTTTGTGTGTCCACCTTGCGCAACTCCGGAGCCAGCCGACCCCACATGGATTCTC AACAGGTGGCCGGCACATCTTCTGAGCCTCGCTCTCTCATCTGAAAGTGGAGTGTAAGTC CAAGAAGATTCATTTAGACAAAGAAGGTGGAAAAAAAGGACTTTCTGGGCCAGCAAGTCG GATGACCACCCTCCAAGGGGCAGAGGAGGGCCCATTTTGTGAAGAAGAAATCAACTACCC GGAAAACGCCACAGGAGGACATGTTTCTGCAGATGTAGTTGCCCTAGAAACAGAAGAGTA TGGGGGTGTGAATGTCTTCTCTTTTGGGGGCAAACACTATGTCCTTTTCTTTTTCTAGAT ACAGTTAATTCCTGGAAATTTTAGCGAGTTTGTTCTTGTGGATATTTTGAACAATAAAGA GTGAAAATCAAAAAAA >Hs.63325_mRNA_5 gi|15451939|ref|NM_019894.1|Homo sapiens transmembrane protease, serine 4 (TMPRSS4), mRNA polyA = 3 CCCAATCACTCCTGGAATACACAGAGAGAGGCAGCAGCTTGCTCAGCGGACAAGGATGCT GGGCGTGAGGGACCAAGGCCTGCCCTGCACTCGGGCCTCCTCCAGCCAGTGCTGACCAGG GACTTCTGACCTGCTGGCCAGCCAGGACCTGTGTGGGGAGGCCCTCCTGCTGCCTTGGGG TGACAATCTCAGCTCCAGGCTACAGGGAGACCGGGAGGATCACAGAGCCAGCATGTTACA GGATCCTGACAGTGATCAACCTCTGAACAGCCTCGATGTCAAACCCCTGCGCAAACCCCG TATCCCCATGGAGACCTTCAGAAAGGTGGGGATCCCCATCATCATAGCACTACTGAGCCT GGCGAGTATCATCATTGTGGTTGTCCTCATCAAGGTGATTCTGGATAAATACTACTTCCT CTGCGGGCAGCCTCTCCACTTCATCCCGAGGAAGCAGCTGTGTGACGGAGAGCTGGACTG TCCCTTGGGGGAGGACGAGGAGCACTGTGTCAAGAGCTTCCCCGAAGGGCCTGCAGTGGC AGTCCGCCTCTCCAAGGACCGATCCACACTGCAGGTGCTGGACTCGGCCACAGGGAACTG GTTCTCTGCCTGTTTCGACAACTTCACAGAAGCTCTCGCTGAGACAGCCTGTAGGCAGAT GGGCTACAGCAGCAAACCCACTTTCAGAGCTGTGGAGATTGGCCCAGACCAGGATCTGGA TGTTGTTGAAATCACAGAAAACAGCCAGGAGCTTCGCATGCGGAACTCAAGTGGGCCCTG TCTCTCAGGCTCCCTGGTCTCCCTGCACTGTCTTGCCTGTGGGAAGAGCCTGAAGACCCC CCGTGTGGTGGGTGGGGAGGAGGCCTCTGTGGATTCTTGGCCTTGGCAGGTCAGCATCCA GTACGACAAACAGCACGTCTGTGGAGGGAGCATCCTGGACCCCCACTGGGTCCTCACGGC AGCCCACTGCTTCAGGAAACATACCGATGTGTTCAACTGGAAGGTGCGGGCAGGCTCAGA CAAACTGGGCAGCTTCCCATCCCTGGCTGTGGCCAAGATCATCATCATTGAATTCAACCC CATGTACCCCAAAGACAATGACATCGCCCTCATGAAGCTGCAGTTCCCACTCACTTTCTC AGGCACAGTCAGGCCCATCTGTCTGCCCTTCTTTGATGAGGAGCTCACTCCAGCCACCCC ACTCTGGATCATTGGATGGGGCTTTACGAAGCAGAATGGAGGGAAGATGTCTGACATACT GCTGCAGGCGTCAGTCCAGGTCATTGACAGCACACGGTGCAATGCAGACGATGCGTACCA GGGGGAAGTCACCGAGAAGATGATGTGTGCAGGCATCCCGGAAGGGGGTGTGGACACCTG CCAGGGTGACAGTGGTGGGCCCCTGATGTACCAATCTGACCAGTGGCATGTGGTGGGCAT CGTTAGCTGGGGCTATGGCTGCGGGGGCCCGAGCACCCCAGGAGTATACACCAAGGTCTC AGCCTATCTCAACTGGATCTACAATGTCTGGAAGGCTGAGCTGTAATGCTGCTGCCCCTT TGCAGTGCTGGGAGCCGCTTCCTTCCTGCCCTGCCCACCTGGGGATCCCCCAAAGTCAGA CACAGAGCAAGAGTCCCCTTGGGTACACCCCTCTGCCCACAGCCTCAGCATTTCTTGGAG CAGCAAAGGGCCTCAATTCCTGTAAGAGACCCTCGCAGCCCAGAGGCGCCCAGAGGAAGT CAGCAGCCCTAGCTCGGCCACACTTGGTGCTCCCAGCATCCCAGGGAGAGACACAGCCCA CTGAACAAGGTCTCAGGGGTATTGCTAAGCCAAGAAGGAACTTTCCCACACTACTGAATG GAAGCAGGCTGTCTTGTAAAAGCCCAGATCACTGTGGGCTGGAGAGGAGAAGGAAAGGGT CTGCGCCAGCCCTGTCCGTCTTCACCCATCCCCAAGCCTACTAGAGCAAGAAACCAGTTG TAATATAAAATGCACTGCCCTACTGTTGGTATGACTACCGTTACCTACTGTTGTCATTGT TATTACAGCTATGGCCACTATTATTAAAGAGCTGTGTAACATCAAAAAAAAAAAAAAAAA AAAA >Hs.250692_mRNA_2 gi|184223|gb|M95585.1|HUMHLF Human hepatic leukemia factor (HLF) mRNA, complete cds polyA = 3 TTTTTCAATTTTGAACATTTTGCAAAACGAGGGGTTCGAGGCAGGTGAGAGCATCCTGCA CGTCGCCGGGGAGCCCGCGGGCACTTGGCGCGCTCTCCTGGGACCGTCTGCACTGGAAAC CCGAAAGTTTTTTTTTAATATATATTTTTATGCAGATGTATTTATAAAGATATAAGTAAT TTTTTTCTTCCCTTTTCTCCACCGCCTTGAGAGCGAGTACTTTTGGCAAAGGACGGAGGA AAAGCTCAGCAACATTTTAGGGGGCGGTTGTTTCTTTCTTTCTTATTTCTTTTTTAAGGG GAAAAAATTTGAGTGCATCGCGATGGAGAAAATGTCCCGACCGCTCCCCCTGAATCCCAC CTTTATCCCGCCTCCCTACGGCGTGCTCAGGTCCCTGCTGGAGAACCCGCTGAAGCTCCC CCTTCACCACGAAGACGCATTTAGTAAAGATAAAGACAAAGAAAAGAAGCTGGATGATGA GAGTAACAGCCCGACGGTCCCCCAGTCGGCATTCCTGGGGCCTACCTTATGGGACAAAAC CCTTCCCTATGACGGAGATACTTTCCAGTTGGAATACATGGACCTGGAGGAGTTTTTGTC AGAAAATGGCATTCCCCCCAGCCCATCTCAGCATGACCACAGCCCTCACCCTCCTGGGCT GCAGCCAGCTTCCTCGGCTGCCCCCTCGGTCATGGACCTCAGCAGCCGGGCCTCTGCACC CCTTCACCCTGGCATCCCATCTCCGAACTGTATGCAGAGCCCCATCAGACCAGGTCAGCT GTTGCCAGCAAACCGCAATACACCAAGTCCCATTGATCCTGACACCATCCAGGTCCCAGT GGGTTATGAGCCAGACCCAGCAGATCTTGCCCTTTCCAGCATCCCTGGCCAGGAAATGTT TGACCCTCGCAAACGCAAGTTCTCTGAGGAAGAACTGAAGCCACAGCCCATGATCAAGAA AGCTCGCAAAGTCTTCATCCCTGATGACCTGAAGGATGACAAGTACTGGGCAAGGCGCAG AAAGAACAACATGGCAGCCAAGCGCTCCCGCGACGCCCGGAGGCTGAAAGAGAACCAGAT CGCCATCCGGGCCTCGTTCCTGGAGAAGGAGAACTCGGCCCTCCGCCAGGAGGTGGCTGA CTTGAGGAAGGAGCTGGGCAAATGCAAGAACATACTTGCCAAGTATGAGGCCAGGCACGG GCCCCTGTAGGATGGCATTTTTGCAGGCTGGCTTTGGAATAGATGGACAGTTTGTTTCCT GTCTGATAGCACCACACGCAAACCAACCTTTCTGACATCAGCACTTTACCAGAGGCATAA ACACAACTGACTCCCATTTTGGTGTGCATCTGTGTGTGTGTGCGTGTATATGTGCTTGTG CTCATGTGTGTGGTCAGCGGTATGTGCGTGTGCGTGTTCCTTTGCTCTTGCCATTTTAAG GTAGCCCTCTCATCGTCTTTTAGTTCCAACAAAGAAAGGTGCCATGTCTTTACTAGACTG AGGAGCCCTCTCGCGGGTCTCCCATCCCCTCCCTCCTTCACTCCTGCCTCCTCAGCTTTG CTTCATGTTCGAGCTTACCTACTCTTCCAGGACTCTCTGCTTGGATTCACTAAAAAGGGC CCTGGTAAAATAGTGGATCTCAGTTTTTAAGAGTACAAGCTCTTGTTTCTGTTTAGTCCG TAAGTTACCATGCTAATGAGGTGCACACAATAACTTAGCACTACTCCGCAGCTCTAGTCC TTTATAAGTTGCTTTCCTCTTACTTTCAGTTTTGGTGATAATCGTCTTCAAATTAAAGTG CTGTTTAGATTTATTAGATCCCATATTTACTTACTGCTATCTACTAAGTTTCCTTTTAAT TCTACCAACCCCAGATAAGTAAGAGTACTATTAATAGAACACAGAGTGTGTTTTTGCACT GTCTGTACCTAAAGCAATAATCCTATTGTACGCTAGAGCATGCTGCCTGAGTATTACTAG TGGACGTAGGATATTTTCCCTACCTAAGAATTTCACTGTCTTTTAAAAAACAAAAAGTAA AGTAATGCATTTGAGCATGGCCAGACTATTCCCTAGGACAAGGAAGCAGAGGGAAATGGG AGGTCTAAGGATGAGGGGTTAATTTATCAGTACATGAGCCAAAAACTGCGTCTTGGATTA GCCTTTGACATTGATGTGTTCGGTTTTGTTGTTCCCCTTCCCTCACACCCTGCCTCGCCC CCACTTTTCTAGTTAACTTTTTCCATATCCCTCTTGACATTCAAAACAGTTACTTAAGAT TCAGTTTTCCCACTTTTTGGTAATATATATATTTTTGTGAATTATACTTTGTTGTTTTTA AAAAGAAAATCAGTTGATTAAGTTAATAAGTTGATGTTTTCTAAGGCCCTTTTTCCTAGT GGTGTCATTTTTGAATGCCTCATAAATTAATGATTCTGAAGCTTATGTTTCTTATTCTCT GTTTGCTTTTGAACGTATGTGCTCTTATAAAGTGGACTTCTGAAAAATGAATGTAAAAGA CACTGGTGTATCTCAGAAGGGGATGGTGTTGTCACAAACTGTGGTTAATCCAATCAATTT AAATGTTTACTATAGACCAAAAGGAGAGATTATTAAATCGTTTAATGTTTATACAGAGTA ATTATAGGAAGTTCTTTTTTGTACAGTATTTTTCAGATATAAATACTGACAATGTATTTT GGAAGACATATATTATATATAGAAAAGAGGAGAGGAAAACTATTCCATGTTTTAAAATTA TATAGCAAAGATATATATTCACCAATGTTGTACAGAGAAGAAGTGCTTGGGGGTTTTTGA AGTCTTTAATATTTTAAGCCCTATCACTGACACATCAGCATGTTTTCTGCTTTAAATTAA AATTTTATGACAGTATCGAGGCTTGTGATGACGAATCCTGCTCTAAAATACACAAGGAGC TTTCTTGTTTCTTATTAGGCCTCAGAAAGAAGTCAGTTAACGTCACCCAAAAGCACAAAA TGGATTTTAGTCAAATATTTATTGGATGATACAGTGTTTTTTAGGAAAAGCATCTGCCAC AAAAATGTTCACTTCGAAATTCTGAGTTCCTGGAATGGCACGTTGCTGCCAGTGCCCCAG ACAGTTCTTTTCTACCCTGCGGGCCCGCACGTTTTATGAGGTTGATATCGGTGCTATGTG TTTGGTTTATAATTTGATAGATGTTTGACTTTAAAGATGATTGTTCTTTTGTTTCATTAA GTTGTAAAATGTCAAGAAATTCTGCTGTTACGACAAAGAAACATTTTACGCTAGATTAAA ATATCCTTTCATCAATGGGATTTTCTAGTTTCCTGCCTTCAGAGTATCTAATCCTTTAAT GATCTGGTGGTCTCCTCGTCAATCCATCAGCAATGCTTCTCTCATAGTGTCATAGACTTG GGAAACCCAACCAGTAGGATATTTCTACAAGGTGTTCATTTTGTCACAAGCTGTAGATAA CAGCAAGAGATGGGGGTGTATTGGAATTGCAATACATTGTTCAGGTGAATAATAAAATCA AAAACTTTTGCAATCTTAAGCAGAGATAAATAAAAGATAGCAATATGAGACACAGGTGGA CGTAGAGTTGGCCTTTTTACAGGCAAAGAGGCGAATTGTAGAATTGTTAGATGGCAATAG TCATTAAAAACATAGAAAAATGATGTCTTTAAGTGGAGAATTGTGGAAGGATTGTAACAT GGACCATCCAAATTTATGGCCGTATCAAATGGTAGCTGAAAAAACTATATTTGAGCACTG GTCTCTCTTGGAATTAGATGTTTATATCAAATGAGCATCTCAAATGTTTTCTGCAGAAAA AAATAAAAAGATTCTAATAAAAAAA >Hs.250726_singlet4 AW298545 polyA = 2 polyA = 3 TTCCTTCCCTCCCTCCNTTCCTCAGGAGCCGCCAGTCCCCAAGTTGGCTGTGGTTGGGCA CCTGGTTTGGGTCCTGCAGAGCTGGGCTCAGGCCCTGGGCTCTGAACCTGTGAACCCTTG CTGTGTTACGAAACTTTCCTTCCTCTGAGGGCCTTGAACCCTCTCCTTTTCTTCTTTTGG GGGTGGGGGTTAACTTTATTTTCTCTTCCCTGTATCTGCCTCTCCCTTCCCTCAATTTCC TGTTTTAAAACTGAATGGCACGAAATTGTTTTCCTCAACTCGGAGATTCCTGTATGGAGA GAATCAATTTCTATATTTGCAATAAATTTCTTATTTAAAGCTAAAAAAAAAAAAAAAAA >Hs.79217_mRNA_2 gi|16306657|gb|BC001504.1|BC001504 Homo sapiens MGC:2273 IMAGE:3505512 polyA = 3 clone GGCACGAGGGCCATCTGTGGGGGCTTTGGGCCAGGGGTCTCCGGACAGCATGAGCGTGGG CTTCATCGGCGCTGGCCAGCTGGCTTTTGCCCTGGCCAAGGGCTTCACAGCAGCAGGCGT CTTGGCTGCCCACAAGATAATGGCTAGCTCCCCAGACATGGACCTGGCCACAGTTTCTGC TCTCAGGAAGATGGGGGTGAAGTTGACACCCCACAACAAGGAGACGGTGCAGCACAGTGA TGTGCTCTTCCTGGCTGTGAAGCCACACATCATCCCCTTCATCCTGGATGAAATAGGCGC CGACATTGAGGACAGACACATTGTGGTGTCCTGCGCGGCCGGCGTCACCATCAGCTCCAT TGAGAAGAAGCTGTCAGCGTTTCGGCCAGCCCCCAGGGTCATCCGCTGCATGACCAACAC TCCAGTCGTGGTGCGGGAGGGGGCCACCGTGTATGCCACAGGCACGCACGCCCAGGTGGA GGACGGGAGGCTCATGGAGCAGCTGCTGAGCAGCGTGGGCTTCTGCACGGAGGTGGAAGA GGACCTGATTGATGCCGTCACGGGGCTCAGTGGCAGCGGCCCCGCCTACGCATTCACAGC CCTGGATGCCCTGGCTGATGGGGGCGTGAAGATGGGACTTCCAAGGCGCCTGGCAGTCCG CCTCGGGGCCCAGGCCCTCCTGGGGGCTGCCAAGATGCTGCTGCACTCAGAACAGCACCC AGGCCAGCTCAAGGACAACGTCAGCTCTCCTGGTGGGGCCACCATCCATGCCTTGCATGT GCTGGAGAGTGGGGGCTTCCGCTCCCTGCTCATCAACGCTGTGGAGGCCTCCTGCATCCG CACACGGGAGCTGCAGTCCATGGCTGACCAGGAGCAGGTGTCACCAGCCGCCATCAAGAA GACCATCCTGGACAAGGTGAAGCTGGACTCCCCTGCAGGGACCGCTCTGTCGCCTTCTGG CCACACCAAGCTGCTCCCCCGCAGCCTGGCCCCAGCGGGCAAGGATTGACACGTCCTGCC TGACCACCATCCTGCCACCACCTTCTCTTCTCTTGTCACTAGGGGGACTAGGGGGTCCCC AAAGTGGCCCACTTTCTGTGGCTCTGATCAGCGCAGGGGCCAGCCAGGGACATAGCCAGG GAGGGGCCACATCACTTCCCACTGGAAATCTCTGTGGTCTGCAAGTGCTTCCCAGCCCAG AACAGGGGTGGATTCCCCAACCTCAACCTCCTTTCTTCTCTGCTCCCAAACCATGTCAGG ACCACCTTCCTCTAGAGCTCGGGAGCCCGGAGGGTCTTCACCCACTCCTACTCCAGTATC AGCTGGCACGGGCTCCTTCCTGAGAGCAAAGGTCAAGGACCCCCTCTGTGAAGGCTCAGC AGAGGTGGGATCCCACGCCCCCTCCCGGCCCCTCCCTGCCCTCCATTCAGGGAGAAACCT CTCCTTCCCGTGTGAGAAGGGCCAGAGGGTCCAGGCATCCCAAGTCCAGCGTGAAGGGCC ACAGCCCCTCTTGGCTGCCAAGCACGCAGATCCCATGGACATTTGGGGAAAGGGCTCCTT GGGCTGCTGGTGAACTTCTGTGGCCACCACCTCCTGCTCCTGACCTCCCTGGGAGGGTGC TATCAGTTCTGTCCTGGCCCTTTCAGTTTTATAAGTTGGTTTCCAGCCCCCAGTGTCCTG ACTTCTGTCTGCCACATGAGGAGGGAGGCCCTGCCTGTGTGGGAGGGTGGTTACTGTGGG TGGAATAGTGGAGGCCTTCAACTGATTAGACAAGGCCCGCCCACATCTTGGAGGGCATCT GCCTTACTGATTAAAATGTCAATGTAATCTAAAAAAAAAAAAAAAAAA >Hs.47986_mRNA_1 gi|13279253|gb|BC004331.1|BC004331 Homo sapiens MGC:10940 IMAGE:3630835 polyA = 3 GATAAATGCGGAGGGACGGTCCAGCTTTAGCTCTCTGCTCGCCGCCGCCGCTGTCGCCGC CACCTCCTCTGATCTACGAAAGTCATGTTACCCAACACCGGGAGGCTGGCAGGATGTACA GTTTTTATCACAGGTGCAAGCCGTGGCATTGGCAAAGCTATTGCATTGAAAGCAGCAAAG GATGGAGCAAATATTGTTATTGCTGCAAAGACCGCCCAGCCACATCCAAAACTTCTAGGC ACAATCTATACTGCTGCTGAAGAAATTGAAGCAGTTGGAGGAAAGGCCTTGCCATGTATT GTTGATGTGAGAGATGAACAGCAGATCAGTGCTGCAGTGGAGAAAGCCATCAAGAAATTT GGAGCTTATACCATTGCTAAGTATGGTATGTCTATGTATGTGCTTGGAATGGCAGAAGAA TTTAAAGGTGAAATTGCAGTCAATGCATTATGGCCTAAAACAGCCATACACACTGCTGCT ATGGATATGCTGGGAGGACCTGGTATCGAAAGCCAGTGTAGAAAAGTTGATATCATTGCA GATGCAGCATATTCCATTTTCCAAAAGCCAAAAAGTTTTACTGGCAACTTTGTCATTGAT GAAAATATCTTAAAAGAAGAAGGAATAGAAAATTTTGACGTTTATGCAATTAAACCAGGT CATCCTTTGCAACCAGATTTCTTCTTAGATGAATACCCAGAAGCAGTTAGCAAGAAAGTG GAATCAACTGGTGCTGTTCCAGAATTCAAAGAAGAGAAACTGCAGCTGCAACCAAAACCA CGTTCTGGAGCTGTGGAAGAAACATTTAGAATTGTTAAGGACTCTCTCAGTGATGATGTT GTTAAAGCCACTCAAGCAATCTATCTGTTTGAACTCTCCGGTGAAGATGGTGGCACGTGG TTTCTTGATCTGAAAAGCAAGGGTGGGAATGTCGGATATGGAGAGCCTTCTGATCAGGCA GATGTGGTGATGAGTATGACTACTGATGACTTTGTAAAAATGTTTTCAGGGAAACTAAAA CCAACAATGGCATTCATGTCAGGGAAATTGAAGATTAAAGGTAACATGGCCCTAGCAATC AAATTGGAGAAGCTAATGAATCAGATGAATGCCAGACTGTGAAGGAAAATATAAAAAAAA AGTCGACTGCTATGCTCAAAAAGTAAAAAAAGCTCAACAGTTAAAATCTAATGTTTGTTT TCTTTCCTGTTATATTATAAGGATATGCACGTTTGTTCTGGAAAAGATAGAATTTGTCTC TAAAAGACTTGAAATTGTAATTAAAATGGCAAGCTAATCAAACATAAGCTTCATTAAGTG GGATTCTAAGACAGTCTGTGTTTTTATATTTCAAGGGTTTAACCCTTTGAGCCTTACATC TCATTCACTGTCTTTCTCCAAGAAAAGTATTTTGGGCGGACAGTCAGATCAAGCAGTAAA ATTAGCTCTTTCAAATCTTCTTGTCATGTAAAATGAAGCTAGTCTGTTTTAAAATTTTTA GTTTTGGATTGTATACTAATGAAAATCTTAATGATGTTTTTGATTTTTATATACTTATTT TAAAGAAAATCTTATATAGTACATTTTACAAAAATTATAAAAAATGAATTAGTACTGGCG AGGACTAAATGAAACAATAATTTTTCATTTTGATAACTAGCTTTCCAGGTGGACTTAGCC ATAGGAAAATATTACTAATGTAATTTAACAAATTGCTGCATGTATTCCATTTAAAAATAT GTTTAAATTGTCCTAAAACAAAATAATTTTCTCCCTAGGAGTATGCATTTGGCTACAGTG TTTTGAAACAGAAACCTTAGAATAGGTCATTGGTATGGGCTGAACTGTGTATCCCCCAAT TCATTTGTTGAGGTCCTAACTCCCATTTCTTTTGAATGTGACTGTTCGGAGATGAGGCCT TTAAAGAGGTGACTTAAGTTCAAAGGAGGCTGTTAGTCTAATCCAACATGGTGTCCTTTG GACATAAGAGATACCAGCAATGTGTGCACAGAACAAAGACCAGGAGAGGACACAGTGAGA AGGCAGTTATCTGCAAGCAAAGAGAGAGGCTTCAGAAGAAACAAAATCACCAGCACCTTG ATCTTTGACTTCTAATCTCCAGAATAGTGAGAAATAAATTTCTGTTGTTAAGCCGTCCAC TGTGGGAGGCCGACGCAGGAGGATTGCTTGAGGCCAGGAGTTCAAGGCCAGCCTGGACAA CATAGTAAGACCCTATCTCTACCCCCCTAATAAATTAATTTAAAAAGCCCCCCAATCTGT GGTATTTTATTATGGCAGCCCTAGCAAGCTAATACAGTGGTTTGAGAGGCTGGGAGGGTT GAGGGGAAGATAAACTTTTAAAAAGCTCTTATCTTTCATTTCAATCAGTTAAAAATACTT GCTCAGTGTAACAATTTTGCTTCTCAGCTTCCACTCTAATATTGTTGTGCCATTAAGCAA TTTAGCTAATCCTGACATTTCTTAGATTCATAATGTTAGGAGCATTTAATCTGTATTTTA CAAGTTAGGAAGCAGAGGATCAGAGATGGGAAAGGACTAGCCCAAGGCCAACATTAACAA GCCCTCTAACAAAAACTTTACAATACATTTATGTTGAATGGAACTCCAAGATCTCACCTC TCCATCCAGGAATGGAGTCCATGTAATCAAAGTGAACTTAAAAATAGGACAGTTTCAACA AGTCAGGAGATTCACAGCAACTGATCAAAGGGAGTCCAGTCAACGTGAGCAAGCGTGATT ATGATGAGGAAGCCCCCTCTGCTTTAATCCACACAAGGAACGTAACCTGAAGTAACCTGA TGTTAACCAATCTGCTGTGTCTACTATGCTGTTTCCTTGTTCCTGCTAGTGCTGCTTTAC AAATGCAGACCATTCTATCATACCTGGCAGGGCTTCTGTTTTATTTTGTAGGCTGGATGC TACCCAGTTCATGAATCGCTAATAAAAGCCAATTAGATCTTTAAAAAAAAAAAAAAAAAA AAA >Hs.94367_mRNA_1 gi|10440200|dbj|AK027147.1|AK027147 Homo sapiens cDNA FLJ23494 fis, clone LNG01885 polyA = 3 TATTAAAAGTACCCCATGGATGGACCTCCAAATGAGTTTAGGGTAATTGCGCTTAAAATA TTAGGACCAAAGTACATTTATTTTATAGATGGAGGAGGGGAGGAGACGAGTGGGGACCAG CTTGACATCCAGTCTTCACCTGGACATATGGAAAGAACAAATGTGCGATCTGCTCGTTCC CTCTGAAGGTCTCTGTTACGTATTTCCTCCTCTCCTCCAGAGCATAATAACCAATGACTG CTCTCAGAAAGGTACTGTGACCACCACTTGCTTGGCTCTCCAACTTCCTCCCCCATTTCC CTCTTGACTCCTGTTTGCCATAACACCTTCTGTCCCCTAGCCTTGCCTCAGGTCCCCGAC GAATCCTGCCCTTAATCTGTGGGGGTGGTAGGTGGCACTGGTTTGAAGAGCTTACTGGAT CTCCCTCAGTGAGTCAGCCTGGAGTTGTGTTTGAAAACCACAGGCCCTGACTGTGGCTGT AAGACCTCCCAGACACCACCTGCTGCTGCCTATCATCATCTTCAGGTGCTGGGCTCCCCT GTGGGCCTCGTCTGCCCGCCCTCTGCTGCAGCTGTCCCATGGGCGCCCGCCCTCTCTGAC ACCACAAGAGAGCCCATCTAGATTCCAGGAAAAAACTCATCTTTATTTGCCTTCTTCCCA CTGAAGGTAAAAGCAACATTAATAACCACAACAAATACTTAGTGAGTGCTTACTATTATT CATTTAATTGTAGGCCCTTCCATCCCTGGCCATGATGAGAGACATGCCATAGCTTACTCC TAAAGAGACCTGAGGACACACGTGCACAAACATATTGGGCATATCATCAATGGCATCAAA ACTGATTTTCCCTGTCTACCCAGAACAGGCCTGAGGGAGAGGGAAAAGCGGATACCCACC TGTGTCGCTGTTTGCGTGCCAAGTCCAGGAACAGTCCATACAGCCCTGCTGCATCCCACG ACGCTGTCACAAAGCAGGAGTTCATCCGAGGCCAAGGTATGGAGAAACTGAGGCCCAGAA ATTGATGTCCAGAATGCTTTGCTCTTAGCCACTGTACTATTATGGCATATTTTATCTTTA TGTATTGCATCATTTCATGGATTCAAGTTTATCAATGTCCTTTGACAAGTTTAAAAATCT GTCTGCTAAAATCTATCAAATACATTAAGGAAAAGTCCCACTTGGCACATCTCCCACACC AGATGTTAATTATTCATACTGCATGACTGAGGATTTTGGAGGCAGAGAGAGATTCATCTG CAATATTTGGAACACCAATGGAGGTCTATGTCAACACAGAATTTATACAGCAGCTGGTGC TAGTCAGAGCTAATGACAGAATTTCAGTTTAATAAAAAGACCCCCAACTGAGCACACCAT CTTGAAAAAAGTATACTTATCAAACAGCTTTCAATCAGTTCAAGAGAGACACCTTAATTG GGGAGAGGAAGAATTGCAGAGTAGTTTGTAATCATGCCAATTCCAGATCAATAACTGCAT GTCTGTTCTTTGGTAGAAATAGCTTTTGCTTTATATTAAGTAATCACATATATATTCTCT CTATTTGGATAAGGAAACCTTCGCTTTATTTGACAATGTATAATGATATACTCTTCTAAT TCACCTCTGTGTCTTCACAATAAACATGAGTAAAATTTAGACAAGTGATGGTAAAGGTCA ATATAATTATTTATTTTTAAAATAAATTTTGTATCTAACAGGAAAGCAGTTCTTATGAAA TTTTTATATTTTCAAAAATTGTTTTGTTCAAATAAAATTTTATGAGTAAAGTTAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAA >Hs.49215_contig1 BI493248|N66529|AA452255|BI492877|AW196683|AI963900|BF478125|AI421654|BE466 675 polyA = 1 polyA = 1 GGGTACCTGGTGGGGCCAATCACCGAGCCATGAACATCAGTAACGTACTCTAAAGACCAA GGCTACGATGGCTATGATGGTCAGAATTACTACCACCACCAGTGAAGCTCCAGCCTGGGA TGAATTCATCCATTCTGGCTTTGCATCCGGCTACCATTTTCGAAGTTCAACTCAGGAAGG TGCAATATAACAAATGTGCATATTATAATGAGGAATGGTACTACCGTTCCAGATTTTCTG TAATTGCTTCTGCAAAGTAATAGGCTTCTTGTCCCTTTTTTTTCTGGCATGTTATGGAAT GATCATTGTAAATCAGGACCATTTATCAAGCAGTACACCAACTCATAAGATCAAATTTCA TTGAATGGTTTGAGGTTGTAGCTCTATAAATAGTAGTTTTTAACATGCCTGTAGTATTGC TAACTGCAAAAACATACTCTTTGTACAAGAAGTGCTTCTAAGAATTTCATTGACATTAAT GACACTGTATACAATAAATGTGTAGTTTCTTAATCGCACTACCTATGCAACACTGTGTAT TAGGTTTATCATCCTCATGTATTTTTATGTGACCTGTATGTATATTCTAATCTACGAGTT TTATCACAAATAAAAATGCAATCCTTCAAA >Hs.281587_contig2 R61469|R15891|AA007214|R61471|AI014624|N69765|AW592075|H09780|AA709038|AI33 5898|AI559229|F09750|R49594|H11055|T72573|AA935558|AA988654|AA826438|AI0024 31|AI299721 polyA = 1 polyA = 2 AAGGTGGGCTTTCATTGTGATTTTTGTTCTGTTGCAGTAATATAGGAGCACATTTTGGCC ATTGTAATTACAGGGAACAAAGGGATTGCGGACACATATCTGGACTTCTTTTCCTCCCTT ATTGTTGTGGAAGAGACACTAGAAATGCTCAAACACCTGCAATATACAGAATATACACAA TTTTATTCCAGTATTTCCCTAACATATGGTTTAAAATTATTCCAGGTATACAGTGTATGC AATTCTGCATTATCACAGAGGAACAACTTCTTTTTTAAAAAATAAATAGGTCAGCCATTT TTATTAACGTGCAAAAACTTTATCACTCTAACATGCTCTAGGTAGTTGAGGAAAAGAGGT CTGATCACTGTTTGTATTTTATTTTCTTTGTGGGAACATTTCACCTGCTGAGTGTACATG AATTTGCTTTCTATAAAAGGCTTTTATGAGTTTACAGTAGAATCAGTGGAAGGAAGAGTT AATAAGGGCTGTTTTTAAAAAAACAAACAAACAAACAAAACAAATAATTAAAAAAAAATT TTACATTCCTTCCTATTCTCTAACTACACTTGGGAAGTGCACTTCAGATAAGTTTGCAGT GTGACTGAGAGATGAAGGAAATCCATAGAAAAGGTCCTCTTAGTGAACAAAATTTAGTTA TTAACTTTATAGCTATGAAATTTCCCCGGGCATTTGTTTTTGTTCAAACAGACTTTAACC TCTGCATCATACTTAACCCTGCGACATGCGTACAGTATGCATATTTTGTTTTGAAAAAAA ATGTTTCGTTCCAGTCTGTTAAGAATATTCAAAAATAATAAAGGTATTGCTTAATAAAAT TGCTAGAATTGTTTAGCAGTACATGCACAATATTTTACTAGATTCTTTGTTTTAATAGTG TTTTGTTGAGACTGAAAATCTTAAAATGGTCTGCGCAAATACAAAAAAAAAGAAAACACC AAAAAAAAAA >Hs.79378_mRNA_1 gi|16306528|ref|NM_003914.2|Homo sapiens eye1in A1 (CCNA1), mRNA polyA = 3 GGTGTTGTTCCGGACACATAGAAAGATAACGACGGGAAGAGCGGGGCCCGCTTTGGGGTC CAGGCAGGTTTTGGGGCCTCCTGTCTGGTGGGAGGAGGCCGCAGCGCAGCACCCTGCTCG TCACTTGGGATGGAGACCGGCTTTCCCGCAATCATGTACCCTGGATCTTTTATTGGGGGC TGGGGAGAAGAGTATCTCAGCTGGGAAGGACCGGGGCTCCCAGATTTCGTCTTCCAGCAG CAGCCCGTGGAGTCTGAAGCAATGCACTGCAGCAACCCCAAGAGTGGAGTTGTGCTGGCT ACAGTGGCCCGAGGTCCCGATGCTTGTCAGATACTCACCAGAGCCCCGCTGGGCCAGGAT CCCCCGCAGAGGACAGTGCTAGGGCTGCTAACTGCAAATGGGCAGTACAGGAGGACCTGT GGCCAGGGGATCACAAGAATCAGGTGTTATTCTGGATCAGAAAATGCCTTCCCTCCAGCT GGAAAGAAAGCACTCCCTGACTGTGGGGTCCAAGAGCCCCCCAAGCAAGGGTTTGACATC TACATGGATGAACTAGAGCAGGGGGACAGAGACAGCTGCTCGGTCAGAGAGGGGATGGCA TTTGAGGATGTGTATGAAGTAGACACCGGCACACTCAAGTCAGACCTGCACTTCCTGCTG GATTTCAACACAGTTTCCCCTATGCTGGTAGATTCATCTCTCCTCTCCCAGTCTGAAGAT ATATCCAGTCTTGGCACAGATGTGATAAATGTGACTGAATATGCTGAAGAAATTTATCAG TACCTTAGGGAAGCTGAAATAAGGCACAGACCCAAAGCACACTACATGAAGAAGCAGCCA GACATCACGGAAGGCATGCGCACGATTCTGGTGGACTGGCTGGTGGAGGTTGGGGAAGAA TATAAACTTCGAGCAGAGACCCTGTATCTGGCTGTCAACTTCCTGGACAGGTTCCTTTCA TGTATGTCTGTTCTGAGAGGGAAACTGCAGCTCGTAGGAACAGCAGCTATGCTTTTGGCT TCGAAATATGAAGAGATATATCCTCCTGAAGTAGACGAGTTTGTCTATATCACCGATGAT ACATACACAAAACGACAACTGTTAAAAATGGAACACTTGCTTCTGAAAGTTCTAGCTTTT GATCTGACAGTACCAACCACCAACCAGTTTCTCCTTCAGTACTTGAGGCGACAAGGAGTG TGCGTCAGGACTGAGAACCTGGCTAAGTACGTAGCAGAGCTGAGTCTACTTGAAGCAGAT CCATTCTTGAAATATCTTCCTTCACTGATAGCTGCAGCAGCTTTTTGCCTGGCAAACTAT ACTGTGAACAAGCACTTTTGGCCAGAAACCCTTGCTGCATTTACAGGGTATTCATTAAGT GAAATTGTGCCTTGCCTGAGTGAGCTTCATAAAGCGTACCTTGATATACCCCATCGACCT CAGCAAGCAATTAGGGAGAAGTACAAGGCTTCAAAGTACCTGTGTGTGTCCCTCATGGAG CCACCTGCAGTTCTTCTTCTACAATAAGTTTCTGAATGGAAGCACTTCCAGAACTTCACC TCCATATCAGAAGTGCCAATAATCGTCATAGGCTTCTGCACGTTGGATCAACTAATGTTG TTTACAATATAGATGACATTTTAAAAATGTAAATGAATTTAGTTTCCCTTAGACTTTAGT AGTTTGTAATATAGTCCAACATTTTTTAAACAATAAACTGCTTGTCTTATGACAAAAAAA AAA >Hs.156469_contig2 AI341378|AI670817|AI701687|AI335022|AW235883|AI948598|AA446356 polyA = 2 polyA = 3 TCCAAGCCATTAAGGACTGTGGAACTTGCTATGATCATGGACGTGCTGTATGGTGGCGTT TGTTATGCAGGAATTGATACAGATCCTGAGCTAAAATACCCAAAAGGTGCTGGGCGAGTT GCTTTCTCCAATCAGCAGAGCTATATTGCTGCCATTAGTGCTCGGTTTGTTCAGCTTCAG CATGGTGATATTGATAAACGTGTGGAGGTAAAGCCATATGTGCTAGATGACCAGATGTGT GATGAATGCCAGGGCGCACGCTGTGGTGGAAAATTTGCTCCCTTTTTTTGTGCCAATGTC ACTTGCCTGCAGTATTACTGTGAGTTTTGTTGGGCAAATATCCACTCTCGTGCTGGACGT GAGTTCCATAAGCCATTGGTAAAGGAAGGTGCTGATCGCCCACGTCAGATCCACTTCCGC TGGAACTAAGAATAGCAAACTGGCCTCTGTTTAACAAGGAAAGAAAGGGTGCATGTGGCT TACTGTGTCTGAAGATACTGACATGCAGAAGAAATAAGTGCATTCTTCTGCTTTTCACCC CAGCTATCAATACATGCATCTTTATCAGCAGCCAAAACACTACAAGCCTCTTGTTTTTCA CCAAAACCCTACATCTCAGGCTTACTAATTTTTGTGATATTTTCATGTTCAAATAAAATG TTTTTTTGTATTTTCAAAAAAAAAAAAAAAAAAAAAA >Hs.6631_mRNA_1 gi|7020430|dbj|AK000380.1|AK000380 Homo sapiens cDNA FLJ20373 fis, clone HEP19740 polyA = 3 CTCGATGTAGAGGGGTTGGTAGCAGACAGGTGGTTACATTAGAATAGTCACACAAACTGT TCAGTGTTGCAGGAACCTTTTCTTGGGGGTGGGGGAGTTTCCCTTTTCTAAAAATGCAAT GCACTAAAACTATTTTAAGAATGTAGTTAATTCTGCTTATTCATAAAGTGGGCATCTTCT GTGTTTTAGGTGTAATATCGAAGTCCTGGCTTTTCTCGTTTTCTCACTTGCTCTCTTGTT CTCTGTTTTTTTAAACCAATTTTACTTTATGAATATATTCATGACATTTGTAATAAATGT CTTGAGAAAGAATTTGTTTCATGGCTTCATGGTCATCACTCAAGCTCCCGTAAGGATATT ACCGTCTCAGGAAAGGATCAGGACTCCATGTCACAGTCCTGCCATCTTACTTTCCTCTTG TCGAGTTCTGAGTGGAAATAACTGCATTATGGCTGCTTTAACCTCAGTCATCAAAAGAAA CTTGCTGTTTTTTAGGCTTGATCTTTTTCCTTTGTGGTTAATTTTCCTGTATATTGTGAA AATGGGGGATTTTCCCTCTGCTCCCACCCACCTAAACACAGCAGCCATTTGTACCTGTTT GCTTCCCATCCCACTTGGCACCCACTCTGACCTCTTGTCAGTTTCCTGTTCCTGGTTCCA TCTTTTTGAAAAAGGCCCTCCTTTGAGCTACAAACATCTGGTAAGACAAGTACATCCACT CATGAATGCAGACACAGCAGCTGGTGGTTTTGTGTATACCTGTAAAGACAAGCTGAGAGG CTTACTTTTTGGGGAAGTAAAAGAAGATGGAAATGGATGTTTCATTTGTATGAGTTTGGA GCAGTGCTGAAGGCCAAAGCCGCCTACTGGTTTGTAGTTAACCTAGAGAAGGTTGAAAAA TTAATCCTACCTTTAAAGGGATTTGAGGTAGGCTGGATTCCATCGCCACAGGACTTTAGT TAGAATTAAATTCCTGCTTGTAATTTATATCCATGTTTAGGCTTTTCATAAGATGAAACA TGCCACAGTGAACACACTCGTGTACATATCAAGAGAAGAAGGAAAGGCACAGGTGGAGAA CAGTAAAAGGTGGGCAGATGTCTTTGAAGAAATGCTCAATGTCTGATGCTAAGTGGGAGA AGGCAGAGAACAAAGGATGTGGCATAATGGTCTTAACATTATCCAAAGACTTGAAGCTCC ATGTCTGTAAGTCAAATGTTACACAAAAAAAAATGCAAATGGTGTTTCATTGGAATTACC AAGTGCTTAGAACTTGCTGGCTTTCCCATAGGTGGTAAAGGGGTCTGAGCTCACACCGAG TTGTGCTTGGCTTGCTTGTGCAGCTCCAGGCACCCGGTGGGCACTCTGGTGGTGTTTGTG GTGAACTGAATTGAATCCATTGTTGGGCTTAAGTTACTGAAATTGGAACACCCTTTGTCC TTCTCGGCGGGGGCTTCCTGGTCTGTGCTTTACTTGGCTTTTTTCCTTCCCGTCTTAGCC TCACCCCCTTGTCAACCAGATTGAGTTGCTATAGCTTGATGCAGGGACCCAGTGAAGTTT CTCCGTTAAAGATTGGGAGTCGTCGAAATGTTTAGATTCTTTTAGGAAAGGAATTATTTT CCCCCCTTTTACAGGGTAGTAACTTCTCCACAGAAGTGCCAATATGGCAAAATTACACAA GAAAACAGTATTGCAATGACACCATTACATAAGGAACATTGAACTGTTAGAGGAGTGCTC TTCCAAACAAAACAAAAATGTCTCTAGGTTTAGTCAGAGCTTTCACAAGTAATAACCTTT CTGTATTAAAATCAGAGTAACCCTTTCTGTATTGAGTGCAGTGTTTTTTACTCTTTTCTC ATGCACATGTTACGTTGGAGAAAATGTTTACAAAAATGGTTTTGTTACACTAATGCGCAC CACATATTTATGGTATATTTTAAGTGACTTTTTATGGGTTATTTAGGTTTTCGTCTTAGT TGTAGCACACTTACCCTAATTTTGCCAATTATTAATTTGCTAAATAGTAATACAAATGAC AACTGCATTAAATTTACTAATTATAAAAGCTGCAAGCAGACTGGTGGCAAGTACACAGCC CTTTTTTTTGCAGTGCTAACTTGTCTACTGTGTATTATGAAAATTACTGTTGTCCCCCCA CCCTTTTTTCCTTAAATAAAGTAAAAATGACACCCTAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAA >Hs.155977_contig1|AI309080|AI313045 polyA = 1 WARN polyA = 1 TATACGGCTGCTAGAAGACGACAGAAGGTGGCTTGGGGGTGGATATCTTTGGGTTGCTGG AAAAGGTGTGGGAAGGTTCAGGATGGTGGGAGGGACTGAGGTCCCTGAGGTGAAGAGGCC CTTGGTCCTGACGGGTTTGACCCGTGCCTGGACCCTTGGAGCAGTGTTGTGTGAACTTGC CTAGAACTCTGCCTTCTCCGTTGTCAATAAAGCCTCCCCCTCATGACCTAAAAAAAAAAA AAAAAAAAAAAAAAAAAGTCGTATCGA >Hs.95197_mRNA_4 gi|5817138|emb|AL110274.1|HSM800829 Homo sapiens mRNA; cDNA DKFZp564I0272 (from clone DKFZp564I0272) polyA = 3 GAGCAGGAAAATATATACCCTAAACAGAAACTCTTACTTGTTTTATGAGCAAGTCTGAGT GAGTCCTAAAATGGCTGGCGAAGAGCTACCAATACTGACTGACAGGTCACCTTAAAGCCT CTAGGTGTGCCAAGTTTGATTTATCTTAGGGACTAGAACCTAGTCTTCTAAATGTGATTT TGCCTTGCTGTTTCGTCCTGATGTGAAGGTAACCACACAGAGAGATTGGGCTGCATCAGT AATGATATGCATACCTTTCGTGCATCAGTGAGCTTCTTCCCTGTTAACTGTATGACCACA AAATTTAGCTGGAGTAAATAAATATGCGACAGAAATCCTGGAACAAGATGGTGAAATTGC TTAAGAATCGAGACTTCAGGGCTCAATGACCTCTGAGCATGTTTCCCAAAGTGTGACCCA CATGACCATCTGTCTCTCAGTCTCCTGGTCCCTCCGTAGAGCTTCTGAAACTGAATCTTT GTGGGGTGGGGGTAGCGTTCAAGAATCAAAAGTTGAACCAAGCTCTTTGGGTGATACTTA TGTATACTGAGGTTCAGGAACTGCTGGAGAGATGACTGGGCACCAAGAGGATGACAGTGA CTCAGCTGGCATCCCTTAGCTGGTTCATGGCAGAGCTGAGTGGGCACTCCTGTCTCTGAC CCCAGCTTCAGTGCTCTTTATCTCCTCCATGCCTCCTCAGTCGTGCTGCTCTAAGACTGC TTACTGGCTTTCCTTCATGTCCTGGGCACAGAGCAGTTCTTTTGGTAGCAGATTTGAGTC CACTTCCCCCGTGCACAGATCACTGCTCAGGACCCAGAGAGGAGCAGCTCTGCTCCAGCA GGGTTTTCCATTGCATCACACACCCAAACGGTAGGATCCAACAGTCACACTTGAAAGCAA CCATAATTGTGAGGTTTCTGATGCTGTAGACTTCCTTACATTTCTCACAACCTAGTTAGA GAGTCACATGGGGGTGAAGTGTGGCTCGCGACCTGCCCCAACAAGTGCGTGCAGAAGCCA GGAAACAAAGGAGTAAATTCACTTCAAATGGGATGCACATGGTGTCCGTGATGAAGAGAC ACATTCAGAATTGCCCAAGGACAGGAAAATGACCAGAGAGAGCCAGAGCTGAGCTGGTAA TAAAGAGACTCCGAGACTGAGTGGAGTTAATGAGGGAAGCATGCAACGAGTGGGGCAATT TCAGTTGGTTTCTCTCATTGCTTTAAGCGAAATGAACTATACGGACAGGAGAACAGCCTG CTTGCCCCAGTCTCTCCTTGGCCGCCCTCTGTTGTCCCTGTCAACTCAGGTGCCCACGGT GCTCAGAGGAGGTGCTGGCAAAGCCCCTGGAGCCTTATGTAGGCCATGGGGGCTCCTAAA AGGAACCTGAATGAATCATTTACAGCAGGTCTCTCTTGTAAAGCCCAGCCACAGTAACTC GTACACTGACTGTTTCAAAAGACAGCCTTTCTTAATCATTTAATTGTTTCATATTCAAAT ATATCTCCTAATTGTTTTTATTTTTTCCTGATCTAGAAGATATGACAACAGGGTAGAACT TGGGAAGAGGGAATAGGAAGCTCGCCCTTCCTCCTTCCCTCCTCCCCTCTCTACTTTCCT TCCTTCCTTGGTCATCAGGTACCTTCTTTGTGCCTGCTGTTGTAGGCTACACCCTATGTT TGGTGGAAGGCAAAAAGAAAAATCAGTAGGATACAACTCAGTAGGGAAGACAGAGATATT CAAGCCCCTTGTCCTCCCAGTGTGATAAGTGTGGTGGTTGAGGTGTGAACAAGGGGCTCT GTGAACAGAGAGGACGAAAGAGGAGCTCCTCCTGAGGCTGTTGGGAAAAGCATCACTGAA GAGTGACTTTCAGAAGAAGAGAAGAAAAAGAGGAGAACATGCGTGATTTTATAATGAAAT AGATTAGATAAGGGGAAAAAAGGCATTTAAACAAGGCAAAAAGAACAGGAGAATAGAGAA GAGATGTGGAGGAGAAGGAGCACTGTAGTAAACACGCAGAAGGACAGGAACACTTAGACA TGCAACCCACTCCCACCCTCCGTCTTGGGGGAGGAAAGCACACTACTGTCCCAAAGAACT AATACTGAACCAGTGCTGCCTTGTGGAGAGAGGCATGGCCAAGGCGTTCAGAGACCTGGG CCTGGTCCCACCGCTGCCCACAGCACTCAGCCTCTGAGCACAGCCTGGGGTCATCTGTGT GCCCTCTGGCCAAGGCTGATGGTAGTTCTCTGAGTAATTGAGAGTCATTGCCTGTCTGTG CAGTATTGTGAAAACAAGTCACCTTTTAACTTTAAAACTACTTTAAAAAACTTTAAAGTT TTAAAAAAACTTCTTTAAAAACTACTCATGAGATGACAGTTTCTCTGACCCTCAGAGGAA GGCTGGGCTGCGCATACGTGAGGAATTTTTACATGAACATCCCAGGACTTGCTGTTCGCA GGTGATAAACTGCACCTCCCCAGGACTCCCGCTGCACTCACATGCAGCTCCCTGGACTTC TGGTATCTGACCCGGCCCATTTCTGTGTTTCAGGGGAGAATTTGGCTTGCGGGAGTACTC AGAAGTTAAGACGGTGACAGTAAAGATCCCCCAGAAGAACTCCTAAGAAGGCCAAGAAGG AGGATGAAGCCCAGCCTGCACGTCTGTCCCTCTCTGCTTTCTCTGTAGGGCCCAGCTCTC AGGAATACAAAGTTGAGCCACGGTCCTTACTTAAAGATTGAAAAGATAACATGTAGGCCA GGCAGGTCACTGCACAACTAAAGCAAACCAGCTGGGTACAGTTTCTTGGCACTCTGTAAG GGGCCACCTTAATCATACCAAATATTGGGGAAAGTGGGATAAAGGGAGGAGGAGGAGCTA GCAGACACATCCAGTATCTCCTTCTGGAGCACAGGATGAAATAAGGGAGCTGTATTATTT CATGTCTTTGTCACAAAGAACTTTCCTCTCAAGGAAAGGTGACCTTTCTCCTGTCTTCAT TTTCCTCCTTCCAGGCCCTCCTCGCTCACCCACCCCTCCCTCTCTTCCAAGGAGATGTCA GCTGAGCTCATTCTGGGGCAGATGTTTGGGCCGGGAACAATTTTTCAAGGTTGTAAAGCC AAATTATCATTTCATGTTATCCATTTCTTCAAAGCAAAACATGAAATGGTTTTAGCTAGA GTCAGACCAGAATGAAAATGCCAGGAGCTGGTACACTACAGATGTAGTAAGAACCTGGGA TATTCCTGACCCAATCTGGTTTTCTTTTACCCATAAATAACATGAATGAAAAAAGATTGG GACAATAGAGACTGGAAGTCATCATGTGCAGTTCACCGCTTCTGAGCTTGCTGCAGTTTT GGGGTGTGTGTGTATTAGATTCCTTCTCAGTTATTCTGGAATAAGGCAAGGAGTGGGTTG TTTTTCATAGCTAGATAAGATCTTTTCCAAAGTTTTTCTTAGAACCAACCAAAAAACAAT CCGAGTAGGCCCGAGAATTTGATAATGCTGGATGCCTTGCAGACATCATTCAGTTTCTAA TATTGGGCAACAATTATTATTAAATGAATTATTTCTGTAGTTGGAATCTGTACCTTCTGA ACCTCTACACCAATAACTGCTGCAGGTGTGATTTTGGTCTGTCACACTGTACATCTATCA TAATGTGCCCTGTATCTATTGGCAGTGACCTTGGAAAATCTGGCCAAGCCTAGGGGTTTC CTTTTCCATTTGCCAAGTTCCATTGTGCCAGGACTGCCGTGCTCCACTGAGCTCCTCTGT CACACCCCATTCTTGCCCCTCACTGGGCAGGCCATGGCCTACAGCTTGCAGGGAGTAAAG CAGGCCCGCCTCCCTTTCTTCCCATCCACATACTCCTCTTCTGCTTTCCAGTGACTCCAC CAGTTTGATGTGGGAAGTGTTAGCTTCCTTTCCTTCTTCCATCCCTTCTTCCATCTTTCC AGCTGTCAAATCCAATCCAGTCTCTAACCTAAATGCAGATCATTTATTTAAAAGTACCAA ACATAACCCAGAGTATGTGGAATATGGGCAACATATATATAGCCTTCTGTATTTAACGAT CTTCTGCTTCTTAACCGTACCAGTTTTCTATTTATAACTCTTATCTATCCATGATGTTTT AAAGTCTCCACTTGCTGTTATTTACAAACGACAGTGCATTCAGCAGCCCAGTGCCGTGAG CCCTGACAGATGCCGTATTTCTGAGTGCTTCCATGTGAATGCTGCCCTCCTGTAGCATGT GTCCAAGTGGACATAGCCACTAACCAACTAGTTACCTTTGGACTGCAACAAAAAATGTGA AAATGAAGATTTATTTCTTTTAATTTACTTAAAAAGAAACCTCTGTGCTAGCAATAAAGC ATTTATATTGTGCAAAAAAAAAAAAAAAAAAAAAC >Hs.48956_contig1 N64339|AI569513|AI694073 polyA = 1 