ACTIVE DISTRIBUTED ANTENNA SYSTEM WITH FREQUENCY TRANSLATION AND SWITCH MATRIX
A three-dimensional, 360 degree, omnidirectional multiple-input multiple-output wireless systems is described herein. The multiple-input multiple-output wireless system is comprised of a plurality of radio inputs, a plurality of radio-frequency converters, an RF signal distribution network, a plurality of transceivers, and a plurality of antennas. The multiple-input multiple-output wireless system may further have a plurality of planar stacks.
This application is continuation and claims benefit of U.S. patent application Ser. No. 17/449,915, filed Oct. 4, 2021, which is a continuation and claims benefit of U.S. patent application Ser. No. 16/987,068, filed Aug. 6, 2020, now U.S. Pat. No. 11,139,587, which is a non-provisional and claims benefit of U.S. patent application No. 62/979,765 filed Feb. 21, 2020, the specification of which is incorporated herein in its entirety by reference.
This application is continuation and claims benefit of U.S. patent application Ser. No. 17/449,915, filed Oct. 4, 2021, which is a continuation and claims benefit of U.S. patent application Ser. No. 16/987,068, filed Aug. 6, 2020, now U.S. Pat. No. 11,139,587, which is a continuation-in-part and claims benefit of U.S. patent application Ser. No. 16/830,065, filed Mar. 25, 2020, now U.S. Pat. No. 10,784,591, which is a continuation-in-part and claims benefit of U.S. patent application Ser. No. 16/750,337, filed Jan. 23, 2020, which is a non-provisional and claims benefit of U.S. Patent Application No. 62/795,934, filed Jan. 23, 2019, the specifications of which are incorporated herein in their entirety by reference.
U.S. patent application Ser. No. 16/830,065, filed Mar. 25, 2020, is also a non-provisional and claims benefit of U.S. Patent Application No. 62/979,765 filed Feb. 21, 2020, the specification of which is incorporated herein in its entirety by reference.
BACKGROUND OF THE INVENTION Field of the InventionThe present invention relates to active distributed antenna systems (DAS), in particular, to multi-input, multi-output re-configurable DAS with frequency translation.
Background ArtAn antenna is a device for efficiently radiating electromagnetic energy into free space, from a system that otherwise confines its electromagnetic energy. An antenna that radiates electromagnetic energy equally in all spatial directions in three-dimensional space may be deemed an isotropic radiator. By contrast, in certain applications it is advantageous to create an anisotropic radiator, one which largely confines the radiation to within a narrow beam in a specific desired direction. Common methods to direct the radiation pattern of an antenna (radiating structure) from one orientation in three-dimensional space to another may involve either physically reorienting the antenna mechanism, or employing precise phase control among a collection of fixed antenna elements. Both of these methods must overcome the inertia of either the mechanism, or of the phase control actuating element, an inertia which in turn limits the agility with which the beam may be redirected.
BRIEF SUMMARY OF THE INVENTIONIt is an objective of the present invention to provide systems, devices and methods that allow for efficient radio coverage of a wide angular region, as specified in the independent claims. Embodiments of the invention are given in the dependent claims. Embodiments of the present invention can be freely combined with each other if they are not mutually exclusive.
Wireless networking infrastructure meeting standards that may be deployed in the near future, such as for 5G networking, may drive demand for far more precise control of the direction, polarization, and level of over-the-air electromagnetic radiation than may have been the case for prior wireless networking standards. This demand may apply equally to radiated electromagnetic power as well as to received electromagnetic power. Accordingly, sophisticated radiating structures may be necessary, structures whose pattern of radiation may be highly configurable in direction, polarization, and power level, structures which may interface with several radios simultaneously in a dynamically assigned manner.
