ISOLATED POLYNUCLEOTIDES AND POLYPEPTIDES, CONSTRUCT AND PLANTS COMPRISING SAME AND METHODS OF USING SAME FOR INCREASING NITROGEN USE EFFICIENCY OF PLANTS

- Evogene Ltd.

Provided are isolated polypeptides which are at least 80% homologous to SEQ ID NOs: 496-794, 2898-3645, and 3647-4855, isolated polynucleotides which are at least 80% identical to SEQ ID NOs: 1-495 and 795-2897, nucleic acid constructs comprising same, transgenic cells expressing same, transgenic plants expressing same and method of using same for increasing fertilizer use efficiency, nitrogen use efficiency, yield, growth rate, biomass, vigor, oil content, photosynthetic capacity, seed yield, fiber yield, fiber quality, fiber length, and/or abiotic stress tolerance of a plant.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
RELATED APPLICATIONS

This application is a division of U.S. Pat. Application No. 16/671,199 filed on Nov. 1, 2019, which is a division of U.S. Pat. Application No. 15/672,374 filed on Aug. 9, 2017, now U.S. Pat. No. 10,501,751, which is a division of U.S. Pat. Application No. 14/655,384 filed on Jun. 25, 2015, now U.S. Pat. No. 9,771,598, which is a National Phase of PCT Pat. Application No. PCT/IL2013/051043 having International Filing Date of Dec. 19, 2013, which claims the benefit of priority under 35 USC §119(e) of U.S. Provisional Pat. Application Nos. 61/827,801 filed on May 28, 2013 and 61/745,877 filed on Dec. 26, 2012. The contents of the above applications are all incorporated by reference as if fully set forth herein in their entirety.

SEQUENCE LISTING STATEMENT

The XML file, entitled 92878SequenceListing.xml, created on Aug. 24, 2022 comprising 10,811,018 bytes, submitted concurrently with the filing of this application is incorporated herein by reference.

FIELD AND BACKGROUND OF THE INVENTION

The present invention, in some embodiments thereof, relates to isolated polypeptides and polynucleotides, nucleic acid constructs comprising same, transgenic cells comprising same, transgenic plants exogenously expressing same and more particularly, but not exclusively, to methods of using same for increasing fertilizer use efficiency (e.g., nitrogen use efficiency), yield (e.g., seed yield, oil yield), biomass, growth rate, vigor, oil content, fiber yield, fiber quality, fiber length, fiber length, photosynthetic capacity, and/or abiotic stress tolerance of a plant.

A common approach to promote plant growth has been, and continues to be, the use of natural as well as synthetic nutrients (fertilizers). Thus, fertilizers are the fuel behind the “green revolution”, directly responsible for the exceptional increase in crop yields during the last 40 years, and are considered the number one overhead expense in agriculture. For example, inorganic nitrogenous fertilizers such as ammonium nitrate, potassium nitrate, or urea, typically accounts for 40% of the costs associated with crops such as corn and wheat. Of the three macronutrients provided as main fertilizers [Nitrogen (N), Phosphate (P) and Potassium (K)], nitrogen is often the rate-limiting element in plant growth and all field crops have a fundamental dependence on inorganic nitrogenous fertilizer. Nitrogen is responsible for biosynthesis of amino and nucleic acids, prosthetic groups, plant hormones, plant chemical defenses, etc. and usually needs to be replenished every year, particularly for cereals, which comprise more than half of the cultivated areas worldwide. Thus, nitrogen is translocated to the shoot, where it is stored in the leaves and stalk during the rapid step of plant development and up until flowering. In corn for example, plants accumulate the bulk of their organic nitrogen during the period of grain germination, and until flowering. Once fertilization of the plant has occurred, grains begin to form and become the main sink of plant nitrogen. The stored nitrogen can be then redistributed from the leaves and stalk that served as storage compartments until grain formation.

Since fertilizer is rapidly depleted from most soil types, it must be supplied to growing crops two or three times during the growing season. In addition, the low nitrogen use efficiency (NUE) of the main crops (e.g., in the range of only 30-70%) negatively affects the input expenses for the farmer, due to the excess fertilizer applied. Moreover, the over and inefficient use of fertilizers are major factors responsible for environmental problems such as eutrophication of groundwater, lakes, rivers and seas, nitrate pollution in drinking water which can cause methemoglobinemia, phosphate pollution, atmospheric pollution and the like. However, in spite of the negative impact of fertilizers on the environment, and the limits on fertilizer use, which have been legislated in several countries, the use of fertilizers is expected to increase in order to support food and fiber production for rapid population growth on limited land resources. For example, it has been estimated that by 2050, more than 150 million tons of nitrogenous fertilizer will be used worldwide annually.