polyA = 1 TGAAAATTTATATAACTGTTGTTGATAAGGAACATTATCCAGGAATTGATACGTTTATTA GGAAAAGATATTTTTATAGGCTTGGATGTTTTTAGTTCTGACTTTGAATTTATATAAAGT ATTTTTATAATGACTGGTCTTCCTTACCTGGAAAAACATGCGATGTTAGTTTTAGAATTA CACCACAAGTATCTAAATTTGGAACTTACAAAGGGTCTATCTTGTAAATATTGTTTTGCA TTGTCTGTTGGCAAATTTGTGAACTGTCATGATACGCTTAAGGTGGAAAGTGTTCATTGC ACAATATATTTTTACTGCTTTCTGAATGTAGACGGAACAGTGTGGAAGCAGAAGGCTTTT TTAACTCATCCGTTTGCCAATCATTGCAAACAACTGAAATGTGGATGTGATTGCCTCAAT AAAGCTCGTCCCCATTGCTTAAQCCTTCAAAAA >Hs.118825_mRNA_10 gi|1495484|emb|X96757.1|HSSAPKK3 H. sapiens mRNA for MAP kinase kinase polyA = 3 CTTTTAGCTGCCAGCCCTGGCCCATCATGTAGCTGCAGCACAGCCTTCCCTAACGTTGCA ACTGGGGGAAAAATCACTTTCCAGTCTGTTTTGCAAGGTGTGCATTTCCATCTTGATTCC CTGAAAGTCCATCTGCTGCATCGGTCAAGAGAAACTCCACTTGCATGAAGATTGCACGCC TGCAGCTTGCATCTTTGTTGCAAAACTAGCTACAGAAGAGAAGCAAGGCAAAGTCTTTTG TGCTCCCCTCCCCCATCAAAGGAAAGGGGAAAATGTCTCAGTCGAAAGGCAAGAAGCGAA ACCCTGGCCTTAAAATTCCAAAAGAAGCATTTGAACAACCTCAGACCAGTTCCACACCAC CTAGAGATTTAGACTCCAAGGCTTGCATTTCTATTGGAAATCAGAACTTTGAGGTGAAGG CAGATGACCTGGAGCCTATAATGGAACTGGGACGAGGTGCGTACGGGGTGGTGGAGAAGA TGCGGCACGTGCCCAGCGGGCAGATCATGGCAGTGAAGCGGATCCGAGCCACAGTAAATA GCCAGGAACAGAAACGGCTACTGATGGATTTGGATATTTCCATGAGGACGGTGGACTGTC CATTCACTGTCACCTTTTATGGCGCACTGTTTCGGGAGGGTGATGTGTGGATCTGCATGG AGCTCATGGATACATCACTAGATAAATTCTACAAACAAGTTATTGATAAAGGCCAGACAA TTCCAGAGGACATCTTAGGGAAAATAGCAGTTTCTATTGTAAAAGCATTAGAACATTTAC ATAGTAAGCTGTCTGTCATTCACAGAGACGTCAAGCCTTCTAATGTACTCATCAATGCTC TCGGTCAAGTGAAGATGTGCGATTTTGGAATCAGTGGCTACTTGGTGGACTCTGTTGCTA AAACAATTGATQCAQGTTQCAAACCATACATGGCCCCTGAAAGAATAAACCCAGAGCTCA ACCAGAAGGGATACAGTGTGAAGTCTGACATTTGGAGTCTGGGCATCACGATGATTGAGT TGGCCATCCTTCGATTTCCCTATGATTCATGGGGAACTCCATTTCAGCAGCTCAAACAGG TGGTAGAGGAGCCATCGCCACAACTCCCAGCAGACAAGTTCTCTGCAGAGTTTGTTGACT TTACCTCACAGTGCTTAAAGAAGAATTCCAAAGAACGGCCTACATACCCAGAGCTAATGC AACATCCATTTTTCACCCTACATQAATCCAAAGGAACAGATGTGGCATCTTTTGTAAAAC TGATTCTTGGAGACTAAAAAGCAGTGGACTTAATCGGTTGACCCTACTGTGGATTGGTGG GTTTCGGGGTGAAGCAAGTTCACTACAGCATCAATAGAAAGTCATCTTTGAGATAATTTA ACCCTGCCTCTCAGAGGGTTTTCTCTCCCAATTTTCTTTTTACTCCCCCTCTTAAGGGGG CCTTGGAATCTATAGTATAGAATGAACTGTCTAGATGGATGAATTATGATAAAGGCTTAG GACTTCAAAAGGTGATTAAATATTTAATGATGTGTCATATGAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAA >Hs.135118_contig3 AI683181|AI082848|AW770198|AI333188|AI873435|AW169942|AI806302|AW340718|BF1 96955|AA909720 polyA = 1 polyA = 2 testis CAGTCCCACCATGTATTTTGCTTTGTTTCTAAAAAGCTTTTTAAAAACTGTTATTTAATA CCAAAGGGAGGAATCGTATGGGTTCTTCTGCCCACCGTTGTGACTAAGAATGCACAGGGA CTTGGTTCTCGTTGCACCTTTTTTTAGTAACATGTTTCATGGGGACCCACTGTACAGCCC TTCATTCTGCTGTGTCAGTTTGGCCTGGCCTGACACTGGCTGCCCCAGCGGGGACCACGG AAGCAGAGTGAGAGCCTTCGCTGAGTCAATGCTACCTTCAGCCCCAGACGCATCCCATTT CCATGTCTTCCATGCTCACTGCTCATGCACTTTTTACACGGTTTCTTCCAAACAGCCCGG TCTTGATGCAGGAGAGTCTGGAAAAGGAAGAAAATGGTTTCAGTTTCAAAATTCAAAGGA AAAAGTTGAGGACTTATTTTGTCCTGTCAAGATTGCAAGAACATGTAAAATGTACGGAGC TTCATAATACGTTATATTGTTCCGAAGCAGCTCGTTGAGAAACATTTGTTTTCAATAACA TTTTAGCTTAAAAAAAAA >Hs.171857_mRNA_1 gi|13161080|gb|AF332224.1|AF332224 Homo sapiens protein mRNA, partial cds polyA = 3 clone TCACCTCGTGGCGTAGGGGAGAGGTAACACCGAGAAGAGGCAGCGGCGGTGGCNCAGAGA CGATTGGTGCCAAACAGGGCAGAACGCAACTCAGCTCTGGGTTTGTGAATAGCACAATGG AAGAAGCTGGACTTTGTGGGTTAAGAGAGAAAGCAGATATGTTGTGTAACTCTGAATCAC ATGATATTCTTCAACATCAAGACTCAAATTGCAGTGCCACAAGTAATAAACATTTATTGG AAGATGAAGAAGGCCGTGACTTTATAACAAAGAACAGGAGTTGGGTGAGCCCAGTGCACT GCACACAAGAGTCAAGAAGGGAGCTTCCTGAGCAAGAAGTAGCCCCTCCGTCTGGTCAGC AAGCTTTACAATTGCAACAGGAACAAAGAAAAAGTCTTAGGAAAAGAAGTTTTATTATTG ATGCAAGCCCTAAACACTCTTTCCGACTCCAGAGGAGAAGCTGGCAGCTCTCTGTAAGAA ATATGCTGATCTTGGAAATTCACCTCTTCTATAGAAGAGTTTGTTTTGAACTATACGATT TGAAACAAAATTCTTTTTTTGGAGACTATGGAAACATTCTCAACAGGGAAACCCTACTAG ACTTTGTAAAGCAAATAATGGAAAAGATACAGAACTTTTTGAAGAATCATGGGAAATTTT TATAATTAAATAAATGCTAAAATTCTGTTTTGTGAAACATTTATGGGAATTATCACTGAC AGTTTTTGTACACTTTCAAATAGTGTTAAAGCAGCAACTCCATGTTGTAAATGCACAAAA CAAATATTTAGTTAATAATCAACTCCAAGAATAAAGCTGTAACAATAATAGTTAAAAAAA A >Hs.18910_mRNA_3 gi|12804464|gb|BC001639.1|BC001639 Homo sapiens MGC:1944 IMAGE:2959372 polyA = 3 GGCACGAGGGTCAGCAGCCGCCAGACTTCCTGCCGAAGTCCGAGCCCCCTCCCGGGGCTG GAGGGGGGCAAGCGGGTTCCGAGGTGCAAAGCCTGGTGCCCCGAGCCCTGCGGAGCTCGG GGCCAGCATGGCCCCCACGCTGCAACAGGCGTACCGGAGGCGCTGGTGGATGGCCTGCAC GGCTGTGCTGGAGAACCTCTTCTTCTCTGCTGTACTCCTGGGCTGGGGCTCCCTGTTGAT CATTCTGAAGAACGAGGGCTTCTATTCCAGCACGTGCCCAGCTGAGAGCAGCACCAACAC CACCCAGGATGAGCAGCGCAGGTGGCCAGGCTGTGACCAGCAGGACGAGATGCTCAACCT GGGCTTCACCATTGGTTCCTTCGTGCTCAGCGCCACCACCCTGCCACTGGGGATCCTCAT GGACCGCTTTGGCCCCCGACCCGTGCGGCTGGTTGGCAGTGCCTGCTTCACTGCGTCCTG CACCCTCATGGCCCTGGCCTCCCGGGACGTGGAAGCTCTGTCTCCGTTGATATTCCTGGC GCTGTCCCTGAATGGCTTTGGTGGCATCTGCCTAACGTTCACTTCACTCACGCTGCCCAA CATGTTTGGGAACCTGCGCTCCACGTTAATGGCCCTCATGATTGGCTCTTACGCCTCTTC TGCCATTACGTTCCCAGGAATCAAGCTGATCTACGATGCCGGTGTGGCCTTCGTGGTCAT CATGTTCACCTGGTCTGGCCTGGCCTGCCTTATCTTTCTGAACTGCACCCTCAACTGGCC CATCGAAGCCTTTCCTGCCCCTGAGGAAGTCAATTACACGAAGAAGATCAAGCTGAGTGG GCTGGCCCTGGACCACAAGGTGACAGGTGACCTCTTCTACACCCATGTGACCACCATGGG CCAGAGGCTCAGCCAGAAGGCCCCCAGCCTGGAGGACGGTTCGGATGCCTTCATGTCACC CCAGGATGTTCGGGGCACCTCAGAAAACCTTCCTGAGAGGTCTGTCCCCTTACGCAAGAG CCTCTGCTCCCCCACTTTCCTGTGGAGCCTCCTCACCATGGGCATGACCCAGCTGCGGAT CATCTTCTACATGGCTGCTGTGAACAAGATGCTGGAGTACCTTGTGACTGGTGGCCAGGA GCATGAGACAAATGAACAGCAACAAAAGGTGGCAGAGACAGTTGGGTTCTACTCCTCCGT CTTCGGGGCCATGCAGCTGTTGTGCCTTCTCACCTGCCCCCTCATTGGCTACATCATGGA CTGGCGGATCAAGGACTGCGTGGACGCCCCAACTCAGGGCACTGTCCTCGGAGATGCCAG GGACGGGGTTGCTACCAAATCCATCAGACCACGCTACTGCAAGATCCAAAAGCTCACCAA TGCCATCAGTGCCTTCACCCTGACCAACCTGCTGCTTGTGGGTTTTGGCATCACCTGTCT CATCAACAACTTACACCTCCAGTTTGTGACCTTTGTCCTGCACACCATTGTTCGAGGTTT CTTCCACTCAGCCTGTGGGAGTCTCTATGCTGCAGTGTTCCCATCCAACCACTTTGGGAC GCTGACAGGCCTGCAGTCCCTCATCAGTGCTGTGTTCGCCTTGCTTCAGCAGCCACTTTT CATGGCGATGGTGGGACCCCTGAAAGGAGAGCCCTTCTGGGTGAATCTGGGCCTCCTGCT ATTCTCACTCCTGGGATTCCTGTTGCCTTCCTACCTCTTCTATTACCGTGCCCGGCTCCA GCAGGAGTACGCCGCCAATGGGATGGGCCCACTGAAGGTGCTTAGCGGCTCTGAGGTGAC CGCATAGACTTCTCAGACCAAGGGACCTGGATGACAGGCAATCAAGGCCTGAGCAACCAA AAGGAGTGCCCCATATGGCTTTTCTACCTGTAACATGCACATAGAGCCATGGCCGTAGAT TTATAAATACCAAGAGAAGTTCTATTTTTGTAAAGACTGCAAAAAGGAGGAAAAAAAACC TTCAAAAACGCCCCCTAAGTCAACGCTCCATTGACTGAAGACAGTCCCTATCCTAGAGGG GTTGAGCTTTCTTCCTCCTTGGGTTGGAGGAGACCAGGGTGCCTCTTATCTCCTTCTAGC GGTCTGCCTCCTGGTACCTCTTGGGGGGATCGGCAAACAGGCTACCCCTGAGGTCCCATG TGCCATGAGTGTGCACACATGCATGTGTCTGTGTATGTGTGAATGTGAGAGAGACACAGC CCTCCTTTCAGAAGGAAAGGGGCCTGAGGTGCCAGCTGTGTCCTGGGTTAGGGGTTGGGG GTCGGCCCCTTCCAGGGCCAGGAGGGCAGGTTCCCTCTCTGGTGCTGCTGCTTGCAAGTC TTAGAGGAAATAAAAAGGGAAGTGAGAAAAAAAAAAAAAAAAAA >Hs.194774_mRNA_1 gi|16306633|gb|BC001492.1|BC001492 Homo sapiens MGC:1774 IMAGE:3510004 polyA = 3 clone GGCACGAGGGAGGCGGCGGCTCCAGCCGGCGCGGCGCGAGGCTCGGCGGTGGGATCCGGC GGGCGGTGCTAGCTCCGCGCTCCCTGCCTCGCTCGCTGCCGGGGGCGGTCGGAAGGCGCG GCGCGAAGCCCGGGTGGCCCGAGGGCGCGATGGCTGCTCCTGTCCCGTGGGCCTGCTGTG CTGTGCTTGCCGCCGCCGCCGCAGTTGTCTACGCCCAGAGACACAGTCCACAGGAGGCAC CCCATGTGCAGTACGAGCGCCTGGGCTCTGACGTGACACTGCCATGTGGGACAGCAAACT GGGATGCTGCGGTGACGTGGCGGGTAAATGGGACAGACCTGGCCCCTGACCTGCTCAACG GCTCTCAGCTGGTGCTCCATGGCCTGGAACTGGGCCACAGTGGCCTCTACGCCTGCTTCC ACCGTGACTCCTGGCACCTGCGCCACCAAGTCCTGCTGCATGTGGGCTTGCCGCCGCGGG AGCCTGTGCTCAGCTGCCGCTCCAACACTTACCCCAAGGGCTTCTACTGCAGCTGGCATC TGCCCACCCCCACCTACATTCCCAACACCTTCAATGTGACTGTGCTGCATGGCTCCAAAA TTATGGTCTGTGAGAAGGACCCAGCCCTCAAGAACCGCTGCCACATTCGCTACATGCACC TGTTCTCCACCATCAAGTACAAGGTCTCCATAAGTGTCAGCAATGCCCTGGGCCACAATG CCACAGCTATCACCTTTGACGAGTTCACCATTGTGAAGCCTGATCCTCCAGAAAATGTGG TAGCCCGGCCAGTGCCCAGCAACCCTCGCCGGCTGGAGGTGACGTGGCAGACCCCCTCGA CCTGGCCTGACCCTGAGTCTTTTCCTCTCAAGTTCTTTCTGCGCTACCGACCCCTCATCC TGGACCAGTGGCAGCATGTGGAGCTGTCCGACGGCACAGCACACACCATCACAGATGCCT ACGCCGGGAAGGAGTACATTATCCAGGTGGCAGCCAAGGACAATGAGATTGGGACATGGA GTGACTGGAGCGTAGCCGCCCACGCTACGCCCTGGACTGAGGAACCGCGACACCTCACCA CGGAGGCCCAGGCTGCGGAGACCACGACCAGCACCACCAGCTCCCTGGCACCCCCACCTA CCACGAAGATCTGTGACCCTGGGGAGCTGGGCAGCGGCGGGGGACCCTCGGCACCCTTCT TGGTCAGCGTCCCCATCACTCTGGCCCTGGCTGCCGCTGCCGCCACTGCCAGCAGTCTCT TGATCTGAGCCCGGCACCCCATGAGGACATGCAGAGCACCTGCAGAGGAGCAGGAGGCCG GAGCTGAGCCTGCAGACCCCGGTTTCTATTTTGCACACGGGCAGGAGGACCTTTTGCATT CTCTTCAGACACAATTTGTGGAGACCCCGGCGGGCCCGGGCCTGCCGCCCCCCAGCCCTG CCGCACCAAGCTGGCCCTCCTTCCTCCCTCAGGGGAGGTGGGCCATGCAGCTAACCCACC CACCAAAGACCCCCTCACCCTGGCCCCTTGGGCTGGACCCTCCAATGCCAGCGACTCCCA GGAGCCCTTGGGGGACGTGAGGGGAGCCTCTCACATCCGATTTCTCCTCCTGCCCCAGCC TCCTGTCTATCCCAGGGTCTCTGTTGCCACCATCAGATTATAAGCTCCTGATGCTGGGGG GGCCCAGCCATCCCCCTCCCCCCAGCACCCACAATTTTCAGTCCCCTCCCCTCTGCCCTG TTTTGTATACCCCTCCCCTGACCCTGCTCCTATCCCACAGTATTTAATGCCCTGTCAGTC CCTTCTAGTCTGACTCAATGGTAACTTGCTGTATTTGAATTTTTTATAGATGTATATACA GGGTGGGGGGAGTGGGCGGTTCTCATTAAACGTCACCATTTCATGAAAAAAAAAAAAAAA AAA >Hs.127428_mRNA_2 gi|16306818|gb|BC006537.1|BC006537 Homo sapiens MGC:1934 IMAGE:2987903 polyA = 3 GGCACGAGGAGTTTCATAATTTCCGTGGGTCGGGCCGGGCGGGCCAGGCGCTGGGCACGG TGATGGCCACCACTGGGGCCCTGGGCAACTACTACGTGGACTCGTTCCTGCTGGGCGCCG ACGCCGCGGATGAGCTGAGCGTTGGCCGCTATGCGCCGGGGACCCTGGGCCAGCCTCCCC GGCAGGCGGCGACGCTGGCCGAGCACCCCGACTTCAGCCCGTGCAGCTTCCAGTCCAAGG CGACGGTGTTTGGCGCCTCGTGGAACCCAGTGCACGCGGCGGGCGCCAACGCTGTACCCG CTGCGGTGTACCACCACCATCACCACCACCCCTACGTGCACCCCCAGGCGCCCGTGGCGG CGGCGGCGCCGGACGGCAGGTACATGCGCTCCTGGCTGGAGCCCACGCCCGGTGCGCTCT CCTTCGCGGGCTTGCCCTCCAGCCGGCCTTATGGCATTAAACCTGAACCGCTGTCGGCCA GAAGGGGTGACTGTCCCACGCTTGACACTCACACTTTGTCCCTGACTGACTATGCTTGTG GTTCTCCTCCAGTTGATAGAGAAAAACAACCCAGCGAAGGCGCCTTCTCTGAAAACAATG CTGAGAATGAGAGCGGCGGAGACAAGCCCCCCATCGATCCCAATAACCCAGCAGCCAACT GGCTTCATGCGCGCTCCACTCGGAAAAAGCGGTGCCCCTATACAAAACACCAGACCCTGG AACTGGAGAAAGAGTTTCTGTTCAACATGTACCTCACCAGGGACCGCAGGTACGAGGTGG CTCGACTGCTCAACCTCACCGAGAGGCAGGTCAAGATCTGGTTCCAGAACCGCAGGATGA AAATGAAGAAAATCAACAAAGACCGAGCAAAAGACGAGTGATGCCATTTGGGCTTATTTA GAAAAAAGGGTAAGCTAGAGAGAAAAAGAAAGAACTGTCCGTCCCCCTTCCGCCTTCTCC CTTTTCTCACCCCCACCCTAGCCTCCACCATCCCCGCACAAAGCGGCTCTAAACCTCAGG CCACATCTTTTCCAAGGCAAACCCTGTTCAGGCTGGCTCGTAGGCCTGCCGCTTTGATGG AGGAGGTATTGTAAGCTTTCCATTTTCTATAAGAAAAAGGAAAAGTTGAGGGGGGGGCAT TAGTGCTGATAGCTGTGTGTGTTAGCTTGTATATATATTTTTAAAAATCTACCTGTTCCT GACTTAAAACAAAAGGAAAGAAACTACCTTTTTATAATGCACAACTGTTGATGGTAGGCT GTATAGTTTTTAGTCTGTGTAGTTAATTTAATTTGCAGTTTGTGCGGCAGATTGCTCTGC CAAGATACTTGAACACTGTGTTTTATTGTGGTAATTATGTTTTGTGATTCAAACTTCTGT GTACTGGGTGATGCACCCATTGTGATTGTGGAAGATAGAATTCAATTTGAACTCAGGTTG TTTATGAGGGGAAAAAAACAGTTGCATAGAGTATAGCTCTGTAGTGGAATATGTCTTCTG TATAACTAGGCTGTTAACCTATGATTGTAAAGTAGCTGTAAGAATTTCCCAGTGAAATAA AAAAAAATTTTAAGTGTTCTCGGGGATGCATAGATTCATCATTTTCTCCACCTTAAAAAT GCGGGCATTTAAGTCTGTCCATTATCTATATAGTCCTGTCTTGTCTATTGTATATATAAT CTATATGATTAAAGAAAATATGCATAATCAGACAAGCTTGAATATTGTTTTTGCACCAGA CGAACAGTGAGGAAATTCGGAGCTATACATATGTGCAGAAGGTTACTACCTAGGGTTTAT GCTTAATTTTAATCGGAGGAAATGAATGCTGATTGTAACGGAGTTAATTTTATTGATAAT AAATTATACACTATGAAACCGCCATTGGGCTACTGTAGATTTGTATCCTTGATGAATCTG GGGTTTCCATCAGACTGAACTTACACTGTATATTTTGCAATAGTTACCTCAAGGCCTACT GACCAAATTGTTGTGTTGAGATGATATTTAACTTTTTGCCAAATAAAATATATTGATTCT TTTCTAAAAAAAAAAAAAAAAAAAA >Hs.126852_contig1 AI802118 BF197404 BF224434|AA931964|AW236083|AI253119|AW614335|AI671372|AI7 93240|AW006851|AI953604|AI640505|AI633982|AW195809|AI493069|AW058576|AW2936 22 polyA = 2 polyA = 3 AAACCAGTGTATCCAGTCATGGAAAAGAAGGAGGAAGATGGCACCCTGGAGCGGGGGCAC TGGAACAACAAGATGGAGTTTGTGCTGTCAGTGGCTGGGGAGATCATTGGCTTAGGCAAC GTCTGGAGGTTTCCCTATCTCTGCTACAAAAATGGGGGAGGTGAGATGAGAGCCCTTGTG CCACCCCACCCACTCCTGGAAGGAGGATACTTCCATCTCCTGCACTTACGGCCCCTCTGG GGAGTCCCATAGATGTATAGAATTCTGGAGGTAGGAGGACGCTTGGAGGTCATTAAGGAC ACTCTGTAAGAGACTAAGACCTAGAAAGGTTACGTGACTATCCCAGGGCTCTTTCTATTA TAACGTGGCATCGTAGAAATATGAGCACAAGCTGGAACCAGGTGGATGAGAGTTTGGATT CTGGCTCTGCTACTTAACACTCTGTGTGATCTTGGACAAGTTACTTAAGCTCTCAGAGCA TCAATTGCCGCTCCTGCAAATTGAGATAATAATGCCTGCCTTTCAAGGTCATTGTAAGGA TTAGAGACAATGTGTGTAAAGCACTTAATAAATAGTAGCTCTGCTGATGATGACGTTGAT AACCAAACTGTTCTGTGGTCTTAAGTAATAAATAGTAGCTCTGCTGATGATGACGTTGAT AACCAAACTGTTCTGTGGTCTTAAGTAATAAGTAGTAGCTCTGTTGATGATGACGTTGAT AACCAAACTGTTCTGTGGTCTTAAGTAATAAGTAGTAGCTCTGCTGATGATGACGTTGAT AACCAAACTGTTCTGTGGTCTTAAGTAATAAATAGTAGCTCTGCTGATGATGATGTTGAT AACCAAACTGTTCTGTGGTCTTAAGTAATAAATAGTAGCTCTGCTGATGATGACGTTGAT AACCAAACTGTTCTGTGGTCTTAAGTAATAAATAGTAGCTCTGCTGATGATGACGTTGAT AACCAAACTGTTCTGTGGTCTTAAGTAATAAATAGTAGCTCTGCTGATGATGACGTTGAT AAAAAAAAAAAAAAAAAAAAAAAAA >Hs.28149_mRNA_1 gi|14714936|gb|BC010626.1|BC010626 Homo sapiens clone MGC:17687 IMAGE: 3865868 polyA = 3 GGAAGACATCAGGATGTACCATCTGCCCTTCTGTCGGACCCCAGGGTACGTCCCATGAGC GCGGCCGAGCTGCGTCGAGGGCAGCAGAGCGTGCTGCAGTGCTCAGGGACCCGGACTCTG CAGTTTCTCCTGCACTGTTTTCACCTTTGGCCAGACGGGCTCTGGGAAGACCTACACCCT GACTGGACCCCCTCCCCAGGGGGAGGGGGTGCCTGTACCCCCCAGCCTGGCTGGCATCAT GCAGAGGACCTTCGCCTGGCTGTTGGACCGCGTGCAGCACCTGGGTGCCCCTGTCACCCT TCGCGCCTCTTATCTGGAGATCTACAATGAGCAGGTTCGGGACTTGCTGAGCCTGGGGTC TCCCCGGCCCCTCCCTGTTCGCTGGAACAAGACTCGGGGCTTCTATGTGGAGCAGCTGCG GGTGGTGGAATTTGGGAGTCTGGAGGCCCTGATGGAACTTTTGCAAACGGGTCTCAGCCG TCGAAGGAACTCAGCCCACACCCTGAACCAGGCCTCCAGCCGAAGCCATGCCCTGCTCAC CCTTTACATCAGCCGTCAAACTGCCCAGCAGATGCCTTCTGTGGACCCTGGGGAGCCCCC TGTTGGTGGGAAGCTGTGCTTTGTGGACCTGGCAGGCAGTGAGAAGGTAGCAGCCACGGG ATCCCGTGGGGAGCTGATGCTTGAGGCTAACAGCATCAACCGAAGCCTGCTGGCCCTGGG TCACTGCATCTCCCTGCTGCTGGACCCACAGCGGAAGCAGAGCCACATCCCTTTCCGGGA CAGCAAGCTCACCAAGTTGCTGGCAGACTCACTGGGAGGGCGCGGGGTCACCCTCATGGT GGCCTGCGTGTCCCCCTCAGCCCAGTGCCTTCCTGAGACTCTCAGCACCCTGCGATATGC AAGCCGAGCTCAGCGGGTCACCACCCGACCACAGGCCCCCAAGTCTCCTGTGGCAAAGCA GCCCCAGCGTTTGGAGACAGAGATGCTGCAGCTCCAGGAGGAGAACCGTCGCCTGCAGTT CCAGCTGGACCAAATGGACTGCAAGGCCTCAGGGCTCAGTGGAGCCCGGGTGGCCTGGGC CCAGCGGAACCTGTACGGGATGCTACAGGAGTTCATGCTAGAGAATGAGAGGCTCAGGAA AGAAAAGAGCCAGCTGCAGAATAGCCGAGACCTGGCCCAGAATGAGCAGCGCATCCTGGC CCAGCAGGTCCATGCACTAGAGAGGCGTCTCCTCTCTGCCTGCTACCATCACCAGCAGGG TCCTGGCCTGACCCCACCGTGTCCCTGCTTGATGGCCCCAGCTCCCCCTTGCCATGCACT GCCACCCCTCTACTCCTGCCCCTGCTGCCACATCTGCCCACTGTGTCGAGTGCCCCTGGC CCACTGGGCCTGCCTGCCAGGGGAGCACCACCTGCCCCAGGTGTTGGACCCTGAGGCCTC AGGTGGCAGGCCCCCATCTGCCCGGCCCCCACCCTGGGCACCCCCATGCAGCCCTGGCTC TGCCAAGTGCCCAAGAGAGAGGAGTCACAGTGACTGGACTCAGACCCGAGTCCTGGCAGA GATGTTGACGGAGGAGGAGGTGGTACCTTCTGCACCTCCCCTGCCTGTGAGGCCCCCGAA GACATCACCAGGGCTCAGAGGTGGGGCCGGGGTTCCAAACCTGGCCCAGAGACTGGAGGC CCTCAGAGACCAGATTGGCAGCTCCCTGCGACGTGGCCGCAGCCAGCCACCCTGCAGTGA GGGCGCACGGAGCCCAGGCCAAGTCCTCCCTCCCCATTGAAGGCCAAGTGGGAACCCAGG AGACTGCTGTGTGACCTCAGACTGGGCTCCACACTCTTGGGCTTCAGTCTGCCCATCTGC TGAATGGAGACAGCAGCTGCTACTCCACCTGCAGCTGGGCTAGGGGCGGGGACTGGGGGT GCTATTTAGGGGAACAAGGGGATTCAGGAGAAACCAGGCAGCAGGGGATGAAATACATGA ATAAAGAGAGGCATCAGCTCCAAAAAAAAAAAAAAAAAAAAAAA >Hs.35453_mRNA_3 gi|7018494|emb AL157475.1 HSM802461 Homo sapiens mRNA; cDNA DKFZp761G151 (from clone DKFZp761G151); partial cds polyA = 3 CTCCCCCTGAGAGAGGCTGGGCAGCACCCCCCTTCTGCCAGGAGTGCCAGCCAAGGTGCC AGACCCCTGTCCAGTGGCAAGCTGGAAGGCTTTCAGAGCATCGATGAAGCTATAGCCTGG CTCAGGAAGGAACTGACGGAGATGCGGCTGCAGGACCAGCAACTGGCCAGACAGCTCATG CGCCTGCGTGGCGACATCAACAAGCTGAAAATCGAACACACCTGCCGCCTCCACAGGAGG ATGCTCAACGATGCCACCTACGAGCTGGAGGAGCGGGATGAGCTGGCCGACCTCTTCTGT GACTCCCCTCTTGCCTCCTCCTTCAGCCTCTCCACACCACTCAAGCTTATTGGCGTGACC AAGATGAACATCAACTCTCGGAGGTTCTCTCTCTGCTGAGGAGCCCTCAGACTGGGCGGA GGGGCTGGAGCGGAGGGCTTGGGCTGGAGGGGTGTCAGAGGAAGCTGAGGCCAAGTTACT CCAGTGGGTCTCCCGGAGGCAGGGGTCCCTGGGACTGGCGACTCAAGGGCCCCAGGACCT ATTCAGTGGTGCTCTCCCACCCAGGGGCCCTGGGTGTGGATGCCAGTGTCTCTGTGACTG GCTCTTGCTTACTACCCAAAGAGCTCTGCAGAAGGGCCGCTCCAACCAAGATGTTAAAGG AGACCTGGGTTCCCACCATAATCCATCCCTCCACGGTCACGTTCCTGTTTCCTGGAATCA CTGGTGCTATGAACTGGGATTCCCAAAGGGAGGCCCCCCAACAAAGCTGTCATTTTTGCA GAAGGCTGTCCCGCAAGGGCCTTGGGGGAAATTAGGCATGTCAGATGTGCCTGTCTCACG TGCTGTTGCTGTCCTCTAAGTATTGTCTCAAATTCACCCTAAGTACATGACTCAGCAACA TTGACAGGGAGCTACTAGGAAGGGAAAATCGAAAGGCATGACAAATGGGCACTTGGGGAC GCAGCCCCAGTGGCTGGCAGCCAGTGTCTCTGGTGAGCCTGACACTACAAGGCTGTGTAA ATTGTAAATTCTGGCGTGTGCTGGGACATGTGATGGGGGCACTAGCGTAGCTTGGGTGCA ACAAGCACAGATGTCCCCATTGTCTCCCCTGGCCACATGCATCTCCAAAGAGCCTCTTCA CTGCCACCCACACCCCAGGGTGACAGCCTGGGAGACCACTGGTGACTGAACCAGGCAGGT CCTGAAAGCATTTTCCATAACTGAATTCTCCTGCAGGGGCGTGACCGGGGCCTCCTGGTG GATTCTGGTGGTGTCACCTTACTGCCCTCTCTGGAAAGACAATCTAGGGAGCCCAGAGGC CCATCCTGAGCCTCCTCTGAGATTTTGTGCCTGACCTAAACAACTAGTTTTAATAAGACT GTTACTGATGTGTTGTTCACTTGTTAGTAACTGATTTTTGTCCAAATGCGGAAGCCACTT GTGTAGGTCAACTACAGTGCGTAGGATTTGATTTTAAGAGTTTCTCCCTCCCAACAGGCT TGAGGATCAGCAAGTTAAGACCCCAGCAGGTTAGGGAGGTCAGTCTGGGGTCATACGGCA TGGCAGGGGTCCCTCGGCCAGACCCGTAGAATCCTGAGATAAGGAGTGTTTCTGACCTTT GGTGTCATCTAGTCGAGTCCTCTCATTAGTAAAGGAGCAAAGTGAAACCTGGGGGAGGAG AAGGACTTCCCTCAGGTTGCACAGCTGTTTAGGCTATAGAATATTGATGTGTGAAACCAT TATTGATAATGCCTAGTAGATCACATGTCAATGAACTTGAACCCCAAAGATGGTCGTGAT GCTTTGCCAAACCCGCACACTGCCAACCCCTCTACTCTCCACCTCAGCCCCCACCCACAT CTCCCAGAGTATTGCAATTCAGAACATTTGGGTCAAGGTGGAGCAAGGCACTGACAGTGG CCCCACAGGGCATGTGTCACTAATCACTGTCCCATGGTCTACGCACGGCATCTGGCTGCT CTGTCTACTGTGACTTCTTCCTGTGTAATCTCAGTGGGGCCCGTGTCCACCCACACATCG TGACCCACATAGGGGAGAGGTTGCTTTTCTTTTGTGGGCTGAGAGTAGGACAATGCAAAT GAATGATCTCTAGTAGACAGAAAAGAACTTGGTCTCTTTTTTAAAATTTCAAAGAGCCAG AAGTTCTATGCCTCCTTCAAAGTAGGCAGAACAACGCAGCCAAGATCTACTGTCTGCCAT GCTCTGTGCAATGAAGTCTGCAGGCCTGAGGACCATGTACTGCTGTCCTTCCTCAGAGCT CTGCACAAACACTGCCAAGTCCTGAAGACGCATTCCTTTCCTGCCAACCTCTTTCCAGAT AAGCCCTTGAGGTCTCGGGCTGACCTACACACACACACACACACACACACACACACACAC ACACCCCCACACACACACACACACGACAGAGAACATGCCATAAACATCCTTGAACCCATG CAGGAAAGCCCATCCCATATTCTGAAAAAATGCCAAATTAGGTTTTTCTTTCTTTTTGGA AATCAGTCATTACAGTAACCGAAACCATTGGGTTCAGCGAAAATGGAAAGATTTAGCTGA ATGTAGTCAGTCCAATTAAGTTGGATGCAACTGAGTGATTTAGTTGCTTGGGTAACCCAG TGCTTGCTTGCTTTCTTCATTCTCTGGGTGGAAACTAAGATCAAGACACATGTTTGGGGA TAAGTTAAATGTCTGAGCTATTTTGCTCGGTTTATCCTAAGAGAACTTTATTATGGGATG AGGAGGTGACCCAAGATGAGAAGTGGAGGGGGACAGCGATGTTTTCTAAACATCGTCCAG TGTTGACTGGCTTCCTTACTTTGCACAGTGAACACAACTAACCACATTAATTCAGCTTTG TGAAGTCCCTGCTCTCTGTGGGTTCTATGAGTCAGCAGCAACATTGGCCTAACCTCCGTC CCAGCCTCCTGGCTCACCACATGTGTACAGTGCTGTTTGCAGTTGTACTCATTATCCATC CATCTCTCTGCCATCCCCAAGCATCGCTGGGTGTAAAACGCAAACTCTCCACCGACACTG CCATGCGTGGTCATGTCTTGATGCCTTCAGGGGCTCAGTAGCTATCAAAGAGGCCTGGAG GGCCTGGGCAGGCTTGACGATGCCTGACCGAGTTCAAGACCCACACCCTGTAGCAATACC AAGTGCTATTACATAATCAATGGACGATTTATACTTTTATTTTTTATGATTATTTGTTTC TATATTGCTGTTAGAAAAAGTGAAATAAAAATACTTCAAAAGAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAGAAAAAAAAAAAAAAAAAAA >Hs.180570_contig1 RO8175|AA707224|AA699986|R11209|W89099|T98002|AA494546 polyA = 2 polyA = 3 TGAAGGACCGCGATCCTAAAGAGATTGAATGGGACGACCTGGCCCAGCTGCCCTTCCTGA CCATGTGCGTGAAGGAGAGCCTGAGGTTACATCCCCCAGCTCCCTTCATCTCCCGATGCT GCACCCAGGACATTGTTCTCCCAGATGGCCGAGTCATCCCCAAGGGCATTACCTGCCTCA TCGATATTATAGGGGTCCATCACAACCCAACTGTGTGGCCGGATCCTGAGTCTACGACCC CTTCCGCTTTGACCCAGAGAACAGCAAGGGGAGGTCACCTCTGGCTTTTAATTCCCTTCT CCGCAGGGCCCAGGAACTGCATCGGGCCAGCGTTTCCCATGGCGGAGATGAAAGTGGTTC CTGGCGTTGATGCTGCTGCACTTCCGGTTCCTGCCAGACCACACTGAGCCCCGCAGGAAG CTGGAACTGATCATTGCGGCCGAGGGCGGGCTTTGGCTGCGGGTGGAGCCCCTGAATGTA GGCTTGCAGTGACTTTCTGACCCATCCACCTGTTTTTTTGCAGATTGTCATGAATAAAAC GGTGCTGTCACCTCAAAAAAAAAAAANNNAAAA >Hs.196270_mRNA_1 gi|11545416|gb|AF283645.1|AF283645 Homo sapiens chromosome 8 map 8q21 polyA = 3 GAGTCCTCTCGTTGGTCCCGGAGGTGGGGTTGCGCTCACAAGGGGCGACCGTCGCCACGG TGGCGGCCACTGCATCGCGTCCCACCTCCGCGGCCCTGGGCGCCGTGGTGTCGACGGGCC CCGAGCCTATGACGGGCCAGGGCCAGTCGGCGTCCGGGTCGTCGGCGTGGAGCACGGTAT TCCGCCACGTCCGGTATGAGAACCTGATAGCGGGCGTGAGCGGCGGCGTCTTATCCAACC TTGCGCTGCATCCGCTCGACCTCGTGAAGATCCGCTTCGCCGTGAGTGATGGATTGGAAC TGAGACCGAAATATAATGGAATTTTACATTGCTTGACTACCATTTGGAAACTTGATGGAC TACGGGGACTTTATCAAGGAGTAACCCCAAATATATGGGGTGCAGGTTTATCCTGGGGAC TCTACTTTTTCTTTTACAATGCCATCAAGTCATATAAAACAGAAGGAAGAGCTGAACATT TAGAGGCAACAGAATACCTTGTCTCAGCTGCTGAAGCTGGAGCCATGACCCTCTGCATTA CAAACCCATTATGGGTAACAAAAACTCGCCTTATGTTACAGTATGATGCTGTTGTTAACT CCCCACACCGACAATATAAAGGAATGTTTGATACACTTGTGAAAATATATAAGTATGAAG GTGTGCGTGGATTATATAAGGGATTTGTTCCTGGGCTGTTTGGAACATCGCATGGTGCCC TTCAGTTTATGGCATATGAATTGCTGAAGTTGAAGTACAACCAGCATATCAATAGATTAC CAGAAGCCCAGTTGAGCACAGTAGAATATATATCTGTTGCAGCACTATCCAAAATATTTG CTGTCGCAGCAACATACCCATATCAAGTCGTAAGAGCTCGTCTTCAGGATCAACACATGT TTTACAGTGGTGTAATAGATGTAATCACAAAGACATGGAGGAAAGAAGGCGTCGGTGGAT TTTACAAGGGAATTGCTCCTAATTTGATTAGAGTGACTCCAGCCTGCTGTATTACCTTTG TGGTATATGAAAACGTCTCACATTTTTTACTTGACCTTAGAGAAAAGAGAAAGTAAGCTC AAAGAGGACAATTCCAGTATATCTGCCCAAGGCAGCAACAAGCTCTTTTGTGTTTAAGGC ATAAAAGAAGAATTCTGCATAGAAACATGGCTCATATTCGAAATTGCTCTATAGTCATTA GAAGCCAGAGAACTGCTAAGTCTCCTGCAATGTTTTTCTTGCTTTTTGCCTTCCCCATAT ATATGGAACTTGGCTACCTCTGCCTGAAATGGCTGCCATCAACACAATGTTAAAACTGAC ACGAAGGATAGAGTTTCACAGATTTCTACGTTTTATTGGTGGAAGCTGATTTGCAACATT TGCTAAATGGATTAGATGAATGTACTTCTTTTTGTGAGCTTACTTGCCTGGATTGCTTTA AAATTAACCTTTGTGCAATACCAAGAAAATAGCTCTTTAAAAGAATGTCTTTGTATGTCT CAAGGTAAATTAAGGATTTACTGAATAAGGTGTTGACCAAATCCAGACCATTTTATTTTA TTTTTTTATTTATTTATTTTTTGAGATGGAGTCTTGCTTTGTCGCCCAGGCTGGAGTGCA GTGGCGTGATCTCAGCTCACTGCAACCTCCACCTCCCGGGTTCACGCCATTCTCCTGCCT CAGCCTCCTGAGTAGCTGGGACTACAGGCACCTGCCACCACGCCTGGCTAACTTTTTTTT ATATTTTGAGTAGAAATGGGGTTTCACCATGTTAGCCAGGATGGTCTCAATCTCCTGACC TTGTGATCCGCCTGCCTTGGCCTCCCAAAGTGCTGGGATTACAGGCGTGAGCCACTGCGC CTGGCCAGACCATTTTAGAATTGGGAAATTTTAGTGAGAAAAAATGCACTGTAAATATGC TTTAGTTTTAATTCAGTTGGGATGCACTACCTAGCGAAAATTGAGAAACTATATACTTCT CAGAGAAATATCTGACATCTATTGTCATTCCATTGCTATTTTTTTTCCCCAGAGACTTCC ATAATTTAAAATAAAATCCTAGATCCAGTTCTTGTTTTTTGGCATAAATACTTAATCTAT TTTAAATTTATAAAATCTGAGCTTCTAGGATCCAGCTGTGTCAACCTTTATTTAGCATAT ATAACTATAAATCACTTATTACAGATGCTAAATAGATCACCTTTTACAGATGCTGAAATG TTTGGGATATGTTTGTTGACAAGGTAAATGGAAATGAGAAACTTTATACTTCAGTTTTCA GATATATGGATCTAGATCCCAAATAAATGATTAATCTTCATTGGTTTCTCAAATTCAGGT TGAAATACAAATTAATAGCCTTTATTGATTTTACTTTTATGAGTCATTGTAGACATCTAT AAATATAAAAGGGCCTGTACCCAAAGGATGCCAGAATACTAGTATTTTTATTTATCGTAA ACATCCACGAGTGCTGTTGCACTACCATCTATTTGTTGTAAATAAAAGTGTTGTTTTCAA AAAAAAAAAAAAAA >Hs.9030_mRNA_3 gi|12652600|gb|BC000045.1|BC000045 Homo sapiens clone MGC:2032 IMAGE:3504527 polyA = 3 CTAGAGGGGCGGAAAGTAACAAGGAGGTGGGGGTACAAATCCTCAGCTCCTGCTTCCGCA AGCACTAACCTGCTCTGAAGTGAGCCAGGCAGCTCTGGCCATCTTTTCCCAGCCACAGAA TCAGGTGATGGTCCAGAATTAAGAGCTGTCACCTGTGTCATTCACTCACAATGGAAGAAA TGAAGAAGACTGCCATCCGGCTGCCCAAAGGCAAACAGAAGCCTATAAAGACGGAATGGA ATTCCCGGTGTGTCCTTTTCACCTACTTCCAAGGGGACATCAGCAGCGTAGTGGATGAAC ACTTCTCCAGAGCTCTGAGCAATATCAAGAGCCCCCAGGAATTGACCCCCTCGAGTCAGA GTGAAGGTGTGATGCTGAAAAACGATGATAGCATGTCTCCAAATCAGTGGCGTTACTCGT CTCCATGGACAAAGCCACAACCAGAAGTACCTGTCACAAACCGTGCCGCCAACTGCAACT TGCATGTGCCTGGTCCCATGGCTGTGAATCAGTTCTCACCGTCCCTGGCTAGGAGGGCCT CTGTTCGGCCTGGGGAGCTGTGGCATTTCTCCTCCCTGGCGGGCACCAGCTCCTTAGAGC CTGGCTACTCTCATCCCTTCCCCGCTCGGCACCTGGTTCCAGAGCCCCAGCCTGATGGGA AACGTGAGCCTCTCCTAAGTCTCCTCCAGCAAGACAGATGCCTAGCCCGTCCTCAGGAAT CTGCCGCCAGGGAGAATGGCAACCCTGGCCAGATAGCTGGAAGCACAGGGTTGCTCTTCA ACCTGCCTCCCGGCTCAGTTCACTATAAGAAACTATATGTATCTCGTGGATCTGCCAGTA CCAGCCTTCCAAATGAAACTCTTTCAGAGTTAGAGACACCTGGGAAATACTCACTTACAC CACCAAACCACTGGGGCCACCCACATCGATACCTGCAGCATCTTTAGTCAAGTTGGAGGA GAAAGACAACACTTGGTCTAAGACACGGCAGCAAGACATCCCTGCATATTGTTCCAGATA AAAATGAAAGCTGCTCACACCCACTTGCCTCCCCAATCTGTTAAACAGCTTCGTGTCTAG TATGAGCTCAGTACTTGCCCTGTGAAAATCCCAGAAGCCCCCGCTGTCAATGTTCCCCAT CCACACCCTGCTTGCTCCTGTGTAACAGCTCAGATGATGAATAATAATAAAACTGTACTT TTTTGGATGGTGAAAAAAAAAAAAAAAAAAAA >Hs.1282_mRNA_3 gi|4559405|ref|NM_000065.1|Homo sapiens complement component 6 (C6), mRNA polyA = 1 TTGCCTTGTGTTAGCTAGCAATAAGAAAAGAAGCTTTGTTTGGATTAACATATATACCCT CTTCATTCTGCATACCTATTTTTTCCCCAATAATTTGCAGCTTAGGTCCGAGGACACCAC AAACTCTGCTTAAAGGGCCTGGAGGCTCTCAAGGCATGGCCAGACGCTCTGTCTTGTACT TCATCCTGCTGAATGCTCTGATCAACAAGGGCCAAGCCTGCTTCTGTGATCACTATGCAT GGACTCAGTGGACCAGCTGCTCAAAAACTTGCAATTCTGGAACCCAGAGCAGACACAGAC AAATAGTAGTAGATAAGTACTACCAGGAAAACTTTTGTGAACAGATTTGCAGCAAGCAGG AGACTAGAGAATGTAACTGGCAAAGATGCCCCATCAACTGCCTCCTGGGAGATTTTGGAC CATGGTCAGACTGTGACCCTTGTATTGAAAAACAGTCTAAAGTTAGATCTGTCTTGCGTC CCAGTCAGTTTGGGGGACAGCCATGCACTGAGCCTCTGGTAGCCTTTCAACCATGCATTC CATCTAAGCTCTGCAAAATTGAAGAGGCTGACTGCAAGAATAAATTTCGCTGTGACAGTG GCCGCTGCATTGCCAGAAAGTTAGAATGCAATGGAGAAAATGACTGTGGAGACAATTCAG ATGAAAGGGACTGTGGGAGGACAAAGGCAGTATGCACACGGAAGTATAATCCCATCCCTA GTGTACAGTTGATGGGCAATGGGTTTCATTTTCTGGCAGGAGAGCCCAGAGGAGAAGTCC TTGATAACTCTTTCACTGGAGGAATATGTAAAACTGTCAAAAGCAGTAGGACAAGTAATC CATACCGTGTTCCGGCCAATCTGGAAAATGTCGGCTTTGAGGTACAAACTGCAGAAGATG ACTTGAAAACAGATTTCTACAAGGATTTAACTTCTCTTGGACACAATGAAAATCAACAAG GCTCATTCTCAAGTCAGGGGGGGAGCTCTTTCAGTGTACCAATTTTTTATTCCTCAAAGA GAAGTGAAAATATCAACCATAATTCTGCCTTCAAACAAGCCATTCAAGCCTCTCACAAAA AGGATTCTAGTTTTATTAGGATCCATAAAGTGATGAAAGTCTTAAACTTCACAACGAAAG CTAAAGATCTGCACCTTTCTGATGTCTTTTTGAAAGCACTTAACCATCTGCCTCTAGAAT ACAACTCTGCTTTGTACAGCCGAATATTCGATGACTTTGGGACTCATTACTTCACCTCTG GCTCCCTGGGAGGCGTGTATGACCTTCTCTATCAGTTTAGCAGTGAGGAACTAAAGAACT CAGGTTTAACCGAGGAAGAAGCCAAACACTGTGTCAGGATTGAAACAAAGAAACGCGTTT TATTTGCTAAGAAAACAAAAGTGGAACATAGGTGCACCACCAACAAGCTGTCAGAGAAAC ATGAAGGTTCATTTATACAGGGAGCAGAGAAATCCATATCCCTGATTCGAGGTGGAAGGA GTGAATATGGAGCAGCTTTGGCATGGGAGAAAGGGAGCTCTGGTCTGGAGGAGAAGACAT TTTCTGAGTGGTTAGAATCAGTGAAGGAAAATCCTGCTGTGATTGACTTTGAGCTTGCCC CCATCGTGGACTTGGTAAGAAACATCCCCTGTGCAGTGACAAAACGGAACAACCTCAGGA AAGCTTTGCAAGAGTATGCAGCCAAGTTCGATCCTTGCCAGTGTGCTCCATGCCCTAATA ATGGCCGACCCACCCTCTCAGGGACTGAATGTCTGTGTGTGTGTCAGAGTGGCACCTATG GTGAGAACTGTGAGAAACAGTCTCCAGATTATAAATCCAATGCAGTAGACGGACAGTGGG GTTGTTGGTCTTCCTGGAGTACCTGTGATGCTACTTATAAGAGATCGAGAACCCGAGAAT GCAATAATCCTGCCCCCCAACGAGGAGGGAAACGCTGTGAGGGGGAGAAGCGACAAGAGG AAGACTGCACATTTTCAATCATGGAAAACAATGGACAACCATGTATCAATGATGATGAAG AAATGAAAGAGGTCGATCTTCCTGAGATAGAAGCAGATTCCGGGTGTCCTCAGCCAGTTC CTCCAGAAAATGGATTTATCCGGAATGAAAAGCAACTATACTTGGTTGGAGAAGATGTTG AAATTTCATGCCTTACTGGCTTTGAAACTGTTGGATACCAGTACTTCAGATGCTTACCAG ACGGGACCTGGAGACAAGGGGATGTGGAATGCCAACGGACGGAGTGCATCAAGCCAGTTG TGCAGGAAGTCCTGACAATTACACCATTTCAGAGATTGTATAGAATTGGTGAATCCATTG AGCTAACTTGCCCCAAAGGCTTTGTTGTTGCTGGGCCATCAAGGTACACATGCCAGGGGA ATTCCTGGACACCACCCATTTCAAACTCTCTCACCTGTGAAAAAGATACTCTAACAAAAT TAAAAGGCCATTGTCAGCTGGGACAGAAACAATCAGGATCTGAATGCATTTGTATGTCTC CAGAAGAAGACTGTAGCCATCATTCAGAAGATCTCTGTGTGTTTGACACAGACTCCAACG ATTACTTTACTTCACCCGCTTGTAAGTTTTTGGCTGAGAAATGTTTAAATAATCAGCAAC TCCATTTTCTACATATTGGTTCCTGCCAAGACGGCCGCCAGTTAGAATGGGGTCTTGAAA GGACAAGACTTTCATCCAACAGCACAAAGAAAGAATCCTGTGGCTATGACACCTGCTATG ACTGGGAAAAATGTTCAGCCTCCACTTCCAAATGTGTCTGCCTATTGCCCCCACAGTGCT TCAAGGGTGGAAACCAACTCTACTGTGTCAAAATGGGATCATCAACAAGTGAGAAAACAT TGAACATCTGTGAAGTGGGAACTATAAGATGTGCAAACAGGAAGATGGAAATACTGCATC CTGGAAAGTGTTTGGCCTAGCACAATTACTGCTAGGCCCAGCACAATGAACAGATTTACC ATCCCGAAGAACCAACTCCTACAAATGAGAATTCTTGCACAAACAGCAGACTGGCATGCT CAAAGTTACTGACAAAAATTATTTTCTGTTAGTTTGAGATCATTATTCTCCCCTGACTCT CCTGTTTGGGCATGTCTTATTCAGTTCCAGCTCATGACGCCCTGTAGCATACCCCTAGGT ACCAACTTCCACAGCAGTCTCGTAAATTCTCCTGTTCACATTGTACAAAAATAATGTGAC TTCTGAGGCCCTTATGTAGCCTGTGACATTAAGCATTCTCACAATTAGAAATAAGAATAA AACCCATAATTTTCTTCAATGAGTTAATAAACAGAAATCTCCAGAACCTCTGAAACACAT TCTTGAAGCCCAGCTTTCATATCTTCATTCAACAAATAATTTCTGAGTGTGTATACAGGA TGTCAAGTACTGACCAAAGTCCTGAGAACTCGGCAGATAATAAAACAGACAAAAGCCTTT GCCTTCATGAAGCATACATTCATTCAGGGGTAGACACACAAAAAATGAAATAAACAGGTA AAATATGTAGC >Hs.268562_mRNA_2 gi|15341874|gb|BC013117.1|BC013117 Homo sapiens clone MGC:8711 IMAGE:3882749 polyA = 3 CTCTCCTCGCCCGCTGGGTGCTGAAGTTGGGCGGATGGCAGCAAACCGGCTCCGCTAGAG GACCGAGCCGCCCAGCCCCGCTCCCCCGGACCCATCGGCGCGCTGCCCACACCTCCAGGC GACCGGCCAACTGGGTCCTGAAGTAGCTGAAATGCGAAAAAGGCAGCAGTCCCAAAATGA