USE OF GENOMIC SIGNATURES TO PREDICT RESPONSIVENESS OF PATIENTS WITH PROSTATE CANCER TO POST-OPERATIVE RADIATION THERAPY

Methods, compositions, and kits for identifying individuals who will be responsive to post-operative radiation therapy for treatment of prostate cancer are disclosed. In particular, the invention relates to a genomic signature based on expression levels of DNA Damage Repair genes that can be used to identify individuals likely to benefit from post-operative radiation therapy after a prostatectomy.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a continuation of U.S. Pat. Application No. 16/327,260, filed Feb. 21, 2019, which is the U.S. National Phase of PCT Application No. PCT/US2017/048486, filed Aug. 24, 2017, which claims benefit of priority under 35 U.S.C. §119(e) of U.S. Serial No. 62/379,178, filed Aug. 24, 2016, the entire contents of which is incorporated herein by reference in its entirety.

INCORPORATION OF SEQUENCE LISTING

The material in the accompanying sequence listing is hereby incorporated by reference into this application. The accompanying sequence listing file, name GENDX_014C1_Sequence_Listing.xml, was created on Aug. 15, 2002, and is 1.69 MB.

FIELD OF THE INVENTION

The present invention pertains to the field of personalized medicine and methods for treating prostate cancer. In particular, the invention relates to the use of genomic signatures to identify individuals in need of treatment for prostate cancer who will be responsive to post-operative radiation therapy.

BACKGROUND OF THE INVENTION

Cancer is the uncontrolled growth of abnormal cells anywhere in a body. The abnormal cells are termed cancer cells, malignant cells, or tumor cells. Many cancers and the abnormal cells that compose the cancer tissue are further identified by the name of the tissue that the abnormal cells originated from (for example, prostate cancer). Cancer cells can proliferate uncontrollably and form a mass of cancer cells. Cancer cells can break away from this original mass of cells, travel through the blood and lymph systems, and lodge in other organs where they can again repeat the uncontrolled growth cycle. This process of cancer cells leaving an area and growing in another body area is often termed metastatic spread or metastatic disease. For example, if prostate cancer cells spread to a bone (or anywhere else), it can mean that the individual has metastatic prostate cancer.

Standard clinical parameters such as tumor size, grade, lymph node involvement and tumor-node-metastasis (TNM) staging (American Joint Committee on Cancer) may correlate with outcome and serve to stratify patients with respect to (neo)adjuvant chemotherapy, immunotherapy, antibody therapy and/or radiotherapy regimens. Incorporation of molecular markers in clinical practice may define tumor subtypes that are more likely to respond to targeted therapy. However, stage-matched tumors grouped by histological or molecular subtypes may respond differently to the same treatment regimen. Additional key genetic and epigenetic alterations may exist with important etiological contributions. A more detailed understanding of the molecular mechanisms and regulatory pathways at work in cancer cells and the tumor microenvironment (TME) could dramatically improve the design of novel anti-tumor drugs and inform the selection of optimal therapeutic strategies. The development and implementation of diagnostic, prognostic and therapeutic biomarkers to characterize the biology of each tumor may assist clinicians in making important decisions with regard to individual patient care and treatment.

This background information is provided for the purpose of making known information believed by the applicant to be of possible relevance to the present invention. No admission is necessarily intended, nor should be construed, that any of the preceding information constitutes prior art against the present invention.

SUMMARY OF THE INVENTION

The present invention is based on the discovery of a genomic signature that is useful for identifying individuals who will be responsive to post-operative radiation therapy for treatment of prostate cancer. In particular, the invention relates to a genomic signature based on expression levels of DNA damage repair genes that can be used to identify individuals likely to benefit from post-operative radiation therapy after a prostatectomy. The methods of the present invention are useful for generating a Post-Operative Radiation Therapy Outcome Score (PORTOS) to predict response to radiation therapy in prostate cancer patients.

In one aspect, the invention includes a method of predicting response to post-operative radiation therapy for prostate cancer, the method comprising: a) providing a biological sample comprising prostate cancer cells from a subject; b) assaying a level of expression of a plurality of genes in the biological sample, wherein said plurality of genes comprises one or more genes selected from the group consisting of DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1, TOP2A, GNG11, CDKN3, HCLS1, DTL, IL7R, UBA7, NEK1, CDKN2AIP, APEX2, KIF23, SULF2, PLK2, EME1, and BIN2; c) calculating a post-operative radiation therapy outcome score (PORTOS) based on the levels of expression of the plurality of genes in the biological sample to determine whether or not the subject is likely to benefit from the post-operative radiation therapy. A PORTOS greater than 0 (i.e., high PORTOS) indicates that a subject will benefit from post-operative radiation therapy, whereas a PORTOS of less than or equal to 0 (i.e., low PORTOS) indicates that a subject will not benefit from post-operative radiation therapy.

In one embodiment, the plurality of genes comprises at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, or 24 genes selected from the group consisting of DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1, TOP2A, GNG11, CDKN3, HCLS1, DTL, IL7R, UBA7, NEK1, CDKN2AIP, APEX2, KIF23, SULF2, PLK2, EME1, and BIN2. In another embodiment, the plurality of genes comprises DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1, TOP2A, GNG11, CDKN3, HCLS1, DTL, IL7R, UBA7, NEK1, CDKN2AIP, APEX2, KIF23, SULF2, PLK2, EME1, and BIN2. In another embodiment, the plurality of genes is selected from DRAM1 and KRT14; DRAM1, KRT14 and PTPN22; DRAM1, KRT14, PTPN22 and ZMAT3; DRAM1, KRT14, PTPN22, ZMAT3 and ARHGAP15; DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15 and IL1B; DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B and ANLN; DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN and RPS27A; DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A and MUM1; DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1 and TOP2A; DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1, TOP2A and GNG11; DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1, TOP2A, GNG11 and CDKN3; DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1, TOP2A, GNG11, CDKN3 and HCLS1; DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1, TOP2A, GNG11, CDKN3, HCLS1 and DTL; DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1, TOP2A, GNG11, CDKN3, HCLS1, DTL and IL7R; DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1, TOP2A, GNG11, CDKN3, HCLS1, DTL, IL7R and UBA7; DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1, TOP2A, GNG11, CDKN3, HCLS1, DTL, IL7R, UBA7 and NEK1; DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1, TOP2A, GNG11, CDKN3, HCLS1, DTL, IL7R, UBA7, NEK1 and CDKN2AIP; DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1, TOP2A, GNG11, CDKN3, HCLS1, DTL, IL7R, UBA7, NEK1, CDKN2AIP and APEX2; DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1, TOP2A, GNG11, CDKN3, HCLS1, DTL, IL7R, UBA7, NEK1, CDKN2AIP, APEX2 and KIF23; DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1, TOP2A, GNG11, CDKN3, HCLS1, DTL, IL7R, UBA7, NEK1, CDKN2AIP, APEX2, KIF23 and SULF2; DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1, TOP2A, GNG11, CDKN3, HCLS1, DTL, IL7R, UBA7, NEK1, CDKN2AIP, APEX2, KIF23, SULF2 and PLK2; DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1, TOP2A, GNG11, CDKN3, HCLS1, DTL, IL7R, UBA7, NEK1, CDKN2AIP, APEX2, KIF23, SULF2, PLK2 and EME1; and DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1, TOP2A, GNG11, CDKN3, HCLS1, DTL, IL7R, UBA7, NEK1, CDKN2AIP, APEX2, KIF23, SULF2, PLK2, EME1 and BIN2.

In certain embodiments, the method is performed after the patient undergoes a radical prostatectomy. The method is preferably performed prior to treatment of the subject with radiation therapy to determine if the subject will benefit from radiation therapy or should be administered some other anti-cancer treatment (e.g., chemotherapy, immunotherapy, hormonal therapy, biologic therapy, or a combination thereof). The method may also be performed while the subject is undergoing radiation therapy to help evaluate whether continued treatment is likely to be efficacious.

The biological sample obtained from a patient is typically a biopsy or tumor sample, but can be any sample from bodily fluids or tissue of the patient that contains cancerous cells. In certain embodiments, nucleic acids comprising sequences from genes selected from the group consisting of DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1, TOP2A, GNG11, CDKN3, HCLS1, DTL, IL7R, UBA7, NEK1, CDKN2AIP, APEX2, KIF23, SULF2, PLK2, EME1, and BIN2, or complements thereof, are further isolated from the biological sample, and/or purified, and/or amplified prior to analysis.

The prostate cancer can be any type of prostate cancer, including but not limited to, adenocarcinoma, small cell prostate cancer, non-small cell prostate cancer, neuroendocrine prostate cancer, or metastatic castration resistant prostate cancer. Additionally, the prostate cancer may be biochemically recurrent or metastatic prostate cancer.

The expression levels of biomarker nucleic acids can be determined by a variety of methods including, but not limited to, microarray analysis, polymerase chain reaction (PCR), reverse transcriptase polymerase chain reaction (RT-PCR), a Northern blot, and serial analysis of gene expression (SAGE).

In one aspect, the method further comprises prescribing and/or administering the post-operative radiation therapy to the subject if the PORTOS indicates that the subject will benefit from the radiation therapy, or prescribing and/or administering a cancer treatment other than the post-operative radiation therapy to the subject if the PORTOS indicates the subject will not benefit from the post-operative radiation therapy.

In one aspect, the invention includes a method of predicting response to post-operative radiation therapy for prostate cancer, the method comprising: a) providing a biological sample comprising prostate cancer cells from a subject; b) assaying a level of expression of a plurality of genes in the biological sample, wherein said plurality of genes comprises one or more genes selected from the group consisting of DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1, TOP2A, GNG11, CDKN3, HCLS1, DTL, IL7R, UBA7, NEK1, CDKN2AIP, APEX2, KIF23, SULF2, PLK2, EME1, and BIN2; c) calculating a post-operative radiation therapy outcome score (PORTOS) based on the levels of expression of the plurality of genes in the biological sample to determine whether or not the subject is likely to benefit from the post-operative radiation therapy. A PORTOS greater than 0 (i.e., high PORTOS) indicates that a subject will benefit from post-operative radiation therapy, whereas a PORTOS of less than or equal to 0 (i.e., low PORTOS) indicates that a subject will not benefit from post-operative radiation therapy.

In one aspect, the method further comprises prescribing and/or administering the post-operative radiation therapy to the subject if the PORTOS indicates that the subject will benefit from the radiation therapy, or prescribing and/or administering a cancer treatment other than the post-operative radiation therapy to the subject if the PORTOS indicates the subject will not benefit from the post-operative radiation therapy.

In one aspect, the method further comprises prescribing and/or administering the post-operative radiation therapy to the subject if the PORTOS indicates that the subject will benefit from the radiation therapy, or prescribing and/or administering a cancer treatment other than the post-operative radiation therapy to the subject if the PORTOS indicates the subject will not benefit from the post-operative radiation therapy.

In one embodiment, the plurality of genes comprises at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, or 24 genes selected from the group consisting of DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1, TOP2A, GNG11, CDKN3, HCLS1, DTL, IL7R, UBA7, NEK1, CDKN2AIP, APEX2, KIF23, SULF2, PLK2, EME1, and BIN2. In another embodiment, the plurality of genes comprises DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1, TOP2A, GNG11, CDKN3, HCLS1, DTL, IL7R, UBA7, NEK1, CDKN2AIP, APEX2, KIF23, SULF2, PLK2, EME1, and BIN2. In another embodiment, the plurality of genes is selected from DRAM1 and KRT14; DRAM1, KRT14 and PTPN22; DRAM1, KRT14, PTPN22 and ZMAT3; DRAM1, KRT14, PTPN22, ZMAT3 and ARHGAP15; DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15 and IL1B; DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B and ANLN; DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN and RPS27A; DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A and MUM1; DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1 and TOP2A; DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1, TOP2A and GNG11; DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1, TOP2A, GNG11 and CDKN3; DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1, TOP2A, GNG11, CDKN3 and HCLS1; DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1, TOP2A, GNG11, CDKN3, HCLS1 and DTL; DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1, TOP2A, GNG11, CDKN3, HCLS1, DTL and IL7R; DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1, TOP2A, GNG11, CDKN3, HCLS1, DTL, IL7R and UBA7; DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1, TOP2A, GNG11, CDKN3, HCLS1, DTL, IL7R, UBA7 and NEK1; DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1, TOP2A, GNG11, CDKN3, HCLS1, DTL, IL7R, UBA7, NEK1 and CDKN2AIP; DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1, TOP2A, GNG11, CDKN3, HCLS1, DTL, IL7R, UBA7, NEK1, CDKN2AIP and APEX2; DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1, TOP2A, GNG11, CDKN3, HCLS1, DTL, IL7R, UBA7, NEK1, CDKN2AIP, APEX2 and KIF23; DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1, TOP2A, GNG11, CDKN3, HCLS1, DTL, IL7R, UBA7, NEK1, CDKN2AIP, APEX2, KIF23 and SULF2; DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1, TOP2A, GNG11, CDKN3, HCLS1, DTL, IL7R, UBA7, NEK1, CDKN2AIP, APEX2, KIF23, SULF2 and PLK2; DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1, TOP2A, GNG11, CDKN3, HCLS1, DTL, IL7R, UBA7, NEK1, CDKN2AIP, APEX2, KIF23, SULF2, PLK2 and EME1; and DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1, TOP2A, GNG11, CDKN3, HCLS1, DTL, IL7R, UBA7, NEK1, CDKN2AIP, APEX2, KIF23, SULF2, PLK2, EME1 and BIN2.

In certain embodiments, the method is performed after the patient undergoes a radical prostatectomy. The method is preferably performed prior to treatment of the subject with radiation therapy to determine if the subject will benefit from radiation therapy or should be administered some other anti-cancer treatment (e.g., chemotherapy, immunotherapy, hormonal therapy, biologic therapy, or a combination thereof). The method may also be performed while the subject is undergoing radiation therapy to help evaluate whether continued treatment is likely to be efficacious.

The biological sample obtained from a patient is typically a biopsy or tumor sample, but can be any sample from bodily fluids or tissue of the patient that contains cancerous cells. In certain embodiments, nucleic acids comprising sequences from genes selected from the group consisting of DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1, TOP2A, GNG11, CDKN3, HCLS1, DTL, IL7R, UBA7, NEK1, CDKN2AIP, APEX2, KIF23, SULF2, PLK2, EME1, and BIN2, or complements thereof, are further isolated from the biological sample, and/or purified, and/or amplified prior to analysis.

The prostate cancer can be any type of prostate cancer, including but not limited to, adenocarcinoma, small cell prostate cancer, non-small cell prostate cancer, neuroendocrine prostate cancer, or metastatic castration resistant prostate cancer. Additionally, the prostate cancer may be biochemically recurrent or metastatic prostate cancer.

The expression levels of biomarker nucleic acids can be determined by a variety of methods including, but not limited to, microarray analysis, polymerase chain reaction (PCR), reverse transcriptase polymerase chain reaction (RT-PCR), a Northern blot, and serial analysis of gene expression (SAGE).

In another aspect, the invention includes a method of treating a subject for prostate cancer, the method comprising: a) determining whether or not the subject is likely to benefit from post-operative radiation therapy according to a PORTOS as described herein; and b) administering post-operative radiation therapy to the subject if the PORTOS indicates that the subject will benefit from post-operative radiation therapy, or administering a cancer treatment other than post-operative radiation therapy to the subject if the PORTOS indicates that the subject will not benefit from post-operative radiation therapy. Subjects, especially those identified as not likely to benefit from radiation therapy may be administered other cancer treatments such as, but not limited to, chemotherapy, immunotherapy, hormonal therapy, biologic therapy, or any combination thereof.

In another aspect, the invention includes a method for determining a treatment for a subject who has prostate cancer, the method comprising: a) determining whether or not the subject is likely to benefit from post-operative radiation therapy according to a PORTOS as described herein; and b) prescribing radiation therapy to the subject if the PORTOS indicates that the subject will benefit from radiation therapy, or prescribing a cancer treatment other than radiation therapy to the subject if the PORTOS indicates the subject will not benefit from radiation therapy.

In another aspect, the invention includes a probe set for predicting response of a subject to post-operative radiation therapy for prostate cancer, the probe set comprising a plurality of probes for detecting a plurality of target nucleic acids, wherein the plurality of target nucleic acids comprises one or more gene sequences, or complements thereof, of genes selected from the group consisting of DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1, TOP2A, GNG11, CDKN3, HCLS1, DTL, IL7R, UBA7, NEK1, CDKN2AIP, APEX2, KIF23, SULF2, PLK2, EME1, and BIN2. Probes may be detectably labeled to facilitate detection. In one embodiment, the probe set comprises a plurality of probes for detecting a plurality of target nucleic acids comprising gene sequences, or complements thereof, of the genes DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1, TOP2A, GNG11, CDKN3, HCLS1, DTL, IL7R, UBA7, NEK1, CDKN2AIP, APEX2, KIF23, SULF2, PLK2, EME1, and BIN2.

In another aspect, the invention includes a system for predicting response of a subject to post-operative radiation therapy for prostate cancer, the system comprising: a) a probe set described herein; and b) an algorithm for generating a post-operative radiation therapy outcome score (PORTOS) based on an expression level of the plurality of target nucleic acids hybridized to the probes of the probe set in a biological sample from the subject.

In another aspect, the invention includes a kit for predicting response of a subject to post-operative radiation therapy for prostate cancer, the kit comprising agents for measuring levels of expression of a plurality of genes, wherein the plurality of genes comprises one or more genes selected from the group consisting of DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1, TOP2A, GNG11, CDKN3, HCLS1, DTL, IL7R, UBA7, NEK1, CDKN2AIP, APEX2, KIF23, SULF2, PLK2, EME1, and BIN2. The kit may include one or more agents (e.g., hybridization probes, PCR primers, or microarray) for measuring levels of expression of a plurality of genes, wherein said plurality of genes comprises one or more genes selected from the group consisting of DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1, TOP2A, GNG11, CDKN3, HCLS1, DTL, IL7R, UBA7, NEK1, CDKN2AIP, APEX2, KIF23, SULF2, PLK2, EME1, and BIN2, a container for holding a biological sample comprising prostate cancer cells isolated from a human subject for testing, and printed instructions for reacting the agents with the biological sample or a portion of the biological sample to determine whether or not the subject is likely to benefit from radiation therapy. The agents may be packaged in separate containers. The kit may further comprise one or more control reference samples or other reagents for measuring gene expression (e.g., reagents for performing PCR, RT-PCR, microarray analysis, a Northern blot, SAGE, or an immunoassay). In one embodiment, the kit comprises agents for measuring the levels of expression of the genes DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1, TOP2A, GNG11, CDKN3, HCLS1, DTL, IL7R, UBA7, NEK1, CDKN2AIP, APEX2, KIF23, SULF2, PLK2, EME1, and BIN2. For example, the kit may comprise a probe set, as described herein, for detecting a plurality of target nucleic acids, wherein the plurality of target nucleic acids comprises one or more gene sequences, or complements thereof, of genes selected from DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1, TOP2A, GNG11, CDKN3, HCLS1, DTL, IL7R, UBA7, NEK1, CDKN2AIP, APEX2, KIF23, SULF2, PLK2, EME1, and BIN2, or any combination thereof.

In another embodiment, the kit further comprises a system for predicting response of a subject to post-operative radiation therapy for prostate cancer, wherein the system comprises: a) a probe set comprising a plurality of probes for detecting a plurality of target nucleic acids, wherein the plurality of target nucleic acids comprises one or more gene sequences, or complements thereof, of genes selected from DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1, TOP2A, GNG11, CDKN3, HCLS1, DTL, IL7R, UBA7, NEK1, CDKN2AIP, APEX2, KIF23, SULF2, PLK2, EME1, and BIN2, or any combination thereof; and b) an algorithm for generating a post-operative radiation therapy outcome score (PORTOS) based on an expression level of the plurality of target nucleic acids hybridized to the plurality of probes in a biological sample from the subject.

In another aspect, the invention includes a computer implemented method for predicting response of a patient to post-operative radiation therapy for prostate cancer, the computer performing steps comprising: a) receiving inputted patient data comprising values for levels of expression of a plurality of genes, wherein said plurality of genes comprises one or more genes selected from the group consisting of DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1, TOP2A, GNG11, CDKN3, HCLS1, DTL, IL7R, UBA7, NEK1, CDKN2AIP, APEX2, KIF23, SULF2, PLK2, EME1, and BIN2 in a biological sample comprising prostate cancer cells from the patient; b) calculating a post-operative radiation therapy outcome score (PORTOS) based on the levels of expression of the plurality of genes to determine whether or not the patient is likely to benefit from the radiation therapy, wherein a PORTOS greater than 0 indicates that the patient will benefit from the radiation therapy and a PORTOS less than or equal to 0 indicates that the patient will not benefit from the radiation therapy; and c) displaying information regarding whether or not the patient is likely to benefit from the post-operative radiation therapy. In one embodiment, the plurality of genes comprises at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, or 24 genes selected from the group consisting of DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1, TOP2A, GNG11, CDKN3, HCLS1, DTL, IL7R, UBA7, NEK1, CDKN2AIP, APEX2, KIF23, SULF2, PLK2, EME1, and BIN2. In another embodiment, the plurality of genes comprises DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1, TOP2A, GNG11, CDKN3, HCLS1, DTL, IL7R, UBA7, NEK1, CDKN2AIP, APEX2, KIF23, SULF2, PLK2, EME1, and BIN2. In another embodiment, the plurality of genes is selected from DRAM1 and KRT14; DRAM1, KRT14 and PTPN22; DRAM1, KRT14, PTPN22 and ZMAT3; DRAM1, KRT14, PTPN22, ZMAT3 and ARHGAP15; DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15 and IL1B; DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B and ANLN; DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN and RPS27A; DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A and MUM1; DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1 and TOP2A; DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1, TOP2A and GNG11; DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1, TOP2A, GNG11 and CDKN3; DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1, TOP2A, GNG11, CDKN3 and HCLS1; DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1, TOP2A, GNG11, CDKN3, HCLS1 and DTL; DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1, TOP2A, GNG11, CDKN3, HCLS1, DTL and IL7R; DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1, TOP2A, GNG11, CDKN3, HCLS1, DTL, IL7R and UBA7; DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1, TOP2A, GNG11, CDKN3, HCLS1, DTL, IL7R, UBA7 and NEK1; DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1, TOP2A, GNG11, CDKN3, HCLS1, DTL, IL7R, UBA7, NEK1 and CDKN2AIP; DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1, TOP2A, GNG11, CDKN3, HCLS1, DTL, IL7R, UBA7, NEK1, CDKN2AIP and APEX2; DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1, TOP2A, GNG11, CDKN3, HCLS1, DTL, IL7R, UBA7, NEK1, CDKN2AIP, APEX2 and KIF23; DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1, TOP2A, GNG11, CDKN3, HCLS1, DTL, IL7R, UBA7, NEK1, CDKN2AIP, APEX2, KIF23 and SULF2; DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1, TOP2A, GNG11, CDKN3, HCLS1, DTL, IL7R, UBA7, NEK1, CDKN2AIP, APEX2, KIF23, SULF2 and PLK2; DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1, TOP2A, GNG11, CDKN3, HCLS1, DTL, IL7R, UBA7, NEK1, CDKN2AIP, APEX2, KIF23, SULF2, PLK2 and EME1; and DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1, TOP2A, GNG11, CDKN3, HCLS1, DTL, IL7R, UBA7, NEK1, CDKN2AIP, APEX2, KIF23, SULF2, PLK2, EME1 and BIN2.

The significance of the expression levels of one or more biomarker genes may be evaluated using, for example, a T-test, P-value, KS (Kolmogorov Smirnov) P-value, accuracy, accuracy P-value, positive predictive value (PPV), negative predictive value (NPV), sensitivity, specificity, AUC, AUC P-value (Auc.pvalue), Wilcoxon Test P-value, Median Fold Difference (MFD), Kaplan Meier (KM) curves, survival AUC (survAUC), Kaplan Meier P-value (KM P-value), Univariable Analysis Odds Ratio P-value (uvaORPval), multivariable analysis Odds Ratio P-value (mvaORPval), Univariable Analysis Hazard Ratio P-value (uvaHRPval) and Multivariable Analysis Hazard Ratio P-value (mvaHRPval). The significance of the expression level of the one or more targets may be based on two or more metrics selected from the group comprising AUC, AUC P-value (Auc.pvalue), Wilcoxon Test P-value, Median Fold Difference (MFD), Kaplan Meier (KM) curves, survival AUC (survAUC), Univariable Analysis Odds Ratio P-value (uvaORPval), multivariable analysis Odds Ratio P-value (mvaORPval), Kaplan Meier P-value (KM P-value), Univariable Analysis Hazard Ratio P-value (uvaHRPval) or Multivariable Analysis Hazard Ratio P-value (mvaHRPval).

These and other embodiments of the subject invention will readily occur to those of skill in the art in view of the disclosure herein.

INCORPORATION BY REFERENCE

All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference in their entireties to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1A-1D show interaction and bar plots of 10-year metastasis rates in a training and validation cohorts when comparing low and high PORTOS. In the line plots: Gray = treated with RT, black = not treated with RT. In the bar plots: Gray = low PORTOS, Black = high PORTOS, error bars = standard error.

FIGS. 2A-2D show cumulative incidence curves in the training and validation cohorts separating low and high PORTOS scores.

DETAILED DESCRIPTION OF THE INVENTION

The practice of the present invention will employ, unless otherwise indicated, conventional methods of medicine, biochemistry, molecular biology and recombinant DNA techniques, within the skill of the art. Such techniques are explained fully in the literature. See, e.g., Radiotherapy in Prostate Cancer: Innovative Techniques and Current Controversies (Medical Radiology, H. Geinitz, M. Roach III, and N. van As eds., Springer, 2015); Prostate Cancer: Science and Clinical Practice (J.H. Mydlo and C.J. Godec eds., Academic Press, 2nd edition, 2015); Prostate Cancer: Biochemistry, Molecular Biology and Genetics (Protein Reviews 16, D.J. Tindall ed., Springer, 2013); A.L. Lehninger, Biochemistry (Worth Publishers, Inc., current addition); Sambrook, et al., Molecular Cloning: A Laboratory Manual (3rd Edition, 2001); and Methods In Enzymology (S. Colowick and N. Kaplan eds., Academic Press, Inc.).

I. Definitions

In describing the present invention, the following terms will be employed, and are intended to be defined as indicated below.

It must be noted that, as used in this specification and the appended claims, the singular forms “a,” “an” and “the” include plural referents unless the content clearly dictates otherwise. Thus, for example, reference to “a nucleic acid” includes a mixture of two or more such nucleic acids, and the like.

The term “survival” as used herein means the time from the start of cancer treatment (e.g., radiation therapy) to the time of death.

The terms “tumor,” “cancer” and “neoplasia” are used interchangeably and refer to a cell or population of cells whose growth, proliferation or survival is greater than growth, proliferation or survival of a normal counterpart cell, e.g. a cell proliferative, hyperproliferative or differentiative disorder. Typically, the growth is uncontrolled. The term “malignancy” refers to invasion of nearby tissue. The term “metastasis” or a secondary, recurring or recurrent tumor, cancer or neoplasia refers to spread or dissemination of a tumor, cancer or neoplasia to other sites, locations or regions within the subject, in which the sites, locations or regions are distinct from the primary tumor or cancer. Neoplasia, tumors and cancers include benign, malignant, metastatic and non-metastatic types, and include any stage (I, II, III, IV or V) or grade (G1, G2, G3, etc.) of neoplasia, tumor, or cancer, or a neoplasia, tumor, cancer or metastasis that is progressing, worsening, stabilized or in remission. In particular, the terms “tumor,” “cancer” and “neoplasia” include carcinomas, such as squamous cell carcinoma, adenocarcinoma, adenosquamous carcinoma, anaplastic carcinoma, large cell carcinoma, and small cell carcinoma.

The term “derived from” is used herein to identify the original source of a molecule but is not meant to limit the method by which the molecule is made which can be, for example, by chemical synthesis or recombinant means.

“Recombinant” as used herein to describe a nucleic acid molecule means a polynucleotide of genomic, cDNA, viral, semisynthetic, or synthetic origin which, by virtue of its origin or manipulation is not associated with all or a portion of the polynucleotide with which it is associated in nature. The term “recombinant” as used with respect to a protein or polypeptide means a polypeptide produced by expression of a recombinant polynucleotide. In general, the gene of interest is cloned and then expressed in transformed organisms, as described further below. The host organism expresses the foreign gene to produce the protein under expression conditions.

“Substantially purified” generally refers to isolation of a substance (compound, polynucleotide, oligonucleotide, protein, or polypeptide) such that the substance comprises the majority percent of the sample in which it resides. Typically in a sample, a substantially purified component comprises 50%, preferably 80%-85%, more preferably 90-95% of the sample. Techniques for purifying polynucleotides oligonucleotides and polypeptides of interest are well-known in the art and include, for example, ion-exchange chromatography, affinity chromatography and sedimentation according to density.

By “isolated” is meant, when referring to a polypeptide, that the indicated molecule is separate and discrete from the whole organism with which the molecule is found in nature or is present in the substantial absence of other biological macro molecules of the same type. The term “isolated” with respect to a polynucleotide or oligonucleotide is a nucleic acid molecule devoid, in whole or part, of sequences normally associated with it in nature; or a sequence, as it exists in nature, but having heterologous sequences in association therewith; or a molecule disassociated from the chromosome.

The terms “polynucleotide,” “oligonucleotide,” “nucleic acid” and “nucleic acid molecule” are used herein to include a polymeric form of nucleotides of any length, either ribonucleotides or deoxyribonucleotides. This term refers only to the primary structure of the molecule. Thus, the term includes triple-, double- and single-stranded DNA, as well as triple-, double- and single-stranded RNA. It also includes modifications, such as by methylation and/or by capping, and unmodified forms of the polynucleotide. More particularly, the terms “polynucleotide,” “oligonucleotide,” “nucleic acid” and “nucleic acid molecule” include polydeoxyribonucleotides (containing 2-deoxy-D-ribose), polyribonucleotides (containing D-ribose), any other type of polynucleotide which is an N- or C-glycoside of a purine or pyrimidine base, and other polymers containing nonnucleotidic backbones, for example, polyamide (e.g., peptide nucleic acids (PNAs)) and polymorpholino (commercially available from the Anti-Virals, Inc., Corvallis, Oregon, as Neugene) polymers, and other synthetic sequence-specific nucleic acid polymers providing that the polymers contain nucleobases in a configuration which allows for base pairing and base stacking, such as is found in DNA and RNA. There is no intended distinction in length between the terms “polynucleotide,” “oligonucleotide,” “nucleic acid” and “nucleic acid molecule,” and these terms will be used interchangeably. Thus, these terms include, for example, 3′-deoxy-2′,5′-DNA, oligodeoxyribonucleotide N3′ P5′ phosphoramidates, 2′-O-alkyl-substituted RNA, double- and single-stranded DNA, as well as double- and single-stranded RNA, DNA:RNA hybrids, and hybrids between PNAs and DNA or RNA, and also include known types of modifications, for example, labels which are known in the art, methylation, “caps,” substitution of one or more of the naturally occurring nucleotides with an analog, internucleotide modifications such as, for example, those with uncharged linkages (e.g., methyl phosphonates, phosphotriesters, phosphoramidates, carbamates, etc.), with negatively charged linkages (e.g., phosphorothioates, phosphorodithioates, etc.), and with positively charged linkages (e.g., aminoalklyphosphoramidates, aminoalkylphosphotriesters), those containing pendant moieties, such as, for example, proteins (including nucleases, toxins, antibodies, signal peptides, poly-L-lysine, etc.), those with intercalators (e.g., acridine, psoralen, etc.), those containing chelators (e.g., metals, radioactive metals, boron, oxidative metals, etc.), those containing alkylators, those with modified linkages (e.g., alpha anomeric nucleic acids, etc.), as well as unmodified forms of the polynucleotide or oligonucleotide. The term also includes locked nucleic acids (e.g., comprising a ribonucleotide that has a methylene bridge between the 2′-oxygen atom and the 4′-carbon atom). See, for example, Kurreck et al. (2002) Nucleic Acids Res. 30: 1911-1918; Elayadi et al. (2001) Curr. Opinion Invest. Drugs 2: 558-561; Orum et al. (2001) Curr. Opinion Mol. Ther. 3: 239-243; Koshkin et al. (1998) Tetrahedron 54: 3607-3630; Obika et al. (1998) Tetrahedron Lett. 39: 5401-5404.

As used herein, the term “probe” or “oligonucleotide probe” refers to a polynucleotide, as defined above, that contains a nucleic acid sequence complementary to a nucleic acid sequence present in the target nucleic acid analyte (e.g., biomarker). The polynucleotide regions of probes may be composed of DNA, and/or RNA, and/or synthetic nucleotide analogs. Probes may be labeled in order to detect the target sequence. Such a label may be present at the 5′ end, at the 3′ end, at both the 5′ and 3′ ends, and/or internally.

The term “primer” or “oligonucleotide primer” as used herein, refers to an oligonucleotide that hybridizes to the template strand of a nucleic acid and initiates synthesis of a nucleic acid strand complementary to the template strand when placed under conditions in which synthesis of a primer extension product is induced, i.e., in the presence of nucleotides and a polymerization inducing agent such as a DNA or RNA polymerase and at suitable temperature, pH, metal concentration, and salt concentration. The primer is preferably single stranded for maximum efficiency in amplification, but may alternatively be double stranded. If double stranded, the primer can first be treated to separate its strands before being used to prepare extension products. This denaturation step is typically effected by heat, but may alternatively be carried out using alkali, followed by neutralization. Thus, a “primer” is complementary to a template, and complexes by hydrogen bonding or hybridization with the template to give a primer/template complex for initiation of synthesis by a polymerase, which is extended by the addition of covalently bonded bases linked at its 3′ end complementary to the template in the process of DNA or RNA synthesis. Typically, nucleic acids are amplified using at least one set of oligonucleotide primers comprising at least one forward primer and at least one reverse primer capable of hybridizing to regions of a nucleic acid flanking the portion of the nucleic acid to be amplified.

The term “amplicon” refers to the amplified nucleic acid product of a PCR reaction or other nucleic acid amplification process (e.g., ligase chain reaction (LGR), nucleic acid sequence based amplification (NASBA), transcription-mediated amplification (TMA), Q-beta amplification, strand displacement amplification, or target mediated amplification). Amplicons may comprise RNA or DNA depending on the technique used for amplification.

The terms “hybridize” and “hybridization” refer to the formation of complexes between nucleotide sequences which are sufficiently complementary to form complexes via Watson-Crick base pairing.

It will be appreciated that the hybridizing sequences need not have perfect complementarity to provide stable hybrids. In many situations, stable hybrids will form where fewer than about 10% of the bases are mismatches, ignoring loops of four or more nucleotides. Accordingly, as used herein the term “complementary” refers to an oligonucleotide that forms a stable duplex with its “complement” under assay conditions, generally where there is about 90% or greater homology.

The terms “selectively detects” or “selectively detecting” refer to the detection of nucleic acids using oligonucleotides, e.g., primers or probes that are capable of detecting a particular nucleic acid, for example, by amplifying and/or binding to at least a portion of the biomarker nucleic acid, but do not amplify and/or bind to sequences from other nucleic acids under appropriate hybridization conditions.

As used herein, the terms “label” and “detectable label” refer to a molecule capable of detection, including, but not limited to, radioactive isotopes, fluorescers, chemiluminescers, chromophores, enzymes, enzyme substrates, enzyme cofactors, enzyme inhibitors, semiconductor nanoparticles, dyes, metal ions, metal sols, ligands (e.g., biotin, streptavidin or haptens) and the like. The term “fluorescer” refers to a substance or a portion thereof which is capable of exhibiting fluorescence in the detectable range. Particular examples of labels which may be used in the practice of the invention include, but are not limited to, a SYBR dye such as SYBR green and SYBR gold, a CAL Fluor dye such as CAL Fluor Gold 540, CAL Fluor Orange 560, CAL Fluor Red 590, CAL Fluor Red 610, and CAL Fluor Red 635, a Quasar dye such as Quasar 570, Quasar 670, and Quasar 705, an Alexa Fluor such as Alexa Fluor 350, Alexa Fluor 488, Alexa Fluor 546, Alexa Fluor 555, Alexa Fluor 594, Alexa Fluor 647, and Alexa Fluor 784, a cyanine dye such as Cy3, Cy3.5, Cy5, Cy5.5, and Cy7, fluorescein, 2′, 4′, 5′, 7′-tetrachloro-4-7-dichlorofluorescein (TET), carboxyfluorescein (FAM), 6-carboxy-4′5′-dichloro-2′,7′-dimethoxyfluorescein (JOE), hexachlorofluorescein (HEX), rhodamine, carboxy-X-rhodamine (ROX), tetramethyl rhodamine (TAMRA), FITC, dansyl, umbelliferone, dimethyl acridinium ester (DMAE), Texas red, luminol, quantum dots, NADPH, horseradish peroxidase (HRP), α-galactosidase, and β-galactosidase.

The terms “subject,” “individual,” and “patient,” are used interchangeably herein and refer to any mammalian subject, particularly humans. Other subjects may include cattle, dogs, cats, guinea pigs, rabbits, rats, mice, horses, and so on. In some cases, the methods of the invention find use in experimental animals, in veterinary application, and in the development of animal models, including, but not limited to, rodents including mice, rats, and hamsters; and primates.

II. Modes of Carrying Out the Invention

Before describing the present invention in detail, it is to be understood that this invention is not limited to particular formulations or process parameters as such may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments of the invention only, and is not intended to be limiting.

Although a number of methods and materials similar or equivalent to those described herein can be used in the practice of the present invention, the preferred materials and methods are described herein.

The present invention is based on the discovery of a genomic signature that is useful for identifying individuals who will be responsive to post-operative radiation therapy for treatment of prostate cancer. In particular, the invention relates to a genomic signature based on expression levels of DNA damage repair genes that can be used to identify individuals likely to benefit from post-operative radiation therapy after a prostatectomy (see Examples).

In order to further an understanding of the invention, a more detailed discussion is provided below regarding the genomic signature and methods of screening and treating subjects for prostate cancer.

A Genomic Signature for Predicting Response to Radiation Therapy

A genomic signature based on gene expression of DNA damage repair genes can be utilized to identify prostate cancer patients that may potentially benefit from radiation therapy. Exemplary DNA damage repair genes that display expression patterns that predict response to radiation therapy include DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1, TOP2A, GNG11, CDKN3, HCLS1, DTL, IL7R, UBA7, NEK1, CDKN2AIP, APEX2, KIF23, SULF2, PLK2, EME1, and BIN2.

In one aspect the invention includes a method of predicting the response of a subject to post-operative radiation therapy for prostate cancer. The method generally comprises: a) providing a biological sample comprising prostate cancer cells from a subject; b) assaying a level of expression of a plurality of genes in the biological sample, wherein the plurality of genes comprises one or more genes selected from the group consisting of DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1, TOP2A, GNG11, CDKN3, HCLS1, DTL, IL7R, UBA7, NEK1, CDKN2AIP, APEX2, KIF23, SULF2, PLK2, EME1, and BIN2; and c) predicting whether or not the subject is likely to benefit from post-operative radiation therapy based on the level of expression of the plurality of genes.

