QUICK RELEASE FOR BALLISTIC SHIELD
A quick-release ballistic plate assembly for a protective vest includes an outer chassis configured to attach to a chest and/or back panel of the vest. The outer chassis has an open lower end leading to an inner cavity, wherein a ballistic plate and sleeve subassembly inserts upward into the cavity. An emergency release handle depending downward from the subassembly may be pulled to overcome a retention mechanism and jettison the subassembly in case the wearer ends up in a body of water or alternative situation requiring such function. This avoids the need to shed the entire protective vest which typically has numerous pockets for a variety of tools, survival gear and ammunition. The assembly may be built into the protective vest at the OEM level, or may be retrofit to existing vests.
The patent claims priority to U.S. Provisional Application No. 63/223,884, filed Jul. 20, 2021 which is incorporated herein by reference.
NOTICE OF COPYRIGHTS AND TRADE DRESSA portion of the disclosure of this patent document contains material which is subject to copyright protection. This patent document may show and/or describe matter which is or may become trade dress of the owner. The copyright and trade dress owner has no objection to the facsimile reproduction by anyone of the patent disclosure as it appears in the Patent and Trademark Office patent files or records, but otherwise reserves all copyright and trade dress rights whatsoever.
BACKGROUND FieldThis disclosure relates to a universal insert compatible across protective vest platforms and a retrofit kit that is specific to a vest platform enabling quick release for a ballistic shield within the vest.
Description of the Related ArtA ballistic vest or bullet-resistant vest, often called a bulletproof vest or plate carrier, is an item of personal armor worn on the torso that helps absorb the impact and reduce or stop penetration to the body from firearm-fired projectiles. Soft armor vests are made of many layers of woven or laminated fibers and can protect the wearer from small-caliber handgun and shotgun projectiles. These vests often have a ballistic plate inserted into the vest. Metal or ceramic plates can be used with a soft vest, providing additional protection against rifle rounds.
Hard-plate reinforced vests are mainly worn by combat soldiers, police tactical units, and hostage rescue teams but are becoming increasingly popular also among civilian users. Hard-plate reinforced vests may include an exterior pocket that is sized to accommodate the hard plate and that protrudes from an outer face of the vest. If the wearer of the vest ends up in a body of water, the heavy ballistic plate(s) presents a serious buoyancy issue, requiring the wearer to immediately discard the vest or risk drowning. A major drawback with such an emergency decision is that the vest typically has numerous pockets for a variety of tools, survival gear and ammunition, so that jettisoning the vest saves the wearer's life but at a high cost.
There is thus a need for an improved protective vest.
Throughout this description, elements appearing in figures are assigned three-digit reference designators, where the most significant digit is the figure number and the two least significant digits are specific to the element. An element that is not described in conjunction with a figure may be presumed to have the same characteristics and function as a previously-described element having a reference designator with the same least significant digits.
DETAILED DESCRIPTIONA quick-release ballistic plate assembly for a protective vest includes an outer chassis configured to attach to a chest panel and/or back panel of the vest is disclosed. The outer chassis has an open lower end leading to an inner cavity, wherein a ballistic plate and sleeve subassembly inserts upward into the cavity. An emergency release handle depending downward from the subassembly may be pulled to overcome a retention mechanism and jettison the subassembly in case the wearer ends up in a body of water. This avoids the need to shed the entire protective vest which typically has numerous pockets for a variety of tools, survival gear and ammunition. The assembly may be built into the protective vest at the OEM level, or may be retrofit to existing vests.
A quick-release ballistic plate assembly for a protective vest, comprising an outer chassis having a pair of flexible flat panels connected together at outer top and side edges thereof, with aligned lower edges unconnected to define a lower mouth leading upward to an inner cavity between the panels, the outer chassis having attachment structure thereon for mounting to the protective vest. A ballistic plate and sleeve subassembly has a rigid ballistic plate held within a flat sleeve made of low friction polymer, and the subassembly is sized to fit through the open mouth of the outer chassis into the cavity. The subassembly has an emergency release handle centered on one end thereof. A subassembly retention mechanism has a release cable fixed to the emergency release handle that passes laterally outward through a plurality of flexible retention loops hanging down from the aligned lower edges of the outer chassis. Opposite lateral ends of the release cable are affixed to the outer chassis by safety ties or other retention device such as snaps having sufficient strength to retain the release cable in place against a weight of the subassembly while being configured to break from manual downward pulling on the emergency release handle.