AGGAACACCTGCCGTGTCTCAAGCTCCTGGAAACCAGAGGCCCAACAACACCTGTTGCTT TTGTTGGTGCTGTTGTTGCAGCTGCTCCTGCCTCACTGTGAGGAATGAAGAAAGAGGGGA AAATGCGGGAAGACCCACACACACTACAAAAATGGAGAGTATCCAGGTCCTAGAGGAATG CCAAAACCCCACTGCAGAGGAAGTCTTGTCCTGGTCTCAAAATTTTGACAAGATGATGAA GGCCCCAGCAGGAAGAAACCTTTTCAGAGAGTTCCTCCGAACAGAATACAGTGAAGAGAA CCTACTTTTCTGGCTTGCTTGTGAAGACTTAAAGAAGGAGCAGAACAAAAAAGTAATTGA AGAAAAGGCTAGGATGATATATGAAGATTACATTTCTATACTATCACCAAAAGAGGTCAG TCTTGATTCTCGAGTTAGAGAGGTGATCAATAGAAATCTGTTGGATCCCAATCCTCACAT GTATGAAGATGCCCAACTTCAGATATATACTTTAATGCACAGAGATTCTTTTCCAAGGTT TTTGAACTCTCAAATTTATAAGTCATTTGTTGAAAGTACTGCTGGCTCTTCTTCTGAATC TTAATGTTCATTTAAAAACAATCATTTTGGAGGGCTGAGATGGGAAATAAAAGTAGTTAA ATAACATCAGAAACTGAGTTCCTGGAGAACTACAGTTTAGCATTCCTCAGGCTACTGTGA AAACACAACCGTTATGGTCTTTGTCTCCATTTTTATCAAGGTTTTCCATGGTTAAGTTTG GAGAAAATACCACACAAAACAATGAATTGCCAAATTGTTTGTTTTATTCAAGACTCATTC TACTTGCAAGCAAAGTGTATTTGTAGTCCTATGAACAGTCTCCTCGTGTATCTCCAGAGA CTGCATGTGCAAAGTAAAATGCTTCATTTGCCACATAGTTGTTGTAATATTTAATCCAGT AGCATAACTTATATCTGTATTTAAGGACTTTTGTGCAATATGGTCTTAAGAAATAATTGC CAAAAAAATCGGCCATGGTTCTGCATTTTTAACATAATCTAAGACAGAAAAAAAGCAATT TTTACTATGTAACAATGGTATTCAACATTCTATATACTGTGTTTAGTACACTAATTTTGA AGCCAATATTTCTGTACATGAAAAAGAGCTATTTATCTCTGTTTGTTGGAAAATCCTAAT GGGGATTCCTCTGGTTGTTCACTGCCAAAACTGTGGCATTTTCATTACAGGAGAGTTTAC TATGCTAAAAGCAAAAAACAAAAAAAAAAAAAAAGGGAAGAAGGAAAAAAGCAAAAAACA ATTTGAAGATATCCTATCTCAATGACAAATCAAAAGAGTGATATTGCTTTTAACTGTAAT AGAAGAAAATGAATTTATGTATATATCAGATGTCCAATACTGTAATTAATTTATTAAAGA CTGGCTCTCCAGTTTTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA >Hs.151301_mRNA_3 gi|16041747|gb|BC015754.1|BC015754 Homo sapiens clone MGC:23085 IMAGE:4862492 polyA = 3 AAAAGAACCAGGATTGCATTTGAAGTTAAGCTGCAAAAAACCAGTCGATCAACAGATTTT CGAGTCCCACAGTCAATATGCACCATGTTTAATGTTATGGTTGATGCCAAAGCTCAATCA ACAAAACTTTGCAGCATGGAAATGGGCCAAGAGTTTGCTAAAATGTGGCATCAATACCAT TCAAAAATAGACGAACTAATTGAAGAAACTGTTAAAGAAATGATAACACTCTTGGTTGCA AAGTTCGTTACTATCTTGGAAGGAGTGCTGGCAAAATTATCCAGATATGACGAAGGGACT TTGTTTTCTTCTTTTCTGTCATTTACCGTGAAGGCAGCTTCCAAATATGTGGATGTACCT AAACCCGGGATGGACGTGGCCGACGCCTACGTGACTTTCGTCCGCCATTCTCAGGATGTC CTGCGTGATAAGGTCAATGAGGAGATGTACATAGAAAGGTTATTTGATCAATGGTACAAC AGCTCCATGAACGTGATCTGCACCTGGTTGACGGACCGGATGGACTTACAGCTTCATATT TATCAGTTGAAAACACTAATTAGGATGGTAAAGAAAACCTACAGAGATTTCCGATTGCAA GGGGTCCTGGACTCCACCTTAAACAGCAAGACCTATGAAACGATCCGGAACCGTCTCACT GTGGAGGAAGCCACAGCATCAGTGAGTGAAGGTGGGGGACTGCAGGGCATCAGCATGAAG GACAGCGATGAGGAAGACGAAGAAGACGATTAGACCATTTGGTCCTAGAGTCTGCTGGGA CAGAGTCCTGTAATCAGTGCATGTCCTTAGTCTGTTAGTTAAACCCATTAGGAATTTTCT GTCAACTACCATGCCCATGAGATGTTTATCAATACAACTGCCATTTTAGCTATGTGGTAC CAAGATTAGCAAATGACCTTCATATCCACTGATTTCCTGATGTCCATGTCTATATGTTTA CAAGCAATATGGAGCACCATTCTTTAAATACTGTTCATGGAGAATACATAGTCTAACCAC TAGGCGTGTCCCTGTTATCAGCAAAGATCAATGATGCTTCATTCATGTACTATGTATGCA TTGGTGGTAAATGGATGTGAGGGCAAGTACATCAAGTACATTCACTCTGTTTCACGTATG TGGATGCCAGTTAATTAAATGAGTACGTAAATAAATTAATTAAAACACATAGATCTGCTT TGTGTTTTTATTTTTATTTTTTGAAAAACAAAAGGCAAGTCTCCAACAATTAACTTTTGA TGCTTTCTGTTCCCCTAAAACCAAAAAATGAACCCCTTGTGTCGTTGTTAACCCATCCTT TCATTTACTCATATAATTAGCCAAAAAAAAAAGGATGGCTACATACCAATGGATTGATTC TCTTAATTGCCACGGCAAGGGGGCGATCCTATCATGACTTAACATCAAGCGCGCAGTTCA AAACTACTGTCTTCTGTCAAAGTTTTCTCCTCTTAAATGTTATTTTGCTTTTACGTCTCA ACTGTGTATGTAAAAAAAACGAATATTTAAATTACAACCCTAGACTAAAAATGTGTTTAT AATAAGATGTGGATATTTCCTTCAGTAGATTGTAACCATAATTTAAATTATTTTGTTCCA CACTGTTTTTTATATCTGTCATGTACATTGCATTTTGATCTGTAACTGCACAACCCTGGG GTTTGCTGCAGAGCTATTTCTTTCCATGTAAAGTAGTGGATCCATCTTGCTTTTGCCTTA TATAAAGCCTACAGTTATGGAAGTGTGGAAAACTGTGGCTTCTCAATAAATATTCAGATG TCCTAAGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAA >Hs.111_contig1 AA946776|AW242338|H24274|AI078616 polyA = 1 polyA = 2 ACCTGAACTGTCTAAGATATTCTAAGCAAAGTTGACAAAGACAATTCTCCACTTGAGCCC TTAAAAATGTAACCACTATAAAGGTTTCACGCGGTGGTTCTTATTGATTCGCTGTGTCAT CACATCAGCTCCACTGTTGCCAAACTTTGTCGCATGCATAATGTATGATGGAGGCTTGGA TGGGAATATGCTGATTTTGTTCTGCACTTAAAGGCTTCTCCTCCTGGAGGGCTGCCTAGG GCCACTTGCTTGATTTATCATGAGAGAAGAGGAGAGAGAGAGAGACTGAGCGCTAGGAGT GTGTGTATGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTATGTGTGTAGCGGGAGATGTGG GCGGAGCGAGAGCAAAAGGACTGCGGCCTGATGCATGCTGGAAAAAGACACGCTTTTCAT TTCTGATCAGTTGTACTTCATCCTATATCAGCACAGCTGCCATACTTCGACTTATCAGGA TTCTGGCTGGTGGCCTGCGCGAGGGTGCAGTCTTACTTAAAAGACTTTCAGTTAATTCTC ACTGGTATCATCGCAGTGAACTTAAAGCAAAGACCTCTTAGTAAAAAATAAAAAAAATAA A >Hs.150753_contig1 AI123582|AI288234 polyA = 0 polyA = 0 GCTTCTCTTTAAAATTGACCCAAGGCATGAGCCACTGCGCCTGGCCAGCAAATGCTTTTT GTGCAGAATACACTTCTTTCAGGCATTGTCAGGTGCTGTTTTGTTTAAGCTCTAACTCAC CCCTGGAATACAGGGGAATGATGACAACCAGCCCAGCCAGGCCTGACTCATCATGGTCAC ATCCAGCCCCCACCCCCGGCCAACTAACCACTGCAGGCTCCTCTTCCAGACTCACCAGGG GGCCTCGAGGCCCCGGCATCTCCCTTGGCCCTGGGTGTGGGTTTTACAAGACTGTGTCTT TCATGACATCATAGCCCAACCATGTGAGAAGAAGGAGAAGGCCCCCCTTTCTTCATTAAT CTGAAAA >Hs.82109_mRNA_1 gi|14250611|gb|BC008765.1|BC008765 Homo sapiens clone MGC:1622 IMAGE:3347793 polyA = 3 GGCACGAGGAAGGGCCTGTGGGTTTATTATAAGGCGGAGCTCGGCGGGAGAGGTGCGGGC CGAATCCGAGCCGAGCGGAGAGGAATCCGGCAGTAGAGAGCGGACTCCAGCCGGCGGACC CTGCAGCCCTCGCCTGGGACAGCGGCGCGCTGGGCAGGCGCCCAAGAGAGCATCGAGCAG CGGAACCCGCGAAGCCGGCCCGCAGCCGCGACCCGCGCAGCCTGCCGCTCTCCCGCCGCC GGTCCGGGCAGCATGAGGCGCGCGGCGCTCTGGCTCTGGCTGTGCGCGCTGGCGCTGAGC CTGCAGCCGGCCCTGCCGCAAATTGTGGCTACTAATTTGCCCCCTGAAGATCAAGATGGC TCTGGGGATGACTCTGACAACTTCTCCGGCTCAGGTGCAGGTGCTTTGCAAGATATCACC TTGTCACAGCAGACCCCCTCCACTTGGAAGGACACGCAGCTCCTGACGGCTATTCCCACG TCTCCAGAACCCACCGGCCTGGAGGCTACAGCTGCCTCCACCTCCACCCTGCCGGCTGGA GAGGGGCCCAAGGAGGGAGAGGCTGTAGTCCTGCCAGAAGTGGAGCCTGGCCTCACCGCC CGGGAGCAGGAGGCCACCCCCCGACCCAGGGAGACCACACAGCTCCCGACCACTCATCAG GCCTCAACGACCACAGCCACCACGGCCCAGGAGCCCGCCACCTCCCACCCCCACAGGGAC ATGCAGCCTGGCCACCATGAGACCTCAACCCCTGCAGGACCCAGCCAAGCTGACCTTCAC ACTCCCCACACAGAGGATGGAGGTCCTTCTGCCACCGAGAGGGCTGCTGAGGATGGAGCC TCCAGTCAGCTCCCAGCAGCAGAGGGCTCTGGGGAGCAGGACTTCACCTTTGAAACCTCG GGGGAGAATACGGCTGTAGTGGCCGTGGAGCCTGACCGCCGGAACCAGTCCCCAGTGGAT CAGGGGGCCACGGGGGCCTCACAGGGCCTCCTGGACAGGAAAGAGGTGCTGGGAGGGGTC ATTGCCGTAGGCCTCGTGGGGCTCATCTTTGCTGTGTGCCTGGTGGGTTTCATGCTGTAC CGCATGAAGAAGAAGGACGAAGGCAGCTACTCCTTGGAGGAGCCGAAACAAGCCAACGGC GGGGCCTACCAGAAGCCCACCAAACAGGAGGAATTCTATGCCTGACGCGGGAGCCATGCG CCCCCTCCGCCCTGCCACTCACTAGGCCCCCACTTGCCTCTTCCTTGAAGAACTGCAGGC CCTGGCCTCCCCTGCCACCAGGCCACCTCCCCAGCATTCCAGCCCCTCTGGTCGCTCCTG CCCACGGAGTCGTGGGGTGTGCTGGGAGCTCCACTCTGCTTCTCTGACTTCTGCCTGGAG ACTTAGGGCACCAGGGGTTTCTCGCATAGGACCTTTCCACCACAGCCAGCACCTGGCATC GCACCATTCTGACTCGGTTTCTCCAAACTGAAGCAGCCTCTCCCCAGGTCCAGCTCTGGA GGGGAGGGGGATCCGACTGCTTTGGACCTAAATGGCCTCATGTGGCTGGAAGATCCTGCG GGTGGGGCTTGGGGCTCACACACCTGTAGCACTTACTGGTAGGACCAAGCATCTTGGGGG GGTGGCCGCTGAGTGGCAGGGGACAGGAGTCCACTTTGTTTCGTGGGGAGGTCTAATCTA GATATCGACTTGTTTTTGCACATGTTTCCTCTAGTTCTTTGTTCATAGCCCAGTAGACCT TGTTACTTCTGAGGTAAGTTAAGTAAGTTGATTCGGTATCCCCCCATCTTGCTTCCCTAA TCTATGGTCGGGAGACAGCATCAGGGTTAAGAAGACTTTTTTTTTTTTTTTTTTTAAACT AGGAGAACCAAATCTGGAAGCCAAAATGTAGGCTTAGTTTGTGTGTTGTCTCTTGAGTTT GTCGCTCATGTGTGCAACAGGGTATGGACTATCTGTCTGGTGGCCCCGTTTCTGGTGGTC TGTTGGCAGGCTGGCCAGTCCAGGCTGCCGTGGGGCCGCCGCCTCTTTCAAGCAGTCGTG CCTGTGTCCATGCGCTCAGGGCCATGCTGAGGCCTGGGCCGCTGCCACGTTGGAGAAGCC CGTGTGAGAAGTGAATGCTGGGACTCAGCCTTCAGACAGAGAGGACTGTAGGGAGGGCGG CAGGGGCCTGGAGATCCTCCTGCAGACCACGCCCGTCCTGCCTGTGGCGCCGTCTCCAGG GGCTGCTTCCTCCTGGAAATTGACGAGGGGTGTCTTGGGCAGAGCTGGCTCTGAGCGCCT CCATCCAAGGCCAGGTTCTCCGTTAGCTCCTGTGGCCCCACCCTGGGCCCTGGGCTGGAA TCAGGAATATTTTCCAAAGAGTGATAGTCTTTTGCTTTTGGCAAAACTCTACTTAATCCA ATGGGTTTTTCCCTGTACAGTAGATTTTCCAAATGTAATAAACTTTAATATAAAGTAAAA AAAAAAAAAAAAAAAAAAAAAAAA >Hs.44276_mRNA_2 gi|12654896|gb|BC001293.1|BC001293 Homo sapiens clone MGC:5259 IMAGE:3458115 polyA = 3 CGGATGGGGAAAAAAAAAGATGTCAGCTCCTCCGCTGTAGTATTGCTCCTTAAAAACCCC TCTCTCTGAAAATGACATGCCCTCGCAATGTAACTCCGAACTCGTACGCGGAGCCCTTGG CTGCGCCCGGCGGAGGAGAGCGCTATAGCCGGAGCGCAGGCATGTATATGCAGTCTGGGA GTGACTTCAATTGCGGGGTGATGAGGGGCTGCGGGCTCGCGCCCTCGCTCTCCAAGAGGG ACGAGGGCAGCAGCCCCAGCCTCGCCCTCAACACCTATCCGTCCTACCTCTCGCAGCTGG ACTCCTGGGGCGACCCCAAAGCCGCCTATCGCCTGGAACAACCTGTTGGCAGGCCGCTGT CCTCCTGCTCCTACCCACCTAGTGTCAAGGAGGAGAATGTCTGCTGCATGTACAGCGCAG AGAAGCGGGCGAAAAGTGGCCCCGAGGCAGCTCTCTACTCCCACCCCTTGCCGGAGTCCT GCCTTGGGGAGCACGAGGTACCCGTGCCCAGCTACTACCGCGCCAGCCCGAGCTACTCCG CGCTGGACAAGACGCCCCACTGTTCTGGGGCCAACGACTTCGAAGCCCCTTTCGAGCAGC GGGCCAGTCTCAACCCGCGCGCCGAACATCTGGAATCGCCTCAGCTGGGGGGCAAAGTGA GTTTCCCTGAGACCCCCAAGTCCGACAGCCAGACCCCCAGCCCCAATGAAATCAAGACGG AGCAGAGCCTGGCGGGCCCTAAAGGGAGCCCCTCGGAGAGCGAAAAGGAGAGGGCCAAAG CTGCCGACTCCAGCCCAGACACCTCGGATAACGAAGCGAAAGAGGAGATAAAGGCAGAAA ACACCACAGGAAATTGGCTGACAGCAAAGAGCGGAAGGAAGAAGAGGTGCCCCTATACTA AACACCAGACGCTGGAATTGGAGAAAGAATTTCTGTTCAATATGTATTTGACGCGAGAGC GCCGCCTGGAGATTAGCAAGACCATTAACCTTACAGACAGACAAGTCAAAATCTGGTTTC AAAATCGCAGAATGAAACTCAAGAAAATGAACCGAGAGAATCGGATCCGGGAACTGACCT CCAATTTTAATTTCACCTGAGAGCGCGGCCTCTCCTCCTCCCTTCCCGCTCCTTCCTCTC CCCGCCCCTCCTCCCTTTGTGCCTGGTGATATATTTTTTTTTCCTCCCTGAGTATAAATG CAATGCGACTGCAAAAAAGGCAAAGACCTCAGACTCTCCTTCCAAGGGACCTGTGGTTCG TGCTGCGAAGATGCTTCCACTTAAAGCATGAGAAATGGGGTGCCGGGATGTGGGGTGTGG TGTGTGCCCTCATAGATGGGGGTGGGAGTGTGGCTGGTGTGTGTGTCAAACCCTCACTCA CCCACGCACTCACACACAGCATTCTGTTCTCCATGCAAAGTTAAGATCGAATCCATCCGC TTGTAGGGGAAAAAAAGGAAAAAAATTAACCAGAGAGGGTCTGTAATCTCGCAGAGCACA GGCAGAATCGTTCCTTCCTTGCTGCATTTCCTCCTTAGACTAATAGACGTTTTGGAAAGT TCGGCTAGTGTTCGTGTGTTTGTCGTAGCACCCAGAGCCTCCACCAAACCCTCTCCATGT CTTTACCTCCCAGTCGCTCTAAGAATCTGCTTGAAGTCTCGTATTTGTACTGCTTTCTGC TTTTCTCCCACCCCTCCTAGCACCCCCACATCCCCCATCTAGTAACATCTCAGAAATTTC ATCCAGAGGAACAAAAAAATTAAAAATAGAACATAGCAAAGCAAAGACAGAATGCCCCCC CCCAAATATTGTCCTGTCCCTGTCTGGGAGTTGTGTTATTTAAAGATATTCTGTATGTTG TATCTTTTGCATGTAGCTTCCTTAATGGAGAAAAAAAAATCCTAATAAATTTCCAGAATC ATAATCCTCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAA >Hs.2142_mRNA_4 gi|13325274|gb|BC004453.1|BC004453 Homo sapiens clone MGC:4303 IMAGE:2819400 polyA = 3 GCAGTGGCCACGAGAGGCAGGCTGGCTGGGACATGAGGTTGGCAGAGGGCAGGCAAGCTG GCCCTTGGTGGGCCTCGTCCTGAGCACTCGGAGGCACTCCTATGCTTGGAAAGCTCGCTA TGCTGCTGTGGGTCCAGCAGGCGCTGCTCGCCTtGCTCCTCCCCACACTCCTGGCACAGG GAGAAGCCAGGAGGAGCCGAAACACCACCAGGCCCGCTCTGCTGAGGCTGTCGGATTACC TTTTGACCAACTACAGGAAGGGTGTGCGCCCCGTGAGGGACTGGAGGAAGCCAACCACCG TATCCATTGACGTCATTGTCTATGCCATCCTCAACGTGGATGAGAAGAATCAGGTGCTGA CCACCTACATCTGGTACCGGCAGTACTGGACTGATGAGTTTCTCCAGTGGAACCCTGAGG ACTTTGACAACATCACCAAGTTGTCCATCCCCACGGACAGCATCTGGGTCCCGGACATTC TCATCAATGAGTTCGTGGATGTGGGGAAGTCTCCAAATATCCCGTACGTGTATATTCGGC ATCAAGGCGAAGTTCAGAACTACAAGCCCCTTCAGGTGGTGACTGCCTGTAGCCTCGACA TCTACAACTTCCCCTTCGATGTCCAGAACTGCTCGCTGACCTTCACCAGTTGGCTGCACA CCATCCAGGACATCAACATCTCTTTGTGGCGCTTGCCAGAAAAGGTGAAATCCGACAGGA GTGTCTTCATGAACCAGGGAGAGTGGGAGTTGCTGGGGGTGCTGCCCTACTTTCGGGAGT TCAGCATGGAAAGCAGTAACTACTATGCAGAAATGAAGTTCTATGTGGTCATCCGCCGGC GGCCCCTCTTCTATGTGGTCAGCCTGCTACTGCCCAGCATCTTCCTCATGGTCATGGACA TCGTGGGCTTCTACCTGCCCCCCAACAGTGGCGAGAGGGTCTCTTTCAAGATTACACTCC TCCTGGGCTACTCGGTCTTCCTGATCATCGTTTCTGACACGCTGCCGGCCACTGCCATCG GCACTCCTCTCATTGGTGTCTACTTTGTGGTGTGCATGGCTCTGCTGGTGATAAGTTTGG CCGAGACCATCTTCATTGTGCGGCTGGTGCACAAGCAAGACCTGCAGCAGCCCGTGCCTG CTTGGCTGCGTCACCTGGTTCTGGAGAGAATCGCCTGGCTACTTTGCCTGAGGGAGCAGT CAACTTCCCAGAGGCCCCCAGCCACCTCCCAAGCCACCAAGACTGATGACTGCTCAGCCA TGGGAAACCACTGCAGCCACATGGGAGGACCCCAGGACTTCGAGAAGAGCCCGAGGGACA GATGTAGCCCTCCCCCACCACCTCGGGAGGCCTCGCTGGCGGTGTGTGGGCTGCTGCAGG AGCTGTCCTCCATCCGGCAATTCCTGGAAAAGCGGGATGAGATCCGAGAGGTGGCCCGAG ACTGGCTGCGCGTGGGCTCCGTGCTGGACAAGCTGCTATTCCACATTTACCTGCTGGCGG TGCTGGCCTACAGCATCACCCTGGTTATGCTCTGGTCCATCTGGCAGTACGCTTGAGTGG GTACAGCCCAGTGGAGGAGGGGGTACAGTCCTGGTTAGGTGGGGACAGAGGATTTCTGCT TAGGCCCCTCAGGACCCAGGGAATGCCAGGGACATTTTCAAGACACAGACAAAGTCCCGT GCCCTGTTTCCAATGCCAATTCATCTCAGCAATCACAAGCCAAGGTCTGAACCCTTCCAC CAAAAACTGGGTGTTCAAGGCCCTTACACCCTTGTCCCACCCCCAGCAGCTCACCATGGC TTTAAAACATGCTCTCTTAGATCAGGAGAAACTCGGGCACTCCCTAAGTCCACTCTAGTT GTGGACTTTTCCCCATTGACCCTCACCTGAATAAGGGACTTTGGAATTCTGCTTCTCTTT CACAACTTTGCTTTTAGGTTGAAGGCAAAACCAACTCTCTACTACACAGGCCTGATAACT CTGTACGAGGCTTCTCTAACCCCTAGTGTCTTTTTTTTCTTCACCTCACTTGTGGCAGCT TCCCTGAACACTCATCCCCCATCAGATGATGGGAGTGGGAAGAATAAAATGCAGTGAAAC CCTAAAAAAAAAAAAAAAAAAAAAA >Hs.180908_contig1|AA846824|AW611680|AA846182|AA846342 AA846360 polyA = 2 polyA = 3 TCTTCGCTCCTCTACCCCATAAAATTCCCTACAAATGCAAAAATTCGAGATAGAAGAAGC CGTCCCTGAAATTGCTGTCTAACATTCACCGGAAACCTCTCCATAAACAAGGAGAAACGA ATGCACACGCATTTTTGCTAAGAAGCCCGGGATTAAGATTTAAGGATACAAGCTGAAAGA AAAAATGAAAAATGCTTCTCCGCGCGTCAATCGAGGGGTGGATGCGCCACGCAGCTGAGC CCAGCTCACAGCCACGCGTAAGACCAAAAGCTGCCATGGGTTCTGCGCGCGGAGACCTCA GAGCCGAAGAGAGAAGTCCCCGCGTCAGAAACGCTGCGGATGCCAGGTCTTGAAAATGCT GACTTCTGAGGCTAAGAATTATTTCAAAGACAAAAAGAAAAGACTGGTGAGGAGGCCTTC CGGTGCAAGGGCGCCTATCCGCTAATTTTGGATGGGGAAGTAGGGATTATTCGTTTAAAT TCAATCGCGAGCACCAAGTCGGACTGGCCGGGGATGGAGAAGGGCAACCCCCACCTTTAG AAAAATAAAAGATCTCGAAGGCCAAAAAAAAAAA >Hs.89436_mRNA_1 gi|16507959|ref|NM_004063.2|Homo sapiens cadherin 17, cadherin (liver-intestine) (CDH17), mRNA polyA = 1 AGGGAGTGTTCCCGGGGGAGATACTCCAGTCGTAGCAAGAGTCTCGACCACTGAATGGAA GAAAAGGACTTTTAACCACCATTTTGTGACTTACAGAAAGGAATTTGAATAAAGAAAACT ATGATACTTCAGGCCCATCTTCACTCCCTGTGTCTTCTTATGCTTTATTTGGCAACTGGA TATGGCCAAGAGGGGAAGTTTAGTGGACCCCTGAAACCCATGACATTTTCTATTTATGAA GGCCAAGAACCGAGTCAAATTATATTCCAGTTTAAGGCCAATCCTCCTGCTGTGACTTTT GAACTAACTGGGGAGACAGACAACATATTTGTGATAGAACGGGAGGGACTTCTGTATTAC AACAGAGCCTTGGACAGGGAAACAAGATCTACTCACAATCTCCAGGTTGCAGCCCTGGAC GCTAATGGAATTATAGTGGAGGGTCCAGTCCCTATCACCATAGAAGTGAAGGACATCAAC GACAATCGACCCACGTTTCTCCAGTCAAAGTACGAAGGCTCAGTAAGGCAGAACTCTCGC CCAGGAAAGCCCTTCTTGTATGTCAATGCCACAGACCTGGATGATCCGGCCACTCCCAAT GGCCAGCTTTATTACCAGATTGTCATCCAGCTTCCCATGATCAACAATGTCATGTACTTT CAGATCAACAACAAAACGGGAGCCATCTCTCTTACCCGAGAGGGATCTCAGGAATTGAAT CCTGCTAAGAATCCTTCCTATAATCTGGTGATCTCAGTGAAGGACATGGGAGGCCAGAGT GAGAATTCCTTCAGTGATACCACATCTGTGGATATCATAGTGACAGAGAATATTTGGAAA GCACCAAAACCTGTGGAGATGGTGGAAAACTCAACTGATCCTCACCCCATCAAAATCACT CAGGTGCGGTGGAATGATCCCGGTGCACAATATTCCTTAGTTGACAAAGAGAAGCTGCCA AGATTCCCATTTTCAATTGACCAGGAAGGAGATATTTACGTGACTCAGCCCTTGGACCGA GAAGAAAAGGATGCATATGTTTTTTATGCAGTTGCAAAGGATGAGTACGGAAAACCACTT TCATATCCGCTGGAAATTCATGTAAAAGTTAAAGATATTAATGATAATCCACCTACATGT CCGTCACCAGTAACCGTATTTGAGGTCCAGGAGAATGAACGACTGGGTAACAGTATCGGG ACCCTTACTGCACATGACAGGGATGAAGAAAATACTGCCAACAGTTTTCTAAACTACAGG ATTGTGGAGCAAACTCCCAAACTTCCCATGGATGGACTCTTCCTAATCCAAACCTATGCT GGAATGTTACAGTTAGCTAAACAGTCCTTGAAGAAGCAAGATACTCCTCAGTACAACTTA ACGATAGAGGTGTCTGACAAAGATTTCAAGACCCTTTGTTTTGTGCAAATCAACGTTATT GATATCAATGATCAGATCCCCATCTTTGAAAAATCAGATTATGGAAACCTGACTCTTGCT GAAGACACAAACATTGGGTCCACCATCTTAACCATCCAGGCCACTGATGCTGATGAGCCA TTTACTGGGAGTTCTAAAATTCTGTATCATATCATAAAGGGAGACAGTGAGGGACGCCTG GGGGTTGACACAGATCCCCATACCAACACCGGATATGTCATAATTAAAAAGCCTCTTGAT TTTGAAACAGCAGCTGTTTCCAACATTGTGTTCAAAGCAGAAAATCCTGAGCCTCTAGTG TTTGGTGTGAAGTACAATGCAAGTTCTTTTGCCAAGTTCACGCTTATTGTGACAGATGTG AATGAAGCACCTCAATTTTCCCAACACGTATTCCAAGCGAAAGTCAGTGAGGATGTAGCT ATAGGCACTAAAGTGGGCAATGTGACTGCCAAGGATCCAGAAGGTCTGGACATAAGCTAT TCACTGAGGGGAGACACAAGAGGTTGGCTTAAAATTGACCACGTGACTGGTGAGATCTTT AGTGTGGCTCCATTGGACAGAGAAGCCGGAAGTCCATATCGGGTACAAGTGGTGGCCACA GAAGTAGGGGGGTCTTCCTTGAGCTCTGTGTCAGAGTTCCACCTGATCCTTATGGATGTG AATGACAACCCTCCCAGGCTAGCCAAGGACTACACGGGCTTGTTCTTCTGCCATCCCCTC AGTGCACCTGGAAGTCTCATTTTCGAGGCTACTGATGATGATCAGCACTTATTTCGGGGT CCCCATTTTACATTTTCCCTCGGCAGTGGAAGCTTACAAAACGACTGGGAAGTTTCCAAA ATCAATGGTACTCATGCCCGACTGTCTACCAGGCACACAGAGTTTGAGGAGAGGGAGTAT GTCGTCTTGATCCGCATCAATGATGGGGGTCGGCCACCCTTGGAAGGCATTGTTTCTTTA CCAGTTACATTCTGCAGTTGTGTGGAAGGAAGTTGTTTCCGGCCAGCAGGTCACCAGACT GGGATACCCACTGTGGGCATGGCAGTTGGTATACTGCTGACCACCCTTCTGGTGATTGGT ATAATTTTAGCAGTTGTGTTTATCCGCATAAAGAAGGATAAAGGCAAAGATAATGTTGAA AGTGCTCAAGCATCTGAAGTCAAACCTCTGAGAAGCTGAATTTGAAAAGGAATGTTTGAA TTTATATAGCAAGTGCTATTTCAGCAACAACCATCTCATCCTATTACTTTTCATCTAACG TGCATTATAATTTTTTAAACAGATATTCCCTCTTGTCCTTTAATATTTGCTAAATATTTC TTTTTTGAGGTGGAGTCTTGCTCTGTCGCCCAGGCTGGAGTACAGTGGTGTGATCCCAGC TCACTGCAACCTCCGCCTCCTGGGTTCACATGATTCTCCTGCCTCAGCTTCCTAAGTAGC TGGGTTTACAGGCACCCACCACCATGCCCAGCTAATTTTTGTATTTTTAATAGAGACGGG GTTTCGCCATTTGGCCAGGCTGGTCTTGAACTCCTGACGTCAAGTGATCTGCCTGCCTTG GTCTCCCAATACAGGCATGAACCACTGCACCCACCTACTTAGATATTTCATGTGCTATAG ACATTAGAGAGATTTTTCATTTTTCCATGACATTTTTCCTCTCTGCAAATGGCTTAGCTA CTTGTGTTTTTCCCTTTTGGGGCAAGACAGACTCATTAAATATTCTGTACATTTTTTCTT TATCAAGGAGATATATCAGTGTTGTCTCATAGAACTGCCTGGATTCCATTTATGTTTTTT CTGATTCCATCCTGTGTCCCCTTCATCCTTGACTCCTTTGGTATTTCACTGAATTTCAAA CATTTGTCAGAGAAGAAAAACGTGAGGACTCAGGAAAAATAAATAAATAAAAGAACAGCC TTTTCCCTTAGTATTAACAGAAATGTTTCTGTGTCATTAACCATCTTTAATCAATGTGAC ATGTTGCTCTTTGGCTGAAATTCTTCAACTTGGAAATGACACAGACCCACAGAAGGTGTT CAAACACAACCTACTCTGCAAACCTTGGTAAAGGAACCAGTCAGCTGGCCAGATTTCCTC ACTACCTGCCATGCATACATGCTGCGCATGTTTTCTTCATTCGTATGTTAGTAAAGTTTT GGTTATTATATATTTAACATGTGGAAGAAAACAAGACATGAAAAGAGTGGTGACAAATCA AGAATAAACACTGGTTGTAGTCAGTTTTGTTTGTTAA >Hs.151544_mRNA_8 gi|3153107|emb|AL023657.1|HSDSHP Homo sapiens SH2D1A cDNA, formerly known as DSHP polyA = 3 AAATCCTTCTTCCAATGTTCCTCCCCTCTCTGTATGAACCCTGTGTTGGGGGGCAGAAGA TGGAAGCCCTTGGCAAGCTCGATCGAACCAAGCTACTAAATTGCTGAGCTCGTTTTAACT GAAGTGTGAGAAGGAGGTTTAAGGCAAGTAGACAACATCCTGTTGTTGGGGTGCTTCTCT CTTTTTTGCACATCTGGCTGAACTGGGAGTCAGGTGGTTGACTTGTGCCTGGCTGCAGTA GCAGCGGCATCTCCCTTGCACAGTTCTCCTCCTCGGCCTGCCCAAGAGTCCACCAGGCCA TGGACGCAGTGGCTGTGTATCATGGCAAAATCAGCAGGGAAACCGGCGAGAAGCTCCTGC TTGCCACTGGGCTGGATGGCAGCTATTTGCTGAGGGACAGCGAGAGCGTGCCAGGCGTGT ACTGCCTATGTGTGCTGTATCACGGTTACATTTATACATACCGAGTGTCCCAGACAGAAA CAGGTTCTTGGAGTGCTGAGACAGCACCTGGGGTACATAAAAGATATTTCCGGAAAATAA AAAATCTCATTTCAGCATTTCAGAAGCCAGATCAAGGCATTGTAATACCTCTGCAGTATC CAGTTGAGAAGAAGTCCTCAGCTAGAAGTACACAAGGTACTACAGGGATAAGAGAAGATC CTGATGTCTGCCTGAAAGCCCCATGAAGAAAAATAAAACACCTTGTACTTTATTTTCTAT AATTTAAATATATGCTAAGTCTTATATATTGTAGATAATACAGTTCGGTGAGCTACAAAT GCATTTCTAAAGCCATTGTAGTCCTGTAATGGAAGCATCTAGCATGTCGTCAAAGCTGAA ATGGACTTTTGTACATAGTGAGGAGCTTTGAAACGAGGATTGGGAAAAAGTAATTCCGTA GGTTATTTTCAGTTATTATATTTACAAATGGGAAACAAAAGGATAATGAATACTTTATAA AGGATTAATGTCAATTCTTGCCAAATATAAATAAAAATAATCCTCAGTTTTTGTGAAAAG CTCCATTTTTAGTGAAATATTATTTTATAGCTACTAATTTTAAAATGTCTTGCTTGATTG TATGGTGGGAAGTTGGCTGGTGTCCCTTGTCTTTGCCAAGTTCTCCACTAGCTATGGTGT CATAGGCTCTTTTGGGATTTTTGAAGCTGTATACTGTGTGCTAAAACAAGCACTAAACAA AGAGTGAAGGATTTATGTTTAATTCTGAAAGCAACCTTCTTGCCTAGTGTTCTGATATTG GACAGTAAAATCCACAGACCAACCTGGAGTTGAAAATCTTATAATTTAAAATATGCTCTA AACATGTTTATCGTATTTGATGCTACAGGATTTGAAATTGTATTACAAATCCAATGAAAT GAGTTTTTCTTTTCATTTACCTCTGCCCCAGTTGTTTCTACTACATGGAAGACCTCATTT TGAAGGGAAATTTCAGCAGCTGCAGCTCATGAGTAACTGATTTGTAACAAGCCTCCTTTT AAAGTAACCCTACAAAACCACTGGAAAGTTTATGGTTGTATTATTTTTTAAAAAAATTCC AAGTGATTGAAACCTACACGAGATACAGAATTTTATGCGGCATTTTCTTCTCACATTTAT ATTTTTGTGATTTTGTGATTGATTATATGTCACTTTGCTACAGGGCTCACAGAATTCATT CACTCAACAAACATAATAGGGCGCTGAGGGCATAGAAGTAAAAACACCTGGTCCCTGCTC TCAGTTCACTGTCTTGTTGGACGAGAAAAGAAACAATAACGATAAAAGACAGTGAAAGAA AATAACGATAAAAGACAGTGAAAGAAAATAACAATAAAAGACAAGGAAAAAATAACAATG AAAGTTGATAAGTACATGATAAGCGAGGTTCCCCGTGTGTAGGTAGATCTGGTCTTTAGA GGCAGATAGATAGGTCAGTGCAAATACTCTGGTCCATGGGCCATATGAAAAGGCTAAGCT TCACTGTAAAATAATAACTGGGAATTCTGGATTGTGTATGGGTGTTGGTGAACTTGGTTT TAATTAGTGAACTGCTGAGAGACAGAGCTATTCTCCATGTACTGGCAAGACCTGATTTCT GAGCATTTAATATGGATGCCGTGGGAGTACAAAAGTGGAGTGTGGCCTGAGTAATGCATT ATGGGTGGTTTACCATTTCTTGAGGTAAAAGCATCACATGAACTTGTAAAGGAATTTAAA AATCCTACTTTCATAATAAGTTGCATAGGTTTAATAATTTTTAATTATATGGCTTGAGTT TAAATTGTAATAGGCGTAACTAATTTTAACTCTATAATGTGTTCATTCTGGAATAATCCT AAACATATGAATTATGTTTGCATGTTCACTTCCAAGAGCCTTTTTTTGAAAAAAAGCTTT TTTTGAATCATCAAGTCTTTCACATTTAAATAAAGTGTTTGAAAGCTTTATTTAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAGAAAAAAA >Hs.1657_contig4 AW473119|AA164586|AI540656|AI758480|AI810941|AI978964|AI675862|AI784397|AW5 91562|AW514102|AI888116|AI983175|AI634735|AI669577|AI202659|AI910598|AI9613 52|AI565481|AI886254|AI538838|AA291749|AW571455|AI370308|AI274727|AW473925| AW514787|AI273871|AW470552|AI524356|AI888281|AW089672|AI952766|AW440601|AT6 54044|AW438839|AI972926 polyA = 2 polyA = 3 AATTGTTTTCTAAGTAATTGCTGCCTCTATTATGGCACTTCATTTTTGCACTGTCTTTTG AGATTCAAGAAAAATTTCTATTCTTTTTTTTGCATCCAATTGTGCCTGAACTTTTAAAAT ATGTAAATGCTGCCATGTTCCAAACCCATCGTCAGTGTGTGTGTTTAGAGCTGTGCACCC TAGAAACAACATATTGTCCCATGAGCAGGTGCCTGAGACACAGACCCCTTTGCATTCACA GAGAGGTCATTGGTTATAGAGACTTGAATTAATAAGTGACATTATGCCAGTTTCTGTTCT CTCACAGGTGATAAACAATGCTTTTTGTGCACTACATACTCTTCAGTGTAGAGCTCTTGT TTTATGGGAAAAGGCTCAAATGCCAAATTGTGTTTGATGGATTAATATGCCCTTTTGCCG ATGCATACTATTACTGATGTGACTCGGTTTTGTCGCAGCTTTGCTTTGTTTAATGAAACA CACTTGTAAACCTCTTTTGCACTTTGAAAAAGAATCCAGCGGGATGCTCGAGCACCTGTA AACAATTTTCTCAACCTATTTGATGTTCAAATAAAGAATTAAACTAAAAAAAAAAAAAAA A >Hs.35984_mRNA_1 gi|6049161|gb|AF133587.1|AF133587 Homo sapiens chromosome 22 map 22q11.2 polyA = 3 GGCGCCGCGGACGCTGCTGGAGTCGCCTGGCAACGATGTCGCCTGGCAACTGAATAGGTT GGCCAGTGGCGCGGGCTACTGGAAGCAGAAAGGGCTGCGGAGGCAGTGAGTGGTTTCTGC AGAGCTTCATTTGGAAAGGCCTCTGTAGTTGGGGAAAGATGGCCCATTCCCAGAACTCCT TGGAGCTTCCCATTAACATCAATGCCACCCAGATTACCACTGCCTATGGCCATCGGGCCC TGCCCAAGCTGAAGGAGGAGCTGCAGTCAGAGGACCTCCAGACGAGGCAGAAAGCCCTCA TGGCCCTGTGTGACCTCATGCATGACCCCGAGTGTATCTACAAGGCCATGAACATAGGCT GTATGGAGAACCTGAAAGCTTTGCTGAAGGATAGCAACAGTATGGTGCGCATAAAGACCA CCGAGGTGCTCCACATCACGGCAAGCCATAGCGTGGGCAGATACGCCTTTCTAGAGCACG ACATCGTCCTTGCCCTGTCCTTCCTGCTGAATGACCCCAGCCCAGTCTGCCGGGGGAACC TGTACAAGGCATACATGCAGCTGGTCCAGGTGCCTAGAGGGGCCCAAGAGATCATCAGCA AAGGTCTGATTTCCTCACTGGTATGGAAGCTGCAGGTGGAGGTGGAGGAGGAGGAGTTCC AGGAGTTCATCCTGGACACACTGGTCCTCTGCCTGCAGGAGGATGCCACCGAGGCCCTGG GCAGCAATGTGGTGCTTGTCCTGAAGCAGAAGCTCCTCAGCGCCAACCAGAACATCCGCA GCAAGGCCGCCCGTGCGCTCCTTAATGTCAGCATATCTCGAGAGGGCAAGAAACAGGTGT GTCATTTTGACGTCATCCCCATCCTGGTCCATCTGCTGAAAGACCCAGTGGAGCATGTGA AGTCTAACGCTGCCGGTGCCCTGATGTTCGCCACAGTGATCACTGAAGGGAAGTATGCGG CCCTGGAGGCACAAGCCATCGGCCTGCTCCTGGAGCTGCTGCACTCCCCCATGACCATAG CGCGCCTGAATGCCACCAAGGCCCTTACCATGCTGGCAGAGGCCCCCGAGGGCCGCAAGG CCCTGCAGACGCACGTGCCCACTTTCCGTGCCATGGAGGTGGAGACTTACGAAAAGCCTC AAGTGGCCGAAGCCTTACAGCGGGCAGCCCGGATCGCCATCAGTGTCATCGAGTTCAAAC CCTGAGCCCTTCATTCACCTCTGTGAGTGAATAAATGTGCTAAGTCTCTTTAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAA >Hs.334534_mRNA_2 gi|17389403|gb|BC017742.1|BC017742 Homo sapiens, clone IMAGE:4391536, mRNA polyA = 3 AGAGCAGTAAGCTTGTGATAAAGGCCAATTCCAGGTAGCTCTTGAAGGTGATAGCCATCT ACTTTCCAGTGGCTGCCAACCACAGGGAGTGCCAGTTAACACTGGAAGGATTAAGGCAAG GTCCCTTCTCTTGAGACTCCCCTCTGAGATCTGAAAAATGAAGTGGCTTAGGAACATCAG CAGTGAAGAACTGCCAAGAGTTGGTGAAGGTTGTCTCTTCCGAGGGCCTTCTGAAGACAG GGCTCTTGAACAGACAAGTGGAAGGGCTGTACCAGGGATAAAGGAAAGAAGTGCCTGTCC AGCAGGGAGCTTGAATTTAAGTTCCATGTATGAAGTCATTGGCTCTATCTGCATTTTTCT GTCATTCTCTTCATTTGTTTTAAGGTGGAAAATTTTCTTACAGTTGATGCAAAGTATCAA CTACTTTACCCTACCTTCTCCCCTTTTAGATGGGTTCTTCCTGAGTTTTGGAGTCTTGTA TGATTATCAGTATTCCCCTGTCAAAATCAAATCTATTCAGGTTTCTTCACTGTTGAGAAC ACCTAAATGTTTTTATTTTTGAGAAGTGGGGACAGAGTCTCACTATGTCACCCAGGCTGG AGTGCAATGGCATGATCTCAGCTCACTGCAACCTTCGCCTCCTGGGTTCAAGCGATTCTC CTGCCTCCGCCTCCTGAGTAGCTGGGATTATAGGCACGCACCACCACGCCCAGCTAATTT TTTGTATTTTTAGTAGAGACAGAGTTTCACCATGTTGGCCAGGCTGGTCTTGAACTCCTG ACCTTGTGATCCACCCACCTCGGCCTCCCAGAGTGCTGGGATTACAGGCATGAGCCACCA CGCTTGGCTAAGAACACCTAAATTTTTATGTTTCTTGGCTCAAAAACCAGTTCCATTTCT AATGTTGTCCTCACAAGAAGGCTAATTGGTGGTGAGACAGCAGGGGAGGAGGAAGAGCTG TGGTTTGTAACTTGTTCAACTCAGGCAATAAGCGATTTTAGCTTTATTTAAAGTCTTCTG TCCAGCTTTAAGCACTTTGTAAGACATGGCTGAAAGTAGCTTTTCTATCAGAATTGCAGA TAGTCATGTTGGGCTAACAGTCAATTGGATATATTCCTTTACCTCACATGACCCCAGCAA CTGTGGTGGTATCTAGAGGTGAAACAGGCAAGTGAAATGGACACCTCTGCTGTGAATGTT TTAGAGAAGGAAATTCAAAAAATGTTGTAACTGAAAGCACTGTTGAATATGGGTATCGGC TTTCTTTTTCACTTTGACTCTTAACATTATCAGTCAACTTCCACATTAATGAAAGTTGAC CATAGTTATTTCCAAATAAAAAGAAACCAACTCTTACCAGGTCTTGGACTGTGATGTCAT ATTATTCAGTTTTATGCTTGTTCCTGAGCAGAACTCATAAGAGTGACATAGTCAGCTGCT GACGGCACCTCAGCCACGCCACTCTTACTCAGTTCAGTGGGTGTGCTTGCGTGGTAGGAT GTGGTGCAGCCCTCTCTACGCTCTTCTATTTTTGGTATATTTCCTATCTAACCTTCAAAT AGCTTCCAATTCTTTTTTTCTTGGACTGGCTTCATTCTGAATTTGTGCTAAAATAATCTT TCATAAAGAGACCTCAGTTTATAGCGTAACAGACTACACAATGCACTGATGTTTTCATAA TGTTTAAGGGACCCACTGCAAGAAGCTTGCTGCCTCCTTTTAATTGTATTCATTTAGATT TTGATTTTCCATGTTAAGAAGGTGAGGTCCATGTTGGTGCCCTTCAGAGTAGAGAACCAT GTAAACATTAGGAATGAACAGAGGCCTTAGGAATGAATAGAGAGTTTGCCTTATACAATT TCCTGTTACAAAGCTCTCCCTCTCATGCAAAGTAGGGAACACCTTTTGAGCATCTTTGAA TTTGACAAATGGTGCTGTTGCAAACACTTTTTTTTTGAGATGAAGTCTCGCGGTTGTCAC CCGGGCTGGAGTGCAGTGGCGTGATCTCGGCTCACTGCAACTTCCACCTCCTGGGTTCCA GCAGTTCTCCTGCCTCAGCCTCCCAAGTAGCTGAGATTACAGGCGCCTGCCACCCCACCT GGCTGATTTTTGTAATTTTAGTAGAGACGGGGTTTCACCATGTTGGCCAGGCTGATTAAC TCCTGACCTCAGGTGATCCACCTTTCTCGGCCTCCCAAAGTGCTGGGATTACGGGTGTGA GCCACCGTGCCCGGCCTGCAAACACATTTTAATTGACAACACTAGGGCTGTTGTACAAAA TAGTAATGATAGCCATGGAAGTTTTACCTTATTCTGTGAGAAGTGTTCTTAAACTTATTA AGTGTCTAAACTAAGGTTTAGTGCTTTTTTAAAGGAAAGTTGTCCCAGGATTCATCCTAA AGAAAGCAAAAGTTAATTCAACTGATCCACCAATGGAATTAGATGGGTAGAGTTGGGTTC TTGAGTTTTACCACCACTTAGTTCCCACTGAATTTTGTAACTTCCTGTGTTTGCATCCTC TGTTCCTATTCTGCCCTTGCTCTGTGTCATCTCAGTCATTTGACTTAGAAAGTGCCCTTC AAAAGGACCCTGTTCACTGCTGCACTTTTCAATGAATTAAAATTTATTTCTGTTCTAAAA AAAAAAAAAAA >Hs.60162_mRNA_1 gi|10437644|dbj|AK025181.1|AK025181 Homo sapiens cDNA FLJ21528 fis, clone COL05977 polyA = 3 TGATCAACAACTGTCAGCTCCCAGTCAGAGAGAAAGGGCCTCTTCAGTCTGTCTCAGGAG ACTGGGAGAAACAGCATAAAGGACCCCACAAGGAAGGGAGAGGTACCCTGGGTCAGGCGC TTGTGGAGAGAGGGCTTCGCATGTAAAGTGACGTCAGGGAAAATAGAACAGAAAAAAAGC CAGGGCCAGCCCAGAGGCACCTGAGAAGAATCAGACCCACAGCTCAGCCCAGCCCTGGCA CAGAGAAGAGACAGGCCTGGCAGCACCCAGGGACCCCCTTTCCTCAGCCTCCACCTGCAG GACAGCAGGAGCACTGATGCGCTGAAGGTACGTTCTGGAGTCTGGAAGCAGCAGAACTGA AGGAAGTAAACACGGGTGTCTGGGAAGACCCCTCAAGCTGCAGTAAAGCCCAGGACTGAA TTGGCCACCTGAGGCCAAGGGTGGCACTCCAACCTCCTCCTAAAGGCTGGCTAGAGCCAC AGGAAAGGGCCAGAAGCCAGAGAAAGGGCAAAGGTGGACCCCTGCCTCCAAACCTCCTCT GGAGACTGACCTCCTCTTTCCTGTGCCTTATTGTTTCTCCCTCTTCTCTTTGTTCGCCAC TGGGCGGTGACCTCAGGGATCCTGGCCTAACCTGGTGATTGTGCAGGCAACTGTGTCCGA GAAGACCCTTCTCTGGAAGATTGAACCCCAATTCAGCCATGGTGACTCCTTTGATGTCAA ACTGGTAAGGGCTGAGCCGTGGGCACAGGATACCACTCCTTCCAGCTCTTCTGCTGTGAC CTGCCCATGGAAGTCCCTGTGGACACGAAATCCTGTTTGGATCATCTAACTGGAGGCTCT CTGTTCTTCACCTCCACGCGCCCTCTTGACCCCAGGAGGTTCAGGGGAGGAAGTACGCCA CTCTCCACTGGCACCCTCCTTGGCCTACACAGAGTCACCCCTGAGCCCCTCAATGTGTGC TGAGGTGGGCCCTGCTCTCTGCAGGGGTATGGAGAGAAATAGCTTGGGGTGCTGTGAGGC CCCGAAGAAGCTGGGCCTGTCCTTCTCCATCGAGGCGATCCTAAAGAGGCCTGCCAGGAG GAGTGATATGGACAGACCAGAAGGGCCAGGTGAAGAGGGCCCCGGAGAAGCTGCGGCCTC AGGCTCTGGGCTAGAAAAGCCTCCAAAGGACCAGCCCCAGGAAGGAAGGAAGAGCAAGCG GAGGGTTCGTACCACCTTCACCACTGAGCAGCTGCATGAGCTGGAGAAGATCTTCCACTT TACCCACTACCCAGACGTTCACATCCGCAGCCAGCTGGCAGCCAGGATCAACCTCCCAGA AGCTCGGGTGCAGATCTGGTTCCAGAATCAGCGAGCCAAGTGGCGGAAGCAGGAGAAGAT TGGCAACCTGGGGGCTCCACAGCAGCTGAGTGAAGCCAGTGTGGTCCTGCCCACAAATCT GGATGTGGCTGGGCCCACGTGGACATCCACTGCTCTGCGCAGGCTGGCTCCTCCCACGAG CTGTTGTCCATCGGCTCAAGATCAGCTGGCCTCTGCCTGGTTCCCTGCCTGGATCACCCT CCTCCCAGCGCACCCATGGGAAACACAGCCTGTCCCAGGTCTTCCCATCCATCAAACTTG CATCCCTGTGCTATGCATCCTTCCACCTCCACACCCCAAATGGGGCAGCATCTGTGCTAC TTCAACATAGAGATTGGACATGCTCTCCCCAAATGAGCCACTTTCCTCTCCAGGTGAAGG CAGGTAGCAGATGTGCCCTGGGCCTCTGGGGAAATCGATCTCACAATCCAAAAATGGCCC ACAGCCCAGGAAGCTACCCTGAACATGCCAGTTGGAAGGCTGCACCAGACTCAAAAGCAA ACTAAACAATAAAGGACAGCTCTCTTCTCTCCTGGCTAAAGCTGCTCTCCTGGTTCAGAA GACAGGCTGGATGAGATCTCAGGCCGAGCTCTGAAATAGGGAGGTAATCCTCCAGCACCT GTGTTTCCTCTAACTTGCTGTGTGACCTCCAGCCGGTCACTCACCCTCTCTGGACCTCAT