In certain embodiments, the plurality of genes comprises at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, or at least 10 genes or more genes selected from the group consisting of DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1, TOP2A, GNG11, CDKN3, HCLS1, DTL, IL7R, UBA7, NEK1, CDKN2AIP, APEX2, KIF23, SULF2, PLK2, EME1, and BIN2. In one embodiment, the plurality of genes comprises DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1, TOP2A, GNG11, CDKN3, HCLS1, DTL, IL7R, UBA7, NEK1, CDKN2AIP, APEX2, KIF23, SULF2, PLK2, EME1, and BIN2. In another embodiment, the plurality of genes is selected from DRAM1 and KRT14; DRAM1, KRT14 and PTPN22; DRAM1, KRT14, PTPN22 and ZMAT3; DRAM1, KRT14, PTPN22, ZMAT3 and ARHGAP15; DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15 and IL1B; DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B and ANLN; DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN and RPS27A; DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A and MUM1; DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1 and TOP2A; DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1, TOP2A and GNG11; DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1, TOP2A, GNG11 and CDKN3; DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1, TOP2A, GNG11, CDKN3 and HCLS1; DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1, TOP2A, GNG11, CDKN3, HCLS1 and DTL; DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1, TOP2A, GNG11, CDKN3, HCLS1, DTL and IL7R; DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1, TOP2A, GNG11, CDKN3, HCLS1, DTL, IL7R and UBA7; DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1, TOP2A, GNG11, CDKN3, HCLS1, DTL, IL7R, UBA7 and NEK1; DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1, TOP2A, GNG11, CDKN3, HCLS1, DTL, IL7R, UBA7, NEK1 and CDKN2AIP; DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1, TOP2A, GNG11, CDKN3, HCLS1, DTL, IL7R, UBA7, NEK1, CDKN2AIP and APEX2; DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1, TOP2A, GNG11, CDKN3, HCLS1, DTL, IL7R, UBA7, NEK1, CDKN2AIP, APEX2 and KIF23; DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1, TOP2A, GNG11, CDKN3, HCLS1, DTL, IL7R, UBA7, NEK1, CDKN2AIP, APEX2, KIF23 and SULF2; DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1, TOP2A, GNG11, CDKN3, HCLS1, DTL, IL7R, UBA7, NEK1, CDKN2AIP, APEX2, KIF23, SULF2 and PLK2; DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1, TOP2A, GNG11, CDKN3, HCLS1, DTL, IL7R, UBA7, NEK1, CDKN2AIP, APEX2, KIF23, SULF2, PLK2 and EME1; and DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1, TOP2A, GNG11, CDKN3, HCLS1, DTL, IL7R, UBA7, NEK1, CDKN2AIP, APEX2, KIF23, SULF2, PLK2, EME1 and BIN2.

In another embodiment, a post-operative radiation therapy outcome score (PORTOS) is calculated based on the levels of expression of the plurality of genes in the biological sample to determine whether or not the subject is likely to benefit from post-operative radiation therapy (see Examples). A PORTOS greater than 0 (i.e., high PORTOS) indicates that a subject will benefit from post-operative radiation therapy, whereas a PORTOS of less than or equal to 0 (i.e., low PORTOS) indicates that a subject will not benefit from post-operative radiation therapy.

In a further embodiment, the method is performed after the patient undergoes a radical prostatectomy. The method is preferably performed prior to treatment of the subject with radiation therapy to determine if the subject will benefit from radiation therapy or should be administered some other anti-cancer treatment. The method may also be performed while the subject is undergoing radiation therapy to help evaluate whether continued treatment is likely to be efficacious. Subjects, especially those identified as not likely to benefit from radiation therapy may be administered anti-cancer treatments other than radiation therapy such as, but not limited to, surgery, chemotherapy, immunotherapy, hormonal therapy, biologic therapy, or any combination thereof.

Targets

In some instances, assaying the expression level of a plurality of genes comprises detecting and/or quantifying a plurality of target analytes. In some embodiments, assaying the expression level of a plurality of genes comprises sequencing a plurality of target nucleic acids. In some embodiments, assaying the expression level of a plurality of biomarker genes comprises amplifying a plurality of target nucleic acids. In some embodiments, assaying the expression level of a plurality of biomarker genes comprises conducting a multiplexed reaction on a plurality of target analytes.

The methods disclosed herein often comprise assaying the expression level of a plurality of targets. The plurality of targets may comprise coding targets and/or non-coding targets of a protein-coding gene or a non-protein-coding gene. A protein-coding gene structure may comprise an exon and an intron. The exon may further comprise a coding sequence (CDS) and an untranslated region (UTR). The protein-coding gene may be transcribed to produce a pre-mRNA and the pre-mRNA may be processed to produce a mature mRNA. The mature mRNA may be translated to produce a protein.

A non-protein-coding gene structure may comprise an exon and intron. Usually, the exon region of a non-protein-coding gene primarily contains a UTR. The non-protein-coding gene may be transcribed to produce a pre-mRNA and the pre-mRNA may be processed to produce a non-coding RNA (ncRNA).

A coding target may comprise a coding sequence of an exon. A non-coding target may comprise a UTR sequence of an exon, intron sequence, intergenic sequence, promoter sequence, non-coding transcript, CDS antisense, intronic antisense, UTR antisense, or non-coding transcript antisense. A non-coding transcript may comprise a non-coding RNA (ncRNA).

In some instances, the plurality of targets comprises one or more targets selected from Table 1 or Table 2. In some instances, the plurality of targets comprises at least about 2, at least about 3, at least about 4, at least about 5, at least about 6, at least about 7, at least about 8, at least about 9, at least about 10, at least about 15, at least about 20, or at least about 24 targets selected from Table 2.

In some instances, the plurality of targets comprises a coding target, non-coding target, or any combination thereof. In some instances, the coding target comprises an exonic sequence. In other instances, the non-coding target comprises a non-exonic or exonic sequence. Alternatively, a non-coding target comprises a UTR sequence, an intronic sequence, antisense, or a non-coding RNA transcript. In some instances, a non-coding target comprises sequences which partially overlap with a UTR sequence or an intronic sequence. A non-coding target also includes non-exonic and/or exonic transcripts. Exonic sequences may comprise regions on a protein-coding gene, such as an exon, UTR, or a portion thereof. Non-exonic sequences may comprise regions on a protein-coding, non-protein-coding gene, or a portion thereof. For example, non-exonic sequences may comprise intronic regions, promoter regions, intergenic regions, a non-coding transcript, an exon anti-sense region, an intronic anti-sense region, UTR anti-sense region, non-coding transcript anti-sense region, or a portion thereof. In other instances, the plurality of targets comprises a non-coding RNA transcript.

The plurality of targets may comprise one or more targets selected from a classifier disclosed herein. The classifier may be generated from one or more models or algorithms. The one or more models or algorithms may be a Cox proportional hazards model, Naive Bayes (NB), recursive Partitioning (Rpart), random forest (RF), support vector machine (SVM), k-nearest neighbor (KNN), high dimensional discriminate analysis (HDDA), or a combination thereof. The classifier may have an AUC of equal to or greater than 0.60. The classifier may have an AUC of equal to or greater than 0.61. The classifier may have an AUC of equal to or greater than 0.62. The classifier may have an AUC of equal to or greater than 0.63. The classifier may have an AUC of equal to or greater than 0.64. The classifier may have an AUC of equal to or greater than 0.65. The classifier may have an AUC of equal to or greater than 0.66. The classifier may have an AUC of equal to or greater than 0.67. The classifier may have an AUC of equal to or greater than 0.68. The classifier may have an AUC of equal to or greater than 0.69. The classifier may have an AUC of equal to or greater than 0.70. The classifier may have an AUC of equal to or greater than 0.75. The classifier may have an AUC of equal to or greater than 0.77. The classifier may have an AUC of equal to or greater than 0.78. The classifier may have an AUC of equal to or greater than 0.79. The classifier may have an AUC of equal to or greater than 0.80. The AUC may be clinically significant based on its 95% confidence interval (CI). The accuracy of the classifier may be at least about 70%. The accuracy of the classifier may be at least about 73%. The accuracy of the classifier may be at least about 75%. The accuracy of the classifier may be at least about 77%. The accuracy of the classifier may be at least about 80%. The accuracy of the classifier may be at least about 83%. The accuracy of the classifier may be at least about 84%. The accuracy of the classifier may be at least about 86%. The accuracy of the classifier may be at least about 88%. The accuracy of the classifier may be at least about 90%. The p-value of the classifier may be less than or equal to 0.05. The p-value of the classifier may be less than or equal to 0.04. The p-value of the classifier may be less than or equal to 0.03. The p-value of the classifier may be less than or equal to 0.02. The p-value of the classifier may be less than or equal to 0.01. The p-value of the classifier may be less than or equal to 0.008. The p-value of the classifier may be less than or equal to 0.006. The p-value of the classifier may be less than or equal to 0.004. The p-value of the classifier may be less than or equal to 0.002. The p-value of the classifier may be less than or equal to 0.001. The p-value of the classifier may be less than or equal to 0.0001.

The plurality of targets may comprise one or more targets selected from a Cox proportional hazards model. The plurality of targets may comprise two or more targets selected from a Cox proportional hazards model. The plurality of targets may comprise three or more targets selected from a Cox proportional hazards model. The plurality of targets may comprise 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30, 35, 40, 45, 50, or more targets selected from a Cox proportional hazards model. The Cox proportional hazards model may be a ridge-penalized Cox model. Predictions from a Cox model can be described in terms of a binary score (i.e., PORTOS) as discussed in the Examples.