Increased use efficiency of nitrogen by plants should enable crops to be cultivated with lower fertilizer input, or alternatively to be cultivated on soils of poorer quality and would therefore have significant economic impact in both developed and developing agricultural systems.

Genetic improvement of fertilizer use efficiency (FUE) in plants can be generated either via traditional breeding or via genetic engineering.

Attempts to generate plants with increased FUE have been described in U.S. Pat. Appl. Publication No. 20020046419 (U.S. Pat. No. 7,262,055 to Choo, et al.); U.S. Pat. Appl. No. 20050108791 to Edgerton et al.; U.S. Pat. Appl. No. 20060179511 to Chomet et al.; Good, A, et al. 2007 (Engineering nitrogen use efficiency with alanine aminotransferase. Canadian Journal of Botany 85: 252-262); and Good AG et al. 2004 (Trends Plant Sci. 9:597-605).

Yanagisawa et al. (Proc. Natl. Acad. Sci. U.S.A. 2004 101:7833-8) describe Dof1 transgenic plants which exhibit improved growth under low-nitrogen conditions.

U.S. Pat. No. 6,084,153 to Good et al. discloses the use of a stress responsive promoter to control the expression of Alanine Amine Transferase (AlaAT) and transgenic canola plants with improved drought and nitrogen deficiency tolerance when compared to control plants.

Yield is affected by various factors, such as, the number and size of the plant organs, plant architecture (for example, the number of branches), grains set length, number of filled grains, vigor (e.g. seedling), growth rate, root development, utilization of water, nutrients (e.g., nitrogen) and fertilizers, and stress tolerance.

Crops such as, corn, rice, wheat, canola and soybean account for over half of total human caloric intake, whether through direct consumption of the seeds themselves or through consumption of meat products raised on processed seeds or forage. Seeds are also a source of sugars, proteins and oils and metabolites used in industrial processes. The ability to increase plant yield, whether through increase dry matter accumulation rate, modifying cellulose or lignin composition, increase stalk strength, enlarge meristem size, change of plant branching pattern, erectness of leaves, increase in fertilization efficiency, enhanced seed dry matter accumulation rate, modification of seed development, enhanced seed filling or by increasing the content of oil, starch or protein in the seeds would have many applications in agricultural and non-agricultural uses such as in the biotechnological production of pharmaceuticals, antibodies or vaccines.

Vegetable or seed oils are the major source of energy and nutrition in human and animal diet. They are also used for the production of industrial products, such as paints, inks and lubricants. In addition, plant oils represent renewable sources of long-chain hydrocarbons which can be used as fuel. Since the currently used fossil fuels are finite resources and are gradually being depleted, fast growing biomass crops may be used as alternative fuels or for energy feedstocks and may reduce the dependence on fossil energy supplies. However, the major bottleneck for increasing consumption of plant oils as bio-fuel is the oil price, which is still higher than fossil fuel. In addition, the production rate of plant oil is limited by the availability of agricultural land and water. Thus, increasing plant oil yields from the same growing area can effectively overcome the shortage in production space and can decrease vegetable oil prices at the same time.

Studies aiming at increasing plant oil yields focus on the identification of genes involved in oil metabolism as well as in genes capable of increasing plant and seed yields in transgenic plants. Genes known to be involved in increasing plant oil yields include those participating in fatty acid synthesis or sequestering such as desaturase [e.g., DELTA6, DELTA12 or acyl-ACP (Ssi2; Arabidopsis Information Resource (TAIR; arabidopsis (dot) org/), TAIR No. AT2G43710)], OleosinA (TAIR No. AT3G01570) or FAD3 (TAIR No. AT2G29980), and various transcription factors and activators such as Lec1 [TAIR No. AT1G21970, Lotan et al. 1998. Cell. 26;93(7):1195-205], Lec2 [TAIR No. AT1G28300, Santos Mendoza et al. 2005, FEBS Lett. 579(21):4666-70], Fus3 (TAIR No. AT3G26790), ABI3 [TAIR No. AT3G24650, Lara et al. 2003. J Biol Chem. 278(23): 21003-11] and Wri1 [TAIR No. AT3G54320, Cemac and Benning, 2004. Plant J. 40(4): 575-85].

