CLOSED SYSTEM FOR AS FAR AS POSSIBLE ODOUR-NEUTRAL DELIVERY AND/OR DISCHARGE OF ODOUR-INTENSIVE SUBSTANCES TO/FROM THE BODY OF A PATIENT

The invention is directed to a catheter-like system which dwells temporarily or even continuously in the body of a patient and which serves for the closed delivery and/or discharge of odour-intensive substances, wherein the release of foul-smelling substances is reduced to the greatest possible extent by the system wall having a multi-layer structure that incorporates a proportion of barrier materials, and an odour-neutral decompression of gaseous fractions arising in the body and discharged into the system is ensured. The system comprises in particular a structure like a tubular film, by which an internal space to be reached in the body is connected to a container, arranged outside the body, for receiving the respective substances that are to be delivered and/or discharged. At the end positioned inside the body, the tube structure is provided with a retaining and/or sealing balloon element, which secures the system in the body. All of the film-based constituent parts of the system that are arranged outside the body, including the film-like delivering and/or discharging tube structure and the container preferably configured in the form of a bag, incorporate at least one barrier-producing layer of ethylene vinyl alcohol copolymer (EVOH), polyvinylidene chloride (PVDC) and/or polyamide (PA), which is combined with at least one carrier layer made of a robust, mechanically loadable, preferably elastic material, for example polyurethane (PUR). The system moreover ensures a continuous decompression of gaseous constituents from the internal space of the system, by a degassing device which is arranged in a particular manner relative to the delivering and/or discharging lumen and by which the adsorbing or filtering, degassing unit is protected against direct exposure to the substances that are to be delivered and/or discharged.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
REFERENCE TO PENDING PRIOR PATENT APPLICATIONS

This patent application is a 371 national stage entry of pending prior International (PCT) Patent Application No. PCT/IB2021/053556, filed 28 Apr. 2021 by Advanced Medical Balloons GmbH for CLOSED SYSTEM FOR AS FAR AS POSSIBLE ODOUR-NEUTRAL DELIVERY AND/OR DISCHARGE OF ODOUR-INTENSIVE SUBSTANCES TO/FROM THE BODY OF A PATIENT, which patent application, in turn, claims benefit of: (i) German Patent Application No. DE 10 2020 002 764.4, filed 28 Apr. 2020 and (ii) International (PCT) Patent Application No PCT/IB2020/054684, filed 18 May 2020.

The three (3) above-identified patent applications are hereby incorporated herein by reference.

FIELD OF THE INVENTION

The invention is directed to a closed system that dwells temporarily or even continuously in the body of a patient and that is used for delivering and/or discharging odor-intensive substances, wherein the release of odorous substances into the surroundings of the patient is to be reduced to the greatest possible extent, and an odor-neutral decompression of gaseous components arising in the body and passing into the system is to be ensured.

The system includes a delivering and/or discharging, catheter-like structure for an organ or some other interior space of the body, which is provided with a balloon-like component, resting on the catheter-like structure at the end position, for anchoring and/or sealing the system within the particular body cavity, an extracorporeal container for receiving the particular substance to be delivered and/or discharged, and a tube- or tubular film-like line that connects the lumen of the catheter-like structure, positioned in the body, to the extracorporeal container.

BACKGROUND OF THE INVENTION

Catheters for the continuous discharge and collection of stool from the rectum of a patient are an established component of intensive medical care. Stool drains having a conventional design are made up of a toroidal balloon that anchors the catheter resting in the rectum or on the base of the rectum, and a tube element which carries the balloon component and extends through the anal sphincter muscle, and which in an extension connects to an extracorporeal collection container.

Conceptually, stool-discharging drainage devices having the described simple design are not able to discharge low-viscosity stools while reliably remaining closed. Contamination of the perianal skin areas and contamination of the direct care setting of the patient cannot be prevented. The problem of sealing the sphincter muscle remains completely disregarded in the design of this type of device. For normal tonus of the sphincter muscle resting against the tube segment, the stool-discharging tube segment passing through the anal canal merges into a typical single or multiple radial fold, the tube segment forming rough, longitudinally extending channels that lead the liquid intestinal contents from the rectum into the perianal area. To limit the leakage of stool that is forced in this way, in some versions of this simple design a particularly thin-walled, soft transanal tube segment has been integrated. However, the correspondingly equipped segments promote occlusive twisting of the stool-discharging lumen of the device.

Conventional drainage systems for the continuous discharge of stool, in the intracorporeal, rectally stool-receiving and transanally discharging head part as well as in the extracorporeal tube portion leading to the collection container, are generally made entirely of silicone.

Silicones, in particular when processed to form thin-walled balloon and tube structures, have very little capability for preventing, or reducing to a tolerable level, the release of odor-intensive substances. When native, uncoated, or otherwise untreated silicone-based components are exposed to liquid excrement, for example, even after a few hours, extremely intensive odor may develop at the surfaces facing the surroundings. The odor emanating from the system may be so unpleasant for the patient and for the user that the continuous stool discharge must be discontinued.

For this reason, manufacturers often provide silicone-based stool discharge systems, in the region of the extracorporeal tube segment leading to the collection container, with barrier-effective auxiliary substances that inhibit the passage of odorous substances, absorb odorous substances, or neutralize odorous substances. Due to the generally pronounced rigidity of the materials in question, such as parylene, which is applied as a coating via a dipping process, for example, the tube portions that are intracorporeally situated and close to the anus are typically not provided with such odor-reducing material layers.

Silicone-based catheter devices do not allow a multilayer combination with common barrier materials such as EVOH or PVDC. Coatings of silicone catheters generally require preceding surface-activated process steps, for example activation with plasma.

For some years, innovative stool discharge systems having special transanally positioned and sealing head units made of polyurethane (PUR) have been known on the market, such as Hyghtec® basic-plus from Creative Ballons GmbH, Waghäusel, Germany. This type of drain includes an optional discharge tube, made of PUR or PVC, that adjoins the head unit. PUR and PVC, as well as possible compounds or coextrusions of the two materials, have likewise proven to have inadequate odor-proofing during extended residence times in the body.

While the transanally positioned head unit of this innovative design is situated almost completely within the body of the patient, and only a small, spherically expanded segment of the transanal balloon body protrudes from the anus, the stool-discharging tube unit leading to the collection bag develops a much larger odor-effective total surface area of approximately 1400 cm2, starting from a tube diameter of 2.5 cm and a tube length of 180 cm.

SUMMARY OF THE INVENTION

The disadvantages of the described prior art have resulted in the object of the invention, to refine a generic system in such a way that release of odor during the continuous discharge of stool or also from other odor-intensive excretions or secretions or other body fluids during the delivery of odor-intensive substances into the human body, as well as during the decompression of gaseous portions that pass from the body into the delivering and/or discharging system, is minimized or avoided to the greatest extent possible.

The object is achieved in that at least the extracorporeal components of the delivering and/or discharging device, including the container that receives the particular substance, and the tube line that connects the intracorporeal portion of the device to the container are each made of a multilayer film material which in each case integrates at least one layer of an efficient barrier-effective material, such as ethylene-vinyl alcohol copolymer (EVOH) and/or polyvinylidene chloride (PVDC), the particular barrier material being combined with one, two, or more layers of robust, mechanically loadable carrier film, and a degassing unit being provided distally with respect to the compartment of the container that receives the particular substance, via which gaseous portions are discharged from the device into the surroundings following a pressure drop, and the degassing unit integrating or being situated downstream from an odor-binding or otherwise neutralizing adsorption and/or filter unit.

The present invention in particular describes technical approaches to curb or avoid to the greatest possible extent a release of odor during the continuous discharge of stool or also other odor-intensive excretions or secretions or other body fluids. The invention also encompasses the odor-reducing or odor-avoiding delivery of odor-intensive, for example therapeutic, substances to the body.