Accordingly, the present invention may integrate the features of both a sophisticated radiating structure capable of addressing 360 degrees of azimuth and 60 degrees of elevation, together with a utility for up-conversion and down-conversion that may correspond with multiple external radios simultaneously, all into a single multiple-input, multiple-output wireless system. The present invention quantizes the orientation of a sophisticated radiating structure's beam into a finite set of solid-angular sub-regions that may be rapidly re-selected, such that the inertia to direct the beam from one solid-angular sub-region to another is almost infinitesimal. Moreover, in the present invention, because multiple radios may access a shared sophisticated radiating structure, each solid-angular sub-regional antenna element may deploy its own independent beam that may be distinguished from neighboring beams by any to all of: its carrier frequency; its polarization of radiation; and its power level. Further, the present invention may hide the complexity of a radiating structure operating at a comparatively high frequency of radiation by presenting it as having an interface that may appear as one at a comparatively low frequency of radiation, which is more readily accommodated. Once such a system has been realized, the system may find further application in dual-use technologies suitable for electronic warfare.
Any feature or combination of features described herein are included within the scope of the present invention provided that the features included in any such combination are not mutually inconsistent as will be apparent from the context, this specification, and the knowledge of one of ordinary skill in the art. Additional advantages and aspects of the present invention are apparent in the following detailed description and claims.
The features and advantages of the present invention will become apparent from a consideration of the following detailed description presented in connection with the accompanying drawings in which:
Following is a list of elements corresponding to a particular element referred to herein:
-
- 4000 multiple-input, multiple-output wireless system (MIMO)
- 4100 plurality of planar stacks
- 4101 planar stack
- 4110 plurality of transceiver blocks
- 4111 transceiver block
- 4112 transceiver block first port
- 4113 transceiver block second port
- 4120 plurality of oriented antennas
- 4121 oriented antenna
- 4122 Poynting ray
- 4123 stem
- 4124 tip
- 4125 Poynting plane
- 4130 plurality of 1-pole R-throw radio selectors
- 4131 1-pole R-throw radio selector
- 4132 radio selector common port
- 4133 radio selector plurality of switch ports
- 4134 radio selector switch port
- 4140 plurality of stack radio feed ports
- 4141 stack radio feed port
- 4180 radio-frequency fanning network
- 4200 plurality of radio feeds
- 4201 radio feed
- 4300 array axis of symmetry
- 4311 inter-ray angular offset
- 4312 inter-plane angular offset
- 4400 plurality of radios
- 4401 radio
- 4402 plurality of radio feed ports
- 4403 radio feed port
- 4404 plurality of input-output radio-frequency ports
- 4405 input-output radio frequency port
- 4700 plurality of input-output radio-frequency connectors
- 4701 input-output radio-frequency connector
- 4800 digital control logic
- 4801 control port
- 5000 media access controller
- 5100 interconnect fabric
- 5201 telecommunication terminal
- 5202 remote sensing terminal
Referring now to
Referring now of
Referring now of
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Accordingly, the multiple-input multiple-output wireless system (MIMO) (4000) may provide efficient radio coverage of the entire solid-angular region addressed wirelessly by the multiple-input multiple-output wireless system (MIMO) (4000), with respect to the location of the multiple-input multiple-output wireless system (MIMO) (4000).
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
In some embodiments, the lower radio-frequency band may reside within any of S-band, C-band, Ka-band, Ku-band, E-band, V-band, X-band, L-band or W-band, and in some embodiments, the higher radio-frequency band may reside within any of S-band, C-band, Ka-band, Ku-band, E-band, V-band, X-band, L-band or W-band. S-band may include electromagnetic radiation in frequencies in the range from 1.550 gigahertz to 3.990 gigahertz. C-band may include electromagnetic radiation in frequencies in the range from 3.900 gigahertz to 6.200 gigahertz. Ka-band may include electromagnetic radiation in frequencies in the range from 20.000 gigahertz to 36.000 gigahertz. Ku-band may include electromagnetic radiation in frequencies in the range from 10.900 gigahertz to 20.000 gigahertz. E-band may include electromagnetic radiation in frequencies in the range from 2.000 gigahertz to 3.000 gigahertz. V-band may include electromagnetic radiation in frequencies in the range from 46.000 gigahertz to 56.000 gigahertz. X-band may include electromagnetic radiation in frequencies in the range from 6.200 gigahertz to 10.900 gigahertz. L-band may include electromagnetic radiation in frequencies in the range from 40.000 gigahertz to 60.000 gigahertz. W-band may include electromagnetic radiation in frequencies in the range from 56.000 gigahertz to 100.000 gigahertz.
