Conductor Temperature Detector
Various implementations are directed to a method for detecting, by a device, an increase in temperature at certain parts of an electrical system, and taking appropriate responsive action. The method may include measuring temperatures at certain locations within the system and estimating temperatures at other locations based on the measurements. Some embodiments include an integrated cable combining electrical conduction and heat-detection capabilities, or an integrated cable or connector combining electrical conduction with a thermal fuse.
The present application is a continuation of U.S. patent application Ser. No. 17/493,894, filed Oct. 5, 2021, which is a continuation of U.S. patent application Ser. No. 16/844,212, filed Apr. 9, 2020, now U.S. Pat. No. 11,165,241, which is a continuation of U.S. patent application Ser. No. 15/669,114, filed Aug. 4, 2017, now U.S. Pat. No. 10,658,833, which is a continuation-in-part (CIP) application of U.S. patent application Ser. No. 15/078,450, filed Mar. 23, 2016, now U.S. Pat. No. 11,062,588, and claims the benefit of U.S. provisional application Ser. No. 62/376,693, filed Aug. 18, 2016, which are hereby incorporated by reference in their entireties.
BACKGROUNDFaulty connectors and/or conductors may cause overheating of components in electrical systems, and in some cases may even cause fires. Arc detection circuits might not always be triggered in cases of overheating. Overheating of conductors may be an especially acute problem in renewable power systems (e.g. photovoltaic and wind-power systems), where temperatures of system components may already be high due to exposure to the sun and the heating of components during power generation and conversion. Additionally, connectors may be prone to overheating due to the erosion of electrical contact mechanisms over time. Cost-effective detection of overheating of sections of power systems which are not adjacent to components containing logical circuitry (e.g. connectors or conductor areas which are not adjacent to system sensors and/or devices) may be an especially challenging task. There is a need for effective solutions for rapid detection of and response to overheating of components in such systems.
SUMMARYThe following summary is a short summary of some of the inventive concepts for illustrative purposes only, and is not intended to limit or constrain the inventions and examples in the detailed description. One skilled in the art will recognize other novel combinations and features from the detailed description.
Embodiments herein may employ temperature sensing devices configured to detect overheating of components within a power system.
In illustrative electrical systems, a temperature sensor may be deployed a certain distance from a point considered susceptible to overheating, such as a connection point. Since heat may dissipate rapidly when traveling through a physical medium, the system may be designed for placement of sensors close enough to susceptible points to measure an increase in temperature which may trigger preventative actions such as disconnecting elements of the electrical system. In some systems, it might not be convenient or cost-effective to place temperature sensors close enough to sensitive points to detect overheating. In those systems, it may be desirable to combine thermocouple (TC) or linear heat detection (LHD) cables with the standard system conductors to allow detection of excessive heat at longer distances.
In many electrical systems, especially those exposed to weather conditions, connection points may be the most susceptible to intrusion of moisture and dirt, which may lead to increased electrical impedance and possible overheating. In some photovoltaic electrical systems, faulty connectors have overheated, leading to destructive fires. Therefore, many illustrative embodiments include detecting overheating at or near connection points (e.g. placement of a temperature sensor in or within 20 cm of a connection point), though this disclosure is not limiting in that respect and applies to overheating detection at other locations as well.
In some illustrative embodiments, designing for connector locations near temperature sensors may help detect high temperatures. For example, in certain systems such as some photovoltaic (PV) installations, a connection point may be formed by connecting two cables, with the connection point in proximity to a circuit (e.g. a direct current to alternating current (DC-AC) inverter such as a DC-AC micro-inverter, or a direct current to direct current (DC-DC) converter). In cases where the cables are of significant length, by designing cables of asymmetric length, proximity of each connection point to a power device may be achieved. For example, each power device may feature one cable 0.8 meters long, and one cable 0.2 meters long. In this case, if multiple power devices are coupled to one another, each connection point is only 0.2 meters away from a power device, and at that relatively short distance, a temperature sensor adjacent to the power device may detect overheating at the connection point.