The invention preferably provides odor-reducing technical solutions for the extracorporeal unit of the system, made up of the combination of the delivery tube and the container, but conceptually also relates to the surfaces, in whole or in part, of the intracorporeal unit of the system dwelling in the body which are exposed to stool and which potentially release odors.

The described tube and film technology is based on the use of multilayer material combinations, one or more layers of a resistant, mechanically robust carrier material, together with at least one layer of an odor-proof barrier material, being joined to form a multilayer overall film structure, for example via a coextrusion process, a lamination process, or also a multi-step dipping process.

The multilayer tube lines for the delivery and/or discharge of substances, presented within the scope of the present invention, include one or more layers of a mechanically loadable, preferably elastically deformable and elastically straightening, carrier material, with thermoplastic polyurethanes (TPUs) in a Shore hardness range of 80A to 95A preferably being used. Less preferably, polyvinyl chloride (PVC), polyamide (PA), thermoplastic polyamide elastomers (TPE-A), or, for example, also polyolefin-based polymers such as low-density polyethylene (LDPE), may also be used. Silicone is less suitable, since due to their chemical properties, neither EVOH nor PVDC is combinable with silicone, and in particular is not manufacturable as blanks that are coextruded in multiple layers, laminated in multiple layers, or dipped.

The particular tube material, in addition to a sandwich-like arrangement of a centrally positioned layer made of EVOH or PVCD between two carrier layers that stabilize the tube, may also optionally be made up of a two-layer material composite that includes only one carrier layer. While the barrier properties of EVOH degrade upon direct exposure to aqueous substances, PVDC may also be used in an aqueous environment without loss of its barrier effect.

EVOH and PVDC have relatively pronounced rigidity, even in relatively low wall thicknesses. In order to still achieve a body-friendly soft film characteristic of a multilayer that is provided with EVOH or PVDC, the barrier layer has the most thin-walled design possible relative to the particular carrier layers. The sum of the layer thicknesses of the barrier materials is, for example, in the range of one-tenth to one-twentieth, or also one-twentieth to one-thirtieth, of the sum of the layer thicknesses of the carrier materials.

The multilayer, extracorporeal tube segment preferably has a thin-walled design, so that even with a small external application of force it collapses to form flat, band-like structures and thus prevents the development of pressure-related lesions on the skin of the patient, for example when the trunk or the extremities of the patient temporarily rest(s) against the tube segment. In the preferred design of the tube, the tube spontaneously elastically straightens, at least partially, into its original profile that was formed during manufacture when the external application of force decreases. This type of elastic straightening behavior may be achieved in particular by using PUR as the combining carrier material. For example, PUR types having a Shore hardness of 80A to 95A or also 55D to 65D are used. The diameter of such elastically acting delivering and/or discharging tube segments that are provided with a PUR-based carrier layer, for example for stool-discharging systems, is in the range of 15 to 30 mm, preferably 20 to 25 mm. The wall thickness of the tube component is typically in the range of 200 to 500 μm. The thickness of the barrier layer is approximately 5 to 25 μm, preferably 10 to 15 μm.

The spontaneous straightening or rounding of the cross section after a temporary deformation of the extracorporeal stool-discharging tube segment due to an externally acting force on the tube may be assisted by successive ring-shaped, convex or concave protrusions or indentations of the tube wall. For the above-mentioned material hardnesses, wall thicknesses, and tube diameters, such circular expansions or reductions of the tube casing are preferably 3 to 6 mm wide, and have deflections of the tube diameter of 1.0 to 3 mm, preferably 1.5 to 2.0 mm, at the apex. In the preferred design, the deflections are in each case arch-shaped or outwardly convexly or inwardly concavely curved.

When only a PVC-based carrier material in combination with an EVOH- or PVDC-based separating layer is used, the PUR-typical elastic straightening properties of the tube casing, preferred within the scope of the invention, are not achievable or are achievable only to a small extent. However, for a proportional use of PVC, for example as the inner or outer layer, the capability for elastic self-straightening may be integrated by accommodating an additional PUR layer in the film wall. The proportional PUR layer then preferably has a higher Shore hardness in the range of Shore 55D to 65D, for example. For a sought total wall thickness of 200 to 400 μm of the tubular film wall for a stool-discharging drainage tube, by way of example the following arrangement of material layers may be combined: outer—PUR 55D (50-100 μm), center—EVOH or PVDC (10-20 μm), inner—PVC 60A-80A (140-280 μm). Within the scope of the invention, a PVC layer that inwardly faces the drainage lumen is conceptually advantageous, since the barrier effect against water that is achievable with PVC exceeds the corresponding barrier effect of a PUR layer having the same wall thickness. When EVOH is used as the centrally situated barrier layer, protection from water molecules is advantageous, since the barrier effect of EVOH is reduced by exposure to water.

PUR-based material layers provide the multilayer components of the catheter device made of tubular film material, described within the scope of the invention, with high mechanical stability and load-bearing capacity. Even thin-walled proportional PUR layers in the range of 10 to 30 μm impart significantly better tensile strength and tear strength, as well as cut resistance and puncture resistance, to the particular component in comparison to PVC, for example.

In addition to tubular films, the invention also describes flat film material having a multilayer wall structure, corresponding to the described tube material, which integrates one or more barrier layers. The flat films are used [in the] system according to the invention for manufacturing the container or bag that receives the particular substance being delivered and/or discharged. However, the flat films may optionally also be further processed to form delivering and/or discharging tubular film material.

The carrier materials PUR and PVC used according to the invention are adherable using common solvents such as cyclohexanone or tetrahydrofuran, which is crucial for the simple installation of a catheter device made up of multiple, separately manufactured components and assemblies. In the preferred designs of the catheter device described here, which is optimized for odor-proofing, the stool-discharging tube segment is connected between a distal, preferably PUR-based head unit placed in the rectum, and a proximal, extracorporeal connector element made of PVC or ABS, for example, in each case via solvent adhesion.

In addition to EVOH or PVDC, proportional layers of polyamide (PA) or thermoplastic polyamide elastomer (TPE-A) may also be provided in a multilayer tube or film according to the invention as a less effective, and correspondingly less preferred, odor barrier. Also advantageous, among others, are layer combinations of EVOH and PA, since both materials, in particular in coextrusion processes, may be joined well, and generally without a tie layer that assists in the adhesion. Layer combinations of PA and PUR, which likewise provide the option for coextrusion without adhesion-promoting tie layers, are also suitable. By use of such an adhesion promoter as an intermediate layer, joining of PA or PUR to LDPE-based layers, for example, is in turn possible.

The invention proposes, among other things, multilayer films that dispense with an EVOH- or PVDC-based barrier layer, and instead combine one or more polyamide layers with one or more PUR carrier layers. The odor-reducing barrier properties of PA do not achieve the efficiency of EVOH or PVDC, but are advantageously usable, in particular for fairly short application times of a catheter device according to the invention.

The tube blanks, which are produced in multiple layers and used for manufacturing the intracorporeally and extracorporeally installed balloon- and tubular film-like components, are thermally formed in a subsequent manufacturing step, for example using a hot molding process; the unprocessed tube blank is expanded into a heated mold cavity via action by compressed air, and its shape is fixed there via subsequent cooling of the mold. In addition to such forming of the extracorporeal stool-discharging tube segment to form a tube casing that is provided, for example, with lumen-stabilizing expansions or indentations, the invention also includes embodiments in which, in addition to the formation of the stool-discharging tube segment, formation of the intracorporeal shaft tube component and optionally also of the intracorporeal balloon component of the device takes place at the same time. The invention describes special embodiments of the catheter device in which the entire intracorporeal portion and also the entire extracorporeal portion of the catheter are formed from a single, structurally continuous film tube blank that is used.