TABLE 1 PORTOS Target Sequences SEQ ID NO. Affy Probeset ID Gene Sequence 1 2378938 DTL AGATGCTGAAAAGAGAGTCGACTCC 2 2378938 DTL CGGTTAGTCTCTCGCACTGCAGTCA 3 2378938 DTL TCGACTCCGAAAAGGAGGCTGGGAC 4 2378938 DTL CCTGCAGCGAGCCTTCGGTTAGTCT 5 2378943 DTL GGAGGAAAACCTACATGGAAGAGAA 6 2378943 DTL AGTCACGTCACCATTACTACTTGTG 7 2378943 DTL CCTCTTTGTCCTCAGGGTCAAGGAG 8 2378943 DTL ACTTGTGTGAAGAATACCTCTTTGT 9 2378944 DTL AACAAGCTAACATATTGTGTCTTAG 10 2378944 DTL ACCTTGTACATGATCGTCAACGGTT 11 2378944 DTL GAGGGTTATACCTTGTACATGATCG 12 2378944 DTL CGTCAACGGTTACTTCTTCCGAAAC 13 2378945 DTL GTGACCTTACGGCAGAAACTGGACC 14 2378945 DTL TACCTACCGAGTGACCTTACGGCAG 15 2378945 DTL ACCTTACGGCAGAAACTGGACCGGA 16 2378945 DTL ACCGAGTGACCTTACGGCAGAAACT 17 2378946 DTL TCGGAGTTCAGTCAACGGAAAAGAT 18 2378946 DTL TACGTTTCCAGTAGTTACGTCGGAG 19 2378946 DTL CCTGCATTTTCGACCACTCGACTAA 20 2378946 DTL ACCTTGTACGTTTCCAGTAGTTACG 21 2378952 DTL CCGTTGTAATACCAGACCCTATGGT 22 2378952 DTL ACCGTTGTAATACCAGACCCTATGG 23 2378952 DTL TACCGTTGTAATACCAGACCCTATG 24 2378952 DTL CGTTGTAATACCAGACCCTATGGTC 25 2378953 DTL TTATGGAGTCTGTTCGTTTGGGGAA 26 2378953 DTL GTTCACTTAGTTTAGTCACCTCGAG 27 2378953 DTL ATATCCGTTCACTTAGTTTAGTCAC 28 2378953 DTL GTTTAGTCACCTCGAGTGTTATGGA 29 2378954 DTL CACCAGGAGAAAGTTCTGCTCTTAT 30 2378954 DTL CTTATGGAATCAGAGTCGTCCTCGA 31 2378954 DTL GGAGAAAGTTCTGCTCTTATGGAAT 32 2378954 DTL AAGGTCGTTTCACAATGACACCAGG 33 2378956 DTL AGATGAAATAAACGATTAACGTGTC 34 2378956 DTL AACGTGTCTGCTATTGTAGATGTAC 35 2378956 DTL CTATAAGTTCAGACTAAAACCTAAG 36 2378956 DTL GTAGATGTACAAATTATACTGACCC 37 2378957 DTL ATACATTTTAGGTCGGAATCAGGTC 38 2378957 DTL TCAAAAATCAGTCACCGAGTTCACT 39 2378957 DTL TTAGGTCGGAATCAGGTCTACTGGT 40 2378957 DTL ACCGATAAAAGTTACCTGTGGTCTT 41 2378959 DTL CGACCACAGGTAGACTGAAGTGTTT 42 2378959 DTL CCAGTAAGAGTTCTCCAGTGCAGAC 43 2378959 DTL GTGGGACCGTTGGAGGATGACACGA 44 2378959 DTL AGGTGTGGGACCGTTGGAGGATGAC 45 2378960 DTL TATTAATAGGTCAGTGTTCCGGAAT 46 2378960 DTL CTCAGTCGAAACAACCTTTAGACCT 47 2378960 DTL AGATATAGGACAAATAATCTGTTTT 48 2378960 DTL TGTTCCGGAATTCTGTGTGGACAAA 49 2378961 DTL GACCGCGAACTTATCTCCGAATCTC 50 2378961 DTL TTAGACCGCGAACTTATCTCCGAAT 51 2378961 DTL GCGAACTTATCTCCGAATCTCCTCT 52 2378961 DTL TTTTTAGACCGCGAACTTATCTCCG 53 2378963 DTL AGTCTTTCGACACCTTGCGATGGAG 54 2378963 DTL ACACGACGGAACGACCATTGGTCCT 55 2378963 DTL GGTGGACGAAGCCTCTGGTTCTAGT 56 2378963 DTL CAGAGGATAGTCAGGCATACGAAGT 57 2378968 DTL GTATGAAGGTATCTTTCAGGGTCCT 58 2378968 DTL GACGTGTATGAAGGTATCTTTCAGG 59 2378968 DTL AAGACACCAGGACTTGTGAGTTGTC 60 2378968 DTL AGGACTTGTGAGTTGTCTTAATATC 61 2378969 DTL ACCCACGGTTTCCAGTTGACATTAC 62 2378969 DTL GGGACTCCTGACACATCTGAAATAC 63 2378969 DTL AAGTCCACGTCAGTAGTCAAGAAAT 64 2378969 DTL GACCCATATTGTACAGAGTGAACCT 65 2378970 DTL AGATGTTTTTTCTTGATATCATCAG 66 2378970 DTL ACTCGAAAAACGTAATGGATCTTCG 67 2378970 DTL CGTAATGGATCTTCGTCAGATGTTT 68 2378970 DTL TCGAAAAACGTAATGGATCTTCGTC 69 2378972 DTL ACGTCAGACGTTTCCAGAAGTGTTT 70 2428797 PTPN22 AAAACGGATTTACCTCATATGGAAC 71 2428797 PTPN22 CATGTTACATAGGTTGTCTGTGAGT 72 2428797 PTPN22 TAAGGGACTGTCAATAAAAACGGAT 73 2428797 PTPN22 CCCAACGTTATGTTTGACGAGAACT 74 2428798 PTPN22 ATTCACGGTCAAAACGTAAAAGTAT 75 2428798 PTPN22 CGTTTTACGGTTATTCACGGTCAAA 76 2428798 PTPN22 TACTTCTATACGATTACACAATTAT 77 2428798 PTPN22 ATTCACGAGATATACGTATTATAGT 78 2428799 PTPN22 TCCTTAGGTGGTGGTTGAACCTTAT 79 2428799 PTPN22 GTTCCTTAGGTGGTGGTTGAACCTT 80 2428799 PTPN22 CTTAGGTGGTGGTTGAACCTTATAA 81 2428799 PTPN22 GGTTCCTTAGGTGGTGGTTGAACCT 82 2428800 PTPN22 AAGAACGGGTGGTTTGTTCGGACGT 83 2428800 PTPN22 ACAAGTCAGTTTATTGAGGTCGAGT 84 2428800 PTPN22 AGTTTATTGAGGTCGAGTAAAGACT 85 2428800 PTPN22 GAACGGGTGGTTTGTTCGGACGTCT 86 2428801 PTPN22 AGACTCAGACAGAAATCAGAAAGGG 87 2428801 PTPN22 CACTAGACTAGTTGTCAGTAGACTC 88 2428801 PTPN22 GAATTGTTAATATACACTAGACTAG 89 2428801 PTPN22 CATTCGTGGATGTAAAACAATTGTA 90 2428806 PTPN22 ACTTCTGAGGACCTTTTTCAAAGTG 91 2428806 PTPN22 CTTCTGAGGACCTTTTTCAAAGTGT 92 2428806 PTPN22 TCTGAGGACCTTTTTCAAAGTGTTC 93 2428806 PTPN22 GACTTCTGAGGACCTTTTTCAAAGT 94 2428809 PTPN22 ATAAAGACCGAAAGGGTCTGATCTT 95 2428809 PTPN22 CAATTCAAATCTCATTAAGTGAAGT 96 2428809 PTPN22 AGTGAAGTCCTTCAATGAACCAAGG 97 2428809 PTPN22 CCAAGGGTATTATCGAAGGTCATAA 98 2428810 PTPN22 ACATTTTGAGGCTTCAGGATTTAGT 99 2428811 PTPN22 CTTCCATTTTTAACCTTGTAGTGAC 100 2428811 PTPN22 ACTACTGAGACACTATGAATCTGGT 101 2428811 PTPN22 ACCCCACCTTGTAGACTTGGTTTCT 102 2428811 PTPN22 GAGACACTATGAATCTGGTTCGTTC 103 2428814 PTPN22 GGTGAAGGACATACCTGTGGACTTA 104 2428814 PTPN22 GGACTTAGTAAATAACACCAACTCC 105 2428814 PTPN22 GACATACCTGTGGACTTAGTAAATA 106 2428814 PTPN22 AAGGACATACCTGTGGACTTAGTAA 107 2428815 PTPN22 GGTACTGAGATCACGAGAACCACAT 108 2428815 PTPN22 TCTCGATCAAAACGTGGGACGATTT 109 2428815 PTPN22 AGTAGTACCGGAGGTTCACCATGGT 110 2428815 PTPN22 GGTTATCAACCCCTCGGAGAAGTCT 111 2428817 PTPN22 ATCTTGATAAATTCTCTGTCTACCT 112 2428817 PTPN22 TCTCTGTCTACCTACAATAGTCTCT 113 2428817 PTPN22 CCAGATGTTACGACATAATCTTGAT 114 2428817 PTPN22 ACTTGACCAGATGTTACGACATAAT 115 2428818 PTPN22 GTCTCCGGAAGTAATCAAGTTTGCG 116 2428818 PTPN22 CAAAAGTCAAACTAGGCCCTTTACG 117 2428818 PTPN22 CTCCGGAAGTAATCAAGTTTGCGTC 118 2428818 PTPN22 GCCCTTTACGCCTGTGTCTCCGGAA 119 2428819 PTPN22 ACGATAACTAATATGTACCTACAAC 120 2428819 PTPN22 AACTAATATGTACCTACAACGATTT 121 2428819 PTPN22 ACACGATAACTAATATGTACCTACA 122 2428819 PTPN22 GATAACTAATATGTACCTACAACGA 123 2428821 PTPN22 AGTAGACCCTACATGCAACAATGGT 124 2428821 PTPN22 CTACTGTCACAAGGGTATACGTAAG 125 2428821 PTPN22 ATATCTGGGATAAGAACTCGAGTAG 126 2428821 PTPN22 CTACATGGAAGTAGATATCTGGGAT 127 2428823 PTPN22 GACTAATATATTAGTCCTGAGATTT 128 2428823 PTPN22 CTAATATATTAGTCCTGAGATTTTC 129 2428823 PTPN22 ATATATTAGTCCTGAGATTTTCAAT 130 2428823 PTPN22 ATATTAGTCCTGAGATTTTCAATTC 131 2428826 PTPN22 ACAATACCGTACGTACCTCATACTT 132 2428826 PTPN22 ATACCGTACGTACCTCATACTTTAC 133 2428826 PTPN22 TACGTACCTCATACTTTACCCTTTC 134 2428826 PTPN22 AGTAACAATACCGTACGTACCTCAT 135 2428828 PTPN22 AGGGACTATTGGAGACTACTCCTAA 136 2428828 PTPN22 TATCGGCCCATCTTGATAGGGACTA 137 2428828 PTPN22 CTAATATCGGCCCATCTTGATAGGG 138 2428828 PTPN22 CTTGATAGGGACTATTGGAGACTAC 139 2428829 PTPN22 GATAGGATGTTGACACCGACTCTTC 140 2428829 PTPN22 CCGTCTGTTTTGGATAGGATGTTGA 141 2428829 PTPN22 GTTAGATGGTTCATGTTCCGTCTGT 142 2428829 PTPN22 TTTCCGTTAGATGGTTCATGTTCCG 143 2428831 PTPN22 TACCTGGTTTCTCTTTAAGACGTCT 144 2428831 PTPN22 TCTCCTCAAACGGTTACTTAAAGAC 145 2428831 PTPN22 TTAATGATTTCTCCTCAAACGGTTA 146 2428831 PTPN22 CTACTCCGGGTTTCGTTCTTTTAAT 147 2482925 RPS27A CGCAGACCATCTAACGACTAAGAGA 148 2482925 RPS27A CGGGTTCCTCGCAGACCATCTAACG 149 2482925 RPS27A CCTCGCAGACCATCTAACGACTAAG 150 2482925 RPS27A CGTCCCTCCGCGATGTCCTCTCTTT 151 2482926 RPS27A ATCGGTGCAACTAACATGCCCTTTT 152 2482926 RPS27A AAGAGAATCGGTGCAACTAACATGC 153 2482926 RPS27A GAGAATCGGTGCAACTAACATGCCC 154 2482926 RPS27A GTGCAACTAACATGCCCTTTTCGGA 155 2482927 RPS27A AAAGCTTTCGTAAGGCTTCCGATTT 156 2482928 RPS27A AGCGACCCTGCCGTCAGTCCGTAAA 157 2482928 RPS27A TGCTTCAAGTGCAGGATCAGACCGT 158 2482928 RPS27A AGACCGTGGCCCAACCTAACAGCGA 159 2482928 RPS27A CCTCTCCTCTTTGCTTCAAGTGCAG 160 2482929 RPS27A AGAACACTAGGGACTGGATTGGACA 161 2482929 RPS27A CGACGAGAGCCCAATCGTGGGATAC 162 2482929 RPS27A AGACGTGAAGCCGACGAGAGCCCAA 163 2482929 RPS27A CGTGGGATACCACGGAAGAGAACAC 164 2482931 RPS27A AAACGACTCGTTGCTGGATCTCCAC 165 2482931 RPS27A TGGACAGAGGAGAGCTCCCCAAGGT 166 2482931 RPS27A TCGGTTCCAGGCTTATTCCAGGACT 167 2482931 RPS27A CAGAATCTGGTACTAAGGCTTAAAC 168 2482934 RPS27A TCACTCACCGCGTCAGTGACGTTGG 169 2482934 RPS27A GTAAGCTTATCGTCATCTAAAAATC 170 2482934 RPS27A CCTTTTACCGTAAGCTTATCGTCAT 171 2482934 RPS27A CTCACTCACCGCGTCAGTGACGTTG 172 2482935 RPS27A TACAGGGATATTTGACAGTCAATTC 173 2482935 RPS27A CATAGGGTACCACATTACATTACGT 174 2482935 RPS27A ACTCTTCGTGACGATATCAAGAGGG 175 2482935 RPS27A GAGGGTAATACTTAAAACGTTCAAC 176 2482936 RPS27A ACTTTCGAACGAAGTAAGAAGGTAA 177 2482936 RPS27A ACCTTAGTACTTTCGAACGAAGTAA 178 2482936 RPS27A CGAACGAAGTAAGAAGGTAATTGTC 179 2482936 RPS27A TAGTACTTTCGAACGAAGTAAGAAG 180 2482937 RPS27A TCTTCTTCAGAATGTGGTGAGGGTT 181 2482937 RPS27A CGTGTTCTCTTTCTTCCAATTCGAC 182 2482937 RPS27A ACAACTCTGAAGCACCACCACGATT 183 2482937 RPS27A CAATTCGACCGACAGGACTTTATAA 184 2482940 RPS27A CAAATACCGTTCAGTGAAACTGTCT 185 2482940 RPS27A ACCGTTTTAATCAGCGGAAGCAGCT 186 2482940 RPS27A GCGGAAGCAGCTCTCACGGGAAGAC 187 2482940 RPS27A ACAGACTGAATGACAAAGTTGTTTG 188 2482941 RPS27A CGATAGCGACACACTTACAACGGAG 189 2482941 RPS27A GTCCACGGTTGGTGAACATTTCCAG 190 2482941 RPS27A GGTCACCAAGACATATGGACGGTCC 191 2482941 RPS27A AACGGAGACCCCTAATACACTGGGT 192 2482944 RPS27A AGTCGGGACAGCGACCAAGCCAAGT 193 2482944 RPS27A CCATTAACAGTTTGATTTACTCAAG 194 2482944 RPS27A TTTACTCAAGACGACATCAAGGAAT 195 2482944 RPS27A GGAATTACACATTGGTTGTACGAAA 196 2482946 RPS27A TGAACGCACTTAAACCTGTGAATAA 197 2482946 RPS27A ATGGATCTAACCTTAGGAACTCCAC 198 2482946 RPS27A CGTGTCATGGATCTAACCTTAGGAA 199 2482946 RPS27A CTCCACATAAAGTGAACGCACTTAA 200 2508612 ARHGAP15 CAAAGTTATTGTCCAGTAACGGCTC 201 2508612 ARHGAP15 TGTCCGGATGAGAATGCTGTACACT 202 2508612 ARHGAP15 TAATTGTCAATCCTCAACTACCGTC 203 2508612 ARHGAP15 AATTCGTCGTAGGTTGTGTCCGGAT 204 2508620 ARHGAP15 TCCTTAGTAAGTGTCGTATAGAACT 205 2508620 ARHGAP15 TTAGTAAGTGTCGTATAGAACTTTC 206 2508620 ARHGAP15 TTCCTTAGTAAGTGTCGTATAGAAC 207 2508620 ARHGAP15 CCTTAGTAAGTGTCGTATAGAACTT 208 2508622 ARHGAP15 ACCAACTTTTTCTTCCAATAGACGT 209 2508627 ARHGAP15 ACTTAATTCGTTACTGTGTACTCCG 210 2508627 ARHGAP15 CTTAATTCGTTACTGTGTACTCCGA 211 2508627 ARHGAP15 AACTTAATTCGTTACTGTGTACTCC 212 2508627 ARHGAP15 AAACTTAATTCGTTACTGTGTACTC 213 2508628 ARHGAP15 TTCTTAGGTTCGTTGTCCGAGACAG 214 2508628 ARHGAP15 TTTCTTAGGTTCGTTGTCCGAGACA 215 2508628 ARHGAP15 AACAAGAAAGATCAGCTTCTTAACT 216 2508628 ARHGAP15 GAAAGATCAGCTTCTTAACTTAAAA 217 2508633 ARHGAP15 CACGTAAGAACATGCACTCCACAAA 218 2508633 ARHGAP15 CGACCACGTAAGAACATGCACTCCA 219 2508633 ARHGAP15 CCACGTAAGAACATGCACTCCACAA 220 2508633 ARHGAP15 GACCACGTAAGAACATGCACTCCAC 221 2508634 ARHGAP15 TTTGACCCGTGTTTGGTCTTTCACA 222 2508634 ARHGAP15 TTTTGACCCGTGTTTGGTCTTTCAC 223 2508634 ARHGAP15 TCCTTTTTAGCTCGTCTTTCTTACA 224 2508674 ARHGAP15 GTATCAAAGAAATGGACAGATAAAG 225 2508674 ARHGAP15 AACCTCATTAAGTCGAGATCGGGAT 226 2508674 ARHGAP15 ATCTCTCGCCAAGTTTTACGAGGGT 227 2508674 ARHGAP15 CGGGATGAGACTGAATTAGCAAGAT 228 2508675 ARHGAP15 AGTAGTATAACCTAACCAAGGTGCG 229 2508675 ARHGAP15 GGTGCGATAGTTTTTACGTTAACTG 230 2508675 ARHGAP15 CTCAAGGAAGATGTCAGTCTATAAC 231 2508675 ARHGAP15 GTGTTGTCATAGTCCTTTACTCAAG 232 2508676 ARHGAP15 AGGAGATCGTGACTTAACGATTCAG 233 2508676 ARHGAP15 AAGTTTTAGGTTTCTAGGAGATCGT 234 2508676 ARHGAP15 ACGATTCAGTGATGCTGTCACTATA 235 2508676 ARHGAP15 GGTAGTTCTTTGGACCTTAATAAGT 236 2508677 ARHGAP15 GAACGAGTAAAATTCAAACAGATTT 237 2508677 ARHGAP15 ACGAGTAAAATTCAAACAGATTTAC 238 2508677 ARHGAP15 TGAACGAGTAAAATTCAAACAGATT 239 2508677 ARHGAP15 CGAGTAAAATTCAAACAGATTTACG 240 2508678 ARHGAP15 CTAAACACGTGACCTCCCGTCAGAC 241 2508678 ARHGAP15 AGTATGAGTACCTTCTAAGCATCGG 242 2508678 ARHGAP15 ATCGGTAAAGGACCGGTCCCTAAAC 243 2508678 ARHGAP15 GTAGTAACAACCATTACGGAAAACT 244 2508691 ARHGAP15 CTATGTTCGCTGTTTTTAGCTCAAT 245 2508691 ARHGAP15 ACAAGTCTGACGTAGTGTCACGAAG 246 2508691 ARHGAP15 GCTGTTTTTAGCTCAATTTTCGTCT 247 2508691 ARHGAP15 GTGTCACGAAGGCTATGTTCGCTGT 248 2508699 ARHGAP15 AAACATTTCGTTACGTAACTTCGAC 249 2508699 ARHGAP15 ACGTGTTTCACACACTTGCACTTTT 250 2508699 ARHGAP15 AGGTGTCAAGGCACCAAACATTTCG 251 2508699 ARHGAP15 GTGTTTCACACACTTGCACTTTTAA 252 2508700 ARHGAP15 GGAGATGTGTTGGTTATGAGTTCAA 253 2508700 ARHGAP15 ACGGTGGACTAAACAGACTCTTCGG 254 2508700 ARHGAP15 GAGTTCAATCGTCACGGTGGACTAA 255 2508700 ARHGAP15 ACACGTCGTCAAGGGGGGTAATGAC 256 2508706 ARHGAP15 CAGATCTACAACTACCTTATATAGC 257 2508706 ARHGAP15 AGCTCAATCACCGTTAGACCGTTGT 258 2508706 ARHGAP15 ATCACCGTTAGACCGTTGTTATGTC 259 2508706 ARHGAP15 CCTTATATAGCTCAATCACCGTTAG 260 2508711 ARHGAP15 GGTCGGGAAGATAGTCTTGACCTAC 261 2508711 ARHGAP15 TCTTGACCTACCTCTGGACACCTGT 262 2508711 ARHGAP15 CGGGAAGATAGTCTTGACCTACCTC 263 2508711 ARHGAP15 AGACCTTATGGTCGGGAAGATAGTC 264 2508712 ARHGAP15 GACGTCTAAAAAGTGTCACCAGTAA 265 2508712 ARHGAP15 TGGAGGTCTCGTTCGGTTATTAAAC 266 2508712 ARHGAP15 TCACCAGTAAACTGGAGGTCTCGTT 267 2508712 ARHGAP15 CGACGTCTAAAAAGTGTCACCAGTA 268 2508716 ARHGAP15 TCACCTAACCTCTGGTAGTGGAAAG 269 2508716 ARHGAP15 TTCACCTAACCTCTGGTAGTGGAAA 270 2508716 ARHGAP15 ACCTAACCTCTGGTAGTGGAAAGAG 271 2508716 ARHGAP15 CACCTAACCTCTGGTAGTGGAAAGA 272 2508717 ARHGAP15 GGTTTCCTGGACACTAGAGTGGACG 273 2508717 ARHGAP15 TTAACCTGGTGATGTCCGAGACTGG 274 2508717 ARHGAP15 ACTAGGGTTGGTTTGTATCACTTCC 275 2508717 ARHGAP15 CCGAGACTGGTGTACATACTCTTCG 276 2508718 ARHGAP15 TCGAAGTCTCCAGGCTTAAACCGGT 277 2508718 ARHGAP15 CTGAAGCCGGCAATTCTAAACGAAG 278 2508718 ARHGAP15 GACCCTCTGAGCACGAGACATTCGT 279 2508718 ARHGAP15 TAGTACGACTGTATCTCCGTGGAAC 280 2508719 ARHGAP15 TTGTAAGAGTTTTCCCGTGTCCGGG 281 2508719 ARHGAP15 GACCAGCAGATAACACAGTCTTTCG 282 2508719 ARHGAP15 GACAGTTCATCAGTGTGCCTTTAAT 283 2508719 ARHGAP15 GATTGATTAACTTGATGACCAGCAG 284 2508725 ARHGAP15 CCTGTAGGTGCAACAGTGGCCTCGT 285 2508725 ARHGAP15 TCGACTTAAACCTGCTGTCGGTCAC 286 2508725 ARHGAP15 ACTCGGCGAGAAGGGAATGTCAAAG 287 2508725 ARHGAP15 GTGGCCTCGTGACTTCTACAAAAAG 288 2508741 ARHGAP15 GAGGCGGTTTAGCACTGTGGTACTT 289 2508741 ARHGAP15 AGAACATGTTTTTGAGGGAGGCGGT 290 2508741 ARHGAP15 TAACTTCGACATTTTAGAGAACATG 291 2508741 ARHGAP15 GCGGTTTAGCACTGTGGTACTTTCA 292 2508742 ARHGAP15 ACGCATGTAGAGCATAAAAGGGAAC 293 2508742 ARHGAP15 CATGGTGCACGACCCCGGTGTTTAT 294 2508742 ARHGAP15 GGGAACATCGACTTGATCCAGAAAG 295 2508742 ARHGAP15 ACGAACAGTCTTGGTAGCGGACCTG 296 2508746 ARHGAP15 GTCTTTTCGTGAGGTAAAAACGTCT 297 2508746 ARHGAP15 GAATTACGCCGTGTCAACCTGATCT 298 2508746 ARHGAP15 AAGGTGAACTGGATGCATGAGATGT 299 2508746 ARHGAP15 CCCTTACATTACTTCACGGTTTTTA 300 2508762 ARHGAP15 CTTTGTACCGCTAGGTGTACCAGAT 301 2508762 ARHGAP15 CGAACCCCTAACATAAACCTGGATG 302 2508762 ARHGAP15 ACCAGATGGTCTTGGTCTATCGACT 303 2508762 ARHGAP15 AACCTGGATGGGAAGACGCTCGACT 304 2508763 ARHGAP15 ATTCTAGAAGCCGAGTCTCCTTCTG 305 2508763 ARHGAP15 CATTCTAGAAGCCGAGTCTCCTTCT 306 2508763 ARHGAP15 TCTAGAAGCCGAGTCTCCTTCTGAC 307 2508763 ARHGAP15 CTAGAAGCCGAGTCTCCTTCTGACT 308 2508764 ARHGAP15 CGATGACTTATGCAAGTGTAGACAG 309 2508764 ARHGAP15 ATGTAAAGACATTTGTATAAAGACT 310 2508764 ARHGAP15 GAAAGTTCGCTGTCTACGGAGTAAA 311 2508764 ARHGAP15 AACACAAATTCAAGGTTTGTAAACT 312 2571511 IL1B GGTGTAAGACTACTCGTTGGCGAAG 313 2571511 IL1B CCTGAGTTAGGGATCCCGACCGTCT 314 2571511 IL1B CGGGAAAACAACTCGGTCCGGAGAG 315 2571511 IL1B TTCTCCTAGAGGACAGGTAGTCGGT 316 2571512 IL1B GGTTTCCGCCGGTCCTATATTGACT 317 2571512 IL1B TTGACTGAAGTGGTACGTTAAACAC 318 2571512 IL1B TTGTACGGGCAGAAGGACCCTCCCT 319 2571512 IL1B GACCTTAAACTCAGACGGGTCAAGG 320 2571513 IL1B GCGGGGGTAGGGATCCTTTTCGACC 321 2571513 IL1B TTACGATACCTTACTTCGGGAAGAG 322 2571513 IL1B ACTTACGATACCTTACTTCGGGAAG 323 2571513 IL1B AACTGTTAAAACGTAATTACATTTA 324 2571514 IL1B AGGACGCACAACTTTCTACTATTCG 325 2571514 IL1B CCACAAGAGGTACAGGAAACATGTT 326 2571514 IL1B TAGACATGGACAGGACGCACAACTT 327 2571514 IL1B ACTATTCGGGTGAGATGTCGACCTC 328 2571517 IL1B CGTGCTACGTGGACATGCTAGTGAC 329 2571517 IL1B ATTGCTCCGAATACACGTGCTACGT 330 2571517 IL1B AGACCAGGTATACTTGACTTTCGAG 331 2571517 IL1B AGTGACTTGACGTGCGAGGCCCTGA 332 2571518 IL1B GGAGGGACACCCGATCACAATACTG 333 2571518 IL1B CGACCTTGGGTACAGATTATCACAG 334 2571518 IL1B GTCCCCGGAAAGTGAATGTAACAGT 335 2571518 IL1B ATTCATCGAGACAACGAGCCGGTGT 336 2571519 IL1B GTCCGGCGCAGTCAACAACACCGGT 337 2571519 IL1B CCTACCGCCGTAGGTCGATGCTTAG 338 2571519 IL1B CGCAGTCAACAACACCGGTACCTGT 339 2571519 IL1B ATGCTTAGAGGCTGGTGGTGATGTC 340 2571520 IL1B CCTACTGAACAAGAAACTTCGACTA 341 2571520 IL1B CGTTACTCCTACTGAACAAGAAACT 342 2571520 IL1B TACTCCTACTGAACAAGAAACTTCG 343 2571520 IL1B CTCCTACTGAACAAGAAACTTCGAC 344 2571522 IL1B TCATGGACTCGAGCGGTCACTTTAC 345 2571522 IL1B GCGGTCACTTTACTACCGAATAATG 346 2571522 IL1B TGGACTCGAGCGGTCACTTTACTAC 347 2571522 IL1B TCGAGCGGTCACTTTACTACCGAAT 348 2571523 IL1B CAGTACCCCTTCAGTGAGTAAAAGA 349 2571523 IL1B CGGCAGTACCCCTTCAGTGAGTAAA 350 2571523 IL1B ACTTGCATCGGCAGTACCCCTTCAG 351 2571523 IL1B CTTTAGTGTGTACTTGCATCGGCAG 352 2571524 IL1B TATAAGACCCTTACCTATGACGAAT 353 2571524 IL1B GAATACTGAGCCCTTTATAAGACCC 354 2571524 IL1B TTCCAATCACAGTTTCGGAGACGAG 355 2571524 IL1B GTTGATCCACGATTCCCTCAGAGAG 356 2571525 IL1B CGGTATTTTTGTCGCTCCCTCTTTG 357 2571525 IL1B TGGAGAAGCTCCGTGTTCCGTGTTG 358 2571525 IL1B TCTATGGTTTGGAGAAGCTCCGTGT 359 2571525 IL1B GGTTTGGAGAAGCTCCGTGTTCCGT 360 2674763 UBA7 ATCGAGTTACCTCGGGGCCTAGGGT 361 2674763 UBA7 TACCTCGGGGCCTAGGGTTCGGGAC 362 2674763 UBA7 ACAGTGGATCGAGTTACCTCGGGGC 363 2674763 UBA7 GTGGGACAGTGGATCGAGTTACCTC 364 2674764 UBA7 CACTGCTGCTCCTGTGACGGAAGGG 365 2674764 UBA7 CCGTCGCCCACAACCACGATCTCGA 366 2674764 UBA7 CGTCGCCCACAACCACGATCTCGAC 367 2674766 UBA7 GCCTACCAGTGGACTTTTCGTCCGG 368 2674766 UBA7 TACGCCGGCCTACCAGTGGACTTTT 369 2674766 UBA7 GTCGGGACGAGATACGCCGGCCTAC 370 2674766 UBA7 TGGACTTTTCGTCCGGGTCGTGGAC 371 2674767 UBA7 CACACGGGACAACGATGGGGTTGGG 372 2674767 UBA7 GACCACAGACTGGAAAGAGGAGATC 373 2674767 UBA7 ACGGGACAACGATGGGGTTGGGGGT 374 2674767 UBA7 TCGACCACAGACTGGAAAGAGGAGA 375 2674768 UBA7 CTGGCAGACTTCCATGGTCGACCCG 376 2674768 UBA7 GTGGACTTCACCTGGAGAACCCTGG 377 2674768 UBA7 CCTCAGCGACGACCGAGTAGAAGTC 378 2674768 UBA7 TCACCTGGAGAACCCTGGCAGACTT 379 2674772 UBA7 GCCGTCGATCGGACTCTACAGTCTT 380 2674772 UBA7 CTAAGGTGGCCAGTTGGCACGGGTC 381 2674772 UBA7 CTGAAACACCATCGCCGTCGATCGG 382 2674772 UBA7 GACTCTACAGTCTTGATGCCCTAAG 383 2674773 UBA7 TGTTTCGGGACCTTCAGACCTCACA 384 2674773 UBA7 GGGACTTCGGAGACTACAAACTCTT 385 2674773 UBA7 GTCGTCTTCCTTGACTTGTTTCGGG 386 2674773 UBA7 CCTCACACCCGGGAGGGGACTTCGG 387 2674775 UBA7 AGGAGATGCATGACCGTCGACGGTT 388 2674775 UBA7 TAGATCTCGACCGAAGCCGAAGACG 389 2674775 UBA7 GTCCTGACCTGACGTGAGTCCCTCG 390 2674775 UBA7 CGGTTGGACATACGGGTCTACGTAC 391 2674776 UBA7 GGGAGTCTCGTCTCCATCCGTAAAG 392 2674776 UBA7 GGTCTCTCTCGGTACGAACACGTAT 393 2674776 UBA7 ACCCTAAGACATCCCTCGAGGTTCT 394 2674776 UBA7 CGTTTCCGTCCGTGAGTTTGTCTAG 395 2674777 UBA7 CACGAACTCCTACCTTGAGGGAAGA 396 2674777 UBA7 CAGTCCAGGGTTTGTCACAGGGGTC 397 2674777 UBA7 GGGAAGACCAGTCCAGGGTTTGTCA 398 2674777 UBA7 CGAACTCCTACCTTGAGGGAAGACC 399 2674778 UBA7 TCGGGTCGTCGAAGATGAATGGATG 400 2674778 UBA7 CGGGTCGTCGAAGATGAATGGATGG 401 2674778 UBA7 GTCGTCGAAGATGAATGGATGGATC 402 2674778 UBA7 CACACCGATCCCCAACCCTGCGACC 403 2674779 UBA7 CGACTCCGTGAAGGGTGGATTATTT 404 2674779 UBA7 TTTGAGACGAAAGTAATACCGTAGT 405 2674779 UBA7 TACCGTAGTTTGTCGACGACTCCGT 406 2674779 UBA7 ACGACTCCGTGAAGGGTGGATTATT 407 2674780 UBA7 CACACCGCACCCGAGAACCGGTGAC 408 2674780 UBA7 ACACCGCACCCGAGAACCGGTGACC 409 2674781 UBA7 AGGACTCTCACGCAGGTGTCTTGAC 410 2674781 UBA7 CTCTCACGCAGGTGTCTTGACCGTT 411 2674781 UBA7 GACTCTCACGCAGGTGTCTTGACCG 412 2674781 UBA7 CCCAGGACTCTCACGCAGGTGTCTT 413 2674782 UBA7 CGGTGTCTGTGAGTGGAATGACTTC 414 2674782 UBA7 CCTACTCGGTGTCTGTGAGTGGAAT 415 2674782 UBA7 TGTACCTACTCGGTGTCTGTGAGTG 416 2674782 UBA7 ACTCGGTGTCTGTGAGTGGAATGAC 417 2674784 UBA7 AAACTTCTTGAGAAGGCTGACAGAC 418 2674784 UBA7 GAAGGCTGACAGACGTCTCTGGTAG 419 2674784 UBA7 ACTTCTTGAGAAGGCTGACAGACGT 420 2674784 UBA7 CTTGAGAAGGCTGACAGACGTCTCT 421 2674785 UBA7 CCGCGATACACCGACGAGCAACGTG 422 2674785 UBA7 AACGTGGGTGATAGACTTCGGTGAC 423 2674785 UBA7 GGATGGGACAGACATGGCACGCCAT 424 2674785 UBA7 ATGGCACGCCATGAAGGGATCGTGT 425 2674786 UBA7 GAACTGAAGCCTCCAGTCAGGGAAC 426 2674786 UBA7 ACTCACGAACTGAAGCCTCCAGTCA 427 2674786 UBA7 AAGCCTCCAGTCAGGGAACGGGTGT 428 2674786 UBA7 ACTGAAGCCTCCAGTCAGGGAACGG 429 2674787 UBA7 GAGGGCACACCTACCACACCGACGA 430 2674787 UBA7 TCTGAATGTCCACTAGGGCGAGTGG 431 2674787 UBA7 GGTGTCTCGTGTAGATACCCCTATT 432 2674787 UBA7 CACTAGGGCGAGTGGATGGGTGACC 433 2674789 UBA7 CACTCACGACTGGGGAGAGGTGTGA 434 2674789 UBA7 ACTCACGACTGGGGAGAGGTGTGAG 435 2674790 UBA7 TCGCGAGGTTAGAGTCGGCAGTCAA 436 2674790 UBA7 ACGAGTTTCAGAAACGGGATCACCC 437 2674790 UBA7 TACCTGGTGTATCTCGCGAGGTTAG 438 2674790 UBA7 CTGACAACAACTGTACCTGGTGTAT 439 2674791 UBA7 TCCGTCGGCGATACTACCCGTTTAA 440 2674791 UBA7 AGTCCTCTTTGACTCTGCGGTCGTG 441 2674791 UBA7 ACTACCCGTTTAACGTCACAAACCC 442 2674791 UBA7 TTGACTCTGCGGTCGTGATGGAGGA 443 2674792 UBA7 CGGGAGCTAACAGAAGGCCTTCTAC 444 2674792 UBA7 ATGAAACTACGGGAGCTAACAGAAG 445 2674792 UBA7 AACAGAAGGCCTTCTACCCCTCGAG 446 2674792 UBA7 CAGAAGGCCTTCTACCCCTCGAGGA 447 2674793 UBA7 TGGGTCGCGATCTCTCGTCGGGACC 448 2674793 UBA7 GACCCACTTCGGAGGTCGGTCCTAG 449 2674793 UBA7 CACAGTCTCCCGTGGGTCGCGATCT 450 2674793 UBA7 GGACCTCGGAAGTGGTTGGACCCAC 451 2674794 UBA7 GAACTCGGGATACCACCGGTACGAC 452 2674794 UBA7 TCAGCGGGATTCGTCACGTCCACAG 453 2674794 UBA7 GACCTTGGTGACTTCGCCTGTCTCC 454 2674794 UBA7 TACTCCGGGATCACGCCTGTCAGCG 455 2674795 UBA7 ATACGGGTGTCTCAGGATGGTTGTC 456 2674795 UBA7 GTCCGACCCCGATGATACGGGTGTC 457 2674795 UBA7 ACCCCGATGATACGGGTGTCTCAGG 458 2674795 UBA7 CGACCCCGATGATACGGGTGTCTCA 459 2674796 UBA7 ACGTAGTCCGGAAGACACGTGACGT 460 2674796 UBA7 TAGTCCGGAAGACACGTGACGTGTT 461 2674796 UBA7 GTAGTCCGGAAGACACGTGACGTGT 462 2674796 UBA7 CGTGGAGGTACCGGCCGGTGGGGTC 463 2674797 UBA7 AAAGAGAGCCATGAACGCACCACCC 464 2674797 UBA7 TGTTGAAAGAGAGCCATGAACGCAC 465 2674797 UBA7 CATGAACGCACCACCCCGATAGTGA 466 2674797 UBA7 CTCTGTGTTGTTGAAAGAGAGCCAT 467 2674798 UBA7 CCAACTCGAGTTGCTGACACTAGGG 468 2674798 UBA7 GAACCACTGAAAGAGCCCTTAACTC 469 2674798 UBA7 CCCGGTTATGGGTGATGAAGGCACT 470 2674798 UBA7 TTAACTCCCTTACCAACTCGAGTTG 471 2674799 UBA7 AAGACACTGAAACCACTCCTGAAGT 472 2674799 UBA7 ACAAGACACTGAAACCACTCCTGAA 473 2674799 UBA7 CAAGACACTGAAACCACTCCTGAAG 474 2674801 UBA7 TCCACCCGTGGAACACAGTATTCGT 475 2674801 UBA7 GACTTCCACCCGTGGAACACAGTAT 476 2674801 UBA7 CCGTGGAACACAGTATTCGTACCTC 477 2674801 UBA7 TCAAACGAAAGACCGCCGACTGTGG 478 2674802 UBA7 ACGTGTGCCCACTGTAGTGACTCCT 479 2674802 UBA7 GAGTTGTCTCGACAGGTCCAGCAGC 480 2674802 UBA7 GAGAGTTCTCGAGAACCGAGTCGAG 481 2674802 UBA7 ACTCCTGGACGACAACCTGAAGGTC 482 2674804 UBA7 ACCCGTCGGAGTGAGACGTACTAGG 483 2674804 UBA7 CGTCGGAGTGAGACGTACTAGGGGT 484 2674804 UBA7 CCCGTCGGAGTGAGACGTACTAGGG 485 2674804 UBA7 GGGTGGACGACCAGGCTGGACCGAC 486 2674805 UBA7 TACCTACGGGACCTGCGAAGCTTCG 487 2674805 UBA7 TGCGAAGCTTCGATGACCTACTCCT 488 2674805 UBA7 ACCTGCGAAGCTTCGATGACCTACT 489 2674805 UBA7 ACGGGACCTGCGAAGCTTCGATGAC 490 2674806 UBA7 ATGACAGTGGCGGTGGATGTGTTTC 491 2674806 UBA7 CGGTGGATGTGTTTCTGGGATAGAG 492 2674806 UBA7 ACAGTGGCGGTGGATGTGTTTCTGG 493 2674806 UBA7 GTGGCGGTGGATGTGTTTCTGGGAT 494 2674807 UBA7 GACACTGGTCGTCGCAGGGAATAAG 495 2674807 UBA7 CCAAGGACAAACGTGACCGATGTCG 496 2674807 UBA7 TAAGCGAACCGGAACCAAGGACAAA 497 2674807 UBA7 GTCGTCGCAGGGAATAAGCGAACCG 498 2691669 HCLS1 CAGGAGAGATAGGACCTACTCGAGT 499 2691669 HCLS1 GGGCCCTTTCATGCAGATCTAACAC 500 2691669 HCLS1 GAAAGACAAGTCAGGATTTTAAGCT 501 2691669 HCLS1 ACCAAACGGAGTAACACGATAAACG 502 2691670 HCLS1 CCCCGTCTCTGTCGTACCCCTTCCT 503 2691670 HCLS1 CAAGACCTGTCTGAAGGGAGAGGAC 504 2691670 HCLS1 AGTAATTCCCGAACCCCGTCTCTGT 505 2691670 HCLS1 GGGAGAGGACGAAGTAATTCCCGAA 506 2691671 HCLS1 GGGATAAGGACGACGTTTACAGATT 507 2691671 HCLS1 GACAGATGACGTTGACACTAAAGGG 508 2691671 HCLS1 GGAGGGATAAGGACGACGTTTACAG 509 2691671 HCLS1 AGGGATAAGGACGACGTTTACAGAT 510 2691672 HCLS1 CTGCATTAGTGACTGTAACTCTACC 511 2691672 HCLS1 AGGAAACTAGGCCTGCTGCATTAGT 512 2691672 HCLS1 CTTCACTACTCGAAAGGAAACTAGG 513 2691672 HCLS1 GGCCTGCTGCATTAGTGACTGTAAC 514 2691674 HCLS1 TCGACACCGACATATACTAATGGTT 515 2691674 HCLS1 AGTCGACACCGACATATACTAATGG 516 2691674 HCLS1 GTCGACACCGACATATACTAATGGT 517 2691674 HCLS1 GACACCGACATATACTAATGGTTCC 518 2691675 HCLS1 CCTCCACGAGCTCGGACTTCTAAGA 519 2691675 HCLS1 CCACGAGCTCGGACTTCTAAGAAGA 520 2691675 HCLS1 CTGATACTCCTCCACGAGCTCGGAC 521 2691675 HCLS1 CCCTGATACTCCTCCACGAGCTCGG 522 2691676 HCLS1 CAACTCCTCTACCTGTCCGTACTCG 523 2691676 HCLS1 TCCTCTACCTGTCCGTACTCGTCCT 524 2691676 HCLS1 TGCAACTCCTCTACCTGTCCGTACT 525 2691676 HCLS1 ACTCCTCTACCTGTCCGTACTCGTC 526 2691677 HCLS1 CTCGGGCTCGGACTCTTACTGATAC 527 2691677 HCLS1 CGGGCTCGGACTCTTACTGATACTC 528 2691677 HCLS1 CATGCTTCGTCTCGGACTCGGACTC 529 2691677 HCLS1 TGCTTCGTCTCGGACTCGGACTCGG 530 2691678 HCLS1 TCGAGACGGGGGATCCTGAGACCTT 531 2691679 HCLS1 GGAGGTAGTAGTCTCAGACTCGGAC 532 2691679 HCLS1 TGGGTCACGGGAACGACGGGTAATC 533 2691679 HCLS1 ACGGGTAATCCGTCTGAGAGGGCCT 534 2691679 HCLS1 ACCGGAGGTCAACCCTGAGGAGGTA 535 2691680 HCLS1 TGACGGGTTCTTTTAGAGGAGTCTC 536 2691680 HCLS1 GGTCACTATCGATACCTTCTCGGTC 537 2691680 HCLS1 TCACTATCGATACCTTCTCGGTCGT 538 2691680 HCLS1 CTCGGTCGTCATGGCCGGGGTGACG 539 2691684 HCLS1 AAACCACCGGTCATACCTTAGGTCT 540 2691684 HCLS1 AACCACCGGTCATACCTTAGGTCTT 541 2691684 HCLS1 CCGAAACCACCGGTCATACCTTAGG 542 2691684 HCLS1 CGAAACCACCGGTCATACCTTAGGT 543 2691686 HCLS1 ACCTCTTCCTATTTACCCTGTTTCG 544 2691686 HCLS1 CTCTCTGCCTCTTTGTGCTCAGGGT 545 2691686 HCLS1 TTCGTCGAGACCCTATACTGATGTT 546 2691686 HCLS1 GATGTTCCCTCTCTGCCTCTTTGTG 547 2691692 HCLS1 GTCGTCAGCCGAAACTAATATTTCC 548 2691692 HCLS1 TCGTCAGCCGAAACTAATATTTCCT 549 2691692 HCLS1 GTCAGCCGAAACTAATATTTCCTCT 550 2691692 HCLS1 AGTCGTCAGCCGAAACTAATATTTC 551 2691693 HCLS1 ACGAGACATCATAGGACACAGGTAT 552 2691693 HCLS1 TGGGTCAGTCACACAGTACATTTAG 553 2691693 HCLS1 CGGACGGAAACGAATTAGTGGCTAA 554 2691693 HCLS1 CGAGGTTTTGAGACGCCATTACAAC 555 2691694 HCLS1 AATTAATCCACCTGTACGTAGGAAT 556 2691694 HCLS1 AACAATTAATCCACCTGTACGTAGG 557 2691694 HCLS1 ACAATTAATCCACCTGTACGTAGGA 558 2691694 HCLS1 TTAATCCACCTGTACGTAGGAATTT 559 2691695 HCLS1 TGTCGAGGAAGTGTCAATCGACTCT 560 2691695 HCLS1 GTCGAGGAAGTGTCAATCGACTCTA 561 2691695 HCLS1 CTCCTGTCGAGGAAGTGTCAATCGA 562 2691695 HCLS1 CCTGTCGAGGAAGTGTCAATCGACT 563 2691696 HCLS1 CTTAGTAGATTCGAGAAGAAAACCG 564 2691696 HCLS1 ATGAGTACGGCAAATCCTTTTGTCT 565 2691696 HCLS1 AATCGTAGTTAGATACTTCAGGTCT 566 2691696 HCLS1 TATTAAGGAGTTCGGTGACCAAAAA 567 2691697 HCLS1 CGACACTCCTGGACTGTGGCAGTGT 568 2691697 HCLS1 GGAACCACGGTTACAACCTTCGGTG 569 2691697 HCLS1 TACCTCCGTGTACGAAGAAACAACT 570 2691697 HCLS1 CCTTCGGTGTACGACTCGACTTTCT 571 2691698 HCLS1 CTGGTGAGAGAGAGGGTTGGTGGGT 572 2691698 HCLS1 CATTCACTGGTGAGAGAGAGGGTTG 573 2691698 HCLS1 CACTGGTGAGAGAGAGGGTTGGTGG 574 2691698 HCLS1 TTCACTGGTGAGAGAGAGGGTTGGT 575 2691699 HCLS1 GTACTCATACAACGGCTCCACCTCT 576 2691699 HCLS1 CGAAACCCCCGTTCATGCCTCAACT 577 2691699 HCLS1 CGTGAGAAGAGTCTGCCTACGACGG 578 2691699 HCLS1 ATGCCTCAACTCTCCCTGTCCCGTC 579 2691700 HCLS1 GATACCTCCAGCCAAACCTCATCTT 580 2691700 HCLS1 CTCAGTCCCGGGTTTCGTAGGGTAC 581 2691700 HCLS1 CTCATCTTTCTCTGGCTTACCTGTT 582 2691700 HCLS1 ACTCCTTGTTTCATAGTCTCCTCGT 583 2691701 HCLS1 TACTCGGAACCAGTACACCAAAGAA 584 2691701 HCLS1 CGGAACCAGTACACCAAAGAAGGTC 585 2691701 HCLS1 CTCGGAACCAGTACACCAAAGAAGG 586 2691701 HCLS1 TCGGAACCAGTACACCAAAGAAGGT 587 2691708 HCLS1 GTTGACCTACTGTTATGGTGTAACA 588 2691708 HCLS1 CACCTACTGGTGTAACGTGTTCGTT 589 2691708 HCLS1 AAAATTTTTCACAGTCACCTACTGG 590 2691708 HCLS1 TCGTTGTATGACACTTTCGGACCGT 591 2691709 HCLS1 CACCCAGATAACCTAATTGACGGAG 592 2691709 HCLS1 ATGGACACACAGTAACGTATAAAGG 593 2691709 HCLS1 GGAAATCATTCCGTACTCTCTAAGT 594 2691709 HCLS1 AGATCTCAGACAAGGACACACATGG 595 2691710 HCLS1 TCGGGTTTCTTTTGAGCCTCTGAAC 596 2691710 HCLS1 TCTCGGGTTTCTTTTGAGCCTCTGA 597 2691711 HCLS1 TAGCTCCCCAGACCTGCGTGTCTTG 598 2691711 HCLS1 TCGGTTCTGGTAGCTCCCCAGACCT 599 2691711 HCLS1 CTGGTAGCTCCCCAGACCTGCGTGT 600 2691711 HCLS1 GTTCTGGTAGCTCCCCAGACCTGCG 601 2691714 HCLS1 CTGTCCGGTACCGTCCGATGTGACT 602 2691714 HCLS1 CCCCGTACGTGCTATGGACCATAGT 603 2691714 HCLS1 GTAGACCCGGTGAGACACTAGAAAC 604 2691714 HCLS1 TGTCGGGAGTATGACCCTGATTAAC 605 2691715 HCLS1 GGTACTACACAGACAAAGGCACCTC 606 2691715 HCLS1 GGGTCCCACTACTAACCCTGTGTCT 607 2691715 HCLS1 AGACATCACCCGGTACTACACAGAC 608 2691715 HCLS1 AACCCTGTGTCTAGGACTGAAACAC 609 2691717 HCLS1 TCGGCCCGCGAATCTTGTCTCCGAA 610 2691717 HCLS1 CGAATCTTGTCTCCGAACGTGTCCA 611 2691717 HCLS1 CGTCGTCGAGTCAAAGAGTGAGGCT 612 2691717 HCLS1 GTCAAAGAGTGAGGCTTCACCGTCG 613 2706793 ZMAT3 CCCCGACGTCTTACTGTTTGCACAG 614 2706793 ZMAT3 TGCGTAAAACACAAGGTCAAATTAT 615 2706793 ZMAT3 GACGAAAACAACTACCGAGTAAAAC 616 2706793 ZMAT3 AGCCTCACGGTCAGTGACGAAACCT 617 2706794 ZMAT3 ATCTTTGCGGGACGATCTGACTAAA 618 2706794 ZMAT3 GACCTCATACAGTCTAGGACGAAAT 619 2706794 ZMAT3 TTCGGGCTGCGTCAACGATTTTTAG 620 2706794 ZMAT3 ACAAGTGGACACCATAGGAACTGAC 621 2706795 ZMAT3 GATTTGACTCACACGGGACATTAGG 622 2706795 ZMAT3 GGGTCACGGGAATTACCTACAATAC 623 2706795 ZMAT3 GGGATGGTAACACTCGTCAATGACA 624 2706795 ZMAT3 ACGACCGGCGAACCAAGATACTAAT 625 2706796 ZMAT3 ACTATCTAGTGAAACCGTAGACTAT 626 2706796 ZMAT3 AACATTAAGCCGAAAGAACTTCTAT 627 2706796 ZMAT3 TCAAAGTGATAGAAGCAAAGGTCAT 628 2706796 ZMAT3 TAGACTAAGAATGCCAAATGAATGT 629 2706797 ZMAT3 GGGTGTCACCATGGTACTCTACAGT 630 2706797 ZMAT3 CGGACTGCCGAATCTTGAAACTGAT 631 2706797 ZMAT3 ACAGTTGAACGGGACGAAACACCAG 632 2706797 ZMAT3 CCAGTTACCACAACTCGGCGAGTAT 633 2706798 ZMAT3 CACAATGAGGTTCACCGGTCAAAAT 634 2706798 ZMAT3 AGACTTGTCGCCATGTCCTTACTCT 635 2706798 ZMAT3 CGTTCGTTGTATTCTCGTTCCACAG 636 2706798 ZMAT3 AATGACGAGTTACACATTACAACCT 637 2706799 ZMAT3 AGGAATGAAGTTAGGGGCGAGAGCC 638 2706799 ZMAT3 AATGAAGTTAGGGGCGAGAGCCGTC 639 2706799 ZMAT3 CAGGAATGAAGTTAGGGGCGAGAGC 640 2706799 ZMAT3 GGAATGAAGTTAGGGGCGAGAGCCG 641 2706801 ZMAT3 ACTACGGATTGTCCTCTTTATACAT 642 2706801 ZMAT3 CAAATTCTACTACGGATTGTCCTCT 643 2706801 ZMAT3 AGTCTCGACCCAGTTGCCGCCCGGT 644 2706801 ZMAT3 TTCTACTACGGATTGTCCTCTTTAT 645 2706802 ZMAT3 GTTCCCTTCTTAGTACGGTTCTCCG 646 2706802 ZMAT3 ACACCGAGTCCGAGTGATAGTTCCC 647 2706802 ZMAT3 CCGAGTGATAGTTCCCTTCTTAGTA 648 2706802 ZMAT3 TTCTTAGTACGGTTCTCCGACGCCG 649 2706803 ZMAT3 GGCTCACTAGGACCGGTGCCTCTTA 650 2706803 ZMAT3 TAGGACCGGTGCCTCTTACTAATGA 651 2706803 ZMAT3 GAAATTCGGTCCTCCGGCTCACTAG 652 2706803 ZMAT3 CTCCGGCTCACTAGGACCGGTGCCT 653 2706804 ZMAT3 CACCAGCTCGGACGTCGATGAGGTC 654 2706804 ZMAT3 TCGTTACACCAGCTCGGACGTCGAT 655 2706804 ZMAT3 GTTACACCAGCTCGGACGTCGATGA 656 2706804 ZMAT3 TACTCGTTACACCAGCTCGGACGTC 657 2706805 ZMAT3 CATTCTTTGAGGCTTTAATGATACG 658 2706805 ZMAT3 CTTTGAGGCTTTAATGATACGTCGT 659 2706805 ZMAT3 AGGCTTTAATGATACGTCGTTTATC 660 2706805 ZMAT3 TAGTACCATTCTTTGAGGCTTTAAT 661 2706806 ZMAT3 CATGACGTTTGAGACGTTACAGTGG 662 2706806 ZMAT3 GAGACGTTACAGTGGAACTTGAGAC 663 2706806 ZMAT3 TTACAGTGGAACTTGAGACGTGTCG 664 2706806 ZMAT3 CGTTTGAGACGTTACAGTGGAACTT 665 2706807 ZMAT3 GAAAACCCGTCCTCCGAAGGAACGG 666 2706807 ZMAT3 TACTAGGAGAACGTTGTGCGGCACG 667 2706807 ZMAT3 AAGGAACGGAGAACGTCCCCTTCTT 668 2706807 ZMAT3 CAGTCACCGGTGGTCCAGATGTCCT 669 2706808 ZMAT3 AGAGTAGTGGGTGACCTAATACGGG 670 2706808 ZMAT3 AGTAGTGGGTGACCTAATACGGGGT 671 2706808 ZMAT3 AAGAGTAGTGGGTGACCTAATACGG 672 2706808 ZMAT3 GTAGTGGGTGACCTAATACGGGGTC 673 2706814 ZMAT3 GCACTACCGTAGGTATGGCCCAACT 674 2706814 ZMAT3 TAGACACGCACGTCGACGGAACCGG 675 2706814 ZMAT3 CCCCTAAGGTAGGAAGCACTACCGT 676 2706814 ZMAT3 