In some embodiments, the beam of electromagnetic radiation emitted by each oriented antenna (4121) may be either circularly polarized or linearly polarized.
In some embodiments, the concise command language may comprise commands consisting of a 2-bytes (16-bits) or a 3-bytes (20-bits) command strings.
In some embodiments, the processing performed by the multiple-input multiple-output wireless system (MIMO) (4000) may be agnostic to any RF data that may traverse it. The term agnostic may signify, within this document, that digital data streams, which may be borne on the electromagnetic spectrum that the multiple-input multiple-output wireless system (MIMO) (4000) processes, may be unintelligible to the multiple-input multiple-output wireless system (MIMO) (4000) because it, the present invention, may be by design and as a security feature structurally incapable of understanding them.
In some embodiments, the transceiver block (4111) may comprise any of: a low-noise amplifier; a power amplifier; transmit/receive switch; and/or frequency-selective filtering and TX and RX AGCs. The low-noise amplifier may be employed to improve performance of the present invention when the transceiver block (4111) may operate in conjunction with its respective radio (4401) in down-convert (receive) mode. The power amplifier may be employed to improve performance of the present invention when the transceiver (4111) may operate in conjunction with its respective radio (4401) in up-convert (transmit) mode. The frequency-selective filtering may reduce out-of-band radiated power by the power amplifier when the transceiver block (4111) may operate in transmit mode, and the frequency-selective filtering may maintain the dynamic range of the low-noise amplifier when the transceiver block (4111) may operate in receive mode. Out-of-band radiated power may be defined as radiated power outside the band of frequencies of electromagnetic radiation licensed to the operator of the present invention. Dynamic range may be defined as the ratio of signal power to the aggregate of noise power plus spurious power. The transceiver block (4111) will have automatic gain control (AGC) in both directions, not so dynamic, which may be used to equalize the signal level for each transceiver or radio-frequency (RF) path. The AGC commands are not permitted to switch at the beam pointing rate. The automatic gain control (AGC) may be used for signal-to-noise ratio (SNR) optimization dynamic range control and chain gain equalization. Power consumption minimization is critical, so each Power Amplifier in the transceiver is turned off when not in use or in receive mode, conversely the bias power is turned off in the transceiver's receive chain when not in use or in transmit mode. (See
Referring now to
In some embodiments, every oriented antenna (4121) may transmit or receive within any of S-band, C-band, Ka-band, Ku-band, E-band, V-band, X-band, L-band or W-band.
In some embodiments, each given oriented antenna (4121) may dominate, within its respective sub-region of solid-angular coverage, the response of all other oriented antennas (4121). When the beamwidth of the oriented antennas (4121) may about equal the inter-ray angular offset (4311) between them within a planar stack (4101), and the beamwidth of the oriented antennas (4121) may about equal the inter-plane angular offset (4312) between planar stacks (4101), then each given oriented antenna (4121) may be more sensitive along its Poynting ray (4122) than any other oriented antenna (4122), and therefore control of the transmit power level and receive sensitivity of the transceiver block (4111) for the given oriented antenna (4121) may have about no effect upon any other oriented antenna (4121) along its respective Poynting ray (4122).
Within this document, the term ‘passive’ may denote a property of a multi-port linear electrical network such that said network may be incapable of power amplification, of any signal power level inbound upon any of its ports, on to some signal power level outbound from any of its ports. The terms ‘lossy’ and ‘lossless’ may further distinguish special cases of passive networks. By contrast, the term ‘active’ may denote the logical complement or opposite of the passive property, when describing a multi-port linear electrical network. A multi-port linear electrical network whose description may be given in terms of scattering parameters (s-parameters) may be recognized as a passive network by the property that all of its matrix elements may have a magnitude less than or equal to one, given that identical reference impedances (ZO) may be associated with every port.