BRIEF DESCRIPTION OF THE DRAWINGS

Further features, particulars, advantages, and effects on the basis of the invention result from the following description of one preferred embodiment of the invention and with reference to the drawings, which show the following:

FIG. 1 shows an example of a catheter device, including a receiving head unit, a discharging tube unit, and a collecting unit that is connected to the tube unit,

FIG. 2 shows another embodiment of a head unit for a system according to the invention,

FIG. 3 shows a section through FIG. 2 along the line III-III,

FIG. 4 shows yet another embodiment of a head unit for a system according to the invention,

FIG. 5 shows a modified embodiment of a head unit for a system according to the invention,

FIG. 6 shows a further modified embodiment of a head unit for a system according to the invention,

FIG. 7 shows a different embodiment of a head unit for a system according to the invention,

FIG. 8 shows yet a further modified embodiment of a head unit for a system according to the invention,

FIG. 9 shows a different embodiment of a head unit for a system according to the invention,

FIG. 10 shows yet another embodiment of a head unit for a system according to the invention,

FIG. 11 shows a section through FIG. 10 along the line XI-XI,

FIG. 12 shows yet a further modified embodiment of a head unit for a system according to the invention,

FIG. 13 shows a further modified embodiment of a head unit for a system according to the invention,

FIG. 14 shows a container for a system according to the invention,

FIG. 15 shows the connection between a container and a degassing device situated upstream therefrom,

FIG. 16 shows a degassing device in a lateral arrangement at the side of a draining or stool-discharging base element of the device,

FIG. 17 shows another embodiment of a degassing device in the manner of a T-piece, the decompressing and/or filtering device being reversibly detachably or also fixedly mounted on the free end of the laterally branched-off leg or connected on the outer wall of the leg,

FIG. 18 shows a further embodiment of a degassing device according to the invention in the manner of a T-piece, the particular decompressing and/or filtering substance [sic; device] being integrated in a fixed design into the inner lumen of the lateral leg of the T-piece,

FIG. 19 shows a cross section of a multilayer balloon film for manufacturing a tube-like structure and/or a container for receiving substances to be delivered and/or discharged and/or a balloon component for a head unit of a catheter-like device,

FIG. 20 shows an illustration, corresponding to FIG. 19, of a modified embodiment of the invention,

FIG. 21 shows an illustration, corresponding to FIG. 19, of another embodiment of the invention, and

FIG. 22 shows an illustration, corresponding to FIG. 21, of a refined embodiment of the invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

FIG. 1 shows the schematic design of a medical, catheter-like device 1 for the decompressing (with respect to the surroundings of the patient), odor-reducing, or odor-avoiding delivery and/or discharge of substances to/from the human body, which is explained with reference to the figure using the example of a device 1, continuously dwelling in the rectum, for transanal discharge of stool into an extracorporeal container 11.

The catheter device 1 includes a tubular film-like structure 2, and a stool-receiving head unit 5 that is situated at the distal, rectally positioned end of the catheter device 1 and that includes a balloon body 3 having an anchoring (retaining) action in the rectum.

Particularly simple designs of the head unit 5 have a toroidal/ring-shaped balloon body 3 in which the central, stool-receiving orifice 4 is kept open by a ring- or sleeve-like element 6. This element 6 ensures that when the balloon 3 is acted on by filling pressure, this does not result in a radially inwardly directed collapse of the section 7 of the tube 2 carrying the balloon 3, or in closure of the delivering and/or discharging opening 4 with respect to the particular interior space of the body. The sleeve-like element 6 that is flatly connected to the balloon-carrying tube section 7 counteracts this inwardly acting force with an outwardly acting, elastic self-straightening of the ring- or sleeve-like element 6.

In contrast to relatively thick-walled balloon components made of silicone that elastically expand to working dimensions to be achieved, materials with little or no volume expansion capability, such as thermoplastic polyurethanes (TPUs) in the hardness range of Shore 80A to 95A and 55D to 65D, on the one hand allow the complete, initial formation of the balloon body to its required working dimensions during manufacture, and on the other hand, very thin wall thicknesses in the range of a few microns, approximately 10 to 30 μm, to be achieved. The use of thermoplastic polyurethane (TPU) allows manufacture of particularly thin-walled balloon components 3 having complex designs, which due to the low material compliance (volume extensibility) of the TPU types used [have] reliable dimensional stability behavior despite very small wall thicknesses, even under high forces that act on the balloon 3 in the body. Since an elastic expansion of the balloon wall is not necessary, the filling pressures needed for the specific function in the body may be relatively low, and in the case of the rectal stool discharge, for example, may approximate the physiological organ pressure that prevails in the rectum. The option for practically pressure-neutral filling is suitable in particular for an incomplete, loosely tension-free filling of the balloon 3.

Provided at the proximal end 8 of the tube-like segment 2 is a connector 9, to which the bag-like container 11 or a degassing device 12 is selectively connectable.

FIG. 2 shows a design of a rectally stool-receiving and transanally passing head unit 5′, including a dumbbell-shaped balloon component 3′ that rests on an elastically deformable, cylindrical or tubular inner body 6′ or distal tube segment 7′ that spontaneously elastically straightens into its starting shape. The dumbbell-shaped balloon component 3′ includes multiple segments 3a′ through 3c′, the central segment 3b′ being tapered with respect to the two end-position segments 3a′, 3c′. During manufacture, this shape of the balloon component 3′ has already been formed to the complete dimensions necessary for the rectal retention. The central taper 3b′ is placed within the anal canal, the distal end-position expansion 3a′ of the dumbbell in the rectum and the proximal end-position expansion 3c′ coming to rest directly in the preanal region. In the filled state, the orifice 4′ of the tubular inner body 6′ directed toward the rectum does not protrude beyond the distal radius R of the balloon component 3′ mounted on the inner body 6′. The extracorporeally fillable head unit 5′ in the proximal direction merges into a stool-discharging tube portion 2 that connects the head unit 5′ to an extracorporeal container 11 or a degassing unit 12 connected in between.

FIG. 3 shows a section through the arrangement according to FIG. 2, along the line III-III of the head unit 5′ situated in situ, such that the tapered section 3b′ is situated in the anal canal 20. As is apparent, invaginations 21 of the particular section 3b′ of the balloon envelope form in the shape of fold-like structures, such as those that develop for a residual, i.e., excess, sealing and/or tamponading balloon body 3′ during the placement within a lumen 20 that is smaller in relation to the residually dimensioned balloon due to indentation of the excess balloon wall.

The invaginations 21 each have a web-like, flatly closed portion, while an eyelet-like formation forms at the blind end of each invagination facing the balloon center. In the region of the forming eyelet, the wall of the balloon envelope turns over by 180 degrees, a pronounced, opening effect on the eyelet-like formation being generated by the elastic straightening properties of the film layer integrated into the wall. The particular effective sealing effect of the balloon at a certain point in time results as a function of the size of the cross-sectional area of the particular eyelet-like formation, and of the greatest possible avoidance or reduction of cyclic jumps in diameter of the eyelet. Due to capillary effects on secretions situated within the eyelet, small cross-sectional areas of the eyelet act in a flow-inhibiting manner, up to complete stasis of the secretion or of the eyelet contents. The effect of inhibiting the free flow of secretions is lost with increasing dilation or enlargement of the cross-sectional area of the eyelet.

In addition to the particular property for elastic straightening of the balloon wall that is turned over in an eyelet-like manner, the sealing-relevant cross-sectional area of the eyelet-like formation is determined by the filling pressure prevailing in the balloon at the particular moment, which in particular presses against the two wall layers of the web-like portions of the invagination 21 and flatly presses them together in a tightly sealing manner, an open lumen remaining in the area of the turnover of the two wall layers, i.e., at the blind end of the invagination in question.