In some embodiments, it may be desirable to detect overheating of electrical conductors at locations which might not be near connector locations. For example, in some photovoltaic installations, portions of electrical conductors may be in contact with metallic objects (e.g. outdoor metallic mounting structures which reach high temperatures), and/or may be adjacent to an inflammable agent (e.g. a wooden rooftop), and/or may be chewed on and damaged by animals, increasing the risk of overheating. Illustrative embodiments include integrated electrical cables combining electrical conductors with heat detection devices (e.g. thermocouple and LHD devices) which may detect overheating at locations not adjacent to thermal sensors deployed by connection locations.
Configuration of overheating detection systems and devices may vary according to system characteristics and requirements. For example, in some embodiments, a temperature threshold may be set to trigger a response to prevent melting of electrical conductor insulation. In some embodiments, a different temperature threshold may be set to trigger a response to prevent a wooden rooftop from catching fire or a tar roof coating from melting.
In some embodiments, a temperature threshold may be set at a temperature sensor to prevent overheating to a certain temperature at a location susceptible to overheating. The relationship between the temperature measured by a temperature sensor at a sensor location and the temperature at a location susceptible to overheating may be different depending on the distances between the two locations, the physical medium and the materials comprising the components of the electrical system.
Responses to a potentially unsafe overheating condition may vary. In some embodiments, a potentially unsafe overheating condition may trigger an automatic action, such as opening safety switches to disconnect the point of overheating from other circuitry. In some embodiments, a potentially unsafe overheating condition may trigger a disconnection of one or more thermal fuses disposed at electrical connection points. In some embodiments, a potentially unsafe overheating condition may trigger an overheating response such as operating a power device (e.g., a power converter) to reduce power drawn from a power source (e.g., a photovoltaic generator) and/or reducing voltage or current provided at the output of the power converter. In some embodiments, a potentially unsafe overheating condition may trigger an overheating response such as triggering an alarm system and/or updating a user interface monitored by a system owner and/or system maintenance personnel.
In some systems, analyses of previous instances of overheating may assist in predicting overheating events. For example, a system may feature certain patterns of voltage and current levels in different parts of the system prior to or at the early stages of overheating. Since many systems include data logging of operating parameters (e.g. voltage, current, frequency, harmonic content, solar irradiance etc.), in some instances it is possible to predict overheating based on measurements other than temperature, and take preventative action.
As noted above, this summary is merely a summary of some of the features described herein. It is not exhaustive, and it is not to be a limitation on the claims.
These and other features, aspects, and advantages of the present disclosure will become better understood with regard to the following description, claims, and drawings. The present disclosure is illustrated by way of example, and not limited by, the accompanying figures.
In the following description of various illustrative embodiments, reference is made to the accompanying drawings, which form a part hereof, and in which is shown, by way of illustration, various embodiments in which aspects of the disclosure may be practiced. It is to be understood that other embodiments may be utilized and structural and functional modifications may be made, without departing from the scope of the present disclosure.
Reference is now made to
The temperature sensor deployed at step 100 may be coupled to a communication and/or processing device for receiving measurements from the sensor and transmitting and/or processing the measurements. For example, the sensor may output measurements onto an information bus, and the measurements may be read by a control device (e.g. a microprocessor, Digital Signal Processor (DSP), Field Programmable Gate Array (FPGA), Application Specific Integrated Circuit (ASIC) or other device), a communication device (e.g. a wireless transceiver, a power-line-communication (PLC) device and/or an acoustic communication device) and/or a memory device. A control device may be coupled to the sensor within a single device, or a control device may be remote and may process measurements transmitted by a communication device.