Within this document, “orthogonality” refers to an independence of control, such that the control of one component (such as an antenna) is about independent from control of another component (such as a neighboring antenna). For example, if the control of radiated power and received sensitivity to multiple antennas is “orthogonal,” then the radiated power and received sensitivity of each antenna may be controlled independently of the control of radiated power and received sensitivity of the other antennas, without impacting their radiated power or received sensitivity. Generally, the term ‘orthogonal’ denotes a relationship of among mathematical vectors which is tantamount to independence, in other words in which the projection of one vector upon another may be zero. For example, Euclidean vectors in three-dimensional space (vectors of length 3) may be orthogonal to each other if the dot product between them evaluates to zero. More generally, the projection of a first output of a multi-dimensional signal processing system may be orthogonal to, or independent of, some second output if any modulation of the first output may be accommodated while maintaining zero projection upon the second output, and vice versa. Orthogonality among the outputs of a multi-dimensional signal processing system, if at all possible, may depend upon the determination of a suitable control scheme governing the system's independently controllable inputs.
A three-dimensional (3D) multiple-input multiple-output wireless system (MIMO) may comprise: a plurality of radios, a plurality of mutually uniquely oriented active antennas, and an interconnect fabric. The interconnect fabric may mediate electrical connections between the multiplicity of radios and the multiplicity of uniquely oriented active antennas. The interconnect fabric may be configured to connect electrically each oriented antenna with at most one of the multiplicity of radios. The interconnect fabric may be a logical conception rather than an isolable physical fabric. The interconnect fabric, in any given one of its possible configurations, may be a passive multi-port linear electrical network. An active antenna may incorporate configurable levels of power amplification, and said power amplification may be configurable independently of any power amplification capability within a given radio. One of the plurality of mutually uniquely oriented active antennas may be better oriented to address a given particular elevation and azimuth pair direction in free space with electromagnetic wave energy than any other of the mutually uniquely oriented active antennas.
The narrow beam of each active antenna may primarily address a respective solid-angular region. A uniquely oriented active antenna whose antenna pattern may have a beamwidth less than or comparable to the angular spacing between its orientation and that of its closest neighbors may address a solid-angular region of free space without significant redundancy, overlap, or gaps in coverage. A uniquely oriented active antenna that may primarily address its respective solid-angular region, favorably when compared with all other uniquely oriented active antennas, may dominate its respective solid-angular region.
The interconnect fabric and the gain level of each active antenna may be configured independently and dynamically so as to connect electrically each active antenna to any or none of the plurality of radios at any given time, so as to provide efficient radio coverage of the totality of solid-angular regions addressed wirelessly by the MIMO. The MIMO of the present invention may distribute and receive electromagnetic wave energy primarily in an optimal direction, and at an optimal level, in a manner that may vary dynamically over time, toward the satisfaction of whatever goals the system enclosing the MIMO may require.
In some embodiments, the interconnect fabric may be a routing network that may be capable of electrically connecting any given active antenna with at most any single radio at any given time, wherein the electrical connection is bi-directional. The term ‘routing network’ may denote a configurable collection of electrical connections between a first set of ports, each of which may be associated with one of the plurality of active antennas, and a second set of ports, each of which may be associated with one of the plurality of radios. The term ‘routing network’ may merely elaborate upon and re-state the properties of the interconnect fabric. The connections established by the routing network therefore may be deemed bi-directional. A valid configuration within the routing network may fan out connections from a given radio to several antennas, while a valid connection within the routing network may connect a given antenna to at most one radio.
In some embodiments, the MIMO may have a digital control logic, and the digital control logic may be configured to coordinate the operation of the plurality of radios and the plurality of active antennas to either up-convert or down-convert. The digital control logic may effect the configuration of each active antenna such that it may be consistent with the radio to which the configuration of the interconnect fabric connects the active antenna.