GTCCACCTAGTAGACACGCACGTCG 677 2706815 ZMAT3 GGAGGTGCACTGTCCCGAACGCGAC 678 2706815 ZMAT3 TCGCCAAGGAAAGGCTACGAGAAAG 679 2706815 ZMAT3 GCACTGTCCCGAACGCGACGAAGAT 680 2706815 ZMAT3 CCCTGATCGCCAAGGAAAGGCTACG 681 2706816 ZMAT3 GCCGCGCCTCTGACGGCCGCGCAGG 682 2706816 ZMAT3 GCGCCTCTGACGGCCGCGCAGGGCC 683 2706817 ZMAT3 CCAGCCCAACCTGACTGAAAACTGT 684 2706817 ZMAT3 CGCCGGCCGCCTCTTTCAACGAGGC 685 2706817 ZMAT3 ACTGAAAACTGTCAGTCGGAAGCCG 686 2706817 ZMAT3 AACTGTCAGTCGGAAGCCGACGCCT 687 2706819 ZMAT3 GTGTACGCGTCACCGCTGCGGCTCG 688 2706819 ZMAT3 GTTACAAACCTAGGGTTACTGACCT 689 2706819 ZMAT3 AATTGGCGGTTGGTCGTCCGATTCC 690 2706819 ZMAT3 CTACTTTCAACGTTTTCGAGACGGG 691 2733718 BIN2 TTCATAGATATCTGTGTCTGTGAAC 692 2753897 CDKN2AIP AACAAACCAGAAATCCGGACGCCTC 693 2753897 CDKN2AIP CGCCTCCCCGCAATAGACCTCCCGG 694 2753897 CDKN2AIP GAGACCCGCGACAACAAACCAGAAA 695 2753897 CDKN2AIP CGGCGCCCACGTCCGGCGTCACTGT 696 2753898 CDKN2AIP ACACAAGCGCCGGACGTCCGGGTTG 697 2753899 CDKN2AIP GCTGCCGCTCTGACTGTTTGTGACC 698 2753899 CDKN2AIP GTGGCGGCCCTAAAAAACGAAGCGT 699 2753899 CDKN2AIP AAAAGGTACCGGACCCGCTTGGTGC 700 2753899 CDKN2AIP GCGACGGAGGCGATCGTGCCTACTT 701 2753903 CDKN2AIP TTTTATGAATCATACCGACTTCCGT 702 2753903 CDKN2AIP AGTTTCACTGTCTACGAGGTTGGAT 703 2753903 CDKN2AIP TGTTGTTCTCTACTTGACCAACGGT 704 2753903 CDKN2AIP CTGTCTACGAGGTTGGATATGTTGT 705 2753904 CDKN2AIP TTTTCTCCCTATAGCTCATCGTTAC 706 2753904 CDKN2AIP CTTTTCTCCCTATAGCTCATCGTTA 707 2753905 CDKN2AIP CCATCTTCTCGGTAGGTTTTTTGCT 708 2753905 CDKN2AIP CATCTTCTCGGTAGGTTTTTTGCTC 709 2753905 CDKN2AIP ATCTTCTCGGTAGGTTTTTTGCTCA 710 2753905 CDKN2AIP TCTTCTCGGTAGGTTTTTTGCTCAA 711 2753906 CDKN2AIP ACCTCTAGCTAGACAAAGGTCGGTT 712 2753906 CDKN2AIP GGAGACGGTTCTGTCTTGCACGTAG 713 2753906 CDKN2AIP GACCGTAGAGGTCAGTCTTATCGAG 714 2753906 CDKN2AIP AAGTTGCACATATCCCAGCCGGTAG 715 2753907 CDKN2AIP GGTTTGGATCAAGTCTCTGTCGAAG 716 2753907 CDKN2AIP CCGTGTAGGAATGACTGAGGGTTCT 717 2753907 CDKN2AIP CGTCTTCGAGGTCTATTTGTGCCAA 718 2753907 CDKN2AIP CGAGTCTCTAGCTCCACGGGAACAA 719 2753908 CDKN2AIP TGAAGGAATCGTTCACACAGGGTCA 720 2753908 CDKN2AIP GTCAACCGAAGATTCTCATCAAGAG 721 2753908 CDKN2AIP GAGGGTCTGGTCACCTAGAGACCAA 722 2753908 CDKN2AIP CAAGAGTCTGATCGTGGAGTGTCAA 723 2753909 CDKN2AIP GGAACTACTTCTTAGCTCCGGACAT 724 2753909 CDKN2AIP GTTCAGACACATAAACCCGTGACCG 725 2753909 CDKN2AIP GTACCTCTCGAGGATTTACGTCGAT 726 2753909 CDKN2AIP CCACCGAAATCAGGGTTACACTTAG 727 2753910 CDKN2AIP CCATACGTAATCGTCGTATAATCAT 728 2753910 CDKN2AIP ACACATCAAGCCATCTCAGGATTTT 729 2753910 CDKN2AIP GATCAAGAGAAGTGTGTCATCGTCA 730 2753910 CDKN2AIP CATAATTCAACAGATGGTACAAAAG 731 2753911 CDKN2AIP AGTGGTACTGAAACTGGCGACTTCT 732 2753911 CDKN2AIP GTGTCATAAACTTACAAACTTTCAG 733 2753911 CDKN2AIP ACAACGGGCATTACAACTTGCACAG 734 2753911 CDKN2AIP ACACTGATGATAATTGTCTAACTAA 735 2793222 NEK1 AGATTATAGGCTTTGATTTATGAAC 736 2793222 NEK1 ATAAAGATTATAGGCTTTGATTTAT 737 2793222 NEK1 TATAGGCTTTGATTTATGAACTAAA 738 2793222 NEK1 GATTATAGGCTTTGATTTATGAACT 739 2793223 NEK1 CCTGGTCTTGGTCCTTATGATATAG 740 2793223 NEK1 TCGTCCGACCAACCGTATTATACAT 741 2793223 NEK1 CCCGAGACAAATGTAGATATGTAAA 742 2793223 NEK1 CCACAGATGTCAGGTCTACAAGAAG 743 2793227 NEK1 AATCAGTACCGTCTACCTCGGATGG 744 2793227 NEK1 TACCGTCTACCTCGGATGGTTCTTC 745 2793227 NEK1 AAGAAGTAAATCAGTACCGTCTACC 746 2793227 NEK1 GTCGTAGAAATACGGTTCTAAGAAG 747 2793228 NEK1 CTTACGCTATCACAGAAATTGGTAA 748 2793228 NEK1 CTTTTTAAGAAACTCCAAATACTCT 749 2793228 NEK1 CACTTACACTTACGCTATCACAGAA 750 2793228 NEK1 AATTGGTAAATCTCCTTGACTCTGA 751 2793229 NEK1 ACGTCCGGAGCTACCTTGTCAATGA 752 2793229 NEK1 ATGAATCCCTTGTTGGACCACTTCT 753 2793229 NEK1 ACTTTCACGGGACTTGCTTCTTACC 754 2793229 NEK1 TGTGTCTAAATGTTCTCGACGTCCG 755 2793230 NEK1 CTCTACAAGCAGTTCTGTTAGAACT 756 2793231 NEK1 GACAAGTCTTGGGAATACCTACAAG 757 2793231 NEK1 TGGGAATACCTACAAGGGTGGCATC 758 2793231 NEK1 GAGAGTTTCGACAAGTCTTGGGAAT 759 2793231 NEK1 TCTTGGGAATACCTACAAGGGTGGC 760 2793236 NEK1 CCTTGGTTACTAAGAGTCGTGAGAT 761 2793236 NEK1 GTCAAGTCACAAGTGGTCTTCTTAG 762 2793236 NEK1 GGAACGACTAACCTGAAAGTTGACC 763 2793236 NEK1 ACGTAAAGCTAGAGTGAGCGTAAAT 764 2793238 NEK1 GTTCTCGGTTCACCTTGTTTGTTTC 765 2793238 NEK1 CTACTCTCGAACGGTACGTGATAAT 766 2793238 NEK1 CTCTCGAACGGTACGTGATAATGAC 767 2793238 NEK1 ACTCTCGAACGGTACGTGATAATGA 768 2793239 NEK1 CAACTAAGAGGACAACTCTGTTTTT 769 2793239 NEK1 ATTTGGGTAGTCGATAACAACTAAG 770 2793239 NEK1 ACAACTCTGTTTTTCAGGGCTCAAG 771 2793239 NEK1 GGGCTCAAGTCACTCCGTAGAGGTG 772 2793240 NEK1 GCTGTCTAAGACAAGATTTCTATGA 773 2793240 NEK1 TTAATCCAGGATTACCTAGAGGTTC 774 2793240 NEK1 CCCTTTTCAGGCTGTCTAAGACAAG 775 2793240 NEK1 CCTCTTCGACTTGATGTTGAAGTCT 776 2793241 NEK1 GGAGACCTACTCAATTGTGATCTAT 777 2793241 NEK1 ATCTATGTAGGAAGAGATGTTGACT 778 2793241 NEK1 ACTCAATTGTGATCTATGTAGGAAG 779 2793241 NEK1 CAGTTGAACACTAAGGAGACCTACT 780 2793242 NEK1 CTTTATGAAGCATCTAATTTACTTT 781 2793242 NEK1 TAGACTAGCGTTCTTCACCCTCCGT 782 2793242 NEK1 TCGCTCTTTATGAAGCATCTAATTT 783 2793242 NEK1 TTTAGTCAAAGTAGACTAGCGTTCT 784 2793243 NEK1 ACTATGGGCCCTTTGAAGTCTTCTC 785 2793243 NEK1 TGACTATGGGCCCTTTGAAGTCTTC 786 2793243 NEK1 GGGCCCTTTGAAGTCTTCTCTACGT 787 2793243 NEK1 CCTTTGAAGTCTTCTCTACGTTTTC 788 2793244 NEK1 TTCGTTGTCTACTCTAGACAATAAA 789 2793244 NEK1 TCGTTGTCTACTCTAGACAATAAAG 790 2793244 NEK1 GAGGTAGTTTCGTTGTCTACTCTAG 791 2793244 NEK1 GGTAGTTTCGTTGTCTACTCTAGAC 792 2793246 NEK1 CGACGACATGATTTTCTTGTTGATC 793 2793246 NEK1 GCACGACGACATGATTTTCTTGTTG 794 2793246 NEK1 ACGTGCACGACGACATGATTTTCTT 795 2793246 NEK1 TTACGTGCACGACGACATGATTTTC 796 2793247 NEK1 CTCCGCGTTTTTTTAGCTTAGTGAC 797 2793247 NEK1 ACTGTACTCCGCGTTTTTTTAGCTT 798 2793247 NEK1 CGCGTTTTTTTAGCTTAGTGACTTC 799 2793247 NEK1 GTACTCCGCGTTTTTTTAGCTTAGT 800 2793249 NEK1 CGTCGATACATACCTCCGTCCGGGT 801 2793249 NEK1 TGGACCGTCGATACATACCTCCGTC 802 2793249 NEK1 TACATACCTCCGTCCGGGTCGAGAA 803 2793249 NEK1 ACGTTTTGGACCGTCGATACATACC 804 2793255 NEK1 TACGGGTCGGTCTTACCTACATGAT 805 2793255 NEK1 CCACGGAGGCATATAGAAGTATCAA 806 2793255 NEK1 AATCTCGCTAAACCCCAAGTGTCGT 807 2793255 NEK1 GTGACCGAAAAGAGTGAATGATTAT 808 2793256 NEK1 TATCGAATCATGGATGTGAAACACC 809 2793256 NEK1 AAGACTCCACGTTTAAACCGGGAAC 810 2793256 NEK1 GAACCCATGTTATTAAAAGACTCCA 811 2793256 NEK1 AACCGGGAACTAATGAGACTTTCGT 812 2793258 NEK1 AATGGTACGGTAAAAACTGGTTTAC 813 2793258 NEK1 CCCTGATATCGAGGTAGTAGAAAAA 814 2793258 NEK1 GTAGAAAAAGAAGAGCTCCTGTCAT 815 2793258 NEK1 ATATACCAGCTCCAGAAGGTCTTTC 816 2793261 NEK1 ACCTTTCTTATTTATCCCGGTCCCT 817 2793261 NEK1 GTTCCTACCTCTTTACACGATTCAC 818 2793261 NEK1 TATTTATCCCGGTCCCTTGTTCCTA 819 2793261 NEK1 TACCTCTTTACACGATTCACGACCA 820 2793264 NEK1 GTCTCTTCTCTCACTTATGACCTCT 821 2793264 NEK1 CTCTTCTCTCACTTATGACCTCTTC 822 2793264 NEK1 TCTCTTCTCTCACTTATGACCTCTT 823 2793266 NEK1 ACTAGTACAATGTATGGTACACAAT 824 2793266 NEK1 TCGGAATGTCCTCAGTATTTTTCAG 825 2793266 NEK1 CCTTACAGGAGGAAGACACAAAATG 826 2793266 NEK1 AAACTCGTTGGATTCGTCTCGGTAA 827 2793267 NEK1 CCTTATGGAAATCGTATATTCTTTA 828 2793267 NEK1 CGGACGGCGATTTATACCTTATGGA 829 2793267 NEK1 ATACCTTATGGAAATCGTATATTCT 830 2793267 NEK1 TTTCGGACGGCGATTTATACCTTAT 831 2793268 NEK1 CGAAGTCCTGTTTTGAGCTAAAGAC 832 2793268 NEK1 GAGCTAAAGACAATACGGACGAGTC 833 2793268 NEK1 CCTGTTTTGAGCTAAAGACAATACG 834 2793268 NEK1 TGGTCGAAGTCCTGTTTTGAGCTAA 835 2793269 NEK1 AAGCTTCAAACCTAGTGTCGGATAT 836 2793269 NEK1 AAAAGCTTCAAACCTAGTGTCGGAT 837 2793269 NEK1 TGTAAAAGCTTCAAACCTAGTGTCG 838 2793269 NEK1 TTCAAACCTAGTGTCGGATATGGTC 839 2793277 NEK1 TTGGACCATGACTTCTATTATAGAC 840 2793277 NEK1 GACACAGAAACGTAATAAGGATACT 841 2793277 NEK1 AAGGATACTAGAGGCGTCAAACCAC 842 2793277 NEK1 GATCCCTATCTGGTAGTCAGTTGAG 843 2793278 NEK1 ACTCGACACATGTGAATTTGTACGA 844 2793278 NEK1 TACTCGACACATGTGAATTTGTACG 845 2793281 NEK1 AACCTTAACGATCTCAAGAATTATC 846 2793281 NEK1 CCTCTAAAACCTTAACGATCTCAAG 847 2793281 NEK1 GATTTCTACCTTGTCATGTTGAACC 848 2793281 NEK1 CTACCTTGTCATGTTGAACCTCTAA 849 2793282 NEK1 CCGGGACTTTGTACATGTACTATCT 850 2793282 NEK1 AGAAGTAGCTCTGTAATTTAGAGTC 851 2793282 NEK1 AAAACCTGACCAAACATGTCTATAC 852 2793282 NEK1 CTTTTTAAGAAGTAGCTCTGTAATT 853 2793284 NEK1 CCTCCCCTAGACAAATTCGCTTATT 854 2793284 NEK1 GTATCATTACCTAATGACACTCCCT 855 2793284 NEK1 GTCTTTCCGCAAAACAAAGTTCTCC 856 2793284 NEK1 TTTACCGAGAGAGATGTATCATTAC 857 2793287 NEK1 CTCTTCAACGTCATAACCGTTTGTA 858 2793287 NEK1 CTCTCTTCAACGTCATAACCGTTTG 859 2793287 NEK1 TCTCTTCAACGTCATAACCGTTTGT 860 2793287 NEK1 TCTTCAACGTCATAACCGTTTGTAC 861 2793288 NEK1 ACCTCTTCATACAATCTGATGTCTT 862 2793288 NEK1 AGATGTCTTCTACCGTCTGTCATAC 863 2793288 NEK1 CCGTCTGTCATACAATAGTTCCTTT 864 2793288 NEK1 TTCGGTAAGAACAATTTAGATGTCT 865 2793289 NEK1 GTATAGACATTTCTACGGAATCTTT 866 2793289 NEK1 GATCGTATAGACATTTCTACGGAAT 867 2793289 NEK1 ATTTACAGATCGTATAGACATTTCT 868 2793289 NEK1 ACAGATCGTATAGACATTTCTACGG 869 2793293 NEK1 GGATGATTGCAGGACACAGTGACTC 870 2793293 NEK1 CAGTAGTGGCAATAAGGATGATTGC 871 2793293 NEK1 CGGTGTGGATCTGACTACGAATAAT 872 2793293 NEK1 TTACGCCCTACCATGGAGACGAAAT 873 2793294 NEK1 GACGACGACCAATCTGTCAGAACCA 874 2793294 NEK1 CTCTCAGAGTCACGGGGGAAAGTCA 875 2793294 NEK1 ACGGGGGAAAGTCAGACCTGACACT 876 2793294 NEK1 ACGACCAATCTGTCAGAACCAAAGA 877 2793295 NEK1 AATCAGGCGTAAGCGAGGTCCCAAA 878 2793295 NEK1 CGTGCACCGTCAGTTCATCGAAGGG 879 2793295 NEK1 TCACAGCTGGACAGAATGCCCGCAG 880 2793295 NEK1 CACCGGTGATCGTTGCTGGAGACAC 881 2806469 IL7R GGATCTAGATTCGAAGAGACAGAAG 882 2806469 IL7R GTAAGTAAAGTATGTGTGACCGAGT 883 2806469 IL7R AAGTAAAGTATGTGTGACCGAGTGT 884 2806469 IL7R GGGATCTAGATTCGAAGAGACAGAA 885 2806470 IL7R AATGAAGTTCAGCAAAGACCTCTTT 886 2806470 IL7R ATGAAGTTCAGCAAAGACCTCTTTC 887 2806470 IL7R GATCCATGTTGAAAACCGTACCAAA 888 2806470 IL7R TGAAGTTCAGCAAAGACCTCTTTCA 889 2806471 IL7R GAGTAAGAGTACGATATCGGTCAAC 890 2806471 IL7R TGAGTAAGAGTACGATATCGGTCAA 891 2806472 IL7R AAAACTCCTGGGTCTACAGTTGTAG 892 2806472 IL7R CTGGGTCTACAGTTGTAGTGGTTAG 893 2806472 IL7R CTACAGTTGTAGTGGTTAGACCTTA 894 2806472 IL7R TTGTAGTGGTTAGACCTTAAACTTT 895 2806474 IL7R ACCTCTTTTCTCAGATTGGACGTTT 896 2806474 IL7R CGTTATATACACACTTCCAACCTCT 897 2806474 IL7R GACGTTTTTTTATCTGGATTGGTGA 898 2806474 IL7R CTCTATATAAAGTAGCTCTGTTTCT 899 2806477 IL7R ATTTTCAAAATTACGTGCTACATCG 900 2806477 IL7R AACTGGACTCACAGCAGATAGCCCT 901 2806477 IL7R TCACAGCAGATAGCCCTTCCTCGGT 902 2806477 IL7R ATCGAATGGCGGTCCTTTTCCTACT 903 2806479 IL7R TTAAATAGGTCGTGTTTCGACTGTG 904 2806479 IL7R GTACACTTAAATAGGTCGTGTTTCG 905 2806479 IL7R ACACTTAAATAGGTCGTGTTTCGAC 906 2806479 IL7R ACTTAAATAGGTCGTGTTTCGACTG 907 2806480 IL7R CATACTCTAATTTCAAGCTAGGTAG 908 2806480 IL7R TCTTTCGAGGTTGGCCGTCGTTACA 909 2806480 IL7R GAGGTTGGCCGTCGTTACATACTCT 910 2806480 IL7R GCTAGGTAGGGACTAGTGATAAAAT 911 2806485 IL7R GGGTCAGAGGGGCTAGTATTCTTCT 912 2806485 IL7R ATTCGGATAGCATACCGGGTCAGAG 913 2806485 IL7R CAGAGGGGCTAGTATTCTTCTGAGA 914 2806485 IL7R CTAATTCGGATAGCATACCGGGTCA 915 2806486 IL7R AACCCTGATGTTTGTCGTGCGACGG 916 2806486 IL7R TTGGGTCAACGAGTCCCAGTCGGGT 917 2806486 IL7R CCTTAGGACTGTAACTTGGGTCAAC 918 2806486 IL7R GGACCTGACGGTCTAAGTATCCCAC 919 2806487 IL7R GCAGTGATCATTGTCCCACACGGAT 920 2806487 IL7R GGGACCTGTACCCATGCAAACTGCT 921 2806487 IL7R ATGGCACTCGCTGTTTCTACTAAAT 922 2806487 IL7R ATACCCGACAAGTCTCCACGTGTGG 923 2858024 PLK2 ACTGGTAAAATTTGGCAACCGTTAT 924 2858024 PLK2 ACAACTGGTAAAATTTGGCAACCGT 925 2858025 PLK2 GTACACCACCATGCTTTTGTTAAGG 926 2858025 PLK2 TGTCCGATTCCGTATGTCAAGAACT 927 2858025 PLK2 GCATTGACACTTGATACCGGTATAT 928 2858025 PLK2 CTGAAAAGCTTACCTGGGATACCCT 929 2858026 PLK2 CGGGACTTGTACGAGAATGTTTCTA 930 2858026 PLK2 AGTTACTCCTATCCTATAGATGTTG 931 2858026 PLK2 TTTAGCTTACCTTATACGGGACTTG 932 2858026 PLK2 ACTTCTTATGGAAGAGTGGATGTAG 933 2858028 PLK2 ACGAGAAATTACTACCGTGGAAAGT 934 2858028 PLK2 CGATTTTAGACTATTCCGGGATTAC 935 2858028 PLK2 CACCTCTAGACGGATCACAATGACT 936 2858028 PLK2 CACAATGACTATAAGCTTCTGGAGC 937 2858029 PLK2 AAACATCCGTGATTGAGTGAGAGGA 938 2858029 PLK2 TTGAGTGAGAGGATTAGAGAAGGTC 939 2858029 PLK2 TTATTATTATCTCACGTACGATGTT 940 2858030 PLK2 TGTCAAGTGATAATGCGTCTCGAAC 941 2858030 PLK2 AGTTCACTGCCACGACTTTATGAAA 942 2858030 PLK2 AATGCGTCTCGAACCGGTTACGAGT 943 2858030 PLK2 AGGACTCGTTAAATAATCAGTTCAC 944 2858031 PLK2 AAAGTCACCCAGTGGTTTACCCAAC 945 2858031 PLK2 TGGCAGCCACAGGAAAAGTTGTTAC 946 2858031 PLK2 AACCCATGGTCGAGAGTCTGGTGTG 947 2858031 PLK2 AAGTTGTTACCACGAGTGTACTCGG 948 2858032 PLK2 GTACCCTTCACAACGTCTGTGTCAC 949 2858032 PLK2 CTGTGTCACCGTTCCCAAGAAGCCC 950 2858032 PLK2 TCATGGTACCCTTCACAACGTCTGT 951 2858032 PLK2 AACTTCTGTCATGGTACCCTTCACA 952 2858034 PLK2 GTCTAACCCCTACGATAAGCCTACT 953 2858034 PLK2 TCCAGACCTTGTGGGCGTCATCTTT 954 2858034 PLK2 CCTACGATAAGCCTACTATCAGTCT 955 2858034 PLK2 CCTTGTGGGCGTCATCTTTTGTTCG 956 2858035 PLK2 TGACGCAATAGAAAATAGACCGAAC 957 2858035 PLK2 ACGGAGTGAGAGTAGAATTAGACCT 958 2858035 PLK2 CGAAAAACTACTCGAAAGGGTCGTT 959 2858035 PLK2 CGTACGTTCACTCAAATGACGCAAT 960 2858036 PLK2 CTTTTTCTGAAGTTATTGAGTCGTT 961 2858036 PLK2 CTTCTGTAGATGTTCGAATCCGTAC 962 2858036 PLK2 TAGATGTTCGAATCCGTACTAAACT 963 2858036 PLK2 TCTGAAGTTATTGAGTCGTTGGGTC 964 2858037 PLK2 GTTTCGTTCTATATAACTGTGTGTA 965 2858037 PLK2 TTTCGTTCTATATAACTGTGTGTAT 966 2858038 PLK2 CGACAACAGTATGTCAAGGTCTAAA 967 2858038 PLK2 CAAGGTCTAAAGGTGAATAGTTCGG 968 2858038 PLK2 GAATAGTTCGGGTCGATTCTTAAAG 969 2858038 PLK2 GAGGCCTGTCTGACAGAAGATCGAC 970 2858040 PLK2 TCGTTCCATATGTTACGGCAGGAGT 971 2858040 PLK2 GGTCTCCTAGCAGGGTCAAACCTAC 972 2858040 PLK2 CCTACTGTAGTAAGCTGTACTGAAA 973 2858040 PLK2 CGAGGACGGTTCGTGAATTAACGAT 974 2858042 PLK2 TGCTATACACCATGGGGTTTAATAG 975 2858042 PLK2 ACACTTAGTCTGTAAACCCGGGACC 976 2858042 PLK2 AATAGAGAGAGGACTTCAGGAGTTG 977 2858042 PLK2 TTCAGGAGTTGTTTGTTCCTGTACC 978 2858044 PLK2 CCGTCGGTCCGATCTTGGGAACCTT 979 2858044 PLK2 CTTGAAAAAATAATTACTTCGGTAC 980 2858044 PLK2 CCTGAAGCCAGACCGTCGGTCCGAT 981 2858044 PLK2 TCCGATCTTGGGAACCTTGTGTCTT 982 2858045 PLK2 TGCGGTTTTCGACTCAAAACACAAT 983 2858045 PLK2 CATTCAGTAACTGCGGTTTTCGACT 984 2858046 PLK2 GGTCTTCAAGCTATGATGGAGTCCG 985 2858046 PLK2 ATGGAGTCCGTCTAACACAGACCTG 986 2858046 PLK2 TTCAAGCTATGATGGAGTCCGTCTA 987 2858046 PLK2 AACACAGACCTGACTTTATGGAAGT 988 2858047 PLK2 CATTCACAGTTGAGGATAAACTCTT 989 2858047 PLK2 TCTCATAAAATAGACCCTAAAATCG 990 2858047 PLK2 GGGCTTAATTGTACCATAAGTTTCT 991 2858047 PLK2 CTCTTGTAAACGAATGGGGCTTAAT 992 2858048 PLK2 ACGTCAAAATGGTGATGAAGCTCCT 993 2858048 PLK2 CTTTTGTAAATGTAAGAGAACCTTA 994 2858048 PLK2 AAGAAGTAGTATTCGTACATCACGT 995 2858048 PLK2 AGAGAACCTTATGACGTCATCTTCC 996 2858049 PLK2 ACTGAGAACTCATTTCATAAAAGAA 997 2858049 PLK2 CACGCATACTGAGAACTCATTTCAT 998 2858049 PLK2 TTTACAGAAGACGTACACATTAGTG 999 2858049 PLK2 GAAGACGTACACATTAGTGACCGAA 1000 2858050 PLK2 CGTCTCATCGATTTGGAGTAGTTTC 1001 2858050 PLK2 TGCGGCGTTTTTAATAAGGAGTGTC 1002 2858050 PLK2 TATTGTTTCAGATGCGGCGTTTTTA 1003 2858050 PLK2 AACGTTTTACAATGCTCTACTGTCT 1004 2858051 PLK2 ATAGACGAGGGTCCCTTAAAAGGAC 1005 2858051 PLK2 AAGTACTCCCTCGAAATTGCTTCAG 1006 2858051 PLK2 CGGCAGGTAAAAACACGGTAGGAGT 1007 2858051 PLK2 GAGTTAAGGCAGAGCCGAAACAAAG 1008 2858052 PLK2 GGTGCTGACCCTTCGCGATGACGGC 1009 2858052 PLK2 TGAGCTTCTTCTTCGCCGGCGGCGT 1010 2858052 PLK2 TGGTAAGCGTGAGCCCCGGCCTCTA 1011 2858052 PLK2 CCGGCCTCTAGAGCGCCTAATAGCA 1012 2858053 PLK2 AGTGAGCGTGTTCACCTGGCCCCAC 1013 2858053 PLK2 TCCGTTCCCACGCTCCTGGTGCCGG 1014 2858053 PLK2 TGGTGCCGGCCGAGCCTGCACACTG 1015 2858053 PLK2 GCTCGCGAGAGTGAGCGTGTTCACC 1016 2997377 ANLN TTTAAACTTGCCGACGTCTCCGGCT 1017 2997377 ANLN CTTTAAGTTTAAACTTGCCGACGTC 1018 2997377 ANLN ACACCCTCTCAAGGGGGCGGAGTCT 1019 2997377 ANLN GGCTCAGGCAGTGACCTTCGGCTCT 1020 2997378 ANLN TAGCAGAGCATCAGGCTGCGGACCC 1021 2997378 ANLN TGTGTGACTCGACTCTGAGTGAAAA 1022 2997378 ANLN CTTGGTGGCAAAGGTAGCAGAGCAT 1023 2997378 ANLN GGACTTAAACTTGGTGGCAAAGGTA 1024 2997379 ANLN CCTCCTTCCGAAACTCAGACAGGAT 1025 2997379 ANLN AGGATTTTCCGACAACGCTCTCCAG 1026 2997379 ANLN TCCGACAACGCTCTCCAGAAAGTCG 1027 2997379 ANLN ACTCAGACAGGATTTTCCGACAACG 1028 2997380 ANLN AGGACCGCGTCGTTCTCACTCCGCG 1029 2997380 ANLN GCCTTGCCCAGGACGACCTTCGTCG 1030 2997380 ANLN CGGGCGTCCCCTCTACGATTACTTT 1031 2997380 ANLN CACTAAACGCCTCAAGTGCGTCGGG 1032 2997381 ANLN GCTTGGGCACGGTCCGCTCTCTTAG 1033 2997381 ANLN TTGACGACCTCGCTTGGGCACGGTC 1034 2997381 ANLN GACGACCTCGCTTGGGCACGGTCCG 1035 2997381 ANLN CGGTCCGCTCTCTTAGAAGTCTCTT 1036 2997382 ANLN GTCGTCGAGGTTCCAGATACTGAGT 1037 2997382 ANLN CCAGATACTGAGTACGATTCGCTCG 1038 2997382 ANLN GAGTACGATTCGCTCGATCTGTCGG 1039 2997382 ANLN GATTCGCTCGATCTGTCGGTGAAAG 1040 2997384 ANLN TCTTTAGAACATGTTTTGGTAGCGG 1041 2997384 ANLN ACCTTTTATTTGTTGGTCAACTCAG 1042 2997384 ANLN AACAAGAGGTTCAGGACACAGAGGA 1043 2997384 ANLN AGCGGTAGTTTTTTTGCGACAAGAC 1044 2997385 ANLN TTGAACGTCTCGTTGCCGCGGCAAC 1045 2997385 ANLN CGGTGTTCGTCGTCTATGGTAGTCA 1046 2997385 ANLN CACTAAGACAACGACAGGGCCGTAG 1047 2997385 ANLN GCGGCAACCCTATTACTACTATACT 1048 2997387 ANLN ACGACGTTGATAAACGAGGACCCTT 1049 2997387 ANLN CGAAAGTTTACGGAGCCGTTGAGGT 1050 2997387 ANLN TTACGGAGCCGTTGAGGTCAACCGT 1051 2997387 ANLN GTCTTCCCCGGCAGACCGGTTAGAA 1052 2997388 ANLN CGGGATAGGAGTTCACGACTACTAC 1053 2997388 ANLN CTACCGCTACGGAGAAACTTATTTC 1054 2997388 ANLN CGGACCATGGCGAACAAATAGGTTT 1055 2997388 ANLN CACAATTCGTCCTTCGATGTAAGAC 1056 2997389 ANLN AATAGGGTCTGTCAAGGTAGGTTCC 1057 2997389 ANLN CCATAGCTTTGGTTAACACTTCAGT 1058 2997389 ANLN TCAACACTCCCTGTTTTAGGACTCG 1059 2997389 ANLN AGGTCACTTTAGATGATGTAGATAG 1060 2997391 ANLN CGAAACCTCTCGCAACAGTTCTTGT 1061 2997391 ANLN TCGGAAAGGACCTTGCGAAACCTCT 1062 2997391 ANLN GTTTCTTTCAGGTCGAGCATCGTGT 1063 2997391 ANLN GAGGTTTATGTTTCCGGTAGGTTCT 1064 2997393 ANLN CCCGTTATATACCTCACGTCTTTTT 1065 2997393 ANLN CGGCTAAACTGTTCCCGTTATATAC 1066 2997393 ANLN TCTTGATCGTACAGAAGCACCGGCT 1067 2997393 ANLN CACGTCTTTTTCCGCCTTTGAGTTT 1068 2997394 ANLN TCCACTGGCTTTTGGTCTATGGTCG 1069 2997394 ANLN AAAGTTTTTGAGTCAGTGAAGGTCA 1070 2997394 ANLN TATGGTCGGTTTTTAAGATCATGTC 1071 2997394 ANLN CAAAGTTTTTGAGTCAGTGAAGGTC 1072 2997395 ANLN GTAGTCTGGGTTTCCAACTCGTCTT 1073 2997396 ANLN AGAAGTCACTACAGGATCTCCTTCC 1074 2997396 ANLN CGTGACTTATAGAGGAGTTACAGAA 1075 2997396 ANLN CCTAGTTCGTAATCGTCTTTCGTCG 1076 2997396 ANLN AACGTGGTAACCGTGTTTGTCAACC 1077 2997397 ANLN GTGGATCTGACCTTAACTTTCTGTG 1078 2997397 ANLN CTGACCTTAACTTTCTGTGGTCGTC 1079 2997397 ANLN TCAAATCACAGGTGTGGATCTGACC 1080 2997397 ANLN AGGTGTGGATCTGACCTTAACTTTC 1081 2997399 ANLN CTTTGTCTTGCAGGTAGTTATTTCG 1082 2997399 ANLN TTGCAGGTAGTTATTTCGTCCACTA 1083 2997399 ANLN ACTAACAAGCCTTCCTTCTACAATG 1084 2997399 ANLN AAGTTTCTTTGTCTTGCAGGTAGTT 1085 2997400 ANLN TCGTCTTTCTGAAGAAGATTAACGT 1086 2997400 ANLN TGTCTGTCACTAGATAGTTCGATCG 1087 2997400 ANLN CTTGAGTTATTGCTTTATTTATACG 1088 2997400 ANLN TCGATCGGTCCGAGAATTGACGACA 1089 2997402 ANLN ACGGTAGGTTTCCTAGTCAATGAAA 1090 2997402 ANLN AGGCGAACGGAGATTTTCGTCTAAA 1091 2997402 ANLN AATGAAACAGTCTTTAGGCGAACGG 1092 2997402 ANLN GTCTAAAACAGACGTCATGCCAAGT 1093 2997403 ANLN GAGAATTGCCACTACGAGACTGTAA 1094 2997403 ANLN TACCATCGGTGTGGTAATCGTTCAT 1095 2997403 ANLN GACTGTAAGTGATGATGTAAATGAG 1096 2997403 ANLN AGTTTGAGAGAATTGCCACTACGAG 1097 2997406 ANLN TTTCTAGGGAGTCCGGAACTATTCT 1098 2997406 ANLN TTCTTTCTAGGGAGTCCGGAACTAT 1099 2997406 ANLN TCTAGGGAGTCCGGAACTATTCTTC 1100 2997406 ANLN CTTTCTAGGGAGTCCGGAACTATTC 1101 2997408 ANLN CACGACACGCTTGGTCGTTGAAGCG 1102 2997408 ANLN CCGGTCAGGTCCTCCAGAATCACGA 1103 2997408 ANLN AACCTAGAATGTGTAATAGTAACAG 1104 2997408 ANLN CGTTGAAGCGGGAACAACCTAGAAT 1105 2997409 ANLN CGCTCTCGATGACCCGATAAACAAG 1106 2997409 ANLN ATTCTCTCGCTCTCGATGACCCGAT 1107 2997409 ANLN TCGATGACCCGATAAACAAGGTCCT 1108 2997409 ANLN ATGACCCGATAAACAAGGTCCTTTT 1109 2997414 ANLN AGAATAACCTGAATAGGTCTACTAC 1110 2997414 ANLN CAAAACCACGGACCGTAGCTTCTAC 1111 2997414 ANLN GACCTTTGACATATAGAATAACCTG 1112 2997414 ANLN CCGTAGCTTCTACCACACAAGAAAG 1113 2997417 ANLN GACCCCGAGTAATATGACAACAAAC 1114 2997417 ANLN AACCGACAACCGAGTACACACGGAT 1115 2997417 ANLN ACCGTTCTCGATGGTCAACTATAAA 1116 2997417 ANLN GCATAGTATCCTTAAGTACCGACGG 1117 2997418 ANLN GTATCCTTCCTATTTAGACCGATTA 1118 2997418 ANLN CCTTCCTATTTAGACCGATTAACAT 1119 2997418 ANLN ATCCTTCCTATTTAGACCGATTAAC 1120 2997418 ANLN CCTATTTAGACCGATTAACATGGTC 1121 2997419 ANLN CACGTTCTGCGTTGTGAAAACTTAA 1122 2997419 ANLN AGGCTGGTGTTTCTCTTCTACTGGC 1123 2997419 ANLN TGGCTCTCTGAGAACAGTCGGTTAC 1124 2997419 ANLN TCGGTTACGTCCCTGTGTGAGACAC 1125 2997422 ANLN TTCTCGCCCTAGAGACCTACGTTTT 1126 2997422 ANLN ACCTACGTTTTTGAGTTAGTTCAAG 1127 2997422 ANLN TCAAGAACAACTATAAGCGGAGACC 1128 2997422 ANLN ACCGACAGACGTCTATGATTTCTTC 1129 2997423 ANLN ACGATGTTTGGATAACCTTTCGGAA 1130 2997423 ANLN CGATGTTTGGATAACCTTTCGGAAT 1131 2997423 ANLN AACGATGTTTGGATAACCTTTCGGA 1132 2997424 ANLN GACGCATCGAATGTCTGAATCGTAT 1133 2997424 ANLN ATGCTTTCCCAAACACGGTTATAAG 1134 2997424 ANLN AGAGTCATCAAAAAAGCTTTCCGAC 1135 2997424 ANLN CAGAAGAACCTCGACATCCAGAACT 1136 3012979 GNG11 CGACGTCAGTGTAGGACGCGCCCAC 1137 3012979 GNG11 GAGTCCAGGATCCTTCGACCCCGTG 1138 3012979 GNG11 GCACTGTTCGCAGGGCCTCTTTCGG 1139 3012979 GNG11 GGTCCGGAAGTCAACAAAGCCCTGC 1140 3012980 GNG11 ACTTTTACCTTCAACTCGTCGAAGC 1141 3012980 GNG11 TCAACTCGTCGAAGCGTTTCTTCAC 1142 3012980 GNG11 ACCTTCAACTCGTCGAAGCGTTTCT 1143 3012980 GNG11 TCGTCGAAGCGTTTCTTCACTTCAA 1144 3012981 GNG11 TCTCCTAGGAGATCATTTCCCTTAA 1145 3012981 GNG11 ACCTCTCCTAGGAGATCATTTCCCT 1146 3012981 GNG11 CTCCTAGGAGATCATTTCCCTTAAG 1147 3012981 GNG11 CCTCTCCTAGGAGATCATTTCCCTT 1148 3012982 GNG11 CTGTGAAGAAAGTCATATAACGAAC 1149 3012982 GNG11 CACGATGAGTAGAAACGAGTGATAC 1150 3012982 GNG11 CTTGTAATGAACTCGTACTGTGAAG 1151 3012982 GNG11 ACCCTCTTTGACGTAGGATTCACCT 1152 3012983 GNG11 GAACCCGTACCGTGATGAGGTCAAG 1153 3012983 GNG11 GAACCTGGAGACGTGAGTACGAACG 1154 3012983 GNG11 CGAAACTCTCGGTCATGAATAAGGA 1155 3012983 GNG11 GGAGACCTTGCACAAACTAGATTGG 1156 3012985 GNG11 GTAAATAAGGCCAATGACCGTTCCG 1157 3012985 GNG11 CATGTGAGGGTTCAGGATCGAAAAC 1158 3012985 GNG11 GGGATTGAACAACCCTCAACGCTAA 1159 3012985 GNG11 GGTCGGTTGTACATCTTCACGTTAT 1160 3428784 DRAM1 GAGGCATCAGCGCAGGCGAACCTCG 1161 3428784 DRAM1 TGGCAGGCACTCACATGCGCGGGCC 1162 3428784 DRAM1 GCCCGGCGAAACACTGAAGTGAGCA 1163 3428784 DRAM1 TGAGCAAAGCGTTGTTCGGGCCCGT 1164 3428785 DRAM1 CGACCCGCGTCGTGAGGCAGCCGCC 1165 3428785 DRAM1 ACCCGCGTCGTGAGGCAGCCGCCGC 1166 3428785 DRAM1 GGCGACCCGCGTCGTGAGGCAGCCG 1167 3428785 DRAM1 CCCGCGTCGTGAGGCAGCCGCCGCC 1168 3428786 DRAM1 GGAAGTAATAGAGGATGCACCAGCG 1169 3428786 DRAM1 TGGACCAGCAGTCGGCGGAAGTAAT 1170 3428786 DRAM1 GACACGAAGGACTCCCCTTACCGAA 1171 3428786 DRAM1 TAGAGGATGCACCAGCGGCACGAGA 1172 3428798 DRAM1 AAACCTAAATACTATTTGAAGAGAC 1173 3428798 DRAM1 AACCTAAATACTATTTGAAGAGACG 1174 3428798 DRAM1 AAAACCTAAATACTATTTGAAGAGA 1175 3428798 DRAM1 ACCTAAATACTATTTGAAGAGACGT 1176 3428799 DRAM1 AATTGAACCACAGAAATCACGAACC 1177 3428799 DRAM1 GGACGATAAAGTCGTGAGGACAAAA 1178 3428799 DRAM1 ATCATGTCTTCGTTTTAGTTTGGAC 1179 3428799 DRAM1 CGTCGGTGCTACATATGTTCTATGT 1180 3428800 DRAM1 ACCTCACATACACAGACTTCTCTCG 1181 3428800 DRAM1 CGTGTGAATACGGTAATATCGGTAA 1182 3428800 DRAM1 GTCAATACTCCTCACCACCTCACAT 1183 3428800 DRAM1 CTCCGTGTGAATACGGTAATATCGG 1184 3428802 DRAM1 GGGTCACCTTGTCAGAGAGCTGTAC 1185 3428802 DRAM1 AGACGGCAAAGAACGCGTCGACAGT 1186 3428802 DRAM1 CACATGTGCGAGGATGTCAGGTAGT 1187 3428802 DRAM1 AGAGCTGTACGGTGTATGCCTACCA 1188 3428806 DRAM1 GTGATTAAAGGTATTGGTTCGACCT 1189 3428806 DRAM1 TGATTAAAGGTATTGGTTCGACCTC 1190 3428806 DRAM1 GATTAAAGGTATTGGTTCGACCTCA 1191 3428809 DRAM1 ACTCAGAAAAAGCCGATTTAAGACA 1192 3428809 DRAM1 TCATACATGTAATTTCACTCAGAAA 1193 3428809 DRAM1 GTAATTTCACTCAGAAAAAGCCGAT 1194 3428809 DRAM1 TCACTCAGAAAAAGCCGATTTAAGA 1195 3428812 DRAM1 GTGGGATTCCTATAGGTGTCTTTAG 1196 3428812 DRAM1 CAGTGGGATTCCTATAGGTGTCTTT 1197 3428812 DRAM1 TCACAGTGGGATTCCTATAGGTGTC 1198 3428812 DRAM1 CACAGTGGGATTCCTATAGGTGTCT 1199 3428813 DRAM1 GAGTGAGTCACTTACAGCGTCCGGT 1200 3428813 DRAM1 TGGGACTAATAACCCTACGTAGACG 1201 3428813 DRAM1 CGAGAACGACGATTAACGGGTAAGC 1202 3428813 DRAM1 GGACGAGTACTCCAGCGTGGAAAAC 1203 3428814 DRAM1 GTCGGTTCTTCTTGAAGACCCAAGT 1204 3428814 DRAM1 TCGGTTCTTCTTGAAGACCCAAGTC 1205 3428815 DRAM1 CCGACCTACAGGGTGTTGTGATATT 1206 3428815 DRAM1 CAGTTCGGGAAACACAATTCGTTCT 1207 3428815 DRAM1 TGAGGTAGAAAAGTGGGTTTAGTAC 1208 3428815 DRAM1 ACGAGGAAGAGAAGTACGGACACCG 1209 3428816 DRAM1 ACACCGGTTCACTCTAGTCGGGAGT 1210 3428816 DRAM1 TCGTCGGGTACATCTGTCGAAGCCT 1211 3428816 DRAM1 CAAGCCCCATCGAGGAGTAATTGAT 1212 3428816 DRAM1 GATCTCGTATTTGGGTACACACCGG 1213 3428817 DRAM1 AAGAAATTCTGCGTAGTATTTACCA 1214 3428817 DRAM1 ACGAAAGAAATTCTGCGTAGTATTT 1215 3428817 DRAM1 GAAAGAAATTCTGCGTAGTATTTAC 1216 3428817 DRAM1 GAAATTCTGCGTAGTATTTACCAAA 1217 3428818 DRAM1 TCTGAAAACAAGAGCCGCGAGGAGT 1218 3428818 DRAM1 AGGAGTGCTACCTCAAAGTACGAAG 1219 3428818 DRAM1 GTGTTAATCTAACCCTCGAGGAACT 1220 3428818 DRAM1 ACGGAGTGAAGCTCGTCTGAAAACA 1221 3428832 DRAM1 TATTTTGGTATAAACTGACGTGGAA 1222 3428832 DRAM1 ATACTTGGTGTGACTTTGCTGGAAG 1223 3428832 DRAM1 ATCAGTTCACGACGTATTACAAAAC 1224 3428832 DRAM1 TCAACTACCGTTGCTACCAATGAGT 1225 3454842 BIN2 GGGACCCAAGAGTCATCCTTACGAC 1226 3454842 BIN2 CTCTTTGATGGTTCTGAGGAGGACG 1227 3454842 BIN2 AGTCTCCCTATATTCTCGGTCGTAG 1228 3454842 BIN2 ACGACCACGACAGATTTCTGGACCG 1229 3454844 BIN2 CTGGTCGAAGTTCAGAGGTACCATG 1230 3454844 BIN2 TCTGGTCGAAGTTCAGAGGTACCAT 1231 3454844 BIN2 TGGTCGAAGTTCAGAGGTACCATGG 1232 3454844 BIN2 GGTCGAAGTTCAGAGGTACCATGGT 1233 3454845 BIN2 ATTCGAATAGAGTCGATTGAGGAGC 1234 3454845 BIN2 CCTATTATTCGAATAGAGTCGATTG 1235 3454845 BIN2 ATTATTCGAATAGAGTCGATTGAGG 1236 3454845 BIN2 TTCCTATTATTCGAATAGAGTCGAT 1237 3454846 BIN2 TTGGTGGTCTCTTCGGTCATTCTTG 1238 3454846 BIN2 AACATGAAGGGGGTGGAATTACTGT 1239 3454846 BIN2 TCGGTCATTCTTGAGGACTCCGGTT 1240 3454846 BIN2 CTTTTGTAGGTGTTAGTCTTGGGAC 1241 3454847 BIN2 ATGGAAGGTCGGGATGTCGGAGACC 1242 3454847 BIN2 GTCGGGATCCCGGAGGAACCCCTGA 1243 3454847 BIN2 CCTGGAGGGATCTCCAGAGAGGATT 1244 3454847 BIN2 ACCCTGACGTTCAGGATCCTGGAGG 1245 3454848 BIN2 TCTCTCGGAGATAGGTCTCCTGGAG 1246 3454848 BIN2 CTTCTCTCGGAGATAGGTCTCCTGG 1247 3454848 BIN2 TTCTCTCGGAGATAGGTCTCCTGGA 1248 3454849 BIN2 TGAGGTAGTGGTCCGCCTCGGGACT 1249 3454849 BIN2 AGAGGATGGTGACTTTCCCGGTTCA 1250 3454849 BIN2 GGTCGAGGTGTTGAGGTAGTGGTCC 1251 3454849 BIN2 GATGGTGACTTTCCCGGTTCAGGGT 1252 3454850 BIN2 CAGAGGTCAGGAGAATGGAGTGGAT 1253 3454850 BIN2 TGTCGATGTCAGAGGTCAGGAGAAT 1254 3454850 BIN2 CTTGTCGATGTCAGAGGTCAGGAGA 1255 3454850 BIN2 AAGCTTGTCGATGTCAGAGGTCAGG 1256 3454851 BIN2 GTCGTCCGCGAGAAATCAGTAAAGA 1257 3454851 BIN2 TCCGCGAGAAATCAGTAAAGAGGGG 1258 3454851 BIN2 CGTCCGCGAGAAATCAGTAAAGAGG 1259 3454851 BIN2 CGCGAGAAATCAGTAAAGAGGGGGT 1260 3454853 BIN2 GTAAAGGTTGAACTCCCTACAGAAG 1261 3454853 BIN2 TAACCGACGATACACTGGTAGAAGG 1262 3454853 BIN2 TGAACTCCCTACAGAAGATGTCCCT 1263 3454853 BIN2 AGCATAACCGACGATACACTGGTAG 1264 3454854 BIN2 TAAATCCTCGGAACCACCGACCAAA 1265 3454854 BIN2 ACGGAATGAGCATACACAAACACCA 1266 3454854 BIN2 TACCGAAAGTAAATCCTCGGAACCA 1267 3454854 BIN2 GAAAGGGTACGGAATGAGCATACAC 1268 3454855 BIN2 CTTCTCAAGTTGTTTCGGGTCTGAC 1269 3454855 BIN2 TCTTGATGATCTCCTCGACGGATAA 1270 3454855 BIN2 CTTCTAGACTTGGTTCTTGATGATC 1271 3454855 BIN2 TCCTCGACGGATAAGAAATATTATC 1272 3454856 BIN2 AGCCTTTGAGCACCTGATACTGTCA 1273 3454856 BIN2 CCAGCCTTTGAGCACCTGATACTGT 1274 3454856 BIN2 CCCAGCCTTTGAGCACCTGATACTG 1275 3454856 BIN2 GCCCCAGCCTTTGAGCACCTGATAC 1276 3454857 BIN2 TACAACGGGTCAAGTCACTTTAATT 1277 3454857 BIN2 ATACAACGGGTCAAGTCACTTTAAT 1278 3454857 BIN2 ACAACGGGTCAAGTCACTTTAATTC 1279 3454858 BIN2 TTCACCTCGGAAGTGGTCGGAGACT 1280 3454858 BIN2 GTGTGACACGTAAACACATCGGAGT 1281 3454858 BIN2 CACCTAGGGAGATTAAAACTGGGAG 1282 3454858 BIN2 CTGGAACACGGGACAAGAATTAGAG 1283 3454859 BIN2 GTCGCTCACCCTGCCAGTACTCCTC 1284 3454859 BIN2 TGTCGTCGCTCACCCTGCCAGTACT 1285 3454859 BIN2 ACGTACTTTCAAGTTTTTCTCACAG 1286 3454859 BIN2 TAGATGTCGTCGCTCACCCTGCCAG 1287 3454860 BIN2 ACTTCTTGAAGGAATCACGTCAGTT 1288 3454860 BIN2 TTCTTGAAGGAATCACGTCAGTTTC 1289 3454860 BIN2 CTTCCGGTGTTCGACATGTTCCTGG 1290 3454860 BIN2 GGTGTTCGACATGTTCCTGGACTTC 1291 3454862 BIN2 CTTGCTAAACTTGTTTCGCGATCGT 1292 3454862 BIN2 CTAAACTTGTTTCGCGATCGTTGAA 1293 3454862 BIN2 TGCTAAACTTGTTTCGCGATCGTTG 1294 3454862 BIN2 ACTTGCTAAACTTGTTTCGCGATCG 1295 3454863 BIN2 GGATACCCTTCCAGATCGAGCTTTG 1296 3454863 BIN2 GCACATCGGTCTGAAGCAATGAAGT 1297 3454863 BIN2 CTCGTGACGAAACTCGGGACCCTTC 1298 3454863 BIN2 GGTCGAGAGGGCTCAACTAAATAGT 1299 3454864 BIN2 ACGTCTTCTTCAAATCGTCCCGGGT 1300 3454864 BIN2 GCCGCGCCGGCCGGAGAAGCGGTTC 1301 3454864 BIN2 TCTTCTTCAAATCGTCCCGGGTCCT 1302 3454864 BIN2 CACGTCTTCTTCAAATCGTCCCGGG 1303 3454865 BIN2 CGGCCCTCGGGCGTGAAGGAGGAGC 1304 3454865 BIN2 TCTTTTGGTGTCCCGCGCCCCGGTC 1305 3454865 BIN2 AGTCTTTTGGTGTCCCGCGCCCCGG 1306 3454865 BIN2 GCCCTCGGGCGTGAAGGAGGAGCCC 1307 3454866 BIN2 CCGAATCTCGGATGGACCTCGTTCT 1308 3454866 BIN2 AGGGATGGTCAAGGTCCGAATCTCG 1309 3454866 BIN2 GAGTCTCTTGGATTTGCACAAAAGC 1310 3454866 BIN2 TGCGTCACATGTACCGCCGAAGCGT 1311 3536337 CDKN3 ATCTCCGGCTCAGAAGCCGGTGGGT 1312 3536337 CDKN3 GCCTCATTCTTTGGTCTTCGCCTAG 1313 3536337 CDKN3 GTGGAGTGTCTTCCTGCTTGGTCAC 1314 3536337 CDKN3 AGCCGGTGGGTTTCCGCCTCATTCT 1315 3536338 CDKN3 ACCAGAGCTGCACCCCGCCGGTCGC 1316 3536338 CDKN3 CGCCGTGACCAGAGCTGCACCCCGC 1317 3536338 CDKN3 GTGACCAGAGCTGCACCCCGCCGGT 1318 3536338 CDKN3 CCTCCGCCGTGACCAGAGCTGCACC 1319 3536343 CDKN3 AACATTTAAATTTCTACAATCTTCT 1320 3536343 CDKN3 ACATTTAAATTTCTACAATCTTCTT 1321 3536344 CDKN3 TGTTCTGTATAAACAAAAGACGTGG 1322 3536344 CDKN3 ACACCATATGTTCTGTATAAACAAA 1323 3536344 CDKN3 TTCTGTATAAACAAAAGACGTGGTC 1324 3536344 CDKN3 ACCATATGTTCTGTATAAACAAAAG 1325 3536345 CDKN3 AGGGTTTGGAAGACCTAGAGATGGT 1326 3536345 CDKN3 GGGTTTGGAAGACCTAGAGATGGTC 1327 3536346 CDKN3 TGGGTAGTAGTAGGTTAGCGTCTAC 1328 3536346 CDKN3 AGTAGTAGGTTAGCGTCTACCTCCC 1329 3536346 CDKN3 GTTACACCTTAATAGTGGGTAGTAG 1330 3536346 CDKN3 TAATAGTGGGTAGTAGTAGGTTAGC 1331 3536347 CDKN3 CTTTATTACCTTCTCGAATGTTGGA 1332 3536357 CDKN3 AGTGGTCTCGTTCGGTATCTGTCGG 1333 3536357 CDKN3 CCTAGGCCCCGTTATGTCTGGTAGT 1334 3536357 CDKN3 GTCGGACGCTCTGGATTCTCCTAGG 1335 3536357 CDKN3 GACAGACTGTGTTATAGTGGTCTCG 1336 3536358 CDKN3 GGTCAGGCAAAACCCTTACCTAGGA 1337 3536358 CDKN3 TGAAGAGTCAAAAACGGGGTCAGGC 1338 3536358 CDKN3 CAGGCAAAACCCTTACCTAGGAGAG 1339 3536358 CDKN3 GCAAAACCCTTACCTAGGAGAGTGG 1340 3536359 CDKN3 TTACTCTACCAATAACAATTATGTT 1341 3536359 CDKN3 GTTACTCTACCAATAACAATTATGT 1342 3536359 CDKN3 CTGTTACTCTACCAATAACAATTAT 1343 3536359 CDKN3 TGTTACTCTACCAATAACAATTATG 1344 3536360 CDKN3 TATGTTAATAGAAGTACTCAAAGCC 1345 3536360 CDKN3 TGTTAATAGAAGTACTCAAAGCCCT 1346 3536360 CDKN3 GTTATGTTAATAGAAGTACTCAAAG 1347 3536360 CDKN3 GTTAATAGAAGTACTCAAAGCCCTG 1348 3536361 CDKN3 AAGTGTTAGTTCTAGACATAGTTCT 1349 3536361 CDKN3 TGTTAGTTCTAGACATAGTTCTATT 1350 3536361 CDKN3 GTGTTAGTTCTAGACATAGTTCTAT 1351 3536361 CDKN3 TAAGTGTTAGTTCTAGACATAGTTC 1352 3536362 CDKN3 ACGTCTATAAGGATTTCAAAATAAC 1353 3536362 CDKN3 TTACTTTGGTGGTCACAATAGTTGA 1354 3536362 CDKN3 TTACATGTACACGTCTATAAGGATT 