At step 101, a control device may be configured to respond to a temperature measurement above a threshold. The threshold may be determined in accordance with solving equations relating the temperature at the CP to the temperature measured at the sensor, or in accordance to a relationship determined to exist between the temperature at the CP and the temperature measured by the sensor and stored by a lookup table as disclosed above. In some embodiments, the threshold may be an absolute temperature. For example, a threshold may be set to 100° C., 200° C. or 300° C. A fixed threshold may be set with regard to the flammability of materials near the CP. For example, conductors used in photovoltaic installations may be insulated using cross-linked polyethylene (XLPE), polyvinyl chloride (PVC) or chlorinated polyvinyl chloride (CPVC). XLPE-insulated conductors may have a rated maximum conductor temperature of 90° C., an emergency rating of up to 140° C. and a short-circuit rating of 250° C. If protecting the insulation is desired, a threshold may be set with regard to the emergency rating. Cables having PVC or CPVC insulation or other types of insulation may feature different ratings, and different thresholds may be set accordingly.
In some embodiments, a threshold may be set with regard to the flammability of structures supporting the electrical system. For example, many photovoltaic electrical systems are mounted on buildings having wooden roofs. The temperature at which wood begins to burn depends on the type of wood, but typically, the pyrolysis of wood begins at temperatures around 250° C. Some roofs may be coated with tar, which may begin to auto-ignite at about 315° C. In some embodiments, a system may be configured to not protect the conductor insulation from melting, but a response to protect the supporting roof from catching fire may be desirable.
In some embodiments, the threshold may be adaptive and may be set with relation to a previously measured temperature or previously measured system parameter values (e.g. voltage, current, solar irradiance). For example, a threshold may be set as THRESH[° C.]=baseline[° C.]+delta[° C.], where baseline[° C.] may be a temperature measured over period of time, and delta may be an increase in temperature over a period of time. For example, if a sensor measures a steady temperature 100±5[° C.] for one hour, delta may be set to equal 50[° C.] and the threshold may be 100[° C.]+50[° C.]=150[° C.]. If the steady temperature decreases to 90±5 [° C.] for one hour, delta may still be set to equal 50[° C.] and the new threshold may be 90[° C.]+50[° C.]=140[° C.]. In some embodiments, delta may depend on baseline. For example, delta may equal 50[° C.] if baseline=100[° C.], while delta may equal 45[° C.] if baseline=90 [° C.]. In some embodiments, the threshold may be set with regard to a probabilistic function. For example, the method may be interested in the temperature at a connection point, and the threshold may be set such that the temperature at the connection point remains below a certain temperature with high probability. For example, empirically-obtained data and/or mathematical models may indicate that when a sensor measures 100 [° C.], the temperature at a connection point 20 cm away is above 90[° C.] with probability 50%, and when the sensor measures 110[° C.], the temperature at a connection point 20 cm away is above 90 [° C.] with probability 80%. The threshold may be selected to trigger a response with regard to the acceptable temperature at the connection point and the probability of the acceptable temperature being surpassed.
In some embodiments, different thresholds may be set depending on other external variables. For example, temperature measurements may be considered in conjunction with other sensor measurements, such as voltage, current, solar irradiance, moisture or other measurements. For example, in a system a first threshold may be set to trigger a response if a temperature of 200° C. is measured 10 [cm] from an electrical connection and a current of 10[A] is measured to be flowing through the connection, with a second threshold set to trigger a response if a temperature of 180° C. is measured 10 [cm] from an electrical connection and a current of 12[A] is measured to be flowing through the connection.
In some embodiments, a system may be configured to respond to a temperature remaining above one or more thresholds for a period of time. For example, a system may be configured to respond to a first threshold temperature of 200° C. persisting for 10 seconds, and to respond to a second threshold temperature of 160° C. persisting for 12 seconds.
In some embodiments, a threshold may be set with regard to an increase in temperature. For example, a system may be configured to respond to an increase of 10° C. or more in 20 seconds or less, regardless of the absolute temperatures measured. In some embodiments, a system may be configured to respond to a variable increase of temperature which varies depending on the absolute temperature measured, as described above.