In some embodiments, each active antenna may be configured to up-convert whenever the radio to which said active antenna may be electrically connected may perform up-conversion, and each active antenna may be configured to down-convert whenever the radio to which said active antenna may be electrically connected may perform down-conversion. When the mode of the radio may be configured to up-convert, electromagnetic wave energy may flow from a given radio, through the connection configured within the interconnect fabric, to the active antenna, which may amplify the electromagnetic wave energy incident upon it from the interconnect fabric, and may launch the result into free space electromagnetic radiation. When the mode of the radio may be configured to down-convert, electromagnetic wave energy may flow from the active antenna element, which may amplify the electromagnetic wave energy incident upon it from free space, and may launch the result through the connection configured within the interconnect fabric, to the radio.
In some embodiments, the MIMO may have a digital control logic, and the digital control logic may be configured to direct the operation of each active antenna so as to apply a variable level of radio-frequency amplification specific to said active antenna. The orthogonality, or independence, of control of radio-frequency amplification to each active antenna may be essential to the present invention. Said control may be effected by a digital control logic.
In some embodiments, the interconnection and gain level of each oriented antenna may be configured independently and dynamically so as to connect electrically each oriented antenna to any or none of the plurality of radios at any given time. The signal paths established within the radio-frequency fanning network between radios and oriented antennas may be reconfigured over time as the system enclosing the MIMO may require. An oriented antenna is permitted not to connect to any radio at all, or an oriented antenna may connect to any single radio, at any given instant.
In some embodiments, each transceiver block may employ variable levels of radio-frequency power amplification, and each transceiver block may be configured to accept a transmit/receive mode control signal from the digital control logic. The transmit/receive mode control signal may correspond, respectively, to the up-convert/down-convert mode of the radio associated by the configuration of the radio-frequency fanning network with a given transceiver, at any given moment.
A media-access-controller (MAC) may access the medium of three-dimensional (3D) free space, and the medium may be multiplexed by solid-angular-division. The MAC may encapsulate a plurality of radios, an interconnect fabric, and a plurality of uniquely oriented active antennas; in other words, the MAC may comprise a MIMO. As such the MAC may subdivide access to electromagnetic wave energy by partitioning free space into regions of solid-angular coverage, in which each solid-angular region may be dominated by one of the uniquely oriented active antennas.
The MAC may be configured to allocate connections dynamically to a plurality of co-located telecommunication or remote sensing terminals. The MAC may further be configured to multiplex, in a time-varying manner, access by each solid-angular region to at most one of the plurality of telecommunication or remote sensing terminals, at any given time. The MAC may constitute a terminal on a wireless telecommunication link, or it may constitute a station performing remote sensing upon a solid-angular region of free space, such as a radar or light detection and ranging (LIDAR), and may be configurable from wireless to remote sensing, or vice versa. Co-located telecommunication or remote sensing terminals may be connected by media (such as coaxial cabling) other than the free-space electromagnetic medium.
ExampleThe following is a non-limiting example of the present invention. It is to be understood that said example is not intended to limit the present invention in any way. Equivalents or substitutes are within the scope of the present invention.
Referring now to the example embodiment of the present invention shown in
As used herein, the term “about” refers to plus or minus 10% of the referenced number.
Although there has been shown and described the preferred embodiment of the present invention, it will be readily apparent to those skilled in the art that modifications may be made thereto which do not exceed the scope of the appended claims. Therefore, the scope of the invention is only to be limited by the following claims. In some embodiments, the figures presented in this patent application are drawn to scale, including the angles, ratios of dimensions, etc. In some embodiments, the figures are representative only and the claims are not limited by the dimensions of the figures. In some embodiments, descriptions of the inventions described herein using the phrase “comprising” includes embodiments that could be described as “consisting essentially of” or “consisting of”, and as such the written description requirement for claiming one or more embodiments of the present invention using the phrase “consisting essentially of” or “consisting of” is met.
The reference numbers recited in the below claims are solely for ease of examination of this patent application, and are exemplary, and are not intended in any way to limit the scope of the claims to the particular features having the corresponding reference numbers in the drawings.