CTGTAAGAGGAGCCAGCTGGATAAGATGATTTCTGAAGACGCTTCCATGGTGGGCACTGA GGCACAGAGGAGGCCAAGGAGAGGTTGTTTGTTCATGCATGCATTCATCCGTGACACATG AGTACCTACTGAGGACTCCATAAACAGAACGGGATACAGAGATAAACAATTTGGGTTCTG TCCACGTTTGTCAAAAGGTGGTGCTGGCCCACCTCTGAAAGCAGAACACTTGCTCAACAA CCTTGCTGTTGGCCCAAGTCTAACACATTCTTTATGACTGTGAGCATCTCAGAGTGAGAG AAAAATGTAGAAAGTTTTTTAAATTCTAAACAGGATTTAGTGTCTTTAGTTATCTTGCTG GATGGGAAAGGGATGTTGTCATTTCTGGCACAAATGAAAAGTAGGACGGAAAGCTCCTTT CATTCAGTTTATCTTTCCAGGATATATGAAAAGGGACCAGCTGGAAGACTAGCCTCACTC TGTCCTCGAAAGCCTGAGCTTTCATTCAACTCCCTATTTCCATGCAAAGACGCTGGGCAA ACCACATGTTCTGTCTGAGCCTCAGTTTTCCTATCCATAAAATGAAGGTAGCCAGGCCTG CCTCAAAGAGCATTCAGGAGGCTCTGAGAGGACATGAGAGTATTTTGCAAAGTGAGGGCA AGGCCCAGTGTGGAGTGATATTGTTATTCCAAGATTCCACTGCAAAAGTGGCTGCTTTGG ATGCCAGCCCAGGATGAGTAGTTCCTGTTCTCAGGGAGGTCATCCGCTGAGCATCCCTTC TGCACAGATGTCTCTGATTCTTGTCCTTGCAGGTGGAGGACAGGGCCTGCTCCCCTAAGC TGGGAAGCCTGGAATGACCTCTTGCACAAGCCTAAATTCCAGGAATCTTCCCCAAATCCC AGATCCTCTGCAATCTACCTGCACCCCTGACCCACCCAGGAGTTGGACCGGGAGTTGGGA AGCCTAGGTCTTAGTCCTACACTCCTTCTAATTTGCTGTGTAACCTTACCATTAATCTCT CTGGGTCTCAGTTTTCTCATCTGTATTGGAGGTAGCAGTGCTAGCTCTGCCTTCAGGCAT GCAATATGCCAGAACTACAGACAACAGCCCACAGGATGCAAAAGTGCTTTGCCATCTTAA AAATGCCAGATCACTCAGAGCCTATGAATGTGGATATCAACACCAGGTCTCTAGCACCGC TGGATGAAAGGAGAAGGCTAGAGGCTGAGGGAGGAAAGAGCAGTTAACAAACAAAGGCAG TAGCTCATCACTTGGGTAGCAGGTACCCATTTTAGGACCCTACACTCAAATGTGCAAAAT AAAATTTCTATCATTTTGCTATAAAAAAAAAAAAAAAAAAAAA >NM_004967 GAGTGAGTGAGAGGGCAGAGGAAATACTCAATCTGTGCCACTCACTGCCTTGAGCCTGCT TCCTCACTCCAGGACTGCCAGAGGCTCACTCCCTTGAGCCTGCTTCCTCACTCCAGGACT GCCAGAGGAAGCAATCACCAAAATGAAGACTGCTTTAATTTTGCTCAGCATTTTGGGAAT GGCCTGTGCTTTCTCAATGAAAAATTTGCATCGAAGAGTCAAAATAGAGGATTCTGAAGA AAATGGGGTCTTTAAGTACAGGCCACGATATTATCTTTACAAGCATGCCTACTTTTATCC TCATTTAAAACGATTTCCAGTTCAGGGCAGTAGTGACTCATCCGAAGAAAATGGAGATGA CAGTTCAGAAGAGGAGGAGGAAGAAGAGGAGACTTCAAATGAAGGAGAAAACAATGAAGA ATCGAATGAAGATGAAGACTCTGAGGCTGAGAATACCACACTTTCTGCTACAACACTGGG CTATGGAGAGGACGCCACGCCTGGCACAGGGTATACAGGGTTAGCTGCAATCCAGCTTCC CAAGAAGGCTGGGGATATAACAAACAAAGCTACAAAAGAGAAGGAAAGTGATGAAGAAGA AGAGGAGGAAGAGGAAGGAAATGAAAACGAAGAAAGCGAAGCAGAAGTGGATGAAAACGA ACAAGGCATAAACGGCACCAGTACCAACAGCACAGAGGCAGAAAACGGCAACGGCAGCAG CGGAGGAGACAATGGAGAAGAAGGGGAAGAAGAAAGTGTCACTGGAGCCAATGCAGAAGG CACCACAGAGACCGGAGGGCAGGGCAAGGGCACCTCGAAGACAACAACCTCTCCAAATGG TGGGTTTGAACCTACAACCCCACCACAAGTCTATAGAACCACTTCCCCACCTTTTGGGAA AACCACCACCGTTGAATACGAGGGGGAGTACGAATACACGGGCGTCAATGAATACGACAA TGGATATGAAATCTATGAAAGTGAGAACGGGGAACCTCGTGGGGACAATTACCGAGCCTA TGAAGATGAGTACAGCTACTTTAAAGGACAAGGCTACGATGGCTATGATGGTCAGAATTA CTACCACCACCAGTGAAGCTCCAGCCTG >NM_002847 GCCTCCCGCCGCCTCCCGCGCGGCCATGGACTGAGCGCCGCCGGCCAGGCCGCGGGGATG GGGCCGCCGCTCCCGCTGCTGCTGCTGCTACTGCTGCTGCTGCCGCCACGCGTCCTGCCT GCCGCCCCTTCGTCCGTCCCCCGCGGCCGGCAGCTCCCGGGGCGTCTGGGCTGCCTGCTC GAGGAGGGCCTCTGCGGAGCGTCCGAGGCCTGTGTGAACGATGGAGTGTTTGGAAGGTGC CAGAAGGTTCCGGCAATGGACTTTTACCGCTACGAGGTGTCGCCCGTGGCCCTGCAGCGC CTGCGCGTGGCGTTGCAGAAGCTTTCCGGCACAGGTTTCACGTGGCAGGATGACTATACT CAGTATGTGATGGACCAGGAACTTGCAGACCTCCCGAAAACCTACCTGAGGCGTCCTGAA GCATCCAGCCCAGCCAGGCCCTCAAAACACAGCGTTGGCAGCGAGAGGAGGTACAGTCGG GAGGGCGGTGCTGCCCTGGCCAACGCCCTCCGACGCCACCTGCCCTTCCTGGAGGCCCTG TCCCAGGCCCCAGCCTCAGACGTGCTCGCCAGGACCCATACGGCGCAGGACAGACCCCCC GCTGAGGGTGATGACCGCTTCTCCGAGAGCATCCTGACCTATGTGGCCCACACGTCTGCG CTGACCTACCCTCCCGGGCCCCGGACCCAGCTCCGCGAGGACCTCCTGCCGCGGACCCTC GGCCAGCTCCAGCCAGATGAGCTCAGCCCTAAGGTGGACAGTGGTGTGGACAGACACCAT CTGATGGCGGCCCTCAGTGCCTATGCTGCCCAGAGGCCCCCAGCTCCCCCCGGGGAGGGC AGCCTGGAGCCACAGTACCTTCTGCGTGCACCCTCAAGAATGCCCAGGCCTTTGCTGGCA CCAGCCGCCCCCCAGAAGTGGCCTTCACCTCTGGGAGATTCCGAAGACCCCTCCAGCACA GGCGATGGAGCACGGATTCATACCCTCCTGAAGGACCTGCAGAGGCAGCCGGCTGAGGTG AGGGGCCTGAGTGGCCTGGAGCTGGACGGCATGGCTGAGCTGATGGCTGGCCTGATGCAA GGCGTGGACCATGGAGTAGCTCGAGGCAGCCCTGGGAGAGCGGCCCTGGGAGAGTCTGGA GAACAGGCGGATGGCCCCAAGGCCACCCTCCGTGGAGACAGCTTTCCAGATGACGGAGTG CAGGACGACGATGATAGACTTTACCAAGAGGTCCATCGTCTGAGTGCCACACTCGGGGGC CTCCTGCAGGACCACGGGTCTCGACTCTTACCTGGAGCCCTCCCCTTTGCAAGGCCCCTC GACATGGAGAGGAAGAAGTCCGAGCACCCTGAGTCTTCCCTGTCTTCAGAAGAGGAGACT GCCGGAGTGGAGAACGTCAAGAGCCAGACGTATTCCAAAGATCTGCTGGGGCAGCAGCCG CATTCGGAGCCCGGGGCCGCTGCGTTTGGGGAGCTCCAAAACCAGATGCCTGGGCCCTCG AAGGAGGAGCAGAGCCTTCCAGCGGGTGCTCAGGAGGCCCTCAGCGACGGCCTGCAATTG GAGGTCCAGCCTTCCGAGGAAGAGGCGCGGGGCTACATCGTGACAGACAGAGACCCCCTG CGCCCCGAGGAAGGAAGGCGGCTGGTGGAGGACGTCGCCCGCCTCCTGCAGGTGCCCAGC AGTGCGTTCGCTGACGTGGAGGTTCTCGGACCAGCAGTGACCTTCAAAGTGAGCGCCAAT GTCCAAAACGTGACCACTGAGGATGTGGAGAAGGCCACAGTTGACAACAAAGACAAACTG GAGGAAACCTCTGGACTGAAAATTCTTCAAACCGGAGTCGGGTCGAAAAGCAAACTCAAG TTCCTGCCTCCTCAGGCGGAGCAAGAAGACTCCACCAAGTTCATCGCGCTCACCCTGGTC TCCCTCGCCTGCATCCTGGGCGTCCTCCTGGCCTCTGGCCTCATCTACTGCCTCCGCCAT AGCTCTCAGCACAGGCTGAAGGAGAAGCTCTCGGGACTAGGGGGCGACCCAGGTGCAGAT GCCACTGCCGCCTACCAGGAGCTGTGCCGCCAGCGTATGGCCACGCGGCCACCAGACCGA CCTGAGGGCCCGCACACGTCACGCATCAGCAGCGTCTCATCCCAGTTCAGCGACGGGCCG ATCCCCAGCCCCTCCGCACGCAGCAGCGCCTCATCCTGGTCCGAGGAGCCTGTGCAGTCC AACATGGACATCTCCACCGGCCACATGATCCTGTCCTACATGGAGGACCACCTGAAGAAC AAGAACCGGCTGGAGAAGGAGTGGGAAGCGCTGTGCGCCTACCAGGCGGAGCCCAACAGC TCGTTCGTGGCCCAGAGGGAGGAGAACGTGCCCAAGAACCGCTCCCTGGCTGTGCTGACC TATGACCACTCCCGGGTCCTGCTGAAGGCGGAGAACAGCCACAGCCACTCAGACTACATC AACGCTAGCCCCATCATGGATCACGACCCGAGGAACCCCGCGTACATCGCCACCCAGGGA CCGCTGCCCGCCACCGTGGCTGACTTTTGGCAGATGGTGTGGGAGAGCGGCTGCGTGGTG ATCGTCATGCTGACACCCCTCGCGGAGAACGGCGTCCGGCAGTGCTACCACTACTGGCCG GATGAAGGCTCCAATCTCTACCACATCTATGAGGTGAACCTGGTCTCCGAGCACATCTGG TGTGAGGACTTCCTGGTGAGGAGCTTCTATCTGAAGAACCTGCAGACCAACGAGACGCGC ACCGTGACGCAGTTCCACTTCCTGAGTTGGTATGACCGAGGAGTCCCTTCCTCCTCAAGG TCCCTCCTGGACTTCCGCAGAAAAGTAAACAAGTGCTACAGGGGCCGTTCTTGTCCAATA ATTGTTCATTGCAGTGACGGTGCAGGCCGGAGCGGCACCTACGTCCTGATCGACATGGTT CTCAACAAGATGGCCAAAGGTGCTAAAGAGATTGATATCGCAGCGACCCTGGAGCACTTG AGGGACCAGAGACCCGGCATGGTCCAGACGAAGGAGCAGTTTGAGTTCGCGCTGACAGCC GTGGCTGAGGAGGTGAACGCCATCCTCAAGGCCCTTCCCCAGTGAGCGGCAGCCTCAGGG GCCTCAGGGGAGCCCCCACCCCACGGATGTTGTCAGGAATCATGATCTGACTTTAATTGT GTGTCTTCTATTATAACTGCATAGTAATAGGGCCCTTAGCTCTCCCGTAGTCAGCGCAGT TTAGCAGTTAAAAGTGTATTTTTGTTTAATCAAACAATOATAAAGAGAGATTTGTGGAAA AATCCAGTTACGGGTGGAGGGGAATCGGTTCATCAATTTTCACTTGCTTAAAAAAAATAC TTTTTCTTAAAGCACCCGTTCACCTTCTTGGTTGAAGTTGTGTTAACAATGCAGTAGCCA GCACGTTCGAGGCGGTTTCCAGGAAGAGTGTGCTTGTCATCTGCCACTTTCGGGAGGGTG GATCCACTGTGCAGGAGTGGCCGGGGAAGCTGGCAGCACTCAGTGAGGCCGCCCGGCACA CAAGGCACGTTTGGCATTTCTCTTTGAGAGAGTTTATCATTGGGAGAAGCCGCGGGGACA GAACTGAACGTCCTGCAGCTTCGGGGCAAGTGAGACAATCACAGCTCCTCGCTGCGTCTC CATCAACACTGCGCCGGGTACCATGGACGGCCCCGTCAGCCACACCTGTCAGCCCAAGCA GAGTGATTCAGGGGCTCCCCGGGGGCAGACACCTGTGCACCCCATGAGTAGTGCCCACTT GAGGCTGGCACTCCCCTGACCTCACCTTTGCAAAGTTACAGATGCACCCCAACATTGAGA TGTGTTTTTAATGTTAAAATATTGATTTCTACGTTATGAAAACAGATGCCCCCGTGAATG CTTACCTGTGAGATAACCACAACCAGGAAGAACAAATCTGGGCATTGAGCAAGCTATGAG GGTCCCCGGGAGCACACGAACCCTGCCAGGCCCCCGCTGGCTCCTCCAGGCACGTCCCGG ACCTGTGGGGCCCCAGAGAGGGGACATTTCCCTCCTGGGAGAGAAGGAGATCAGGGCAAC TCGGAGAGGGCTGCGAGCATTTCCCTCCCGGGAGAGGAGATCAGGGCGACCTGCACGCAC TGCGTAGAGCCTGGAAGGGAAGTGAGAAACCAGCCGACCGGCCCTGCCCCTCTTCCCGGG ATCACTTAATGAACCACGTGTTTTGACATCATGTAAACCTAAGCACGTAGAGATGATTCG GATTTGACAAAATAACATTTGAGTATCCGATTCGCCATCACCCCCTACCCCAGAAATAGG ACAATTCACTTCATTGACCAGGATGATCACATGGAAGGCGGCGCAGAGGCAGCTGTGTGG GCTGCAGATTTCCTGTGTGGGGTTCAGCGTAGAAAACGCACCTCCATCCCGCCCTTCCCA CAGCATTCCTCCATCTTAGATAGATGGTACTCTCCAAAGGCCCTACCAGAGGGAACACGG CCTACTGAGCGGACAGAATGATGCCAAAATATTGCTTATGTCTCTACATGGTATTGTAAT GAATATCTGCTTTAATATAGCTATCATTTCTTTTCCAAAATTACTTCTCTCTATCTGGAA TTTAATTAATCGAAATGAATTTATCTGAATATAGGAAGCATATGCCTACTTGTAATTTCT AACTCCTTATGTTTGAAGAGAAACCTCCGGTGTGAGATATACAAATATATTTAATTGTGT CATATTAAACTTCTGATTCAAAAAAAA >BC002551 GGCACGAGGCCACGAGCTGTTGTGCATCCAGAGGTGGAATTGGGGCCCGGCATTCCCTCC TCGTCCCGGGCTGGCCCTTGCCCCCACCCTGCAACTCCTGGTTGAGATGGGCTCAGCCAA GAGCGTCCCAGTCACACCAGCGCGGCCTCCGCCGCACAACAAGCATCTGGCTCGAGTGGC GGACCCCCGTTCACCTAGTGCTGGCATCCTGCGCACTCCCATCCAGGTGGAGAGCTCTCC ACAGCCAGGCCTACCAGCAGGGGAGCAACTGGAGGGTCTTAAACATGCCCAGGACTCAGA TCCCCGCTCTCCTACTCTTGGTATTGCACGGACACCTATGAAGACCAGCAGTGGAGACCC CCCAAGCCCACTGGTGAAACAGCTGAGTGAAGTATTTGAAACTGAAGACTCTAAATCAAA TCTTCCCCCAGAGCCTGTTCTGCCCCCAGAGGCACCTTTATCTTCTGAATTGGACTTGCC TCTGGGTACCCAGTTATCTGTTGAGGAACAGATGCCACCTTGGAACCAGACTGAGTTCCC CTCCAAACAGGTGTTTTCCAAGGAGGAAGCAAGACAGCCCACAGAAACCCCTGTGGCCAG CCAGAGCTCCGACAAGCCCTCAAGGGACCCTGAGACTCCCAGATCTTCAGGTTCTATGCG CAATAGATGGAAACCAAACAGCAGCAAGGTACTAGGGAGATCCCCCCTCACCATCCTGCA GGATGACAACTCCCCTGGCACCCTGACACTACGACAGGGTAAGCGGCCTTCACCCCTAAG TGAAAATGTTAGTGAACTAAAGGAAGGAGCCATTCTTGGAACTGGACGACTTCTGAAAAC TGGAGGACGAGCATGGGAGCAAGGCCAGGACCATGACAAGGAAAATCAGCACTTTCCCTT GGTGGAGAGCTAGGCCCTGCATGGCCCCAGCAATGCAGTCACCCAGGGCCTGGTGATATC TGTGTCCTCTCACCCCTTCTTTCCCAGGGATACTGAGGAATGGCTTGTTTTCTTAGACTC CTCCTCAGCTACCAAACTGGGACTCACAGCTTTATTGGGCTTTCTTTGTGTCTTGTGTGT TTCTTTTATATTAAAGGAAGTAATTTTAAATGTTACTTTAAAAAGGTAAAAAAAAAAAAA AAAAAAAA >AL039118 GCATTCGTAGTAAAGGTGCCCAAGAAATTATTTTGGCCATTTATTGTTTTGTCCTTTTCT TTAAAGAACTGTTTTTTTTTCTTTTGTTTACTTTTAGACCAAAGATTGGGTTCTAGAAAA TGCACTTGGTATACTAAGTATTAAAACAAACAAAAAGGAAAGTTGTTTCAGTTGGCAACA CTGCCCATTCAATTGAATCAGAAGGGGACAAAATTAACGATTGCCTTCAGTTTGTGTTGT GTATATTTTGATGTATGTGGTCACTAACAGGTCACTTTTATTTTTTCTAAATGTAGTGAA ATGTTAATACCTATTGTACTTATAGGTAAACCTTGCAAATATGTAACCTGTGTTGCGCAA ATGCCGCATAAATTTGAGTGATTGTTAATGTTGTCTTAAAATTTCTTGATTGTGATACTG TGGTCATATGCCCGTGTTTGTCACTTACAAAAATGTTTACTATGAACACACAGAAATAAA AAATAGGCTAAATTCATATAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA >NM_000198 GAGGCAGTAAGGACTTGGACTCCTCTGTCCAGCTTTTAACAATCTAAGTTACGGTTACCC TCTTCTGGGTCACGCTAGAATCAGATCTGCTCTCCAGCATCTTCTGTTTCCTGGCAAGTG TTTCCTGCTACTTTGGATTGGCCACGATGGGCTGGAGCTGCCTTGTGACAGGAGCAGGAG GGCTTCTGGGTCAGAGGATCGTCCGCCTGTTGGTGGAAGAGAAGGAACTGAAGGAGATCA GGGCCTTGGACAAGGCCTTCAGACCAGAATTGAGAGAGGAATTTTCTAAGCTCCAGAACA GGACCAAGCTGACTGTACTTGAAGGAGACATTCTGGATGAGCCATTCCTGAAAAGAGCCT GCCAGGACGTCTCGGTCGTCATCCACACCGCCTGTATCATTGATGTCTTTGGTGTCACTC ACAGAGAGTCCATCATGAATGTCAATGTGAAAGGTACCCAGCTACTGTTGGAGGCCTGTG TCCAAGCCAGTGTGCCAGTCTTCATCTACACCAGTAGCATAGAGGTAGCCGGGCCCAACT CCTACAAGGAAATCATCCAGAACGGCCACGAAGAAGAGCCTCTGGAAAACACATGGCCCA CTCCATACCCGTACAGCAAAAAGCTTGCTGAGAAGGCTGTGCTGGCGGCTAATGGGTGGA ATCTAAAAAATGGTGATACCTTGTACACTTGTGCGTTAAGACCCACATATATCTATGGGG AAGGAGGCCCATTCCTTTCTGCCAGTATAAATGAGGCCCTGAACAACAATGGGATCCTGT CAAGTGTTGGAAAGTTCTCTACAGTCAACCCAGTCTATGTTGGCAACGTGGCCTGGGCCC ACATTCTGGCCTTGAGGGCTCTGCGGGACCCCAAGAAGGCCCCAAGTGTCCGAGGTCAAT TCTATTACATCTCAGATGACACGCCTCACCAAAGCTATGATAACCTTAATTACATCCTGA GCAAAGAGTTTGGCCTCCGCCTTGATTCCAGATGGAGCCTTCCTTTAACCCTGATGTACT GGATTGGCTTCCTGCTGGAAGTAGTGAGCTTCCTACTCAGCCCAATTTACTCCTATCAAC CCCCCTTCAACCGCCACACAGTCACATTATCAAATAGTGTGTTCACCTTCTCTTACAAGA AGGCTCAGCGAGATCTGGCGTATAAGCCACTCTACAGCTGGGAGGAAGCCAAGCAGAAAA CCGTGGAGTGGGTTGGTTCCCTTGTGGACCGGCACAAGGAGACCCTGAAGTCCAAGACTC AGTGATTTAAGGATGACAGAGATGTGCATGTGGGTATTGTTAGGAAATGTCATCAAACTC CACCCACCTGGCTTCATACAGAAGGCAACAGGGGCACAAGCCCAGGTCCTGCTGCCTCTC TTTCACACAATGCCCAACTTACTGTCTTCTTCATGTCATCAAAATCTGCACAGTCACTGG CCCAACCAGAACTTTCTGTCCTAATCATACACCAGAAGACAAACAATATGATTTGCTGTT ACCAAATCTCAGTGGCTGATTCTGAACAATTGTGGTCTCTCTTAACTTGAGGTTCTCTTT TGACTAATAGAGCTCCATTTCCCCTCTTAAATGAGAAAGCATTTCTTTTCTCTTTAATCT CCTATTCCTTCACACAGTTCAACATAAAGAGCAATAAATGTTTTAATGCTTAA >H05388 AAATTTTGACCCCATATAAAGAAATGTGTTATGTATGTTGTGCCTCCTTAGAGACATAAA TTTAGTGTCAAAACATGGGAGATGGCTTACTCAGAAGCATACTCCACTTAACATACCATG GCCTGAGCTAAGTACCATGTCCTGTTTGTGTCTTATTTTTAAATATTTTCTTTGTCCACA TGGGCCGTTGACCTTAGAGTTAAGGCGGTTGCTTTTTTGAAGAAATCACCAAAGTTTCTG GGAAACTATGTTCAAGGTTGAAATGGAGAGTAGATTTAATTTTATTTGTCTTGTAGGGAA GAAATCTTCCTTTGAACCGCTTTTCTTGCTTTTTCCCTTTTTCCCAAACTAGGTTACAGG TTCTTATCTGCAAGGTTCAAGTTGCTTAGACATTGTTTTCCAGTATTCTGCAGGGCCAGT CAGTTGTACAGAAGTTGGAATATTCTGTTCCAGAATTAAAGAAGTTTTTAGATTATGAAA TATTATGATAATAAAGCTATATTTCTGAAAAAAAAAAA >NM_004062 GAAGGAGCTCTCTTCTTGCTTGGCAGCTGGACCAAGGGAGCCAGTCTTGGGCGCTGGAGG GCCTGTCCTGACCATGGTCCCTGCCTGGCTGTGGCTGCTTTGTGTCTCCGTCCCCCAGGC TCTCCCCAAGGCCCAGCCTGCAGAGCTGTCTGTGGAAGTTCCAGAAAACTATGGTGGAAA TTTCCCTTTATACCTGACCAAGTTGCCGCTGCCCCGTGAGGGGGCTGAAGGCCAGATCGT GCTGTCAGGGGACTCAGGCAAGGCAACTGAGGGCCCATTTGCTATGGATCCAGATTCTGG CTTCCTGCTGGTGACCAGGGCCCTGGACCGAGAGGAGCAGGCAGAGTACCAGCTACAGGT CACCCTGGAGATGCAGGATGGACATGTCTTGTGGGGTCCACAGCCTGTGCTTGTGCACGT GAAGGATGAGAATGACCAGGTGCCCCATTTCTCTCAAGCCATCTACAGAGCTCGGCTGAG CCGGGGTACCAGGCCTGGCATCCCCTTCCTCTTCCTTGAGGCTTCAGACCGGGATGAGCC AGGCACAGCCAACTCGGATCTTCGATTCCACATCCTGAGCCAGGCTCCAGCCCAGCCTTC CCCAGACATGTTCCAGCTGGAGCCTCGGCTGGGGGCTCTGGCCCTCAGCCCCAAGGGGAG CACCAGCCTTGACCACGCCCTGGAGAGGACCTACCAGCTGTTGGTACAGGTCAAGGACAT GGGTGACCAGGCCTCAGGCCACCAGGCCACTGCCACCGTGGAAGTCTCCATCATAGAGAG CACCTGGGTGTCCCTAGAGCCTATCCACCTGGCAGAGAATCTCAAAGTCCTATACCCGCA CCACATGGCCCAGGTACACTGGAGTGGGGGTGATGTGCACTATCACCTGGAGAGCCATCC CCCGGGACCCTTTGAAGTGAATGCAGAGGGAAACCTCTACGTGACCAGAGAGCTGGACAG AGAAGCCCAGGCTGAGTACCTGCTCCAGGTGCGGGCTCAGAATTCCCATGGCGAGGACTA TGCGGCCCCTCTGGAGCTGCACGTGCTGGTGATGGATGAGAATGACAACGTGCCTATCTG CCCTCCCCGTGACCCCACAGTCAGCATCCCTGAGCTCAGTCCACCAGGTACTGAAGTGAC TAGACTGTCAGCAGAGGATGCAGATGCCCCCGGCTCCCCCAATTCCCACGTTGTGTATCA GCTCCTGAGCCCTGAGCCTGAGGATGGGGTAGAGGGGAGAGCCTTCCAGGTGGACCCCAC TTCAGGCAGTGTGACGCTGGGGGTGCTCCCACTCCGAGCAGGCCAGAACATCCTGCTTCT GGTGCTGGCCATGGACCTGGCAGGCGCAGAGGGTGGCTTCAGCAGCACGTGTGAAGTCGA AGTCGCAGTCACAGATATCAATGATCACGCCCCTGAGTTCATCACTTCCCAGATTGGGCC TATAAGCCTCCCTGAGGATGTGGAGCCCGGGACTCTGGTGGCCATGCTAACAGCCATTGA TGCTGACCTCGAGCCCGCCTTCCGCCTCATGGATTTTGCCATTGAGAGGGGAGACACAGA AGGGACTTTTGGCCTGGATTGGGAGCCAGACTCTGGGCATGTTAGACTCAGACTCTGCAA GAACCTCAGTTATGAGGCAGCTCCAAGTCATGAGGTGGTGGTGGTGGTGCAGAGTGTGGC GAAGCTGGTGGGGCCAGGCCCAGGCCCTGGAGCCACCGCCACGGTGACTGTGCTAGTGGA GAGAGTGATGCCACCCCCCAAGTTGGACCAGGAGAGCTACGAGGCCAGTGTCCCCATCAG TGCCCCAGCCGGCTCTTTCCTGCTGACCATCCAGCCCTCCGACCCCATCAGCCGAACCCT CAGGTTCTCCCTAGTCAATGACTCAGAGGGCTGGCTCTGCATTGAGAAATTCTCCGGGGA GGTGCACACCGCCCAGTCCCTGCAGGGCGCCCAGCCTGGGGACACCTACACGGTGCTTGT GGAGGCCCAGGATACAGATGAGCCGAGACTGAGCGCTTCTGCACCCCTGGTGATCCACTT CCTAAAGGCCCCTCCTGCCCCAGCCCTGACTCTTGCCCCTGTGCCCTCCCAATACCTCTG CACACCCCGCCAAGACCATGGCTTGATCGTGAGTGGACCCAGCAAGGACCCCGATCTGGC CAGTGGGCACGGTCCCTACAGCTTCACCCTTGGTCCCAACCCCACGGTGCAACGGGATTG GCGCCTCCAGACTCTCAATGGTTCCCATGCCTACCTCACCTTGGCCCTGCATTGGGTGGA GCCACGTGAACACATAATCCCCGTGGTGGTCAGCCACAATGCCCAGATGTGGCAGCTCCT GGTTCGAGTGATCGTGTGTCGCTGCAACGTGGAGGGGCAGTGCATGCGCAAGGTGGGCCG CATGAAGGGCATGCCCACGAAGCTGTCGGCAGTGGGCATCCTTGTAGGCACCCTGGTAGC AATAGGAATCTTCCTCATCCTCATTTTCACCCACTGGACCATGTCAAGGAAGAAGGACCC GGATCAACCAGCAGACAGCGTGCCCCTGAAGGCGACTGTCTGAATGGCCCAGGCAGCTCT AGCTGGGAGCTTGGCCTCTGGCTCCATCTGAGTCCCCTGGGAGAGAGCCCAGCACCCAAG ATCCAGCAGGGGACAGGACAGAGTAGAAGCCCCTCCATCTGCCCTGGGGTGGAGGCACCA TCACCATCACCAGGCATGTCTGCAGAGCCTGGACACCAACTTTATGGACTGCCCATGGGA GTGCTCCAAATGTCAGGGTGTTTGCCCAATAATAAAGCCCCAGAGAACTGGGCTGGGCCC TATGGGATTGGTA >AA782845 TCTTTACCTATGTGAAGCGAGGTGACGTGATACGTCACTGGCGCCGTCTTATAATTTAGA TGTAAAAATCTTTAGAAACAAATAAAACTCTCTATATATGTGTATGTCTGTGTACAAAAA AATGACAGAGCTGATGGCCAGTGTATACAGAGCGTGGCCCGCGGTGTACAATACCCATAT AAGGTACATTGTGCAGGAGGGGAATTGCTGGCTGCTTTTACTTCCTGACCAAGACTGAAA AATTATTTACTGAAATCTGTAAACCTTTTTATGAAACTTTTAAGCACCAGGCTGTTTACT TACACAATTTAGGTCTGCCAGAAAATTCTATCTGTGATAGATCTGTAAAGAGGGTCAGGG GTTAGAGTTTACTATTTTTGAAGTTTACATTGTTACATATGAAATGGAAACATTATTTTG AAACGTTGTCATAACCCAATGGTGCATTCTGTAACCATGGAGTCTTCTGTTTCCTGGGGG AAAGGGGCATTCATGACCTGAACTTTTTAGCAAATTATTATTCTCAGTTTCCATTACCTG TTTGGCCAAACAGATTAATAAAATATTTGAAAAAGAAGCAATAAAAAAAAAA >AI457360 CTGAGAAAGTCCGGTCCCTATAAGGGGACATCAGTGCGAGACCTGCTCCGTGCTGTGAGN ACAAGAGGCACCATACAAGNAAGCTCCCAGTTGAGGTGCGACAGGCACTCGCCNAAGTCC NTGATGGCTTCGTCCAGTACTCACAAAACGGCTCCCCCCGGCTGGTCCTTCACACGCACC GAGCCATGAGGAGCTGGCGCCTCTGAGAGCCTCTTCCTGCCCTACTACCCGCCAGACTCA GAGGCCAGGAGGCCATGCCCTGGGGCCACAGGGAGGTGAGGTGGGCTGGATGCCACACAG ATGGTCTCCGTGCTGGCTCACTGAAGAGCTGAGCCTGTGGCTGGCCTCAGAATCAGGCTG GGTGCAGTGGCTCACACCTGTAATCCCAGCATTTTGGGAGGCTGAGTGAGAGGATCACTT GAGCTCAGGAGTTCGAGACCAGCCTGGCCAACATGGCAACACCCCATTTCTACAAAAAAT TTGTAAAATTAGCCAGGCATGGTGGCGCACGCCTGTAGTCCCAGCTGCTTGGGAGGCTGA GGTGGGAGAATCACTTGAGCCCAGGAGTTCGAGGCTGCAGTGAGCCAGGATCATGCCACT GCACTCCAGCCTGGTCCACAGAGAGACACTGTCACCCCCTTTCCCCCACAAGACTGGCAG AGGCTGGGCAGCCTGGGGCTGATGAAGCAGAGATGTTCGCTGGATCCCAGGCCCTGGCAC CCCTCAGGAAATACAAGAAAAAGAATATTCACATCTGTTTAATGTGCATAAAGCCAAGGA AAGGACAGTTCCGAATTCAAAAAAAAAAAAAAAAAAAA >BF446419 TTTTTTTTTTTTTTTTTAAATATTTAACTTATTTATTTAACAAAGTAGAAGGGAATCCAT TGCTAGCTTTTCTGTGTTGGTGTCTAATATTTGGGTAGGGTGGGGGATCCCCAACAATCA GGTCCCCTGAGATAGCTGGTCATTGGGCTGATCATTGCCAGAATCTTCTTCTCCTGGGGT CTGGCCCCCCAAAATGCCTAACCCAGGACCTTGGGAATTCTACTCATCCCAAATGATAAT TCCAAATGCTGTTACCCAAGGTTAGGGTGTTGAAGGAAGGTAGAGGGTGGGGCTTCAGGT CTCAACGGCTTCCCTAACCACCCCTCTTCTCTTGGCCCAGCCTGGTTCCCCCCACTTCCA CTCCCCTCTACTCTCTCTAGGACTGGGCTGATGAAGGCACTGCCCAAAATTTCCCCTACC CCCAACTTTCCCCTACCCCCAACTTTCCCCACCAGCTCCACAACCCTGTTTGGAGCTACT GCAGGACCAGAAGCACAAAGTGCGGTTTCCCAAGCCTTTGTCCATCTCAGCCCCCAGAGT ATATCTGTGCTTGGGGAATCTCACACAGAAACTCAGGAGCACCCCCTGCCTGAGCTAAGG GAGGTCTTATCTCTCAGGGGGGGTTTAAGTGCCGTTTGCAATAATGTCGTCTTATTTATT TAGCGGGGTGAATATTTTATACTGTAAGTGAGCAATCAGAGTATAATGTTTATGGTGACA AAATTAAAGGCTTTCTTATATGTTTAAAAAAAA >BC006819 GCCTTATAAAGCACCAAGAGGCTGCCAGTGGGACATTTTCTCGGCCCTGCCAGCCCCCAG GAGGAAGGTGGGTCTGAATCTAGCACCATGACGGAACTAGAGACAGCCATGGGCATGATC ATAGACGTCTTTTCCCGATATTCGGGCAGCGAGGGCAGCACGCAGACCCTGACCAAGGGG GAGCTCAAGGTGCTGATGGAGAAGGAGCTACCAGGCTTCCTGCAGAGTGGAAAAGACAAG GATGCCGTGGATAAATTGCTCAAGGACCTGGACGCCAATGGAGATGCCCAGGTGGACTTC AGTGAGTTCATCGTGTTCGTGGCTGCAATCACGTCTGCCTGTCACAAGTACTTTGAGAAG GCAGGACTCAAATGATGCCCTGGAGATGTCACAGATTCCTGGCAGAGCCATGGTCCCAGG CTTCCCAAAAGTGTTTGTGGCAATTATTCCCCTAGGCTGAGCCTGCTCATGTACCTCTGA TTAATAAATGCTTATGAAATGAAAAAAAAAAAAAAA >AA765597 CCAGCAAAGTCTCTTTTGACCACACGCTTTATCCGAGATGCTTAGAAGTATATTTGGCTG TTTTATTTGCATCTTTGATTAAGATGTCTATCATTGTAAAAAGGTATTCAAAACAAAAGT GTACTCTTTTATTATTATGAATCACATTGTACTGAGCTGTGAAGTCAGTGTTTTAAAAAT GTAGAGTTTATTCATGGAGCATGCCATTGAGGTTTGGATGGTGGCAGGTAAAACAGAAAG GCAAGATGTCATCTGACATTAGGCTACTTATAAATAAATGTTTATCTAGCTTTTATTTCA TGCCCTAATGAATAAAACATGCTTCGAAAAAGAAAGTAAAAAAAAAAAACAAAA >X78202 GGCGAGAGAGACGCTCCCGCTCGCCGCCAGCTCTGATTGGCCCAGCGGTAGGAAAGGTTA AACCAAAAATTTTTTTACAGCCCTAGTGTGCGCCTGTAGCTCGGAAAATTAATTGTGGCT ATAGCCGCCTCGATCGCTGTCTCCCCAGCCTCGCCGCGGACGCTCCGGGACGCGCCCGCC CGCCGCCCGGTTCTCCCCCCCTTTGGGCTGGTGCTGCTGCTGCTGTGACTGCTGCTGCGA AAGGAGGAGGAGGAGGAGGAAGCAGCGGGGGGGGGAGCGGTGGGTGTGGGGGAAACCAAG AGTACAGTGGACGAGGACTCACCCCGGCGTGGTGTTCTTTTTTCTTCTTCTTTTTCTTTC CTTTTTTTTTTTTTTTTCTAATTCCTGAGGGGTGGTTGCTGCTTTTGCTACATGACTTGC CAGCGCCCGAGCCTGCGGTCCAACTGCGCTGCTGCCGGAGCGCTCAGTGCCGCCGCTGCC GCCCGTGCCCCCCGCGCCCCGTTCGGCACCCACCGGTCGCCGCCCCGCCCGCGCGCCGCT GTCCCGCTCCCGCGCCGCCGCCGCCGTTTCCCCCCGACGACTGGGTGATGCTGGACATGG GAGATAGGAAAGAGGTGAAAATGATCCCCAAGTCCTCGTTCAGCATCAACAGCCTGGTGC CCGAGGGCCTCCAGAACGACAACCACCACGCGAGCCACGGCCACCACAACAGCCACCACC CCCAGCACCACCACCACCACCACCACCATCACCACCACCCGCCGCCGCCCGCCCCGCAAC CGCCGCCGCCGCCGCAGCAGCAGCAGCCGCCGCCGCCGCCGAGACGCGGGGCCCGGCGCC GACGACGACGAGGCCCCAGCAGTTGTTGTTCCGCCGCGCACGCACACGGCGCGCCTGAGG GCCAACGGCAGCTGGCGCAAGGCGACCGGCGCGGCCGGGGGATCTGCCCCGTCGGGCCGG ACGAGAAGGAGAAGGCCCGCGCCGGGGGGGAGGAGAAGAAGGGGGCGGGCGAGGGCGGCA AGGACGGGGAGGGGGGCAAGGAGGGCGAGAAGAAGAACGGCAAGTACGAGAAGCCGCCGT TCAGCTACAACGCGCTCATCATGATGGCCATGCGGCAGAGCCCCGAGAAGCGGCTCACGC TCAACGGCATCTACGAGTTCATCATGAAGAACTTCCCTTACTACCGCGAGAACAAGCAGG GCTGGCAGAACTCCATCCGCCACAATCTGTCCCTCAACAAGTGCTTCGTGAAGGTGCCGC GCCACTACGACGACCCGGGCAAGGGCAACTACTGGATGCTGGACCCGTCGAGCGACGACG TGTTCATCGGCGGCACCACGGGCAAGCTGCGGCGCTCCACCACCTCGCCGGCCAAGCCGG CCTTCAAGCGCGGTGCCGCGCTCACCTCCACCGGCCTCACCTTCATGGACGCGCCGGCTC CCTCTACTGGCCCATGTCGCCCTTCCTGTCCCTGCACCACCCCCGCCAGCAGCACTTTGA GTTACAACGGGACCACGTCGGCCTACCCCAGCCACCCCATGCCCTACAGCTCCGTGTTGA CTCAAAACTCGCTGGGCAACAACCACTCCTCCTCCACCGCCAACGGGCTGAGCGTGGACC GGCTGGTCAACGGGGGAATCCCGTACGCCACGCACCACCTCACGGCCGCCGCGCTAACCG CCTCGGTGCCCTGCGGCCTGCTGGTGCCCTGCTCTGGGACCTACTCCCTCAACCCCTGCT CCGTCAACCTGCTCGCGGGCCAGACCAGTTACTTTTTCCCCCACGTCCCGCACCCGTCAA TGACTTCGCAGAGCAGCACGTCCATGAGCGCCAGGGCCGCGTCCTCCTCCACGTCGCCGG CAGGCCCCCCTCGACCCCTGCCCTGTGAGTCTTTAAGACCCTCTTTGCCAAGTTTTACGA CGGGACTGTCTGGGGGACTGTCTGATTATTTCACACATCAAAATCAGGGGTCTTCTTCCA ACCCTTTAATACATTAACATCCCTGGGACCAGACTGTAAGTGAACGTTTTACACACATTT GCATTGTAAATGATAATTAAAAAAATAAGTCCAGGTATTTTTTATTAAGCCCCCCCCTCC CATTTCTGTACGTTTGTTCAGTCTCTAGGGTTGTTTATTATTCTAACAAGGTGTGGAGTG TCAGCGAGGTGCAATGTGGGGAGAATACATTGTAGAATATAAGGTTTGGAAGTCAAATTA TAGTAGAATGTGTATCTAAATAGTGACTGCTTTGCCATTTCATTCAAACCTGACAAGTCT ATCTCTAAGAGCCGCCAGATTTCCATGTGTGCAGTATTATAAGTTATCATGGAACTATAT GGTGGACGCAGACCTTGAGAACAACCTAAATTATGGGGAGAATTTTAAAATGTTAAACTG TAATTTGTATTTAAAAAGCATTCGTAGTAAAGGTGCCCAAGAAATTATTTTGGCCATTTA TTGTTTTCTCCTTTTCTTTAAAGAACTGTTTTTTTTTCTTTTGTTTACTTTTAGACCAAA GATTGGGCGGTTCTAGAAAATGCGCCTTGGTATACTAAGTATTAAAACAAACAAAAAGGA AAGTTGTTTCAGTTAACGCTGCCCATTCAATTGAATCAGAAGGGGACAAAATTAACGATT GCCTTCAGTTTGTGTTGTGTATATTTTGATGTATGTGGTCACTAACAGGTCACTTTTATT TTTTCTAAATGTAGTGAAATGTTAATACCTATTGTACTTATAGGTAAACCTTGCAAATAT GTAACCTGTGTTGCGCAAATGCCGCATAAATTTGAGTGATTGTTAATGTTGTCTTAAAAT TTCTTGATTGTGACTATGTGGTCATATGCCCGTGTTTGTCACTTACAAAAATGTTTACTA TGAACACACATAAATAAAAAATAG >AK026790 AAAATGCTTACTCTTGTGGGCTACTTGTTGTGTGGAAAAAGGAAAACGGATTCATTTTCC CATCGGCGACTTTATGACGACAGAAATGAACCAGTTCTGCGATTAGACAATGCACCGGAA CCTTATGATGTGAGTTTTGGGAATTCTAGCTACTACAATCCAACTTTGAATGATTCAGCC ATGCCAGAAAGTGAAGAAAATGCACGTGATGGCATTCCTATGGATGACATACCTCCACTT CGTACTTCTGTATAGAACTAACAGCAAAAAGGCGTTAAACAGCAAGTGTCATCTACATCC TAGCCTTTTGACAAATTCATCTTTCAAAAGGTTACACAAAATTACTGTCACGTTGGATTT TGTCAAGGAGAATCATAAAAGCAGGAGACCAGTAGCAGAAATGTAGACAGGATGTATCAT CCAAAGGTTTTCTTTCTTACAATTTTTGGCCATCCTGAGGCATTTACTAAGTAGCCTTAA TTTGTATTTTAGTAGTATTTTCTTAGTAGAAAATATTTGTGGAATCAGATAAAACTAAAA GATTTCACCATTACAGCCCTGCCTCATAACTAAATAATAAAAATTATTCCACCAAAAAAT TCTAAAACAATGAAGATGACTCTTTACTGCTCTGCCTGAAGCCCTAGTACCATAATTCAA GATTGCATTTTCTTAAATGAAAATTGAAAGGGTGCTTTTTAAAGAAAATTTGACTTAAAG CTAAAAAGAGGACATAGCCCAGAGTTTCTGTTATTGGGAAATTGAGGCAATAGAAATGAC AGACCTGTATTCTAGTACGTTATAATTTTCTAGATCAGCACACACATGATCAGCCCACTG AGTTATGAAGCTGACAATGACTGCATTCAACGGGGCCATGGCAGGAAAGCTGACCCTACC CAGGAAAGTAATAGCTTCTTTAAAAGTCTTCAAAGGTTTTGGGAATTTTAACTTGTCTTA ATATATCTTAGGCTTCAATTATTTGGGTGCCTTAAAAACTCAATGAGAATCATGGTAAAA AAAAAAAGTTAACCAAAGAATATACCTGTACATAATTTGTACAGTTTTAAGTTGTTAGAT AGGAACTGGATTTCTTATGTATTAGACATTATTGCTCAATCATAATGGAATAGATTCTGC ATCCCTAAATGTATGAACCATAAGGTTAAAAAAGATGAATGGAAATATCAAACAACTTTT CACTGAGCATCAGTTTCATAATCAATAATATAAGAAGATTAATTTGGATTCTAGTATGTT TCAGTTTGTTTTTAATTACCACCTTCCTTTGGTAGAAAAAATATGTTCCTTGATGTAGGA AAGTCTAGGTTTTAGAGATTAGAGGATGAGATCAAGAGTTAAATTCCTAAAGAAGCACTG AATATATGAAGAGAGCAAACAAATCAAGTACCAACCTAGAGGCTTTATTTTTGAATTGAT TCATGGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTAACACAGAAACAGCT TTCAGAAAATAAGGGATAGAAAGTAATGAAGAAAGTACTTACCCCATATTGCCATAAAAA TAGCAAAGAAGACTGTCCCTCCATTATCGAACAAATATGTCACCTGAGTAGAAAACAAAC AGAAATATTAGTCATGCAAATTGATTATAATAAGCCAGTGAATACTGTTTGCACTCAGGT ACTATGATTTTTTCTCAAATAGAATCATATTATTTTATAGTACAGAAATATTATATATGA ATTCCTTTCATGGGTCTTGCAACAATTTCACATGATTTTTCTCATGGGGAGAGGTGAAGA AACAACATTAGCCCTCTTCTCTCCTCTCTTGATTCCCTTTATACCCCACCATCATTTCTG ATTATAAATAATTCTACCATTCTATGGAAGTATTTGTGGGTCACAGATTGTCAAACTACT TAATGAAAGTTGTATGAAATTAGTTTTTCAGGTGAGGCATTCCTAGTTGCAATTCCTGTT AGCAAAACTTCTAGGAGTGGGGAAGTTGGAAAATGCAGGATTCTTCCAGTGAGCCAGCAT TTCCCATAGCTAACCCTATTCTCTTAGTCTTTCAAAATGTAGAATGGGTCCAATAATGGC TATAAGATGTAATAAATCCCATCTTAATTTGTTTTAAAAGTTTCATAAATCACTGAACAC TTATGAAACAAAGTGTTTTTTAATCAGATATCAACTGAAACTTCATAAAGGATGCATAGT TTTATAATGTTATTGAATCAAATTTTAAGGCTTGTATTGTTTGATTTTAATAAAGTATAA TCTCCTTTTTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA >BC012727 GGCACGAGGCTGCCTGCCCCCCGGGTGGGGCTGCGGCTCTGGCCTCCCAGGCCCATCCTC AACAGCTACCCCAGCCAACACCAAGGCCACAAGGGGACCCCGGCCTAGGAGGCAGGAAGC CAAGGTACAGAGAGCAGCCTGGCCCTCACCAGTGCGCAAGCTGGGGCAGCAAGGCTGACA GTTGCTGCATGCCCAGGGCAGGGTGTGGTACTGGCACCCAAGTTCAGCATGGCAGAGCTG GCCAACAGCTTGTCCCCGATCTGCCTCCAGCCCCAAGATGCCTACAGCCCCCAGGCCCCT TCGGCAGCACTGCCTCTGCCCACCTGCCTTTAAGAGACTCCAGGGCTGCTCCTGTCATGC AGCGAAGGTTTTGTCTGTTTCAAAGTTCGAGACTCAACTTGAGGGACTGTTTTTGACAAT CCCCGCTGACCTCCGCTCCTCGTGGCGCCCTGGCCCTACACCCAGCCTGGCCCAGGGCCG GCTTTGCCTGGTGAGGCTGGAGGGAGCACCAGGACCTGCTGTCTGCTGTCAGCCCCTCCT GGTGCTGGTGCCCTGATGCTGTGCCTTGTCACCCATTGAGCTGCAAGAGGGACCAAGAGG GGGCCACGCAGCCAGCCAGATGCCTGGCCCTGTGCTGGGGCAGACAACGCTGCAGAGCCC AGGGAGCCTGGCGCTAGGACGTGCGTCCTTGTGACACTGGCCTGTCTGAACTCACCTGGC CTGGGAAGCACCGTCTGCCCGGGCCCAAGCCCTGCCCCTCCAGAGTCCAGAGCCAGGAAG GGGCTGCTGAGGGCGAGCATCCTGCTGGGCTCTCTGCCCGGCCCACCCCTCCAAGGGGCT GGCCTGTGAGCCTTGACTGGGATTCATGATGTGGAGGCCCCCAACTTCCAGAAGCAGCTG GTACTCTGCTCACACAAGCGACTGGGCCGGCCGGCCCTGGACCCCTAGACCCCGAGCCGC CTGCCGACTGCCTGCACAGGGAGAGCAGTTGAGGCCCGGGCAGGGCCCCCACACCAGACC CCAACATAGCTTCCCCACCCAGGCACCCCCTCCCGGGGCAGCAGGCGTGGGAGTCAGGGC TGCATGCTCCTCCCCTCCCACCTCACAGGCGGCCTTAGGCAAGTCATTTTCTGTCATCAC AAGGTCGCCTCTGCCTAGTCAGGTCCTGGCGTCCAGAGTAAGGATGTGCGGCCCCCAGGC CCCCGCACACCTCCCTCAGCACCAAGACCGGGACCCCCCCACCCACGTGTCTCATTGTGG CTGCCTATGGACTCCCGGGCCTTGTGTGCAGGCCAGGCCCTTCCACTGATTTTTTAAAGT GAACCATTGCTGGATCTCAGATTCTGTGGCATCTAAGGCCTAGCAGGGGTGGGCACACGG GTCACCCGAGGCCCATACCAAGACTCTGTTCCTGCCCTAGGCCCAGTCTCAAAGGAAGCC ACAAGGCGCGGGGGCCACTGAGGAAGGAAATGTTCATTTTCATTTGTCCAAAACCACCTT AAGTTTTAAGTATATTAATCTTGATGCTTTTTAACTATTGCTTTTTAACTTGCTGAGATT TAGAAATACTGTTATAAAAACTTTTTTAATTTCTGTATTTTTTTTCTGTATTGTATCTTC ATGGGACATTAGGGGTTTTCTATGGTAAGCACACCTATGGTTTTGGTAAAAACATTATCA AATATATATCCAGACGGTTCTTCCCTAGAAGAAAAACAAGTCTTTACACCTGATAAAATA TTTTGCGAAGAGAGGTGTTCTTTTTCCTTACTGGTGCTGAAAGGAAGGATGGATAACGAG GAGAAAATAAAACTGTGAGGCTCAAAAAAAAAAAAAAAAAA >R45389 CCTGCCCTTCTCTATATGTACCATCTCCAAAAACCATGTACATCTCCAAAAACTGGAGTA GAAAGTTAGATTGCTCAACTACAACTCCTCTAGAACTCTATAGCTCTGACATACAGATTC ACACTCTCCTCTATTTGCTAAGTATGTAAAGAATGTTTTCTTTTAAAATGTTCTCTTTTG AGAACAACTGCTTATTTGTTATAAAAGCATTTGGTTAAAATGATGTCATCATAAAGAACA GTGGCTTTGTTTCAATACATATTTTTGAGATGATTATCTAGAAGCCAGATTAATAAAATC AGCTTGTGACCTTGCTAAGCATATAAACTGGAAATTCAGATACATTCAAAATTATGGGTT CATTTAAAAGTGTTCTACCTTTTGGGTATGAGACTAATATCACTAATTCCTCAATAGTTA TCATGGCTCTATCTTAATTAATTAGAAAATATGTGTGTTTAATTCTTTGAGAATTAAAAT AGAGAATATTAACAGAGGGTTAAAAACTGCTTCAACTCCAATAAGATAAAGGAAGCTCAA AATCTATGAGCTGAGTGTTCAATTAGCTTTGCCTACTGAGTTCAATTTTATGTCAATACA ACAGTGGATCAGACAGTACGACTTTGAACTGGTGAATGTAAACAATTGTTTTTCACCTAA GCTGCTTTGGAAGAACTGATGCTTGCTGCTAACTAAAGTTTTGGATGTATCGATTTAGAG AACCAATTAATACCTGCAAAATAAAGCATACTGTGGTACTTCTGTTTGATCTAGTATGTG TGATTTTAGATTGATGGATTAAAAATTAATAAAGATCATACATTCCATACCAAAAAAAAA AAAAAAAA >BC006811 CCAGAAGCCTGCATTTCTGCATTCTGCTTAATTCCCTTTCCTTAGATTTGAAAGAAGCCA ACACTAAACCACAAATATACAACAAGGCCATTTTCTCAAACGAGAGTCAGCCTTTAACGA AATGACCATGGTTGACACAGAGATGCCATTCTGGCCCACCAACTTTGGGATCAGCTCCGT GGATCTCTCCGTAATGGAAGACCACTCCCACTCCTTTGATATCAAGCCCTTCACTACTGT TGACTTCTCCAGCATTTCTACTCCACATTACGAAGACATTCCATTCACAAGAACAGATCC AGTGGTTGCAGATTACAAGTATGACCTGAAACTTCAAGAGTACCAAAGTGCAATCAAAGT GGAGCCTGCATCTCCACCTTATTATTCTGAGAAGACTCAGCTCTACAATAAGCCTCATGA AGAGCCTTCCAACTCCCTCATGGCAATTGAATGTCGTGTCTGTGGAGATAAAGCTTCTGG ATTTCACTATGGAGTTCATGCTTGTGAAGGATGCAAGGGTTTCTTCCGGAGAACAATCAG ATTGAAGCTTATCTATGACAGATGTGATCTTAACTGTCGGATCCACAAAAAAAGTAGAAA TAAATGTCAGTACTGTCGGTTTCAGAAATGCCTTGCAGTGGGGATGTCTCATAATGCCAT CAGGTTTGGGCGGATGCCACAGGCCGAGAAGGAGAAGCTGTTGGCGGAGATCTCCAGTGA