The thresholds described herein are only illustrative examples which may be used in different systems. Various combinations thereof may be applied to various electrical systems depending on system characteristics and requirements. At step 102, the temperature sensor may begin to periodically measure temperatures for transmission to control and/or memory devices. At step 103, a control device may compare a measured temperature to the threshold obtained at step 101. If the temperature is below the threshold, the operating conditions may be assumed to be safe and normal system operation may continue, with the method returning to step 102. In some embodiments, the method may periodically return to step 101, to recalculate the threshold based on current temperature measurements. If, at step 103, a temperature equal to or greater than the threshold is measured, the method may proceed to step 103, where an overheating response such as a “high temperature protocol” (HTP) is activated. In some embodiments, the HTP may comprise a controller automatically disconnecting the connection point from electrical current. In some embodiments, the HTP may comprise a controller reducing the electrical current flowing through the connection point, for example, by reducing power drawn from a power source connected at the input to the power device. In some embodiments, the controller may be coupled via a communication device to a wired and/or wireless network(s)/Internet/Intranet, and/or any number of end user device(s) such as a computer, smart phone, tablet and/or other devices such as servers which may be located at a network operations center and/or monitoring center. These devices may be utilized to generate a warning of a dangerous condition, determine when a dangerous condition is probable, detect the type of dangerous condition and/or take action to degrade or turn off certain portions a system. These warnings can be audio and/or visual. They may, for example, be a beep, tone, siren, LED, and/or high lumen LED.
Reference is now made to
Still referring to
Still referring to
Reference is now made to
Still referring to
Still referring to
Still referring to
Reference is now made to
In some electrical systems employing connectors similar to connectors 408a and 408b, faulty connectors may lead to a faulty electrical connection, which may cause arcing and/or overheating of the connectors. Excess heat may spread for the connectors to the conductors they are coupled to. In some systems, failure to detect gradual overheating of connectors and/or conductors may cause conductor insulation to catch fire, and significant damage and/or dangerous situations may ensue.
Output conductors 404a and 404b may be of appropriate length for connecting a plurality of power devices such as 400 when deployed in an electrical installation. For example, power device 400 may be designed to be a photovoltaic (PV) module or to be coupled to a different PV module (e.g. a PV generator), and a plurality of power devices similar to or the same as power device 400 may be coupled in series or in parallel to form a photovoltaic string carrying the power from a plurality of PV modules. In some embodiments, coupled power devices such as 400 may be deployed a certain distance apart from each other. For example, in some embodiments, adjacent power devices may be deployed 1 meter or 2 meters apart from one another. In some embodiments, each power device may comprise output conductors of about equal length, where the sum of the lengths of the conductors is about the same as the distance between the power devices. For example, if two power devices (e.g. devices such as power device 400) are deployed about 1 meter apart, each device may comprise two output cables of about 0.5 meters each, so that the male connector of one device's output conductors may be coupled to the female connector of the other device's output conductors.
In some photovoltaic systems, detecting an increasing temperature at connection points may be difficult due to significant distances between system temperature sensors and connection point locations. For example, common PV power devices include cables between around 50 [cm] and around 100 [cm] long. When two PV power devices are coupled, the connector location may be between 50 [cm] and 100 [cm] from a temperature sensor deployed in the PV power device, which might be too great a distance for effective detection of overheating at the connector location. In some embodiments, enhanced overheating detection may be obtained by designed connector locations to be close to a temperature sensor in the PV power device.
In the illustrative embodiment of
Reference is now made to
In the illustrative embodiment shown in
In some embodiments, some or all of the power device input and/or output conductors may include thermal devices designed to respond to or measure rising temperatures. For example, in some embodiments, some or all of the system conductors may include thermocouple wires deployed alongside conductors designed to carry the electrical power. In some embodiments, each system conductor may include a thermocouple wire connected to a sensor in a power device (e.g. power device 500a), enabling the power device to sense a rise in temperature at any point along the conductor. In some embodiments, costs may be reduced by deploying thermocouple wires only in short conductors (e.g. input conductors 503a, 503b and output conductors 504aa, 504ab). In some embodiments, each system conductor may include a Linear Heat Detector (LHD) coupled to a controller in a power device (e.g. power device 500a). In some embodiments, a rise in temperature at any point along the conductor may cause the LHD wires to come into contact with one another, triggering an electrical pulse that may be detected by a controller configured to take action in response to receiving a pulse. In some embodiments, costs may be reduced by deploying LHD wires only in short conductors (e.g. input conductors 503a, 503b and output conductors 504aa, 504ab).