Genetic engineering efforts aiming at increasing oil content in plants (e.g., in seeds) include upregulating endoplasmic reticulum (FAD3) and plastidal (FAD7) fatty acid desaturases in potato (Zabrouskov V., et al., 2002; Physiol Plant. 116:172-185); over-expressing the GmDof4 and GmDof11 transcription factors (Wang HW et al., 2007; Plant J. 52:716-29); over-expressing a yeast glycerol-3-phosphate dehydrogenase under the control of a seed-specific promoter (Vigeolas H, et al. 2007, Plant Biotechnol J. 5:431-41; U.S. Pat. Appl. No. 20060168684); using Arabidopsis FAE1 and yeast SLC1-1 genes for improvements in erucic acid and oil content in rapeseed (Katavic V, et al., 2000, Biochem Soc Trans. 28:935-7).

Various patent applications disclose genes and proteins which can increase oil content in plants. These include for example, U.S. Pat. Appl. No. 20080076179 (lipid metabolism protein); U.S. Pat. Appl. No. 20060206961 (the Ypr140w polypeptide); U.S. Pat. Appl. No. 20060174373 [triacylglycerols synthesis enhancing protein (TEP)]; U.S. Pat. Appl. Nos. 20070169219, 20070006345, 20070006346 and 20060195943 (disclose transgenic plants with improved nitrogen use efficiency which can be used for the conversion into fuel or chemical feedstocks); WO2008/122980 (polynucleotides for increasing oil content, growth rate, biomass, yield and/or vigor of a plant).

Abiotic stress (ABS; also referred to as “environmental stress”) conditions such as salinity, drought, flood, suboptimal temperature and toxic chemical pollution, cause substantial damage to agricultural plants. Most plants have evolved strategies to protect themselves against these conditions. However, if the severity and duration of the stress conditions are too great, the effects on plant development, growth and yield of most crop plants are profound. Furthermore, most of the crop plants are highly susceptible to abiotic stress and thus necessitate optimal growth conditions for commercial crop yields. Continuous exposure to stress causes major alterations in the plant metabolism which ultimately leads to cell death and consequently yield losses.

Drought is a gradual phenomenon, which involves periods of abnormally dry weather that persists long enough to produce serious hydrologic imbalances such as crop damage, water supply shortage and increased susceptibility to various diseases. In severe cases, drought can last many years and results in devastating effects on agriculture and water supplies. Furthermore, drought is associated with increase susceptibility to various diseases.

For most crop plants, the land regions of the world are too arid. In addition, overuse of available water results in increased loss of agriculturally-usable land (desertification), and increase of salt accumulation in soils adds to the loss of available water in soils.

Salinity, high salt levels, affects one in five hectares of irrigated land. None of the top five food crops, i.e., wheat, corn, rice, potatoes, and soybean, can tolerate excessive salt. Detrimental effects of salt on plants result from both water deficit, which leads to osmotic stress (similar to drought stress), and the effect of excess sodium ions on critical biochemical processes. As with freezing and drought, high salt causes water deficit; and the presence of high salt makes it difficult for plant roots to extract water from their environment. Soil salinity is thus one of the more important variables that determine whether a plant may thrive. In many parts of the world, sizable land areas are uncultivable due to naturally high soil salinity. Thus, salination of soils that are used for agricultural production is a significant and increasing problem in regions that rely heavily on agriculture, and is worsen by over-utilization, over-fertilization and water shortage, typically caused by climatic change and the demands of increasing population. Salt tolerance is of particular importance early in a plant’s lifecycle, since evaporation from the soil surface causes upward water movement, and salt accumulates in the upper soil layer where the seeds are placed. On the other hand, germination normally takes place at a salt concentration which is higher than the mean salt level in the whole soil profile.

Salt and drought stress signal transduction consist of ionic and osmotic homeostasis signaling pathways. The ionic aspect of salt stress is signaled via the SOS pathway where a calcium-responsive SOS3-SOS2 protein kinase complex controls the expression and activity of ion transporters such as SOS1. The osmotic component of salt stress involves complex plant reactions that overlap with drought and/or cold stress responses.