In the anal canal 20, the normal tonus of the sphincter muscle causes the inner lumen of the two concentric structures 7′, 3b′ in the plane III-III, namely, the tube portion 7′, to collapse from its preformed circular shape into a folded-in profile. Continual opening and stretching of the sphincter muscle are thus avoided. At the same time, the outer structure, namely, the transanal balloon segment 3b′, remains in sealing contact with the anal mucosa, the force with which the balloon envelope presses against the inner surface of the anal canal 20 being absorbed within the rectum and following the anal forces at the moment.

As soon as the anal tonus decreases and/or the anal canal opens, the inner shaft 7′ once again straightens out and opens the central lumen. In the process, the elastic self-straightening force exceeds the force exerted on the shaft by the balloon that is acted on by filling pressure. At a filling pressure of 25 mbar, the lumen within the shaft should not collapse to 50% of its maximum cross section.

FIG. 4 shows a design of a head unit 5″ that is derived from FIG. 2, the balloon component 3″ having a mushroom shape and dispensing with a preanal expansion at the proximal end position, and instead having only a distal, radially expanded region 3a″ and a proximally adjoining radially tapered region 3b″. The proximal, transanally positioned segment 3b″ optionally extends into the anal canal or through the anal canal, or protrudes beyond the opening of the anus.

FIG. 5 contains a design of a head unit 5(3), likewise derived from FIGS. 2 and 4, including a balloon component 3(3) in which in the filled state, the orifice 4(3) of the inner body 4a(3) or of the distal tube segment 7(3) directed toward the rectum protrudes beyond the distal radius R of the balloon component 3(3) mounted on the inner body 4a(3). The end of the inner body 6(3) or of the distal tube segment 7(3) that freely extends into the rectum is preferably bordered by a particularly soft cap-like or olive-like element 16 in a manner that provides lateral and frontal protection.

FIG. 6 discloses another modified design of a head unit 5(4) according to the invention, the inner body 6(4) that carries the dumbbell- or mushroom-shaped balloon 3(4) having an undulating, ring-shaped or spiral-shaped profile 10(4) which may be integrated into the rectal segment and into the transanal segment, and also into both segments of the head unit 5(4), and which thus advantageously modifies the elastic deformation and straightening properties of the balloon-carrying inner body 6(4) in that the radial deformation and straightening take place in a speeded-up, particularly prompt manner. The structural geometric design of the undulating profile 10(4) may be varied segment by segment. For example, the undulating profile 10(4) in the area of the rectally positioned segment of the head unit 5(4) may be formed in such a way that the lumen-maintaining or -straightening effect of the undulation 10(4) outweighs the corresponding effect in the transanal segment of the head unit 5(4), which in the rectal segment contributes toward stabilization of the orifice area with respect to the rectum, and in the transanal segment sets the deformation and straightening properties in such a way that with normal sphincter muscle tonus the shaft inner body 6(4) folds radially inwardly, and with decreasing tonus promptly elastically progresses into the opening anal canal.

FIG. 7 shows a design of a head unit 5(5) according to the invention that is derived from FIG. 6, in which the rectal segment of the inner body 6(5) is supplemented by a lumen-stabilizing ring- or sleeve-like element 17(5) of the head unit 5(5) according to the invention, which is flatly connected to the inner or outer surface of the rectal segment of the tubular inner body 6(5).

FIG. 8 shows one particularly simple design of a stool-discharging head unit 5(6), the one tapered end 13(6) of a spherically or discoidally formed balloon tube component being sleeved through the other tapered end 13a(6), and the two ends 13(6), 13a(6) being flatly connected to one another with tight sealing with respect to a fillable compartment 14(6), which thus forms a balloon anchor that is placeable in a body interior space and has a retaining effect. The rectal segment is equipped with a ring- or sleeve-like element 15(6) for stabilizing the stool-receiving orifice.

FIG. 9 depicts a design of a stool-discharging head unit 5(7) that is derived from FIG. 8, in which the two tapered balloon ends 13(7) and 13a(7) are guided into the anal canal, or also through same. In the transanal segment T, the two balloon ends 13(7), 13a(7) are then in a concentric arrangement. No further lumen-straightening element is installed in the transanal segment T. Here as well, the rectal segment may be provided with a ring- or sleeve-like element 15(7) for stabilizing the stool-receiving orifice.

FIG. 10 shows one embodiment of a stool-discharging head unit 5(8) derived from FIG. 9. As is apparent from the sectional illustration in FIG. 11, in this embodiment the two concentric, transanally positioned balloon ends 13(8), 13a(8) are connected to one another via longitudinally extending, web-like welds 17(8) that are uniformly distributed over the circumference of the segment. If a displacement of volume from the rectal segment of the fillable compartment 14(8) into the transanal segment occurs, this compartment stands upright in the manner of an air mattress and thus frees up the delivering and/or discharging lumen. The rectal segment may once again be provided with a ring- or sleeve-like element 15(8) for stabilizing the stool-receiving orifice.

FIG. 12 shows a stool-discharging head unit 5(9) as a structural supplement to FIG. 10, in which one or more elastically deformable, lumen-stabilizing, sleeve- or ring-like components 18(9),19(9) on the outer surface and/or inner surface of the inner layer of the two concentric layers 13(9), 13a(9) are installed in the transanal segment, which on the one hand straighten the transanal segment into the open sphincter muscle, and which on the other hand resist the filling pressure prevailing in the fillable compartment and prevent an undesirable collapse of the delivering and/or discharging lumen.

FIG. 13 illustrates a further design of a head unit 5(10) in which the rectal segment and the transanal segment are structurally separate, or two separately fillable compartments 14a(10) and 14b(10) are lined up in a row, the transanal segment preferably being made up of two concentric tube layers which at the end position are welded to the closed fillable space, and the rectally placed compartment 14a(10) having a function that anchors the head unit 5(10), and the transanal segment having a function that seals the anal canal and at the same time closes the delivering and/or discharging lumen. During temporary filling of the transanal compartment, this particular design allows particularly powerful, efficient transanal seal performance. When the compartment is evacuated, the two tube layers are situated close to one another and completely open up the lumen of the head unit.

FIG. 14 shows one embodiment of a bag-like container 11, wherein in the horizontal position of the container 11, the outflow of the bag contents into the delivering segment 24 of the container 11, which is preferably integrated with the degassing device 12, is impeded, reduced, or prevented by a ramp-like incline R of the delivering segment 24. For this purpose, the angular hook 28 for the vertically suspended fastening of the bag 11 is designed in such a way that it brings the delivering segment or also gas-releasing segment 24 into an oblique, upwardly directed position relative to the flatly lying bag-like container 11. The resulting gradient ensures that over a certain phase of the horizontal positioning of the bag 11, the liquid bag contents do not reach the gas-releasing opening 30 in the delivering segment 24 of the container 11 if at all possible. The angular hook 28 preferably has a double-sided design that faces both flat sides of a welded, bag-shaped container 11 made up of two layers, for example, so that the desired incline results when the bag 11 is in any horizontal position. In the preferred design, the hook 28 or double hook is oriented at a fixed 90° angle with respect to the flat sides of the bag. The 90° position necessary for the incline may also be achieved by an axially rotatable mounting bracket that is swivelable into a 90° position and locks into place there.

As further shown in FIG. 14, in one preferred embodiment of the invention there is a valve-like flow-directing function, in particular in the form of a double layer of films 31, between the container 11 and the delivery line 24 or the upstream degassing device 12, that is intended to prevent a backflow of formed stool portions from the container 11 into the segment 24 that delivers to the bag.