Further advantages, features and details of the invention will be apparent from the following description, in which examples of embodiments of the invention are described in detail with reference to the drawings. In this context, the features mentioned in the claims and in the description may each be essential to the invention individually or in any combination.
After the plate and sleeve subassembly 32 is placed within the inner cavity of the outer chassis 40 through the lower mouth, a retention mechanism 50 described below supports the weight of the subassembly 32 from falling out. The emergency release handle 34 projects downward below the lower edges 46 for easy grasping.
In a first step of assembly, in
With reference to
The plate and sleeve subassembly 32 may be easily expelled from within the chassis 40. First of all, the wearer need only yank on the lower emergency release handle 34 to break the safety ties 54 and pull the subassembly 32 of the chassis 40. Additionally, the sleeve 80 of the subassembly 32 may be made of an extremely low friction polymeric material which facilitates removal of the subassembly from within the chassis 40. One suitable material is an ultrahigh molecular weight polyethylene (UHMWPE) woven composite. One example is sold under the tradename Dyneema, and has an exceptionally slick surface that minimizes friction when removing the subassembly 32 from sometimes highly compressed protective vests.
Closing Comments
Throughout this description, the embodiments and examples shown should be considered as exemplars, rather than limitations on the apparatus and procedures disclosed or claimed. Although many of the examples presented herein involve specific combinations of method acts or system elements, it should be understood that those acts and those elements may be combined in other ways to accomplish the same objectives. Acts, elements and features discussed only in connection with one embodiment are not intended to be excluded from a similar role in other embodiments.
As used herein, “plurality” means two or more. As used herein, a “set” of items may include one or more of such items. As used herein, whether in the written description or the claims, the terms “comprising,” “including,” “carrying,” “having,” “containing,” “involving,” and the like are to be understood to be open-ended, i.e., to mean including but not limited to. Only the transitional phrases “consisting of” and “consisting essentially of,” respectively, are closed or semi-closed transitional phrases with respect to claims. Use of ordinal terms such as “first”, “second”, “third”, etc., in the claims to modify a claim element does not by itself connote any priority, precedence, or order of one claim element over another or the temporal order in which acts of a method are performed, but are used merely as labels to distinguish one claim element having a certain name from another element having a same name (but for use of the ordinal term) to distinguish the claim elements. As used herein, “and/or” means that the listed items are alternatives, but the alternatives also include any combination of the listed items.
Claims
1. An apparatus comprising a quick-release ballistic plate assembly for a protective vest, comprising:
- an outer chassis having a pair of flexible flat panels connected together at outer top and side edges thereof, with aligned lower edges unconnected to define an open lower mouth leading upward to an inner cavity between the panels, the outer chassis having attachment structure thereon for mounting to the protective vest;
- a ballistic plate and sleeve subassembly having a rigid ballistic plate held within a flat sleeve made of low friction polymer, the subassembly being sized to fit through the lower mouth of the outer chassis into the cavity, and the subassembly having an emergency release handle centered on one end thereof; and
- a subassembly retention mechanism having a release cable fixed to the emergency release handle and passed laterally outward through a plurality of flexible retention loops hanging down from the aligned lower edges of the outer chassis, wherein opposite lateral ends of the release cable are affixed to the outer chassis by retention devices, and wherein the retention devices have sufficient strength to retain the release cable in place against a weight of the subassembly while being configured to break from manual downward pulling on the emergency release handle.
2. The apparatus of claim 1, wherein the low friction polymer of the sleeve is ultrahigh molecular weight polyethylene.
3. The apparatus of claim 2, wherein the sleeve has a hook and loop closure at a lower end with a loose flap configured to mate with a strip on an exterior panel, and wherein the flap has a larger hook and loop dimension than the strip to enable the flap to mate with the strip in a variety of positions to change an overall outer dimension of the sleeve and contain differently-sized ballistic plates.
4. The apparatus of claim 1, wherein the sleeve has a hook and loop closure at a lower end with a loose flap configured to mate with a strip on an exterior panel, and wherein the flap has a larger hook and loop dimension than the strip to enable the flap to mate with the strip in a variety of positions to change an overall outer dimension of the sleeve and contain differently-sized ballistic plates.