Suboptimal temperatures affect plant growth and development through the whole plant life cycle. Thus, low temperatures reduce germination rate and high temperatures result in leaf necrosis. In addition, mature plants that are exposed to excess of heat may experience heat shock, which may arise in various organs, including leaves and particularly fruit, when transpiration is insufficient to overcome heat stress. Heat also damages cellular structures, including organelles and cytoskeleton, and impairs membrane function. Heat shock may produce a decrease in overall protein synthesis, accompanied by expression of heat shock proteins, e.g., chaperones, which are involved in refolding proteins denatured by heat. High-temperature damage to pollen almost always occurs in conjunction with drought stress, and rarely occurs under well-watered conditions. Combined stress can alter plant metabolism in novel ways. Excessive chilling conditions, e.g., low, but above freezing, temperatures affect crops of tropical origins, such as soybean, rice, maize, and cotton. Typical chilling damage includes wilting, necrosis, chlorosis or leakage of ions from cell membranes. The underlying mechanisms of chilling sensitivity are not completely understood yet, but probably involve the level of membrane saturation and other physiological deficiencies. Excessive light conditions, which occur under clear atmospheric conditions subsequent to cold late summer/autumn nights, can lead to photoinhibition of photosynthesis (disruption of photosynthesis). In addition, chilling may lead to yield losses and lower product quality through the delayed ripening of maize.

Common aspects of drought, cold and salt stress response [Reviewed in Xiong and Zhu (2002) Plant Cell Environ. 25: 131-139] include: (a) transient changes in the cytoplasmic calcium levels early in the signaling event; (b) signal transduction via mitogen-activated and/or calcium dependent protein kinases (CDPKs) and protein phosphatases; (c) increases in abscisic acid levels in response to stress triggering a subset of responses; (d) inositol phosphates as signal molecules (at least for a subset of the stress responsive transcriptional changes; (e) activation of phospholipases which in turn generates a diverse array of second messenger molecules, some of which might regulate the activity of stress responsive kinases; (f) induction of late embryogenesis abundant (LEA) type genes including the CRT/DRE responsive COR/RD genes; (g) increased levels of antioxidants and compatible osmolytes such as proline and soluble sugars; and (h) accumulation of reactive oxygen species such as superoxide, hydrogen peroxide, and hydroxyl radicals. Abscisic acid biosynthesis is regulated by osmotic stress at multiple steps. Both ABA-dependent and -independent osmotic stress signaling first modify constitutively expressed transcription factors, leading to the expression of early response transcriptional activators, which then activate downstream stress tolerance effector genes.

Several genes which increase tolerance to cold or salt stress can also improve drought stress protection, these include for example, the transcription factor AtCBF/DREB1, OsCDPK7 (Saijo et al. 2000, Plant J. 23: 319-327) or AVP1 (a vacuolar pyrophosphatase-proton pump, Gaxiola et al. 2001, Proc. Natl. Acad. Sci. USA 98: 11444-11449).

Studies have shown that plant adaptations to adverse environmental conditions are complex genetic traits with polygenic nature. Conventional means for crop and horticultural improvements utilize selective breeding techniques to identify plants having desirable characteristics. However, selective breeding is tedious, time consuming and has an unpredictable outcome. Furthermore, limited germplasm resources for yield improvement and incompatibility in crosses between distantly related plant species represent significant problems encountered in conventional breeding. Advances in genetic engineering have allowed mankind to modify the germplasm of plants by expression of genes-of-interest in plants. Such a technology has the capacity to generate crops or plants with improved economic, agronomic or horticultural traits.

Genetic engineering efforts, aimed at conferring abiotic stress tolerance to transgenic crops, have been described in various publications [Apse and Blumwald (Curr Opin Biotechnol. 13:146-150, 2002), Quesada et al. (Plant Physiol. 130:951-963, 2002), Holmström et al. (Nature 379: 683-684, 1996), Xu et al. (Plant Physiol 110: 249-257, 1996), Pilon-Smits and Ebskamp (Plant Physiol 107: 125-130, 1995) and Tarczynski et al. (Science 259: 508-510, 1993)].

Various patents and patent applications disclose genes and proteins which can be used for increasing tolerance of plants to abiotic stresses. These include for example, U.S. Pat. Nos. 5,296,462 and 5,356,816 (for increasing tolerance to cold stress); U.S. Pat. No. 6,670,528 (for increasing ABST); U.S. Pat. No. 6,720,477 (for increasing ABST); U.S. Application Ser. Nos. 09/938842 and 10/342224 (for increasing ABST); U.S. Application Ser. No. 10/231035 (for increasing ABST); WO2004/104162 (for increasing ABST and biomass); WO2007/020638 (for increasing ABST, biomass, vigor and/or yield); WO2007/049275 (for increasing ABST, biomass, vigor and/or yield); WO2010/076756 (for increasing ABST, biomass and/or yield);. WO2009/083958 (for increasing water use efficiency, fertilizer use efficiency, biotic/abiotic stress tolerance, yield and/or biomass); WO2010/020941 (for increasing nitrogen use efficiency, abiotic stress tolerance, yield and/or biomass); WO2009/141824 (for increasing plant utility); WO2010/049897 (for increasing plant yield).