In particular, two film layers 31 that lie flatly against one another and that are provided inside the container 11 are apparent. Material draining into the collection container 11 enters through the two film layers 31 and into the collecting space of the container 11.

When the container 11, in the vertically suspended or upright normal position, fills to the height of the two film layers 31 or above same, the liquid contents cause a lip-like closure of the film layers, and the undesirable outflow or backflow of the contents from the collection container 11 through the delivering opening is prevented. A corresponding effect results when gaseous substances enter the collection container. The gas filling likewise results in a tight closure of the two film layers 31, as the result of which the gas successively backs up in the container 11, and the closing pressure on the two film layers 31 that ultimately results is so pronounced that further inflow of liquid contents into the collection container 11 is no longer possible. Without appropriate structural modification of the anti-return function, in this case the collection container 11 must be replaced. In order to discharge gas, which has already penetrated into the bag 11, from the bag 11, the invention provides specially designed film layers 31 that are liquid-tight but allow gases to freely pass through. The film layers may extend over the entire surface, for example being made completely of an appropriate material, or may also have the properties in question only in portions in certain segments. The gas-permeable function or unit is advantageously placed where complete closure of the two film layers 31 is ruled out for mechanical reasons, even at maximum filling of the container. This is provided in the region of the connection or of the transition of the film layers to a tube- or socket-like inlet segment or connector segment 22, where the sealing film layers 31 are welded or glued on, for example. For an outer diameter of the delivering segment 24 of approximately 15 to 25 mm, a wedge-shaped, open area that does not close, even at maximum filling of the container, and having a height of at least 5 to 15 mm generally results, which thus provides sufficient surface area for the described function or integration of a “gas-permeable separating layer.”

As an alternative to such a gas-permeable film material, a small, free opening having a diameter of 1 to 2 mm, for example, may be positioned in this wedge-shaped area. In the preferred case, however, a simple or cross-shaped slot is made in the described wedge-shaped area using a sharp blade, the legs of the slot each having a length of approximately 5 mm. Although the slot cannot completely prevent the backflow of contents into the segment above the collecting space, it does exclude a higher-volume backflow of contents that have already collected.

Furthermore, FIG. 15 shows a hose- or tube-like, flexible or rigid component 32 whose end 32a facing the patient is fixedly mounted to the inner wall of a delivering base element 24, preferably in the area of a leg 29 that laterally branches off from the conducting lumen 24, and whose proximal end 32b extends beyond the lower end of the base element 24 and immerges into the stool-collecting space of the collection container 11. In the process, the component 32 overcomes return-inhibiting components, such as lobe-like film layers 31 that tightly contact one another and have a valve-like action, so that intestinal gas that has penetrated into the bag may be emptied through the lumen of the component 32, and/or along the outer side of the component, preferably directly into the gas-releasing leg 29 of the degassing device 12.

FIG. 16 shows a stool-discharging device 12 that discharges intestinal gas to the surroundings, and that as a separate, modular unit is situated between the bag-side end 8 of the drainage line 2 or a connector 9 provided at that location, and the stool-receiving inlet 22 of the collection bag or container 11. At the ends, the degassing device 12 includes connecting components 23a and 23b, directed toward the drainage line 2 and the collection bag 11, respectively, via which the degassing device 12 may be inserted into the stool-draining system in a serial arrangement, preferably in the area of the transition from the drain to the collection bag or to the stool-receiving container 11. A base element 24 connects the connecting components 23a and 23b in such a way that they are in communicating connection with one another.

A degassing adsorbent and/or filtering module 25 is reversibly detachably or also fixedly mounted to the base element 24 at the outer circumference of the wall of the tubular cylindrical base element 24 of the device. The module 25 lies closely against the wall of the base element 24 as a cuff that is circularly closed, or also as an unclosed C-shaped shell. In the area of the connection of the filter module 25, the base element 24 has one or more openings 26 that are adjoined by a gap-shaped intermediate space 26a which points toward the adsorbent or filtering material, and which is delimited by a separating layer 27 that is impermeable to water but permeable to gas. The separating layer 27 may be made of a Gore-Tex-like material, for example, which on the side facing the intermediate space 26a may be supplemented by a dirt-repellent, for example lotus-like, effect. Alternatively, an inexpensive nonwoven paper typically used in HME filters may be used as a separating layer 27, which likewise is water-repellent and at the same time air-permeable. Conceptually, the side of the separating layer 27 facing the stool is preferably designed in such a way that exposure to stool does not result in continual, gas-tight closure of the separating layer 27. At its lower end directed toward the container 11, the intermediate space 26a preferably merges, via an opening 26b, into the stool-conducting or stool-discharging space of the base element 24. Stool that passes into the intermediate space 6a [sic; 26a] via the openings 26 may thus drain off via the opening 26b and back into the lumen of the base element 24. In one modification of this design, the stool-conducting lumen of the base element 24 may be connected to the intermediate space 26a solely via the opening 26b, i.e., does not have any openings 26. The intermediate space 26a then extends upwardly from the opening 26b in a chimney-like manner, as the result of which the separating layer 27 situated above the opening 26b is protected from direct exposure to stool in the normal vertical position of the degassing device 12.

FIG. 17 shows one embodiment with a T-piece-like base element 24 that includes a lateral leg 29 which opens to the surroundings, and on which the adsorbent and/or filtering module 25 is mounted. In the preferred embodiment of this design, the leg 29 is directed upwardly or in the upstream drainage direction at an inclination angle N of approximately 15 to 60 degrees, preferably 30 to 45 degrees, with respect to the horizontal or with respect to the longitudinal axis of the base element 24. In a suspended, approximately vertical normal position of the degassing device 12 or of the unit made up of the stool-discharging drainage tube 2, the degassing device 12, and the collection bag 11, the module 25 is thus protected from the direct inflow of stool. Stool that has already penetrated into the leg 29 may drain off from that location, following the incline of the leg 29, into the lumen of the base element 24. As a complement to the described incline of the degassing leg, the transition to the stool-conducting lumen of the base element 24 may be protected by a tongue 24a in the form of a curtain- or baldachin-like structure in order to avoid the entry of stool into the degassing leg 29 even more efficiently. The tongue 24a, as a shielding structure, emerges from the inner wall of the base element 24, for example in the transition area 24b between the laterally pointing leg 29, and the leg that vertically extends downstream or upwardly, of the T-shaped base element 24, and extends downwardly beyond the lower transition 24c of the laterally pointing leg 29 until reaching the leg of the T-shaped base element 4 that extends vertically downwardly or downstream in the drainage direction.

As an alternative to positioning a modular device 25 between the drainage line 2 and the collection bag 11, as a functional unit that is serially switchable as needed, the base element 24 may also be directly integrated in a fixed design into the upper inlet area 22 of the collection container 11. In the case of a bag-like container 11, its film body is tightly joined by a direct weld or adhesion to the downwardly directed leg of the T-piece pointing toward the bag 11.

FIG. 18 shows one embodiment of the degassing device 12 according to FIG. 17, in which the adsorbent and/or filtering material is already fixedly integrated into the lateral, gas-discharging leg 29 of the T-piece-shaped base element 24, which opens the overall system made up of the drainage line 2 and the bag 11 to the surroundings. The leg 29 is dimensioned in such a way that it accommodates, for example, approximately 5 to 10 mL of activated carbon granulate. The carbon granulate is delimited from the stool-conducting upper and lower legs of the T-piece-shaped base element 24 by a gas-permeable, water-repellent separating layer 27. The end face-side opening of the leg 29 is provided with a cap-like closure that has openings 25a for the release of gas to the surroundings.