Reference is now made to
Connecting PV panels using asymmetrical conductors may, in some embodiments, increase the likelihood of detecting a rise in temperature due to a faulty connection. Reference is now made to
In the illustrative embodiment shown in
In some embodiments, some or all of the PV panel output conductors may include thermal devices designed to respond to or measure rising temperatures. For example, in some embodiments, some or all of the output conductors may include thermocouple wires deployed alongside conductors designed to carry the electrical power. In some embodiments, each system conductor may include a thermocouple wire connected to a sensor in a junction box (e.g. junction box 711a), enabling the sensor to sense a rise in temperature at any point along the conductor. In some embodiments, costs may be reduced by deploying thermocouple wires only in short conductors (e.g. output conductors 704aa, 704ab). In some embodiments, each system conductor may include a Linear Heat Detection (LHD) coupled to a controller in a junction box (e.g. junction box 711a). In some embodiments, a rise in temperature at any point along the conductor may cause the LHD wires to come into contact with one another, triggering an electrical pulse that may be detected by a controller configured to take action in response to receiving a pulse. In some embodiments, costs may be reduced by deploying LHD wires only in short conductors (e.g. output conductors 704aa, 704ab).
Reference is now made to
Still referring to
In some illustrative embodiments, wires 803 and 804 may be enclosed in insulation 806, creating additional separation and isolation from conductor(s) 801. In some embodiments, additional insulation might not be necessary. Integrated cable 800 may include casing 805, which encloses conductor(s) 801 and heat detector 802 for fast and easy deployment.
In some embodiments, heat detector 802 may comprise a thermistor or resistance thermometer coupled in series to a single wire, with the wire resistance measured periodically to detect a change in resistance which may be indicative of overheating. The wire resistance may be measured in various ways, such as applying a voltage between the wire ends and measuring current.
Integrated cables similar to or the same as integrated cable 800 may be used in various systems. In some embodiments, PV panels or other power sources may comprise one or more integrated cable(s) providing electrical connection along with heat-detecting capabilities. For example, a PV panel (e.g. PV panel 610) may include an output conductor (e.g. output conductor 604b) which may be a “regular” conductor, and one output conductor (e.g. output conductor 604a) comprising an integrated cable such as or similar to integrated cable 800. In some embodiments, PV power-devices (e.g. power device 400) may comprise one or more integrated cables. For example, a PV power device (e.g. power device 400) may feature one output conductor (e.g. output conductor 404b) which may be a “regular” conductor, and one output conductor (e.g. output conductor 404a) comprising an integrated cable similar to or the same as integrated cable 800. In some embodiments, a PV power device may have one or more input conductors (e.g. input conductors 403) comprise an integrated cable. In some embodiments, integrated cables may be deployed in homes, factories, shopping malls or in any other electrical system where heat-detecting capabilities may enhance electrical safety. Integrated cables may be deployed in particularly sensitive parts of electrical systems, or more broadly across entire systems.
Reference is now made to
Still referring to
Integrated connectors 811 and 821 may be designed to fit together for connecting to each other. Conductor pin 812 may be designed to fit into conductor cavity 822, and temperature-device pins 813 and 814 may be designed to fit into temperature-device cavities 823 and 824. When integrated connectors similar to or the same as integrated connectors 811 and 821 are connected to one another, their respective conducting and temperature detecting elements may be coupled to one another, for serial stringing of the conducting and temperature detecting elements.
Referring back to
Reference is now made to
In some embodiments, it may be desirable to log temperature measurements during “normal” system operation, both to provide real-time operating information and to predict future system events. For example, referring back to
A myriad of predictive modeling and/or detection techniques may be used to detect or predict unsafe conditions resulting from rising or high conductor temperature. A partial list includes Bayesian analysis, Machine Learning, Artificial Neural Networks (ANN), Regression Analysis and Maximum a-posteriori (MAP) testing. For example, in some embodiments, a linear regression may be used to model the relationship between temperature at a conductor location and other measurable system variables such as temperatures measured at other system locations, voltage and current levels, current harmonic content, solar irradiance and/or ambient humidity levels. In some embodiments, an ANN may be trained to emulate a nonlinear function and identify an upcoming instance of conductor overheating by being trained using historical system data measured prior to system safety events (e.g. overheating, fires, etc.).