1355 3536362 CDKN3 CTTTACAGTCAAGAGATCGTATTAA 1356 3599812 KIF23 GGCGCGGAATCGGCGCTTCAAGATC 1357 3599812 KIF23 ACCGGGCAAACTTTACGCGGTCCGC 1358 3599812 KIF23 CCGAAGCGTCTCGTGGCGCGGAATC 1359 3599812 KIF23 CCCGAGAATCGCAGCGGCGGCCGAA 1360 3599813 KIF23 AGGGCGTACGCGCAAACCCGCCGCA 1361 3599813 KIF23 GTCGGCAGGGCGTACGCGCAAACCC 1362 3599813 KIF23 GCGTCAGAAGCGGTCGGTCGGCAGG 1363 3599813 KIF23 AAGAACGACGGCCAGGATTGCAGGG 1364 3599815 KIF23 CCCGATGTCTGAGTTGGCTTTACCT 1365 3599815 KIF23 CCCGAAAGGACTAGTTCTCACAACG 1366 3599815 KIF23 GTCGAAGTATGAGGACTCCCGATGT 1367 3599815 KIF23 ATCCCACGCGGGTGACCCGAAAGGA 1368 3599816 KIF23 TGGTGGGTCTTCCTTGAGAAACTAC 1369 3599816 KIF23 TTCATAAACCGTGAGTGTGGTGGGT 1370 3599816 KIF23 TTACTGGAGTAAGTACCGTTTTTAC 1371 3599816 KIF23 CTACAACACCGATTAGGGAACCAGT 1372 3599817 KIF23 GAGTGTGTTACTGACCAAGAGGTCC 1373 3599817 KIF23 GGAGCAACAAACCTGTACTAGAAAT 1374 3599817 KIF23 GTATACCACACTGCCCTTCACCTTT 1375 3599817 KIF23 ATCCCAGTAAAGTTCGATTTGCTAT 1376 3599818 KIF23 TTTCTCTTCGATACGGGTTAGGTTT 1377 3599818 KIF23 TATATGTCACACTCCAACTACGGAA 1378 3599818 KIF23 CTACGGAATAATCTTGCAGTCTTTT 1379 3599818 KIF23 CAAAAGTTTAGATTACTATCCTTAT 1380 3599819 KIF23 TTTTACCTGAATATTGCATATGTTA 1381 3599819 KIF23 AATTTTACCTGAATATTGCATATGT 1382 3599819 KIF23 CTGAATATTGCATATGTTAACTTGA 1383 3599819 KIF23 ACCTGAATATTGCATATGTTAACTT 1384 3599820 KIF23 ATACTATTGACATGTTCTTAAGACG 1385 3599820 KIF23 CTTCTCCACGGCAAACTAGGGTATT 1386 3599820 KIF23 TCTATCACAGATACCACATAAACAG 1387 3599820 KIF23 TGCTGTTCATCTAGGTCTCAAACGT 1388 3599822 KIF23 CAGTGAACCGCAAAATCAGGATCAG 1389 3599822 KIF23 ATAAAGAGACCTCATAATATGCAAT 1390 3599822 KIF23 CTATGGTCGTAGAGTATTAAATCCT 1391 3599822 KIF23 TCAGGATCAGAATTTACTTCTATGG 1392 3599823 KIF23 TACAACGTCCTACATGTCTTCAACT 1393 3599823 KIF23 GGAGGTGTTAGATTTAACGAAGCAC 1394 3599823 KIF23 AACGAAGCACTTCTATTCTTGGTAT 1395 3599823 KIF23 AACTTCACTTTAGATGACTCCTCCG 1396 3599824 KIF23 AAACTGAATAATCTTTCGTACATAT 1397 3599824 KIF23 AGTGGATCTCAACGATGATTCAAAC 1398 3599824 KIF23 CGATGATTCAAACTACCGTTAAAAA 1399 3599824 KIF23 ACTACTTATAGTGGATCTCAACGAT 1400 3599825 KIF23 TAATTTAATCAAGTCCGAGGGAACC 1401 3599825 KIF23 TGGGTAAACTTAGCACTCAGGTCGG 1402 3599825 KIF23 CTCTGCATAACGATTATGGGTAAAC 1403 3599825 KIF23 GCAAGGGTATCGCACAAGTTGTAAT 1404 3599826 KIF23 GTCTTCCCTTGTCTAATGCACTTCG 1405 3599826 KIF23 CACTTTCTTGATTGGCCTGGTCTCG 1406 3599826 KIF23 GAACCATCTAGAACGACCTTCACTT 1407 3599826 KIF23 TCTTGTTTAGTGATATTCAGTCAAC 1408 3599828 KIF23 GTTTCAATTGGGTAGACAAGTTCTT 1409 3599828 KIF23 ACGCCTACTAGCACACACACTTGGG 1410 3599828 KIF23 CCAAGGTATAGCTCTAAGTTTCAAT 1411 3599828 KIF23 AGTTCTTGATGAAACTACCCCTTCC 1412 3599830 KIF23 TGGTAACCAATGACTGCACCAAAAC 1413 3599830 KIF23 GTAACCAATGACTGCACCAAAACGT 1414 3599830 KIF23 GGTAACCAATGACTGCACCAAAACG 1415 3599830 KIF23 TAACCAATGACTGCACCAAAACGTC 1416 3599831 KIF23 CTATAGTTGCTACTCGTCTGTGAAG 1417 3599831 KIF23 TCTGTGAAGGTTCCGACTAACTTCG 1418 3599831 KIF23 TAACTTCGGAATCTCTTTGCTGTAT 1419 3599831 KIF23 GGAAACGGTAGTACGCTTTAAAACC 1420 3599832 KIF23 TTACGAAAATTTCGAAACAATGTTC 1421 3599832 KIF23 GATTACGAAAATTTCGAAACAATGT 1422 3599832 KIF23 ATTACGAAAATTTCGAAACAATGTT 1423 3599833 KIF23 TTCTTTTGGTGTACGTTCCCTTTGA 1424 3599836 KIF23 TCTATTTGCGTTAAACGTTGTCCTT 1425 3599836 KIF23 TGTTGATGATAGATACTCCTTCTAT 1426 3599836 KIF23 ACCACTGTCTTTGCTGTTACTTCAC 1427 3599836 KIF23 ACTGTTTGCGTCTAATCTTCGGTCC 1428 3599837 KIF23 CATCTCACCGTCGGTTTGTCGACCT 1429 3599837 KIF23 TCGCATCTCACCGTCGGTTTGTCGA 1430 3599837 KIF23 CGACCTCTACGTCTTATTTGAGACC 1431 3599837 KIF23 CTCACCGTCGGTTTGTCGACCTCTA 1432 3599838 KIF23 GTCTCTCTGGGAGAGCCCTCGCTCT 1433 3599838 KIF23 CTCGCTCTAGCTCTTTTTCAATGAG 1434 3599838 KIF23 TTCGACTTTGTTGACTTCCGATAAC 1435 3599838 KIF23 GACTTCCGATAACAATGGCTTGGAT 1436 3599839 KIF23 CCCTCCACCAAGGATGTAAGTCTTT 1437 3599839 KIF23 GTAGATAACGTTCCGCATCCGTCGT 1438 3599839 KIF23 GTCGGTGTCGATGTATCCGCGAGAT 1439 3599839 KIF23 TCCGCGAGATTGAGAACGTCGTCGT 1440 3599841 KIF23 AGACAAAACAAATCTTCGGATCTTT 1441 3599841 KIF23 GGAGAGTTATCGTCCCTATTTATAA 1442 3599841 KIF23 AACACCTGTATTATCTAATGGAGAG 1443 3599841 KIF23 TCCTTTCTGAACGTCGTAATGGTCT 1444 3599842 KIF23 ATTTAATTAAGACCCAATACGAACA 1445 3599842 KIF23 TTAATTAAGACCCAATACGAACAAA 1446 3599842 KIF23 AATTAAGACCCAATACGAACAAAGA 1447 3599842 KIF23 TAATTAAGACCCAATACGAACAAAG 1448 3599843 KIF23 CGGAGGCTACCCCTCTAACTTTGAT 1449 3599843 KIF23 TCTGCTAGTGCGAGACGTCCTCTGT 1450 3599843 KIF23 ACCCATCTAGTATTCGGGCGGAGAT 1451 3599843 KIF23 GGAGTACGGTAGTGTCATAGACAAC 1452 3599845 KIF23 GTTCCCCACCACCTGTTAGACAAGT 1453 3599845 KIF23 TTTTGTTCCCCACCACCTGTTAGAC 1454 3599845 KIF23 CAAATGACTATAACTCTGAAATTTC 1455 3599845 KIF23 CCCACCACCTGTTAGACAAGTCAAA 1456 3599849 KIF23 CTTTTTAATTTATAAACAGACGGAT 1457 3599850 KIF23 ATGGACCTACTGGATTTCTGGAAAG 1458 3599850 KIF23 CTGGAAAGACCGAGTGTTGTAAACA 1459 3599850 KIF23 GATAACTCTCCTCGACTAGAAAAAG 1460 3599850 KIF23 TGGATCCACACCTCGGACGATTTAT 1461 3599851 KIF23 ACCTATAGTCGTAGTGCGTGTTGGG 1462 3599851 KIF23 CTATAGTCGTAGTGCGTGTTGGGTT 1463 3599851 KIF23 CCTATAGTCGTAGTGCGTGTTGGGT 1464 3599852 KIF23 AACTTTTAGTGCCTGGAGTCGATGT 1465 3599852 KIF23 TACCAAGGTTTCTGTTGATCATAAG 1466 3599852 KIF23 GAGCTTTCGGTACGGTCTTCGTCAG 1467 3599852 KIF23 TCTCGTTTCGAAAGGGATACCAAGG 1468 3599853 KIF23 TGTAAATCTATACGGTTTTCTTAAT 1469 3599853 KIF23 AAATCTATACGGTTTTCTTAATTTT 1470 3599853 KIF23 ACTGTAAATCTATACGGTTTTCTTA 1471 3599853 KIF23 AGACTGTAAATCTATACGGTTTTCT 1472 3726377 EME1 CTCCTCAACGGTTGTAAACGGAAAG 1473 3726377 EME1 CATCACCAACTGTAGAGTCTAACAC 1474 3726377 EME1 TCAATAAAAGTGGTGGACAGGGTCT 1475 3726377 EME1 GTCGGTCAGTCCAACGATTCGTCAC 1476 3726378 EME1 AGGTACTATGGGGTCTCTCCTCACG 1477 3726378 EME1 ACGTCGTCTATTGTTCCTGGACTAG 1478 3726378 EME1 GACTAGAATCTAGGTACGACAGTCG 1479 3726378 EME1 TCGGGAAAGGTTTCTAGGGACTTCA 1480 3726379 EME1 TACGTCGTGACCAATGGTCCTACTT 1481 3726379 EME1 TGTTCGTTCCGTCTTCCTTTCGTGG 1482 3726379 EME1 TGTGTAGTAACATCACGACCTAGGT 1483 3726379 EME1 TCTTTTGGTTCGGCTCAGTCTTCCA 1484 3726381 EME1 CGTGACGTCTGGTACCTCACGGCGA 1485 3726381 EME1 GGATCCTCGTGACGTCTGGTACCTC 1486 3726381 EME1 CCACCCCCGGTCGAGGATCCTCGTG 1487 3726381 EME1 TTCCACCCCCGGTCGAGGATCCTCG 1488 3726382 EME1 TCCGACACGGAACGTCACAGTGAAC 1489 3726382 EME1 ACACGGAACGTCACAGTGAACCTCC 1490 3726382 EME1 GCGTCCGACACGGAACGTCACAGTG 1491 3726382 EME1 CGACACGGAACGTCACAGTGAACCT 1492 3726383 EME1 GTAAACACAGGTACTAGCTGTTACC 1493 3726383 EME1 CCTCGGTTGTCATGACCACAACGAG 1494 3726383 EME1 TCCGTAAACACAGGTACTAGCTGTT 1495 3726383 EME1 GTCATGACCACAACGAGGCCCGTCT 1496 3726384 EME1 CCTTCGGACCTGTCGTGATACTTTC 1497 3726385 EME1 CTTCCTTTGCGAAGTCCCGAAACAT 1498 3726385 EME1 CGTCCCTTTCGAGACAGTGACCACT 1499 3726386 EME1 CAGTGAGACGTTCCATCAGGTAGAG 1500 3726386 EME1 AAAGTACAATTTTCCCCGTCGAGAA 1501 3726386 EME1 CCCTACGAGACCAGGTCAGAAGAAG 1502 3726386 EME1 ATAAGTAACGTCTACATCCAGTGAG 1503 3726387 EME1 GGACCTCGACGACAAGAAACTAAAG 1504 3726387 EME1 AGAAACTAAAGGAGGGGACGTGGTC 1505 3726387 EME1 CTCGACGACAAGAAACTAAAGGAGG 1506 3726387 EME1 CGACGACAAGAAACTAAAGGAGGGG 1507 3726388 EME1 TACCATAGGTCCCATCTGCGACTTC 1508 3726388 EME1 TCTCCGGTCGTATCCCAGGTACCAT 1509 3726388 EME1 AGGTACCATAGGTCCCATCTGCGAC 1510 3726388 EME1 GTATCCCAGGTACCATAGGTCCCAT 1511 3726389 EME1 GACCTTTCTCGACCGGCTGAAGTGT 1512 3726389 EME1 GACCGGCTGAAGTGTACGCGTAAGT 1513 3726389 EME1 CGGGTCCGAGTTTAACACGTCTCGA 1514 3726389 EME1 TCCGAGTTTAACACGTCTCGACCTT 1515 3726390 EME1 GTCCGACTATAGTATCCGGTCCAAT 1516 3726390 EME1 ACTCCGGACTTCTCTAACTGAACAG 1517 3726390 EME1 GGTATCCGGTTCAATGGTCCTAATT 1518 3726390 EME1 AAAGTCAACGGTGAACTCCCCTTGT 1519 3726391 EME1 ACGTCAACACTTACGGATAGGGAGG 1520 3726391 EME1 CCTGAGCGTGATCAGACCTCCTCTG 1521 3726391 EME1 TAAGTCGTCGACTTGGCTCAGTCGG 1522 3726391 EME1 TCGAGGCTCTACTTTGATGGAAGAG 1523 3726392 EME1 CTTGCGGTCTTAAACGAGCGTCTGT 1524 3726392 EME1 CACTGTAGGTGAAGAGCGGCGTAAC 1525 3726392 EME1 CTGGTCTTGATAGGTCCGCATAGAT 1526 3726392 EME1 TAGTCGTCACAAAAAGCCTATTTCT 1527 3726393 EME1 ACCGTAAATTACAAGGAGAGGACCG 1528 3726393 EME1 GGTTCCTTGCCCTAATACTACTGAT 1529 3726393 EME1 CTACTGATACGCCTGAAGATATAAC 1530 3726393 EME1 CTCCGGGTCAGAAAGAACCCAGAAT 1531 3756194 TOP2A GCCCCTGTTGTAAACTAGGTTCTAG 1532 3756194 TOP2A ACGAGTCGTTACTCGATAATCTAAG 1533 3756194 TOP2A TCTGGACAGATGTAACAATATACAC 1534 3756194 TOP2A GACCTAACGTCTTCTGAGCCCCTGT 1535 3756195 TOP2A TCACTGGTAGAGTACCCGTAACAAA 1536 3756195 TOP2A AAGAGTTTAGTAGTCTCCGGCTTCT 1537 3756195 TOP2A GACTAGTGAAGTCGCATTTCGTCAC 1538 3756195 TOP2A TGTGAAACCGACACAGATATTGAAC 1539 3756196 TOP2A TAGACATGCCCGTTTCTTTGGATAT 1540 3756196 TOP2A GGTATACCTGAAACTGAGTCGACAC 1541 3756196 TOP2A CGAGGAGCCCGTTTTAGACATGCCC 1542 3756196 TOP2A GTTCCCCCTCTCACTACTGAAGGTA 1543 3756197 TOP2A ACAAAGCTTTCGTCAGTGTTCGTTC 1544 3756197 TOP2A GACCACAGAGAGTTTTCGGACTAGG 1545 3756197 TOP2A ACGGTTTTGGTTCTTAGCGGCGTTT 1546 3756197 TOP2A AGCGGCGTTTTCCTTCGGTAGGTGA 1547 3756198 TOP2A TCAAGGATTTTTCTTACACTGTCAC 1548 3756198 TOP2A CAAGGATTTTTCTTACACTGTCACT 1549 3756198 TOP2A GATTTTTCTTACACTGTCACTTCTT 1550 3756198 TOP2A AGGATTTTTCTTACACTGTCACTTC 1551 3756199 TOP2A ACATGGTGACAGAAGTTCGGGAGGA 1552 3756199 TOP2A CCGTCACATGGTGACAGAAGTTCGG 1553 3756199 TOP2A TTCGGGAGGACGATGTGTAAAGGGT 1554 3756199 TOP2A TCGGGAGGACGATGTGTAAAGGGTC 1555 3756200 TOP2A AATCATTGTTTCTTGACTTTGGTGT 1556 3756200 TOP2A CTTTGGTGTCTTTTCACAGCACAGT 1557 3756200 TOP2A TTTGGTGTCTTTTCACAGCACAGTC 1558 3756200 TOP2A ATCATTGTTTCTTGACTTTGGTGTC 1559 3756201 TOP2A ACTACTTCTAAAACAGGGTAGTCTA 1560 3756202 TOP2A TGTTTGATGTAACCGTAAATTCGGT 1561 3756202 TOP2A TCTCTTTAGGGACCAGACTAAGTCT 1562 3756202 TOP2A CATTAAAACTACAGGGAGGTGCTCT 1563 3756202 TOP2A AGTCTATCCTCGTCACTGCTTTCAT 1564 3756203 TOP2A ACACCTTGATCTTCCGGATTTTGTT 1565 3756203 TOP2A GATCTTCCGGATTTTGTTTCTAATC 1566 3756203 TOP2A TCTACCACACCTTGATCTTCCGGAT 1567 3756203 TOP2A TTTTATGACTTCCTTCGGGAGTTCT 1568 3756204 TOP2A TTGTTCTACTTGTTCAGCCTGAAGG 1569 3756204 TOP2A CCAGTTTCTCAGTAAGGTGCTTATT 1570 3756204 TOP2A ACGGAAGAGGCGCACCAGTTTCTCA 1571 3756204 TOP2A AAGGTGCTTATTGGTATCTTTACTT 1572 3756206 TOP2A GGAAGTTGATAGAAGAACTATACGG 1573 3756206 TOP2A ACTATACGGGGAAACCATAAATTGG 1574 3756206 TOP2A ACTGAGGCATTGTCTAAGACCTGGT 1575 3756206 TOP2A GTCTAAGACCTGGTTGGAAGTTGAT 1576 3756207 TOP2A TACTTCTCTCACTGTTGCTTTTCCT 1577 3756207 TOP2A ACTTCTCTCACTGTTGCTTTTCCTT 1578 3756207 TOP2A TTACTTCTCTCACTGTTGCTTTTCC 1579 3756207 TOP2A CTTCTCTCACTGTTGCTTTTCCTTT 1580 3756208 TOP2A AAGTCTCCCCTATACTAAGCCTAGG 1581 3756208 TOP2A AAGACTAAGTCTCCCCTATACTAAG 1582 3756208 TOP2A CTATACTAAGCCTAGGACACTTCCG 1583 3756208 TOP2A TAATTAATTTCAAGACTAAGTCTCC 1584 3756209 TOP2A CTCTGAAAAAACTTGAGTCTGAATT 1585 3756209 TOP2A TTAGTCCGAGCGAAATAGAATCTCT 1586 3756209 TOP2A TTACCGAGGATCCTTACGAACCACG 1587 3756209 TOP2A CGAAAAACTGGTGCATCCGACAAAT 1588 3756210 TOP2A TGTTTCAGAAGTTTGAGGTTTGATC 1589 3756210 TOP2A GGAGGAGAGTATTGTCTGATATCCC 1590 3756210 TOP2A CGTCTCTCTCAACCTGATGTGTTTC 1591 3756210 TOP2A CTGATATCCCTTATGGTATGTCTAT 1592 3756211 TOP2A ACCGAGGTTTAGTTATACACTAATC 1593 3756211 TOP2A TGTTGGTAACTTTAGAGTCTCGAAG 1594 3756211 TOP2A AGTTCCCATGATAACTTCTTGACCG 1595 3756211 TOP2A AGTCTCGAAGGGCAGTCTTGTACCT 1596 3756212 TOP2A GCACAACTCGGACTTACCATGTAAG 1597 3756212 TOP2A CATGACCCACCAGGACGTTTTAGGG 1598 3756212 TOP2A CCGAGCTAACAATAAAGGTGGTTTT 1599 3756212 TOP2A GGGTTGAAACTACACGCACTTTAAC 1600 3756213 TOP2A CGTTCCTAAGACGATCAGGTGCTAT 1601 3756213 TOP2A CTGGTAATAGTTAAACCGAGTCTTA 1602 3756213 TOP2A GTCGGGTAACCAGTCAAACCATGGT 1603 3756213 TOP2A GGTCCGATGTACCACCGTTCCTAAG 1604 3756214 TOP2A CTTCATTTCCAACGGGTTAATCGAC 1605 3756214 TOP2A ACTGTTCGCTCTTCATTTCCAACGG 1606 3756214 TOP2A ACAAATGAACGAAGTTTGCCTTACT 1607 3756214 TOP2A GTTTGCCTTACTGTTCGCTCTTCAT 1608 3756215 TOP2A AGTTTAAGACTATTGCTCTCTAGAT 1609 3756215 TOP2A TCTAGATAGGGAAGATACCACCTAC 1610 3756215 TOP2A GAAGTAGTTGTTCCTTGAATAGAAC 1611 3756215 TOP2A AGACTGTATATTACTGAAGTAGTTG 1612 3756216 TOP2A CTACTAGCTTTCCTTACCAATTGAT 1613 3756216 TOP2A GTTGCTTTCAATGAACCCGAAGGAC 1614 3756216 TOP2A CAATTGATTAAAGTACCTCCTATCT 1615 3756216 TOP2A TTGTCTATCTACTAGCTTTCCTTAC 1616 3756217 TOP2A GGTCGTGTAGTTTCCTTCGATTTCT 1617 3756217 TOP2A CTTTTCTGTAGCATAGGTCAAGTTT 1618 3756217 TOP2A CTTCGATTTCTTATGAAACGTCTAT 1619 3756217 TOP2A AGCATAGGTCAAGTTTATAAGACCA 1620 3756218 TOP2A TTCTCACCTTCTCAAGATGAGGTTT 1621 3756218 TOP2A TCTCACCTTCTCAAGATGAGGTTTA 1622 3756218 TOP2A CTTCTCACCTTCTCAAGATGAGGTT 1623 3756219 TOP2A AGACGCTGTAGCAAAAGACCTCCTT 1624 3756219 TOP2A ACGCTGTAGCAAAAGACCTCCTTAA 1625 3756219 TOP2A ACCGGGAGAGAAGACGCTGTAGCAA 1626 3756219 TOP2A GAGAGAAGACGCTGTAGCAAAAGAC 1627 3756220 TOP2A TTATAGTAGTTCTAACACCCAGAAG 1628 3756220 TOP2A GTAACTTCTGCGAAGCAATACCCTT 1629 3756220 TOP2A TTCTAACACCCAGAAGTCATGTTCT 1630 3756220 TOP2A CTAAGTAACTTCTGCGAAGCAATAC 1631 3756221 TOP2A ACAAGCTCTTCGAAGAGTATTCGTC 1632 3756221 TOP2A ACCCTCTCTGTTTATACCCCAAAAG 1633 3756221 TOP2A TTTTATGAGTTACAAGCTCTTCGAA 1634 3756222 TOP2A ACTCCCTCTAAGTCGGTTTTGAAAC 1635 3756222 TOP2A CCCTCTAAGTCGGTTTTGAAACCGA 1636 3756222 TOP2A GAGGTGACTCACATGCGAATAGGAC 1637 3756222 TOP2A GCGAATAGGACTGACTCCCTCTAAG 1638 3756223 TOP2A CTTAGTTCCCTTAAGGGTTTGAGCT 1639 3756223 TOP2A CAATTTGTTCTTCACAAGTCGACAT 1640 3756223 TOP2A GTAACCGACACCATAACATCTTTCG 1641 3756223 TOP2A ACATCTTTCGTATGATTTGACCCAC 1642 3756224 TOP2A AACTTTTGGGTTGGAAACTGAGAGT 1643 3756224 TOP2A TTTTGTACTGAAATGTTGGGTTCTC 1644 3756224 TOP2A TTGGGTTGGAAACTGAGAGTCTGTT 1645 3756224 TOP2A ACATTTACGGAATTAACTTTTGGGT 1646 3756225 TOP2A ACCACAACGTCATTTTCGTGTAGTC 1647 3756225 TOP2A CTAACACTGATTTGAACAACTACAA 1648 3756225 TOP2A TGTTCCCACCACAACGTCATTTTCG 1649 3756225 TOP2A CGACTAGTCTAACACTGATTTGAAC 1650 3756226 TOP2A GGTGTCCACCCTTCACACAAATTGA 1651 3756226 TOP2A TTTCCTAAAGCATCAATACACCTGT 1652 3756226 TOP2A GTTCAACCTACTTTGACCATTGAGG 1653 3756226 TOP2A TCCGAAAGTCGTTTAATCGAAACAG 1654 3756227 TOP2A ATATGTACATAGTGGAAAGTCGGAC 1655 3756227 TOP2A ATAACGACCTAGGTGGTTTCTACAG 1656 3756227 TOP2A TTACGTTTCGGACCTGTTTCTATAA 1657 3756227 TOP2A AACAACGTGATTACCAGTCTTCTCG 1658 3756228 TOP2A CCGATACCTCGGTTTAACACATTGT 1659 3756228 TOP2A CATTGTATAAGTCATGGTTTAAATG 1660 3756228 TOP2A ACCGATACCTCGGTTTAACACATTG 1661 3756229 TOP2A ACTTTTCTACATACAGGGTCGAGAG 1662 3756229 TOP2A AAACCTGTCGAGGATTGAAGATCAT 1663 3756229 TOP2A GTCGAGGATTGAAGATCATTGATAC 1664 3756229 TOP2A GAGTATAAACCTGTCGAGGATTGAA 1665 3756230 TOP2A GAACATAATCTCAGTGTTAACTAGG 1666 3756230 TOP2A CCTGGGTTTTTACAGAACATAATCT 1667 3756230 TOP2A ATTACGACGCCTGTTGTTTGTTTCC 1668 3756230 TOP2A ACGCCTGTTGTTTGTTTCCCTGGGT 1669 3756232 TOP2A GCGGGTCTGTGGATGTAACCAAGAC 1670 3756232 TOP2A GTGGATGTAACCAAGACACCTTAAT 1671 3756232 TOP2A ACCAAGACACCTTAATCACTGGGTC 1672 3756232 TOP2A CTTGTATAAAACGAGGCGGGTCTGT 1673 3756234 TOP2A AGAACTCGGGGAAGTGCTGGCAGTG 1674 3756234 TOP2A AAGAACTCGGGGAAGTGCTGGCAGT 1675 3756234 TOP2A GAACTCGGGGAAGTGCTGGCAGTGG 1676 3756234 TOP2A CAAGAACTCGGGGAAGTGCTGGCAG 1677 3756235 TOP2A CAGGACGGACAAATCAGCGAAAGTC 1678 3756235 TOP2A CCCAGGACGGACAAATCAGCGAAAG 1679 3756235 TOP2A AAGTTCACCTCGAGAGGATTGGCTG 1680 3756235 TOP2A TTGGCTGCGCGCAGACACCTCTTCG 1681 3756237 TOP2A AATTTATCCTTAAGTATGGTCCCTG 1682 3756237 TOP2A TTATCCTTAAGTATGGTCCCTGTTT 1683 3756237 TOP2A ATCCTTAAGTATGGTCCCTGTTTCG 1684 3756237 TOP2A CCTTAAGTATGGTCCCTGTTTCGTC 1685 3757155 KRT14 ACCGTTAGTTATGTCGAAGTAATAG 1686 3757155 KRT14 ATCCTCCGGGGGGCACACCTGTGTC 1687 3757156 KRT14 GCGGTTTAGGCGTGGTTCCAGTACC 1688 3757156 KRT14 TCGGCGGTTTAGGCGTGGTTCCAGT 1689 3757156 KRT14 CGGTTTAGGCGTGGTTCCAGTACCT 1690 3757156 KRT14 AGGTCGGCGGTTTAGGCGTGGTTCC 1691 3757157 KRT14 ACCCTCGGGAGCAGACTTTCTTTAC 1692 3757157 KRT14 ACTCGAGATCACGACAGTGGGTCAA 1693 3757157 KRT14 GAGAACGAAGATGCACCACAGACAC 1694 3757157 KRT14 GACTCTGGTGAGGTAACCCACTTAT 1695 3757160 KRT14 GACCTCCTCTGGTTTCCAGCGATGA 1696 3757160 KRT14 TCTAGGTCCTCTACTAACCGTCGCA 1697 3757160 KRT14 TCCTCTGGTTTCCAGCGATGACGTA 1698 3757160 KRT14 CTGGTTTCCAGCGATGACGTACGTC 1699 3757162 KRT14 GTTCTCGCTCTAGAGCCTCGAGGCC 1700 3757162 KRT14 CGTCTTGGACCTCTAACTCGACGTC 1701 3757162 KRT14 ACCGGTGGTTGTCGCTCGACCACGT 1702 3757162 KRT14 CCTCGAGGCCGCGTGGTACGTCTTG 1703 3757164 KRT14 CCTCTACCTGCGACGTGGACCGCAC 1704 3757164 KRT14 CGGTCCACCCACCTCTACAGTTACA 1705 3757164 KRT14 CTACTTACGGGACTCTCCGGTCCAC 1706 3757164 KRT14 AGACTTGCTCTACGCACTGGTCATA 1707 3757167 KRT14 CACAGAGTATGGAAAAGAGACCCCA 1708 3757167 KRT14 CTACCCACAGAGTATGGAAAAGAGA 1709 3757167 KRT14 ATGGAAAAGAGACCCCAGTAAGGTC 1710 3757167 KRT14 AGTATGGAAAAGAGACCCCAGTAAG 1711 3757169 KRT14 TCGGTGTCACCTGTTACGGTTACAG 1712 3757169 KRT14 ACTGTTACGGGCAGACCGGCGCCTA 1713 3757169 KRT14 ACCGGCGCCTACTGAAGGCGTGGTT 1714 3757169 KRT14 CGGTTACAGGAAGACGTCTAACTGT 1715 3757172 KRT14 ACCCCCTCCTATACCACCACCGGAA 1716 3757172 KRT14 CCGAAACCACCACCGAAACGACCAC 1717 3757172 KRT14 ACCGGAACCACGACCGAACCCACCA 1718 3757172 KRT14 GAAACGACCACCACTACCCGAAGAC 1719 3757174 KRT14 TGAGTCGGTTGACGAGCGAGCGAGT 1720 3757174 KRT14 AAGAGAAGTGAGTCGGTTGACGAGC 1721 3757174 KRT14 AAGTGAGTCGGTTGACGAGCGAGCG 1722 3757174 KRT14 TGGGCTCGTGGAAGAGAAGTGAGTC 1723 3757199 KRT14 CTCTTCCACTGGTACGTCTTGGAGT 1724 3757199 KRT14 CACTGGTACGTCTTGGAGTTACTGG 1725 3757199 KRT14 TTCCACTGGTACGTCTTGGAGTTAC 1726 3757199 KRT14 CGTCTTGGAGTTACTGGCGGACCGG 1727 3815758 MUM1 CGTCGCCAACCGCCCGCCCAGGAGG 1728 3815758 MUM1 GACGCCGGAGGAACGGGCCCGAACC 1729 3815758 MUM1 GCCCAGGAGGCGACAACGCCGGCGA 1730 3815758 MUM1 CCGCCGCGCCTGCCGTCGCCAACCG 1731 3815759 MUM1 ACTCTGGACCCTCATGCAACACGGT 1732 3815759 MUM1 TGTGTAACCGCACTCTGGACCCTCA 1733 3815759 MUM1 TGTAACCGCACTCTGGACCCTCATG 1734 3815759 MUM1 CCTCATGCAACACGGTTTAGTAACG 1735 3815762 MUM1 ACCGGGCTTGGCGCTGAAGTTGTTT 1736 3815762 MUM1 ACACGTTTAGGAGAGAGATCTCCTT 1737 3815762 MUM1 TTCCTTATAAAAGATCGACACGTTT 1738 3815762 MUM1 AAACCGGGCTTGGCGCTGAAGTTGT 1739 3815763 MUM1 TGTCAACTTCGGGTCGGGTGAGAAT 1740 3815763 MUM1 AAGGGCACATCTAAAGACTATGAAG 1741 3815763 MUM1 CAAAGAATTAGTCACGGTACGGTCC 1742 3815763 MUM1 GGTTTGCTCCGTAAGACACTCTAGA 1743 3815764 MUM1 TTCCGTTTATTGACTACTGGTCCGC 1744 3815764 MUM1 TGCAGACACTGTCCGGGTAGTTAAA 1745 3815764 MUM1 TGGTCCGCCGTGTAACAAGACGAGG 1746 3815764 MUM1 CGGACAGTGAGATTTGGTCGCAAAT 1747 3815765 MUM1 CCACGTAGACAGCACTCTTAAGGGT 1748 3815765 MUM1 CGTGGCCCTTCCACATCTAGTAGAT 1749 3815765 MUM1 ACTAGGGCGCATCAGGTTCCGTAAC 1750 3815765 MUM1 TCGACGGAGACTTCGAGCGAACCAG 1751 3815766 MUM1 GAGTGTGAAAGGGACGCCGACCCTT 1752 3815766 MUM1 AGTGTGAAAGGGACGCCGACCCTTC 1753 3815767 MUM1 CATTGGAGTCCGTCTACTTAAGGAT 1754 3815767 MUM1 TGGTCCCAAGAACGACGGACATTGG 1755 3815767 MUM1 ACTTTTACAGAACCGCCGCAACCGA 1756 3815767 MUM1 CACATTGCAGCTAAAACAGAGACGT 1757 3815769 MUM1 TTGCGCTTAGGGGACTCGACTTCCT 1758 3815769 MUM1 ATAAGAACTGCGGGTCTTACCAGTC 1759 3815769 MUM1 CTTAAACGGGGATCTTGGTGAGGAT 1760 3815769 MUM1 TGAGGATAAGAACTGCGGGTCTTAC 1761 3815770 MUM1 GAGACGTATTGAATCCGGCCCGACT 1762 3815770 MUM1 TAGTAGAACCTACCGCAGCAGGAAC 1763 3815770 MUM1 CCGTGGGTAACAAACTCCGTGACAG 1764 3815770 MUM1 CGTAATACGGGCGACTCAACACTAT 1765 3815771 MUM1 TGTCTGCCAGCGAAGCGCACCGAGA 1766 3815771 MUM1 CCAAGGACGCCGTGGGGACCTTCTT 1767 3815771 MUM1 CTTGACCGGATGTCTGCCAGCGAAG 1768 3815771 MUM1 GAGACCTGCAAGACTCGCTCCCGAG 1769 3815772 MUM1 CGGTACACACGTTGTTTCGGACAGT 1770 3815772 MUM1 GGTCTACAGAAGGAACGGGCCTAAG 1771 3815772 MUM1 CAACCCGTCAAGGTCTGGAGTGTCC 1772 3815772 MUM1 CTCGTACAGAGGAGCGGGACACTAA 1773 3815773 MUM1 TCTCAGGTACCCCAGATTAAGGTAC 1774 3815773 MUM1 CCTTCTGCTCCTCGGTGGTTCTCAG 1775 3815773 MUM1 ACGGTCAGAAGGCTTCTCAGGTACC 1776 3815773 MUM1 CCCCAGATTAAGGTACGCAAGATAG 1777 3815774 MUM1 CCTTACGATCAGACCGTATTTGTAT 1778 3815774 MUM1 ACTTCATCCTTACGATCAGACCGTA 1779 3815774 MUM1 CATCCTTACGATCAGACCGTATTTG 1780 3815774 MUM1 ATCCTTACGATCAGACCGTATTTGT 1781 3815775 MUM1 TTTCGCAGTCCGTCTCTCTATTCTT 1782 3815775 MUM1 CAGTTTTCGCAGTCCGTCTCTCTAT 1783 3815775 MUM1 TCGTTCACACGATATGTAGCTTCCT 1784 3815775 MUM1 TCCTGTGTACTTGGGCTTTTACTTT 1785 3815778 MUM1 CCGACCACACAGAGGGAGTAGTGGC 1786 3815778 MUM1 TTCGGTCCCTCCTGAAGTTGGTCCT 1787 3815778 MUM1 GTAGTGGCTGATGTCCCAGGCCAAT 1788 3815778 MUM1 CCTGAAGTTGGTCCTGTAGCCGACC 1789 3815780 MUM1 GGCTTTTAGGTAGGTCGTCCTGCAG 1790 3815780 MUM1 AACCCCTGGTTCGAAGGAGTTGACT 1791 3815780 MUM1 CGAAGGAGTTGACTCGTTCCCCTCG 1792 3815780 MUM1 GAACCCCTGGTTCGAAGGAGTTGAC 1793 3815781 MUM1 GTGGACGCCCGGTAGGATTTCTCGT 1794 3815781 MUM1 ACTTCATGGACGTCCCGCAGATGGT 1795 3815781 MUM1 AGTAAGACCTGCACGAAGACGGGCT 1796 3815781 MUM1 ACTCGAGGTCGGTCATGCACTGGAC 1797 3815783 MUM1 ACGAACAGTGTCGATTCCCACGAAG 1798 3815783 MUM1 CTCTGAGACGAGACTTGGCTTACCT 1799 3815783 MUM1 AAGAATTGGCGTCCGGTGAACCCCG 1800 3815783 MUM1 GTCCCTAAGTACCTGATCCAAACGT 1801 3815784 MUM1 ACCTGCTCCACCTGATGTTCTGCCG 1802 3815784 MUM1 GTAGTTCCCCGGAAGCGACTCGATG 1803 3815784 MUM1 TTCTGCCGACTCCTCTTCATGTAGT 1804 3815784 MUM1 CGGTAGTAGACACGCTAGAGACGCC 1805 3815786 MUM1 CCGGGTCGACCGAATGGTTTTGTCC 1806 3815786 MUM1 CTCGCGGATTAGGACAGAGACCCGT 1807 3815786 MUM1 AAAGGACGACCTAGAAGTACCAAGG 1808 3815786 MUM1 TGTAGGCACACGAATCGACGGGAAC 1809 3815787 MUM1 GGGCAATCCTCAAGTAGTGTCGAAG 1810 3815787 MUM1 AACGGCTGTAGTTTTGGGCAATCCT 1811 3815787 MUM1 GCGGCCCCTGTACGAGTTTTATTGT 1812 3815787 MUM1 GGTCAACGGTACTTTCGGAGGGCAC 1813 3815790 MUM1 CTTTATAAACTGTTGGTCGAGGAAC 1814 3815790 MUM1 TCTTTATAAACTGTTGGTCGAGGAA 1815 3815790 MUM1 CGAGGAACTTCTCGCCTTGGCCGCG 1816 3815790 MUM1 AACTTCTCGCCTTGGCCGCGGCAGC 1817 3815791 MUM1 GACCGCCACCTTCGCGGAGGTCACA 1818 3815791 MUM1 GGACCGCCACCTTCGCGGAGGTCAC 1819 3815791 MUM1 CGGACCGCCACCTTCGCGGAGGTCA 1820 3815791 MUM1 CCGCCACCTTCGCGGAGGTCACACG 1821 3815792 MUM1 CCTCTTAGGTAAAGCAATTGTGACT 1822 3815792 MUM1 CGACACCAAAGAGGGCTGCACGTGT 1823 3815792 MUM1 CTTCGCATAAGTGACACGCGGTCAT 1824 3815792 MUM1 CTAGAGCATACACACCGTAGACTAT 1825 3815793 MUM1 GGCGGACGCTGTCAAGGTCTTAAAC 1826 3815793 MUM1 TCTTAAACGAGAGGGTGAGTCACAC 1827 3815793 MUM1 TCAGTGGCGCCAGAGTCAGTAGCCG 1828 3815793 MUM1 GCGTCGGAAACATACCTCCGGGTTG 1829 3815794 MUM1 AAACTCCCCGACACTGGGAGAAGGG 1830 3815794 MUM1 TACAGGTCCCAAGGTCCCGGGCCAC 1831 3815794 MUM1 ACGAAACTCCCCGACACTGGGAGAA 1832 3815794 MUM1 CGGAACGAAACTCCCCGACACTGGG 1833 3815795 MUM1 GTCGGCTGCTGTCGGTGGCCTCTCC 1834 3815795 MUM1 CTCCTCTAGCCTTGTGCTAACAGAG 1835 3815795 MUM1 TTCCTGAGAGCATAGCCCGGGAACC 1836 3815795 MUM1 CCTGCTTCGGCGTTCCTGAGAGCAT 1837 3815796 MUM1 GTCCTTTGGGCCGGCACCGGACCGT 1838 3815796 MUM1 ACTGGAAACAAAGTGAACGGAGACG 1839 3815796 MUM1 GAGCTGAGGCTCTCGTCCTTTGGGC 1840 3815796 MUM1 TGAACGGAGACGAGCTGAGGCTCTC 1841 3815797 MUM1 CGCCCCGAGTCGTCGCAACGTACAT 1842 3815797 MUM1 GCCGGTCATGGTGGCGGACTCCGCC 1843 3815797 MUM1 GGGACGACCAGCGACAAAGCCCCTG 1844 3815797 MUM1 CCTCGTCACCCCGTGTGGGGCCTCC 1845 3815798 MUM1 AGTACCTTTTAGGAGGCCTCGGCGG 1846 3815798 MUM1 GCCCGGAGCATGACGGAGTACCTTT 1847 3815798 MUM1 ACGGAGTACCTTTTAGGAGGCCTCG 1848 3815798 MUM1 AGCATGACGGAGTACCTTTTAGGAG 1849 3815799 MUM1 GGAACGGTTCAACAAGCTCCACCTT 1850 3815799 MUM1 CTCCACCTTAATTTGTGGAGGGTCT 1851 3815799 MUM1 CTCATCCTGTGTAACGGTACCAAAA 1852 3815799 MUM1 GACGACAACACTTCATGAAAATAGG 1853 3908359 SULF2 TAAGCGGAACCGGTTGGGAAGAAAC 1854 3908359 SULF2 GATCGTTGAGGGATCACCGCAAAAA 1855 3908359 SULF2 AAATTGTCTACTGCCTCTATTAGGG 1856 3908359 SULF2 GGGAAGAAACACATAGTCCATCAGA 1857 3908360 SULF2 CCTCATCTACCAACATCTAACTGAT 1858 3908360 SULF2 TATGATGGTCAGTTGTAGAAAAACC 1859 3908360 SULF2 AGATGGTATGAAGTTCCCTGATGTC 1860 3908360 SULF2 TAAGTTCTATGATGGTCAGTTGTAG 1861 3908361 SULF2 CGGTTACTGGTCGTCAACCATACTT 1862 3908361 SULF2 AGAAACAATACAGGGTCTTGACTAC 1863 3908361 SULF2 AGGGAGCGTCAACACCTGTAAAGAC 1864 3908361 SULF2 ACAGGTCTATGGTAAAGAGGATCAT 1865 3908362 SULF2 AAACCTAATATGGAGTGGTCGACGT 1866 3908362 SULF2 AGAGGGTTCCCGCTTTCAGTAACCT 1867 3908362 SULF2 TCGTCAGGACAAGATTTAGGAGAAT 1868 3908362 SULF2 ACCACAGTTATTTGCGAGACACCGG 1869 3908364 SULF2 TCAAAGTCGCAGCTTTCACCGGTCT 1870 3908364 SULF2 CAAAGTCGCAGCTTTCACCGGTCTT 1871 3908364 SULF2 CGTCAAAGTCGCAGCTTTCACCGGT 1872 3908364 SULF2 AAAGTCGCAGCTTTCACCGGTCTTT 1873 3908365 SULF2 GACGTGGACAATAGAACTCTTTGAC 1874 3908365 SULF2 TCAGAGTAGAGACACTCAGACGTGG 1875 3908365 SULF2 GTCCTAGTGGGTGGTTTCTATCCAC 1876 3908365 SULF2 CCACAGTGGATCCTCTGGAAGAAAC 1877 3908366 SULF2 TACCTCCTTCGATACTCGTTATGTC 1878 3908368 SULF2 GGACTTTGGTACAACTGATTTCTAC 1879 3908368 SULF2 ACGGGTCCTTTGTGTGCCTTAAGGC 1880 3908368 SULF2 GCCTTAAGGCAGAGTAAAGTAACAG 1881 3908368 SULF2 CTCTCTCCTTGTGGACGTGGTTGAC 1882 3908369 SULF2 CTACAGGAGTTGGTCGATGTGCATG 1883 3908369 SULF2 GTTGGTCGATGTGCATGTCGAGTAC 1884 3908369 SULF2 GGGGCCTGAGCTTTGTACCTGGACC 1885 3908369 SULF2 GGTCGATGTGCATGTCGAGTACCTC 1886 3908371 SULF2 ATCTCATGAAACTAGAGTTGTGTCT 1887 3908371 SULF2 GGTCGCGGTTGTTATTGTGCATGAC 1888 3908371 SULF2 ACGTACTCCTGGTAGTTACTCTGAG 1889 3908371 SULF2 CACTTAAACGTTGACCGAAGGATCT 1890 3908373 SULF2 GTCCGGAGTGCACGAAGTGGGTGCT 1891 3908373 SULF2 AGTGCACGAAGTGGGTGCTGTTGGT 1892 3908373 SULF2 ACCGTCTGCCGCGGAAAGACCTGTG 1893 3908373 SULF2 TGCTGTTGGTCGTGACCGTCTGCCG 1894 3908374 SULF2 AGTTCGCGGACGTCTTGTTGCTGTG 1895 3908374 SULF2 ACGAGTTCGCGGACGTCTTGTTGCT 1896 3908374 SULF2 GACGAGTTCGCGGACGTCTTGTTGC 1897 3908374 SULF2 GGACGTCTTGTTGCTGTGCACGTCG 1898 3908375 SULF2 ACCGACAACGCCCTCGTCTTCGCGT 1899 3908375 SULF2 ACAACGCCCTCGTCTTCGCGTTCTT 1900 3908375 SULF2 GACAACGCCCTCGTCTTCGCGTTCT 1901 3908375 SULF2 CCACACCGACAACGCCCTCGTCTTC 1902 3908377 SULF2 TCTCCGAGGTCAGACGTAGGAAAGT 1903 3908377 SULF2 GTGTTTCCGGCGGAGTTCGTGTCTC 1904 3908377 SULF2 CTCCGAGGTCAGACGTAGGAAAGTC 1905 3908377 SULF2 TGTTTCCGGCGGAGTTCGTGTCTCC 1906 3908381 SULF2 CTTTTTCGCCGGTCTTCTTACACTG 1907 3908381 SULF2 TCGCCGGTCTTCTTACACTGACAGT 1908 3908381 SULF2 TTCGCCGGTCTTCTTACACTGACAG 1909 3908381 SULF2 CCGGTCTTCTTACACTGACAGTGTT 1910 3908382 SULF2 GTCTTGTTTTAATTCTTGGACTCCC 1911 3908382 SULF2 TAATTCTTGGACTCCCTTCAGGCTC 1912 3908382 SULF2 GACGTCTTGTTTTAATTCTTGGACT 1913 3908382 SULF2 GGGACGTCTTGTTTTAATTCTTGGA 1914 3908388 SULF2 GACCTGGACATGTTCAGGGACGTCC 1915 3908388 SULF2 GGATCTCTTGCTGTGTCAGGTCACA 1916 3908388 SULF2 GGTCACACTGGACCTGGACATGTTC 1917 3908388 SULF2 AGGATCTCTTGCTGTGTCAGGTCAC 1918 3908390 SULF2 GTCAGCGAGGTAGGCGAGTCACCGG 1919 3908390 SULF2 TGTTCCGGTCGATACAGGCGTCAGC 1920 3908390 SULF2 GCTTTGGAGTGGTTCGCCGTGACCG 1921 3908390 SULF2 TGCCGTCCCACATGGTGCATCCGGA 1922 3908391 SULF2 GCCCCTGATGTTCGAGTCGGACCGG 1923 3908391 SULF2 GACGTGGACACTGTCGCCCCTGATG 1924 3908391 SULF2 GTTGGAGCACGGGTTCATGATGCCC 1925 3908391 SULF2 TCGACTTCGACGTATTCACGTTCCC 1926 3908393 SULF2 GACTCATGGTCTGCCGCACACTCGT 1927 3908393 SULF2 TGGACACAGTCGCACGACTCATGGT 1928 3908393 SULF2 TGGTCGCACACTTCCTGGACACAGT 1929 3908393 SULF2 CTGCGGGTCCTCCTCTTGAAAGACG 1930 3908394 SULF2 TCCCAGACCGCCCTGAGGAAGAACC 1931 3908394 SULF2 TTCTACTCCCAGACCGCCCTGAGGA 1932 3908394 SULF2 TACTCCCAGACCGCCCTGAGGAAGA 1933 3908394 SULF2 ACTCCCAGACCGCCCTGAGGAAGAA 1934 3908395 SULF2 CCTGCCCTTTAGGTAGGAGTTCGAC 1935 3908395 SULF2 TGTAGCAGGAGTTGTAACTGGACCG 1936 3908395 SULF2 ATGGACGCCTATACCTGCCCTTTAG 1937 3908395 SULF2 CTGTAACGTCCGGACCTGTATGGAC 1938 3908397 SULF2 ACTCAAACTGTAGTCCCAGGGCAAG 1939 3908397 SULF2 TGTGCATGTAGCATATGTGGCGGCT 1940 3908397 SULF2 GTGCCAATGGTGTAGCCGGTCAAAC 1941 3908397 SULF2 GCCCGCTCGACCTGTTGTGCATGTA 1942 3908400 SULF2 ACAGCCACCTGCTGAGGTACCTCTG 1943 3908400 SULF2 GGTTGTACGAGGTCGCCTTCGCGAA 1944 3908400 SULF2 CTTCGCGAACGTCTGGGAGTACAGC 1945 3908400 SULF2 TTGTGACCTAGTACGCGATGTGCCC 1946 3908401 SULF2 TGCAGGTTCTTCTACATGGGCGTGT 1947 3908401 SULF2 TCTGGAGTAGTGGTTACTGTCGCAC 1948 3908401 SULF2 AGGAGTACCAGTAGTCGGTACGTCG 1949 3908401 SULF2 ACTGTCGCACTCGAAGAAGGCGTGC 1950 3908407 SULF2 ACCTGGATTGGTCCGGGAGGTAAAC 1951 3908407 SULF2 GTGACGTGAGACTACTTAGACCACT 1952 3908407 SULF2 CACACTGTCTGAAGGGTGACTACGT 1953 3908407 SULF2 CCGAAGGACTGATTTGAGGTCTCAC 1954 3908417 SULF2 CCGTGTCGTGCTCTCGGCGTGGAAA 1955 3908417 SULF2 CGCGTGAAGTAGTTGCGGAAGCACT 1956 3908417 SULF2 CCACTACTTGTTCTGGGCCGCGTAG 1957 3908417 SULF2 GCGTGGAAACGGCACATGGAGTTAT 1958 3908426 SULF2 TTCGAGCCGGAAGGACAGCGTGGTG 1959 3908426 SULF2 AGCGTGGTGGCGGACTTTCCGTCCA 1960 3908426 SULF2 AACGACAGGCGTTGACACAAGAGGG 1961 3908426 SULF2 GTCCAAAGTCTCCCTGGCGTCCTTG 1962 3908435 SULF2 CGCCTCAGGGGACGCGGGTCGCCGG 1963 3908435 SULF2 CAGGGGACGCGGGTCGCCGGGCCGG 1964 3908435 SULF2 GGGGACGCGGGTCGCCGGGCCGGCC 1965 3908435 SULF2 CTCAGGGGACGCGGGTCGCCGGGCC 1966 3908436 SULF2 GCCTCCGTAGCCCTCCAGCTCTCGG 1967 3908436 SULF2 GCGCCGGTCGGCTCAGGCCTCCGTA 1968 3908436 SULF2 CAAGTGACGGGGCAGGCCTCGACCT 1969 3908436 SULF2 ACACGCAGACACACAGGGCCGCTCC 1970 3908437 SULF2 TGTGCACGTGTGTTCCGAGACCGAG 1971 3908437 SULF2 CTACCGGGAGGACTTAAATAGTGCT 1972 3908437 SULF2 CTAAGTGCAGCAAAGGTCGGTTCAC 1973 3908437 SULF2 CCGCGGCCGGAGAGGTTACCGTTTA 1974 3978625 APEX2 CGACCCTCCACAAGGTCGGGAAATT 1975 3978625 APEX2 CCGCGCCCGACCCTCCACAAGGTCG 1976 3978625 APEX2 GACCCTCCACAAGGTCGGGAAATTC 1977 3978625 APEX2 CAACCGCGCCCGACCCTCCACAAGG 1978 3978626 APEX2 CGACCTACGCCTATAGCAGACAGAG 1979 3978626 APEX2 TCGACCTTGTAGTTACCCTAAGCCT 1980 3978626 APEX2 CCGCGTAAAACCTGCTCGACCTACG 1981 3978626 APEX2 TAGTCCTTGGGTCGTTGACACGGCG 1982 3978629 APEX2 GACATTCCTGTTACGATGGGGTCAC 1983 3978629 APEX2 TCCTTGAGGCCCGAGACCTATCACT 1984 3978629 APEX2 ATACCTTTGTACCTACTCAAATGGG 1985 3978629 APEX2 CCGGACTCACCGGACAAACGGTGGG 1986 3978630 APEX2 CGCGAAGATAGCAAACGACGTTTAG 1987 3978630 APEX2 ATTCCTCTTCTGGAACTGGGATTAG 1988 3978630 APEX2 GGACTCGCCGATCAGAAATTCTACG 1989 3978630 APEX2 CGTTTAGGCTCGTCTTCGGGAGGAC 1990 3978634 APEX2 ACCTACCTGTCGAACGAGTCATTGA 1991 3978634 APEX2 ACGGAGAGTACATCCCGGGAAGTAG 1992 3978634 APEX2 TATCGATGGCGACGAAGGTTGGTTT 1993 3978634 APEX2 ACGAGTCATTGAACCCCACGGTCAG 1994 3978635 APEX2 GAGACACGGACGTTTTGTCACGGGT 1995 3978635 APEX2 CCCCTGTCCTGGGACCAGTATCTGT 1996 3978635 APEX2 GTAGAGTTGATACCGAGGGCCGAAC 1997 3978635 APEX2 TCCGTGGGTCGAGTTCTAGGAAGCG 1998 3978636 APEX2 CTCGACGGATCGGATGGTGACTACT 1999 3978636 APEX2 AGTTTGGGCCCATGTCTGTACGGTT 2000 3978636 APEX2 GTTTCAGGACACAACCTCGTCAGCT 2001 3978636 APEX2 CGGGTCAGTCCAACCGAGATCGTCT 2002 3978637 APEX2 ACTCTTCCTCAATGCCTGGAGTAAG 2003 3978637 APEX2 ACTTCTTCGGTCCTGGGTTGAACCC 2004 3978637 APEX2 CTCGGTACACACTACGCATGACACT 2005 3978637 APEX2 GAACCCGGCGGCGAAGATGTACACA 2006 3978638 APEX2 AGGAACAACCACTCGAAGAACACGG 2007 3978638 APEX2 AACACGGAATTAGGACACTGGGTCG 2008 3978638 APEX2 GGCTTCATGTGCCTGTGATCGACGG 2009 3978638 APEX2 GGACGTGTACTAGACTCCGGTCGAG 2010 3978639 APEX2 ATGAGGTATTTCAACTCAGTCTCTT 2011 3978639 APEX2 ACCTCCATGAGGTATTTCAACTCAG 2012 3978639 APEX2 ACCTGTAACACCTCCATGAGGTATT 2013 3978639 APEX2 GTGAAACCTGTAACACCTCCATGAG 2014 3978641 APEX2 GACACTGGACCTTTCACCCTCGTAA 2015 3978641 APEX2 AACTTTTACCCTGACCATCTGGTCC 2016 3978641 APEX2 ACCCTCGTAACGAAACTTGTGTCAC 2017 3978641 APEX2 TGTGTCACGAACGAGATCGGTTCGG 2018 3978642 APEX2 GTGACACATCAAAAACCCGTAAAGG 2019 3978642 APEX2 GATCGAGAAACGTTGAGTGACACAT 2020 3978642 APEX2 GTCACTTCGCAGTTAGGGACCTAAA 2021 3978642 APEX2 CGTGAACAGACAAGGGACAGGTTAT