FIG. 19 shows an example of a wall structure of the catheter-like device 1, the material types used and their specific physical-chemical properties being combined on the one hand in the sense of efficient and biocompatible functioning of the catheter, and on the other hand in the sense of efficient odor sealing. The total wall thickness of the film used for manufacturing the device, as well as the material hardness and the thickness of the individual layers of the film, are designed for the requirements of a stool-discharging catheter system that remains continuously in the rectum of the patient.

In the region of the intracorporeal and extracorporeal stool-discharging tube, optionally also in the region of the balloon body, the film material used is made up, for example, of a first carrier layer 33 made of polyurethane (PUR), followed by a centrally situated barrier layer 34 made of ethylene-vinyl alcohol copolymer (EVOH), or less preferably, polyvinylidene chloride (PVDC). The other side of this barrier layer 34 is then adjoined by a second carrier layer 35 made of polyvinyl chloride (PVC), for example.

The overall thickness of the tube wall is 200 to 400 μm, preferably 250 to 350 μm. The PUR portion 33 is preferably situated facing the outside and has a layer thickness of 200 μm, for example, and its material hardness is in the range of Shore 80A to 90A. The PUR on the one hand imparts the tube body 2, but also the other components provided with it, with tensile strength and tear strength. On the other hand, the PUR portion 33 provides the tubular film with the capability for elastic deformation and self-straightening. The subsequent, centrally situated barrier layer 34 in the layer composite has a wall thickness of approximately 15 μm, and is preferably made of EVOH. The barrier layer 34 minimizes the passing of water molecules, air constituents, and odor-intensive substances through the film wall. The second carrier layer 35, which is preferably directed inwardly facing the tube lumen, is made of PVC having a Shore hardness of 60A to 80A and a layer thickness of approximately 100 μm. The PVC layer ensures a certain barrier against water molecules and to a certain extent shields the centrally situated EVOH layer from water, as the result of which the barrier effect of the EVOH is not impaired or reduced by the interaction with water molecules.

To manufacture the designs of the device described for the preceding figures, in which the retaining balloon portion in the rectum and also the transanal and/or extracorporeal stool-discharging tube segment are formed from a single tube blank, the invention proposes an adapted distribution of the above-mentioned proportions of material thicknesses. The PUR layer 33 is increased to 280 μm, and the EVOH or PVDC layer 34 is increased to 40 μm. To internally shield the EVOH, a PVC layer 35 having a reduced thickness of approximately 80 μm is used. This dimensional adaptation of the PUR layer thickness 33 allows the geometrically stable, symmetrical blow molding of the rectal balloon-like expansion from the basic tube used in the forming process, which is smaller relative to the balloon diameter. For an assumed jump in the tube diameter from 20-30 mm to a balloon diameter of approximately 60-70 mm, during the course of blow molding the thickness of the EVOH layer 35 [sic; 34] decreases from 40 μm to approximately 10 to 15 μm, which ensures the maintenance of the barrier function in the balloon or rules out critical thinning of the barrier layer. Correspondingly, the higher PUR proportion of the total wall thickness of the crude tube to be formed ensures that the balloon portion when expanded has a sufficient mechanical load-bearing capacity, in particular dimensional stability, tear strength, and puncture resistance.

The described greater wall thickness of the outer PUR layer 33 is advantageous in particular for the simultaneous blow molding of the balloon portion 3, and an undulatingly corrugated shaft tube 2 that stabilizes the drainage lumen in the balloon-carrying region 7, from a single, continuous tube blank. The combination of the above-described PUR types and their proportional layer thickness, with a specifically undulated, ring- or spiral-shaped corrugated profile in the balloon-carrying section 7 of the shaft tube 2 that carries the balloon or that is enclosed by the balloon 3, assists with its capability for spontaneous straightening into the starting shape that was set during manufacture, and contributes to avoiding axially directed torsions of the tube 2.

FIG. 20 discloses a wall structure of an odor-proof, film-like tube material, it being possible for the particular barrier layer 34, made of EVOH or optionally also PVDC, to be combined on each of both sides with a mechanically stable carrier layer 36 made of ethylene-vinyl acetate copolymer (EVA).

FIG. 21 describes a further example of a wall structure of a film-like tube material that odor-proofs or inhibits the release of odor, it being possible for the particular barrier layer 34 made of EVOH or optionally PVDC to be combined on each of both sides with a mechanically stable carrier layer 37 made of polyamide (PA) or a thermoplastic polyamide elastomer (TPE-A). On the other hand, it is also possible for such a carrier layer 37 made of PA or TPE-A to be combined on the outside with a central barrier layer 34 made of EVOH and an inner layer made of PVC or PUR. For an overall thickness of 300 μm, for example, of the tubular film blank used in the thermal forming to produce the stool-discharging segment, the PA or TPE-A has a Shore hardness of 35D to 40D and a layer thickness of 80 μm. The central EVOH layer 34 is 10 to 20 μm thick. The interior PVC or PUR portion of the film has a thickness of 200 μm.

FIG. 22 describes a further multilayer film structure in which a centrally situated barrier layer 34 made of EVOH is supplemented by a PA layer 37 flanking on each of both sides. The two materials may generally be easily combined in the coextrusion process in an advantageous manner. One or more layers of an LDPE material 39, 40 are then attached via an adhesive layer (tie layer) 38, for example initially one layer 39 each of an oriented low-density polyethylene, and subsequently one layer 40 each of a normal low-density polyethylene.

In addition, there is also a two-layer film combination that combines an EVOH- or PVDC-based barrier layer solely with a single carrier layer, i.e., that dispenses with a sandwich-like layer arrangement as described for the preceding figures. The barrier layer has a wall thickness of 20 μm and is preferably provided as an outer surface. The inwardly directed carrier layer is preferably made of PUR or PVC, and for example is 200 to 280 μm thick. In the case of simultaneous formation of all constituents of the balloon component and the shaft tube component of the head unit 5 and of the extracorporeal stool-discharging tube 2 made from a single employed blank, the thickness of the barrier layer is increased to approximately 50 μm, and the proportional layer thickness of the carrier 18 or 20 is increased to a thickness of 250 to 300 μm.

List of reference numerals  1 catheter-like device  2 tube-like structure  3 balloon body, balloon segment  3a balloon segment  3b balloon segment  3c balloon segment  4 orifice  5 head unit  6 inner body  7 tube segment  8 proximal tube end  9 connector 10 undulating profile 11 container 12 degassing device 13 proximal tube segment 13a distal tube segment 14 expansion, compartment 15 sleeve element 16 olive-like element 17 weld 18 sleeve-like element 19 sleeve-like element 20 anal canal 21 invagination 22 connector 23a connector 23b connector 24 delivering segment 24a tongue 24b transition area 24c transition 25 module 25a opening 26 opening 26a intermediate space 26b opening 27 separating layer 28 hook 29 leg 30 gas-releasing opening 31 film layers 32 tube-like component 33 first carrier layer 34 barrier layer 35 second carrier layer 36 carrier layer made of EVA 37 carrier layer made of PA 38 adhesive layer 39 LDPE (oriented) 40 LDPE

Claims

1. A closed system for the delivery and/or discharge of odor-intensive substances to/from the body of a patient in the most odor-neutral manner possible, comprising characterized in that the delivering and/or discharging, tubular film-like structure (2) of the system and the film-based components of the container (11) are made of multilayer film material which in each case includes at least one barrier layer (34), made of ethylene-vinyl alcohol copolymer (EVOH) and/or polyvinylidene chloride (PVDC), that acts as an odor barrier, and in each case at least one carrier layer (35, 37, 39, 49) made of a robust, mechanically loadable material.

a head unit (5) that is positionable in an interior space of the body of the patient, includes a balloon-like element (3), and retains and/or seals the system in the body of the patient,
an extracorporeal container (11) including a preferably film-based, bag-like compartment for receiving the substances to be delivered and/or discharged, and
a tubular film-like structure (2) that connects the body interior space that is to be reached to the extracorporeal container,

2. The system according to claim 1, characterized in that the film-based tube components and/or balloon components of the head unit (5) positioned in the interior space of the body are also made of multilayer film material which in each case includes at least one barrier layer (34), made of ethylene-vinyl alcohol copolymer (EVOH) and/or polyvinylidene chloride (PVDC), that acts as an odor barrier, and in each case at least one carrier layer (35, 37, 39, 49) made of a robust, mechanically loadable material.