As an illustrative, non-limiting example, historical data may suggest that if a temperature measured by a temperature sensor deployed 20 [cm] or less from a connection point is above 100° for 10 [sec] or longer, and temperature is rising at a rate of 1° C./sec or higher and the current flowing through the connection point is 10[A] or higher, there is a significant probability of the connection point overheating and a fire starting. The actual thresholds may vary from system to system, and those given above are illustrative examples.
Reference is now made to
At step 112, the method begins monitoring system sensor measurements. Measurements may be interpreted with regard to the patterns detected at step 111. In some embodiments, the method may proceed to step 113 each time a new sample is received, and in some embodiments may proceed to step 113 at regular time intervals, or after a series of samples is received. In some embodiments, measurements obtained at step 112 may be added to the system database, and the method may periodically return to steps 110-111, adding recent samples to the collection of sensor data and iteratively analyzing the collection of sensor data for recognizing patterns.
At step 113, the method may evaluate the system state based on previous measurements and a model developed for characterizing the system. For example, the method may determine that a temperature measurement of 100° C. measured by a temperature sensor (e.g. temperature sensor 401 or
If, at step 113, the system is determined to be operating safely, the method may return to step 112 for continued monitoring of sensor measurements. If a potentially unsafe condition is detected at step 113, the method may proceed to step 114. At step 114, a “potentially unsafe condition” protocol may be followed. In some embodiments, the “potentially unsafe condition” protocol may comprise a controller automatically disconnecting a portion of the system from an electrical current. In some embodiments, the controller may be coupled via a communication device to a wired and/or wireless network(s)/Internet/Intranet, and/or any number of end user device(s) such as a computer, smart phone, tablet and/or other devices such as servers which may be located at a network operations center and/or monitoring center. These devices may be utilized to generate a warning of a dangerous condition, determine when a dangerous condition is probable, detect the type of dangerous condition and/or take action to degrade or turn off certain portions a system. These warnings can be audio and/or visual. They may, for example, be a beep, tone, siren, LED, and/or high lumen LED.
The method illustrated in
Reference is now made to
In the illustrative embodiments disclosed herein, photovoltaic panels are used to exemplify energy sources which may make use of the novel features disclosed. In some embodiments, the energy sources may include solar shingles, batteries, wind or hydroelectric turbines, fuel cells or other energy sources in addition to or instead of photovoltaic panels. The temperature detection methods, prediction techniques and other techniques disclosed herein may be applied to alternative energy sources such as those listed above, and the nearly exclusive mentioning of photovoltaic generators as energy sources is not intended to be limiting in this respect.
It is noted that various connections are set forth between elements herein. These connections are described in general and, unless specified otherwise, may be direct or indirect; this specification is not intended to be limiting in this respect. Further, elements of one embodiment may be combined with elements from other embodiments in appropriate combinations or subcombinations. For example, integrated cable 800 of
Reference is now made to
If the temperature in or at integrated thermal fuse 1020 reaches a temperature threshold selected to trigger a circuit disconnect, pellet 1025 may melt, break or be disfigured. Upon pellet 1025 melting, breaking or being disfigured, spring 1026 may decompress in the direction indicated by arrow 1027, forcing apart conductors 1023 and 1024, resulting in an open circuit connection.
It is to be understood that many different mechanical constructions of a thermal fuse may be considered for use as part of an integrated thermal fuse. For example, alternative constructions may include a conductive pellet forming part of a current path, the pellet melting at a predetermined threshold temperature and disconnecting the current path. As another example, a conductive spring may form part of a conduction path and may be compressed against a pellet, whereby upon the melting or disfiguration of the pellet, the spring decompresses and springs out of the conduction path. As yet another example, spring 1026 may be extended rather than compressed, with pellet 1025 disposed alongside spring 1026 and preventing compression of spring 1026, wherein under a high temperature, pellet 1025 may break or become deformed, allowing spring 1026 to compress and separate conductors 1023 and 1024. A person skilled in the art may appreciate various alternative constructions encompassed in embodiments described herein with regard to integrating a thermal fuse in a connector or cable for use in a renewable energy production installation.