Claims
1. A three-dimensional (3D) multiple-input multiple-output wireless system (MIMO) comprising: wherein the control of radiated power and received sensitivity to each sub-region is about orthogonal; wherein any first given radio, from among the R radios, is configured to address any given subset of the entirety of solid-angular sub-regions, wherein then any second given radio is configured to address any subset of the remaining solid-angular sub-regions not yet addressed, wherein the pattern established for the first given radio and the second given radio is continued such that each of the remaining radios in turn is configured to address any subset of the remaining solid-angular sub-regions not yet addressed, until either no solid-angular sub-regions remain unaddressed, or all R radios require no further solid-angular sub-regions of address; so as to provide efficient radio coverage of the entire solid-angular region addressed wirelessly by the MIMO, with respect to the location of the MIMO.
- N oriented antennas each pointing in a unique direction in 3D space and each comprising a transceiver block, wherein N is a first fixed positive integer, wherein each oriented antenna has a Poynting ray, wherein each oriented antenna is configured to emit electromagnetic wave energy primarily along its Poynting ray and receive electromagnetic wave energy primarily along the negative of its Poynting ray, wherein each Poynting ray is offset in its angular orientation from each adjacent Poynting ray, wherein each given oriented antenna dominates, within its respective sub-region of solid-angular coverage, the response of all other oriented antennas;
- a radio-frequency fanning network, configured to connect electrically at most one radio with each oriented antenna at any given instant;
- R radios, wherein R is a second fixed positive integer; and
- a digital control logic, configured to control the coordinated operation of the radios, the radio-frequency fanning network, and the transceiver blocks;
2. A three-dimensional (3D) multiple-input multiple-output wireless system (MIMO) comprising: a plurality of radios, a plurality of mutually uniquely oriented active antennas, and an interconnect fabric; wherein the narrow beam of each active antenna primarily addresses a respective solid-angular region, wherein the interconnect fabric and the gain level of each active antenna are configured independently and dynamically so as to connect electrically each active antenna to any or none of the plurality of radios at any given time, so as to provide efficient radio coverage of the totality of solid-angular regions addressed wirelessly by the MIMO.
3. The MIMO of claim 2, wherein the interconnect fabric is a routing network capable of electrically connecting any given active antenna with at most any single radio at any given time, wherein the electrical connection is bi-directional.
4. The MIMO of claim 2, wherein a first given radio is configured to address any given subset of the totality of solid-angular regions, wherein a second given radio is configured to address any subset of the remaining solid-angular regions not yet addressed, and wherein the pattern established for the first given radio and the second given radio is continued such that each of the remaining radios in turn is configured to address any subset of the remaining solid-angular regions not yet addressed, until either no solid-angular regions remain unaddressed, or the entire plurality of radios require no further solid-angular regions of address.
5. The MIMO of claim 2, wherein each oriented active antenna dominates all other oriented active antennas, within its respective region of solid-angular coverage.
6. The MIMO of claim 2, wherein the MIMO is configured to effect independent control of radiated electromagnetic wave power, and incident electromagnetic wave power sensitivity, for each active antenna.
7. The MIMO of claim 2, wherein the active antennas and the interconnect fabric are configured by a digital control logic, wherein the digital control logic is configured by a control port.
8. The MIMO of claim 2, wherein each active antenna has a Poynting ray, wherein each active antenna is configured to emit electromagnetic wave energy primarily along its Poynting ray and receive electromagnetic wave energy primarily along the negative of its Poynting ray, wherein each Poynting ray is offset in its angular orientation from each adjacent Poynting ray by an inter-ray angular offset, in a fanned arrangement, or in another polymorphic arrangement.
9. The MIMO of claim 2, the MIMO having a digital control logic, wherein the digital control logic is configured to coordinate the operation of the plurality of radios and the plurality of active antennas to either up-convert or down-convert, wherein each active antenna is configured to up-convert whenever the radio to which said active antenna is electrically connected performs up-conversion, and wherein each active antenna is configured to down-convert whenever the radio to which said active antenna is electrically connected performs down-conversion.
10. The MIMO of claim 2, the MIMO having a digital control logic, wherein the digital control logic is configured to direct the operation of each active antenna so as to apply a variable level of radio-frequency amplification specific to said active antenna.