5. The apparatus of claim 1, wherein the release cable is made of polytetrafluoroethylene.
6. The apparatus of claim 5, wherein there are at least four retention loops hanging down from each lower edge of the outer chassis.
7. The apparatus of claim 1, wherein the attachment structure on the outer chassis for mounting to the protective vest comprises two interlocking load bearing elements at upper lateral corners and at least one hook and loop patch at a lower end thereof, each configured to engage mating structure provided on the protective vest.
8. The apparatus of claim 1, wherein the outer chassis including the retention loops is made of nylon.
9. The apparatus of claim 1 further comprising the protective vest.
10. A method of retrofitting a protective vest, including:
- removing any panels used to contain a rigid plate from a chest or back panel of a protective vest;
- adding mating structure to the chest or back panel, the mating structure configured to engage the attachment structure on the outer chassis of the assembly of claim 1; and
- attaching the assembly of claim 1 to the chest or back panel such that the emergency release handle depends downward lower than a lower edge of the chest or back panel.
11. The method of claim 10 wherein the chest or back panel of the protective vest has a downwardly-opening inner cavity within which the assembly of claim 1 is inserted.
12. An apparatus comprising a quick-release ballistic plate assembly for a protective vest, comprising:
- an outer chassis having a pair of flexible fabric panels connected together at outer top and side edges thereof, with lower edges unconnected to define an open lower mouth leading upward to an inner cavity between the panels, the outer chassis being mounted to the protective vest such that the lower mouth is positioned adjacent a lower extent of a chest or back panel of the protective vest;
- a ballistic plate and sleeve subassembly having a rigid ballistic plate held within a flat sleeve made of low friction polymer, the subassembly being sized to fit through the lower mouth of the outer chassis into the cavity, and being held therein by a subassembly retention mechanism;
- the subassembly having an emergency release handle centered on a lower end thereof that depends downward below the lower extent of the chest or back panel of the protective vest, and the subassembly retention mechanism having sufficient strength to retain the subassembly in place within the cavity of the outer chassis while being configured to break from manual downward pulling on the emergency release handle.
13. The apparatus of claim 12 wherein the subassembly retention mechanism includes a release cable fixed to the emergency release handle and passed laterally outward through a plurality of flexible retention loops hanging down from the aligned lower edges of the outer chassis, wherein opposite lateral ends of the release cable are affixed to the outer chassis.
14. The apparatus of claim 13 wherein the opposite lateral ends of the release cable are affixed to the outer chassis by safety ties, and wherein the safety ties have sufficient strength to retain the release cable in place against a weight of the subassembly while being configured to break from manual downward pulling on the emergency release handle.
15. The apparatus of claim 13 wherein the release cable is made of polytetrafluoroethylene.
16. The apparatus of claim 15 wherein there are at least four retention loops hanging down from each lower edge of the outer chassis.
17. The apparatus of claim 12 wherein the low friction polymer of the sleeve is ultrahigh molecular weight polyethylene.
18. The apparatus of claim 17 wherein the sleeve has a hook and loop closure at a lower end with a loose flap configured to mate with a strip on an exterior panel, and wherein the flap has a larger hook and loop dimension than the strip to enable the flap to mate with the strip in a variety of positions to change an overall outer dimension of the sleeve and contain differently-sized ballistic plates.
19. The apparatus of claim 12 wherein the sleeve has a hook and loop closure at a lower end with a loose flap configured to mate with a strip on an exterior panel, and wherein the flap has a larger hook and loop dimension than the strip to enable the flap to mate with the strip in a variety of positions to change an overall outer dimension of the sleeve and contain differently-sized ballistic plates.
20. The apparatus of claim 12 wherein the outer chassis comprises two interlocking load bearing elements at upper lateral corners for mounting to mating interlocking load bearing elements on the protective vest, and the outer chassis has at least one hook and loop patch at a lower end thereof configured to engage mating hook and loop structure provided on the protective vest.
21. The apparatus of claim 12, wherein the outer chassis including the retention loops is made of nylon.
22. The apparatus of claim 12 further comprising the protective vest.
Type: Application
Filed: Jul 7, 2022
Publication Date: Jan 26, 2023
Inventors: Ryan Olson (Goleta, CA), Jared Naito (Santa Barbara, CA), Marco Vanella (Goleta, CA)
Application Number: 17/859,948