3. The system according to claim 1, characterized in that the (overall) thickness dT of the carrier layer or of all carrier layers is greater than the (overall) thickness dB of the barrier layer or of all barrier layers:

dT>dB.

4. The system according to claim 1, characterized in that the (overall) thickness dT of the carrier layer or of all carrier layers is greater than or equal to five times the (overall) thickness dB of the barrier layer or of all barrier layers: or that the (overall) thickness dT of the carrier layer or of all carrier layers is greater than or equal to ten times the (overall) thickness dB of the barrier layer or of all barrier layers: or that the (overall) thickness dT of the carrier layer or of all carrier layers is greater than or equal to twenty times the (overall) thickness dB of the barrier layer made of EVOH or PVDC or of all barrier layers made of EVOH and/or PVDC: or that the (overall) thickness dT of the carrier layer or of all carrier layers is greater than or equal to forty times the (overall) thickness dB of the barrier layer made of EVOH or PVDC or of all barrier layers made of EVOH and/or PVDC:

dT≥5*dB,
dT≥10*dB,
dT≥20*dB,
dT>40*dB.

5. The system according to claim 1, characterized in that at least one carrier layer is made of a mechanically loadable, preferably elastically deformable and elastically straightening, carrier material.

6. The system according to claim 1, characterized in that the material of a carrier layer is selected from the group comprising polyurethane (PUR), preferably thermoplastic polyurethane (TPU), polyvinyl chloride (PVC), polyamide (PA), thermoplastic polyamide elastomer (TPE-A), and polyolefin-based polymers, as well as combinations of these materials.

7. The system according to claim 1, characterized in that the material is made up of at least one carrier layer made of PUR having a Shore hardness of 80A to 95A or 55D to 65D, and/or of a thermoplastic PUR of a type having a water absorption according to DIN ISO 62 of 5% or less, preferably having a water absorption according to DIN ISO 62 of 2% or less.

8. The system according to claim 1, characterized in that at least one carrier layer made of PVC is combined with at least one carrier layer made of PUR.

9. The system according to claim 1, characterized in that at least one barrier layer of the two- or multilayer film material is joined to a carrier layer only at one side.

10. The system according to claim 9, characterized in that the barrier layer is made of PVDC.

11. The system according to claim 9, characterized in that at least one carrier layer is made of PVC or PUR.

12. The system according to claim 1, characterized in that the multilayer film material is made up of a sandwich-like combination, at least one central barrier layer being enclosed on both sides by at least one carrier layer each.

13. The system according to claim 12, characterized in that a carrier layer made of PVC is provided at one or both sides of the central barrier layer.

14. The system according to claim 12, characterized in that a carrier layer made of PUR is provided at one or both sides of the central barrier layer.

15. The system according to claim 12, characterized in that at least one carrier layer made of PVC is combined with at least one carrier layer made of PUR at each side of a central barrier layer.

16. The system according to claim 1, characterized in that the wall thickness of the multilayer film material is in a range of 10 μm to 5 mm, and/or in a range of 20 μm to 2 mm, for example in a range of 50 μm to 1 mm, preferably in a range of 50 μm to 1 mm, in particular in a range of 100 μm to 500 μm.

17. The system according to claim 1, characterized in that the thickness of a barrier layer is in a range of 5 to 25 μm, preferably in a range of 10 to 15 μm.

18. The system according to claim 1, characterized by the following structure of the multilayer film material:

PVC, for example having a Shore hardness of 60A to 80A and a thickness of 140 to 280 μm, at the inner side facing a central lumen, as an inner carrier layer,
PUR, for example having a Shore hardness of 55D and a thickness of 50 to 100 μm, at the outer side facing away from the central lumen, as an outer carrier layer, and
EVOH or PVDC having a thickness of 10 to 20 μm between the inner carrier layer and the outer carrier layer, as a central barrier layer.

19. The system according to claim 1, characterized in that one or more layers of the multilayer film material are coextruded with one another.

20. The system according to claim 1, characterized in that at least one barrier layer, in particular a barrier layer made of EVOH, is joined to a neighboring layer made of PA, in particular without a connecting, adhesion-assisting tie layer.

21. The system according to claim 1, characterized in that at least one carrier layer, in particular a carrier layer made of PUR, is joined to a neighboring layer made of PA, in particular without a connecting, adhesion-assisting tie layer.

22. The system according to claim 1, characterized in that a layer made of PA is joined to a PE-based layer by use of an adhesion promoter as an intermediate layer.

23. The system according to claim 1, characterized in that different, separately manufactured, adjacently situated components in the system, such as the head unit and the tubular film-like structure on the one hand or the container and the tubular film-like structure on the other hand, are adhesively bonded to one another, for example by adhering adjacently situated surfaces of two separately manufactured components using a solvent, in particular using a solvent such as cyclohexanone or tetrahydrofuran.

24. The system according to claim 1, characterized in that the balloon and the line are made of the same multilayer film material, and/or the container and the line are made of the same multilayer film material, and/or the balloon, the container, and the line are made of the same multilayer film material.

25. The system according to claim 24, characterized in that components that are made of the same multilayer film material are integrated with one another and/or manufactured as a unit.

26. The system according to claim 1, characterized in that the multilayer film material, at least in areas, is provided with a spiral-shaped indentation and/or protrusion or with multiple successive, ring-shaped, inwardly directed indentations and/or protrusions in order to assist the spontaneous straightening of the film material in question after a temporary deformation.

27. The system according to claim 26, characterized in that circular expansions or reductions of the multilayer film material are 3 to 6 mm wide.

28. The system according to claim 26, characterized in that circular expansions or reductions of the multilayer film material are 1.0 to 3 mm deep, preferably 1.5 to 2.5 mm deep, at the apex.

29. The system according to claim 1, characterized in that the catheter balloon has a radially expanded, intracorporeal balloon segment and a transosteal balloon segment that is radially tapered with respect to same.

30. The system according to claim 1, characterized in that the entire intracorporeal portion and also the entire extracorporeal portion of the catheter balloon are formed from a single, structurally continuous film tube blank.

31. The system according to claim 1, characterized in that multiple layers of the multilayer film material are thermally formed together in a subsequent manufacturing step, for example using a hot-molding process, an initially unprocessed tube blank being expanded into a heated mold cavity via action by compressed air, and its shape being fixed there via subsequent cooling of the mold.

32. The system according to claim 1, characterized in that the forming of an extracorporeal, stool-discharging tube segment to form a tube casing that is provided with lumen-stabilizing indentations and/or protrusions, for example, takes place simultaneously with the formation of an intracorporeal balloon component of the catheter balloon and/or of a transosteal balloon component of the catheter balloon in a single work step.

33. The system according to claim 1, characterized in that the catheter-like structure is insertable into an artificial or natural body opening, and may remain there in continuous placement for several days or weeks without causing trauma.

34. The system according to claim 1, characterized in that during the in situ placement of a residual balloon body i.e., a balloon body that is formed with excess balloon material along the balloon circumference, typical invaginated indentations (21) of the excess, residual balloon envelope form in the balloon interior.

35. The system according to claim 34, characterized in that the indentations (21) that are invaginated in the balloon interior have turned-over formations with an eyelet-like cross section, which preferably extend or continue as channel-like formations in the longitudinal direction of the balloon (3), i.e., between the distal and proximal end-face sides of the balloon.