11. A three-dimensional (3D) multiple-input multiple-output wireless system (MIMO) comprising: wherein the control of radiated power and received sensitivity to each oriented antenna is about orthogonal, so as to provide efficient radio coverage of the entire solid-angular region addressed wirelessly by the MIMO, with respect to the location of the MIMO.
- N oriented antennas, each pointing in a unique direction in three-dimensional (3D) space, and each comprising a transceiver block, wherein N is a first fixed, positive integer;
- a radio-frequency fanning network, configured to connect electrically at most one radio with each oriented antenna at any given instant;
- R radios, wherein R is a second fixed, positive, integer; and
- a digital control logic, having a control port by which to receive commands, the digital control logic configured to control the coordinated operation of the radios, the radio-frequency fanning network, and the transceiver blocks;
12. The MIMO of claim 11, additionally comprising M planar stacks, wherein M is a fixed positive integer, and wherein each of the M planar stacks comprises a plurality of the N oriented antennas.
13. The MIMO of claim 12, wherein each of the oriented antennas in each planar stack is offset in angular orientation from each adjacent oriented antenna in the same planar stack by about a constant inter-plane angular offset, such that the plurality of planar stacks forms a fanned arrangement about an array axis of symmetry, wherein the constant inter-plane angular offset is about 360/M degrees.
14. The MIMO of claim 11, wherein each oriented antenna has a Poynting ray, wherein each oriented antenna emits electromagnetic wave energy primarily along its Poynting ray, wherein each oriented antenna receives electromagnetic wave energy primarily along the negative of its Poynting ray, wherein each Poynting ray is offset in its angular orientation from each adjacent Poynting ray by an inter-ray angular offset, in a fanned arrangement, or in another polymorphic arrangement, wherein each given oriented antenna dominates, within its respective sub-region of solid-angular coverage, the response of all other oriented antennas.
15. The MIMO of claim 14, wherein the control of radiated power and received sensitivity to each sub-region therefore is about orthogonal.
16. The MIMO of claim 11, wherein the interconnection and gain level of each oriented antenna are configured independently and dynamically so as to connect electrically each oriented antenna to any or none of the plurality of radios at any given time.
17. The MIMO of claim 14, wherein any first given radio, from among the R radios, is configured to address any given subset of the entirety of solid-angular sub-regions, wherein then any second given radio is configured to address any subset of the remaining solid-angular sub-regions not yet addressed, wherein the pattern established for the first given radio and the second given radio is continued such that each of the remaining radios in turn is configured to address any subset of the remaining solid-angular sub-regions not yet addressed, until either no solid-angular sub-regions remain unaddressed, or all R radios require no further solid-angular sub-regions of address; so as to provide efficient radio coverage of the entire solid-angular region addressed wirelessly by the MIMO, with respect to the location of the MIMO.
18. The MIMO of claim 11, wherein each transceiver block employs variable levels of radio-frequency power amplification, and wherein each transceiver block is configured to accept a transmit/receive mode control signal from the digital control logic.
19. The MIMO of claim 11, wherein the radio-frequency fanning network comprises a plurality of 1-pole R-throw radio selectors, wherein each transceiver block connects electrically to a radio selector common port of the respective 1-pole R-throw radio selector via a transceiver block second port, wherein the function of each given 1-pole R-throw radio selector is that of a matched 1-pole R-throw switch between a plurality of switch ports and the common port of the given 1-pole R-throw radio selector, wherein the radio selector plurality of switch ports comprises R radio selector switch ports.
20. The MIMO of claim 19, wherein the radio-frequency fanning network comprises a plurality of stack radio feed ports, comprising R stack radio feed ports wherein the plurality of stack radio feed ports connects respectively, electrically, to the plurality of radio selector switch ports of every 1-pole R-throw radio selector, wherein every plurality of stack radio feed ports connects respectively, electrically to a plurality of radio feeds, comprising R radio feeds.
Type: Application
Filed: Feb 28, 2023
Publication Date: Jun 29, 2023
Inventors: Sergio E. Cardona, Jr. (Tucson, AZ), Kevin W. Patrick (Tucson, AZ), Joel Blumke (Tucson, AZ), Silvio Cardero (Tucson, AZ)
Application Number: 18/175,692