TATCGACCAGCTGAATCCAGAGTCCGCTGACCTCCGGGCCCTGGCAAAACATTTGTATGA CTCATACATAAAGTCCTTCCCGCTGACCAAAGCAAAGGCGAGGGCGATCTTGACAGGAAA GACAACAGACAAATCACCATTCGTTATCTATGACATGAATTCCTTAATGATGGGAGAAGA TAAAATCAAGTTCAAACACATCACCCCCCTGCAGGAGCAGAGCAAAGAGGTGGCCATCCG CATCTTTCAGGGCTGCCAGTTTCGCTCCGTGGAGGCTGTGCAGGAGATCACAGAGTATGC CAAAAGCATTCCTGGTTTTGTAAATCTTGACTTGAACGACCAAGTAACTCTCCTCAAATA TGGAGTCCACGAGATCATTTACACAATGCTGGCCTCCTTGATGAATAAAGATGGGGTTCT CATATCCGAGGGCCAAGGCTTCATGACAAGGGAGTTTCTAAAGAGCCTGCGAAAGCCTTT TGGTGACTTTATGGAGCCCAAGTTTGAGTTTGCTGTGAAGTTCAATGCACTGGAATTAGA TGACAGCGACTTGGCAATATTTATTGCTGTCATTATTCTCAGTGGAGACCGCCCAGGTTT GCTGAATGTGAAGCCCATTGAAGACATTCAAGACAACCTGCTACAAGCCCTGGAGCTCCA GCTGAAGCTGAACCACCCTGAGTCCTCACAGCTGTTTGCCAAGCTGCTCCAGAAAATGAC AGACCTCAGACAGATTGTCACGGAACACGTGCAGCTACTGCAGGTGATCAAGAAGACGGA GACAGACATGAGTCTTCACCCGCTCCTGCAGGAGATCTACAAGGACTTGTACTAGCAGAG AGTCCTGAGCCACTGCCAACATTTCCCTTCTTCCAGTTGCACTATTCTGAGGGAAAATCT GACACCTAAGAAATTTACTGTGAAAAAGCATTTTAAAAAGAAAAGGTTTTAGAATATGAT CTATTTTATGCATATTGTTTATAAAGACACATTTACAATTTACTTTTAATATTAAAAATT ACCATATTATGAAAAAAAAAAAAAAAA >X05615 GCAGTGGTTTCTCCTCCTTCCTCCCAGGAAGGGCCAGGAAAATGGCCCTGGTCCTGGAGA TCTTCACCCTGCTGGCCTCCATCTGCTGGGTGTCGGCCAATATCTTCGAGTACCAGGTTG ATGCCCAGCCCCTTCGTCCCTGTGAGCTGCAGAGGGAAACGGCCTTTCTGAAGCAAGCAG ACTACGTGCCCCAGTGTGCAGAGGATGGCAGCTTCCAGACTGTCCAGTGCCAGAACGACG GCCGCTCCTGCTGGTGTGTGGGTGCCAACGGCAGTGAAGTGCTGGGCAGCAGGCAGCCAG GACGGCCTGTGGCTTGTCTGTCATTTTGTCAGCTACAGAAACAGCAGATCTTACTGAGTG GCTACATTAACAGCACAGACACCTCCTACCTCCCTCAGTGTCAGGATTCAGGGGACTACG CGCCTGTTCAGTGTGATGTGCAGCATGTCCAGTGCTGGTGTGTGGACGCAGAGGGGATGG AGGTGTATGGGACCCGCCAGCTGGGGAGGCCAAAGCGATGTCCAAGGAGCTGTGAAATAA GAAATCGTCGTCTTCTCCACGGGGTGGGAGATAAGTCACCACCCCAGTGTTCTGCGGAGG GAGAGTTTATGCCTGTCCAGTGCAAATTTGTCAACACCACAGACATGATGATTTTTGATC TGGTCCACAGCTACAACAGGTTTCCAGATGCATTTGTGACCTTCAGTTCCTTCCAGAGGA GGTTCCCTGAGGTATCTGGGTATTGCCACTGTGCTGACAGCCAAGGGCGGGAACTGGCTG AGACAGGTTTGGAGTTGTTACTGGATGAAATTTATGACACCATTTTTGCTGGCCTGGACC TTCCTTCCACCTTCACTGAAACCACCCTGTACCGGATACTGCAGAGACGGTTCCTCGCAG TTCAATCAGTCATCTCTGGCAGATTCCGATGCCCCACAAAATGTGAAGTGGAGCGGTTTA CAGCAACCAGCTTTGGTCACCCCTATGTTCCAAGCTGCCGCCGAAATGGCGACTATCAGG CGGTGCAGTGCCAGACGGAAGGGCCCTGCTGGTGTGTGGACGCCCAGGGGAAGGAAATGC ATGGAACCCGGCAGCAAGGGGAGCCGCCATCTTGTGCTGAAGGCCAATCTTGTGCCTCCG AAAGGCAGCAGGCCTTGTCCAGACTCTACTTTGGGACCTCAGGCTACTTCAGCCAGCACG ACCTGTTCTCTTCCCCAGAGAAAAGATGGGCCTCTCCAAGAGTAGCCAGATTTGCCACAT CCTGCCCACCCACGATCAAGGAGCTCTTTGTGGACTCTGGGCTTCTCCGCCCAATGGTGG AGGGACAGAGCCAACAGTTTTCTGTCTCAGAAAATCTTCTCAAAGAAGCCATCCGAGCAA TTTTTCCCTCCCGAGGGCTGGCTCGTCTTGCCCTTCAGTTTACCACCAACCCAAAGAGAC TCCAGCAAAACCTTTTTGGAGGGAAATTTTTGGTGAATGTTGGCCAGTTTAACTTGTCTG GAGCCCTTGGCACAAGAGGCACATTTAACTTCAGTCAATTTTTCCAGCAACTTGGTCTTG CAAGCTTCTTGAATGGAGGGAGACAAGAAGATTTGGCCAAGCCACTCTCTGTGGGATTAG ATTCAAATTCTTCCACAGGAACCCCTGAAGCTGCTAAGAAGGATGGTACTATGAATAAGC CAACTGTGGGCAGCTTTGGCTTTGAAATTAACCTACAAGAGAACCAAAATGCCCTCAAAT TCCTTGCTTCTCTCCTGGAGCTTCCAGAATTCCTTCTCTTCTTGCAACATGCTATCTCTG TGCCAGAAGATGTGGCAAGAGATTTAGGTGATGTGATGGAAACGGTACTCGACTCCCAGA CCTGTGAGCAGACACCTGAAAGGCTATTTGTCCCATCATGCACGACAGAAGGAAGCTATG AGGATGTCCAATGCTTTTCCGGAGAGTGCTGGTGTGTGAATTCCTGGGGCAAAGAGCTTC CAGGCTCAAGAGTCAGAGATGGACAGCCAAGGTGCCCCACAGACTGTGAAAAGCAAAGGG CTCGCATGCAAAGCCTCATGGGCAGCCAGCCTGCTGGCTCCACCTTGTTTGTCCCTGCTT GTACTAGTGAGGGACATTTCCTGCCTGTCCAGTGCTTCAACTCAGAGTGCTACTGTGTTG ATGCTGAGGGTCAGGCCATTCCTGGAACTCGAAGTGCAATAGGGAAGCCCAAGAAATGCC CCACGCCCTGTCAATTACAGTCTGAGCAAGCTTTCCTCAGGACGGTGCAGGCCCTGCTCT CTAACTCCAGCATGCTACCCACCCTTTCCGACACCTACATCCCACAGTGCAGCACCGATG GGCAGTGGAGACAAGTGCAATGCAATGGGCCTCCTGAGCAGGTCTTCGAGTTGTACCAAC GATGGGAGGCTCAGAACAAGGGCCAGGATCTGACGCCTGCCAAGCTGCTAGTGAAGATCA TGAGCTACAGAGAAGCAGCTTCCGGAAACTTCAGTCTCTTTATTCAAAGTCTGTATGAGG CTGGCCAGCAAGATGTCTTCCCGGTGCTGTCACAATACCCTTCTCTGCAAGATGTCCCAC TAGCAGCACTGGAAGGGAAACGGCCCCAGCCCAGGGAGAATATCCTCCTGGAGCCCTACC TCTTCTGGCAGATCTTAAATGGCCAACTCAGCCAATACCCGGGGTCCTACTCAGACTTCA GCACTCCTTTGGCACATTTTGATCTTCGGAACTGCTGGTGTGTGGATGAGGCTGGCCAAG AACTGGAAGGAATGCGGTCTGAGCCAAGCAAGCTCCCAACGTGTCCTGGCTCCTGTGAGG AAGCAAAGCTCCGTGTACTGCAGTTCATTAGGGAAACGGAAGAGATTGTTTCAGCTTCCA ACAGTTCTCGGTTCCCTCTGGGGGAGAGTTTCCTGGTGGCCAAGGGAATCCGGCTGAGGA ATGAGGACCTCGGCCTTCCTCCGCTCTTCCCGCCCCGGGAGGCTTTCGCGGAGTTTCTGC GTGGGAGTGATTACGCCATTCGCCTGGCGGCTCAGTCTACCTTAAGCTTCTATCAGAGAC GCCGCTTTTCCCCGGACGACTCGGCTGGAGCATCCGCCCTTCTGCGGTCGGGCCCCTACA TGCCACAGTGTGATGCGTTTGGAAGTTGGGAGCCTGTGCAGTGCCACGCTGGGACTGGGC ACTGCTGGTGTGTAGATGAGAAAGGAGGGTTCATCCCTGGCTCACTGACTGCCCGCTCTC TGCAGATTCCACAGTGCCCGACAACCTGCGAGAAATCTCGAACCAGTGGGCTGCTTTCCA GTTGGAAACAGGCTAGATCCCAAGAAAACCCATCTCCAAAAGACCTGTTCGTCCCAGCCT GCCTAGAAACAGGAGAATATGCCAGGCTGCAGGCATCGGGGGCTGGCACCTGGTGTGTGG ACCCTGCATCAGGAGAAGAGTTGCGGCCTGGCTCGAGCAGCAGTGCCCAGTGCCCAAGCC TCTGCAATGTGCTCAAGAGTGGAGTCCTCTCTAGGAGAGTCAGCCCAGGCTATGTCCCAG CCTGCAGGGCAGAGGATGGGGGCTTTTCCCCAGTGCAATGTGACCAGGCCCAGGGCAGCT GCTGGTGTGTCATGGACAGCGGAGAAGAGGTGCCTGGGACGCGCGTGACCGGGGGCCAGC CCGCCTGTGAGAGCCCGCGGTGTCCGCTGCCATTCAACGCGTCGGAGGTGGTTGGTGGAA CAATCCTGTGTGAGACAATCTCGGGCCCCACAGGCTCTGCCATGCAGCAGTGCCAATTGC TGTGCCGCCAAGGCTCCTGGAGCGTGTTTCCACCAGGGCCATTGATATGTAGCCTGGAGA GCGGACGCTGGGAGTCACAGCTGCCTCAGCCCCGGGCCTGCCAACGGCCCCAGCTGTGGC AGACCATCCAGACCCAAGGGCACTTTCAGCTCCAGCTCCCGCCGGGCAAGATGTGCAGTG CTGACTACGCGGGTTTGCTGCAGACTTTCCAGGTTTTCATATTGGATGAGCTGACAGCCC GCGGCTTCTGCCAGATCCAGGTGAAGACTTTTGGCACCCTGGTTTCCATTCCTGTCTGCA ACAACTCCTCTGTGCAGGTGGGTTGTCTGACCAGGGAGCGTTTAGGAGTGAATGTTACAT GGAAATCACGGCTTGAGGACATCCCAGTGGCTTCTCTTCCTGACTTACATGACATTGAGA GAGCCTTGGTGGGCAAGGATCTCCTTGGGCGCTTCACAGATCTGATCCAGAGTGGCTCAT TCCAGCTTCATCTGGACTCCAAGACGTTCCCAGCGGAAACCATCCGCTTCCTCCAAGGGG ACCACTTTGGCACCTCTCCTAGGACACGGTTTGGGTGCTCGGAAGGATTCTACCAAGTCT TGACAAGTGAGGCCAGTCAGGACGGACTGGGATGCGTTAAGTGCCATGAAGGAAGCTATT CCCAAGATGAGGAATGCATTCCTTGTCCTGTTGGATTCTACCAAGAACAGGCAGGGAGCT TGGCCTGTGTCCCATGTCCTGTGGGCAGAACGACCATTTCTGCCGGAGCTTTCAGCCAGA CTCACTGTGTCACTGACTGTCAGAGGAACGAAGCAGGCCTGCAATGTGACCAGAATGGCC AGTATCGAGCCAGCCAGAAGGACAGGGGCAGTGGGAAGGCCTTCTGTGTGGACGGCGAGG GGCGGAGGCTGCCATGGTGGGAAACAGAGGCCCCTCTTGAGGACTCACAGTGTTTGATGA TGCAGAAGTTTGAGAAGGTTCCAGAATCAAAGGTGATCTTCGACGCCAATGCTCCTGTGG CTGTCAGATCCAAAGTTCCTGATTCTGAGTTCCCCGTGATGCAGTGCTTGACAGATTGCA CAGAGGACGAGGCCTGCAGCTTCTTCACCGTGTCCACGACGGAGCCAGAGATTTCCTGTG ATTTCTATGCTTGGACAAGTGACAATGTTGCCTGCATGACTTCTGACCAGAAACGAGATG CACTGGGGAACTCAAAGGCCACCAGCTTTGGAAGTCTTCGCTGCCAGGTGAAAGTGAGGA GCCATGGTCAAGATTCTCCAGCTGTGTATTTGAAAAAGGGCCAAGGATCCACCACAACAC TTCAGAAACGCTTTGAACCCACTGGTTTCCAAAACATGCTTTCTGGATTGTACAACCCCA TTGTGTTCTCAGCCTCAGGAGCCAATCTAACCGATGCTCACCTCTTCTGTCTTCTTGCAT GCGACCGTGATCTGTGTTGCGATGGCTTCGTCCTCACACAGGTTCAAGGAGGTGCCATCA TCTGTGGGTTGCTGAGCTCACCCAGTGTCCTGCTTTGTAATGTCAAAGACTGGATGGATC CCTCTGAAGCCTGGGCTAATGCTACATGTCCTGGTGTGACATATGACCAGGAGAGCCACC AGGTGATATTGCGTCTTGGAGACCAGGAGTTCATCAAGAGTCTGACACCCTTAGAAGGAA CTCAAGACACCTTTACCAATTTTCAGCAGGTTTATCTCTGGAAAGATTCTGACATGGGGT CTCGGCCTGAGTCTATGGGATGTAGAAAAAACACAGTGCCAAGGCCAGCATCTCCAACAG AAGCAGGTTTGACAACAGAACTTTTCTCCCCTGTGGACCTCAACCAGGTCATTGTCAATG GAAATCAATCACTATCCAGCCAGAAGCACTGGCTTTTCAAGCACCTGTTTTCAGCCCAGC AGGCAAACCTATGGTGCCTTTCTCGTTGTGTGCAGGAGCACTCTTTCTGTCAGCTCGCAG AGATAACAGAGAGTGCATCCTTGTACTTCACCTGCACCCTCTACCCAGAGGCACAGGTGT GTGATGACATCATGGAGTCCAATACCCAGGGCTGCAGACTGATCCTGCCTCAGATGCCAA AGGCCCTGTTCCGGAAGAAAGTTATACTGGAAGATAAAGTGAAGAACTTTTACACTCGCC TGCCGTTCCAAAAACTGATGGGGATATCCATTAGAAATAAAGTGCCCATGTCTGAAAAAT CTATTTCTAATGGGTTCTTTGAATGTGAACGACGGTGCGATGCGGACCCATGCTGCACTG GCTTTGGATTTCTAAATGTTTCCCAGTTAAAAGGAGGAGAGGTGACATGTCTCACTCTGA ACAGCTTGGGAATTCAGATGTGCAGTGAGGAGAATGGAGGAGCCTGGCGCATTTTGGACT GTGGCTCTCCTGACATTGAAGTCCACACCTATCCCTTCGGATGGTACCAGAAGCCCATTG CTCAAAATAATGCTCCCAGTTTTTGCCCTTTGGTTGTTCTGCCTTCCCTCACAGAGAAAG TGTCTCTGGAATCGTGGCAGTCCCTGGCCCTCTCTTCAGTGGTTGTTGATCCATCCATTA GGCACTTTGATGTTGCCCATGTCAGCACTGCTGCCACCAGCAATTTCTCTGCTGTCCGAG ACCTCTGTTTGTCGGAATGTTCCCAACATGAGGCCTGTCTCATCACCACTCTGCAAACCC AACTCGGGGCTGTGAGATGTATGTTCTATGCTGATACTCAAAGCTGCACACATAGTCTGC AGGGTCGGAACTGCCGACTTCTGCTTCGTGAAGAGGCCACCCACATCTACCGGAAGCCAG GAATCTCTCTGCTCAGCTATGAGGCATCTGTACCTTCTGTGCCCATTTCCACCCATGGCC GGCTGCTGGGCAGGTCCCAGGCCATCCAGGTGGGTACCTCATGGAAGCAAGTGGACCAGT TCCTTGGAGTTCCATATGCTGCCCCGCCCCTGGCAGAGAGGCACTTCCAGGCACCAGAGC CCTTGAACTGGACAGGCTCCTGGGATGCCAGCAAGCCAAGGGCCAGCTGCTGGCAGCCAG GCACCAGAACATCCACGTCTCCTGGAGTCAGTGAAGATTGTTTGTATCTCAATGTGTTCA TCCCTCAGAATGTGGCCCCTAACGCGTCTGTGCTGGTGTTCTTCCACAACACCATGGACA GGGAGGAGAGTGAAGGATGGCCGGCTATCGACGGCTCCTTCTTGGCTGCTGTTGGCAACC TCATCGTGGTCACTGCCAGCTACCGAGTGGGTGTCTTCGGCTTCCTGAGTTCTGGATCCG GAGAGGTGAGTGGCAACTGGGGGCTGCTGGACCAGGTGGCGGCTCTGACCTGGGTGCAGA CCCACATCCGAGGATTTGGCGGGGACCCTCGGCGCGTGTCCCTGGCAGCAGACCGTGGCG GGGCTGATGTGGCCAGCATCCACCTTCTCACGGCCAGGGCCACCAACTCCCAACTTTTCC GGAGAGCTGTGCTGATGGGAGGCTCCGCACTCTCCCCGGCCGCCGTCATCAGCCATGAGA GGGCTCAGCAGCAGGCAATTGCTTTGGCAAAGGAGGTCAGTTGCCCCATGTCATCCAGCC AAGAAGTGGTGTCCTGCCTCCGCCAGAAGCCTGCCAATGTCCTCAATGATGCCCAGACCA AGCTCCTGGCCGTGAGTGGCCCTTTCCACTACTGGGGTCCTGTGATCGATGGCCACTTCC TCCGTGAGCCTCCAGCCAGAGCACTGAAGAGGTCTTTATGGGTAGAGGTCGATCTGCTCA TTGGGAGTTCTCAGGACGACGGGCTCATCAACAGAGCAAAGGCTGTGAAGCAATTTGAGG AAAGTCGAGGCCGGACCAGTAGCAAAACAGCCTTTTACCAGGCACTGCAGAATTCTCTGG GTGGCGAGGACTCAGATGCCCGCGTCGAGGCTGCTGCTACATGGTATTACTCTCTGGAGC ACTCCACGGATGACTATGCCTCCTTCTCCCGGGCTCTGGAGAATGCCACCCGGGACTACT TTATCATCTGCCCTATAATCGACATGGCCAGTGCCTGGGCAAAGAGGGCCCGAGGAAACG TCTTCATGTACCATGCTCCTGAAAACTACGGCCATGGCAGCCTGGAGCTGCTGGCGGATG TTCAGTTTGCCTTGGGGCTTCCCTTCTACCCAGCCTACGAGGGGCAGTTTTCTCTGGAGG AGAAGAGCCTGTCGCTGAAAATCATGCAGTACTTTTCCCACTTCATCAGATCAGGAAATC CCAACTACCCTTATGAGTTCTCACGGAAAGTACCCACATTTGCAACCCCCTGGCCTGACT TTGTACCCCGTGCTGGTGGAGAGAACTACAAGGAGTTCAGTGAGCTGCTCCCCAATCGAC AGGGCCTGAAGAAAGCCGACTGCTCCTTCTGGTCCAAGTACATCTCGTCTCTGAAGACAT CTGCAGATGGAGCCAAGGGCGGGCAGTCAGCAGAGAGTGAAGAGGAGGAGTTGACGGCTG GATCTGGGCTAAGAGAAGATCTCCTAAGCCTCCAGGAACCAGGCTCTAAGACCTACAGCA AGTGACCAGCCCTTGAGCTCCCCAAAAACCTCACCCGAGGCTGCCCACTATGGTCATCTT TTTCTCTAAAATAGTTACTTACCTTCAATAAAGTATCTACATGCGGTG >X79676 AGATCTCTCCAGATCACACTGTCACGTGTACCTAGCACATCTCGAGAACTCCTTTGGGCC GTCTGGGGCCCGGGAAGGAAGCCTGAGTTCTCAAGATTCCAGGACTGAGAGTGCCAGCTT GTCTCAAAGCCAGGTCAATGGTTTCTTTGCCAGCCATTTAGGTGACCAAACCTGGCAGGA ATCACAGCATGGCAGCCCTTCCCCATCTGTAATATCCAAAGCCACCGAGAAAGAGACTTT CACTGATAGTAACCAAAGCAAAACTAAAAAGCCAGGCATTTCTGATGTAACTGATTACTC AGACCGTGGAGATTCAGACATGGATGAAGCCACTTACTCCAGCAGTCAGGATCATCAAAC ACCAAAACAGGAATCTTCCTCTTCAGTGAATACATCCAACAAGATGAATTTTAAAACTTT TCCTTCATCACCTCCTAGGTCTGGAGATATCTTTGAGGTTGAACTGGCTAAAAATGATAA CAGCTTGGGGATAAGTGTCACGGGAGGTGTGAATACGAGTGTCAGACATGGTGGCATTTA TGTGAAAGCTGTTATTCCCCAGGGAGCAGCAGAGTCTGATGGTAGAATTCACAAAGGTGA TCGCGTCCTAGCTGTCAATGGAGTTAGTCTAGAAGGAGCCACCCATAAGCAAGCTGTGGA AACACTGAGAAATACAGGACAGGTGGTTCATCTGTTATTAGAAAAGGGACAATCTCCAAC ATCTAAAGAACATGTCCCGGTAACCCCACAGTGTACCCTTTCAGATCAGAATGCCCAAGG TCAAGGCCCAGAAAAAGTGAAGAAAACAACTCAGGTCAAAGACTACAGCTTTGTCACTGA AGAAAATACATTTGAGGTAAAATTATTTAAAAATAGCTCAGGTCTAGGATTCAGTTTTTC TCGAGAAGATAATCTTATACCGGAGCAAATTAATGCCAGCATAGTAAGGGTTAAAAAGCT CTTTCCTGGACAGCCAGCAGCAGAAAGTGGAAAAATTGATGTAGGAGATGTTATCTTGAA AGTGAATGGAGCCTCTTTGAAAGGACTATCTCAGCAGGAAGTCATATCTGCTCTCAGGGG AACTGCTCCAGAAGTATTCTTGCTTCTCTGCAGACCTCCACCTGGTGTGCTACCGGAAAT TGATACTGCGCTTTTGACCCCACTTCAGTCTCCAGCACAAGTACTTCCAAACAGCAGTAA AGACTCTTCTCAGCCATCATGTGTGGAGCAAAGCACCAGCTCAGATGAAAATGAAATGTC AGACAAAAGCAAAAAACAGTGCAAGTCCCCATCCAGAAAAGACAGTTACAGTGACAGCAG TGGGAGTGGAGAAGATGACTTAGTGACAGCTCCAGCAAACATATCAAATTCGACCTGGAG TTCAGCTTTGCATCAGACTCTAAGCAACATGGTATCACAGGCACAGAGTCATCATGAAGC ACCAAGAGTCAAGAAGATACCATTTGTACCATGTTTTACTATCCTCAGGAAAAGGCCCAA TAAACCAGAGTTTGAGGACAGTAATCCTTCCCCTCTACCACCGGATATGGCTCCTGGGCA GAGTTATCAACCCCAATCAGAATCTGCTTCCTCTAGTTCGATGGATAAGTATCATATACA TCACATTTCTGAACCAACTAGACAAGAAAACTGGACACCTTTGAAAAATGACTTGGAAAA TCACCTTGAAGACTTTGAACTGGAAGTAGAACTCCTCATTACCCTAATTAAATCAGAAAA AGGAAGCCTGGGTTTTACAGTAACCAAAGGCAATCAGAGAATTGGTTGTTATGTTCATGA TGTCATACAGGATCCAGCCAAAAGTGATGGAAGGCTAAAACCTGGGGACCGGCTCATAAA GGTTAATGATACAGATGTTACTAATATGACTCATACAGATGCAGTTAATCTGCTCCGGGG ATCCAAAACAGTCAGATTAGTTATTGGACGAGTTCTAGAATTACCCAGAATACCAATGTT GCCTCATTTGCTACCGGACATAACACTAACGTGCAACAAAGAGGAGTTGGGTTTTTCCTT ATGTGGAGGTCATGACAGCCTTTATCAAGTGGTATATATTAGTGATATTAATCCAAGGTC CGTCGCAGCCATTGAGGGTAATCTCCAGCTATTAGATGTCATCCATTATGTGAACGGAGT CAGCACACAAGGAATGACCTTGGAGGAAGTTAACAGAGCATTAGACATGTCACTTCCTTC ATTGGTATTGAAAGCAACAAGAAATGATCTTCCAGTGGTCCCCAGCTCAAAGAGGTCTGC TGTTTCAGCTCCAAAGTCAACCAAAGGCAATGGTTCCTACAGTGTGGGGTCTTGCAGCCA GCCTGCCCTCACTCCTAATGATTCATTCTCCACGGTTGCTGGGGAAGAAATAAATGAAAT ATCGTACCCCAAAGGAAAATGTTCTACTTATCAGATAAAGGGATCACCAAACTTGACTCT GCCCAAAGAATCTTATATACAAGAAGATGACATTTATGATGATTCCCAAGAAGCTGAAGT TATCCAGTCTCTGCTGGATGTTGTGGATGAGGAGTCCCAGAATCTTTTAAACGAAAATAA TGCAGCAGGATACTCCTGTGGTCCAGGTACATTAAAGATGAATGGGAAGTTATCAGAAGA GAGAACAGAAGATACAGACTGCGATGGTTCACCTTTACCTGAGTATTTTACTGAGGCCAC CAAAATGAATGGCTGTGAAGAATATTGTGAAGAAAAAGTAAAAAGTGAAAGCTTAATTCA GAAGCCACAAGAAAAGAAGACTGATGATGATGAAATAACATGGGGAAATGATGAGTTGCC AATAGAGAGAACAAACCATGAAGATTCTGATAAAGATCATTCCTTTCTGACAAACGATGA GCTCGCTGTACTCCCTGTCGTCAAAGTGCTTCCCTCTGGTAAATACACGGGCGCCAACTT AAAATCAGTCATTCGAGTCCTGCGGGTTGCTAGATCAGGAATTCCTTCTAAGGAGCTGGA GAATCTTCAAGAATTAAAACCTTTGGATCAGTGTCTAATTGGGCAAACTAAGGAAAACAG AAGGAAGAACAGATATAAAAATATACTTCCCTATGATGCTACAAGAGTGCCTCTTGGAGA TGAAGGTGGCTATATCAATGCCAGCTTCATTAAGATACCAGTTGGGAAAGAAGAGTTCGT TTACATTGCCTGCCAAGGACCACTGCCTACAACTGTTGGAGACTTCTGGCAGATGATTTG GGAGCAAAAATCCACAGTGATAGCCATGATGACTCAAGAAGTAGAAGGAGAAAAAATCAA ATGCCAGCGCTATTGGCCCAACATCCTAGGCAAAACAACAATGGTCAGCAACAGACTTCG ACTGGCTCTTGTGAGAATGCAGCAGCTGAAGGGCTTTGTGGTGAGGGCAATGACCCTTGA AGATATTCAGACCAGAGAGGTGCGCCATATTTCTCATCTGAATTTCACTGCCTGGCCAGA CCATGATACACCTTCTCAACCAGATGATCTGCTTACTTTTATCTCCTACATGAGACACAT CCACAGATCAGGCCCAATCATTACGCACTGCAGTGCTGGCATTGGACGTTCAGGGACCCT GATTTGCATAGATGTGGTTCTGGGATTAATCAGTCAGGATCTTGATTTTGACATCTCTGA TTTGGTGCGCTGCATGAGACTACAAAGACACGGAATGGTTCAGACAGAGGATCAATATAT TTTCTGCTATCAAGTCATCCTTTATGTCCTGACACGTCTTCAAGCAGAAGAAGAGCAAAA ACAGCAGCCTCAGCTTCTGAAGTGACATGAAAAGAGCCTCTGGATGCATTTCCATTTCTC TCCTTAACCTCCAGCAGACTCCTGCTCTCTATCCAAAATAAAGATCACAGAGCAGCAAGT TCATACAACATGCATGTTCTCCTCTATCTTAGAGGGGTATTCTTCTTGAAAATAAAAAAT ATTGAAATGCTGTATTTTTACAGCTACTTTAACCTATGATAATTATTTACAAAATTTTAA CACTAACCAAACAATGCAGATCTTAGGGATGATTAAAGGCAGCATTTGATGATAGCAGAC ATTGTTACAAGGACATGGTGAGTCTATTTTTAATGCACCAATCTTGTTTATAGCAAAAAT GTTTTCCAATATTTTAATAAAGTAGTTATTTATAGGCATACTTGAAACCAGTATTTAAGC TTTAAATGACAGTAATATTGGCATAGAAAAAAGTAGCAAATGTTTACTGTATCAATTTCT AATGTTTACTATATAGAATTTCCTGTAATATATTTATATACTTTTTCATGAAAATGGAGT TATCAGTTATCTGTTTGTTACTGCATCATCTGTTTGTAATCATTATCTCACTTTGTAAAT AAAAACACACCTTAAAACATGAACAAGCCAAAAAAAAAAAAAAA >NM_006142 CCAGGCAGCAGTTAGCCCGCCGCCCGCCTGTGTGTCCCCAGAGCCATGGAGAGAGCCAGT CTGATCCAGAAGGCCAAGCTGGCAGAGCAGGCCGAACGCTATGAGGACATGGCAGCCTTC CCAGGCAGCAGTTAGCCCGCCGCCCGCCTGTGTGTCCCCAGAGCCATGGAGAGAGCCAGT CTGATCCAGAAGGCCAAGCTGGCAGAGCAGGCCGAACGCTATGAGGACATGGCAGCCTTC ATGAAAGGCGCCGTGGAGAAGGGCGAGGAGCTCTCCTGCGAAGAGCGAAACCTGCTCTCA GTAGCCTATAAGAACGTGGTGGGCGGCCAGAGGGCTGCCTGGAGGGTGCTGTCCAGTATT GAGCAGAAAAGCAACGAGGAGGGCTCGGAGGAGAAGGGGCCCGAGGTGCGTGAGTACCGG GAGAAGGTGGAGACTGAGCTCCAGGGCGTGTGCGACACCGTGCTGGGCCTGCTGGACAGC CACCTCATCAAGGAGGCCGGGGACGCCGAGAGCCGGGTCTTCTACCTGAAGATGAAGGGT GACTACTACCGCTACCTGGCCGAGGTGGCCACCGGTGACGACAAGAAGCGCATCATTGAC TCAGCCCGGTCAGCCTACCAGGAGGCCATGGACATCAGCAAGAAGGAGATGCCGCCCACC AACCCCATCCGCCTGGGCCTGGCCCTGAACTTTTCCGTCTTCCACTACGAGATCGCCAAC AGCCCCGAGGAGGCCATCTCTCTGGCCAAGACCACTTTCGACGAGGCCATGGCTGATCTG CACACCCTCAGCGAGGACTCCTACAAAGACAGCACCCTCATCATGCAGCTGCTGCGAGAC AACCTGACACTGTGGACGGCCGACAACGCCGGGGAAGAGGGGGGCGAGGCTCCCCAGGAG CCCCAGAGCTGAGTGTTGCCCGCCACCGCCCCGCCCTGCCCCCTCCAGTCCCCGCCCTGC CGAGAGGACTAGTATGGGGTGGGAGGCCCCACCCTTCTCCCCTAGGCGCTGTTCTTGCTC CAAAGGGCTCCGTGGAGAGGGACTGGCAGAGCTGAGGCCACCTGGGGCTGGGGATCCCAC TCTTCTTGCAGCTGTTGAGCGCACCTAACCACTGGTCATGCCCCCACCCCTGCTCTCCGC ACCCGCTTCCTCCCGACCCCAGGACCAGGCTACTTCTCCCCTCCTCTTGCCTCCCTCCTG CCCCTGCTGCCTCTTGATTCGTAGGAATTGAGGAGTGTCTCCGCCTTGTGGCTGAGAACT GGACAGTGGCAGGGGCTGGAGATGGGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGCGCG CGCGCCAGTGCAAGACCGAGACTGAGGGAAAGCATGTCTGCTGGGTGTGACCATGTTTCC TCTCAATAAAGTTCCCCTGTGACACTCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAA >AW445220 CGGCCGCGAGGCCCTGAGATGAGGCTCCAAAGACCCCGACAGGCCCCGGCGGGTGGGAGG CGCGCGCCCCGGGGCGGGCGGGGCTCCCCCTACCGGCCAGACCCGGGGAGAGGCGCGCGG AGGCTGCGAAGGTTCCAGAAGGGCGGGGAGGGGGCGCCGCGCGCTGACCCTCCCTGGGCA CCGCTGGGGACGATGGCGCTGCTCGCCTTGCTGCTGGTCGTGGCCCTACCGCGGGTGTGG ACAGACGCCAACCTGACTGCGAGACAACGAGATCCAGAGGACTCCCAGCGAACGGACGAG GGTGACAATAGAGTGTGGTGTCATGTTTGTGAGAGAGAAAACACTTTCGAGTGCCAGAAC CCAAGGAGGTGCAAATGGACAGAGCCATACTGCGTTATAGCGGCCGTGAAAATATTTCCA CGTTTTTTCATGGTTGCGAAGCAGTGCTCCGCTGGTTGTGCAGCGATGGAGAGACCCAAG CCAGAGGAGAAGCGGTTTCTCCTGGAAGAGCCCATGCCCTTCTTTTACCTCAAGTGTTGT AAAATTCGCTACTGCAATTTAGAGGGGCCACCTATCAACTCATCAGTGTTCAAAGAATAT GCTGGGAGCATGGGTGAGAGCTGTGGTGGGCTGTGGCTGGCCATCCTCCTGCTGCTGGCC TCCATTGCAGCCGGCCTCAGCCTGTCTTGAGCCACGGGACTGCCACAGACTGAGCCTTCC GGAGCATGGACTCGCTCCAGACCGTTGTCACCTGTTGCATTAAACTTGTTTTCTGTTGAT TAAAAAAAAAAAAAAAAA >AK025701 TTCAGCCGGAACGTTACTCCGTGTCCACCCGGATCGTGTGTGTGATCGAGGCTGCGGAGA CGCCTTTCACGGGGGGTGTCGAGGTGGACGTCTTCGGGAAACTGGGCCGTTCGCCTCCCA ATGTCCAGTTCACCTTCCAACAGCCCAAGCCTCTCAGTGTGGAGCCGCAGCAGGGACCGC AGGCGGGCGGCACCACACTGACCATCCACGGCACCCACCTGGACACGGGCTCCCAGGAGG ACGTGCGGGTGACCCTCAACGGCGTCCCGTGTAAAGTGACGAAGTTTGGGGCGCAGCTCC AGTGTGTCACTGGCCCCCAGGCGACACGGGGCCAGATGCTTCTGGAGGTCTCCTACGGGG GGTCCCCCGTGCCCAACCCCGGCATCTTCTTCACCTACCGCGAAAACCCCGTACTGCGAG CCTTCGAGCCGCTACGAAGCTTTGCCAGTGGTGGCCGCAGCATCAACGTCACGGGTCAGG GCTTCAGCCTGATCCAGAGGTTTGCCATGGTGGTCATCGCGGAGCCCCTGCAGTCCTGGC AGCCGCCGCGGGAGGCTGAATCCCTGCAGCCCATGACGGTGGTGGGTACAGACTACGTGT TCCACAATGACACCAAGGTCGTCTTCCTGTCCCCGGCTGTGCCTGAGGAGCCAGAGGTCT ACAACCTCACGGTGCTGATCGAGATGGACGGGCACCGTGCCCTGCTCAGAACAGAGGCCG GGGCCTTCGAGTACGTGCCTGACCCCACCCTTGAGAACTTCACAGGTGGCGTCAAGAAGC AGGTCAACAAGCTCATCCACGCCCGGGGCACCAATCTGAACAAGGCGATGACGCTGCAGG AGGCCGAGGCCTTCGTGGGTGCCGAGCGCTGCACCATGAAGACGCTGACGGAGACCGACC TGTACTGTGAGCCCCCGGAGGTGCAGCCCCCGCCCAAGCGGCGGCAGAAACGAGACACCA CACACAACCTGCCCGAGTTCATTGTGAAGTTCGGCTCTCGCGAGTGGGTGCTGGGCCGCG TGGAGTACGACACACGGGTGAGCGACGTGCCGCTCAGCCTCATCTTGCCGCTGGTCATCG TGCCCATGGTGGTCGTCATCGCGGTGTCTGTCTACTGCTACTGGAGGAAGAGCCAGCAGG CCGAACGAGAGTATGAGAAGATCAAGTCCCAGCTGGAGGGCCTGGAGGAGAGCGTGCGGG ACCGCTGCAAGAAGGAATTCACAGACCTGATGATCGAGATGGAGGACCAGACCAACGACG TGCACGAGGCCGGCATCCCCGTGCTGGACTACAAGACCTACACCGACCGCGTCTTCTTCC TGCCCTCCAAGGACGGCGACAAGGACGTGATGATCACCGGCAAGCTGGACATCCCCGAGC CGCGGCGGCCGGTGGTGGAGCAGGCCCTCTACCAGTTCTCCAACCTGCTGAACAGCAAGT CTTTCCTCATCAATTTCATCCACACCCTGGAGAACCAGCGGGAGTTCTCGGCCCGCGCCA AGGTCTACTTCGCGTCCCTGCTGACGGTGGCGCTGCACGGGAAACTGGAGTACTACACGG ACATCATGCACACGCTCTTCCTGGAGCTCCTGGAGCAGTACGTGGTGGCCAAGAACCCCA AGCTGATGCTGCGCAGGTCTGAGACTGTGGTGGAGAGGATGCTGTCCAACTGGATGTCCA TCTGCCTGTACCAGTACCTCAAGGACAGTGCCGGGGAGCCCCTGTACAAGCTCTTCAAGG CCATCAAACATCAGGTGGAAAAGGGCCCGGTGGATGCGGTACAGAAGAAGGCCAAGTACA CTCTCAACGACACGGGGCTGCTGGGGGATGATGTGGAGTACGCACCCCTGACGGTGAGCG TGATCGTGCAGGACGAGGGAGTGGACGCCATCCCGGTGAAGGTCCTCAACTGTGACACCA TCTCCCAGGTCAAGGAGAAGATCATTGACCAGGTGTACCGTGGGCAGCCCTGCTCCTGCT GGCCCAGGCCAGACAGCGTGGTCCTGGAGTGGCGTCCGGGCTCCACAGCGCAGATCCTGT CGGACCTGGACCTGACGTCACAGCGGGAGGGCCGGTGGAAGCGCGTCAACACCCTTATGC ACTACAATGTCCGGGATGGAGCCACCCTCATCCTGTCCAAGGTGGGGGTCTCCCAGCAGC CGGAGGACAGCCAGCAGGACCTGCCTGGGGAGCGCCATGCCCTCCTGGAGGAGGAGAACC GGGTGTGGCACCTGGTGCGGCCGACCGACGAGGTGGACGAGGGCAAGTCCAAGAGAGGCA GCGTGAAAGAGAAGGAGCGGACGAAGGCCATCACCGAGATCTACCTGACGCGGCTGCTCT CAGTCAAGGGCACACTGCAGCAGTTTGTGGACAACTTCTTCCAGAGCGTGCTGGCGCCTG GGCACGCGGTGCCACCTGCAGTCAAGTACTTCTTCGACTTCCTGGACGAGCAGGCAGAGA AGCACAACATCCAGGATGAAGACACCATCCACATCTGGAAGACGAACAGTTTACCGCTCC GGTTCTGGGTGAACATCCTCAAGAACCCCCACTTCATCTTTGACGTGCATGTCCACGAGG TGGTGGACGCCTCGCTGTCAGTCATCGCGCAGACCTTCATGGATGCCTGCACGCGCACGG AGCATAAGCTGAGCCGCGATTCTCCCAGCAACAAGCTGCTGTACGCCAAGGAGATCTCCA CCTACAAGAAGATGGTGGAGGATTACTACAAGGGGATCCGGCAGATGGTGCAGGTCAGCG ACCAGGACATGAACACACACCTGGCAGAGATTTCCCGGGCGCACACGGACTCCTTGAACA CCCTCGTGGCACTCCACCAGCTCTACCAATACACGCAGAAGTACTATGACGAGATCATCA ATGCCTTGGAGGAGGATCCTGCCGCCCAGAAGACGCAGCTGGCCTTCCGCCTGCAGCAGA TTGCCGCTGCACTGGAGAACAAGGTCACTGACCTCTGACCTACAATCTCCAGTGCTGCCT TGGGACATAGGTACCTGAGGTACCTGAGAGCCCCTCAGGGGAGGAGGCCGAGTGGCTGTG GCTGAGGCCCCCACCCTCCCCTGGAACGCGCCCCAAGCCGGAGTGGGTGCAGCCGGAACC CGCCCAGCGTCTAGACTGTAGCATCTTCCTCTGAGCAATACCGCCGGGCACCGCACCAGC ACCAGCCCCAGCCCCAGCTCCCTCCGGCCGCAGAACCAGCATCGGGTGTTCACTGTCGAG TCTCGAGTGATTTGAAAATGTGCCTTACGCTGCCACGCTGGGGGCAGCTGGCCTCCGCCT CCGCCCACGCACCAGCAGCCGCCTCCATGCCCTAGGTTGGGCCCCTGGGGGATCTGAGGG CCTGTGGCCCCCAGGGCAAGTTCCCAGATCCTATGTCTGTCTGTCCACCACGAGATGGGA GGAGGAGAAAAAGCGGTACGATGCCTTCCTGACCTCACCGGCCTCCCCAAGGGTGCCGGC ACTCTGGGTGGACTCACGGCTGCTGGGCCCCACGTCAAAGGTCAAGTGAGACGTAGGTCA AGTCCTACGTCGGGGCCCAGACATCCTGGGGTCCTGGTCTGTCAGACAGGCTGCCCTAGA GCCCCACCCAGTCCGGGGGGACTGGGAGCAGTTCCAAGACCACCCCACCCCTTTTTGTAA ATCTTGTTCATTGTAAATCAAATACAGCGTCTTTTTCACTCCGAAAAAAAAAAAAAAAAA AAAAAA >NM_033229 GATGTGGGCACGCCTCAGAGCCAGAAGTTTATGGCTCCCACCTGCTCAATCTGACAGGAA GCTTCTGCTCCCCAGTTCTCCCCAGCCACTGTGGTCTACAGATTCCAGGAAACCCATCCC CCTGTGACCTCAGGGTGTGCTCTGTTCTCCACCCTAGGGACCAGAAGGAGCCAGGAGTAA AGAACTGGCTTACTTGGCCGCCACTGGGAAATTCTGGGTAATTCGAGACGCCCTGGAATT TGGACCCACTCCGCTGATAGGTGGTGGGCAGGGTTCTAGGGAACACAAGAGGCGGAGCCA GGTGGCTTCCCTGTGCTGGCATTCTTGGCTCTCTCTCTCTCTCTTTCTCTCTCTCTGTCT CTCTCTCTCTCTCTGTCTCTCAGCCTTGAAGCCGTTTCCCTCTGCGATTCATGTAAGTGT GACTCGATTTCAGGGAAAGGGAACTCGCGTGGGCTGAGGAGACCGGAGTGGACGGGCTGG GGAAGGCACCGTGATGCCCGCAACCCCGTCCCTGAAGGTGGTCCATGAGCTGCCTGCCTG TACCCTCTGTGCGGGGCCGCTGGAGGATGCGGTGACCGTTCCCTGTGGACACACCTTCTG CCGGCTCTGCCTCCCCGCGCTCTCCCAGATGGGGGCCCAATCCTCGGGCAAGATCCTGCT CTGCCCGCTCTGCCAAGAGGAGGAGCAGGCAGAGACTCCCATGGCCCCTGTGCCCCTGGG CCCGCTGGGAGAAACTTACTGCGAGGAGCACGGCGAGAAGATCTACTTCTTCTGCGAGAA CGATGCCGAGTTCCTCTGTGTGTTCTGCAGGGAGGGTCCCACGCACCAGGCGCACACCGT GGGGTTCCTGGACGAGGCCATTCAGCCCTACCGGGATCGTCTCAGGAGTCGACTGGAAGC TCTGAGCACGGAGAGAGATGAGATTGAGGATGTAAAGTGTCAAGAAGACCAGAAGCTTCA AGTGCTGCTGACTCAGATCGAAAGCAAGAAGCATCAGGTGGAAACAGCTTTTGAGAGGCT GCAGCAGGAGCTGGAGCAGCAGCGATGTCTCCTGCTGGCCAGGCTGAGGGAGCTGGAGCA GCAGATTTGGAAGGAGAGGGATGAATATATCACAAAGGTCTCTGAGGAAGTCACCCGGCT TGGAGCCCAGGTCAAGGAGCTGGAGGAGAAGTGTCAGCAGCCAGCAAGTGAGCTTCTACA AGATGTCAGAGTCAACCAGAGCAGGTGTGAGATGAAGACTTTTGTGAGTCCTGAGGCCAT TTCTCCTGACCTTGTCAAGAAGATCCGTGATTTCCACAGGAAAATACTCACCCTCCCAGA GATGATGAGGATGTTCTCAGAAAACTTGGCGCATCATCTGGAAATAGATTCAGGGGTCAT CACTCTGGACCCTCAGACCGCCAGCCGGAGCCTGGTTCTCTCGGAAGACAGGAAGTCAGT GAGGTACACCCGGCAGAAGAAGAGCCTGCCAGACAGCCCCCTGCGCTTCGACGGCCTCCC GGCGGTTCTGGGCTTCCCGGGCTTCTCCTCCGGGCGCCACCGCTGGCAGGTTGACCTGCA GCTGGGCGACGGCGGCGGCTGCACGGTGGGGGTGGCCGGGGAGGGGGTGAGGAGGAAGGG AGAGATGGGACTCAGCGCCGAGGACGGCGTCTGGGCCGTGATCATCTCGCACCAGCAGTG CTGGGCCAGCACCTCCCCGGGCACCGACCTGCCGCTGAGCGAGATCCCGCGCGGCGTGAG AGTCGCCCTGGACTACGAGGCGGGGCAGGTGACCCTCCACAACGCCCAGACCCAGGAGCC CATCTTCACCTTCACTGCCTCTTTCTCCGGCAAAGTCTTCCCTTTCTTTGCCGTCTGGAA AAAAGGTTCCTGCCTTACGCTGAAAGGCTGAAGTGGGGCGCGCGAAGGGCGGCGAAGCGG AGACGGCGGCTCTCCGGGATCCAGCTCCGCCCCTGGCCAGTGTGCGGCCCGGGGGCTCCC TGTGCCCGCGTGAGGCGAGAGAACAGGGGACTTGAGTCTCGAACAGCGGTTGTTTTTACT TTATTTATCTTAGGCCCTCAGCTCCCTGACGTCCTGAGCCTCCCTGTGACGCTCTGGCCT TCTCTGCACCTCAGAGTGCAGAACCACAGACGGCTTCGGCTGTGCCTAGGGCAACAGCCA ACCTAGGAGCCAGCGGGCTTTCGGGGAAAAAAAAGAAAAAGACATCTAAAATAAAATGTT TAAACTGTTTCAAAATAAAAAAAAAAAAAAAAAAA >AV656862 TTTATACATTCTAAATCTCCCCAGTTTCTTTGGGGCTGGAAGATGCAACTTCCATTTAAT AGAAACTTTGAAATCTTGGGGTAAGGGAGCAGTGGGGGGACTAGGGAGAAGGATAAGAAA TAGAATTATTGAAAAGCCCCCACCAGGGACCTTCCTGGCCAGAATATGCAGAGTAATTCC TGCTGGCTTCACCTTTGAAAGTCCCTCGAAACTATGCAGATGAAACTGAGTCTGTTTTTG ATATTGTCAGATGTATTCTACCTTGGAAGTCCCAACACCTAAACTGGAATTCTTGTATTT ACATCTCCTCCACTGTCCCCCACACCACCCCTCAATTCCTGCTGCCCCTGCTAATGTTAA GCATTTTTCTCTTGTTATCATCAGGTTCACATTAAAAACAGATACTTACAAACTGACTTG AAGCACAGATACTTTTACGAATGTGATAAAATATTTTCTTAAGAAAAGGAAAGAGGATGT GGGTCAAATAAAACACCGCATGGATGTTGATTGGTGAATACTGGTGTAAGAAAAGGGAGC TCAGGAATTTTTATTACTGTATTTGTAAATGAGTTTGAAGGAATTTGTAAATGCCACTGG TACATTTTTAAGGTGACACATTTGCTCCTTATAAAGTTATTAAAAATTACAGGGTAAGCT TAAATGACGTTTGCCAGTAGTTTTACTTTATATAATCAATATTGATATTGTTGCTGAACT ATGTAACTTTATGATGCATTTTTCAGTCCCTTTTCAGAGCAAATGCTTTTGCAATGGTAG TAATGTTTAGTTTAAATTGACTTAATAAATTATTACCTGAGCAAAAAAAAAAAAAAAAAA AAAAAAAAAATAAAAAAAAAAAAAAAAAAAAAAAAAAAAATAATAAAAAAAAAAAAAACA AACAAATCAATAAAACTTAAACAAAAAAAAAATAAAAAAAAA >AI499593 GCAGAGATCGCCACATCGTCGGACAAGGTCAAGGACGGGGGCGGCGGGAACGAGGGCTCT CCATGCCCACCGTGTCCCGGGCCCATAGCCGGGCAAGCCCTAGGAGGCAGCCGGGCGTCG CCGGCCCCGGCGCCGTCACGCTCGCCCTCGGCGCAGTGTCCTTTTCCAGGCGGGACGGTG CTGTCCCGGCCTCTCTACTACACCGCGCCCTTCTATCCCGGCTACACGAACTATGGCTCC TTCGGACACCTTCATGGCCACCCGGGGCCGGGGCCGGGCCCCACACCCGGTCCGGGGTCT CATTTCAATGGATTAAACCAGACCGTGTTGAACCGAGCGGACGCTTTGGCTAAAGACCCG AAAATGTTGCGGAGCCAGTCTCAGCTAGACCTGTGCAAAGACTCTCCCTATGAATTGAAG AAAGGTATGTCCGACATTTAACGCGGGCTGCGTCGGTCCCGGACTTTTCTAATTTATTAA AAACATGGCCTTGGCAGTTATTTTTCCATCACCGAGAGAGAGAGACAGAGAGAGAAAATA AACTACCCCTCCTATTCAGAAGTTTATAGTTTATGGAGATGGATGACATAAAAATGTAAA CATCTCCACACACACAAAAAAATGTCTTAACCAACCGAAAAGAAAAATTAAAAAAGGATT TGTATTAAATCTTATTCTGTATATTTAATGTAGCATTTTTGTATTTAAATTGATAATTCA ATATCTTTGAAGTAAATTATGAAATCAAGACACCTGTACAGGCATTTAATGTTTTTTTGT AATATAAATATATACATTTGTGTTTCCCCCAAAACTGTTTCATAGTTAAAAAATACAAGT TTAATTTAATTTTTTACACCTATTGATTCTGCTGGGTATGAGCTAAAGTATTACGGAAAG GAAACAGGTTATACTCTTAGATTTAAAAAGTGAAAGAAACTGCAGGCGCCTTTGTAAAAT GCAAAATATTTAATTAAAAGAGATTTTAACATAATGAGAGCCACTCATTACTTTTTAGAA GCCTCAATAAACTGTCCATTGCCTTGGTCAAAAAAAAAAAAAAAAAAAAA >AI952953 ATATCCAAGAAATTTGGACACCTATACCTACAGAATAATGAAATAGAAAAGATGAATCTN ACAGTGATGTGTCCTTCTATTGACCCACTACATTACCACCATTTAACATACATTCGTGTG GACCAAAATAAACTAAAAGAACCAATAAGCTCATACATCTTCTTCTGCTTCCCTCATATA CACACTATTTATTATGGTGAACAACGAAGCACTAATGGTCAAACAATACAACTAAAGACC CAAGTTTTCAGGAGATTTCCAGATGATGATGATGAAAGTGAAGATCACGATGATCCTGAC AATGCTCATGAGAGCCCAGAACAAGAAGGAGCAGAAGGGCACTTTGACCTTCATTATTAT GAAAATCAAGAATAGCAAGAAACTATATAGGTATACACTTACGACTTCACAAAACCTATA CTTAATATAGTAAATCTAAGTAAACATGTATTACTCAAAGTAATATATTTAGAATTATGT ATTAGTATAAGATCAGAATTGAATTTAAGTTGTTGGTGACATCTGCATCATTTCATAGGA TTAGAACTTACTCAAAATAATGTAAATCTTTAAAAATATAAATTAGAATGACAAGTGGGA ATCATAAATTAAACGTTAATGGTTTCTTATGCTCTTTTTAAATATAGAAATATCATGTTA AAAAAAAA >AK025470 ATGATTGCAACAGTGGATTTAAAAGTCAATGAATATGAGAAAAACCAAAAATGGCTTGAG ATCCTAAATAAGATTGAAAACAAAACATACACGAAGCTCAAAAATGGACATGTGTTTAGG AAGCAGGCACTGATGAGTGAAGAAAGGACTCTGTTATATGATGGCCTTGTTTACTGGAAA ACTGCTACAGGTCGTTTCAAAGATATCCTAGCTCTACTTCTAACTGATGTGCTGCTCTTT TTACAAGAAAAAGACCAGAAATACATCTTTGCAGCCGTTGATCAGAAGCCATCAGTTATT TCCCTTCAAAAGCTTATTGCTAGAGAAGTTGCTAATGAGGAGAGAGGAATGTTTCTGATC AGTGCTTCATCTGCTGGTCCTGAGATGTATGAAATTCACACCAATTCCAAGGAGGAACGC AATAACTGGATGAGACGGATCCAGCAGGCTGTAGAAAGTTGTCCTGAAGAAAAAGGGGGA AGGACAAGTGAATCTGATGAAGACAAGAGGAAAGCTGAAGCCAGAGTGGCCAAAATTCAG CAATGTCAAGAAATACTCACTAACCAAGACCAACAAATTTGTGCGTATTTGGAGGAGAAG CTGCATATCTATGCTGAACTTGGAGAACTGAGCGGATTTGAGGACGTCCATCTAGAGCCC CACCTCCTTATTAAACCTGACCCAGGCGAGCCTCCCCAGGCAGCCTCATTACTGGCAGCA GCACTGAAAGAAGCATTAGTCACAGGAGGGAGAGAAGGAAGAGGCTGTTCGGATGTGGAT CCCGGGATCCAGGGTGTGGTAACCGACTTGGCCGTCTCTGATGCAGGGGAGAAGGTGGAA TGTAGAAATTTTCCAGGTTCTTCACAATCAGAGATTATACAAGCCATACAGAATTTAACC CGTCTCTTATACAGCCTTCAGGCCGCCTTGACCATTCAGGACAGCCACATTGAGATCCAC