36. The system according to claim 35, characterized in that the turned-over formations with an eyelet-like cross section, which preferably extend or continue as channel-like formations in the longitudinal direction of the balloon (3), have an opening diameter between 30 μm and 120 μm, preferably an eyelet diameter between 40 μm and 80 μm, at a filling pressure of the balloon (3) of 30 mbar.

37. The system according to claim 1, characterized in that a gas- and/or water vapor-tight barrier layer (34) is situated between an elastically deformable carrier layer made of PUR and a nonelastically deformable carrier layer made of PVC, for example.

38. The system according to claim 37, characterized in that the proportional wall thickness of the nonelastically deformable carrier layer (33, 35, 36, 39, 40) made of PVC, for example, is greater than the proportional wall thickness(es) of the elastically deformable carrier layer(s) made of PUR.

39. The system according to claim 1, characterized by a degassing device having an outlet at which an internal overpressure within the system may be reduced by the release of gas, and having an adsorption and/or absorption and/or filter device that filters undesirable substances, in particular odorous substances, from the released gas.

40. The system according to claim 39, characterized in that the degassing device is connected to a compartment of the container that receives the particular delivering and/or discharging substance.

41. The system according to claim 39, characterized in that a branch that is used as an outlet is provided in a conducting area for conducting the substances to be delivered and/or discharged.

42. The system according to claim 41, characterized in that the adsorption and/or absorption and/or filter device is integrated with the branch or connected to same.

43. The system according to claim 42, characterized in that the adsorption and/or absorption and/or filter device is situated spatially separate from the delivering and/or discharging lumen of the system via a protected access path in the branch, so that the degassing unit having an adsorbent or filtering action is protected from direct exposure to the substances to be delivered and/or discharged.

44. The system according to claim 41, characterized in that the branch is situated distally with respect to a return-inhibiting element at the inlet of the compartment in the container.

45. The system according to claim 44, characterized in that the return-inhibiting element has film-based, lip-like, or sail-like components (31), the distance between the film-based, lip-like, or sail-like components (31) in the main flow direction, i.e., in the direction from the drainage line (2) to the collection compartment of the collection container (11), preferably being tapered.

46. The system according to claim 39, characterized in that the adsorption and/or absorption and/or filter device (25) is spaced apart from the conducting area, at least in areas, to avoid, to the greatest extent possible, intensive contact with the substances flowing through the conducting area.

47. The system according to claim 39, characterized in that the longitudinal direction of the flow channel between the branch (29) and the adsorption and/or absorption and/or filter device, with respect to the longitudinal direction of the conducting area between the branch (29) and the drain connection, encloses an angle of 90° or less than 90°, for example an angle of 75° or less, preferably an angle of 60° or less, in particular an angle of 45° or less, or even an angle of 30° or less.

48. The system according to claim 39, characterized in that the maximum flow cross section in the area between the branch (29) and the adsorption and/or absorption and/or filter device (25) is equal to or less than the minimum flow cross section in the conducting area.

49. The system according to claim 39, characterized in that the flow cross section in the area between the branch (29) and the adsorption and/or absorption and/or filter device (25) is narrowed with respect to the minimum flow cross section in the conducting area via an obstruction.

50. The system according to claim 49, characterized in that the obstruction is designed as a tongue (24a) that is situated within the conducting area approximately at the height of the branch (29).

51. The system according to claim 49, characterized in that the obstruction is designed as a tongue (24a) that is articulated distally with respect to the branch (29), and that covers the branch (29), at least in areas, for the adsorption and/or absorption and/or filter device (25) with respect to the conducting area when substances are conducted.

52. The system according to claim 51, characterized in that the tongue (24a) has a flexible and/or elastic design, and/or is preferably made of plastic.

53. The system according to claim 39, characterized in that the inlet opening of the adsorption and/or absorption and/or filter device (25) facing the conducting area or the branch (29) is covered by a gas-permeable, but preferably water-repellent, separating layer (27).

54. The system according to claim 53, characterized in that the separating layer (27) has a slightly wettable surface (lotus effect), in particular on its side facing the conducting area or the branch (29).

55. The system according to claim 53, characterized in that the separating layer (27) is made of a paper, in particular a nonwoven paper, or is designed as a microporous membrane made of expanded polytetrafluoroethylene, for example, preferably having a maximum pore diameter of less than 1 mm, preferably having a maximum pore diameter of 100 μm or less, in particular having a maximum pore diameter of 10 μm or less.

56. The system according to claim 39, characterized in that the adsorption and/or absorption and/or filter device (25) has one or more surface-active adsorbent substances that accumulate odorous substances on the surface, and/or one or more absorbent substances that absorb the odor-effective materials in the manner of a physical solution.

57. The system according to claim 39, characterized in that the adsorption and/or absorption and/or filter device (25) includes an adsorbent or absorbent or filtering granulate, for example activated carbon, for example in a quantity of 100 mL or less, preferably in a quantity of 50 mL or less, in particular in a quantity of 20 mL or less, or in a quantity of 10 mL or less, or even in a quantity of 5 mL or less.

58. The system according to claim 57, characterized in that the adsorption and/or absorption and/or filter device (25) contains the granulate, for example the activated carbon, in a quantity of 2 mL or greater, preferably in a quantity of 5 mL or greater, in particular in a quantity of 10 mL or greater, or in a quantity of 20 mL or greater, or even in a quantity of 30 mL or greater.

59. The system according to claim 57, characterized in that the adsorption and/or absorption and/or filter device (25) in its interior has one or more lamella-like structures in order to lead the gas to be cleaned through the adsorption and/or absorption and/or filter device (25), preferably multiple lamella-like structures being offset relative to one another and/or meshing into one another in the manner of interlocked fingers.

60. The system according to claim 57, characterized in that the adsorption and/or absorption and/or filter device (25) in its interior has at least one screw-shaped, spiral, and/or helical structure in order to lead the gas to be cleaned through the adsorption and/or absorption and/or filter device (25).

61. The system according to claim 57, characterized in that the adsorption and/or absorption and/or filter device (25) includes a material that filters odor-causing substances, in particular in the area of its downstream or outlet-side opening (25a).

62. The system according to claim 57, characterized in that the adsorption and/or absorption and/or filter device (25) includes a material that filters infectious pathogens, in particular in the area of its downstream or outlet-side opening (25a).

63. The system according to claim 39, characterized in that the adsorption and/or absorption and/or filter device (25) is situated in a replaceable cartridge (25a) or in a removable cap.

64. The system according to claim 63, characterized in that the replaceable cartridge (25a) or the removable cap is provided with one or more outlet openings in the area of its free end-face side or its circumference.

65. The system according to claim 63, characterized in that the replaceable cartridge (25a) or the removable cap is connectable to the conducting area at the branch at that location via a bayonet lock or via a screw closure.

66. The system according to claim 63, characterized in that the conducting area including the branch, and/or the replaceable cartridge (254) [sic; (25a)] and/or the removable cap, has at least one compartment for accommodating a fragrance.

67. The system according to claim 63, characterized in that the conducting area (24) including the branch (29) is integrated with the tube (2) or the bag (11).

68. The system according to claim 39, characterized in that the conducting area (24) including the branch (29) is integrated with or connectable to the catheter (5), which is anchorable in the patient via the balloon element (3).

Patent History
Publication number: 20230166009
Type: Application
Filed: Apr 28, 2021
Publication Date: Jun 1, 2023
Inventor: Fred Göbel (Speyer)
Application Number: 17/921,798
Classifications
International Classification: A61L 29/14 (20060101); A61M 25/00 (20060101); A61M 25/10 (20060101); A61L 29/08 (20060101);