Reference is now made to
Male connector 1008a and/or female connector 1008b may comprise an integrated thermal fuse similar to or the same as integrated thermal fuse 1020. In some embodiments, a thermal fuse may be integrated in a male connector, and in some embodiments, a thermal fuse may be integrated in a female connector, providing an integrated thermal fuse at each male-female connection point. In case of an overtemperature condition (e.g. due to a faulty connection between connectors) at a connection point, the integrated thermal fuse may trip, disconnecting the photovoltaic string and preventing a continuing rise in temperature at the connection point.
Integrating thermal fuses (e.g. integrated thermal fuse 1020) into photovoltaic connectors may increase safety in photovoltaic installations. The number and frequency of fires caused by faulty connectors or a faulty connection may be dramatically reduced by utilizing photovoltaic panels (either with or without junction-box embedded DC-DC or DC-AC converters), photovoltaic converters, batteries and/or other system devices with built-in thermal safety fuses to prevent temperatures from rising above a predetermined threshold such as 200° C.
Reference is now made to
Reference is now made to
Reference is now made to
Male connector 1408a may be designed to be connected to a female connector of a photovoltaic generator, such as female connector 1008b of
Referring back to
Reference is now made to
If a potential open-circuit condition is detected (i.e. a thermal fuse may have tripped), the controller may proceed from step 1504 to step 1505 and reduce the power received at the input. For example, the controller may control switches to disconnect the input from a source of photovoltaic power (resulting in zero input current) or to short-circuit the input to the power device (resulting in zero input voltage). In some embodiments, step 1505 may include reporting the open-circuit condition and safety measures taken to a centralized control and/or data center.
It is noted that various connections are set forth between elements herein. These connections are described in general and, unless specified otherwise, may be direct or indirect; this specification is not intended to be limiting in this respect. Further, elements of one embodiment may be combined with elements from other embodiments in appropriate combinations or subcombinations. For example, integrated cable 800 of
Claims
1. An apparatus comprising:
- an enclosure;
- circuitry housed within the enclosure;
- first and second conductors having first ends physically secured to and within the enclosure;
- first and second connectors located outside the enclosure connected at second ends of the first and second conductors, respectively;
- wherein the first conductor comprises a first external portion extending from an edge of the enclosure to the first connector and the second conductor comprises a second external portion extending from an edge of the enclosure to the second connector,
- a temperature sensing device housed within the enclosure, wherein the temperature sensing device is deployed adjacently to where the first conductor and the second conductor are physically secured to the enclosure, and
- a controller configured to receive one or more temperature measurements from the temperature sensing device and to trigger an overheating response in response to the one or more temperature measurements indicating overheating.
2. The apparatus of claim 1, wherein the second external portion is longer than the first external portion.
3. The apparatus of claim 1, wherein the first connector is configured to mechanically connect to a connector of the same type as the second connector.
4. The apparatus of claim 3, wherein the first connector is a male connector and the second connector is a female connector.
5. The apparatus of claim 1, wherein the circuitry comprises a power converter.
6. The apparatus of claim 1, wherein the circuitry comprises a maximum power point tracker.
7. The apparatus of claim 1, further comprising
- a second temperature sensing device housed within the enclosure;
- third and fourth conductors having first ends physically secured to and within the enclosure; and
- third and fourth connectors located outside the enclosure connected at second ends of the third and fourth conductors, respectively,
- wherein the controller is configured to receive one or more temperature measurements from the second temperature sensing device and to trigger an overheating response in response to the one or more temperature measurements indicating overheating.
8. The apparatus of claim 1, further comprising a current sensor configured to measure a current in the circuitry and provide one or more current measurements to the controller.