AGGCTGGTTCTCCAGCAGCAGGAGGGCCTGTCTCTCGGCCACTCTATCCTCCGAGGCGGC CCCTTGCAGGACCAGAAGTCTCGCGACGCGGACAGGCAGCATGAGGAGCTGGCCAATGTG CACCAGCTTCAGCACCAGCTCCAGCAGGGGCAGCGGCGCTGGCTGCGCAGGTGTGAGCAG CAGCAGCGGGCGCAGGCGACCAGGGAGAGCTGGCTGCAGGAGCGGGAGCGGGAGTGCCAG TCGCAGGAGGAGCTGCTGCTGCGGAGCCGGGGCGAGCTGGACCTCCAGCTCCAGGAGTAC CAGCACAGCCTGGAGCGGCTGAGGGAGGGCCAGCGCCTGGTGGAGAGGGAGCAGGCGAGG ATGCGGGCCCAGCAGAGCCTGCTGGGCCACTGGAAGCACGGCCGGCAGAGGAGCCTGTCC GCGGTGCTCCTTCCGGGTGGCCCCGAGGTAATGGAACTTAATCGATCTGAGAGTTTATGT CATGAAAACTCATTCTTCATCAATGAAGCTTTAGTACAAATGTCATTTAACACTTTCAAC AAACTGAATCCATCAGTTATCCATCAGGATGCCACTTACCCTACAACTCAATCTCATTCT GACTTGGTGAGGACTAGTGAACATCAAGTAGACCTCAAGGTGGACCCTTCTCAGCCTTCG AATGTCAGTCACAAACTGTGGACAGCCGCTGGTTCCGGCCATCAGATACTTCCTTTCCAT GAAAGCAGCAAGGATTCTTGTAAAAATGGCTCCAGTATGACAAAGTGCAGTTGTACGTTG ACATCTCCCCCGGGACTGTGGACTGGAACCACATCTACTTTGAAGGATTTGGACACCTCC CACACTGAGTCCCCAACCCCCCATGACTCAAATTCACACCGCCCTCAACTGCAGGCGTTT ATAACAGAAGCAAAGCTAAATCTACCGACAAGGACAATGACCAGACAAGATGGGGAAACT GGAGATGGAGCCAAAGAAAATATTGTTTACCTCTAATTGTGTTGTCATTTTTCCAAACAA AACAAAACACTGGCACTTTTGGGAGAAACTTTTTGTCTCCATTCCTTATGTATGTGTGAT TGTCTGTGTCCAAATTGCTTTAAGAATAATATTTAATATTTCCTGGAAGCTCATTTTTTT GGCATGAGTCTAATTAAATTATTGAAAGCCACCCTGTTTGTATAATCTTTAACTTATCAA ATCTAATTTCAGATTTCTGGAGGAGAAACTAACTTGAATAAGCAGGACTATTTTAAAAGT TGTTTTGACGCTAGAGTAAAATTCCATGTCACATTTTCTACCCAATCATCTGGATTTCAA GATTCCTTTTAAGATCTCAATGAAGCAATTTGGATTTAAAGAGTGGTATTCACAAGGGGT GAACTTTCACAGTCAGGGCAGTTGCCTCAGTGCCCACATAGGCAGAGGAGGATGTGGGAA AGGGCTTTTCTCAGCTAGTTTTTGTGTGCTCATTTCTTCTGGGAGCATTAAAAGTGGTGA TCTGTTACAGTCACTATTCAACTGGGCACGTGTTGTGATTGGTCAGTCACTGAGCCAGGG ATACAGTCCGGACTTGCTTAGTACCTAAGCCTAATGCTGGTGGGGTTTCAAGACATGGTT CAGCATCATCTTTTAACAAGGCCCAGAGGCCCAGAGCCCGCATCAAGTCATTTTGATGTA AATAGTGAACTTTGTTAGAGCCCTCACTTCTATCAATCAGCTGTCCTGTCCCTGCCAGCA CCTGGAGCACCAACTACCACTCCCTGGAAAGAACCCTTCCCTGCAGTTTTTTAAGGACAA AACTGCCCACTCCTCATTAAGTTTGCTGCCTGGATACACTTTTCCACAAAGGAAAACTGG CATATCCTGCCTTCCGAGTAGTATGGGTCTCTGTGTGAGAAACCAGGAGATATTTTCATC TTGTTCGGAAATACTTGTATGTATTTTGGTGTCAATAAATATCTTGTACCTCATTAAAAA AAAAAAAAAAAAA >NM_006378 CTGAGCCGCATCTGCAATAGCACACTTGCCCGGCCACCTGCTGCCGTGAGCCTTTGCTGC TGAAGCCCCTGGGGTCGCCTCTACCTGATGAGGATGTGCACCCCCATTAGGGGGCTGCTC ATGGCCCTTGCAGTGATGTTTGGGACAGCGATGGCATTTGCACCCATACCCCGGATCACC TGGGAGCACAGAGAGGTGCACCTGGTGCAGTTTCATGAGCCAGACATCTACAACTACTCA GCCTTGCTGCTGAGCGAGGACAAGGACACCTTGTACATAGGTGCCCGGGAGGCGGTCTTC GCTGTGAACGCACTCAACATCTCCGAGAAGCAGCATGAGGTGTATTGGAAGGTCTCAGAA GACAAAAAAGCAAAATGTGCAGAAAAGGGGAAATCAAAACAGACAGAGTGCCTCAACTAC ATCCGGGTGCTGCAGCCACTCAGCGCCACTTCCCTTTACGTGTGTGGGACCAACGCATTC CAGCCGGCCTGTGACCACCTGAACTTAACATCCTTTAAGTTTCTGGGGAAAAATGAAGAT GGCAAAGGAAGATGTCCCTTTGACCCAGCACACAGCTACACATCCGTCATGGTTGATGGA GAACTTTATTCGGGGACGTCGTATAATTTTTTGGGAAGTGAACCCATCATCTCCCGAAAT TCTTCCCACAGTCCTCTGAGGACAGAATATGCAATCCCTTGGCTGAACGAGCCTAGTTTC GTGTTTGCTGACGTGATCCGAAAAAGCCCAGACAGCCCCGACGGCGAGGATGACAGGGTC TACTTCTTCTTCACGGAGGTGTCTGTGGAGTATGAGTTTGTGTTCAGGGTGCTGATCCCA CGGATAGCAAGAGTGTGCAAGGGGGACCAGGGCGGCCTGAGGACCTTGCAGAAGAAATGG ACCTCCTTCCTGAAAGCCCGACTCATCTGCTCCCGGCCAGACAGCGGCTTGGTCTTCAAT GTGCTGCGGGATGTCTTCGTGCTCAGGTCCCCGGGCCTGAAGGTGCCTGTGTTCTATGCA CTCTTCACCCCACAGCTGAACAACGTGGGGCTGTCGGCAGTGTGCGCCTACAACCTGTCC ACAGCCGAGGAGGTCTTCTCCCACGGGAAGTACATGCAGAGCACCACAGTGGAGCAGTCC CACACCAAGTGGGTGCGCTATAATGGCCCGGTACCCAAGCCGCGGCCTGGAGCGTGCATC GACAGCGAGGCACGGGCCGCCAACTACACCAGCTCCTTGAATTTGCCAGACAAGACGCTG CAGTTCGTTAAAGACCACCCTTTGATGGATGACTCGGTAACCCCAATAGACAACAGGCCC AGGTTAATCAAGAAAGATGTGAACTACACCCAGATCGTGGTGGACCGGACCCAGGCCCTG GATGGGACTGTCTATGATGTCATGTTTGTCAGCACAGACCGGGGAGCTCTGCACAAAGCC ATCAGCCTCGAGCACGCTGTTCACATCATCGAGGAGACCCAGCTCTTCCAGGACTTTGAG CCAGTCCAGACCCTGCTGCTGTCTTCAAAGAAGGGCAACAGGTTTGTCTATGCTGGCTCT AACTCGGGCGTGGTCCAGGCCCCGCTGGCCTTCTGTGGGAAGCACGGCACCTGCGAGGAC TGTGTGCTGGCGCGGGACCCCTACTGCGCCTGGAGCCCGCCCACAGCGACCTGCGTGGCT CTGCACCAGACCGAGAGCCCCAGCAGGGGTTTGATTCAGGAGATGAGCGGCGATGCTTCT GTGTGCCCGGATAAAAGTAAAGGAAGTTACCGGCAGCATTTTTTCAAGCACGGTGGCACA GCGGAACTGAAATGCTCCCAAAAATCCAACCTGGCCCGGGTCTTTTGGAAGTTCCAGAAT GGCGTGTTGAAGGCCGAGAGCCCCAAGTACGGTCTTATGGGCAGAAAAAACTTGCTCATC TTCAACTTGTCAGAAGGAGACAGTGGGGTGTACCAGTGCCTGTCAGAGGAGAGGGTTAAG AACAAAACGGTCTTCCAAGTGGTCGCCAAGCACGTCCTGGAAGTGAAGGTGGTTCCAAAG CCCGTAGTGGCCCCCACCTTGTCAGTTGTTCAGACAGAAGGTAGTAGGATTGCCACCAAA GTGTTGGTGGCATCCACCCAAGGGTCTTCTCCCCCAACCCCAGCCGTGCAGGCCACCTCC TCCGGGGCCATCACCCTTCCTCCCAAGCCTGCGCCCACCGGCACATCCTGCGAACCAAAG ATCGTCATCAACACGGTCCCCCAGCTCCACTCGGAGAAAACCATGTATCTTAAGTCCAGC GACAACCGCCTCCTCATGTCCCTCTTCCTCTTCTTCTTTGTTCTCTTCCTCTGCCTCTTT TTCTACAACTGCTATAAGGGATACCTGCCCAGACAGTGCTTGAAATTCCGCTCGGCCCTA CTAATTGGGAAGAAGAAGCCCAAGTCAGATTTCTGTGACCGTGAGCAGAGCCTGAAGGAG ACGTTAGTAGAGCCAGGGAGCTTCTCCCAGCAGAATGGGGAGCACCCCAAGCCAGCCCTG GACACCGGCTATGAGACCGAGCAAGACACCATCACCAGCAAAGTCCCCACGGATAGGGAG GACTCACAGAGGATCGACGACCTTTCTGCCAGGGACAAGCCCTTTGACGTCAAGTGTGAG CTGAAGTTCGCTGACTCAGACGCAGATGGAGACTGAGGCCGGCTGTGCATCCCCGCTGGT GCCTCGGCTGCGACGTGTCCAGGCGTGGAGAGTTTTGTGTTTCTCCTGTTCAGTATCCGA GTCTCGTGCAGTGCTGCGTAGGTTAGCCCGCATCGTGCAGACAACCTCAGTCCTCTTGTC TATTTTCTCTTGGGTTGAGCCTGTGACTTGGTTTCTCTTTGTCCTTTTGGAAAAATGACA AGCATTGCATCCCAGTCTTGTGTTCCGAAGTCAGTCGGAGTACTTGAAGAAGGCCCACGG GCGGCACGGAGTTCCTGAGCCCTTTCTGTAGTGGGGGAAAGGTGGCTGGACCTCTGTTGG CTGAGAAGAGCATCCCTTCAGCTTCCCCTCCCCGTAGCAGCCACTAAAAGATTATTTAAT TCCAGATTGGAAATGACATTTTAGTTTATCAGATTGGTAACTTATCGCCTGTTGTCCAGA TTGGCACGAACCTTTTCTTCCACTTAATTATTTTTTTAGGATTTTGCTTTGATTGTGTTT ATGTCATGGGTCATTTTTTTTTAGTTACAGAAGCAGTTGTGTTAATATTTAGAAGAAGAT GTATATCTTCCAGATTTTGTTATATATTTGGCATAAAATACGGCTTACGTTGCTTAAGAT TCTCAGGGATAAACTTCCTTTTGCTAAATGCATTCTTTCTGCTTTTAGAAATGTAGACAT AAACACTCCCCGGAGCCCACTCACCTTTTTTCTTTTTCTTTTTTTTTTTTTAACTTTATT CCTTGAGGGAAGCATTGTTTTTGGAGAGATTTTCTTTCTGTACTTCGTTTTACTTTTCTT TTTTTTTAACTTTTACTCTCTCGAAGAAGAGGACCTTCCCACATCCACGAGGTGGGTTTT GAGCAAGGGAAGGTAGCCTGGATGAGCTGAGTGGAGCCAGGCTGGCCCAGAGCTGAGATG GGAGTGCGGTACAATCTGGAGCCCACAGCTGTCGGTCAGAACCTCCTGTGAGACAGATGG AACCTTCACAAGGGCGCCTTTGGTTCTCTGAACATCTCCTTTCTCTTCTTGCTTCAATTG CTTACCCACTGCCTGCCCAGACTTTCTATCCAGCCTCACTGAGCTGCCCACTACTGGAAG GGAACTGGGCCTCGGTGGCCGGGGCCGCGAGCTGTGACCACAGCACCCTCAAGCATACGG CGCTGTTCCTGCCACTGTCCTGAAGATGTGAATGGGTGGTACGATTTCAACACTGGTTAA TTTCACACTCCATCTCCCCGCTTTGTAAATACCCATCGGGAAGAGACTTTTTTTCCATGG TGAAGAGCAATAAACTCTGGATGTTTGTGCGCGTGTGTGGACAGTCTTATCTTCCAGCAT GATAGGATTTGACCATTTTGGTGTAAACATTTGTGTTTTATAAGATTTACCTTGTTTTTA TTTTTCTACTTTGAATTGTATACATTTGGAAAGTACCCAAATAAATGAGAAGCTTCTATC CTTAAAAAAAAAAAAAA >AA993639 CCCNTCCCCAGAGGCAGGAAAANCAGTNTGCCGAAAGGATAGACTGNGGTGCNGTCTTTC CCCAAGTTNTGAACTAGTTTTAAGGTAGCTTAGGATGAAAAATGGAGAATGATTGGGGGT TCCAAACCACTTTCTTCTCCCTTGGCTTATATCTCTTCACCATTTGGTGGTCAACTGTGG GCCTACCCTGGACCTCATCTACTCAGCGAGAATTGGACATGAAGCTAGAGGCAGCTGCCT TGGAAGGGAAGTCAGGCTCACTTGGACAGCCCAGGCCATGGCAGGAAGAATCCCTTCCTC TTGGGGTCCTTGATGGGCATGTGTGATGGGGAAGGAGCAGTCTCCCAGCCCTGGGTCTGC TCCCCACATCTCTCCTAATTCCACTTCACCTTTTGCCACCCCCTCCCCACCAGAGGCCTA GCCCTTTTGTCACCGAAGGCCCCCAGAGTGTTTCTGTGTGAAACCCTCTCATTTACACTG TGGCATCAAAATCCACAAAAGATGGATTAATTGCACTCTGGTTAATAGCAGCAGCACAAT GATTAAAATCTATATTCCTATCTTCTCTAGCACCCTGGTGTGGGGATGGGGCGGAAGGGT GTCTTGAGGGGCAGGGAGGACCCCATAAAACAATCCCTCCTGCATTCTCAGGCTAAATAG GGCCCCCAGTGACTACCTGTTCTTGGCTGTCCCCTCTGAAGAGCTCTGCCTTCTCACAGC CACCACCAGTTGCCCCACTCCCAGGAAAACAGCACATGTTCTTCTTCTCCTGCCTTGAGA CTGCGTGTTAGTCTTCCATTCATAACTCATCAGCAGCTCAGTCCTTCTTATGTCTAGTCT CAGTTCATTCAGCCAAAGCTCATTTTTGTCCTATCCAAAGTAGAAAGGGTTCTTTTAGAA AACTTGAAGAATGTGCCTCCTCTTAGCATCTGTTTCTGACTCCCAGTTATTTTTAAAATA AATGATGAATAAAATGCCTGCCCTGAAGGGTTCTGGAGGAGTCAGGTATCAAAAAAAAAA AAA >BE552004 TTTTTAAGATGATCTTGCTCCGTCACCCAGGCTGGAGTGCAGTGGCGTAATCATGGCTTC CTGCAGCCTCAAACTCCTGGGCTCAATGAGTTCCTTGAGATCTTCCATCCTCAGCTTCCC AAGTAGCTAGTAGTAGTAGTGGCTTGCACCAACGCTCCTGCCCTAATTTTCAATATTTTT TTTGTAGAGATAGGATCTCACTGTGTTACCCAAGCTAGACTTGAACTCCTGGCCTCAAGC GATCCTTCCGCCTTGGCCTCCCAAAGTGTTGGGATTACAGGCATTAGCTACCACACCTGG CCAAGGCCCAGGTTTCGACAGAAAGGGAGAGAAAACCTGCCAGAGATGCCATTTCGGAGC CACTCTGCTTGGCAGGGACCTGTGTTCCCCTCATGCAGGTTCATCCTTAGAGGGCTGCGG TCTTATCTGGTTGTGCAAAAGTCCCACAACCTTTCTGGATTGATAGTTTGTGGTGAAATA AACAATTTTAGTTTGTTTGGAGAATCTTTTGTATACAAAATACAAATAAAACCTAAATCA AAGAAACAGA >BC010437 GAGGGGCCGGAGGCGTCCCCGCTCCCGCTCGCTACTAGCCCGCGGGCCAGCGCCGCGTCC CGAGCCCCGGCGGGAGCCATGGCTCTAAAAGGACAAGAAGATTATATTTATCTTTTCAAG GATTCAACACATCCAGTGGATTTTCTGGATGCATTCAGAACATTTTACTTGGATGGATTA TTTACTGATATTACTCTTCAGTGTCCTTCAGGCATAATTTTCCATTGTCACCGAGCCGTT TTAGCTGCTTGCAGCAATTATTTTAAGGCAATGTTCACAGCTGACATGAAAGAAAAATTT AAAAATAAAATAAAACTCTCTGGCATCCACCATGATATTCTGGAAGGCCTTGTAAATTAT GCATACACTTCCCAAATTGAAATAACTAAAAGAAATGTTCAAAGCCTGCTTGAGGCAGCG GATCTGCTACAGTTCCTTTCAGTAAAGAAGGCTTGTGAGCGGTTTTTGGTAAGGCACTTG GATATTGATAATTGTATTGGAATGCACTCCTTTGCAGAATTTCATGTGTGTCCAGAACTA GAGAAGGAATCTCGAAGAATTCTATGTTCAAAGTTTAAGGAAGTGTGGCAACAAGAAGAA TTTCTGGAAATCAGCCTTGAAAAGTTTCTCTTTATCTTGTCCAGAAAGAATCTCAGTGTT TGGAAAGAAGAAGCTATCATAGAGCCAGTTATTAAGTGGACTGCTCATGATGTAGAAAAT CGAATTGAATGCCTCTATAATCTACTGAGCTATATCAACATTGATATAGATCCAGTGTAC TTAAAAACAGCCTTAGGCCTTCAAAGAAGCTGCCTGCTCACCGAAAATAAGATCCGCTCC CTAATATACAATGCCTTGAATCCCATGCATAAAGAGATTTCCCAGAGGTCCACAGCCACA ATGTATATAATTGGAGGCTATTACTGGCATCCTTTATCAGAGGTTCACATATGGGATCCT TTGACAAATGTTTGGATTCAGGGAGCAGAAATACCAGATTATACCAGGGAGAGCTATGGT GTTACATGTTTAGGACCCAACATTTATGTAACTGGGGGCTACAGGACGGATAACATAGAA GCTCTTGACACAGTGTGGATCTATAACAGTGAAAGTGATGAATGGACAGAAGGTTTGCCA ATGCTCAATGCCAGGTATTACCACTGTGCAGTCACCTTGGGTGGCTGTGTCTATGCTTTA GGTGGTTACAGAAAAGGGGCTCCAGCAGAAGAGGCTGAGTTCTATGATCCTTTAAAAGAG AAATGGATTCCTATTGCAAACATGATTAAAGGTGTGGGAAATGCTACTGCCTGTGTCTTA CATGATGTTATCTACGTCATTGGTGGCCACTGTGGCTACAGAGGAAGCTGCACCTATGAC AAAGTTCAGAGCTACAATTCCGATATCAACGAATGGAGCCTCATCACCTCCAGTCCACAT CCAGAATATGGATTGTGCTCAGTTCCGTTTGAAAATAAGCTCTATCTAGTCGGTGGACAA ACTACAATCACAGAATGCTATGACCCTGAACAAAATGAATGGAGAGAGATAGCTCCCATG ATGGAAAGGAGGATGGAGTGCGGTGCCGTGATCATGAATGGATGTATTTATGTCACTGGA GGATACTCCTACTCAAAGGGAACGTATCTTCAGAGCATTGAGAAATATGATCCAGATCTT AATAAGTGGGAAATAGTGGGTAATCTTCCCAGTGCCATGCGGTCTCATGGGTGTGTTTGT GTGTATAATGTCTAATTGAATCTGCAGAAATGACCAAGCAATCACTTTTTTGGAGTATAG TTTTATAAAAAAAGAATGCAGGGTTTGAAGTTCCTTACCTGATAATTGTGTCTGGCACAT GATAGGGGATCAGTAAATTGTAATTCCTAACCCTACTGTACTCCCAAACATGGTGATTCA TGGTCAAGAAAAATCTTATATATATATATACACACACATATATATGTGTTCATATATATG TATACATATATGTGTATATATACGCATGTATGTATACATATATGTGTATATATACGCATG TATGTATGCATATGTGTGTATATATACGTATGTATGTATACATATGTGTATATATACGTA TGTATGTATACATATATGTGTATATATGCGTATGTATGTATACATATATGTGTATATATA CGTATGTATGTATACATATATGTGTATATATACGTATGTATGTATACATATATGTGTATA TATACGTATGTATGTATACATATATGTGTGTATATACGTGTGTATGTATACATATATGTG TATATATACGTGTGTATGTATACATATATGTGTATATATGCGTGTGTATGTATACATATA TGTGTATATATACGTGTGTATGTATACATATATGTGTATATATACGTGTGTATGTATACA TATATGTGTATATATGCGTGTGTATATATATACACATATATACGTATATATGTATATATA TATACACAGTTGAATCAGTGGGATTAATACCTATAATCTCTGGTTTTCAAAGGTAATATG GAATATTTGACACTTGGTAAAAGGTGAACTACCTTTGTAGTGAATCTTTTCCTCTTGGTA GCATCAACACTGGGGATAAATCAGAACCATTCTGTGGAATGAAATGTTTCTCAAGAGCCT ATAATATAGTAGATAGTGCATATTAAGATGTCTGGCTGGGCATGGTGGCTCATGCCTGTA ATCCCAGCACTTTGGGAGGCTGAGGCGGGAGGATCACTTGAGCCTAGAAGTTGGAGACTA ACCTGGCGAGACCCTGTCTCAAAAAAAAAAAAAAAAAA >R15881 ACCCTTTTGTGACCAGCTGCATACCCCAAAACCTTTTGGAATCTGGGCTAACTGGCTGTG CCTACATCAACAGCACCCGTGAACCCCCGTGTGCTATGCTCTGTGCAACAAAACATTCAG AACCCACTTTCAAGATGCTGCTGCTGTGCCAGTGTGACAAAAAAAAGAGGCGCAAGCAGC AGTACCAGCAGAGACAGTCGGTCATTTTTCACAAGCGCGCACCCGAGCAGGCCTTGTAGA ATGAGGTTGTATCAATAGCAGTGACAAAACGCACACATCAACCCACAGACCTTAGGAGGA GGAAGGCGAGGGCGGGGTGACTTCTGGTGATGATAAAAATGGTTTTATCACCCAGATGTG AAAGAAGCTGCCTGTTTACTGATCCATTGAATAAACCCATTTTAATAGAAAAAGTCAATA CCAATTCAGCAAAAAAAAA >AF191770 TATCTATGTAACAAATCGCAGCACAGGAGTCCCCTGGGCTCCCTCAGGCTCTGGTATGAC ATATTTGAGCCATATAAATTCAGCTTCTCCTCTGGCATCTGTTAGCCGACTCACTTGCAA CTCCACCTCAGCAGTGGTCTCTCAGTCCTCTCAAAGCAAGGAAAGAGTACTGTGTGCTGA GAGACCATGGCAAAGAATCCTCCAGAGAATTGTGAAGACTGTCACATTCTAAATGCAGAA GCTTTTAAATCCAAGAAAATATGTAAATCACTTAAGATTTGTGGACTGGTGTTTGGTATC CTGACCCTAACTCTAATTGTCCTGTTTTGGGGGAGCAAGCACTTCTGGCCGGAGGTACCC AAAAAAGCCTATGACATGGAGCACACTTTCTACAGCAGTGGAGAGAAGAAGAAGATTTAC ATGGAAATTGATCCTGTGACCAGAACTGAAATATTCAGAAGCGGAAATGGCACTGATGAA ACATTGGAAGTACACGACTTTAAAAACGGATACACTGGCATCTACTTCGTGGGTCTTCAA AAATGTTTTATCAAAACTCAGATTAAAGTGATTCCTGAATTTTCTGAACCAGAAGAGGAA ATAGATGAGAATGAAGAAATTACCACAACTTTCTTTGAACAGTCAGTGATTTGGGTCCCA GCAGAAAAGCCTATTGAAAACCGAGATTTTCTTAAAAATTCCAAAATTCTGGAGATTTGT GATAACGTGACCATGTATTGGATCAATCCCACTCTAATATCAGTTTCTGAGTTACAAGAC TTTGAGGAGGAGGGAGAAGATCTTCACTTTCCTGCCAACGAAAAAAAAGGGATTGAACAA AATGAACAGTGGGTGGTCCCTCAAGTGAAAGTAGAGAAGACCCGTCACGCCAGACAAGCA AGTGAGGAAGAACTTCCAATAAATGACTATACTGAAAATGGAATAGAATTTGATCCCATG CTGGATGAGAGAGGTTATTGTTGTATTTACTGCCGTCGAGGCAACCGCTATTGCCGCCGC GTCTGTGAACCTTTACTAGGCTACTACCCATATCCATACTGCTACCAAGGAGGACGAGTC ATCTGTCGTGTCATCATGCCTTGTAACTGGTGGGTGGCCCGCATGCTGGGGAGGGTCTAA TAGGAGGTTTGAGCTCAAATGCTTAAACTGCTGGCAACATATAATAAATGCATGCTATTC AATGAATTTCTGCCTATGAGGCATCTGGCCCCTGGTAGCCAGCTCTCCAGAATTACTTGT AGGTAATTCCTCTCTTCATGTTCTAATAAACTTCTACATTATCAAAAAA >BC005364 GCGGATCGCTGCTCCCTCTCGCCATGGCGCAGGTGCTGATCGTGGGCGCCGGGATGACAG GAAGCTTGTGCGCTGCGCTGCTGAGGAGGCAGACGTCCGGTCCCTTGTACCTTGCTGTGT GGGACAAGGCTGACGACTCAGGGGGAAGAATGACTACAGCCTGCAGTCCTCATAATCCTC AGTGCACAGCTGACTTGGGTGCTCAGTACATCACCTGCACTCCTCATTATGCCAAAAAAC ACCAACGTTTTTATGATGAACTGTTAGCCTATGGCGTTTTGAGGCCTCTAAGCTCGCCTA TTGAAGGAATGGTGATGAAAGAAGGAGACTGTAACTTTGTGGCACCTCAAGGAATTTCTT CAATTATTAAGCATTACTTGAAAGAATCAGGTGCAGAAGTCTACTTCAGACATCGTGTGA CACAGATCAACCTAAGAGATGACAAATGGGAAGTATCCAAACAAACAGGCTCCCCTGAGC AGTTTGATCTTATTGTTCTCACAATGCCAGTTCCTGAGATTCTGCAGCTTCAAGGTGACA TCACCACCTTAATTAGTGAATGCCAAAGGCAGCAACTGGAGGCTGTGAGCTACTCCTCTC GATATGCTCTGGGCCTCTTTTATGAAGCTGGTACGAAGATTGATGTCCCTTGGGCTGGGC AGTACATCACCAGTAATCCCTGCATACGCTTCGTCTCCATTGATAATAAGAAGCGCAATA TAGAGTCATCAGAAATTGGGCCTTCCCTCGTGATTCACACCACTGTCCCATTTGGAGTTA CATACTTGGAACACAGCATTGAGGATGTGCAAGAGTTAGTCTTCCAGCAGCTGGAAAACA TTTTGCCGGGTTTGCCTCAGCCAATTGCTACCAAATGCCAAAAATGGAGACATTCACAGG TTACAAATGCTGCTGCCAACTGTCCTGGCCAAATGACTCTGCATCACAAACCTTTCCTTG CATGTGGAGGGGATGGATTTACTCAGTCCAACTTTGATGGCTGCATCACTTCTGCCCTAT GTGTTCTGGAAGCTTTAAAGAATTATATTTAGTGCCTATATCCTTATTCTCTATATGTGT ATTGGGTTTTTATTTTCACAATTTTCTGTTATTGATTATTTTGTTTTCTATTTTGCTAAG AAAAATTACTGGAAAATTGTTCTTCACTTATTATCATTTTTCATGTGGAGTATAAAATCA ATTTTGTAATTTTGATAGTTACAACCCATGCTAGAATGGAAATTCCTCACACCTTGCACC TTCCCTACTTTTCTGAATTGCTATGACTACTCCTTGTTGGAGGAAAAGTGGTACTTAAAA AATAACAAACGACTCTCTCAAAAAAATTACATTAAATCACAATAACAGTTTGTATGCCAA AAACTTGATTATCCTTATGAAAATTTCAATTCTGAATAAAGAATAATCACATTATCAAAG CCCCATCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA >NM_001337 ACTCGTCTCTGGTAAAGTCTGAGCAGGACAGGGTGGCTGACTGGCAGATCCAGAGGTTCC CTTGGCAGTCCACGCCAGGCCTTCACCATGGATCAGTTCCCTGAATCAGTGACAGAAAAC TTTGAGTACGATGATTTGGCTGAGGCCTGTTATATTGGGGACATCGTGGTCTTTGGGACT GTGTTCCTGTCCATATTCTACTCCGTCATCTTTGCCATTGGCCTGGTGGGAAATTTGTTG GTAGTGTTTGCCCTCACCAACAGCAAGAAGCCCAAGAGTGTCACCGACATTTACCTCCTG AACCTGGCCTTGTCTGATCTGCTGTTTGTAGCCACTTTGCCCTTCTGGACTCACTATTTG ATAAATGAAAAGGGCCTCCACAATGCCATGTGCAAATTCACTACCGCCTTCTTCTTCATC GGCTTTTTTGGAAGCATATTCTTCATCACCGTCATCAGCATTGATAGGTACCTGGCCATC GTCCTGGCCGCCAACTCCATGAACAACCGGACCGTGCAGCATGGCGTCACCATCAGCCTA GGCGTCTGGGCAGCAGCCATTTTGGTGGCAGCACCCCAGTTCATGTTCACAAAGCAGAAA GAAAATGAATGCCTTGGTGACTACCCCGAGGTCCTCCAGGAAATCTGGCCCGTGCTCCGC AATGTGGAAACAAATTTTCTTGGCTTCCTACTCCCCCTGCTCATTATGAGTTATTGCTAC TTCAGAATCATCCAGACGCTGTTTTCCTGCAAGAACCACAAGAAAGCCAAAGCCATTAAA CTGATCCTTCTGGTGGTCATCGTGTTTTTCCTCTTCTGGACACCCTACAACGTTATGATT TTCCTGGAGACGCTTAAGCTCTATGACTTCTTTCCCAGTTGTGACATGAGGAAGGATCTG AGGCTGGCCCTCAGTGTGACTGAGACGGTTGCATTTAGCCATTGTTGCCTGAATCCTCTC ATCTATGCATTTGCTGGGGAGAAGTTCAGAAGATACCTTTACCACCTGTATGGGAAATGC CTGGCTGTCCTGTGTGGGCGCTCAGTCCACGTTGATTTCTCCTCATCTGAATCACAAAGG AGCAGGCATGGAAGTGTTCTGAGCAGCAATTTTACTTACCACACGAGTGATGGAGATGCA TTGCTCCTTCTCTGAAGGGAATCCCAAAGCCTTGTGTCTACAGAGAACCTGGAGTTCCTG AACCTGATGCTGACTAGTGAGGAAAGATTTTTGTTGTTATTTCTTACAGGCACAAAATGA TGGACCCAATGCACACAAAACAACCCTAGAGTGTTGTTGAGAATTGTGCTCAAAATTTGA AGAATGAACAAATTGAACTCTTTGAATGACAAAGAGTAGACATTTCTCTTACTGCAAATG TCATCAGAACTTTTTGGTTTGCAGATGACAAAAATTCAACTCAGACTAGTTTAGTTAAAT GAGGGTGGTGAATATTGTTCATATTGTGGCACAAGCAAAAGGGTGTCTGAGCCCTCAAAG TGAGGGGAAACCAGGGCCTGAGCCAAGCTAGAATTCCCTCTCTCTGACTCTCAAATCTTT TAGTCATTATAGATCCCCCAGACTTTACATGACACAGCTTTATCACCAGAGAGGGACTGA CACCCATGTTTCTCTGGCCCCAAGGGAAAATTCCCAGGGAAGTGCTCTGATAGGCCAAGT TTGTATCAGGTGCCCATCCCTGGAAGGTGCTGTTATCCATGGGGAAGGGATATATAAGAT GGAAGCTTCCAGTCCAATCTCATGGAGAAGCAGAAATACATATTTCCAAGAAGTTGGATG GGTGGGTACTATTCTGATTACACAAAACAAATGCCACACATCACCCTTACCATGTGCCTG ATCCAGCCTCTCCCCTGATTACACCAGCCTCGTCTTCATTAAGCCCTCTTCCATCATGTC CCCAAACCTGCAAGGGCTCCCCACTGCCTACTGCATCGAGTCAAAACTCAAATGCTTGGC TTCTCATACGTCCACCATGGGGTCCTACCAATAGATTCCCCATTGCCTCCTCCTTCCCAA AGGACTCCACCCATCCTATCAGCCTGTCTCTTCCATATGACCTCATGCATCTCCACCTGC TCCCAGGCCAGTAAGGGAAATAGAAAAACCCTGCCCCCAAATAAGAAGGGATGGATTCCA ACCCCAACTCCAGTAGCTTGGGACAAATCAAGCTTCAGTTTCCTGGTCTGTAGAAGAGGG ATAAGGTACCTTTCACATAGAGATCATCCTTTCCAGCATGAGGAACTAGCCACCAACTCT TGCAGGTCTCAACCCTTTTGTCTGCCTCTTAGACTTCTGCTTTCCACACCTGCACTGCTG TGCTGTGCCCAAGTTGTGGTGCTGACAAAGCTTGGAAGAGCCTGCAGGTGCCTTGGCCGC GTGCATAGCCCAGACACAGAAGAGGCTGGTTCTTACGATGGCACCCAGTGAGCACTCCCA AGTCTACAGAGTGATAGCCTTCCGTAACCCAACTCTCCTGGACTGCCTTGAATATCCCCT CCCAGTCACCTTGTGCAAGCCCCTGCCCATCTGGGAAAATACCCCATCATTCATGCTACT GCCAACCTGGGGAGCCAGGGCTATGGGAGCAGCTTTTTTTTCCCCCCTAGAAACGTTTGG AACAATGTAAAACTTTAAAGCTCGAAAACAATTGTAATAATGCTAAAGAAAAAGTCATCC AATCTAACCACATCAATATTGTCATTCCTGTATTCACCCGTCCAGACCTTGTTCACACTC TCACATGTTTAGAGTTGCAATCGTAATGTACAGATGGTTTTATAATCTGATTTGTTTTCC TCTTAACGTTAGACCACAAATAGTGCTCGCTTTCTATGTAGTTTGGTAATTATCATTTTA GAAGACTCTACCAGACTGTGTATTCATTGAAGTCAGATGTGGTAACTGTTAAATTGCTGT GTATCTGATAGCTCTTTGGCAGTCTATATGTTTGTATAATGAATGAGAGAATAAGTCATG TTCCTTCAAGATCATGTACCCCAATTTACTTGCCATTACTCAATTGATAAACATTTAACT TGTTTCCAATGTTTAGCAAATACATATTTTATAGAACTTC >AI041545 TGAACATATTCAGGCTGATTGGGGACGTGTCCCACCTGGCGGCCATCGTCATCTTGATGG TAGAGATCTGGAAGACGCGCTCCTGCGCCGGTATTTCTGGGAAAAGCCAGCTTCTGTCTG CACTGGTCTTCACAACTCGTGACCTGGATCTTTTCACTTCATTTATTTCAGTGTATCACA CATCTATCAAGGTTATCTACGTTGCCTGCTCGTATGCCACAGTGTACCTGATCTACCTTA AATTTAAGGCAACATCGGATGGAAATCATGATACCTTCCGAGTGGAGTTTCTGGTGGTCC CTGTGGGAGGCCTCCTCATTTTTAGTTAATCACGATTTCTCTCCTCTTGAGTACTCAAGG GAAAGAAGCTCAGTTTGCCAGCATAAGTGCCAAAGACCATCGCCAGCATCTGTCCTTCAG GGTGTTCGGACAGAATTCTTACCACAGCAAAGGCATAAGATGCTTGATACGGAAAATCAA GAACTTAACTTTTTTGTTGCAGATAGTCATCAGTGGTTCTGTAAAAACGCAGAGGAAAAG AGCCAGAAGGTTTCTGTTTAATGCATCTTGCCTTATCTTTTTTTATTACTGTGCACAAAG ATTTTTTTACACAAACATCCTTAATGCTGTTTTAATAAATTCAGTGTGTAGCTTCAAAAA AA >NM_024423 GGCAGGTCTCGCTCTCGGCACCCTCCCGGCGCCCGCGTTCTCCTGGCCCTGCCCGGCATC CCGATGGCCGCCGCTGGGCCCCGGCGCTCCGTGCGCGGAGCCGTCTGCCTGCATCTGCTG CTGACCCTCGTGATCTTCAGTCGTGATGGTGAAGCCTGCAAAAAGGTGATACTTAATGTA CCTTCTAAACTAGAGGCAGACAAAATAATTGGCAGAGTTAATTTGGAAGAGTGCTTCAGG TCTGCAGACCTCATCCGGTCAAGTGATCCTGATTTCAGAGTTCTAAATGATGGGTCAGTG TACACAGCCAGGGCTGTTGCGCTGTCTGATAAGAAAAGATCATTTACCATATGGCTTTCT GACAAAAGGAAACAGACACAGAAAGAGGTTACTGTGCTGCTAGAACATCAGAAGAAGGTA TCGAAGACAAGACACACTAGAGAAACTGTTCTCAGGCGTGCCAAGAGGAGATGGGCACCT ATTCCTTGCTCTATGCAAGAGAATTCCTTGGGCCCTTTCCCATTGTTTCTTCAACAAGTT GAATCTGATGCAGCACAGAACTATACTGTCTTCTACTCAATAAGTGGACGTGGAGTTGAT AAAGAACCTTTAAATTTGTTTTATATAGAAAGAGACACTGGAAATCTATTTTGCACTCGG CCTGTGGATCGTGAAGAATATGATGTTTTTGATTTGATTGCTTATGCGTCAACTGCAGAT GGATATTCAGCAGATCTGCCCCTCCCACTACCCATCAGGGTAGAGGATGAAAATGACAAC CACCCTGTTTTCACAGAAGCAATTTATAATTTTGAAGTTTTGGAAAGTAGTAGACCTGGT ACTACAGTGGGGGTGGTTTGTGCCACAGACAGAGATGAACCGGACACAATGCATACGCGC CTGAAATACAGCATTTTGCAGCAGACACCAAGGTCACCTGGGCTCTTTTCTGTGCATCCC AGCACAGGCGTAATCACCACAGTCTCTCATTATTTGGACAGAGAGGTTGTAGACAAGTAC TCATTGATAATGAAAGTACAAGACATGGATGGCCAGTTTTTTGGATTGATAGGCACATCA ACTTGTATCATAACAGTAACAGATTCAAATGATAATGCACCCACTTTCAGACAAAATGCT TATGAAGCATTTGTAGAGGAAAATGCATTCAATGTGGAAATCTTACGAATACCTATAGAA GATAAGGATTTAATTAACACTGCCAATTGGAGAGTCAATTTTACCATTTTAAAGGGAAAT GAAAATGGACATTTCAAAATCAGCACAGACAAAGAAACTAATGAAGGTGTTCTTTCTGTT GTAAAGCCACTGAATTATGAAGAAAACCGTCAAGTGAACCTGGAAATTGGAGTAAACAAT GAAGCGCCATTTGCTAGAGATATTCCCAGAGTGACAGCCTTGAACAGAGCCTTGGTTACA GTTCATGTGAGGGATCTGGATGAGGGGCCTGAATGCACTCCTGCAGCCCAATATGTGCGG ATTAAAGAAAACTTAGCAGTGGGGTCAAAGATCAACGGCTATAAGGCATATGACCCCGAA AATAGAAATGGCAATGGTTTAAGGTACAAAAAATTGCATGATCCTAAAGGTTGGATCACC ATTGATGAAATTTCAGGGTCAATCATAACTTCCAAAATCCTGGATAGGGAGGTTGAAACT CCCAAAAATGAGTTGTATAATATTACAGTCCTGGCAATAGACAAAGATGATAGATCATGT ACTGGAACACTTGCTGTGAACATTGAAGATGTAAATGATAATCCACCAGAAATACTTCAA GAATATGTAGTCATTTGCAAACCAAAAATGGGGTATACCGACATTTTAGCTGTTGATCCT GATGAACCTGTCCATGGAGCTCCATTTTATTTCAGTTTGCCCAATACTTCTCCAGAAATC AGTAGACTGTGGAGCCTCACCAAAGTTAATGATACAGCTGCCCGTCTTTCATATCAGAAA AATGCTGGATTTCAAGAATATACCATTCCTATTACTGTAAAAGACAGGGCCGGCCAAGCT GCAACAAAATTATTGAGAGTTAATCTGTGTGAATGTACTCATCCAACTCAGTGTCGTGCG ACTTCAAGGAGTACAGGAGTAATACTTGGAAAATGGGCAATCCTTGCAATATTACTGGGT ATAGCACTGCTCTTTTCTGTATTGCTAACTTTAGTATGTGGAGTTTTTGGTGCAACTAAA GGGAAACGTTTTCCTGAAGATTTAGCACAGCAAAACTTAATTATATCAAACACAGAAGCA CCTGGAGACGATAGAGTGTGCTCTGCCAATGGATTTATGACCCAAACTACCAACAACTCT AGCCAAGGTTTTTGTGGTACTATGGGATCAGGAATGAAAAATGGAGGGCAGGAAACCATT GAAATGATGAAAGGAGGAAACCAGACCTTGGAATCCTGCCGGGGGGCTGGGCATCATCAT ACCCTGGACTCCTGCAGGGGAGGACACACGGAGGTGGACAACTGCAGATACACTTACTCG GAGTGGCACAGTTTTACTCAACCCCGTCTCGGTGAAGAATCCATTAGAGGACACACTGGT TAAAAATTAAACATAAAAGAAATTGCATCGATGTAATCAGAATGAAGACCGCATGCCATC CCAAGATTATGTCCTCACTTATAACTATGAGGGAAGAGGATCTCCAGCTGGTTCTGTGGG CTGCTGCAGTGAAAAGCAGGAAGAAGATGGCCTTGACTTTTTAAATAATTTGGAACCCAA ATTTATTACATTAGCAGAAGCATGCACAAAGAGATAATGTCACAGTGCTACAATTAGGTC TTTGTCAGACATTCTGGAGGTTTCCAAAAATAATATTGTAAAGTTCAATTTCAACATGTA TGTATATGATGATTTTTTTCTCAATTTTGAATTATGCTACTCACCAATTTATATTTTTAA AGCCAGTTGTTGCTTATCTTTTCCAAAAAGTGAAAAATGTTAAAACAGACAACTGGTAAA TCTCAAACTCCAGCACTGGAATTAAGGTCTCTAAAGCATCTGCTCTTTTTTTTTTTTACG GATATTTTAGTAATAAATATGCTGGATAAATATTAGTCCAACAATAGCTAAGTTATGCTA ATATCACATTATTATGTATTCACTTTAAGTGATAGTTTAAAAAATAAACAAGAAATATTG AGTATCACTATGTGAAGAAAGTTTTGGAAAAGAAACAATGAAGACTGAATTAAATTAAAA ATGTTGCAGCTCATAAAGAATTGGGACTCACCCCTACTGCACTACCAAATTCATTTGACT TTGGAGGCATAATGTGTTGAAGTGCCCTATGAAGTAGCAATTTTCTATAGGAATATAGTT GGAAATAAATGTGTGTGTGTATATTATTATTAATCAATGCAATATTTAAAATGAAATGAG AACAAAGAGGAAAATGGTAAAAACTTGAAATGAGGCTGGGGTATAGTTTGTCCTACAATA GAAAAAAGAGAGAGCTTCCTAGGCCTGGGCTCTTAAATGCTGCATTATAACTGAGTCTAT GAGGAAATAGTTCCTGTCCAATTTGTGTAATTTGTTTAAAATTGTAAATAAATTAAACTT TTCTGGTTTCTGTGGGAAGGAAATAGGGAATCCAATGGAACAGTAGCTTTGCTTTGCAGT CTGTTTCAAGATTTCTGCATCCACAAGTTAGTAGCAAACTGGGGAATACTCGCTGCAGCT GGGGTTCCCTGCTTTTTGGTAGCAAGGGTCCAGAGATGAGGTGTTTTTTTCGGGGAGCTA ATAACAAAAACATTTTAAAACTTACCTTTACTGAAGTTAAATCCTCTATTGCTGTTTCTA TTCTCTCTTATAGTGACCAACATCTTTTTAATTTAGATCCAAATAACCATGTCCTCCTAG AGTTTAGAGGCTAGAGGGAGCTGAGGGGAGGATCTTACTGAAAGCACCCTGGGGAGATTG ATTGTCCTTAAACCTAAGCCCCACAAACTTGACACCTGATCAGGTCTGGGAGCTACAAAA TTTCATTTTTCTCCTCACTGCCCTTCTTCTGAGTGGCATTGGCCTGAATCAAGGAAAGCC AGGCCTTGTGGGCCCCCTTCTTTCGGCTTTCTGCTAAAGCAACACCTCCAGCAGAGATTC CCTTAAGTGACTCCAGGTTTTCCACCATCCTTCAGCGTGAATTAATTTTTAATCAGTTTG CTTTCTCCAGAGAAATTTTAAAATAATAGAAGAAATAGAAATTTTGAATGTATAAAAGAA AAAGATCAAGTTGTCATTTTAGAACAGAGGGAACTTTGGGAGAAAGCAGCCCAAGTAGGT TATTTGTACAGTCAGAGGGCAACAGGAAGATGCAGGCCTTCAAGGGCAAGGAGAGGCCAC AAGGAATATGGGTGGGAGTAAAAGCAACATCGTCTGCTTCATACTTTTTCCTAGGCTTGG CACTGCCTTTTCCTTTCTCAGGCCAATGGCAACTGCCATTTGAGTCCGGTGAGGGATCAG CCAACCTCTTCTCTATGGCTCACCTTATTTGGAGTGAGAAATCAAGGAGACAGAGCTGAC TGCATGATGAGTCTGAAGGCATTTGCAGGATGAGCCTGAACTGGTTGTGCAGAACAAACA AGGCATTCATGGGAATTGTTGTATTCCTTCTGCAGCCCTCCTTCTGGGCACTAAGAAGGT CTATGAATTAAATGCCTATCTAAAATTCTGATTTATTCCTACATTTTCTGTTTTCTAATT TGACCCTAAAATCTATGTGTTTTAGACTTAGACTTTTTATTGCCCCCCCCCCCTTTTTTT TTGAGACGGAGTCTCGCTCTGACGCACAGGCTGGAGTGCAGTGGCTCCGATCTCTGCTCA CTGAAAGCTCCGCCTCCCGGGTTCATGCCATTCTCCTGCCTCAGCCTCCTGAGTAGCTGG GACTACAGGCGCCCACCACCACGCCCGGCTAATTTTTTGTATTTTTAATAGAGACGGGGT TTCACTGTGTTAGCCAGGATGGTCTCGATCTCCTGACCTCGTGATCCGCCTGCCTCGGCC TCCCAAAGTGCTGGGATTACAGGCATGACCCACCGCTCCCGGCCTTGTTTTCCGTTTAAA GTCGTCTTCTTTTAATGTAATCATTTTGAACATGTGTGAAAGTTGATCATACGAATTGGA TCAATCTTGAAATACTCAACCAAAAGACAGTCGAGAAGCCAGGGGGAGAAAGAACTCAGG GCACAAAATATTGGTCTGAGAATGGAATTCTCTGTAAGCCTAGTTGCTGAAATTTCCTGC TGTAACCAGAAGCCAGTTTTATCTAACGGCTACTGAAACACCCACTGTGTTTTGCTCACT CCCACTCACCGATCAAAACCTGCTACCTCCCCAAGACTTTACTAGTGCCGATAAACTTTC TCAAAGAGCAACCAGTATCACTTCCCTGTTTATAAAACCTCTAACCATCTCTTTGTTCTT TGAACATGCTGAAAACCACCTGGTCTGCATGTATGCCCGAATTTGTAATTCTTTTCTCTC AAATGAAAATTTAATTTTAGGGATTCATTTCTATATTTTCACATATGTAGTATTATTATT TCCTTATATGTGTAAGGTGAAATTTATGGTATTTGAGTGTGCAAGAAAATATATTTTTAA AGCTTTCATTTTTCCCCCAGTGAATGATTTAGAATTTTTTATGTAAATATACAGAATGTT TTTTCTTACTTTTATAAGGAAGCAGCTGTCTAAAATGCAGTGGGGTTTGTTTTGCAATGT TTTAAACAGAGTTTTAGTATTGCTATTAAAAGAAGTTACTTTGCTTTTAAAGAAACTTGG CTGCTTAAAATAAGCAAAAATTGGATGCATAAAGTAATATTTACAGATGTGGGGAGATGT AATAAAACAATATTAACTTGGAAAAAAAAAAAAAAAAAAA >AA745593 GACTCAGNCTTCAGCCGCTCTCCTCCCCCTGGGCAAACAGGACTCATCTGATGATGTGAG AAGAGTTCAGAGGAGGGAGAAAAATCGTATTGCCGCCCAGAAGAGCCGACAGAGGCAGAC ACAGAAGGCCGACACCCTGCACCTGGAGAGCGAAGACCTGGAGAAACAGAACGCGGCTCT ACGCAAGGAGATCAAGCAGCTCACAGAGGAACTGAAGTACTTCACGTCGGTGCTGAACAG CCACGAGCCCCTGTGCTCGGTGCTGGCCGCCAGCACGCCCTCGCCCCCCGAGGTGGTGTA CAGCGCCCACGCATTCCACCAACCTCATGTCAGCTCCCCGCGCTTCCAGCCCTGAGCTTC CGATGCGGGGAGAGCAGAGCCTCGGGAGGGGCACACAGACTGTGGCAGAGCTGCGCCCAT CCCGCAGAGGCCCCTGTCCACCTGGAGACCCGGAGACAGAGGCCTGGACAAGGAGTGAAC ACGGGAACTGTCACGACTGGAAGGGCGTGAGGCCTCCCAGCAGTGCCGCAGCGTTTCGAG GGGCGTGTGCTGGACCCCACCACTGTGGGTTGCAGGCCCAATGCAGAAGAGTATTAAGAA AGATGCTCAAGTCCCATGGCACAGAGCAAGGCGGGCAGGGAACGGTTATTTTTCTAAATA AATGCTTTAAAAGAAAAAAAAAAAAAAAAAAAAAAA >AI985118 ATGCAAGGNNTAGGCAAAGATTGTTGACCCNGGAGATAGAGGTNNCAATGAGCCAGATCA TTCCATTGCATTCCAGCTTGGGCGACAGAATGAGACTCTGTCTCAAAATTAAAAANCAAA AAACCAAAANCAAATAGATGAAAAAGTAGACTGGAGACAAATAAAAGTGAGTTTCTAAAG GAAATTCACAGTAATGCTGCATTAAACACTAAGCTCACTTAGGTCACTTTCTAGTGAGCT AACCGTAACAGAGAGCCTACAGGATACACGTGAGATAATGTCACGTGTAGAAGATCGTTG TGAATTAAAGTTCAAAATTAAGACTTCTTAGATTATGATGTAGATTTTAGAGCTCCTTAA AACATAAAGCGAATCTTATAAATGTTCAATTCTAAAGTTATTCCACTTGGAAAAATTAGC TTTTGGGACAATTTTTAAGAACTTTTGTGTAAAATGCAGCTCCATGTTTAGCATAATCTA AAAATAATTTCAAGCAATCCAGAATCTTCCAAGAATGTTATTAAAGCTTTAAAACAAAGC AAAACAAAAAGACCCTTTTGTGCCTTATATGGGAAGACTAAAAAAA >AB038160 ACCGGGCACCGGACGGCTCGGGTACTTTCGTTCTTAATTAGGTCATGCCCGTGTGAGCCA GGAAAGGGCTGTGTTTATGGGAAGCCAGTAACACTGTGGCCTACTATCTCTTCCGTGGTG CCATCTACATTTTTGGGACTCGGGAATTATGAGGTAGAGGTGGAGGCGGAGCCGGATGTC AGAGGTCCTGAAATAGTCACCATGGGGGAAAATGATCCGCCTGCTGTTGAAGCCCCCTTC TCATTCCGATCGCTTTTTGGCCTTGATGATTTGAAAATAAGTCCTGTTGCACCAGATGCA GATGCTGTTGCTGCACAGATCCTGTCACTGCTGCCATTGAAGTTTTTTCCAATCATCGTC ATTGGGATCATTGCATTGATATTAGCACTGGCCATTGGTCTGGGCATCCACTTCGACTGC TCAGGGAAGTACAGATGTCGCTCATCCTTTAAGTGTATCGAGCTGATAGCTCGATGTGAC GGAGTCTCGGATTGCAAAGACGGGGAGGACGAGTACCGCTGTGTCCGGGTGGGTGGTCAG AATGCCGTGCTCCAGGTGTTCACAGCTGCTTCGTGGAAGACCATGTGCTCCGATGACTGG AAGGGTCACTACGCAAATGTTGCCTGTGCCCAACTGGGTTTCCCAAGCTATGTGAGTTCA GATAACCTCAGAGTGAGCTCGCTGGAGGGGCAGTTCCGGGAGGAGTTTGTGTCCATCGAT CACCTCTTGCCAGATGACAAGGTGACTGCATTACACCACTCAGTATATGTGAGGGAGGGA TGTGCCTCTGGCCACGTGGTTACCTTGCAGTGCACAGCCTGTGGTCATAGAAGGGGCTAC AGCTCACGCATCGTGGGTGGAAACATGTCCTTGCTCTCGCAGTGGCCCTGGCAGGCCAGC CTTCAGTTCCAGGGCTACCACCTGTGCGGGGGCTCTGTCATCACGCCCCTGTGGATCATC