Probes/Primers

The present invention provides for a probe set for predicting response of a subject to post-operative radiation therapy for prostate cancer comprising a plurality of probes, wherein (i) the probes in the set are capable of detecting an expression level of at least one target selected from Table 1 or Table 2; and (ii) the expression level determines whether or not the subject will benefit from post-operative radiation therapy with at least about 40% specificity.

The probe set may comprise one or more polynucleotide probes. Individual polynucleotide probes comprise a nucleotide sequence derived from the nucleotide sequence of the target sequences or complementary sequences thereof. The nucleotide sequence of the polynucleotide probe is designed such that it corresponds to, or is complementary to the target sequences. The polynucleotide probe can specifically hybridize under either stringent or lowered stringency hybridization conditions to a region of the target sequences, to the complement thereof, or to a nucleic acid sequence (such as a cDNA) derived therefrom.

The selection of the polynucleotide probe sequences and determination of their uniqueness may be carried out in silico using techniques known in the art, for example, based on a BLASTN search of the polynucleotide sequence in question against gene sequence databases, such as the Human Genome Sequence, UniGene, dbEST or the non-redundant database at NCBI. In one embodiment of the invention, the polynucleotide probe is complementary to a region of a target mRNA derived from a target sequence in the probe set. Computer programs can also be employed to select probe sequences that may not cross hybridize or may not hybridize non-specifically.

In some instances, microarray hybridization of RNA, extracted from prostate cancer tissue samples and amplified, may yield a dataset that is then summarized and normalized by the fRMA technique. After removal (or filtration) of cross-hybridizing PSRs, and PSRs containing less than , the remaining PSRs can be used in further analysis. Following fRMA and filtration, the data can be decomposed into its principal components and an analysis of variance model is used to determine the extent to which a batch effect remains present in the first 10 principal components.

These remaining PSRs can then be subjected to filtration by a T-test between CR (clinical recurrence) and non-CR samples. Using a p-value cut-off of 0.01, the remaining features (e.g., PSRs) can be further refined. Feature selection can be performed by regularized logistic regression using the elastic-net penalty. The regularized regression may be bootstrapped over 1000 times using all training data; with each iteration of bootstrapping, features that have non-zero co-efficient following 3-fold cross validation can be tabulated. In some instances, features that were selected in at least 25% of the total runs were used for model building.

The polynucleotide probes of the present invention may range in length from about 15 nucleotides to the full length of the coding target or non-coding target. In one embodiment of the invention, the polynucleotide probes are at least about 15 nucleotides in length. In another embodiment, the polynucleotide probes are at least about 20 nucleotides in length. In a further embodiment, the polynucleotide probes are at least about 25 nucleotides in length. In another embodiment, the polynucleotide probes are between about 15 nucleotides and about 500 nucleotides in length. In other embodiments, the polynucleotide probes are between about 15 nucleotides and about 450 nucleotides, about 15 nucleotides and about 400 nucleotides, about 15 nucleotides and about 350 nucleotides, about 15 nucleotides and about 300 nucleotides, about 15 nucleotides and about 250 nucleotides, about 15 nucleotides and about 200 nucleotides in length. In some embodiments, the probes are at least 15 nucleotides in length. In some embodiments, the probes are at least 15 nucleotides in length. In some embodiments, the probes are at least 20 nucleotides, at least 25 nucleotides, at least 50 nucleotides, at least 75 nucleotides, at least 100 nucleotides, at least 125 nucleotides, at least 150 nucleotides, at least 200 nucleotides, at least 225 nucleotides, at least 250 nucleotides, at least 275 nucleotides, at least 300 nucleotides, at least 325 nucleotides, at least 350 nucleotides, at least 375 nucleotides in length.

The polynucleotide probes of a probe set can comprise RNA, DNA, RNA or DNA mimetics, or combinations thereof, and can be single-stranded or double-stranded. Thus the polynucleotide probes can be composed of naturally-occurring nucleobases, sugars and covalent internucleoside (backbone) linkages as well as polynucleotide probes having non-naturally-occurring portions which function similarly. Such modified or substituted polynucleotide probes may provide desirable properties such as, for example, enhanced affinity for a target gene and increased stability. The probe set may comprise a coding target and/or a non-coding target. Preferably, the probe set comprises a combination of a coding target and non-coding target.

In some embodiments, the probe set comprise a plurality of target sequences that hybridize to at least about 5 coding targets and/or non-coding targets selected from Table 1 or Table 2. Alternatively, the probe set comprise a plurality of target sequences that hybridize to at least about 10 coding targets and/or non-coding targets selected from Table 1 or Table 2. In some embodiments, the probe set comprise a plurality of target sequences that hybridize to at least about 15 coding targets and/or non-coding targets selected from Table 1 or Table 2. In some embodiments, the probe set comprise a plurality of target sequences that hybridize to at least about 20 coding targets and/or non-coding targets selected from Table 1 or Table 2. In some embodiments, the probe set comprise a plurality of target sequences that hybridize to at least about 24 coding targets and/or non-coding targets selected from Table 1 or Table 2.

The system of the present invention further provides for primers and primer pairs capable of amplifying target sequences defined by the probe set, or fragments or subsequences or complements thereof. The nucleotide sequences of the probe set may be provided in computer-readable media for in silico applications and as a basis for the design of appropriate primers for amplification of one or more target sequences of the probe set.

Primers based on the nucleotide sequences of target sequences can be designed for use in amplification of the target sequences. For use in amplification reactions such as PCR, a pair of primers can be used. The exact composition of the primer sequences is not critical to the invention, but for most applications the primers may hybridize to specific sequences of the probe set under stringent conditions, particularly under conditions of high stringency, as known in the art. The pairs of primers are usually chosen so as to generate an amplification product of at least about 50 nucleotides, more usually at least about 100 nucleotides. Algorithms for the selection of primer sequences are generally known, and are available in commercial software packages. These primers may be used in standard quantitative or qualitative PCR-based assays to assess transcript expression levels of RNAs defined by the probe set. Alternatively, these primers may be used in combination with probes, such as molecular beacons in amplifications using real-time PCR.

In one embodiment, the primers or primer pairs, when used in an amplification reaction, specifically amplify at least a portion of a nucleic acid sequence of a target selected from Table 2 (or subgroups thereof as set forth herein), an RNA form thereof, or a complement to either thereof.

A label can optionally be attached to or incorporated into a probe or primer polynucleotide to allow detection and/or quantitation of a target polynucleotide representing the target sequence of interest. The target polynucleotide may be the expressed target sequence RNA itself, a cDNA copy thereof, or an amplification product derived therefrom, and may be the positive or negative strand, so long as it can be specifically detected in the assay being used. Similarly, an antibody may be labeled.

In certain multiplex formats, labels used for detecting different targets may be distinguishable. The label can be attached directly (e.g., via covalent linkage) or indirectly, e.g., via a bridging molecule or series of molecules (e.g., a molecule or complex that can bind to an assay component, or via members of a binding pair that can be incorporated into assay components, e.g. biotin-avidin or streptavidin). Many labels are commercially available in activated forms which can readily be used for such conjugation (for example through amine acylation), or labels may be attached through known or determinable conjugation schemes, many of which are known in the art.

Labels useful in the invention described herein include any substance which can be detected when bound to or incorporated into the biomolecule of interest. Any effective detection method can be used, including optical, spectroscopic, electrical, piezoelectrical, magnetic, Raman scattering, surface plasmon resonance, colorimetric, calorimetric, etc. A label is typically selected from a chromophore, a lumiphore, a fluorophore, one member of a quenching system, a chromogen, a hapten, an antigen, a magnetic particle, a material exhibiting nonlinear optics, a semiconductor nanocrystal, a metal nanoparticle, an enzyme, an antibody or binding portion or equivalent thereof, an aptamer, and one member of a binding pair, and combinations thereof. Quenching schemes may be used, wherein a quencher and a fluorophore as members of a quenching pair may be used on a probe, such that a change in optical parameters occurs upon binding to the target introduce or quench the signal from the fluorophore. One example of such a system is a molecular beacon. Suitable quencher/fluorophore systems are known in the art. The label may be bound through a variety of intermediate linkages. For example, a polynucleotide may comprise a biotin-binding species, and an optically detectable label may be conjugated to biotin and then bound to the labeled polynucleotide. Similarly, a polynucleotide sensor may comprise an immunological species such as an antibody or fragment, and a secondary antibody containing an optically detectable label may be added.

Chromophores useful in the methods described herein include any substance which can absorb energy and emit light. For multiplexed assays, a plurality of different signaling chromophores can be used with detectably different emission spectra. The chromophore can be a lumophore or a fluorophore. Typical fluorophores include fluorescent dyes, semiconductor nanocrystals, lanthanide chelates, polynucleotide-specific dyes and green fluorescent protein.

In some embodiments, polynucleotides of the invention comprise at least 20 consecutive bases of the nucleic acid sequence of a target selected from Table 1 or Table 2 or a complement thereto. The polynucleotides may comprise at least 21, 22, 23, 24, 25, 27, 30, 32, 35, 40, 45, 50, or more consecutive bases of the nucleic acids sequence of a target selected from Table 1 or Table 2, as applicable.

The polynucleotides may be provided in a variety of formats, including as solids, in solution, or in an array. The polynucleotides may optionally comprise one or more labels, which may be chemically and/or enzymatically incorporated into the polynucleotide.

In some embodiments, one or more polynucleotides provided herein can be provided on a substrate. The substrate can comprise a wide range of material, either biological, nonbiological, organic, inorganic, or a combination of any of these. For example, the substrate may be a polymerized Langmuir Blodgett film, functionalized glass, Si, Ge, GaAs, GaP, SiO2, SiN4, modified silicon, or any one of a wide variety of gels or polymers such as (poly)tetrafluoroethylene, (poly)vinylidenedifluoride, polystyrene, cross-linked polystyrene, polyacrylic, polylactic acid, polyglycolic acid, poly(lactide coglycolide), polyanhydrides, poly(methyl methacrylate), poly(ethylene-co-vinyl acetate), polysiloxanes, polymeric silica, latexes, dextran polymers, epoxies, polycarbonates, or combinations thereof. Conducting polymers and photoconductive materials can be used.

The substrate can take the form of an array, a photodiode, an optoelectronic sensor such as an optoelectronic semiconductor chip or optoelectronic thin-film semiconductor, or a biochip. The location(s) of probe(s) on the substrate can be addressable; this can be done in highly dense formats, and the location(s) can be microaddressable or nanoaddressable.

Diagnostic Samples

A biological sample containing prostate cancer cells is collected from a subject in need of treatment for prostate cancer to evaluate whether a patient will benefit from radiation therapy. Diagnostic samples for use with the systems and in the methods of the present invention comprise nucleic acids suitable for providing RNAs expression information. In principle, the biological sample from which the expressed RNA is obtained and analyzed for target sequence expression can be any material suspected of comprising cancerous tissue or cells. The diagnostic sample can be a biological sample used directly in a method of the invention. Alternatively, the diagnostic sample can be a sample prepared from a biological sample.

In one embodiment, the sample or portion of the sample comprising or suspected of comprising cancerous tissue or cells can be any source of biological material, including cells, tissue or fluid, including bodily fluids. Non-limiting examples of the source of the sample include an aspirate, a needle biopsy, a cytology pellet, a bulk tissue preparation or a section thereof obtained for example by surgery or autopsy, lymph fluid, blood, plasma, serum, tumors, and organs. In some embodiments, the sample is from urine. Alternatively, the sample is from blood, plasma or serum. In some embodiments, the sample is from saliva.

The samples may be archival samples, having a known and documented medical outcome, or may be samples from current patients whose ultimate medical outcome is not yet known.

In some embodiments, the sample may be dissected prior to molecular analysis. The sample may be prepared via macrodissection of a bulk tumor specimen or portion thereof, or may be treated via microdissection, for example via Laser Capture Microdissection (LCM).

The sample may initially be provided in a variety of states, as fresh tissue, fresh frozen tissue, fine needle aspirates, and may be fixed or unfixed. Frequently, medical laboratories routinely prepare medical samples in a fixed state, which facilitates tissue storage. A variety of fixatives can be used to fix tissue to stabilize the morphology of cells, and may be used alone or in combination with other agents. Exemplary fixatives include crosslinking agents, alcohols, acetone, Bouin’s solution, Zenker solution, Hely solution, osmic acid solution and Carnoy solution.

Crosslinking fixatives can comprise any agent suitable for forming two or more covalent bonds, for example an aldehyde. Sources of aldehydes typically used for fixation include formaldehyde, paraformaldehyde, glutaraldehyde or formalin. Preferably, the crosslinking agent comprises formaldehyde, which may be included in its native form or in the form of paraformaldehyde or formalin. One of skill in the art would appreciate that for samples in which crosslinking fixatives have been used special preparatory steps may be necessary including for example heating steps and proteinase-k digestion; see methods.

One or more alcohols may be used to fix tissue, alone or in combination with other fixatives. Exemplary alcohols used for fixation include methanol, ethanol and isopropanol.

Formalin fixation is frequently used in medical laboratories. Formalin comprises both an alcohol, typically methanol, and formaldehyde, both of which can act to fix a biological sample.

Whether fixed or unfixed, the biological sample may optionally be embedded in an embedding medium. Exemplary embedding media used in histology including paraffin, Tissue-Tek® V.I.P.TM, Paramat, Paramat Extra, Paraplast, Paraplast X-tra, Paraplast Plus, Peel Away Paraffin Embedding Wax, Polyester Wax, Carbowax Polyethylene Glycol, PolyfinTM, Tissue Freezing Medium TFMFM, Cryo-GefTM, and OCT Compound (Electron Microscopy Sciences, Hatfield, PA). Prior to molecular analysis, the embedding material may be removed via any suitable techniques, as known in the art. For example, where the sample is embedded in wax, the embedding material may be removed by extraction with organic solvent(s), for example xylenes. Kits are commercially available for removing embedding media from tissues. Samples or sections thereof may be subjected to further processing steps as needed, for example serial hydration or dehydration steps.

In some embodiments, the sample is a fixed, wax-embedded biological sample. Frequently, samples from medical laboratories are provided as fixed, wax-embedded samples, most commonly as formalin-fixed, paraffin embedded (FFPE) tissues.

Whatever the source of the biological sample, the target polynucleotide that is ultimately assayed can be prepared synthetically (in the case of control sequences), but typically is purified from the biological source and subjected to one or more preparative steps. The RNA may be purified to remove or diminish one or more undesired components from the biological sample or to concentrate it. Conversely, where the RNA is too concentrated for the particular assay, it may be diluted.

RNA Extraction

RNA can be extracted and purified from biological samples using any suitable technique. A number of techniques are known in the art, and several are commercially available (e.g., FormaPure nucleic acid extraction kit, Agencourt Biosciences, Beverly MA, High Pure FFPE RNA Micro Kit, Roche Applied Science, Indianapolis, IN). RNA can be extracted from frozen tissue sections using TRIzol (Invitrogen, Carlsbad, CA) and purified using RNeasy Protect kit (Qiagen, Valencia, CA). RNA can be further purified using DNAse I treatment (Ambion, Austin, TX) to eliminate any contaminating DNA. RNA concentrations can be made using a Nanodrop ND-1000 spectrophotometer (Nanodrop Technologies, Rockland, DE). RNA can be further purified to eliminate contaminants that interfere with cDNA synthesis by cold sodium acetate precipitation. RNA integrity can be evaluated by running electropherograms, and RNA integrity number (RIN, a correlative measure that indicates intactness of mRNA) can be determined using the RNA 6000 PicoAssay for the Bioanalyzer 2100 (Agilent Technologies, Santa Clara, CA).

Kits

Kits for performing the desired method(s) are also provided, and comprise a container or housing for holding the components of the kit, one or more vessels containing one or more nucleic acid(s), and optionally one or more vessels containing one or more reagents. The reagents include those described herein, and those reagents useful for performing the methods described, including amplification reagents, and may include one or more probes, primers or primer pairs, enzymes (including polymerases and ligases), intercalating dyes, labeled probes, and labels that can be incorporated into amplification products.

In some embodiments, the kit comprises primers or primer pairs specific for those subsets and combinations of target sequences described herein. The primers or pairs of primers suitable for selectively amplifying the target sequences. The kit may comprise at least two, three, four or five primers or pairs of primers suitable for selectively amplifying one or more targets. The kit may comprise at least 5, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, or more primers or pairs of primers suitable for selectively amplifying one or more targets.

In some embodiments, the primers or primer pairs of the kit, when used in an amplification reaction, specifically amplify a non-coding target, coding target, exonic, or non-exonic target described herein, a nucleic acid sequence corresponding to a target selected from Table 1 or Table 2, an RNA form thereof, or a complement to either thereof. The kit may include a plurality of such primers or primer pairs which can specifically amplify a corresponding plurality of different amplify a non-coding target, coding target, exonic, or non-exonic transcript described herein, a nucleic acid sequence corresponding to a target selected from Table 1 or Table 2, RNA forms thereof, or complements thereto. At least two, three, four or five primers or pairs of primers suitable for selectively amplifying the one or more targets can be provided in kit form. In some embodiments, the kit comprises from five to fifty primers or pairs of primers suitable for amplifying the one or more targets.

The reagents may independently be in liquid or solid form. The reagents may be provided in mixtures. Control samples and/or nucleic acids may optionally be provided in the kit. Control samples may include tissue and/or nucleic acids obtained from or representative of tumor samples from patients showing no evidence of disease, as well as tissue and/or nucleic acids obtained from or representative of tumor samples from patients that develop systemic cancer.