9. The apparatus of claim 8, wherein the controller is configured to trigger an overheating response based on the one or more temperature measurements and the one or more current measurements indicating an overheating condition.
10. The apparatus of claim 9, wherein the controller is configured to trigger an overheating response based on the one or more temperature measurements being above a temperature threshold concurrently with the one or more current measurements being above a current threshold.
11. The apparatus of claim 9, further comprising a second temperature sensing device housed within the enclosure;
- third and fourth conductors having first ends physically secured to and within the enclosure; and
- third and fourth connectors located outside the enclosure connected at second ends of the third and fourth conductors, respectively
- where the controller is configured to receive one or more second temperature measurements from the second temperature sensing device and to trigger an overheating response in response to the one or more temperature measurements, the second one or more temperature measurements and the one or more current measurements indicating an overheating condition.
12. The apparatus of claim 1, wherein the overheating response comprises reducing an electrical current in the circuitry.
13. The apparatus of claim 1, wherein the overheating response comprises disconnecting a portion of the circuitry from a path carrying current.
14. The apparatus of claim 1, wherein the overheating response comprises communicating a warning to an end user device.
15. The apparatus of claim 1, wherein the enclosure is a junction box of a photovoltaic generator.
16. A method comprising:
- housing circuitry in an enclosure,
- securing a first end of a conductor within the enclosure;
- connecting a connector to a second end of the conductor;
- such that the conductor comprises an external portion extending from an edge of the enclosure to the connector,
- deploying a temperature sensing device within the enclosure adjacently to where the conductor is physically secured to the enclosure, and
- configuring a controller housed in the enclosure to receive one or more temperature measurements from the temperature sensing device and to trigger an overheating response in response to an overheating condition.
17. A method comprising:
- creating, by a temperature sensing device, one or more temperature measurements,
- wherein the temperature sensing device is housed within an enclosure and the temperature sensing device is deployed adjacently to where a conductor is physically secured to the enclosure, the conductor having an external portion extending from the enclosure to a connector fastened at an end of the conductor,
- providing the one or more temperature measurements to a controller, and
- responsive to a determination that the one or more temperature measurements do not indicate an overtemperature condition, operating circuitry housed within the enclosure according to a normal system operation.
18. The method of claim 17, wherein the circuitry comprises a power converter and the normal system operation comprises operating the power converter according to maximum power point tracking operation.
19. The method of claim 18, further comprising responsive to a determination that the one or more temperature measurements indicate an overtemperature condition, triggering an overheating response.
20. The method of claim 19, wherein the overheating response comprises reducing current in the circuitry.
21. The method of claim 19, wherein the overheating response comprises disconnecting a portion of the circuitry.
22. The method of claim 19, wherein the overheating response comprises communicating a warning to an end user device.
23. A system comprising:
- a plurality of power devices, each power device comprising: an enclosure; circuitry housed within the enclosure; first and second conductors having first ends physically secured to and within the enclosure; first and second connectors located outside the enclosure connected at second ends of the first and second conductors, respectively; wherein the first conductor comprises a first external portion extending from an edge of the enclosure to the first connector and the second conductor comprises a second external portion extending from an edge of the enclosure to the second connector, a temperature sensing device housed within the enclosure, wherein the temperature sensing device is deployed adjacently to where the first conductor and the second conductor are physically secured to the enclosure, and a controller configured to receive one or more temperature measurements from the temperature sensing device and to trigger an overheating response in response to the one or more temperature measurements indicating overheating,
- wherein each power device of the plurality of power devices is connected to at least one other power device of the plurality of power devices.
24. The system of claim 23, wherein a first power device of the plurality of power devices is connected to a second power device of the plurality of power devices by connecting the first connector of the first power device to the second connector of the second power device.
25. The system of claim 24, wherein, for each power device of the plurality of power devices, the second external portion is longer than the first external portion.
Type: Application
Filed: Oct 12, 2022
Publication Date: Aug 3, 2023
Inventors: Yoav Galin (Raanana), Meir Adest (Modiin), Israel Gershman (Yehud), Guy Sella (Bitan Aharon)
Application Number: 17/964,167