ACTGCTGCACACTGTGTTTATGACTTGTACCTCCCCAAGTCATGGACCATCCAGGTGGGT CTAGTTTCCCTGTTGGACAATCCAGCCCCATCCCACTTGGTGGAGAAGATTGTCTACCAC AGCAAGTACAAGCCAAAGAGGCTGGGCAATGACATCGCCCTTATGAAGCTGGCCGGGCCA CTCACGTTCAATGGTACATCTGGGTCTCTATGTGGTTCTGCAGCTCTTCCTTTGTTTCAA GAGGATTTGCAATTGCTCATTGAAGCATTCTTATGATGGCTGCTTTATAATCCTTGTCAG ATATTAATAATTCCAACTCCTGATTCATGTTGGTGTTGGCATCAGTTGATTATCTTTTCT CATTAAAATTGTGATGCTCCTAAAAAAAAAAAAAAAAAA >X69699 TTCAGAAGGAGGAGAGACACCGGGCCCAGGGCACCCTCGCGGGCGGGCGGACCCAAGCAG TGAGGGCCTGCAGCCGGCCGGCCAGGGCAGCGGCAGGCGCGGCCCGGACCTACGGGAGGA AGCCCCGAGCCCTCGGCGGGCTGCGAGCGACTCCCCGGCGATGCCTCACAACTCCATCAG ATCTGGCCATGGAGGGCTGAACCAGCTGGGAGGGGCCTTTGTGAATGGCAGACCTCTGCC GGAAGTGGTCCGCCAGCGCATCGTAGACCTGGCCCACCAGGGTGTAAGGCCCTGCGACAT CTCTCGCCAGCTCCGCGTCAGCCATGGCTGCGTCAGCAAGATCCTTGGCAGGTACTACGA GACTGGCAGCATCCGGCCTGGAGTGATAGGGGGCTCCAAGCCCAAGGTGGCCACCCCCAA GGTGGTGGAGAAGATTGGGGACTACAAACGCCAGAACCCTACCATGTTTGCCTGGGAGAT CCGAGACCGGCTCCTGGCTGAGGGCGTCTGTGACAATGACACTGTGCCCAGTGTCAGCTC CATTAATAGAATCATCCGGACCAAAGTGCAGCAACCATTCAACCTCCCTATGGACAGCTG CGTGGCCACCAAGTCCCTGAGTCCCGGACACACGCTGATCCCCAGCTCAGCTGTAACTCC CCCGGAGTCACCCCAGTCGGATTCCCTGGGCTCCACCTACTCCATCAATGGGCTCCTGGG CATCGCTCAGCCTGGCAGCGACAAGAGGAAAATGGATGACAGTGATCAGGATAGCTGCCG ACTAAGCATTGACTCACAGAGCAGCAGCAGCGGACCCCGAAAGCACCTTCGCACGGATGC CTTCAGCCAGCACCACCTCGAGCCGCTCGAGTGCCCATTTGAGCGGCAGCACTACCCAGA GGCCTATGCCTCCCCCAGCCACACCAAAGGCGAGCAGGGCCTCTACCCGCTGCCCTTGCT CAACAGCACCCTGGACGACGGGAAGGCCACCCTGACCCCTTCCAACACGCCACTGGGGCG CAACCTCTCGACTCACCAGACCTACCCCGTGGTGGCAGATCCTCACTCACCCTTGGCCAT AAAGCAGGAAACCCCCGAGGTGTCCAGTTCTAGCTCCACCCCTTGCTCTTTATCTAGCTC CGCCCTTTTGGATCTGCAGCAAGTCGGCTCCGGGGTCCCGCCCTTCAATGCCTTTCCCCA TGCTGCCTCCGTGTACGGGCAGTTCACGGGCCAGGCCCTCCTCTCAGGGCGAGAGATGGT GGGGCCCACGCTGCCCGGATACCCACCCCACATCCCCACCAGCGGACAGGGCAGCTATGC CTCCTCTGCCATCGCAGGCATGGTGGCAGGAAGTGAATACTCTGGCAATGCCTATGGCCA CACCCCCTACTCCTCCTACAGCGAGGCCTGGGGCTTCCCCAACTCCAGCTTGCTGAGTTC CCCATATTATTACAGTTCCACATCAAGGCCGAGTGCACCGCCCACCACTGCCACGGCCTT TGACCATCTGTAGTTGCCATGGGGACAGTGGGAGCGACTGAGCAACAGGAGGACTCAGCC TGGGACAGGCCCCAGAGAGTCACACAAAGGAATCTTTATTATTACATGAAAAATAACCAC AAGTCCAGCATTGCGGCACACTCCCTGTGTGGTTAATTTAATGAACCATGAAAGACAGGA TGACCTTGGACAAGGCCAAACTGTCCTCCAAGACTCCTTAATGAGGGGCAGGAGTCCCAG GGAAAGAGAACCATGCCATGCTGAAAAAGACAAAATTGAAGAAGAAATGTAGCCCCAGCC GGTACCCTCCAAAGGAGAGAAGAAGCAATAGCCGAGGAACTTGGGGGGATGGCGAATGGT TCCTGCCCGGGCCCAAGGGTGCACAGGGCACCTCCATGGCTCCATTATTAACACAACTCT AGCAATTATGGACCATAAGCACTTCCCTCCAGCCCACAAGTCACAGCCTGGTGCCGAGGC TCTGCTCACCAGCCACCCAGGGAGTCACCTCCCTCAGCCTCCCGCCTGCCCCACACGGAG GCTCTGGCTGTCCTCTTTCCTCCACTCCATTTGCTTGGCTCTTTCTACACCTCCCTCTTG GATGGGCTGAGGGCTGGAGCGAGTCCCTCAGAAATTCCACCAGGCTGTCAGCTGACCTCT TTTTCCTGCTGCTGTGAAGGTATAGCACCACCCAGGTCCTCCTGCAGTGCGGCATCCCCT TGGCAGCTGCCGTCAGCCAGGCCAGCCCCAGGGAGCTTAAAACAGACATTCCACAGGGCC TGGGCCCCTGGGAGGTGAGGTGTGGTGTGCGGCTTCACCCAGGGCAGAACAAGGCAGAAT CGCAGGAAACCCGCTTCCCCTTCCTGACAGCTCCTGCCAAGCCAAATGTGCTTCCTGCAG CTCACGCCCACCAGCTACTGAAGGGACCCAAGGCACCCCCTGAAGCCAGCGATAGAGGGT CCCTCTCTGCTCCCCAGCAGCTCCTGCCCCCAAGGCCTGACTGTATATACTGTAAATGAA ACTTTGTTTGGGTCAAGCTTCCTTCTTTCTAACCCCCAGACTTTGGCCTCTGAGTGAAAT GTCTCTCTTTGCCCTGTGGGGCTTCTCTCCTTGATGCTTCTTTCTTTTTTTAAAGACAAC CTGCCATTACCACATGACTCAATAAACCATTGCTCTTCAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAA >AK025615 TGCTTCATAAAATTTACCTAAGCAAGTGGTCTTGCTTGCCTCAAATCCAAGCAGTCTTGA ACACTTGGAGGCAATTAATGAGTATATCTTAGTCAAAAGAATTGTTGGAGCTTTTTATTA AAGCTGCAGTTTCAGTTCTGCTTTTGGGGAATTGTGCTATGAAAGCAGCTGCCAAAATAA GCTCATTTATTTTCTTCAATCCCACTCAGTGCTCAGTCACTATATTCTGTTTCCTTTTTT TTTTTCAAGTTGCATATTTGGTTTCCCCTTATGATTGGGAAAGATGAATTTTCAGCAGAA AACAGTGTTTGTTCACTTTCAAAGAGTGATAGTTTCTAAAACATTTAGAGCAATAAATAT TCATCAGAGGTACCAAGTAAGCCAGCAGAAGAGTTAAGGGTTAGAGAAATCCCTTATTTC ATGTCTTGACTCTAAAATGATCAAAGTACTTTTCCTTGTAATGTGGATTTCTTCTTATGC GGATATGCAAAAACTTCAGTTATACGTAGTAATGCTAGCAGGTAATTTTAGTGGACATTT TATAACAACTGTCACTTTGTTTTGCCACATGTAGAGTTTGTTCAGCTATTTTCCAGATAT CTCCCCACAAAAGGAGGCAAAGGGTACCAGCTTTTCAATGAGCATTACCTATTACTTGGC AAAGATGATGAAGACTCTATTAATAGTTCATTTGATAAATGTTGACATAACCAACAATAG AGATTAGGAAGTTAGTTTTAAGAAATCAATAGCATATAGACATTACCCTCATGGAGTTTG TATTCTACTACTTGAACTGATTGTAGCTATAAAAGCATAGTTAGATAGCTGAATAGTTAG ATCATAAGCAAAGAAGGCCAGAACACATCTCTTATCAAGAAATCAATGAATAGTTTATCT CATTTTTAAAGCAACTTTATCCTTCTTTAATTCCTTCCTTTCTTCTAGTGCAAAACTACT TAATAAGGTTGGTGTTTAGGTTAGTGTTCACACCATTCCTCATCTGGTGTGAATTACCTT CTCTTTCTTTACTATTTACTACCAACCTAGTACATGTGTTGACTGAATTCTTTTCAAACA ATGTTGAGTTATCATGGTGCACCTAATAAATTAACACCACAGATTACAGCATCCTTGCTG ATTTTCTCAGCAAAGCCAGATTAGATGGAAATAAACAAAGAAAATGATCCTAGAGTGAAT TTTTCTAGAAAATATCTATTATGAACCATGCTGTTTAAAGTATTAGCTTGAAGGTGATGG ATCCAGCTATTCAGAAAATAACTTTCATATAACCATGATTTTGCACAGTATGAGGTCTTA AATGTGTGGAAAGAGATAAATTTTTTATCATTACCACAAACCCCTTTTAAAGATTCAAAG GTGGAAGAAAGTGATTTATTTTTTCTCTTCAGCATACATATATAAAAGACTTGTCAGATG TTTAATTTGGGGAGGTTGATAATGAAACATATCAACAGAGTATAGTAGTTATAGTAGTGT TTGTGGGTAAATAATTTCCTGGGGTCAGACATATATAAACATATTTGCTTCAAAATGATA AAGGCATGAAATCAGTCTTAAAAATTGAAATGGGGGTGATGGGGGAGAAAAAGAAGAACA AATTTGAAGTGCCCTTTCAAATCTGCTGGATACAAGTATTGAAGTTTTAAGTCATCTTAT TCTGTCTGAAAGTGTATTTTTCATTCTACAATAGACCCAATCAACAAGACGTATAACTTG AGTTGCATGATGTTCAGTTTATGTAATCTACTGTTGGGATGGTAAGAATTGATGTAGGCT GTGGTGTAAGAATGAATTAAAATATAGTTTCACTGGCTTTTCTCTACATATCCACTATCA CAATGGCTAGGTTTCCTGTTGCTCACTGTTGGATTCTGGAGAAAAATTTAATGAAAGATG ATATCAGAGGAAGAATAAGTGGAGGTAGAGAAGAAAGGAGTGATAGAGGAGGGGAAAAAA ACAAAACATATTTTTGTGTTATCCAAAGGAGCTTTTTCCTTATTCTGTCAAGCATTGAGA TCTTCTTCAGCTTTCAATGTAGTTGCTAAATACAAATAATGCTACTAGGTAGTGACTAAA TATAGCAAACACTTCATCAGATATTAGAATTAGGTCACACTATTGAGGTTATAATCTGAA GGTTGTGTTACATAGAAACCACTTTAGATTATTATCAACTTGGGCTAGGCTTTATTTTAT AATAGCATAGTAAGTAATATCTATTGTGTCATTTCTTCAACCATTTTATTCTAAGATCCA TGAAGCTTCTTGAGGCCAAATAAAATAATAAGTTTAGACAAGAAGTAGATTGTGACTTTT TTTCCCTTAGAGATACTATTTACTATCTCCTATCCTGATAGGTGGAAGGTTTACTGAATT GGAAATTGGTTGACTATTAGTTTTTAACTAAAATGTGCAATAACACATTGCAGTTTCCTC AAACTAGTTTCCTATGATCATTAAACTCATTCTCAGGGTTAAGAAAGGAATGTAAATTTC TGCCTCAATTTGTACTTCATCAATAAGTTTTTGAAGAGTGCAGATTTTTAGTCAGGTCTT AAAAATAAACTCACAAATCTGGATGCATTTCTAAATTCTGCAAATGTTTCCTGGGGTGAC TTAACAAGGAATAATCCCACAATATACCTAGCTACCTAATACATGGAGCTGGGGCTCAAC CCACTGTTTTTAAGGATTTGCGCTTACTTGTGGCTGAGGAAAAATAAGTAGTTCGAGGAA GTAGTTTTTAAATGTGAGCTTATAGATAGAAACAGAATATCAACTTAATTATGAAATTGT TAGAACCTGTTCTCTTGTATCTGAATCTGATTGCAATTACTATTGTACTGATAGACTCCA GCCATTGCAAGTCTCAGATATCTTAGCTGTGTAGTGATTCTTGAAATTCTTTTTAAGAAA AATTGAGTAGAAAGAAATAAACCCTTTGTAAATGAGGCTTGGCTTTTGTGAAAGATCATC CGCAGGCTATGTTAAAAGGATTTTAGCTCACTAAAAGTGTAATAATGGAAATGTGGAAAA TATCGTAGGTAAAGGAAACTACCTCATGCTCTGAAGGTTTTGTAGAAGCACAATTAAACA TCTAAAATGGCTTTGTTACACCAGAGCCATCTGGTGTGAAGAACTCTATATTTGTATGTT GAGAGGGCATGGAATAATTGTATTTTGCTGGCAATAGACACATTCTTTATTATTTGCAGA TTCCTCATCAAATCTGTAATTATGCACAGTTTCTGTTATCAATAAAACAAAAGAATCCTG TTAAAAAAAAAAAAAAAAAAAAA >AW118445 TGGCTCTCTCCTTCAAAAGGNCCAGGCCCTGTCCCCCTTTCTCCCCGANTCCAACCCCAG CTCCCCTGTGAAGAAAAAAGTTAAAAAATTTGTTATTTATTTGCTTTTTGCGTTGGGATG GGTTCGTGTCCAGTCCCGGGGGTCTGATATGGCCATCACAGGCTGGGTGTTCCCAGCAGC CCTGGCTTGGGGGCTTGACGCCCTTCCCCTTGCCCCAGGCCATCATCTCCCCACCTCTCC TCCCCTCTCCTCAGTTTTGCCGACTGCTTTTCATCTGAGTCACCATTTACTCCAAGCATG TATTCCAGACTTGTCACTGACTTTCCTTCTGGAGCAGGTGGCTAGAAAAAGAGGCTGTGG GCAGGAAAGAAAGGCTCCTGTTTCTCATTTGTGAGGCCAGCCTCTGGCTTTTCTGCCGTG GATTCTCCCCCTGTCTTCTCCCCTCAGCAATTCCTGCAAAGGGTTAAAAATTTAACTGGT TTTTACTACTGATGACTTGATTTAAAAAAAATACAAAGATGCTGGATGCTAACTTGATAC TAACCATCAGATTGTACAGTTTGGTTGTTGCTGTAAATATGGTAGCGTTTTGTTGTTGTT GTTTTTTCATGCCCCATACTACTGAATAAACTAGTTCTGTGCGGGTAAAAAAAAAAAAAA AAAAAAAAAAA >AL137761 CACAAAGAAAAAAGAAATACCTGTAGAAGCGCATCGAAAGCTCCTGGAACAGAGTTGTGT CTCATATTTGCAAAGATGCAGAAAAAATAAACCCGGGACATCCAGCTTTCTTTTCCTTTC TTCTTTGACTATTCTGAGAAGCTATGCGACTAGGAGCACATTTTAGGTAAACACGTGGCT TGAGTAGCCATAAGGCCACTCTTCCCTGTCGTGTGACCCGCGCCTGGGCCTTTAAGAGAT ATTGGTGTTTGAAAAGGGAGGAATCTGTTTGCCCTCAGATATTTAGTTCAACTGCCTGCA TTGCTTCCTATTTTGTTGTCCAACTCTGTAGTAGTTAGCACTGGCCTTACCAACATGTAA AGAAATTTTCTTTACTGCCCCATGAGTAGTTGGAGGCAAAGAGAAATTTTTAAAGCGCAG AAAAAGGCCTGCAGGGAGATGGAATTTGTTCTGCCAGAGAAACGAGATGATAGCTGTATT TAATAAAGTTACTGACCTCTTGTCAAAATTTAAAACGCAAAAGAAGATGTTTCAAAATGC AGAGAATGTCAGAAAACAAAAACTACAGGGACCAGACCAGTATAATGTTTAGTTTTCATT ATACTAACTTTTGTCTAGACTGGAGTTGATTCACTATTTTTTCTTTAACTCCTCAGGAAG CAAACCTTCCCGATGATGAAGACTTCTTGAAGGATTTCATGGGTGATTTGGGATCCCAGG ACCATTTGGCTAGTGTGCCTAGGTGACCACATGATTGCTGTTTTACCAGGAATGCAGCAT CCCATTGACAAAACAAGTGCTCTGAGAAGGTTTAAAATACTACAGAGAATATGGGAACAC AGACCTTGAAATTTAGCTGAGTTGTAACAGCTGAAACTCCAAGAGGTGTCTTCCTTGTTT GAGGTGAAACTAGTGTTGCTTCCAGAGGGCAGCTGGAAACCGTAAAGCTGTTTGGAAATC TTTTTGACTGACTTGCTGACAAAGAGGTACTGTGATGCATTTTAACAATATCTAAGTTGA TTTTTTTTTAAATCAAGGAAAATAAAAACCAAGCATGAATGCTATGGTATGTGCCCCTTT TGACCATCCTGGGCTGATTAACATCATTTAAATCAAAGTAATCATAAAAAGGCATATTCT ACTTCAATTATGTGGTCAAATAAGAGTAAACACACACACTCACACATGCTGACCCCAATT GCCAGAGCATTACTGCACTATAAATTACGGTTAATTCCCAAATTATACTACTGTTTATCT TATTTAACAAGTCAGAAAGCACTTTTAAAATAACTTGAGGGCTACAAGGTCATTCTATTA ATGTCATTCTCCATTCGGGTTGTAGGCATGTGGAAGTACCCATTAAAAGATAAGTTAGAG TTTAAATACTGATAAACAAAACCTTTTATTGCAACTGGACAGTTTCTGGAGAGTTAGCGG AAGAATCTTGGAGTTTCCTTTGGTCAGATGAATACAACATTTCACTTTTGCAGCACTATT TAGAATGTACTCCATGGTTCTCTTGTTCCCAACTTCCAAAAAGAACAGAAAACTTTGGTT TACACAGAACACGGGCATCTGAGGCAGGACCTCTTCCCTGCCCTTTGATCTGACTCACAC CTCCACATATGACGTAATCAACCCAAATTTGACACCAATTCACTCTTTTCTGCAAAGGGC ATATTTTGAAACAAGGGACAGCCTGAGGGCGGCTATAATGAGAATGTTCATGGGGGTTAC TGGGTCCCTAATTCTGAACTTGCTTATGACACCCAGAGTGAATAGATTCAGATTCAGAAC CTTCTGAGAAATAACCCAAAGAAAATTTGTTACCCAGCCAATTCTTCGAAAGCTTAATAT CAAAATATATCTTTTCAAGAAGAAAATCGTTAGAGAGAAGAATGTGGAGGGGAGAGAAAT GGGTTTCTCATTGATATGATATTTTGTTAACCATTTCATTTTGAATTATTCAAGTTTTGG TTAATATTGTATTCTTTTTTCGTAACTATTTTACCGTGAGAGTAGGTCATTGGGTTACTT AGATATTTATTTTTACACAGTTATTAGTCTTCAGATAGTTTTATTTTACTTCATATGATT TTAGTTTTTGTCAGTATAATTTTAAATCATGTTTTTCTTGGTCATCTCTTTGTGTATATT GTGTAATTGGATTTTCATTGACTGCAAGTGGAGTGTTTGCCACTCAATTCAGTACTCAGT ACTATGGTGACTTGTTTTCAAATAAGTCTCAGATACACATTTAGGGAGCCTTTGCTGGCC GAATATAGACTCTGTCAGGACAGCAGGTCCCCTGATCTAAGAATTTTCCCCAATGGTTGC TCTAAAAATGCTGCTATTTTGCTGTTCACTGTATTGCACTTAGTTAAAAAGAAGATAATG TGAAAGATGAGAGCAGTTTTTTAAAGGATCTTTTCATATACCCAATTCCCTTATTTTCAG ATGTCCCATCAATTTTAGATATGAAAGCTTTAAGTAAAAGTGTGTATGCCTTTCTACTGT CAGAACAGGATGGATGCAGCCTGGGTCAGATTTATTTAAGATAAAAATCATGCAGACTCA TCATTCATATCATAGGTGAAAAATGTAAAAACCAAATGGTTTCCACTAAAGCCACCAAGA TCTTTTAGAAATGTTTGCACCTTTGGTGGTGGCACAGGAAAAGAGAAGAATTCAGCTGGA GTGAATTCTAGAAGTAGATATCAGAAACGGGGCATGAAGAACAGGGGAACTGGGTGGCAT CAGACTCCTAAAGAAGTGAGTTAATTTTCCTTCCCTTCCATTCAGATTCATGCCACAGCT CCATATCTTGAGTATGTGTAAGAGGTGAGTTCCTTCTTCAGCCAGGGGCGGTGGCTCATG CCTTTAATCCCAATGCTTTGGGAGGCCAAGGTGGGAGGATCACTTGTGCCTTGGGGTTCA AGGTTGCAGTGAACCATGATTGCACCACTGCACTCCAGCCTGAGTGACAGAGCAAGACCC TGTCTCTAAAAATATATATAAAAAGTAAAACTAAAGAACTTCTTGCCTAAACCTGAATTA CCGCAATTTGCTGAGTGACTTTGAGAAAAATCAGACTGTTTAGTTCAGTCGGGATGAAAA GCTTGCGATTGCTTCCCACAAGAATGGGCAATAGTGACGGCTGCAAGGTACTTTTATTTG TTCATGAAAGAACGACAATTTTTCAAAATGTAATTAAACATAATAGAATGTTTTAAACTA CTGGGCACTGAAACTGGAAGAAAAAGGAGGCTTTATTGAACATTCCCCTTTTTCAGTTGG TTCAAAGTTCAGCACTGTGGTTATCATTGGTGATGCCAGAAAACATTAGTAGACTTAGAC AATTGCTATGGCAGTTTCTAAACAGAGCTTTTTCTATACACTATTTGCAACTGGAGTGCA ATATTGTATATTCTGTGTTAAAGAAATAAAGTATTTTTATCATTTATTAAAAAAAAAAAA AAAAA >AF038191 CCATCCAGAACGATGAGGCCGTGGCCCCGCTCATGAAGTACCTGGATGAGAAGCTGGCCC TGCTGAACGCCTCGCTGGTGAAGGGGAACCTGAGCAGGGTGCTGGAGGCCCTGTGGGAGC TACTCCTCCAGGCCATTCTGCAGGCGCTGGGTGCAAACCGTGACGTCTCTGCTGATTTCT ACAGCCGCTTCCATTTCACGCTGGAGGCCCTGGTCAGTTTTTTCCACGCAGAGGGTCAGG GTTTGCCCCTGGAGAGCCTGAGGGATGGAAGCTACAAGAGGCTGAAGGAGGAGCTGCGGC TGCACAAATGTTCCACCCGCGAGTGCATCGAGCAGTTCTACCTGGACAAGCTCAAACAGA GGACCCTGGAGCAGAACCGGTTTGGACGCCTGAGCGTCCGTTGCCATTACGAGGCGGCTG AGCAGCGGCTGGCCGTGGAGGTGCTGCACGCCGCGGACCTGCTCCCCCTGGATGCCAACG GCTTAAGTGACCCCTTTGTGATTGTGGAGCTGGGCCCACCGCATCTCTTTCCACTGGTCC GCAGCCAGAGGACCCAGGTGAAGACCCGGACGCTGCACCCTGTATACGACGAACTCTTCT ACTTTTCCGTGCCTGCCGAGGCGTGCCGCCGCCGCGCGGCCTGTGTGTTGTTCACCGTCA TGGACCACGACTGGCTGTCCACCAACGACTTCGCTGGGGAGGCGGCCCTCGGCCTAGGTG GCGTCACTGGTGTCGCCCGGCCCCAGGTGGGCGGGGGTGCAAGGGCTGGGCAGCCTGTCA CCCTGCACCTGTGCCGGCCCAGAGCCCAGGTGAGATCTGCGCTGAGGAGGCTGGAAGGCC GCACCAGCAAGGAGGCGCAGGAGTTCGTGAAGAAACTCAAGGAGCTGGAGAAGTGCATGG AGGCGGACCCCTGAGTCCATCAGCTGCCAGCCCCGGCCCTGGCCCCCACCCCAAGTTCCC TGAAGCATCCTCCAGCTCACTGTGGCCAGCTTTGTGCAACCAGGGCCCACGGCGCCCCTC CTGTGCTGTGACGTGTGTGTCGTGGCTGGCCCCGCGGCGCCTACCGCCCTGGCCGTGTCT GTCTGGTGTGTGCTGTGAACCCCTGCACCCAACCCCACATCTGGGTGGCCAACTTGGCAG GACTTGGCCAGCAGCTGCCCAGGACACAGTGCAGGCCAGAGCGGGCTTGACCACCTGGTG GGCCTCCCTGCCCGCTTCCTTGGGCTCCCCGGCCCTGGGTGGGCGGTGCGCAGCTGGTCT CCAGGGACTCAGTGAGTGGCTGTGCTCTCTGCACAACGGGCAATGTGCAGACGCATTTTT GGTAATCACAGCTGGGGAGTGAAAAGGGTGCCACTGGCACCACTGGGTGGATGGTCCAGA GCCTCCACCCACAGAGGGGATGCAAAGGGCAGGTGAGTCAAGAACCGCATAGGTCTCCAG TCCCCACGGGGCTCCCAGGCCGGGGAAAGGTTCCCCTGAGGTCACTCTGAGGCCAGGGAC GTCACCCAAGGCTGGTGGTCAGTGTGAAGGGCTCCGTGCCAACTGGTCAGCTGTCCTTCA CGCACATATCCGTGGCCACCTGAGACCTGCTCCACGACCCTTCCAGGCAGAGCCGAGAGT TCGCCCCAACCCTTCCCCAGGCCCAGTGTGAAAAACAGACTCACAAGGGGCTTCTTGGCC TGCAGCTTCATTTGCGAGAGCGCCGAGGCAGGACACAGAGCACAGCTGTGCTGGAAGTGT GGGGAGAACCCGGACAGCTCAGTCCTGCCAGCAGCCGCAAAGAGCCGAGGCTGCCAGGCC CATTTATGTCCCTCATGTCTCTAGATTTTCTCGTCACCCAGCCTCAAAAATATATGTGTC TGCAACCCTCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA >BC016340 GGGGGGGCTCCGTGACAGCCAACGCAGTGACCCTCGCCCCTTCCTTGGCAGCACATCATG CTTGTGCAGCGGCAGATGTCTGTGATGGAAGAGGACCTGGAAGAATTCCAGCTCGCTCTG AAACACTACGTGGAGAGTGCTTCCTCCCAAAGTGGATGCTTGCGTATTTCTATACAGAAG CTTTCAAATGAATCTCGCTACATGATCTATGAGTTCTGGGAGAATAGTAGTGTATGGAAT AGCCACCTTCAGACAAATTATAGCAAGACATTCCAAAGAAGTAATGTGGATTTCTTGGAA ACTCCAGAACTCACATCTACAATGCTAGTTCCTGCTTCGTGGTGGATCCTGAACAACTAG ATGTTCCTAGACATTTTCTTTATGGTTCCAAGTGCAAAACAGGTGTTCTTATCTAAAACG TCAATTAGAAAATTATCTGCGGTTGTTAATCTACTGTATATTTTTGTTTGGTATATTTAC TAAGTGCACTCTTTCAAAACTTATTCTATAACTTTATCAATTCATGTGAATTTTAGCTCA ATTTTCAAAGTTCACTAATATTCTCAATATTTAATGCTAAATGCTTTGCTACATTGTAAC TCACCTAAAACCTTTTAGTGACAAAATCCTAATATGTGGAAAAAAGCATATGCATAAAGG AATAATATTGTGAAAATGAATCTGTTATGATAAAGAAAAAATAAAGTGGAAACTTTTAGA GTATTACTTCATAGGGCAGATTTTGTAAACTGTCGTATACTGTAAAGGGTTAAATCAGCG TTTTGTGATTTTTAAGTAACTGTGAGTGAAGTTTATTCTTCAACAATGTCTACTCCATCC CCAACCCAACTCACAGCCCTATGACTACTATCTTTGCATTAGTTAAAAAGTTAGTATATA GGCATCAAACAACCTTGGCTGTAACCTATAGAATCTCTATCCATGTATCAGGTTATAGAC TGGTTTTTCAAAAGTGAACAATCCTGTGATAAGTTGGAGTACCATTTAGTAATACAGCAA CATTGTGTCATTTATTAGCATCATAATTCTTTGTTATGTAAGTTAAATATATCAAGAAAG AAGAGACTGTTTGGAAAAATGTGGTTCAAGTTTTATGCTATATAGTTTTGGTATGCGATA CAGACAGCTAACTTTTCTTATGAAAAATACATATTTGCATGTAAACAATGATTTCAAAAT ACTTGAAAAATAAAATTTTAACCCAAATGAATAACTAAGAAATATAAAACAAGCACAAAA TCTTAGGGAAGTCATAAAATAGTAGTGAAAGTATTAGACAGAAGACATCTGTTTTCGAAT TTCAACACTAGAATGACTAAAACTATCTACCTATAGAACTATCTGTAGATAGTATACTAT CTACACTCTGCTCAACAAGCTCAGAAATTAAATATTTTTAGTAATAAAAATCTGTTCTGG TTATAAACCTTGCTAATGAAAATACAATACATATAAAAATGTATAGCCATGTTATTTTCT AGTATAAATTCCTTTGAAACTATAAGTCTTTGAGGAAAATTATAAGGTAAAATTTTCCTG TTTTTCCCCCTTTGAAAAACTCAGGAAAAAAGGAAGATTGAACTAATAAAATTTTATTTC TTAAATATAAATTTGACCTAAAATATTTTCTCAAACTAATTCATGAAACAGCAACTTTTA CCAATACCTTTGTATACTCTCAGTTCTCATTCAGTATAAATAAAATTTTAAAATCCTTTC ATAGTTCTATTAGAAATAAGTAGTAAATTTTGATATATTGTACATACACACGTGTGTGTG TGTGTGTGTGTGTGTGTGTATTTGTGTGCCTCTGGTCAACTCTAAGGATGACAGACACTG TGTAACAACACCTGGGTCAACTCTTTTAATTTATATACAAAGCAAAGAACAACATTAATG GAGATGCACAATGATTATTCAAACAAGCTATATATATGTACAAAGGCAAACAGACACATA ACAGTCTCTGCAGACTGATTGTATATAGTAAGAAAAGATCAAAAGACTTTAAAACCTAAA TGACTTTTGACATACAAACTCTTCTTGAGAATGTTTGTTGTAAATGGTTTCAAAAATACA AATTATAGCCAATCAAAACATTGCTTTGGTTGGTGCATTTAAGTATCCAACTCAAAAAGC ATATCAAATATTTTGGGTACTAGGCAGTTTCCAAAGTAGCATGGTAGTATTACTTGTTAA AAGGGTTCTGTTTTCATTAACAGTACTAAGTGGAAGGGATCTGCAGATTCCAAATTGGAA TAAGCTCTATCATATTCTGAAACAAGAATTAGAATGACTTGAGAACGGGCAAATAACAAA GCAAACCAATATAATTATATGGTCATTCTGACCCCAGCTCTTATACAAATTATACATGTA TTTTTGTGTATGTTTGTGAGAGTTGTATGTATGTGAATGTGTGTGAGTGTGTATTCACAT ACACATATATACTGGAACCTATAGTAGAAAAGGAAACTAGTAGGGCCAAAAAAAAAAAGA AAAAGAAAAAGAAAAAAGAAAAAAAAAGAAAAAACTGGGACCTAAGTATAAATATCTCAT CCTAAAGTAAACAATAAGTTTATAGTTAACGAAGATTTTTTTCTATTTAAAACCCCATTT TCCTAAAGAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA >BC013282 GGCACGAGGGCAGGGGGAAGGGAAGTGCGGCTCGGTCGGCGCGGGTGGAGGGGGCGTGAG GCCGCCCTACGGTGGCCGTCGAGGGACGGCGCTACGGCTCCCACGCTAGGCCAAACGCCT CCGGCGGCCGCGCCCGAGAGCCCCTTCACCTGCAGGGCGACCCCAGCCGGCGACGCGTGA ACCACGCCCTCAGCCGCCTTGCCAGCGCCCCCAGCCGCGCGCCCCAGCACCATGCGGCCG CCCTGCGCACGGAGCCCCGAGGGACAGGGGCACCCGCAGGCCCGGCCCCTAGCACCGCCG GCCGGCCCCGAGGTCCGGGACGCCGGCGCCGCCGCGGAGAGGGCACCGGGCCGACGCCTC CCCCCAGGGTCAGCTGCGGGCTCCCAGGCCTAGGCGCCCATGACCCCTACGCCAACCGCC GCCTGGACACCGCCGCCGCCACTGCGACCTAGCGCCGCCGCCGCCGGGGCCCAATGCCGG TCATGCCCATTCCGCGGCGGGTGCGCTCCTTCCACGGCCCGCACACCACCTGCCTGCATG CGGCCTGCGGGCCCGTGCGCGCCTCCCACCTGGCCCGCACCAAGTACAACAACTTCGACG TGTACATCAAGACGCGCTGGCTGTACGGCTTCATCCGCTTCCTACTCTACTTTAGCTGCA GCCTGTTCACTGCGGCGCTCTGGGGTGCGCTGGCCGCCCTCTTCTGCCTACAGTACCTGG GCGTTCGCGTCCTGCTGCGCTTCCAGCGCAAGCTGTCGGTGCTGCTGCTGCTGCTGGGCC GCCGGCGCGTGGACTTCCGCCTGGTGAACGAGCTGCTCGTCTATGGCATCCACGTCACCA TGCTGCTGGTCGGGGGCCTGGGCTGGTGCTTCATGGTCTTCGTGGACATGTGAGGGCCGT GGGTGCGAGCTTGATGTATCGTCCCGGCCTGTGGCTGTGTTCTCTCCATGGGTGGGGTCG GCCAGCGCCTTCCCTTCGCCCATCCCCCAGGCAGTCGCTGCTGCCCGGCGCCCACGGAGA GAAAAGAAAGGGCTGAGACTTCTGTGATGGGGGCGCGGACACCACCCCTAGGCTGGCTTC CTGGACCCACCCTCCCCGTATGCACTCTCAGGGGCAGCGCCCACCTGCCGGTGGCTCCTG CTCACATGTCTTCGGGTCGTACTGCGGGGTGGGCCCTCCGTTCCGCCTCTCTGTGGGCCT CTCTCCAGGACCACAGCTGCCAGGGACTTTAGACATCACCCTGGGAGGCCCCTGGACACA GAGGGCTGTGTGCCCAGGAGCAATTCCGGAGGGGGGCCCTCCTGGCTGCACAGCCCCTTC TGCGTGCCCTGGCCCCAGCCCCAGCCAACGGGACACGGAAGGCTCCCCTCGCTGACACAC CACACTGCCACAAAGCTGCTTACTCTGCCCTGGGCCGCCTGAGGCCTGGCACTGCCCGCG GACCACCCTGTGTGTGTCATCCTGAGGGGCTGTGTGGGTCCTGAGTCCCCAGCCAGCCTT CAGGGTCCCCTTGGATTGTGTAGATGCAGTCTAGCGGGGGGCCGGAGAAGGGCTCAGGTG GGAGGGGCCTCAGCAGGCTCCCAGCTCAGGGGCTGGCCTGGGGGGAACCCTGGGAGCCAG GGGCTGACTCCAGCAACACTGGCCTGTCTGCCTGTTCTGGGAGGGCTGTGAGGATGTCTT GCAGATGCTCTGGATTTCTGCGGAGGCACCTCCATTCCTTTCTGGCTTTTTTTGCGGGGG AGGGCTTTGGGCCTCTTTCTTTGAGGGAACACCGTCAAAGAAAGCCTGGGAGATCGAGGC TTCAGTGAGCCAGGATGGAAACGCGTGTCCCAAGTGTCCGGAGCAGGCGGCAGAGGCCTC AGTGCGGCAAACACAGCCCCAGAGCCTGTGTGGCACCAGCAGCATCTTAGAGCCCCAGGT ATATGCTGAGATCTTATCTCACGCTGTCCTCCAGTGTCTGGGGGGCCCAAATGATGGCAC AGGGTCAGGTGGGCTGGAGGGGCGCAGATGCCTGTGTTCAGGGAGGGTGGCCACCATGGG CCGAGGTCTCACCCAGGACCCCTTGCTCTGCTCCTCAGCCTTGCAGTCACGGCAGCACTA TGGTGGACTGCCCATGGCCGTGTGACTTTGGGGGCAAGTGGGAGGGCGCCCTGAATAATG ATTGCAAGGACAACAGGCAGAGGCTACCCTAGAGCAGGACACAGGGTGTGGTACTGACAA CCCTAGTGTCACCTCAAATCCATGTCCCCACACTCTGGGCATGGGTGGGACTTGTGACCC TACCCTGTCAGGCGGACCAGTGGCCCAGGAGCCATGAGGACAGTTGTGTGCCACTGGAAG AGAAACTTTTTGAAAAACCCTAAATCAGGTAGAGAAAGCAAAAAATCTCTGGCCGTAAAC CGTGCTCTCTAATTTATCGGCAGCTTCTGTGGATGACCTCTGATGAGCCCGGGCTGCGTC CACGCCCTGGGCAGGTAGGCGGGAGCTTCCCTGCGTGGGCCTCATTTCTTGCTGCAGAGA ATCTTTTGCACTAAGTCATGCTGTTTCCTCAAAGAAGCTTTGTTTTTTGTTAACGTATTA CTCAGAGTCACCCAAGCCTCTTGGCTGAGGGTGAAGGTGGGACGGGAGGCGGGAGGGGGC TGGTGGTGCCGCTCGTGCGGTGTCAACGCTGCAGGGAGTTGTGGCACCTTGGTGCCCTCT GAGCACCTGGCCGCCTGCTGTCCCCGGTGCCTGTGAAATTCGTCATGCCATGACCCACCT GCATTAAACCTATTTTTTTAATGTGTTAAAAAAAAAAAAAAAAAA >H09748 GNGGAAACACGGGCCAAACCCGTGANTTTGGTGCCCCTTGTAAACTCANCCCCTGCAAAN CCAAAGACCCCAATGGATTTAAAGTTGNTTGGCATTTGTACTGGCAAGGCAAAANATTTT TAANTACCTTTTCCTAATACTTATTGTATGAGCTTTTGNTGTTTACTTGGAGGTTTTGTC TTTTACTACAAGTTTGGAACTATTTANTATTGCCTTGGTATTTGTGCTCTGTTTAAGAAA CAGGCACTTTTTTTTATTATGGATAAAATGTTGAGATGACAGGAGGTCATTTCAATATGG CTTAGTAAAATATTTATTGTTCCTTTATTCTCTGTACAAGATTTTGGGCCTCTTTTTTTC CTTAATGTCACAATGTTGAGTTCAGCATGTGTCTGTCCATTTCATTTGTACGCTTGTTCA AAACCAAGTTTGTTCTGGTTTCAAGTTATAAAAATAAATTGGACATTTAACTTGATCTCC AAAAAAAAAAAAAAAA >BC001665 GGCACGAGGCAATCTGAGGAGCAGGAGGACCGGGGCGCCGGTGTCCTGCCGCCTCCTTCT CCTTGCTCTCACCTGCGCCTATTAGTCCACGCGCCTTCAAGGCCAGGGGCTACAGCCCAG ACAGAGAGGGGACAGCAGAGGGAGAGAGAGCACCTGAGGATACAGAGCTGGCACTGGACT GCCTTTTCACCCCCCAGGTGATGAGTGAGGTTCGAAGAACGGAAGATTTAAAAAGCAGCC GGGGCCTCCGTATTGAATGAAAGACCCAGTGCAAAGACATCACCATGAACACTAGCATTC CTTATCAGCAGAATCCTTACAATCCACGGGGCAGCTCCAATGTCATCCAGTGCTACCGCT GTGGAGACACCTGCAAAGGGGAAGTGGTCCGCGTGCACAACAACCACTTCCACATCAGAT GCTTCACCTGTCAAGTATGTGGCTGTGGCCTGGCCCAGTCAGGCTTCTTCTTCAAGAACC AGGAGTACATCTGCACCCAGGACTACCAGCAACTCTATGGCACCCGCTGTGACAGCTGCC GGGACTTCATCACAGGCGAAGTCATCTCGGCCCTGGGCCGCACTTACCACCCCAAGTGCT TCGTGTGCAGCTTGTGCAGGAAGCCTTTCCCCATTGGAGACAAGGTGACCTTCAGCGGTA AAGAATGTGTGTGCCAAACGTGCTCCCAGTCCATGGCCAGCAGTAAGCCCATCAAGATTC GTGGACCAAGCCACTGTGCCGGGTGCAAGGAGGAGATCAAGCACGGCCAGTCACTCCTGG CTCTGGACAAGCAGTGGCACGTCAGCTGCTTCAAGTGCCAGACCTGCAGCGTCATCCTCA CCGGGGAGTATATCAGCAAGGATGGTGTTCCATACTGTGAGTCCGACTACCATGCCCAGT TTGGCATTAAATGTGAGACTTGTGACCGATACATCAGTGGCAGAGTCTTGGAGGCAGGAG GGAAGCACTACCACCCAACCTGTGCCAGGTGTGTACGCTGCCACCAGATGTTCACCGAAG GAGAGGAAATGTACCTCACAGGTTCCGAGGTTTGGCACCCCATCTGCAAACAGGCAGCCC GGGCAGAGAAGAAGTTAAAGCATAGACGGACATCTGAAACCTCCATCTCACCCCCTGGAT CCAGCATTGGGTCACCCAACCGAGTCATCTGCGACATCTACGAGAACCTGGACCTCCGGC AGAGACGGGCCTCCAGCCCGGGGTACATAGACTCCCCCACCTACAGCCGGCAGGGCATGT CCCCCACCTTCTCCCGCTCACCTCACCACTACTACCGCTCTGGTGATTTGTCTACAGCAA CCAAGAGCAAAACAAGTGAAGACATCAGCCAGACCTCCAAGTACAGTCCCATCTACTCGC CAGACCCCTACTATGCTTCGGAGTCTGAGTACTGGACCTACCATGGGTCCCCCAAAGTGC CCCGAGCCAGAAGGTTCTCGTCTGGAGGAGAGGAGGATGATTTTGACCGCAGCATGCACA AGCTCCAAAGTGGAATTGGCCGGCTGATTCTGAAGGAAGAAATGAAGGCCCGGTCGAGCT CCTATGCAGATCCCTGGACCCCTCCCCGGAGCTCCACCAGCAGCCGGGAAGCCCTGCACA CAGCTGGCTATGAGATGTCCCTCAATGGCTCCCCTCGGTCGCACTACCTGGCTGACAGTG ATCCTCTCATCTCCAAATCTGCCTCCCTGCCTGCCTACCGAAGAAATGGGCTGCACAGGA CACCCAGCGCAGACCTCTTCCACTACGACAGCATGAACGCAGTCAACTGGGGCATGCGAG AGTACAAGATCTACCCTTATGAACTGCTGCTGGTGACTACAAGAGGAAGAAACCGACTGC CCAAGGATGTAGACAGGACCCGTTTAGAGGGAAACTTTTGGAAGAGTGGCTGCTTATGAG ATTCCAAAATGAAGTGTTGGCCAACACCGCTCATGGCCATCCTGGATTTTCCCAGTGGCT TCCCTTCCTGCTCGCCTCCCTGAACAGGGGAGAAAGCTTAACCTCTCTTCTCCTCTCCAA ACCTTTCACCTTGAATGGGTAATGTTTGGTGGGGGCTGTTCCTTCTTGGAGAAGCCTTGA GTCGGACCATTTTGAGATCATGGAGGAAGGATGAAGAAGTGAAAATGACAATAATGACTC TCAAGAGGCTGGCGATGTGACATGGCAAATGTAGAACTGACTTAAATTGAACAAACCCTC ACTGAGCACCTCTGATGTTGAGCACCTGCTGAATACTGAGCACTGAATGGGGGAGGGGGA GGGGAGCACGGGGTGAGTCAACCTGGGACTCGGTCTCAGGGATATGCCTACCAATAGCGG GTATCGTAAGGCATGTACCCAAACATAACGGATGTAAGGCAGAAAGTGATCGGAGAAGGA ATGAGAAAGTGTGCGTGATGTTAATGAAAAGTCATATGCAGCTAGAGCAGACCCAGGAAA GCTTTCTGGAAGAGATTGCATCTGAGGAAATTCAGGAAGGATCTTTGTAGATTGGGGGGA GATTCTAAATTGAAGGGGTGATGGGGTGAGGGGCCAGAGGGAAGTCTGCTGTGTTCTCAT GTAGGATGTCAGCCCTCCCTGCAACTTCTCTTTTTGGCCAATGTCTTTTCACTTTCCTGA CCCTTTAGAATCATCCCCAGCCAGACGCAATCATGGAAGTTGCCTTATTGTCACTGGTTA AGAACTTGGCGAGATTGAAGGGCTTTTGTTATTGTTGTTGGATATTTTTGTTTCCCATAA AAGCACATCATTTCAACCCTAAAAAAAAAAAAAAAAAAAAAA >BC016451 GAAGAATTAGATACTTTTGAGTGGGCTTTGAAGAGCTGGTCTCAGTGTTCCAAACCCTGT GGTGGAGGTTTCCAGTACACTAAATATGGATGCCGTAGGAAAAGTGATAATAAAATGGTC CATCGCAGCTTCTGTGAGGCCAACAAAAAGCCGAAACCTATTAGACGAATGTGCAATATT CAAGAGTGTACACATCCACTCTGGGTAGCAGAAGAATGGGAACACTGCACCAAAACCTGT GGAAGTTCTGGCTATCAGCTTCGCACTGTACGCTGCCTTCAGCCACTCCTTGATGGCACC AACCGCTCTGTGCACAGCAAATACTGCATGGGTGACCGTCCCGAGAGCCGCCGGCCCTGT AACAGAGTGCCCTGCCCTGCACAGTGGAAAACAGGACCCTGGAGTGAGTGTTCAGTGACC TGCGGTGAAGGAACGGAGGTGAGGCAGGTCCTCTGCAGGGCTGGGGACCACTGTGATGGT GAAAAGCCTGAGTCGGTCAGAGCCTGTCAACTGCCTCCTTGTAATGATGAACCATGTTTG GGAGACAAGTCCATATTCTGTCAAATGGAAGTGTTGGCACGATACTGCTCCATACCAGGT TATAACAAGTTATGTTGTGAGTCCTGCAGCAAGCGCAGTAGCACCCTGCCACCACCATAC CTTCTAGAAGCTGCTGAAACTCATGATGATGTCATCTCTAACCCTAGTGACCTCCCTAGA TCTCTAGTGATGCCTACATCTTTGGTTCCTTATCATTCAGAGACCCCTGCAAAGAAGATG TCTTTGAGTAGCATCTCTTCAGTGGGAGGTCCAAATGCATATGCTGCTTTCAGGCCAAAC AGTAAACCTGATGGTGCTAATTTACGCCAGAGGAGTGCTCAGCAAGCAGGAAGTAAGACT GTGAGACTGGTCACCGTACCATCCTCCCCACCCACCAAGAGGGTCCACCTCAGTTCAGCT TCACAAATGGCTGCTGCTTCCTTCTTTGCAGCCAGTGATTCAATAGGTGCTTCTTCTCAG GCAAGAACCTCAAAGAAAGATGGAAAGATCATTGACAACAGACGTCCGACAAGATCATCC ACCTTAGAAAGATGAGAAAGTGAACCAAAAAGGCTAGAAACCAGAGGAAAACCTGGACAA CCTCTCTCTTCCCATGGTGCATATGCTTGTTTAAAGTGGAAATCTCTATAGATCGTCAGC TCATTTTATCTGTAATTGGAAGAACAGAAAGTGCTGGCTCACTTTCTAGTTGCTTTCATC CTCCTTTTGTTCTGCATTGACTCATTTACCAGAATTCATTGGAAGAAATCACCAAAGATT ATTACAAAAGAAAAATATGTTGCTAAGATTGTGTTGGTCGCTCTCTGAAGCAGAAAAGGG ACTGGAACCAATTGTGCATATCAGCTGACTTTTTGTTTGTTTTAGAAAAGTTACAGTAAA AATTAAAAAGAGATACCAATGGTTTACACTTTAACAAGAAATTTTGGATATGGAACAAAG AATTCTTAGACTTGTATTCCTATTTATCTATATTAGAAATATTGTATGAGCAAATTTGCA GCTGTTGTGTAAATACTGTATATTGCAAAAATCAGTATTATTTTAAGAGATGTGTTCTCA AATGATTGTTTACTATATTACATTTCTGGATGTTCTAGGTGCCTGTCGTTGAGTATTGCC TTGTTTGACATTCTATAGGTTAATTTTCAAAGCAGAGTATTACAAAAGAGAAGTTAGAAT TACAGCTACTGACAATATAAAGGGTTTTGTTGAATCAACAATGTGATACGTAAATTATAG AAAAAGAAAAGAAACACAAAAGCTATAGATATACAGATATCAGCTTACCTATTGCCTTCT ATACTTATAATTTAAAGGATTGGTGTCTTAGTACACTTGTGGTCACAGGGATCAACGAAT AGTAAATAATGAACTCGTGCAAGACAAAACTGAAACCCTCTTTCCAGGACCTCAGTAGGC ACCGTTGAGGTGTCCTTTGTTTTTGTGTGTGTGTGTTCTTTTTTAATTTTCGCATTGTTG ACAGATACAAACAGTTATACTCAATGTACTGTAATAATCGCAAAGGAAAAAGTTTTGGGA TAACTTATTTGTATGTTGGTAGCTGAGAAAAATATCATCAGTCTAGAATTGATATTTGAG TATAGTAGAGCTTTGGGGCTTTGAAGGCAGGTTCAAGAAAGCATATGTCGATGGTTGAGA TATTTATTTTCCATATGGTTCATGTTCAAATGTTCACAACCACAATGCATCTGACTGCAA TAATGTGCTAATAATTTATGTCAGTAGTCACCTTGCTCACAGCAAAGCCAGAAATGCTCT CTCCAGGGAGTAGATGTAAAGTACTTGTACATAGAATTCAGAACTGAAGATATTTATTAA AAGTTGATTTTTTTTTCTTGATAGTATTTTTATGTACTAAATATTTACACTAATATCAAT TACATATTTTGGTAAACTAGAGAGACATAATTAGAGATGCATGCTTTGTTCTGTGCATAG AGACCTTTAAGCAAACTACTACAGCCAACTCAAAAGCTAAAACTGAACAAATTTGATGTT ATGCAAACATCTTGCATTTTTAGTAGTTGATATTAAGTTGATGACTTGTTTCCCTTCAAG GAAACATTAAATTGTATGGACTCAGCTAGCTGTTCAATGAAATTGTGAATTAGAAACATT TTTAAAAGTTTTTGAAAGAGATAAGTGCATCATGAATTACATGTACATGAGAGGAGATAG TGATATCAGCATAATGATTTTGAGGTCAGTACCTGAGCTGTCTAAAAATATATTATACAA ACTAAAATGTAGATGAATTAACCTCTCAAAGCACAGAATGTGCAAGAACTTTTGCATTTT AATCGTTGTAAACTAACAGCTTAAACTATTGACTCTATACCTCTAAAGAATTGCTGCTAC TTTGTGCAAGAACTTTGAAGGTCAAATTAGGCAAATTCCAGATAGTAAAACAATCCCTAA GCCTTAAGTCTTTTTTTTTTTCCTAAAAATTCCCATAGAATAAAATTCTCTCTAGTTTAC TTGTGTGTGCATACATCTCATCCACAGGGGAAGATAAAGATGGTCACACAAACAGTTTCC ATAAAGATGTACATATTCATTATACTTCTGACCTTTGGGCTTTCTTTTCTACTAAGCTAA AAATTCCTTTTTATCAAAGTGTACACTACTGATGCTGTTTGTTGTACTGAGAGCACGTAC CAATAAAAATGTTAACAAAATATAAAAAAAAAAAAAAA >BF510316 TCCTGTGTTCTAGACCTCTGGAGGCTGCTGTGGGGACCACACTGATCCTGGAGAAAAGGG ATGGAGCTGAAAAAGATGGAATGCTTGCAGAGCATGACCTGAGGAGGGAGGAACGTGGTC AACTCACACCTGCCTCTTCCTGCAGCCTCACCTCTACCTGCCCCCATCATAAGGGCACTG AGCCCTTCCCAGGCTGGATACTAAGCACAAAGCCCATAGCACTGGGCTCTGATGGCTGCT CCACTGGGTTACAGAATCACAGCCCTCATGATCATTCTCAGTGAGGGCTCTGGATTGAGA GGGAGGCCCTGGGAGGAGAGAAGGGGGCAGAGTCTTCCCTACCAGGTTTCTACACCCCCG CCAGGCTGCCCATCAGGGCCCAGGGAGCCCCCAGAGGACTTTATTCGGACCAAGCAGAGC TCACAGCTGGACAGGTGTTGTATATAGAGTGGAATCTCTTGGATGCAGCTTCAAGAATAA ATTTTTCTTCTCTTTTCAAAAATGTATAAAAATCATTATACATAGCATTAAAGAAACATT TTTGAGAAGTACAAAACAAAAAAAAAA >AF301598 CGGGCGCCGCAGGAGCGAGTGAGCTGGGAGCGAGGGGCGAAGGCGCGGAGAAGCCCGGCC GCCCGGTGGGCGGCAGAAGGCTCAGCCGAGGCGGCGGCGCCGACTCCGTTCCACTCTCGG CCCGGATCCAGGCCTCCGGGTTCCCAGGCGCTCACCTCCCTCTGACGCACTTTAAAGAGT CTCCCCCCTTCCACCTCAGGGCGAGTAATAGCGACCAATCATCAAGCCATTTACCAGGCT TCGGAGGAAGCTGTTTATGTGATCCCCGCACTAATTAGGCTCATGAACTAACAAATCGTT TGCACAACTTGTGAAGAAGCGAACACTTCCATGGATTGTCCTTGGACTTAGGGCGCCCTG CCCGCCTTTTGCAGAGGAGAAAAAACTTTTTTTTTTTTTTGCCTCCCCCGAGAACTTTCC CCCCTTCTCCTCCCTGCCTCTAACTCCGATCCCCCCACGCCATCTCGCCAAAAAAAAAAA AAAAAAAAAAAAAGAAAAAAAAAGAAAAAAAAAGAAAAAAAATTACCCCAATCCACGCCT GCAAATTCTTCTGGAAGGATTTTCCCCCCTCTCTTCAGGTTGGGCGCGTTTGGTGCAAGA