The nucleic acids may be provided in an array format, and thus an array or microarray may be included in the kit. The kit optionally may be certified by a government agency for use in prognosing the disease outcome of cancer patients and/or for designating a treatment modality.

Instructions for using the kit to perform one or more methods of the invention can be provided with the container, and can be provided in any fixed medium. The instructions may be located inside or outside the container or housing, and/or may be printed on the interior or exterior of any surface thereof. A kit may be in multiplex form for concurrently detecting and/or quantitating one or more different target polynucleotides representing the expressed target sequences.

Amplification and Hybridization

Following sample collection and nucleic acid extraction, the nucleic acid portion of the sample comprising RNA that is or can be used to prepare the target polynucleotide(s) of interest can be subjected to one or more preparative reactions. These preparative reactions can include in vitro transcription (IVT), labeling, fragmentation, amplification and other reactions. mRNA can first be treated with reverse transcriptase and a primer to create cDNA prior to detection, quantitation and/or amplification; this can be done in vitro with purified mRNA or in situ, e.g., in cells or tissues affixed to a slide.

By “amplification” is meant any process of producing at least one copy of a nucleic acid, in this case an expressed RNA, and in many cases produces multiple copies. An amplification product can be RNA or DNA, and may include a complementary strand to the expressed target sequence. DNA amplification products can be produced initially through reverse translation and then optionally from further amplification reactions. The amplification product may include all or a portion of a target sequence, and may optionally be labeled. A variety of amplification methods are suitable for use, including polymerase-based methods and ligation-based methods. Exemplary amplification techniques include the polymerase chain reaction method (PCR), the lipase chain reaction (LCR), ribozyme-based methods, self-sustained sequence replication (3SR), nucleic acid sequence-based amplification (NASBA), the use of Q Beta replicase, reverse transcription, nick translation, and the like.

Asymmetric amplification reactions may be used to preferentially amplify one strand representing the target sequence that is used for detection as the target polynucleotide. In some cases, the presence and/or amount of the amplification product itself may be used to determine the expression level of a given target sequence. In other instances, the amplification product may be used to hybridize to an array or other substrate comprising sensor polynucleotides which are used to detect and/or quantitate target sequence expression.

The first cycle of amplification in polymerase-based methods typically forms a primer extension product complementary to the template strand. If the template is single-stranded RNA, a polymerase with reverse transcriptase activity is used in the first amplification to reverse transcribe the RNA to DNA, and additional amplification cycles can be performed to copy the primer extension products. The primers for a PCR must, of course, be designed to hybridize to regions in their corresponding template that can produce an amplifiable segment; thus, each primer must hybridize so that its 3′ nucleotide is paired to a nucleotide in its complementary template strand that is located 3′ from the 3′ nucleotide of the primer used to replicate that complementary template strand in the PCR.

The target polynucleotide can be amplified by contacting one or more strands of the target polynucleotide with a primer and a polymerase having suitable activity to extend the primer and copy the target polynucleotide to produce a full-length complementary polynucleotide or a smaller portion thereof. Any enzyme having a polymerase activity that can copy the target polynucleotide can be used, including DNA polymerases, RNA polymerases, reverse transcriptases, and enzymes having more than one type of polymerase or enzyme activity. The enzyme can be thermolabile or thermostable. Mixtures of enzymes can also be used. Exemplary enzymes include: DNA polymerases such as DNA Polymerase I (“Pol I”), the Klenow fragment of Pol I, T4, T7, Sequenase® T7, Sequenase® Version 2.0 T7, Tub, Taq, Tth, Pfic, Pfu, Tsp, Tfl, Tli and Pyrococcus sp GB-D DNA polymerases; RNA polymerases such as E. coil, SP6, T3 and T7 RNA polymerases; and reverse transcriptases such as AMV, M-MuLV, MMLV, RNAse H MMLV (SuperScript®), SuperScript® II, ThermoScript®, HIV-1, and RAV2 reverse transcriptases. All of these enzymes are commercially available. Exemplary polymerases with multiple specificities include RAV2 and Tli (exo-) polymerases. Exemplary thermostable polymerases include Tub, Taq, Tth, Pfic, Pfu, Tsp, Tfl, Tli and Pyrococcus sp. GB-D DNA polymerases.

Suitable reaction conditions are chosen to permit amplification of the target polynucleotide, including pH, buffer, ionic strength, presence and concentration of one or more salts, presence and concentration of reactants and cofactors such as nucleotides and magnesium and/or other metal ions (e.g., manganese), optional cosolvents, temperature, thermal cycling profile for amplification schemes comprising a polymerase chain reaction, and may depend in part on the polymerase being used as well as the nature of the sample. Cosolvents include formamide (typically at from about 2 to about 10 %), glycerol (typically at from about 5 to about 10 %), and DMSO (typically at from about 0.9 to about 10 %). Techniques may be used in the amplification scheme in order to minimize the production of false positives or artifacts produced during amplification. These include “touchdown” PCR, hot-start techniques, use of nested primers, or designing PCR primers so that they form stem-loop structures in the event of primer-dimer formation and thus are not amplified. Techniques to accelerate PCR can be used, for example centrifugal PCR, which allows for greater convection within the sample, and comprising infrared heating steps for rapid heating and cooling of the sample. One or more cycles of amplification can be performed. An excess of one primer can be used to produce an excess of one primer extension product during PCR; preferably, the primer extension product produced in excess is the amplification product to be detected. A plurality of different primers may be used to amplify different target polynucleotides or different regions of a particular target polynucleotide within the sample.

An amplification reaction can be performed under conditions which allow an optionally labeled sensor polynucleotide to hybridize to the amplification product during at least part of an amplification cycle. When the assay is performed in this manner, real-time detection of this hybridization event can take place by monitoring for light emission or fluorescence during amplification, as known in the art.

Where the amplification product is to be used for hybridization to an array or microarray, a number of suitable commercially available amplification products are available. These include amplification kits available from NuGEN, Inc. (San Carlos, CA), including the WT-OvationTm System, WT-OvationTm System v2, WT-OvationTm Pico System, WT-OvationTm FFPE Exon Module, WT-OvationTm FFPE Exon Module RiboAmp and RiboAmp Plus RNA Amplification Kits (MDS Analytical Technologies (formerly Arcturus) (Mountain View, CA), Genisphere, Inc. (Hatfield, PA), including the RampUp PlusTM and SenseAmpTM RNA Amplification kits, alone or in combination. Amplified nucleic acids may be subjected to one or more purification reactions after amplification and labeling, for example using magnetic beads (e.g., RNAClean magnetic beads, Agencourt Biosciences).

Multiple RNA biomarkers can be analyzed using real-time quantitative multiplex RT-PCR platforms and other multiplexing technologies such as GenomeLab GeXP Genetic Analysis System (Beckman Coulter, Foster City, CA), SmartCycler® 9600 or GeneXpert® Systems (Cepheid, Sunnyvale, CA), ABI 7900 HT Fast Real Time PCR system (Applied Biosystems, Foster City, CA), LightCycler® 480 System (Roche Molecular Systems, Pleasanton, CA), xMAP 100 System (Luminex, Austin, TX) Solexa Genome Analysis System (Illumina, Hayward, CA), OpenArray Real Time qPCR (BioTrove, Woburn, MA) and BeadXpress System (Illumina, Hayward, CA).

Detection and/or Quantification of Target Sequences

Any method of detecting and/or quantitating the expression of the encoded target sequences can in principle be used in the invention. The expressed target sequences can be directly detected and/or quantitated, or may be copied and/or amplified to allow detection of amplified copies of the expressed target sequences or its complement.

Methods for detecting and/or quantifying a target can include Northern blotting, sequencing, array or microarray hybridization, serial analysis of gene expression (SAGE), by enzymatic cleavage of specific structures (e.g., an Invader® assay, Third Wave Technologies, e.g. as described in U.S. Pat. Nos. 5,846,717, 6,090,543; 6,001,567; 5,985,557; and 5,994,069) and amplification methods, e.g. RT-PCR, including in a TaqMan® assay (PE Biosystems, Foster City, Calif., e.g. as described in U.S. Pat. Nos. 5,962,233 and 5,538,848), and may be quantitative or semi-quantitative, and may vary depending on the origin, amount and condition of the available biological sample. Combinations of these methods may also be used. For example, nucleic acids may be amplified, labeled and subjected to microarray analysis.

In some instances, target sequences may be detected by sequencing. Sequencing methods may comprise whole genome sequencing or exome sequencing. Sequencing methods such as Maxim-Gilbert, chain-termination, or high-throughput systems may also be used. Additional, suitable sequencing techniques include classic dideoxy sequencing reactions (Sanger method) using labeled terminators or primers and gel separation in slab or capillary, sequencing by synthesis using reversibly terminated labeled nucleotides, pyrosequencing, 454 sequencing, allele specific hybridization to a library of labeled oligonucleotide probes, sequencing by synthesis using allele specific hybridization to a library of labeled clones that is followed by ligation, real time monitoring of the incorporation of labeled nucleotides during a polymerization step, and SOLiD sequencing.

Additional methods for detecting and/or quantifying a target include single-molecule sequencing (e.g., Helicos, PacBio), sequencing by synthesis (e.g., Illumina, Ion Torrent), sequencing by ligation (e.g., ABI SOLID), sequencing by hybridization (e.g., Complete Genomics), in situ hybridization, bead-array technologies (e.g., Luminex xMAP, Illumina BeadChips), branched DNA technology (e.g., Panomics, Genisphere). Sequencing methods may use fluorescent (e.g., Illumina) or electronic (e.g., Ion Torrent, Oxford Nanopore) methods of detecting nucleotides.

Reverse Transcription for QRT-PCR Analysis

Reverse transcription can be performed by any method known in the art. For example, reverse transcription may be performed using the Omniscript kit (Qiagen, Valencia, CA), Superscript III kit (Invitrogen, Carlsbad, CA), for RT-PCR. Target-specific priming can be performed in order to increase the sensitivity of detection of target sequences and generate target-specific cDNA.

TaqMan® Gene Expression Analysis

TaqMan®RT-PCR can be performed using Applied Biosystems Prism (ABI) 7900 HT instruments in a 51.11 volume with target sequence-specific cDNA equivalent to 1 ng total RNA.

Primers and probes concentrations for TaqMan analysis are added to amplify fluorescent amplicons using PCR cycling conditions such as 95° C. for 10 minutes for one cycle, 95° C. for 20 seconds, and 60° C. for 45 seconds for 40 cycles. A reference sample can be assayed to ensure reagent and process stability. Negative controls (e.g., no template) should be assayed to monitor any exogenous nucleic acid contamination.

Classification Arrays

The present invention contemplates that a probe set or probes derived therefrom may be provided in an array format. In the context of the present invention, an “array” is a spatially or logically organized collection of polynucleotide probes. An array comprising probes specific for a coding target, non-coding target, or a combination thereof may be used. Alternatively, an array comprising probes specific for two or more of the transcripts of a target selected from Table 2, or a product derived thereof, can be used. Desirably, an array may be specific for 5, 10, 15, 20, 25, 30 or more of the transcripts of a target selected from Table 2. Probes useful for the methods of the present invention are provided in Table 1. Expression of these sequences may be detected alone or in combination with other transcripts. In some embodiments, an array is used which comprises a wide range of sensor probes for prostate-specific expression products, along with appropriate control sequences. In some instances, the array may comprise the Human Exon 1.0 ST Array (HuEx 1.0 ST, Affymetrix, Inc., Santa Clara, CA.).

Typically the polynucleotide probes are attached to a solid substrate and are ordered so that the location (on the substrate) and the identity of each are known. The polynucleotide probes can be attached to one of a variety of solid substrates capable of withstanding the reagents and conditions necessary for use of the array. Examples include, but are not limited to, polymers, such as (poly)tetrafluoroethylene, (poly)vinylidenedifluoride, polystyrene, polycarbonate, polypropylene and polystyrene; ceramic; silicon; silicon dioxide; modified silicon; (fused) silica, quartz or glass; functionalized glass; paper, such as filter paper; diazotized cellulose; nitrocellulose filter; nylon membrane; and polyacrylamide gel pad. Substrates that are transparent to light are useful for arrays that may be used in an assay that involves optical detection.

Examples of array formats include membrane or filter arrays (for example, nitrocellulose, nylon arrays), plate arrays (for example, multiwell, such as a 24-, 96-, 256-, 384-, 864- or 1536-well, microtitre plate arrays), pin arrays, and bead arrays (for example, in a liquid “slurry”). Arrays on substrates such as glass or ceramic slides are often referred to as chip arrays or “chips.” Such arrays are well known in the art. In one embodiment of the present invention, the Cancer Prognosticarray is a chip.

Data Analysis

In some embodiments, one or more pattern recognition methods can be used in analyzing the expression level of target sequences. The pattern recognition method can comprise a linear combination of expression levels, or a nonlinear combination of expression levels. In some embodiments, expression measurements for RNA transcripts or combinations of RNA transcript levels are formulated into linear or non-linear models or algorithms (e.g., an ‘expression signature’) and converted into a likelihood score. This likelihood score may indicate the probability that a biological sample is from a patient who will benefit from radiation therapy. Additionally, a likelihood score may indicate the probability that a biological sample is from a patient who may exhibit no evidence of disease, who may exhibit systemic cancer, or who may exhibit biochemical recurrence. The likelihood score can be used to distinguish these disease states. The models and/or algorithms can be provided in machine readable format, and may be used to correlate expression levels or an expression profile with a disease state, and/or to designate a treatment modality for a patient or class of patients.

Assaying the expression level for a plurality of targets may comprise the use of an algorithm or classifier. Array data can be managed, classified, and analyzed using techniques known in the art. Assaying the expression level for a plurality of targets may comprise probe set modeling and data pre-processing. Probe set modeling and data pre-processing can be derived using the Robust Multi-Array (RMA) algorithm or variants GC-RMA, fRMA, Probe Logarithmic Intensity Error (PLIER) algorithm, or variant iterPLIER, or Single-Channel Array Normalization (SCAN) algorithm. Variance or intensity filters can be applied to pre-process data using the RMA algorithm, for example by removing target sequences with a standard deviation of < 10 or a mean intensity of < 100 intensity units of a normalized data range, respectively.

Alternatively, assaying the expression level for a plurality of targets may comprise the use of a machine learning algorithm. The machine learning algorithm may comprise a supervised learning algorithm. Examples of supervised learning algorithms may include Average One-Dependence Estimators (AODE), Artificial neural network (e.g., Backpropagation), Bayesian statistics (e.g., Naive Bayes classifier, Bayesian network, Bayesian knowledge base), Case-based reasoning, Decision trees, Inductive logic programming, Gaussian process regression, Group method of data handling (GMDH), Learning Automata, Learning Vector Quantization, Minimum message length (decision trees, decision graphs, etc.), Lazy learning, Instance-based learning Nearest Neighbor Algorithm, Analogical modeling, Probably approximately correct learning (PAC) learning, Ripple down rules, a knowledge acquisition methodology, Symbolic machine learning algorithms, Subsymbolic machine learning algorithms, Support vector machines, Random Forests, Ensembles of classifiers, Bootstrap aggregating (bagging), and Boosting. Supervised learning may comprise ordinal classification such as regression analysis and Information fuzzy networks (IFN). Alternatively, supervised learning methods may comprise statistical classification, such as AODE, Linear classifiers (e.g., Fisher’s linear discriminant, Logistic regression, Naive Bayes classifier, Perceptron, and Support vector machine), quadratic classifiers, k-nearest neighbor, Boosting, Decision trees (e.g., C4.5, Random forests), Bayesian networks, and Hidden Markov models.

The machine learning algorithms may also comprise an unsupervised learning algorithm. Examples of unsupervised learning algorithms may include artificial neural network, Data clustering, Expectation-maximization algorithm, Self-organizing map, Radial basis function network, Vector Quantization, Generative topographic map, Information bottleneck method, and IBSEAD. Unsupervised learning may also comprise association rule learning algorithms such as Apriori algorithm, Eclat algorithm and FP-growth algorithm. Hierarchical clustering, such as Single-linkage clustering and Conceptual clustering, may also be used. Alternatively, unsupervised learning may comprise partitional clustering such as K-means algorithm and Fuzzy clustering.

In some instances, the machine learning algorithms comprise a reinforcement learning algorithm. Examples of reinforcement learning algorithms include, but are not limited to, temporal difference learning, Q-learning and Learning Automata. Alternatively, the machine learning algorithm may comprise Data Pre-processing.

Preferably, the machine learning algorithms may include, but are not limited to, Average One-Dependence Estimators (AODE), Fisher’s linear discriminant, Logistic regression, Perceptron, Multilayer Perceptron, Artificial Neural Networks, Support vector machines, Quadratic classifiers, Boosting, Decision trees, C4.5, Bayesian networks, Hidden Markov models, High-Dimensional Discriminant Analysis, and Gaussian Mixture Models. The machine learning algorithm may comprise support vector machines, Naive Bayes classifier, k-nearest neighbor, high-dimensional discriminant analysis, or Gaussian mixture models. In some instances, the machine learning algorithm comprises Random Forests.

Therapeutic Regimens

Diagnosing, predicting, or monitoring a status or outcome of prostate cancer may comprise treating prostate cancer or preventing cancer progression. In addition, diagnosing, predicting, or monitoring a status or outcome of prostate cancer may comprise identifying or predicting which patients will be responders or non-responders to an anti-cancer therapy (e.g., radiation therapy). In some instances, diagnosing, predicting, or monitoring may comprise determining a therapeutic regimen. Determining a therapeutic regimen may comprise administering an anti-cancer therapy. Alternatively, determining a therapeutic regimen may comprise modifying, recommending, continuing or discontinuing an anti-cancer regimen. In some instances, if the sample expression patterns are consistent with the expression pattern for a known disease or disease outcome, the expression patterns can be used to designate one or more treatment modalities (e.g., therapeutic regimens, such as radiation therapy or other anti-cancer regimen). An anti-cancer regimen may comprise one or more anti-cancer therapies. Examples of anti-cancer therapies include surgery, chemotherapy, radiation therapy, immunotherapy/biological therapy, and photodynamic therapy.

For example, a patient is selected for treatment with radiation therapy if the patient is identified as likely to be responsive to radiation therapy based on an expression profile or PORTOS, as described herein. The radiation used in treatment can come from a machine outside the body (external-beam radiation therapy) or from radioactive material placed in the body near cancer cells (internal radiation therapy, more commonly called brachytherapy). Systemic radiation therapy uses a radioactive substance, given by mouth or into a vein that travels in the blood to tissues throughout the body.

External-beam radiation therapy may be delivered in the form of photon beams (either x-rays or gamma rays). A photon is the basic unit of light and other forms of electromagnetic radiation. An example of external-beam radiation therapy is called 3-dimensional conformal radiation therapy (3D-CRT). 3D-CRT may use computer software and advanced treatment machines to deliver radiation to very precisely shaped target areas. Many other methods of external-beam radiation therapy are currently being tested and used in cancer treatment. These methods include, but are not limited to, intensity-modulated radiation therapy (IMRT), image-guided radiation therapy (IGRT), Stereotactic radiosurgery (SRS), Stereotactic body radiation therapy (SBRT), and proton therapy.

Intensity-modulated radiation therapy (IMRT) is an example of external-beam radiation and may use hundreds of tiny radiation beam-shaping devices, called collimators, to deliver a single dose of radiation. The collimators can be stationary or can move during treatment, allowing the intensity of the radiation beams to change during treatment sessions. This kind of dose modulation allows different areas of a tumor or nearby tissues to receive different doses of radiation. IMRT is planned in reverse (called inverse treatment planning). In inverse treatment planning, the radiation doses to different areas of the tumor and surrounding tissue are planned in advance, and then a high-powered computer program calculates the required number of beams and angles of the radiation treatment. In contrast, during traditional (forward) treatment planning, the number and angles of the radiation beams are chosen in advance and computers calculate how much dose may be delivered from each of the planned beams. The goal of IMRT is to increase the radiation dose to the areas that need it and reduce radiation exposure to specific sensitive areas of surrounding normal tissue.

Another example of external-beam radiation is image-guided radiation therapy (IGRT). In IGRT, repeated imaging scans (CT, MRI, or PET) may be performed during treatment. These imaging scans may be processed by computers to identify changes in a tumor’s size and location due to treatment and to allow the position of the patient or the planned radiation dose to be adjusted during treatment as needed. Repeated imaging can increase the accuracy of radiation treatment and may allow reductions in the planned volume of tissue to be treated, thereby decreasing the total radiation dose to normal tissue.

Tomotherapy is a type of image-guided IMRT. A tomotherapy machine is a hybrid between a CT imaging scanner and an external-beam radiation therapy machine. The part of the tomotherapy machine that delivers radiation for both imaging and treatment can rotate completely around the patient in the same manner as a normal CT scanner. Tomotherapy machines can capture CT images of the patient’s tumor immediately before treatment sessions, to allow for very precise tumor targeting and sparing of normal tissue.

Stereotactic radiosurgery (SRS) can deliver one or more high doses of radiation to a small tumor. SRS uses extremely accurate image-guided tumor targeting and patient positioning. Therefore, a high dose of radiation can be given without excess damage to normal tissue. SRS can be used to treat small tumors with well-defined edges. It is most commonly used in the treatment of brain or spinal tumors and brain metastases from other cancer types. For the treatment of some brain metastases, patients may receive radiation therapy to the entire brain (called whole-brain radiation therapy) in addition to SRS. SRS requires the use of a head frame or other device to immobilize the patient during treatment to ensure that the high dose of radiation is delivered accurately.

Stereotactic body radiation therapy (SBRT) delivers radiation therapy in fewer sessions, using smaller radiation fields and higher doses than 3D-CRT in most cases. SBRT may treat tumors that lie outside the brain and spinal cord. Because these tumors are more likely to move with the normal motion of the body, and therefore cannot be targeted as accurately as tumors within the brain or spine, SBRT is usually given in more than one dose. SBRT can be used to treat small, isolated tumors, including cancers in the lung and liver. SBRT systems may be known by their brand names, such as the CyberKnife®.

In proton therapy, external-beam radiation therapy may be delivered by proton. Protons are a type of charged particle. Proton beams differ from photon beams mainly in the way they deposit energy in living tissue. Whereas photons deposit energy in small packets all along their path through tissue, protons deposit much of their energy at the end of their path (called the Bragg peak) and deposit less energy along the way. Use of protons may reduce the exposure of normal tissue to radiation, possibly allowing the delivery of higher doses of radiation to a tumor.

Other charged particle beams such as electron beams may be used to irradiate superficial tumors, such as skin cancer or tumors near the surface of the body, but they cannot travel very far through tissue.

Internal radiation therapy (brachytherapy) is radiation delivered from radiation sources (radioactive materials) placed inside or on the body. Several brachytherapy techniques are used in cancer treatment. Interstitial brachytherapy may use a radiation source placed within tumor tissue, such as within a prostate tumor. Intracavitary brachytherapy may use a source placed within a surgical cavity or a body cavity, such as the chest cavity, near a tumor. Episcleral brachytherapy, which may be used to treat melanoma inside the eye, may use a source that is attached to the eye. In brachytherapy, radioactive isotopes can be sealed in tiny pellets or “seeds.” These seeds may be placed in patients using delivery devices, such as needles, catheters, or some other type of carrier. As the isotopes decay naturally, they give off radiation that may damage nearby cancer cells. Brachytherapy may be able to deliver higher doses of radiation to some cancers than external-beam radiation therapy while causing less damage to normal tissue.

Brachytherapy can be given as a low-dose-rate or a high-dose-rate treatment. In low-dose-rate treatment, cancer cells receive continuous low-dose radiation from the source over a period of several days. In high-dose-rate treatment, a robotic machine attached to delivery tubes placed inside the body may guide one or more radioactive sources into or near a tumor, and then removes the sources at the end of each treatment session. High-dose-rate treatment can be given in one or more treatment sessions. An example of a high-dose-rate treatment is the MammoSite® system. Bracytherapy may be used to treat patients with breast cancer who have undergone breast-conserving surgery.

The placement of brachytherapy sources can be temporary or permanent. For permanent brachytherapy, the sources may be surgically sealed within the body and left there, even after all of the radiation has been given off. In some instances, the remaining material (in which the radioactive isotopes were sealed) does not cause any discomfort or harm to the patient. Permanent brachytherapy is a type of low-dose-rate brachytherapy. For temporary brachytherapy, tubes (catheters) or other carriers are used to deliver the radiation sources, and both the carriers and the radiation sources are removed after treatment. Temporary brachytherapy can be either low-dose-rate or high-dose-rate treatment. Brachytherapy may be used alone or in addition to external-beam radiation therapy to provide a “boost” of radiation to a tumor while sparing surrounding normal tissue.

In systemic radiation therapy, a patient may swallow or receive an injection of a radioactive substance, such as radioactive iodine or a radioactive substance bound to a monoclonal antibody. Radioactive iodine (131I) is a type of systemic radiation therapy commonly used to help treat cancer, such as thyroid cancer. Thyroid cells naturally take up radioactive iodine. For systemic radiation therapy for some other types of cancer, a monoclonal antibody may help target the radioactive substance to the right place. The antibody joined to the radioactive substance travels through the blood, locating and killing tumor cells. For example, the drug ibritumomab tiuxetan (Zevalin®) may be used for the treatment of certain types of B-cell non-Hodgkin lymphoma (NHL). The antibody part of this drug recognizes and binds to a protein found on the surface of B lymphocytes. The combination drug regimen of tositumomab and iodine I 131 tositumomab (Bexxar®) may be used for the treatment of certain types of cancer, such as NHL. In this regimen, nonradioactive tositumomab antibodies may be given to patients first, followed by treatment with tositumomab antibodies that have 131I attached. Tositumomab may recognize and bind to the same protein on B lymphocytes as ibritumomab. The nonradioactive form of the antibody may help protect normal B lymphocytes from being damaged by radiation from 131I.

Some systemic radiation therapy drugs relieve pain from cancer that has spread to the bone (bone metastases). This is a type of palliative radiation therapy. The radioactive drugs samarium-153-lexidronam (Quadramet®) and strontium-89 chloride (Metastron®) are examples of radiopharmaceuticals may be used to treat pain from bone metastases.

In addition, patients, especially those not identified as likely to benefit from radiation therapy, may be administered other cancer treatments such as, but not limited to, surgery, chemotherapy, immunotherapy, hormonal therapy, biologic therapy, or any combination thereof.

Surgical oncology uses surgical methods to diagnose, stage, and treat cancer, and to relieve certain cancer-related symptoms. Surgery may be used to remove the tumor (e.g., excisions, resections, debulking surgery), reconstruct a part of the body (e.g., restorative surgery), and/or to relieve symptoms such as pain (e.g., palliative surgery). Surgery may also include cryosurgery. Cryosurgery (also called cryotherapy) may use extreme cold produced by liquid nitrogen (or argon gas) to destroy abnormal tissue. Cryosurgery can be used to treat external tumors, such as those on the skin. For external tumors, liquid nitrogen can be applied directly to the cancer cells with a cotton swab or spraying device. Cryosurgery may also be used to treat tumors inside the body (internal tumors and tumors in the bone). For internal tumors, liquid nitrogen or argon gas may be circulated through a hollow instrument called a cryoprobe, which is placed in contact with the tumor. An ultrasound or MRI may be used to guide the cryoprobe and monitor the freezing of the cells, thus limiting damage to nearby healthy tissue. A ball of ice crystals may form around the probe, freezing nearby cells. Sometimes more than one probe is used to deliver the liquid nitrogen to various parts of the tumor. The probes may be put into the tumor during surgery or through the skin (percutaneously). After cryosurgery, the frozen tissue thaws and may be naturally absorbed by the body (for internal tumors), or may dissolve and form a scab (for external tumors).

Chemotherapeutic agents may also be used for the treatment of prostate cancer. Examples of chemotherapeutic agents include alkylating agents, anti-metabolites, plant alkaloids and terpenoids, vinca alkaloids, podophyllotoxin, taxanes, topoisomerase inhibitors, and cytotoxic antibiotics. Cisplatin, carboplatin, and oxaliplatin are examples of alkylating agents. Other alkylating agents include mechlorethamine, cyclophosphamide, chlorambucil, ifosfamide. Alkylating agents may impair cell function by forming covalent bonds with the amino, carboxyl, sulfhydryl, and phosphate groups in biologically important molecules. Alternatively, alkylating agents may chemically modify a cell’s DNA.

Anti-metabolites are another example of chemotherapeutic agents. Anti-metabolites may masquerade as purines or pyrimidines and may prevent purines and pyrimidines from becoming incorporated in to DNA during the “S” phase (of the cell cycle), thereby stopping normal development and division. Antimetabolites may also affect RNA synthesis. Examples of metabolites include azathioprine and mercaptopurine.

Alkaloids may be derived from plants and block cell division may also be used for the treatment of cancer. Alkyloids may prevent microtubule function. Examples of alkaloids are vinca alkaloids and taxanes. Vinca alkaloids may bind to specific sites on tubulin and inhibit the assembly of tubulin into microtubules (M phase of the cell cycle). The vinca alkaloids may be derived from the Madagascar periwinkle, Catharanthus roseus (formerly known as Vinca rosea). Examples of vinca alkaloids include, but are not limited to, vincristine, vinblastine, vinorelbine, or vindesine. Taxanes are diterpenes produced by the plants of the genus Taxus (yews). Taxanes may be derived from natural sources or synthesized artificially. Taxanes include paclitaxel (Taxol) and docetaxel (Taxotere). Taxanes may disrupt microtubule function. Microtubules are essential to cell division, and taxanes may stabilize GDP-bound tubulin in the microtubule, thereby inhibiting the process of cell division. Thus, in essence, taxanes may be mitotic inhibitors. Taxanes may also be radiosensitizing and often contain numerous chiral centers.

Alternative chemotherapeutic agents include podophyllotoxin. Podophyllotoxin is a plant-derived compound that may help with digestion and may be used to produce cytostatic drugs such as etoposide and teniposide. They may prevent the cell from entering the G1 phase (the start of DNA replication) and the replication of DNA (the S phase).

Topoisomerases are essential enzymes that maintain the topology of DNA. Inhibition of type I or type II topoisomerases may interfere with both transcription and replication of DNA by upsetting proper DNA supercoiling. Some chemotherapeutic agents may inhibit topoisomerases. For example, some type I topoisomerase inhibitors include camptothecins: irinotecan and topotecan. Examples of type II inhibitors include amsacrine, etoposide, etoposide phosphate, and teniposide.

Another example of chemotherapeutic agents is cytotoxic antibiotics. Cytotoxic antibiotics are a group of antibiotics that are used for the treatment of cancer because they may interfere with DNA replication and/or protein synthesis. Cytotoxic antiobiotics include, but are not limited to, actinomycin, anthracyclines, doxorubicin, daunorubicin, valrubicin, idarubicin, epirubicin, bleomycin, plicamycin, and mitomycin.

Alternatively or additionally, the anti-cancer treatment may comprise immunotherapy (sometimes called, biological therapy, biotherapy, biologic therapy, or biological response modifier (BRM) therapy), which uses the body’s immune system, either directly or indirectly, to fight cancer or to lessen the side effects that may be caused by some cancer treatments. Immunotherapies include interferons, interleukins, colony-stimulating factors, monoclonal antibodies, vaccines, immune cell-based therapy, gene therapy, and nonspecific immunomodulating agents.

Interferons (IFNs) are types of cytokines that occur naturally in the body. Interferon alpha, interferon beta, and interferon gamma are examples of interferons that may be used in cancer treatment.

Like interferons, interleukins (ILs) are cytokines that occur naturally in the body and can be made in the laboratory. Many interleukins have been identified for the treatment of cancer. For example, interleukin-2 (IL-2 or aldesleukin), interleukin 7, and interleukin 12 have may be used as an anti-cancer treatment. IL-2 may stimulate the growth and activity of many immune cells, such as lymphocytes, that can destroy cancer cells. Interleukins may be used to treat a number of cancers, including leukemia, lymphoma, and brain, colorectal, ovarian, breast, kidney and prostate cancers.

Colony-stimulating factors (CSFs) (sometimes called hematopoietic growth factors) may also be used for the treatment of cancer. Some examples of CSFs include, but are not limited to, G-CSF (filgrastim) and GM-CSF (sargramostim). CSFs may promote the division of bone marrow stem cells and their development into white blood cells, platelets, and red blood cells. Bone marrow is critical to the body’s immune system because it is the source of all blood cells. Because anticancer drugs can damage the body’s ability to make white blood cells, red blood cells, and platelets, stimulation of the immune system by CSFs may benefit patients undergoing other anti-cancer treatment, thus CSFs may be combined with other anti-cancer therapies, such as chemotherapy. CSFs may be used to treat a large variety of cancers, including lymphoma, leukemia, multiple myeloma, melanoma, and cancers of the brain, lung, esophagus, breast, uterus, ovary, prostate, kidney, colon, and rectum.

Another type of immunotherapy includes monoclonal antibodies (MOABs or MoABs). These antibodies may be produced by a single type of cell and may be specific for a particular antigen. To create MOABs, a human cancer cells may be injected into mice. In response, the mouse immune system can make antibodies against these cancer cells. The mouse plasma cells that produce antibodies may be isolated and fused with laboratory-grown cells to create “hybrid” cells called hybridomas. Hybridomas can indefinitely produce large quantities of these pure antibodies, or MOABs. MOABs may be used in cancer treatment in a number of ways. For instance, MOABs that react with specific types of cancer may enhance a patient’s immune response to the cancer. MOABs can be programmed to act against cell growth factors, thus interfering with the growth of cancer cells.

MOABs may be linked to other anti-cancer therapies such as chemotherapeutics, radioisotopes (radioactive substances), other biological therapies, or other toxins. When the antibodies latch onto cancer cells, they deliver these anti-cancer therapies directly to the tumor, helping to destroy it. MOABs carrying radioisotopes may also prove useful in diagnosing certain cancers, such as colorectal, ovarian, and prostate.

Rituxan® (rituximab) and Herceptin® (trastuzumab) are examples of MOABs that may be used as a biological therapy. Rituxan may be used for the treatment of non-Hodgkin lymphoma. Herceptin can be used to treat metastatic breast cancer in patients with tumors that produce excess amounts of a protein called HER2. Alternatively, MOABs may be used to treat lymphoma, leukemia, melanoma, and cancers of the brain, breast, lung, kidney, colon, rectum, ovary, prostate, and other areas.

Cancer vaccines are another form of immunotherapy. Cancer vaccines may be designed to encourage the patient’s immune system to recognize cancer cells. Cancer vaccines may be designed to treat existing cancers (therapeutic vaccines) or to prevent the development of cancer (prophylactic vaccines). Therapeutic vaccines may be injected in a person after cancer is diagnosed. These vaccines may stop the growth of existing tumors, prevent cancer from recurring, or eliminate cancer cells not killed by prior treatments. Cancer vaccines given when the tumor is small may be able to eradicate the cancer. On the other hand, prophylactic vaccines are given to healthy individuals before cancer develops. These vaccines are designed to stimulate the immune system to attack viruses that can cause cancer. By targeting these cancer-causing viruses, development of certain cancers may be prevented. For example, cervarix and gardasil are vaccines to treat human papilloma virus and may prevent cervical cancer. Therapeutic vaccines may be used to treat melanoma, lymphoma, leukemia, and cancers of the brain, breast, lung, kidney, ovary, prostate, pancreas, colon, and rectum. Cancer vaccines can be used in combination with other anti-cancer therapies.

Immune cell-based therapy is also another form of immunotherapy. Adoptive cell transfer may include the transfer of immune cells such as dendritic cells, T cells (e.g., cytotoxic T cells), or natural killer (NK) cells to activate a cytotoxic response or attack cancer cells in a patient. Autologous immune cell-based therapy involves the transfer of a patient’s own immune cells after expansion in vitro.

Gene therapy is another example of a biological therapy. Gene therapy may involve introducing genetic material into a person’s cells to fight disease. Gene therapy methods may improve a patient’s immune response to cancer. For example, a gene may be inserted into an immune cell to enhance its ability to recognize and attack cancer cells. In another approach, cancer cells may be injected with genes that cause the cancer cells to produce cytokines and stimulate the immune system.

In some instances, biological therapy includes nonspecific immunomodulating agents. Nonspecific immunomodulating agents are substances that stimulate or indirectly augment the immune system. Often, these agents target key immune system cells and may cause secondary responses such as increased production of cytokines and immunoglobulins. Two nonspecific immunomodulating agents used in cancer treatment are bacillus Calmette-Guerin (BCG) and levamisole. BCG may be used in the treatment of superficial bladder cancer following surgery. BCG may work by stimulating an inflammatory, and possibly an immune, response. A solution of BCG may be instilled in the bladder. Levamisole is sometimes used along with fluorouracil (5-FU) chemotherapy in the treatment of stage III (Dukes′ C) colon cancer following surgery. Levamisole may act to restore depressed immune function.

Photodynamic therapy (PDT) is an anti-cancer treatment that may use a drug, called a photosensitizer or photosensitizing agent, and a particular type of light. When photosensitizers are exposed to a specific wavelength of light, they may produce a form of oxygen that kills nearby cells. A photosensitizer may be activated by light of a specific wavelength. This wavelength determines how far the light can travel into the body. Thus, photosensitizers and wavelengths of light may be used to treat different areas of the body with PDT.

In the first step of PDT for cancer treatment, a photosensitizing agent may be injected into the bloodstream. The agent may be absorbed by cells all over the body but may stay in cancer cells longer than it does in normal cells. Approximately 24 to 72 hours after injection, when most of the agent has left normal cells but remains in cancer cells, the tumor can be exposed to light. The photosensitizer in the tumor can absorb the light and produces an active form of oxygen that destroys nearby cancer cells. In addition to directly killing cancer cells, PDT may shrink or destroy tumors in two other ways. The photosensitizer can damage blood vessels in the tumor, thereby preventing the cancer from receiving necessary nutrients. PDT may also activate the immune system to attack the tumor cells.

The light used for PDT can come from a laser or other sources. Laser light can be directed through fiber optic cables (thin fibers that transmit light) to deliver light to areas inside the body. For example, a fiber optic cable can be inserted through an endoscope (a thin, lighted tube used to look at tissues inside the body) into the lungs or esophagus to treat cancer in these organs. Other light sources include light-emitting diodes (LEDs), which may be used for surface tumors, such as skin cancer. PDT is usually performed as an outpatient procedure. PDT may also be repeated and may be used with other therapies, such as surgery, radiation, or chemotherapy.

Extracorporeal photopheresis (ECP) is a type of PDT in which a machine may be used to collect the patient’s blood cells. The patient’s blood cells may be treated outside the body with a photosensitizing agent, exposed to light, and then returned to the patient. ECP may be used to help lessen the severity of skin symptoms of cutaneous T-cell lymphoma that has not responded to other therapies. ECP may be used to treat other blood cancers, and may also help reduce rejection after transplants.

Additionally, photosensitizing agent, such as porfimer sodium or Photofrin®, may be used in PDT to treat or relieve the symptoms of esophageal cancer and non-small cell lung cancer. Porfimer sodium may relieve symptoms of esophageal cancer when the cancer obstructs the esophagus or when the cancer cannot be satisfactorily treated with laser therapy alone. Porfimer sodium may be used to treat non-small cell lung cancer in patients for whom the usual treatments are not appropriate, and to relieve symptoms in patients with non-small cell lung cancer that obstructs the airways. Porfimer sodium may also be used for the treatment of precancerous lesions in patients with Barrett esophagus, a condition that can lead to esophageal cancer.

Laser therapy may use high-intensity light to treat cancer and other illnesses. Lasers can be used to shrink or destroy tumors or precancerous growths. Lasers are most commonly used to treat superficial cancers (cancers on the surface of the body or the lining of internal organs) such as basal cell skin cancer and the very early stages of some cancers, such as cervical, penile, vaginal, vulvar, and non-small cell lung cancer.

Lasers may also be used to relieve certain symptoms of cancer, such as bleeding or obstruction. For example, lasers can be used to shrink or destroy a tumor that is blocking a patient’s trachea (windpipe) or esophagus. Lasers also can be used to remove colon polyps or tumors that are blocking the colon or stomach.

Laser therapy is often given through a flexible endoscope (a thin, lighted tube used to look at tissues inside the body). The endoscope is fitted with optical fibers (thin fibers that transmit light). It is inserted through an opening in the body, such as the mouth, nose, anus, or vagina. Laser light is then precisely aimed to cut or destroy a tumor.

Laser-induced interstitial thermotherapy (LITT), or interstitial laser photocoagulation, also uses lasers to treat some cancers. LITT is similar to a cancer treatment called hyperthermia, which uses heat to shrink tumors by damaging or killing cancer cells. During LITT, an optical fiber is inserted into a tumor. Laser light at the tip of the fiber raises the temperature of the tumor cells and damages or destroys them. LITT is sometimes used to shrink tumors in the liver.

Laser therapy can be used alone, but most often it is combined with other treatments, such as surgery, chemotherapy, or radiation therapy. In addition, lasers can seal nerve endings to reduce pain after surgery and seal lymph vessels to reduce swelling and limit the spread of tumor cells.

Lasers used to treat cancer may include carbon dioxide (CO2) lasers, argon lasers, and neodymium:yttrium-aluminum-garnet (Nd:YAG) lasers. Each of these can shrink or destroy tumors and can be used with endoscopes. CO2 and argon lasers can cut the skin’s surface without going into deeper layers. Thus, they can be used to remove superficial cancers, such as skin cancer. In contrast, the Nd:YAG laser is more commonly applied through an endoscope to treat internal organs, such as the uterus, esophagus, and colon. Nd:YAG laser light can also travel through optical fibers into specific areas of the body during LITT. Argon lasers are often used to activate the drugs used in PDT.

For patients with systemic disease after a prostatectomy, systemic radiation therapy (e.g., samarium or strontium) may be combined with additional treatment modalities such as adjuvant chemotherapy (e.g., docetaxel, mitoxantrone, cabazitaxel, estramustine and prednisone), and/or hormone therapy including anti-androgen therapy (e.g., surgical castration, finasteride, flutamide, bicalutamide, niltamide, enzalutamide, ketoconazole and dutasteride); lutenizing hormone releasing hormone (LHRH) agonists, (leuprolide, goserelin, triptorelin and histrelin) and/or LHRH antagonists, also known as gonadotropin-releasing hormone antagonists, (degarelix, ganirelix, cetrorelix and abarelix). Such patients would likely be treated immediately with radiation therapy either alone or in combination with one or more other treatment modalities in order to eliminate presumed micro-metastatic disease.

Such patients can also be more closely monitored for signs of disease progression. For patients with biochemical recurrence only (BCR-only or elevated PSA that does not rapidly become manifested as systemic disease), only localized adjuvant therapy (e.g., radiation therapy of the prostate bed) or a short course of anti-androgen therapy would likely be administered. For patients with no evidence of disease (NED), adjuvant therapy would not likely be recommended by their physicians in order to avoid treatment-related side effects such as metabolic syndrome (e.g., hypertension, diabetes and/or weight gain), osteoporosis, proctitis, incontinence or impotence. Patients with NED could be designated for watchful waiting, or for no treatment. Patients with systemic disease, but who have successive PSA increases, could be designated for watchful waiting, increased monitoring, or lower dose or shorter duration radiation therapy.

Target sequences can be grouped so that information obtained about the set of target sequences in the group can be used to make or assist in making a clinically relevant judgment such as a diagnosis, prognosis, or treatment choice.

A patient report is also provided comprising a representation of measured expression levels of a plurality of target sequences in a biological sample from the patient, wherein the representation comprises expression levels of target sequences corresponding to any one, two, three, four, five, six, eight, ten, twenty, or more of the target sequences corresponding to a target selected from Table 1 or Table 2, the subsets described herein, or a combination thereof. In some embodiments, the representation of the measured expression level(s) may take the form of a linear or nonlinear combination of expression levels of the target sequences of interest. The patient report may further include a PORTOS. The patient report may be provided in a machine (e.g., a computer) readable format and/or in a hard (paper) copy. The report can also include standard measurements of expression levels of said plurality of target sequences from one or more sets of patients with known disease status and/or outcome. The report can be used to inform the patient and/or treating physician of the expression levels of the expressed target sequences, the likely medical diagnosis and/or implications, and optionally may recommend a treatment modality (e.g., radiation therapy) for the patient.

Also provided are representations of the gene expression profiles useful for treating, diagnosing, prognosticating, and otherwise assessing disease. In some embodiments, these profile representations are reduced to a medium that can be automatically read by a machine such as computer readable media (magnetic, optical, and the like). The articles can also include instructions for assessing the gene expression profiles in such media. For example, the articles may comprise a readable storage form having computer instructions for comparing gene expression profiles of the portfolios of genes described above and/or calculating a PORTOS based on the gene expression profiles. The articles may also have gene expression profiles digitally recorded therein so that they may be compared with gene expression data from patient samples. Alternatively, the profiles can be recorded in different representational format. A graphical recordation is one such format. Clustering algorithms can assist in the visualization of such data.

Prediction of Treatment Response to Radiation Therapy

A radiation response genomic signature can be utilized to predict whether or not a patient who has prostate cancer will benefit from radiation therapy. In particular, a post-operative radiation therapy outcome score (PORTOS) can be calculated based on the levels of expression of a plurality of genes selected from Table 2 to determine whether or not the subject is likely to benefit from post-operative radiation therapy (see Examples). A PORTOS greater than 0 (i.e., high PORTOS) indicates that a subject will benefit from post-operative radiation therapy, whereas a PORTOS of less than or equal to 0 (i.e., low PORTOS) indicates that a subject will not benefit from post-operative radiation therapy. Thus, patients with high PORTOS signature scores are more likely to benefit from radiation treatment after surgery and may be prescribed or administered radiation therapy.

III. Experimental

Below are examples of specific embodiments for carrying out the present invention. The examples are offered for illustrative purposes only, and are not intended to limit the scope of the present invention in any way.

Efforts have been made to ensure accuracy with respect to numbers used (e.g., amounts, temperatures, etc.), but some experimental error and deviation should, of course, be allowed for.

EXAMPLES Example 1: Development of a Genetic Signature to Predict Post-Operative Radiation Therapy Response in Prostate Cancer Patients.

DNA Damage Repair (DDR) genes and pathways are significantly associated with increased metastatic progression risk (Evans et al., Patient-Level DNA Damage and Repair Pathway Profiles and Prognosis After Prostatectomy for High-Risk Prostate Cancer, JAMA Oncol. 2016 Jan 7:1-10). DDR genes were evaluated for their utility in a radiation response signature prostate cancer patients following prostatectomy. An 1800 gene compilation from Gene Ontology (GO) and Gene Set Enrichment Analysis (GSEA) related to response to DNA damage and radiation and in the Human Exon Array platform were collected to identify a subset of genes having the most potential to predict response to radiation therapy (RT).

To develop a post-operative radiation therapy response signature, a 1:1 matching was performed for patients treated and untreated with RT within a year in the MCI case-control prostatectomy cohort (Erho et al., Discovery and validation of a prostate cancer genomic classifier that predicts early metastasis following radical prostatectomy. PLoS One 2013; 8: e66855). Prostate cancer patients considered “treated” received adjuvant or salvage post-operative radiation after radical prostatectomy and before the primary endpoint of metastasis. Matching between treated and untreated arms was performed on Gleason score, pre-operative prostate specific antigen (PSA), positive surgical margins (SM), extracapsular extension (ECE), seminal vesicle invasion (SVI), lymph node invasion (LNI), and androgen deprivation therapy (ADT). Gleason score was categorized into low (<7), intermediate (7), and high (8-10). Similarly, PSA was stratified into low (<10 ng/dL), intermediate (10-20 ng/dL), and high (>20 ng/dL). SM, ECE, SVI, and LNI were treated as binary variables and defined by the respective institutions. The resulting matched training prostatectomy cohort (N=196) with whole-genome expression profiles was used to develop the radiation response signature.

Using the training cohort, each of the 1800 genes was ranked in order of its univariate interaction p-value in a Cox proportional hazards model. This ranked gene list was used to train a ridge-penalized Cox model, using metastasis as the endpoint, and with treatment and the interaction terms of treatment and each gene as the variables. Feature selection was performed by varying the number of included features from 10 to 25 (9 to 24 genes in addition to treatment) in order to range from approximately 10 to 4 events per variable in the training cohort. The final gene list was the model that minimized the interaction p-value in the training cohort. The predictions from the model are calculated by taking the difference of the predictions without RT and with RT, and converting to binary scores using a cutoff of 0. The resulting score is the Post-Operative Radiation Therapy Outcome Score (PORTOS) where patients with scores greater than 0 (high PORTOS) benefit from treatment, and patients with scores less than or equal to 0 (low PORTOS) do not benefit from treatment. As a result a 24-gene model was developed using ridge-penalized Cox regression to model the interactions of the genes and radiation therapy to generate the PORTOS [Table 2]. The model was then applied to the independent validation cohort.

TABLE 2 A list of the 24 genes in PORTOS model with their regression coefficients Gene Coefficient Gene Coefficient DRAM1 -0.102 HCLS1 -0.008 KRT14 -0.847 DTL 1.161 PTPN22 -1.029 IL7R 0.135 ZMAT3 0.118 UBA7 0.291 ARHGAP15 -1.114 NEK1 0.678 IL1B -1.502 CDKN2AIP 0.466 ANLN -1.233 APEX2 0.671 RPS27A 0.364 KIF23 1.01 MUM1 0.444 SULF2 -0.288 TOP2A 1.378 PLK2 -1.294 GNG11 0.41 EME1 1.39 CDKN3 -0.848 BIN2 0.529

Example 2: PORTOS Is Predictive of Response to Radiation Therapy in Prostate Cancer Patients

In the matched training cohort, PORTOS was able to predict response to radiation therapy (RT) as evidenced by the significant interaction term (p<0.0001, FIG. 1A). In patients with high scores (PORTOS>0), treated patients had better outcomes than untreated patients with a 10-year metastasis rate of 5% in RT treated patients and 63% in untreated patients (p<0.0001, HR=0.12 [0.033-0.41], FIGS. 1B and 2A), whereas in patients with low scores (PORTOS<0), untreated patients had better outcomes with a 10-year metastasis rate of 31%, compared to 57% in RT treated patients (p=0.0001, HR=2.5 [1.6-4.1], FIGS. 1B and 2B). These results showed that the PORTOS of the present invention was useful for predicting benefit from post-operative RT in patients with prostate cancer. These results also indicated that the methods of the present invention are useful for treating prostate cancer. These results further indicated that methods of the present invention are useful for predicting response to post-operative radiation therapy and treating a subject for prostate cancer.

Example 3: PORTOS Is Predictive of Response to Radiation Therapy in an Independent Validation of the Model

To independently validate the model, a matched cohort of treated and untreated radiation therapy (RT) patients was designed using a pooled cohort from four clinical sites (MCII, THU, TJU and DVA). These results were confirmed in an independent matched validation cohort, with a significant interaction term (p<0.05, FIG. 1C). Within the high PORTOS group, patients treated with RT had better outcomes than untreated patients (p=0.01, HR=0.19 [0.048-0.78], FIG. 2C), with a 10-year metastasis rate of 4% in RT treated patients and 31% in untreated patients (FIG. 1D). Within the low PORTOS group, untreated patients had outcomes similar as treated patients (p=0.77, HR=0.92 [0.56-1.5], FIG. 2D) with 10-year metastasis rate of 31% in RT treated patients and 32% in untreated patients (FIG. 1D).

These results provide further evidence that patients with high scores are more likely to benefit from radiation treatment after surgery. These results showed that the PORTOS was useful for predicting benefit from post-operative RT in patients with prostate cancer. These results further indicated that methods of the present invention are useful for predicting response to post-operative radiation therapy and treating a subject for prostate cancer.

Example 4: PORTOS is an Independent Predictor of Response to Radiation Therapy After Adjusting for Clinical Variables

To determine whether PORTOS is predictive, multivariable interaction analyses (MVA) to examine the interaction between PORTOS scores and RT treatment in a pooled set from multiple cohorts from different institutes was performed [Table 3]. Due to the differences in the baseline risks of cohorts, MVA adjusting was performed for clinical variables and institute. PORTOS was significantly interacting with RT (p <0.05).

These results provide further evidence that patients with high scores are more likely to benefit from radiation treatment after surgery. These results showed that the PORTOS was useful for predicting benefit from post-operative RT in patients with prostate cancer. These results further indicated that methods of the present invention are useful for predicting response to post-operative radiation therapy and treating a subject for prostate cancer.

TABLE 3 MVA of PORTOS adjusted for clinical variables to predict response to RT Covariate P-value HR [95% CI] RT 0.00411 2.49 [1.34-4.65] PORTOS 8.26E-07 0.36 [0.24-0.54] PSA < 10 Reference 10-20 0.179 0.8 [0.58-1.11] > 20 0.547 1.13 [0.76-1.68] Gleason <7 Reference 7 0.134 4.57 [0.63-33.39] 8-10 0.0166 11.38 [1.56-83.3] SMS 0.787 1.04 [0.77-1.41] SVI 4.37E-05 1.89 [1.39-2.56] ECE 0.269 1.22 [0.86-1.74] LNI 0.00226 1.69 [1.21-2.36] ADT 0.0102 2.13 [1.2-3.8] Study DVA Reference JHMI 9.86E-06 11.6 [3.91-34.41] Mayo Val 0.000273 6.32 [2.34-17.04] TJU 0.535 1.5 [0.42-5.43] RT:PORTOS 0.0203 2.74 [1.17-6.41]

Example 5: Univariate and Pairwise Analysis of the 24 Target Genes in the Genetic Signature to Predict Post-Operative Radiation Therapy Response in Prostate Cancer Patients Across Different Endpoints

The 24 targets in the genetic signature described in Example 1 were assessed for their performance across a range of different metrics and endpoints in both the training and validation cohorts.

Table 4 shows univariate (UVA) and pairwise (MVA) analysis of the interaction between RT treatment and individual genes in the genetic signature in Example 1. Table 5 shows univariate (UVA) and pairwise (MVA) analysis of the interaction between pairwise combinations of genes in the genetic signature and radiation therapy (RT) treatment adjusted for clinical variables. The associated p-value provided in Table 4 and 5 gives a measure of the statistical significance of the corresponding metric.

As shown in Tables 4 and 5, the performance of the 24 genes in the genetic signature, individually and as pairwise combinations, were statistically significant in the training and validation cohorts for predicting response to RT treatment. These results showed that the targets of the present invention are useful for predicting benefit from post-operative RT in patients with prostate cancer. These results also indicated that the methods of the present invention are useful for treating prostate cancer. These results further indicated that methods of the present invention are useful for predicting response to post-operative radiation therapy and treating a subject for prostate cancer.

TABLE 4 Univariate and Multivariate Analysis of the 24 Target Genes from the Genetic Signature with Associated P-values. Gene UVA p-value of interaction of treatment and gene in Training Cohort UVA p-value of interaction of treatment and gene in Validation Cohort MVA p-value of interaction of treatment and gene adjusting for clinical variables Pooled in Validation Cohort DRAM1 0.001 0.361 0.524 KRT14 0.001 0.549 0.046 PTPN22 0.005 0.407 0.004 ZMAT3 0.012 0.275 0.927 ARHGAP15 0.013 0.478 0.178 IL1B 0.013 0.611 0.891 ANLN 0.020 0.492 0.008 RPS27A 0.021 0.386 0.228 MUM1 0.029 0.833 0.530 TOP2A 0.032 0.083 0.239 GNG11 0.035 0.171 0.251 CDKN3 0.036 0.691 0.087 HCLS1 0.042 0.778 0.797 DTL 0.047 0.607 0.012 IL7R 0.050 0.829 0.076 UBA7 0.050 0.905 0.435 NEK1 0.053 0.506 0.893 CDKN2AIP 0.057 0.589 0.323 APEX2 0.059 0.644 0.703 KIF23 0.059 0.437 0.154 SULF2 0.061 0.173 0.178 PLK2 0.065 0.231 0.242 EME1 0.067 0.031 0.006 BIN2 0.071 0.009 0.000

TABLE 5 Univariate and Multivariable Analysis of pairwise combinations of the 24 Genes from the Genetic Signature with Associated P-values. Gene 1 Gene 2 UVA p-value of interaction of treatment and Genes 1 and 2 in Training Cohort UVA p-value of interaction of treatment and Genes 1 and 2 in Validation Cohort MVA p-value of interaction of treatment and genes 1 and 2 adjusting for clinical variables in Pooled Validation Cohort DRAM1 KRT14 0.000 0.596 0.058 DRAM1 PTPN22 0.002 0.370 0.014 DRAM1 ZMAT3 0.655 0.081 0.667 DRAM1 ARHGAP15 0.005 0.448 0.705 DRAM1 IL1B 0.007 0.601 0.807 DRAM1 ANLN 0.006 0.370 0.115 DRAM1 RPS27A 0.001 0.190 0.663 DRAM1 MUM1 0.002 0.979 0.315 DRAM1 TOP2A 0.044 0.075 0.911 DRAM1 GNG11 0.007 0.220 0.363 DRAM1 CDKN3 0.016 0.807 0.163 DRAM1 HCLS 1 0.001 0.393 0.911 DRAM1 DTL 0.015 0.687 0.028 DRAM1 IL7R 0.434 0.994 0.120 DRAM1 UBA7 0.452 0.787 0.751 DRAM1 NEK1 0.031 0.568 0.449 DRAM1 CDKN2AIP 0.019 0.516 0.198 DRAM1 APEX2 0.017 0.487 0.249 DRAM1 KIF23 0.148 0.527 0.542 DRAM1 SULF2 0.008 0.333 0.368 DRAM1 PLK2 0.039 0.267 0.041 DRAM1 EME1 0.033 0.041 0.018 DRAM1 BIN2 0.298 0.015 0.000 KRT14 PTPN22 0.000 0.882 0.838 KRT14 ZMAT3 0.002 0.602 0.055 KRT14 ARHGAP15 0.000 0.967 0.196 KRT14 IL1B 0.000 0.664 0.287 KRT14 ANLN 0.000 0.357 0.276 KRT14 RPS27A 0.000 0.688 0.087 KRT14 MUM1 0.000 0.616 0.131 KRT14 TOP2A 0.844 0.360 0.456 KRT14 GNG11 0.000 0.363 0.041 KRT14 CDKN3 0.000 0.312 0.248 KRT14 HCLS 1 0.001 0.547 0.055 KRT14 DTL 0.000 0.506 0.009 KRT14 IL7R 0.004 0.435 0.023 KRT14 UBA7 0.002 0.507 0.054 KRT14 NEK1 0.000 0.520 0.343 KRT14 CDKN2AIP 0.000 0.832 0.271 KRT14 APEX2 0.000 0.719 0.142 KRT14 KIF23 0.074 0.314 0.046 KRT14 SULF2 0.000 0.368 0.039 KRT14 PLK2 0.000 0.106 0.809 KRT14 EME1 0.000 0.035 0.003 KRT14 BIN2 0.011 0.133 0.003 PTPN22 ZMAT3 0.010 0.337 0.010 PTPN22 ARHGAP15 0.002 0.368 0.105 PTPN22 IL1B 0.001 0.601 0.228 PTPN22 ANLN 0.002 0.102 0.004 PTPN22 RPS27A 0.001 0.312 0.007 PTPN22 MUM1 0.001 0.511 0.007 PTPN22 TOP2A 0.363 0.071 0.252 PTPN22 GNG11 0.001 0.785 0.029 PTPN22 CDKN3 0.001 0.307 0.005 PTPN22 HCLS1 0.005 0.412 0.011 PTPN22 DTL 0.000 0.721 0.610 PTPN22 IL7R 0.020 0.502 0.022 PTPN22 UBA7 0.019 0.379 0.005 PTPN22 NEK1 0.003 0.842 0.016 PTPN22 CDKN2AIP 0.001 0.304 0.003 PTPN22 APEX2 0.001 0.340 0.004 PTPN22 KIF23 0.281 0.851 0.080 PTPN22 SULF2 0.002 0.819 0.041 PTPN22 PLK2 0.003 0.601 0.003 PTPN22 EME1 0.001 0.207 0.989 PTPN22 BIN2 0.040 0.610 0.304 ZMAT3 ARHGAP15 0.027 0.409 0.706 ZMAT3 IL1B 0.022 0.529 0.795 ZMAT3 ANLN 0.042 0.495 0.153 ZMAT3 RPS27A 0.142 0.338 0.817 ZMAT3 MUM1 0.176 0.857 0.377 ZMAT3 TOP2A 0.023 0.085 0.967 ZMAT3 GNG11 0.136 0.280 0.379 ZMAT3 CDKN3 0.073 0.729 0.171 ZMAT3 HCLS 1 0.021 0.289 0.558 ZMAT3 DTL 0.117 0.659 0.023 ZMAT3 IL7R 0.013 0.982 0.185 ZMAT3 UBA7 0.017 0.917 0.906 ZMAT3 NEK1 0.101 0.575 0.521 ZMAT3 CDKN2AIP 0.145 0.503 0.252 ZMAT3 APEX2 0.156 0.600 0.326 ZMAT3 KIF23 0.033 0.562 0.516 ZMAT3 SULF2 0.401 0.331 0.207 ZMAT3 PLK2 0.097 0.237 0.036 ZMAT3 EME1 0.118 0.038 0.014 ZMAT3 BIN2 0.023 0.020 0.001 ARHGAP15 IL1B 0.002 0.509 0.717 ARHGAP15 ANLN 0.005 0.259 0.274 ARHGAP15 RPS27A 0.001 0.370 0.525 ARHGAP15 MUM1 0.002 0.508 0.415 ARHGAP15 TOP2A 0.327 0.052 0.566 ARHGAP15 GNG11 0.001 0.847 0.965 ARHGAP15 CDKN3 0.004 0.523 0.320 ARHGAP15 HCLS1 0.012 0.482 0.692 ARHGAP15 DTL 0.001 0.559 0.340 ARHGAP15 IL7R 0.059 0.468 0.835 ARHGAP15 UBA7 0.048 0.480 0.566 ARHGAP15 NEK1 0.004 0.748 0.327 ARHGAP15 CDKN2AIP 0.002 0.341 0.244 ARHGAP15 APEX2 0.000 0.314 0.305 ARHGAP15 KIF23 0.475 0.722 0.988 ARHGAP15 SULF2 0.006 0.767 0.898 ARHGAP15 PLK2 0.006 0.577 0.069 ARHGAP15 EME1 0.001 0.329 0.180 ARHGAP15 BIN2 0.142 0.793 0.232 IL1B ANLN 0.004 0.847 0.813 II1B RPS27A 0.003 0.508 0.637 IL1B MUM1 0.004 0.605 0.531 IL1B TOP2A 0.940 0.064 0.347 IL1B GNG11 0.002 0.912 0.992 IL1B CDKN3 0.004 0.732 0.727 IL1B HCLS1 0.013 0.613 0.782 IL1B DTL 0.001 0.475 0.807 IL1B IL7R 0.032 0.666 0.932 IL1B UBA7 0.031 0.730 0.737 IL1B NEK1 0.005 0.751 0.403 IL1B CDKN2AIP 0.003 0.537 0.329 IL1B APEX2 0.001 0.398 0.392 IL1B KIF23 0.103 0.764 0.936 IL1B SULF2 0.007 0.743 0.870 IL1B PLK2 0.004 0.422 0.200 IL1B EME1 0.001 0.385 0.444 IL1B BIN2 0.028 0.815 0.487 ANLN RPS27A 0.003 0.530 0.142 ANLN MUM1 0.004 0.585 0.080 ANLN TOP2A 0.346 0.061 0.587 ANLN GNG11 0.001 0.941 0.307 ANLN CDKN3 0.006 0.794 0.098 ANLN HCLS1 0.018 0.485 0.128 ANLN DTL 0.000 0.864 0.693 ANLN IL7R 0.103 0.868 0.663 ANLN UBA7 0.097 0.741 0.138 ANLN NEK1 0.012 0.785 0.234 ANLN CDKN2AIP 0.006 0.860 0.132 ANLN APEX2 0.000 0.677 0.069 ANLN KIF23 0.431 0.860 0.060 ANLN SULF2 0.007 0.433 0.104 ANLN PLK2 0.009 0.733 0.018 ANLN EME1 0.001 0.108 0.334 ANLN BIN2 0.215 0.375 0.836 RPS27A MUM1 0.004 0.737 0.233 RPS27A TOP2A 0.114 0.126 0.918 RPS27A GNG11 0.004 0.466 0.684 RPS27A CDKN3 0.004 0.918 0.118 RPS27A HCLS1 0.018 0.389 0.696 RPS27A DTL 0.007 0.698 0.044 RPS27A IL7R 0.430 0.879 0.498 RPS27A UBA7 0.527 0.541 0.577 RPS27A NEK1 0.016 0.659 0.394 RPS27A CDKN2AIP 0.007 0.523 0.208 RPS27A APEX2 0.009 0.432 0.210 RPS27A KIF23 0.501 0.652 0.702 RPS27A SULF2 0.003 0.763 0.684 RPS27A PLK2 0.017 0.257 0.029 RPS27A EME1 0.013 0.063 0.028 RPS27A BIN2 0.976 0.024 0.007 MUM1 TOP2A 0.036 0.063 0.751 MUM1 GNG11 0.005 0.221 0.828 MUM1 CDKN3 0.004 0.881 0.077 MUM1 HCLS1 0.025 0.829 0.284 MUM1 DTL 0.010 0.808 0.137 MUM1 IL7R 0.330 0.584 0.673 MUM1 UBA7 0.469 0.817 0.391 MUM1 NEK1 0.025 0.607 0.249 MUM1 CDKN2AIP 0.007 0.621 0.096 MUM1 APEX2 0.011 0.796 0.152 MUM1 KIF23 0.449 0.474 0.997 MUM1 SULF2 0.001 0.248 0.792 MUM1 PLK2 0.015 0.257 0.023 MUM1 EME1 0.016 0.034 0.045 MUM1 BIN2 0.931 0.007 0.020 TOP2A GNG11 0.107 0.115 0.978 TOP2A CDKN3 0.419 0.089 0.681 TOP2A HCLS1 0.032 0.083 0.949 TOP2A DTL 0.220 0.155 0.556 TOP2A IL7R 0.026 0.189 0.737 TOP2A UBA7 0.021 0.085 0.966 TOP2A NEK1 0.546 0.112 0.752 TOP2A CDKN2AIP 0.305 0.282 0.813 TOP2A APEX2 0.138 0.131 0.954 TOP2A KIF23 0.004 0.100 0.972 TOP2A SULF2 0.064 0.068 0.883 TOP2A PLK2 0.402 0.357 0.237 TOP2A EME1 0.413 0.278 0.632 TOP2A BIN2 0.013 0.390 0.542 GNG11 CDKN3 0.002 0.277 0.485 GNG11 HCLS1 0.032 0.166 0.375 GNG11 DTL 0.009 0.544 0.035 GNG11 IL7R 0.268 0.269 0.185 GNG11 UBA7 0.366 0.231 0.592 GNG11 NEK1 0.010 0.307 0.920 GNG11 CDKN2AIP 0.002 0.755 0.670 GNG11 APEX2 0.011 0.528 0.878 GNG11 KIF23 0.772 0.197 0.369 GNG11 SULF2 0.007 0.038 0.179 GNG11 PLK2 0.007 0.120 0.063 GNG11 EME1 0.025 0.008 0.010 GNG11 BIN2 0.691 0.017 0.009 CDKN3 HCLS1 0.033 0.694 0.157 CDKN3 DTL 0.004 0.509 0.428 CDKN3 IL7R 0.159 0.312 0.664 CDKN3 UBA7 0.111 0.654 0.211 CDKN3 NEK1 0.020 0.561 0.237 CDKN3 CDKN2AIP 0.016 0.787 0.087 CDKN3 APEX2 0.000 0.724 0.081 CDKN3 KIF23 0.469 0.340 0.446 CDKN3 SULF2 0.015 0.571 0.221 CDKN3 PLK2 0.012 0.321 0.024 CDKN3 EME1 0.002 0.018 0.251 CDKN3 BIN2 0.203 0.062 0.782 HCLS1 DTL 0.044 0.605 0.028 HCLS1 IL7R 0.054 0.828 0.175 HCLS1 UBA7 0.059 0.894 0.798 HCLS1 NEK1 0.050 0.500 0.467 HCLS1 CDKN2AIP 0.051 0.596 0.207 HCLS1 APEX2 0.056 0.648 0.265 HCLS1 KIF23 0.065 0.437 0.537 HCLS1 SULF2 0.052 0.173 0.283 HCLS1 PLK2 0.063 0.230 0.038 HCLS1 EME1 0.065 0.032 0.016 HCLS1 BIN2 0.080 0.008 0.001 DTL IL7R 0.210 0.407 0.005 DTL UBA7 0.211 0.596 0.026 DTL NEK1 0.015 0.102 0.151 DTL CDKN2AIP 0.006 0.544 0.152 DTL APEX2 0.008 0.526 0.199 DTL KIF23 0.997 0.595 0.109 DTL SULF2 0.009 0.533 0.033 DTL PLK2 0.005 0.169 0.492 DTL EME1 0.012 0.063 0.004 DTL BIN2 0.413 0.299 0.001 IL7R UBA7 0.017 0.682 0.424 IL7R NEK1 0.127 0.486 0.839 IL7R CDKN2AIP 0.302 0.661 0.648 IL7R APEX2 0.246 0.995 0.977 IL7R KIF23 0.011 0.347 0.187 IL7R SULF2 0.893 0.210 0.027 IL7R PLK2 0.158 0.170 0.091 IL7R EME1 0.150 0.020 0.003 IL7R BIN2 0.016 0.049 0.002 UBA7 NEK1 0.114 0.548 0.517 UBA7 CDKN2AIP 0.283 0.701 0.248 UBA7 APEX2 0.318 0.704 0.267 UBA7 KIF23 0.030 0.342 0.650 UBA7 SULF2 0.934 0.139 0.552 UBA7 PLK2 0.141 0.263 0.032 UBA7 EME1 0.200 0.021 0.014 UBA7 BIN2 0.020 0.029 0.016 NEK1 CDKN2AIP 0.025 0.868 0.255 NEK1 APEX2 0.003 0.690 0.303 NEK1 KIF23 0.638 0.471 0.637 NEK1 SULF2 0.018 0.271 0.619 NEK1 PLK2 0.004 0.122 0.017 NEK1 EME1 0.005 0.031 0.172 NEK1 BIN2 0.147 0.065 0.445 CDKN2AIP APEX2 0.002 0.553 0.110 CDKN2AIP KIF23 0.777 0.957 0.686 CDKN2AIP SULF2 0.016 0.947 0.417 CDKN2AIP PLK2 0.013 0.305 0.008 CDKN2AIP EME1 0.004 0.109 0.155 CDKN2AIP BIN2 0.465 0.381 0.377 APEX2 KIF23 0.992 0.656 0.809 APEX2 SULF2 0.010 0.911 0.510 APEX2 PLK2 0.010 0.246 0.013 APEX2 EME1 0.024 0.088 0.116 APEX2 BIN2 0.593 0.175 0.221 KIF23 SULF2 0.198 0.371 0.405 KIF23 PLK2 0.455 0.160 0.092 KIF23 EME1 0.587 0.059 0.031 KIF23 BIN2 0.032 0.041 0.023 SULF2 PLK2 0.036 0.163 0.070 SULF2 EME1 0.021 0.022 0.015 SULF2 BIN2 0.464 0.002 0.000 PLK2 EME1 0.006 0.018 0.642 PLK2 BIN2 0.249 0.072 0.291 EME1 BIN2 0.353 0.005 0.001

While the preferred embodiments of the invention have been illustrated and described, it will be appreciated that various changes can be made therein without departing from the spirit and scope of the invention.

Claims

1-30. (canceled)

31. A method for treating a subject having prostate cancer, comprising:

a) obtaining a post-operative radiation therapy outcome score (PORTOS) that has been calculated using a level of expression of a plurality of genes in the biological sample, wherein said plurality of genes comprises one or more genes selected from the group consisting of DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1, TOP2A, GNG11, CDKN3, HCLS1, DTL, IL7R, UBA7, NEK1, CDKN2AIP, APEX2, KIF23, SULF2, PLK2, EME1, and BIN2;
b) determining whether or not the subject is likely to benefit from post-operative radiation therapy based on the PORTOS score, wherein a PORTOS greater than 0 indicates that the subject will benefit from the post-operative radiation therapy and a PORTOS less than or equal to 0 indicates that the subject will not benefit from the post-operative radiation therapy; and
c) if the PORTOS indicates that the subject will benefit from the radiation therapy, then administering the post-operative radiation therapy to the subject, and if the PORTOS does not indicate that the subject will benefit from the post-operative radiation therapy, then administering a cancer treatment other than the post-operative radiation therapy to the subject.

32. The method of claim 31, wherein the subject has previously undergone a radical prostatectomy.

33. The method of claim 31, wherein the prostate cancer has not metastasized.

34. The method of claim 31, wherein the biological sample is a biopsy.

35. The method of claim 31, wherein the biological sample is a tumor sample.

36. The method of claim 31, wherein the subject is a human being.

37. The method of claim 31, wherein the level of expression has been measured by performing microarray analysis, polymerase chain reaction (PCR), reverse transcriptase polymerase chain reaction (RT-PCR), a Northern blot, or serial analysis of gene expression (SAGE).

38. The method of claim 31, wherein said administering post-operative radiation therapy to the subject, or administering a cancer treatment other than the post-operative radiation therapy to the subject further comprises performing chemotherapy, immunotherapy, hormonal therapy, biologic therapy, or any combination thereof.

39. The method of claim 31, wherein the PORTOS indicates that the subject will benefit from the radiation therapy, and administering the post-operative radiation therapy to the subject.

40. The method of claim 31, wherein the plurality of genes comprises at least 2 genes selected from the group consisting of DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1, TOP2A, GNG11, CDKN3, HCLS1, DTL, IL7R, UBA7, NEK1, CDKN2AIP, APEX2, KIF23, SULF2, PLK2, EME1, and BIN2.

41. The method of claim 31, wherein the plurality of genes comprises at least 5 genes selected from the group consisting of DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1, TOP2A, GNG11, CDKN3, HCLS1, DTL, IL7R, UBA7, NEK1, CDKN2AIP, APEX2, KIF23, SULF2, PLK2, EME1, and BIN2.

42. The method of claim 31, wherein the plurality of genes comprises at least 10 genes selected from the group consisting of DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1, TOP2A, GNG11, CDKN3, HCLS1, DTL, IL7R, UBA7, NEK1, CDKN2AIP, APEX2, KIF23, SULF2, PLK2, EME1, and BIN2.

43. The method of claim 31, wherein the plurality of genes comprises at least 15 genes selected from the group consisting of DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1, TOP2A, GNG11, CDKN3, HCLS1, DTL, IL7R, UBA7, NEK1, CDKN2AIP, APEX2, KIF23, SULF2, PLK2, EME1, and BIN2.

44. The method of claim 31, wherein the plurality of genes comprises at least 20 genes selected from the group consisting of DRAM1, KRT14, PTPN22, ZMAT3, ARHGAP15, IL1B, ANLN, RPS27A, MUM1, TOP2A, GNG11, CDKN3, HCLS1, DTL, IL7R, UBA7, NEK1, CDKN2AIP, APEX2, KIF23, SULF2, PLK2, EME1, and BIN2.

45. The method of claim 31, wherein the plurality of genes comprises one or more genes selected from the group consisting of KRT14, PTPN22, ANLN, DTL, EME1, and BIN2.

46. The method of claim 31, wherein the plurality of genes comprises KRT14, PTPN22, ANLN, DTL, EME1, and BIN2.

47. The method of claim 31, wherein the plurality of genes comprises one or more genes selected from the group consisting of ARHGAP15, BIN2, DRAM1, HCLS1, IL7R, PTPN2, and SULF2.

48. The method of claim 31, wherein the plurality of genes comprises ARHGAP15, BIN2, DRAM1, HCLS1, IL7R, PTPN2, and SULF2.

49. The method of claim 31, wherein the plurality of genes comprises a pair of genes selected from:

DRAM1 and BIN2;
SULF2 and BIN2;
ZMAT3 and BIN2;
HCLS1 and BIN2;
DTL and BIN2;
EME1 and BIN2;
IL7R and BIN2;
KRT14 and EME1;
KRT14 and BIN2;
PTPN22 and CDKN2AIP;
PTPN22 and PLK2;
IL7R and EME1;
PTPN22 and ANLN;
PTPN22 and APEX2;
DTL and EME1;
PTPN22 and CDKN3;
PTPN22 and UBA7;
DTL and IL7R;
PTPN22 and RPS27A;
PTPN22 and MUM1;
RPS27A and BIN2;
CDKN2AIP and PLK2;
KRT14 and DTL;
GNG11 and BIN2;
PTPN22 and ZMAT3;
GNG11 and EME1;
PTPN22 and HCLS1;
APEX2 and PLK2;
DRAM1 and PTPN22;
ZMAT3 and EME1;
UBA7 and EME1;
SULF2 and EME1;
PTPN22 and NEK1;
HCLS1 and EME1;
UBA7 and BIN2;
NEK1 and PLK2;
DRAM1 and EME1;
ANLN and PLK2;
MUM1 and BIN2;
PTPN22 and IL7R;
KRT14 and IL7R;
ZMAT3 and DTL;
MUM1 and PLK2;
KIF23 and BIN2;
CDKN3 and PLK2;
DTL and UBA7;
IL7R and SULF2;
DRAM1 and DTL;
RPS27A and EME1;
HCLS1 and DTL;
PTPN22 and GNG11;
RPS27A and PLK2;
KIF23 and EME1;
UBA7 and PLK2;
DTL and SULF2;
GNG11 and DTL;
ZMAT3 and PLK2;
HCLS1 and PLK2;
KRT14 and SULF2;
DRAM1 and PLK2;
KRT14 and GNG11;
PTPN22 and SULF2;
RPS27A and DTL;
MUM1 and EME1; and
KRT14 and KIF23.

50. The method of claim 31, wherein the post-operative radiation therapy is selected from the group consisting of intensity-modulated radiation therapy (IMRT), image-guided radiation therapy (IGRT), stereotactic radiosurgery (SRS), stereotactic body radiation therapy (SBRT), proton therapy, and brachytherapy.

Patent History
Publication number: 20230151429
Type: Application
Filed: Aug 15, 2022
Publication Date: May 18, 2023
Inventors: Elai Davicioni (La Jolla, CA), Hussam Al-Deen Ashab (Vancouver), Nicholas Erho (Vancouver), Shuang G. Zhao (Ann Arbor, MI), Sei-Won Laura Chang (Ann Arbor, MI), Felix Y. Feng (Hillsborough, CA)
Application Number: 17/819,908
Classifications
International Classification: C12Q 1/6886 (20060101); G16B 25/10 (20060101); G01N 33/574 (20060101); G01N 33/48 (20060101); G16B 20/00 (20060101); G16H 50/30 (20060101); G16H 50/20 (20060101); G16B 25/20 (20060101);