TTCTCGGGATCCTCGGCTTTGCCTCTCCCTCTCCCTCCCCCCTCCTTTCCTTTTTCCTTT CCTTTCCTTTCTTTCTTCCTTTCCTTCCCCCCACCCCCACCCCCACCCCAAACAAACGAG TCCCCAATTCTCGTCCGTCCTCGCCGCGGGCAGCGGGCGGCGGAGGCAGCGTGCGGCGGT CGCCAGGAGCTGGGAGCCCAGGGCGCCCGCTCCTCGGCGCAGCATGTTCCAGCCGGCGCC CAAGCGCTGCTTCACCATCGAGTCGCTGGTGGCCAAGGACAGTCCCCTGCCCGCCTCGCG CTCCGAGGACCCCATCCGTCCCGCGGCACTCAGCTACGCTAACTCCAGCCCCATAAATCC GTTCCTCAACGGCTTCCACTCGGCCGCCGCCGCCGCCGCCGGTAGGGGCGTCTACTCCAA CCCGGACTTGGTGTTCGCCGAGGCGGTCTCGCACCCGCCCAACCCCGCCGTGCCAGTGCA CCCGGTGCCGCCGCCGCACGCCCTGGCCGCCCACCCCCTACCCTCCTCGCACTCGCCACA CCCCCTATTCGCCTCGCAGCAGCGGGATCCGTCCACCTTCTACCCCTGGCTCATCCACCG CTACCGATATCTGGGTCATCGCTTCCAAGGGAACGACACTAGCCCCGAGAGTTTCCTTTT GCACAACGCGCTGGCCCGAAAGCCCAAGCGGATCCGAACCGCCTTCTCCCCGTCCCAGCT TCTAAGGCTGGAACACGCCTTTGAGAAGAATCACTACGTGGTGGGCGCCGAAAGGAAGCA GCTGGCACACAGCCTCAGCCTCACGGAAACTCAGGTAAAAGTATGGTTTCAGAACCGAAG AACAAAGTTCAAAAGGCAGAAGCTGGAGGAAGAAGGCTCAGATTCGCAACAAAAGAAAAA AGGGACGCACCATATTAACCGGTGGAGAATCGCCACCAAGCAGGCGAGTCCGGAGGAAAT AGACGTGACCTCAGATGATTAAAAACATAAACCTAACCCCACAGAAACGGACAACATGGA GCAAAAGAGACAGGGAGAGGTGGAGAAGGAAAAAACCCTACAAAACAAAAACAAACCGCA TACACGTTCACCGAGAAAGGGAGAGGGAATCGGAGGGAGCAGCGGAATGCGGCGAAGACT CTGGACAGCGAGGGCACAGGGTCCCAAACCGAGGCCGCGCCAAGATGGCAGAGGATGGAG GCTCCTTCATCAACAAGCGACCCTCGTCTAAAGAGGCAGCTGAGTGAGAGACACAGAGAG AAGGAGAAAGAGGGAGGGAGAGAGAGAAAGAGAGAGAAAGAGAGAGAGAGAGAGAGAGAG AGAAAGCTGAACGTGCACTCTGACAAGGGGAGCTGTCAATCAAACACCAAACCGGGGAGA CAAGATGATTGGCAGGTATTCCGTTTATCACAGTCCACTTAAAAAATGATGATGATGATA AAAACCACGACCCAACCAGGCACAGGACTTTTTTGTTTTTTGCACTTCGCTGTGTTTCCC CCCCATCTTTAAAAATAATTAGTAATAAAAAACAAAAATTCCATATCTAGCCCCATCCCA CACCTGTTTCAAATCCTTGAAATGCATGTAGCAGTTGTTGGGCGAATGGTGTTTAAAGAC CGAAAATGAATTGTAATTTTCTTTTCCTTTTAAAGACAGGTTCTGTGTGCTTTTTATTTT GATTTTTTTTCCCAAGAAATGTGCAGTCTGTAAACACTTTTTGATACCTTCTGATGTCAA AGTGATTGTGCAAGCTAAATGAAGTAGGCTCAGCGATAGTGGTCCTCTTACAGAGAAACG GGGAGCAGGACGACGGGGGGGCTGGGGGTGGCGGGGGAGGGTGCCCACAAAAAGAATCAG GACTTGTACTGGGAAAAAAACCCCTAAATTAATTATATTTCTTGGACATTCCCTTTCCTA ACATCCTGAGGCTTAAAACCCTGATGCAAACTTCTCCTTTCAGTGGTTGGAGAAATTGGC CGAGTTCAACCATTCACTGCAATGCCTATTCCAAACTTTAAATCTATCTATTGCAAAACC TGAAGGACTGTAGTTAGCGGGGATGATGTTAAGTGTGGCCAAGCGCACGGCGGCAAGTTT TCAAGCACTGAGTTTCTATTCCAAGATCATAGACTTACTAAAGAGAGTGACAAATGCTTC CTTAATGTCTTCTATACCAGAATGTAAATATTTTTGTGTTTTGTGTTAATTTGTTAGAAT TCTAACACACTATATACTTCCAAGAAGTATGTCAATGTCAATATTTTGTCAATAAAGATT TATCAATATGCCAAAAAAAAAAAAAAA >Hs.77031_mRNA_1 gi|16741772|gb|BC016680.1|BC016680 Homo sapiens clone MGC:21349 IMAGE:4338754 polyA = 3 GTGGCGGCGGAGGCGGCGGAGGCCAGGGAGGAAGATGTCGTAATGAGCGATCCACAGACC AGCATGGCTGCCACTGCTGCTGTGAGTCCCAGTGACTACCTGCAGCCTGCCGCCTCCACC ACCCAGGACTCCCAGCCATCTCCCTTAGCCCTGCTTGCTGCAACATGTAGCAAAATTGGC CCTCCAGCAGTTGAAGCTGCTGTGACACCTCCTGCTCCCCCACAGCCCACACCGCGGAAA CTTGTCCCTATCAAACCTGCCCCTCTCCCTCTCAGCCCCGGCAAGAATAGCTTTGGAATC TTGTCCTCCAAAGGAAATATACTTCAGATTCAGGGGTCACAACTGAGCGCCTCCTATCCT GGAGGGCAGCTGGTGTTCGCTATCCAGAATCCCACCATGATCAACAAAGGGACCCGATCA AATGCCAATATCCAGTACCAGGCGGTCCCTCAGATTCAGGCAAGCAATTCCCAAACCATC CAAGTACAGCCCAATCTCACCAACCAGATCCAGATCATCCCTGGCACCAACCAAGCCATC ATCACCCCCTCACCGTCCAGTCACAAGCCTGTCCCCATCAAGCCAGCCCCCATCCAGAAG TCGAGTACGACCACCACCCCCGTGCAGAGCGGGGCCAATGTGGTGAAGTTGACAGGTGGG GGCGGCAATGTGACGCTCACTCTGCCCGTCAACAACCTCGTGAACGCCAGTGACACCGGG GCCCCTACTCAGCTCCTCACTGAAAGCCCCCCAACCCCGCTGTCTAAGACTAACAAGAAA GCAAGGAAGAAGAGCCTTCCTGCCTCCCAGCCCCCTGTGGCTGTGGCTGAGCAGGTGGAG ACGGTGCTGATCGAGACCACCGCGGACAACATCATCCAGGCAGGAAATAACCTGCTCATT GTTCAGAGCCCTGGTGGGGGCCAGCCAGCTGTGGTCCAGCAGGTCCAGGTGGTGCCCCCC AAGGCCGAGCAGCAGCAGGTGGTACAGATCCCCCAGCAGGCTCTGCGGGTGGTGCAGGCG GCATCTGCCACCCTCCCCACTGTACCCCAGAAGCCCTCCCAGAACTTTCAGATCCAGGCA GCTGAGCCGACACCTACTCAGGTCTACATCCGCACGCCTTCCGGTGAGGTGCAGACAGTC CTTGTCCAGGACAGCCCCCCAGCAACAGCTGCAGCCACCTCTAACACCACCTGTAGCAGC CCTGCATCCCGTGCTCCCCATCTGAGTGGGACCAGCAAAAAGCACTCAGCTGCAATTCTC CGAAAAGAGCGTCCCCTGCCAAAGATTGCCCCAGCCGGGAGCATCATCAGCCTGAATGCA GCCCAGTTGGCGGCAGCTGCCCAGGCAATGCAGACCATCAACATCAATGGTGTCCAGGTC CAGGGCGTGCCTGTCACCATCACCAACACAGGCGGGCAGCAGCAGCTGACAGTGCAGAAT GTTTCTGGGAACAACCTGACCATCAGTGGGCTGAGCCCCACCCAGATCCAGCTGCAAATG GAACAAGCCCTGGCCGGAGAGACCCAGCCCGGGGAGAAGCGGCGCCGCATGGCCTGCACG TGTCCCAACTGCAAGGATGGGGAGAAGAGGTCTGGAGAGCAGGGCAAGAAGAAGCACGTG TGCCACATCCCCGACTGTGGCAAGACGTTCCGTAAGACGTCCTTGCTGCGTGCCCATGTG CGCCTGCACACTGGCGAGCGGCCCTTTGTCTGCAACTGGTTCTTCTGTGGGAAGAGGTTC ACACGGAGTGACGAGCTCCAACGGCATGCTCGCACCCACACAGGGGACAAACGCTTCGAG TGCGCCCAGTGTCAGAAGCGCTTCATGAGGAGTGACCACCTCACCAAGCATTACAAGACC CACCTGGTCACGAAGAACTTGTAAGGCCAACTGCGGCGGGAGGCCCTGAAGATGCAGTCC CCCACCTGTGTCCTCCCTGGGCCCCTGGTGGAAAGGAGCCCTGTGGCTGCCTTGGGCCTG CCCTCAGCCCCACTCCTGTTCTGCAACTGTCCCCACAGGAAGGGGCTCTGTTCCCTGTAT TGTCCTCCTTCTGAAGCCCCTTGGCTCTGCCTTGGCCCTTCCCCTCACCACGAGCTCCCG GCCTGCCCAGACTGTGGACACTGGCCGTGCCCAATGAGACGTTCTAAACCAGGACGCGTG GGAACCCTTATTTCCAAAGGAAAAACATGCATTTCACTCCGTCGAGGAGCAAAGTGAGCC CCTACCCCCCACCCCGATCCCCGCTCCCAACACTGCCGGAGTCGCGTCATGCCATGCCCC CTCTCCTGCACCTCCCTGGCCCTGCCGGCCACTGTGGACGCCCTGGGGCTTGGCACCCAC CTCTGGAGAAACTCGGGGCCACCTCCACTCCATGTGCCCAGCCCCGCCACAACCTCTCCT CCAGCACATTCCAGCTCTATTTAAAAAGTAAAGACACCCACCGACTCCTGATCCCCCTCT TTTTCTATGGAGAACGTTGCCTTATACTCTCTACTTCAGATGATGAACACTGTGTACTGT GTGTGCTTTAAAGAAGTTTTATTTAATTGCTCCCTTCTTCCTTTCCTTGTTATTCACCTC CCTGATGCCTGCTTTCAGTTGAGGGTTGGGGGCAATGATGAGCATATGAATTTTTTCTCA CTCTAGCAATTCCCTTTTCTAAATGACACAGCATTTAAACTCAAATCTGGATTCAGATAA CAGCACCTGCACATCCTGCACCTCCTCCCTCTCCCTTCACCTCACCCCTGCCCGGCCCAA GCTCTACTTGTGTACAGTGTATATTGTATAATAGACAATTGTGTCTACTACATGTTTAAA AACACATTGCTTGTTATTTTTGAGGCTTTTAAATTAAACAAAAATCCAACTTTAAAAAAA AAAAAAAA >Hs.77541_mRNA_1 gi|12804364|gb|BC003043.1|BC003043 Homo sapiens clone MGC:4370 IMAGE:2822973 polyA = 3 CCCGCGTCGGTGCCCGCGCCCCTCCCCGGGCCCCGCCATGGGCCTCACCGTGTCCGCGCT CTTTTCGCGGATCTTCGGGAAGAAGCAGATGCGGATTCTCATGGTTGGCTTGGATGCGGC TGGCAAGACCACAATCCTGTACAAACTGAAGTTGGGGGAGATTGTCACCACCATCCCAAC CATAGGCTTCAATGTAGAAACAGTGGAATATAAGAACATCTGTTTCACAGTCTGGGACGT GGGAGGCCAGGACAAGATTCGGCCTCTGTGGCGGCACTACTTCCAGAACACTCAGGGCCT CATCTTTGTGGTGGACAGTAATGACCGGGAGCGGGTCCAAGAATCTGCTGATGAACTCCA GAAGATGCTGCAGGAGGACGAGCTGCGGGATGCAGTGCTGCTGGTATTTGCCAACAAGCA GGACATGCCCAACGCCATGCCCGTGAGCGAGCTGACTGACAAGCTGGGGCTACAGCACTT ACGCAGCCGCACGTGGTATGTCCAGGCCACCTGTGCCACCCAAGGCACAGGTCTGTACGA TGGTCTGGACTGGCTGTCCCACGAGCTGTCAAAGCGCTAACCAGCCAGGGGCAGGCCCCT GATGCCCGGAAGCTCCTGCGTGCATCCCCGGATGACCATACTCCCGGACTCCTCAGGCAG TGCCCTTTCCTCCCACTTTTCCTCCCCCATAGCCACAGGCCTCTGCTCCTGCTCCTGCCT GCATGTTCTCTCTGTTGTTGGAGCCTGGAGCCTTGCTCTCTGGGCACAGAGGGGTCCACT CTCCTGCCTGCTGGGACCTATGGAAGGGGCTTCCTGGCCAAGGCCCCCTCTTCCAGAGGA GGAGCAGGGATCTGGGTTTCCTTTTTTTTTTCTGTTTTGGGTGTACTCTAGGGGCCAGGT TGGGAGGGGGAAGGTGAGGGCTTCGGGTGGTGCTATAATGTGGCACTGGATCTTGAGTAA TAAATTTGCTGTGGTTTGAAAAAAAAAAAAAAAAAAAAA >Hs.7001_mRNA_1 gi|6808256 emb|AL137727.1|HSM802274 Homo sapiens mRNA; cDNA DKFZp434M0519 (from clone DKFZp434M0519); partial cds polyA = 3 GTGGCGGTGGCTGCGGCGACGGCAGAGGCGAAGGGAGCCGGATCGCCGACCTGAGCGGGA GGCGGCGGTGGCGGCCATGGCGGCAGATGGAGAGCGTTCCCCGCTGCTGTCTGAGCCCAT CGACGGTGGCGCGGGCGGCAACGGTTTAGTGGGGCCCGGCGGGAGTGGGGCTGGGCCCGG GGGAGGCCTGACCCCCTCCGCACCACCGTACGGAGCCGGTAAACATGCCCCGCCCCAGGG TAAGCCGGGGCGGGTCCGAGGTGCTCCCCGGGGTACTCTGAAAGCCGGGGAGGGGGCGGG ACCGAGGGCGGAGGCGGGTCCCAGTCGCCAGGTGCGGGACTGCTGCACCTGTGACTGGGC GAGGCTTCCTTCCCTCCGTAATCGCGACCACAGCCTAGGGACGGAAGGGGGTTCTGAGCA ACCTGATAGAAGTGCCAATTATGAGAAGCCCTCCGAGCTTGGTCAGAGGGTTGAAGATCA GAAGGACTTCCCTACCACCGTGGAGCATCAGTGGGGGTGTAAGTGATCCCAGCCCTTCTA TTTGCTTCCTCTCCAGCATTTCCCCCGTTTCCCGAGGGGCATCCAGCCGTGTTGCCTGGG GAGGACCCACCCCCCTATTCACCCTTAACTAGCCCGGACAGTGGGAGTGCCCCTATGATC ACCTGCCGAGTCTGCCAATCTCTCATCAACGTGGAAGGCAAGATGCATCAGCATGTAGTC AAATGTGGTGTCTGCAATGAAGCCACCGTGAGTTACACATATCTATGAAATGGGCCCTGT TTCCTGGATCCTCTTTCTGATGTCTTGGTTCTAGACCCTGACCTTCCGGCTATTAGCCAA GTGCTTTTGATGATACCCAGGTTTCAGTTCCAGGTGTCTCACACAGCCATTTCCCCAGAA GCCACTCACCAAAGCTAATGTTCACTTTCTCTCACTTTTACACCTAGCCTAGTTCCTATT TGCAAATCTCATGATATAGTCTTTCTTTTATTTCTCCTTCCTGGTTAGCACCTTATTTTT CTGATCTCATAAAGTGTTTTTGGAGGGAAGTGGAGGGGATTGGGATTAGAGGTTTGCTTG CTGATGACCCTATTATTCTCTAGCCAATCAAGAATGCACCCCCAGGGAAAAAATATGTTC GATGCCCCTGTAACTGTCTCCTTATCTGCAAAGTGACATCCCAACGGATTGCATGCCCTC GTCCCTACTGGTAAGAGGCATAAGGTGGGGAAGGGCCTAAGTGGGGAACTGGAAAGTCAA AAAAGGATGAGCGTATACAGAGAATGTAAAGGTGAGAGAGCCTAGTGTTTATTTAGGAGA AAAGGCTTTGAAGCATGTGCCTCAGGAATGTTATAGCTGTCTTTCTCGTTTCTCAATAAA AATATTGAGATGAAATGATGTCGTTTCGGAGAATAGAGAGCCTTGGGGACTGGGTGTGTT ATCCTGAGGTCGGAGGGGAATTGGGGACCTGAAGTTTAAACAGTGCTCTTTCTTTCTCAA GGATTCTTGAGGGTATACAGTTGGGGGACAGAGTATCTTAAGTACAGAGAAGTCGAGTGA CTTAATAGACAGGGAGTGGGGGATGTGGAACAGGGACTGTGAAGATTTTTAGGATTAAAA ATTTTTCAAACACAAGTTTGAAAATACAAGTCTTTTTCTTTTGTATAGCAAAAGAATCAT CAACCTGGGGCCTGTGCATCCCGGACCTCTGAGTCCAGAACCCCAACCCATGGGTGTCAG GGTTATCTGTGGACATTGCAAGAATACTTTTCTGGTGAGGAAGGGGTATTGGGAAGGGGA GGGGAAAGGAGACTAAGAGTCATTTCGAGTATATTTCTTAGAGTAATGGTAATGACCCCT GAAAGGTCTGTCCTATGGGAACATGTTCTGCATCCCCACCCCAAGGTTCTCATTGAGGGA GACCCTGCTTGTGCTATTATTTTTGTTTTCTTTCTCCATAGTGGACAGAGTTCACAGACC GCACTTTGGCACGTTGTCCTCACTGCAGGAAAGTGTCATCTATTGGGCGCAGATACCCAC GTAAGAGATGTATCTGCTGCTTCTTGCTTGGCTTGCTTTTGGCAGTCACTGCCACTGGCC TTGCCGTGAGTACCCTTGCCCCAACCTCTTTCATTCTGCAGCCTCATCTCCATAGGCTAA GATTTGGGAAACTGCTACCCTAAAAAAAAGTGGAAGAAACTTAGGGGACTAGTTTGTTTT GTTTTAAGATATGGATGAGCTAAAGTGCAAAGTGGCTGATCAAACAGACTTTATTACTAC TACAAGAGTGAAAAACAGCCTTCCTTTCTCTGTAGGATGAGGATAGGACAGTGAAATTCT TAATTTAAGAGTTGCTATTTTTCAAACCTGGCTCAGTTGTCAGATATTAAGAAAAACTGA GATACAGTGTGGGATGGGATGAGTATGTTACGCCTAAGGGAAGGAAGCTGATCAGCTCTG CCTTTAAGAAGGTCCCTGAGGGTGGCTACATGTGGATAAGGAACAAGGACTGAAGCGTGA GTTATTACTGTTCTTAGAACTAATAGGAGGTAGTGGAGACCAACATTAACCCCATCTTTC TTTTCTTCTCCCTCCTTATCTTCATCAGTTTGGCACATGGAAGCATGCACGGCGATATGG AGGCATCTATGCAGCCTGGGCATTTGTCATCCTGTTGGCTGTGCTGTGTTTGGGCCGGGC TCTTTATTGGGCCTGTATGAAGGTCAGCCACCCTGTCCAGAACTTCTCCTGAGCCTGATG ACCCACAGACTGTGCCTGGCCCCTCCCTGGTGGGGACAGTGACACTACGAAGGGAGCTGG GGTAGTTAAAGGCTCCCGGGGCTTCTAGAAGGAAGCCAAGCAGCTGCCTTCCTTTTCCCT GGGGAGAGGTAGGAAGGAACCAGGCCCTCACTTAGGTTTGGAGGGGCAGATAAGAGCACT GCTGACCATCTGCTTTCCTCCAAGGGTTGCTGTGTCTAGGGTGAAGTAGGCAAAACGTTG CCCTTAAAACTGGGCCCTGAAGACGGTTCCAGCCTTGTCCTTCCTGTGTGCTCCCTGAGA GCCATTCCTGTCCCTTACACATTCCAGGGCAGGGTGGGGGTGGGTAGCCCTGGGGGTTCC CCTCCCTCTTGTGCACCATTAGGACTTTGCTGCTGCTATTGCACTTCACCAGAGGTTGGC TCTGGCCTCAGTACCCTCAGTCTCCTCTCCCCACATTGTGTCCTGTGGGGGTGGGGTCAG CCGCTGCTCTGTACAGAACCACAGGAACTGATGTGTATATAACTATTTAATGTGGGATAT GTTCCCCTATTCCTGTATTTCCCTTAATTCCTCCTCCCGACCTTTTTTACCCCCCCAGTT GCAGTATTTAACTGGGCTGGGTAGGGTTGCTCAGTCTTTGGGGGAGGTTAGGGACTTATC CTGTGCTTGTAAATAAATAAGGTCATGACTCTAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAA >Hs.302144_mRNA_1 gi|11493400|gb|AF130047.1|AF130047 Homo sapiens clone FLB3020 polyA = 0 CTGTCAGCACGGGGCCTGGCATGTAATTGGTCTGCACCCACTGGTGCACTGAACTGCCAT AACCTCAGGTTTTCTTTCTTGCTGATACCCCTGGGTCATGTTCTTTGGCAAATAACATGA TTCATTATGAAGTAGAGTTCAGCAAAGGACAAGGATGAAAGTTGTCATTTAGAGAACTGC CATTCAGACTTTCTTGTCTAGGTAAAGAGCAAGGTCTTCTCTCTTTTCAACTCATTTTCT AAATTTAAACTGACGATGAGAATATGGATGATGTGTAGCTTCCTTCTCCCCCACTGATTT TTGGTTCAGGCTCTGGGTTTTTGGCAAGAACTTACAGATCTCACTTATTATTGGCCACCC TTCTGCTTTAAGACCTGTCAGGGCTTGTCTGAAATAAAACTGGAAGCACTTCTGATTCCA TCCTCACTGCTTTCCTCCTTCACCGTCAGACAGCATTACTGTATAGCACTGAGTGAGGGG CCCTGACACTGGAAGGTGGCAGGTGGGGCCTGGCCGCCAGTGAGGTATCATCATTTGTGT GTGCTCATGTGTGCGTTGGGCTTGTTGTATCTGAGGCATGAACATTCCATATACACGGCT TAAAGAGTTTTCTTCCCATACCGAAAGCATATATTCGGAGAGGACCCAACTTATTCAGCA TAGCCTTGTTCCCATAGTAGCCATCCTATTCCCCCACAGCCTCTACTTTAGGAAAGCTCC CCGTCCCCATATGAAATCCAAACCAAAAAAGATATATCACTTTCAGCTCAATTATTCCAT AATTACAAGATATTAGGCTAGTGGGCTCTTTATTGGTTGGGTCTTATATTAATGTTATAT GCTAGCCTTGTAATTTTGAGCTCCTCTATGGATGTTAATTTTAGTGAAACTCTATATTGA AGAAAAGATGGGACTAAGGGGGAGACAGGAGGAGGAAAGAAAGCAGAGACAGGCAAAGAA TCATAGCCTGAAATTCAACAGCAAGCATGGCTTATGAAGATCAAGTTATATTTTTGCTTC ATGAATCATTGTCAGACAAATTAAGAACATATTGTTTCTTATTTATCTATTGTCAAGGAT TCACTATCAGACACTAAGAATGAATCTTGATTTTCATAAGCTCTGTTGACACCATGGAGC CACAGAGCATAAAACTTGCATCTAATAAAGAAAGTGCAACATGGAACAGCAGGGAGTGGA ATACCAGCACAACTCACAGCTGCTTCCTGTTCCTCGTCCCTGTTTTCAGGAATGTTTCTT AGCAGGAAGTTTTTTAATAGACCGAGAATTTGTTATATGTATTCTAAGAAAAGTTGTAGT TGTAGATGCATTACTCTCCCAAATCTTAGAGATCAGGGATGATTATGTTCCATTTTTGTT TGGTGAGTTCCCATCTTTGTATGTACCTCCTTGCTCCCGGCTGTCCTCCTCTCCTCTTCC CTAGTGAGTGGTTAATGAGTGTTAATGCCTAAACCATACTTGTTTTATGGACACTTCTAT AATGGATTCGTTGCATAATTTTCATGCAGTGTATAGTGTTACTAGTTGGAAATTCTTGGA GGACTCTTAGCTGTCTGATGAAATTCCTAGTAGAAATTTTTGTTTTGAATTCCTAAAGTT GAAATATGAAAATTATATTTTAATTTGATTC >Hs.26510_mRNA_2 gi|11345385|gb|AF308803.1|AF308803 Homo sapiens chromosome 15 map 15q26 polyA = 3 AGTTTTTCTGGTAGAAGGCGGGGTTCTCCTCGTACGCTGCGGAGTCTCTGCGGGGTGTAG ACCGGAATCCTGCTGACGGGCAGAGTGGATCAGGGAGGGAGGGTCGAGACACGGTGGCTG CAGGTCTGAGACAAGGCTGCTCCGAGGTAGTAGCTCTCTTGCCTGGAGGTGGCCATTCAT TCCTGGAGTGCTGCTGAGGAGCGAGGGCCCATCTGGGGTCTCTGGAAGTCGGTGCCCAGG CCTGAAGGATAGCCCCCCTTGCGCTTCCCTGGGCTGCGGCCGGCCTTCTCAGAACGAAGG GCGTCCTTCCACCCCGCGGCGCAGGTGACCGCTGCCATGGCTTTTCCCCATCGGCCGGAC GCCCCTGAGCTGCCTGACTTCTCCATGCTGAAGAGGCTGGCTCGAGACCAGCTCATCTAT CTGCTGGAGCAGCTTCCTGGAAAAAAGGATTTATTCATTGAGGCAGATCTCATGAGCCCT TTGGATCGAATTGCCAATGTCTCCATCCTGAAGCAACACGAAGTAGACAAGCTATACAAG GTGGAGAACAAGCCAGCCCTCAGCTCCAATGAACAATTGTGCTTCTTGGTCAGACCCCGC ATCAAGAATATGCGATACATTGCCAGTCTTGTCAATGCTGACAAATTGGCTGGCCGAACT CGCAAATACAAAGTGATCTTCAGCCCTCAAAAGTTCTATGCGTGTGAGATGGTGCTTGAG GAAGAGGGAATCTATGGAGATGTGAGCTGTGATGAATGGGCCTTCTCTTTGCTGCCTCTT GATGTGGATCTGCTGAGCATGGAACTACCAGAATTTTTCAGGGATTACTTTCTGGAAGGA GATCAGCGTTGGATCAACACTGTAGCTCAGGCCTTACACCTTCTCAGCACTCTCTATGGA CCCTTTCCAAACTGCTATGGAATTGGCAGGTGCGCCAAGATGGCATATGAATTGTGGAGG AACCTGGAGGAGGAGGAGGATGGCGAAACCAAGGGCCGAAGGCCAGAGATTGGACATATC TTTCTCTTGGACAGAGATGTGGACTTTGTGACAGCACTTTGCTCCCAAGTGGTTTATGAG GGCCTAGTAGATGACACCTTCCGCATCAAGTGTGGGAGTGTCGACTTTGGCCCAGAAGTC ACATCCTCTGACAAGAGCCTGAAGGTGCTACTCAATGCCGAGGACAAGGTGTTTAATGAG ATTCGGAACGAGCACTTCTCCAATGTCTTTGGCTTCTTGAGCCAGAAGGCCCGGAACTTG CAGGCCCAGTATGATCGCCGGAGAGGCATGGACATTAAGCAGATGAAGAATTTCGTGTCC CAGGAGCTCAAGGGCCTGAAACAGGAGCACCGCCTGCTGAGTCTCCATATTGGGGCCTGT GAATCCATCATGAAGAAGAAAACCAAGCAGGATTTCCAGGAGCTAATCAAGACTGAGCAT GCACTGCTAGAGGGGTTCAACATCCGGGAGAGCACCAGCTACATTGAGGAACACATAGAC CGGCAGGTGTCGCCTATAGAAAGCCTGCGCCTCATGTGCCTTTTGTCCATCACTGAGAAT GGTTTGATCCCCAAGGATTACCGATCTCTGAAAACACAGTATCTGCAGAGCTATGGCCCT GAGCACCTGCTAACCTTCTCCAATCTGCGAAGAGCTGGGCTCCTAACGGAGCAGGCCCCC GGGGACACCCTCACAGCCGTGGAGAGTAAAGTGAGCAAGCTGGTGACCGACAAGGCTGCA GGAAAGATTACTGATGCCTTCAGTTCTCTGGCCAAGAGGAGCAATTTTCGTGCCATCAGC AAAAAGCTGAATTTGATCCCACGTGTGGACGGCGAGTATGATCTGAAAGTGCCCCGAGAC ATGGCTTACGTCTTCAGTGGTGCTTATGTGCCCCTGAGCTGCCGAATCATTGAGCAGGTG CTAGAGCGGCGAAGCTGGCAGGGCCTTGATGAGGTGGTACGGCTGCTCAACTGCAGTGAC TTTGCATTCACAGATATGACTAAGGAAGACAAGGCTTCCAGTGAGTCCCTGCGCCTCATC TTGGTGGTGTTCTTGGGTGGTTGTACATTCTCTGAGATCTCAGCCCTCCGGTTCCTGGGC AGAGAGAAAGGCTACAGGTTCATTTTCCTGACGACAGCAGTCACAAACAGCGCTCGCCTT ATGGAGGCCATGAGTGAGGTGAAAGCCTGATGTTTTTCCCGGCCAGTGTTGACATCTTCC CTGAACACATTCCTCAGTGAGATGCAGGCATCTGGCACCCAGCTGCTATAACCAAGTGTC CACCAACTACCTGCTAAGAGCCGGGAGCATGGAACGTGTTGGGATTTAGAGAACATTATC TGAGAAAAGAGTTCACTTCCTGCTCCCAGGATATTTCTCTTTTCTGTTTATGAAGTACAA CCCATGCTGCTAAGATGCGAGCAGGAAGAGGCATCCTTTGCTAAATCCTGTTTGAATGTC ATTGTAAATAAAGCCTCTGCTCTCAGATGTAAAAAAAAAAAAAAAAAAAAA >Hs.324709_mRNA_2 gi|12655026|gb|BC001361.1|BC001361 Homo sapiens clone MGC:2474 IMAGE:3050694 polyA = 2 GGCACGAGGGGTCGCGCTGCCGCCGTTTTATTTGAAGACATCGTCCAGTTCTGACCATGG ACTCGCAGCCATCGGCCCTTAGTTTCCATCCCCTCTAGTGGGCCTTCGGGGGCTCTACTG ACGTCCCTCCTTCCCTTGGTACCGGGCCGGGGAAGTGTTCTCGGGCGCGGGAGGTTCCGC ATGCCCAGGCCTGGCCAGGGGAGATGACCGATCCGTCGCTGGGGCTGACAGTCCCCATGG CGCCGCCTCTGGCCCCGCTCCCTCCCCGGGACCCAAACGGGGCGGGATCCGAGTGGAGAA AGCCCGGGGCCGTGAGCTTCGCCGACGTGGCCGTGTACTTCTCCCGGGAGGAGTGGGGCT GCCTGCGGCCCGCGCAGAGGGCCCTGTACCGGGACGTGATGCGGGAGACCTACGGCCACC TGGGCGCGCTCGGTGAGAGCCCCACCTGCTTGCCTGGGCCCTGCGCCTCCACAGGCCCTG CCGCGCCTCTGGGAGCTGCGTGTGGAGTTGGGGGCCCCGGGGCCGGGCAGGCGGCCTCCT CGCAGCGTGGGGTTTGCGTTCTTCTCCCCCAGGAGTCGGAGGCAGCAAGCCGGCGCTCAT CTCCTGGGTGGAGGAGAAGGCCGAACTGTGGGATCCGGCTGCCCAGGATCCGGAGGTGGC GAAGTGTCCGACAGAAGCGGACCCAGCAGATTCCAGAAACAAGGAAGAGGAAAGACAAAG GGAAGGGACGGGAGCCCTGGAGAAGCCCGACCCTGTGGCCGCCGGGTCTCCTGGGCTGAA GGCTCCCCAAGCCCCCTTTGCCGGGTTGGAGCAGCTGTCCAAGGCCCGGCGCCGGAGTCG CCCCCGCTTTTTTGCCCACCCCCCTGTCCCCCGAGCTGACCAGCGTCACGGCTGCTACGT GTGCGGGAAGAGCTTCGCCTGGCGCTCCACACTGGTGGAGCACATTTACAGCCACAGGGG CGAGAAGCCCTTCCACTGCGCAGACTGCGGCAAGGGCTTCGGCCACGCTTCCTCCCTGAG CAAACACCGGGCCATCCATCGTGGGGAGCGGCCCCACCGCTGTCCCGAGTGTGGTCGGGC CTTCATGCGCCGCACGGCGCTGACTTCTCACCTGCGCGTTCACACTGGCGAGAAGCCCTA CCGCTGCCCGCAGTGTGGCCGCTGCTTCGGCCTGAAGACCGGCATGGCCAAGCACCAATG GGTCCATCGGCCCGGGGGCGAGGGGCGTAGGGGCCGGCGCCCTGGGGGGCTGTCTGTGAC CCTGACTCCTGTCCGCGGGGACCTGGACCCGCCTGTGGGCTTCCAGCTGTATCCAGAGAT ATTCCAGGAATGTGGGTGACGGCCTAAAAAGTGACCATCTAGACATTGTGGGCGGCCCGA GATGGGCTCAGGGGCCCGAACCTCTGCAGCGGCCTGCAGGGAGGTCCCAGAATCCACCGC AAGAGCTGGCCTGGGGTGCGGACAGTCTGATCTTGGGCTCTCAGCAGCCTCTTCTGCCAG CACCTTGCTCCCCGCTGCCCTGGGCTCTCCAAGGCCCCCTTTGCTGAGGCAGGGCTGAGG TGAGAACCCCCCAGACCTCCATACAGGGAAGCAAAAGCTGTTTCTCCTCCCAGAGATGCT AAGAGGATTGAGGTAGAGAAGAACCTTGTTTTCTCTGTTGTCTTTTTCTTTTTACTTTTT TAATTTTTTGAGACGGAGTTTTGCTCTTGTTGCCCAGGCTGGAGTGCAATGGTGCGATCT CGACTCACTGCAACTTCCACCTCCTGGAGTCAAGCGATTCTCCTGCCTCAGCCACCCAAG TAGCTGGAATTACAGGCACCTGCCACTATGCCCGGCTAACTTTTTGTATTTTTAGTAGAG ATGGGGTTTCACCATGTTGGCTAGGCTGGTCTCGAACTCCTGCCCTCAGGTGATCCACCC ACCTCTGCCTCCCAAAGTGCTGGGATTACAGGCGTGAGCCACCTCACCTGGCCTTTTCTT TTTTATTCTTTGACCTTCCCACAAGACAATACCCATTGTCTGTTTTTTTTGTTTATTTAT TTACTTATTAAGACAGCATCTTGCTCCTCACCCAGGCTGGAATGCAGTGGTGTGAACTGG GCTCACTGCAGCCTAGACCTGCTGGGCTCAAGGAATCCTCCTGCCCCAGCCTCTCAGATG GCTGTGACTACAGGTGGGCAACACTATGCCTGGTTAATTTTTAAATTTTTTTGCAGAGAT GGGGTTCCCACTATGTTGATCAGGCTGGTCTCAAACTCCTCGGTTCAAGCAATTCGCCCA CCTTGGCCTCCCAAAGTGCTGGGATTACAGGGGAGCCACTGCACTGGCCTTCATTGTCTT TTTGCTGCACAACCTAAAAAACCAGTGACCCTGTATTGGAAAAAAAAAAAAAAAAAAAAA A >Hs.65756_mRNA_3 gi|3641494|gb|AF035154.1|AF035154 Homo sapiens chromosome 16 map 16pl3.3 polyA = 3 GCCATGGCCGCCGGCCCCGCGCCGCCCCCCGGCCGCCCCCGGGCGCAGATGCCGCATCTG AGGAAGGTGCGAGGCGGATGGAGCGGGTGGTCGTGAGCATGCAGGACCCCGACCAGGGCG TGAAGATGCGGAGCCAGCGCCTGCTGGTCACCGTCATTCCCCACGCGGTGACAGGCAGCG ACGTCGTGCAGTGGTTGGCCCAGAAGTTCTGCGTCTCGGAGGAGGAGGCCCTGCACCTGG GCGCCGTCCTGGTGCAGCATGGCTACATCTACCCGCTGCGCGACCCCCGTAGCCTCATGC TCCGGCCAGACGAGACGCCCTACAGGTTCCAGACCCCGTACTTCTGGACAAGTACCCTGA GGCCGGCTGCAGAGCTGGACTATGCCATCTACCTGGCCAAGAAGAACATCCGAAAACGGG GGACCCTGGTGGATTATGAGAAGGACTGCTATGACCGGCTACACAAGAAGATCAACCACG CATGGGACCTGGTGCTGATGCAGGCGAGGGAGCAGCTGAGGGCAGCCAAGCAGCGCAGCA AGGGGGACAGGCTGGTCATTGCGTGCCAGGAGCAGACCTACTGGCTGGTGAACAGGCCCC CGCCCGGGGCCCCCGATGTGCTGGAGCAGGGTCCAGGGCGGGGATCCTGCGCTGCCAGCC GTGTGCTCATGACCAAGAGTGCAGATTTCCATAAGCGGGAGATCGAGTACTTCAGGAAAG CGCTGGGCAGGACCCGAGTGAAGTCCTCCGTCTGCCTTGAGGCGTACCTGAGTTTCTGCG GCCAGCGTGGACCCCACGATCCCCTCGTGTCGGGGTGCCTGCCCAGCAATCCCTGGATCT CAGACAATGACGCCTACTGGGTCATGAATGCCCCCACGGTGGCTGCCCCCACGAAGCTCC GTGTGGAGAGATGGGGCTTCAGCTTCCGGGAGCTCCTGGAGGACCCCGTGGGGCGGGCCC ACTTCATGGACTTTCTGGGAAAGGAGTTCAGTGGAGAAAACCTCAGCTTCTGGGAGGCAT GTGAGGAGCTTCGATATGGAGCGCAGGCCCAGGTCCCCACCCTGGTGGATGCCGTGTACG AGCAGTTCCTGGCCCCCGGAGCTGCCCACTGGGTCAACATCGACAGCCGGACCATGGAGC AGACCCTGGAGGGGCTGCGCCAGCCCCACCGCTATGTCCTGGATGACGCCCAGCTGCACA TATACATGCTCATGAAGAAGGACTCCTACCCAAGGTTCCTGAAGTCTGACATGTACAAGG CCCTCCTGGCAGAGGCTGGGATCCCGCTGGAGATGAAGAGACGCGTGTTCCCGTTTACGT GGAGGCCACGGCACTCGAGCCCCAGCCCTGCACTCCTTCCCACCCCTGTGGAGCCCACAG CGGCTTGTGGCCCTGGGGGTGGAGATGGGGTGGCCTAGTGGACCTGGCCCATCTGCCACT CTAGTCCCTGCAGCTCAACGTCCTGCGTGAATGCAGCAGCCACCCCCGTCTTGGCCCAGG TCCTGGGGGCTGCTGAACCCAGCACCAGTGTCCCCTTGTGCCCAGGGGGCCCAGTCTTCT GTGGGGTGCACAGCCTCCCTCCCTCCAGCAAGCCCTCCCTGCCCAGAAGGAATGGGTCCA GGTGTGGATTCCCAGGGAGGGGGTTCATTGGCTCAGCTTGGGTCAGGGCAGAGCCTGTTA CCTGAAGAGAGGTGAGACCAAGGCCACAGGGAGCTCCACCTTCTCTGGTCTTCAGTCCAG CACTGGGTGCCCATCCCCATCTCTAAAACCAGTAAATCAGCCAGCGAATACCCGGAAGCA AGATGCACAGGCGGGCGGCTTCCCACACACCCGTCACAAGACGCGGACATGCAGGTCTCG GCGCGAGCTCTGCCCCGTCCAAGAGCCTCTCCGCTGTCGCCCAGTGTGAGCCTGGAAGAG GACCCAAGAGAGTGCCGTGCTGAGGCTGCCTCGAGGTCACTGCCTTCCGGAGCTGCGCCT ATTCCTCCCTCGCCAAACGCGTTCCAGAATTTGTCCACAGGTGCGCCGGCACCTGCTTTC CCACCTCGAGGCCGCGGCCTCCCCCCCGATTTATAGACAACTCTGACATTGTCACCCCAC TGACGAGGCCCGATTCCATAGGGTGGATCCTTGCCAGGCGTCCCTGATCCTCCCTGCCCA AGTCTTCCTTCGTGAGCTGGCCTTGCTCCCCATCCCCCAAGTGCCTCACCAGTCCCCCAG ACTGGGTGAAGGTACAGCTGGCTCCTTTCGGGGGTGCAGCTTCAACTCTCTCGGCGGTAG GGCGGTGCCATCCCCACCCATAGGGCTGGCTCACATCCAGTCACTCCCAACAGCGTCCAG CACACAAATAAAAGACCCTTGGGCCCTGGCTCTGAGAAAAAAAA >Hs.165743_mRNA_2 gi|13543889|gb|BC006091.1|BC006091 Homo sapiens clone MGC:12673 IMAGE:3677524 polyA = 3 AGACTGCCGAGCAGCCTTGAGCCGTTGAGCAGCTGAACAGAGGCCATGCCGGGGCACTCC GAGGCCTGAGACGACCACGCCTGTGCCGCTGAGGACCTTCATCAGGGCTCCGTCCACTTG GCCCGCTTGGCTGTCCAATCACACTCCAGTGTCAACCACTGGCACCCAGCAGCCAAGAGA GGTGTGGCGTGGCCCTGGGGACGCATGGCTGAGGCAGGAACAGGTGAGCCGTCCCCCAGC GTGGAGGGCGAACACGGGACGGAGTATGACACGCTGCCTTCCGACACAGTCTCCCTCAGT GACTCGGACTCTGACCTCAGCTTGCCCGGTGGTGCTGAAGTGGAAGCACTGTCCCCGATG GGGCTGCCTGGGGAGGAGGATTCAGGTCCTGATGAGCCGCCCTCACCCCCGTCAGGCCTC CTCCCAGCCACGGTGCAGCCATTCCATCTGAGAGGCATGAGCTCCACCTTCTCCCAGCGC AGCCGTGACATCTTTGACTGCCTGGAGGGGGCGGCCAGACGGGCTCCATCCTCTGTGGCC CACACCAGCATGAGTGACAACGGAGGCTTCAAGCGGCCCCTAGCGCCCTCAGGCCGGTCT CCAGTGGAAGGCCTGGGCAGGGCCCATCGGAGCCCTGCCTCACCAAGGGTGCCTCCGGTC CCCGACTACGTGGCACACCCCGAGCGCTGGACCAAGTACAGCCTGGAAGATGTGACCGAG GTCAGCGAGCAGAGCAATCAGGCCACCGCCCTGGCCTTCCTGGGCTCCCAGAGCCTGGCT GCCCCCACTGACTGCGTGTCCTCCTTCAACCAGGATCCCTCCAGCTGTGGGGAGGGGAGG GTCATCTTCACCAAACCAGTCCGAGGGGTCGAAGCCAGACACGAGAGGAAGAGGGTCCTG GGGAAGGTGGGAGAGCCAGGCAGGGGCGGCCTTGGGAATCCTGCCACAGACAGGGGCGAG GGCCCTGTGGAGCTGGCCCATCTGGCCGGGCCCGGGAGCCCAGAGGCTGAGGAGTGGGGC AGCCCCCATGGAGGCCTGCAGGAGGTGGAGGCACTGTCAGGGTCTGTCCACAGTGGGTCT GTGCCAGGTCTCCCGCCGGTGGAAACTGTTGGCTTCCATGGCAGCAGGAAGCGGAGTCGA GACCACTTCCGGAACAAGAGCAGCAGCCCCGAGGACCCAGGTGCTGAGGTCTGAGAGGGA GATGGCCCAGCCTGACCCCACTGGCCACTGCCATCCTGCTGCCTTCCCAGTGGGGCTGGT CAGGGGGCAGCCTGGCCACTGCCTAGCTGGAATGGGAGGAAGCCTGCAGGTGGCACCGGT GGCCCTGGCTGCAGTTCTGGGCAGCATCCTCCCAAGCAGAGACCTTGCTGAAGCTCCTGG GGTGTGGGGTGTGGGCTGGAAGCACTGGCTCCCTGGTAGGGACAATAAAGGTTTTGGGTC TTTCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC

All references cited herein, including patents, patent applications, and publications, are hereby incorporated by reference in their entireties, whether previously specifically incorporated or not.

Having now fully described this invention, it will be appreciated by those skilled in the art that the same can be performed within a wide range of equivalent parameters, concentrations, and conditions without departing from the spirit and scope of the invention and without undue experimentation.

While this invention has been described in connection with specific embodiments thereof, it will be understood that it is capable of further modifications. This application is intended to cover any variations, uses, or adaptations of the invention following, in general, the principles of the invention and including such departures from the present disclosure as come within known or customary practice within the art to which the invention pertains and as may be applied to the essential features hereinbefore set forth.

Claims

1-20. (canceled)

21. A method of classifying a tumor cell-containing sample obtained from a human subject based on a tumor type or origin, wherein the tumor type or origin is selected from a plurality of known tumor types or origins, the method comprising:

amplifying five to 49 transcribed sequences, wherein each transcribed sequence is a unique portion of one of SEQ ID NOS: 1-74 or a complement thereof, wherein the unique portion is unique relative to other sequences expressed in the tumor cell-containing sample, and wherein the amplification is of at least 50 nucleotides of the transcribed sequences;
determining the expression levels of the transcribed sequences and normalizing the expression levels to one or more reference genes;
comparing the normalized expression levels of the transcribed sequences from the tumor cell-containing sample to normalized expression levels of the same transcribed sequences from at least ten known tumor types or origins of a plurality of known tumor types or origins, wherein the plurality of known tumor types or origins comprises adrenal gland, brain, breast, carcinoid-intestine, cervix-adenocarcinoma, cervix-squamous, endometrium, gall bladder, germ cell-ovary, GIST, kidney, leiomyosarcoma, liver, lung-adenocarcinoma-large cell, lung-small cell, lung-squamous, lymphoma-B cell, lymphoma-Hodgkin's, lymphoma-T cell, meningioma, mesothelioma, osteosarcoma, ovary-clear cell, ovary-serous, pancreas, prostate, skin-basal cell, skin-melanoma, skin-squamous, small and large bowel, soft tissue-liposarcoma, soft tissue-MFH, soft tissue-sarcoma-synovial, stomach-adenocarcinoma, testis-non-seminoma, testis-seminoma, thyroid-follicular-papillary, thyroid-medullary, and urinary bladder,
determining five nearest neighbors by determining five of the at least ten known tumor types or origins that have the most similar expression levels compared to the expression levels of the tumor cell-containing sample; and a) if at least four of the five nearest neighbors share a tumor type or origin, classifying the tumor cell-containing sample as containing tumor cells of the tumor type or origin shared by at the least four of the five nearest neighbors; and b) if fewer than four of the five nearest neighbors share a tumor type or origin, classifying the tumor cell-containing sample as containing a non-squamous cell tumor.

22. The method of claim 21, wherein the expression levels are determined by use of a microarray and the method further comprises hybridizing the amplified transcribed sequences to the microarray.

23. The method of claim 21, wherein the amplification comprises reverse transcription PCR, quantitative PCR, or real time PCR.

24. The method of claim 21, wherein the amplification comprises linear RNA amplification or quantitative PCR.

25. The method of claim 23, wherein the amplification is of sequences present within 750 nucleotides of the polyadenylation sites of the transcribed sequences.

26. The method of claim 21, wherein the tumor cell-containing sample is a formalin fixed, paraffin embedded sample.

27. The method of claim 21, further comprising, before the determining of the expression levels of the transcribed sequences,

diagnosing the human subject as in need of the determining; or
obtaining the tumor cell-containing sample from the human subject; or
receiving the tumor cell-containing sample; or
sectioning the tumor cell-containing sample; or
isolating cells from the tumor cell-containing sample; or
obtaining RNA from cells of the tumor cell-containing sample.
Patent History
Publication number: 20230023867
Type: Application
Filed: Jun 30, 2022
Publication Date: Jan 26, 2023
Inventors: Mark G. ERLANDER (San Diego, CA), Xiao-Jun MA (San Diego, CA)
Application Number: 17/854,909
Classifications
International Classification: G16B 40/20 (20060101); G16B 40/00 (20060101); C12Q 1/6886 (20060101); G16B 25/10 (20060101);