Nutrient deficiencies cause adaptations of the root architecture, particularly notably for example is the root proliferation within nutrient rich patches to increase nutrient uptake. Nutrient deficiencies cause also the activation of plant metabolic pathways which maximize the absorption, assimilation and distribution processes such as by activating architectural changes. Engineering the expression of the triggered genes may cause the plant to exhibit the architectural changes and enhanced metabolism also under other conditions.

In addition, it is widely known that the plants usually respond to water deficiency by creating a deeper root system that allows access to moisture located in deeper soil layers. Triggering this effect will allow the plants to access nutrients and water located in deeper soil horizons particularly those readily dissolved in water like nitrates.

Cotton and cotton by-products provide raw materials that are used to produce a wealth of consumer-based products in addition to textiles including cotton foodstuffs, livestock feed, fertilizer and paper. The production, marketing, consumption and trade of cotton-based products generate an excess of $100 billion annually in the U.S. alone, making cotton the number one value-added crop.

Even though 90% of cotton’s value as a crop resides in the fiber (lint), yield and fiber quality has declined due to general erosion in genetic diversity of cotton varieties, and an increased vulnerability of the crop to environmental conditions.

There are many varieties of cotton plant, from which cotton fibers with a range of characteristics can be obtained and used for various applications. Cotton fibers may be characterized according to a variety of properties, some of which are considered highly desirable within the textile industry for the production of increasingly high quality products and optimal exploitation of modem spinning technologies. Commercially desirable properties include length, length uniformity, fineness, maturity ratio, decreased fuzz fiber production, micronaire, bundle strength, and single fiber strength. Much effort has been put into the improvement of the characteristics of cotton fibers mainly focusing on fiber length and fiber fineness. In particular, there is a great demand for cotton fibers of specific lengths.

A cotton fiber is composed of a single cell that has differentiated from an epidermal cell of the seed coat, developing through four stages, i.e., initiation, elongation, secondary cell wall thickening and maturation stages. More specifically, the elongation of a cotton fiber commences in the epidermal cell of the ovule immediately following flowering, after which the cotton fiber rapidly elongates for approximately 21 days. Fiber elongation is then terminated, and a secondary cell wall is formed and grown through maturation to become a mature cotton fiber.

Several candidate genes which are associated with the elongation, formation, quality and yield of cotton fibers were disclosed in various patent applications such as U.S. Pat. No. 5,880,100 and U.S. Pat. applications Ser. Nos. 08/580,545, 08/867,484 and 09/262,653 (describing genes involved in cotton fiber elongation stage); WO0245485 (improving fiber quality by modulating sucrose synthase); U.S. Pat. No. 6,472,588 and WO0117333 (increasing fiber quality by transformation with a DNA encoding sucrose phosphate synthase); WO9508914 (using a fiber-specific promoter and a coding sequence encoding cotton peroxidase); WO9626639 (using an ovary specific promoter sequence to express plant growth modifying hormones in cotton ovule tissue, for altering fiber quality characteristics such as fiber dimension and strength); U.S. Pat. No. 5,981,834, U.S. Pat. No. 5,597,718, U.S. Pat. No. 5,620,882, U.S. Pat. No. 5,521,708 and U.S. Pat. No. 5,495,070 (coding sequences to alter the fiber characteristics of transgenic fiber producing plants); U.S. Pat. applications U.S. 2002049999 and U.S. 2003074697 (expressing a gene coding for endoxyloglucan transferase, catalase or peroxidase for improving cotton fiber characteristics); WO 01/40250 (improving cotton fiber quality by modulating transcription factor gene expression); WO 96/40924 (a cotton fiber transcriptional initiation regulatory region associated which is expressed in cotton fiber); EP0834566 (a gene which controls the fiber formation mechanism in cotton plant); WO2005/121364 (improving cotton fiber quality by modulating gene expression); WO2008/075364 (improving fiber quality, yield/biomass/vigor and/or abiotic stress tolerance of plants).

WO publication No. 2004/104162 discloses methods of increasing abiotic stress tolerance and/or biomass in plants and plants generated thereby.

WO publication No. 2004/111183 discloses nucleotide sequences for regulating gene expression in plant trichomes and constructs and methods utilizing same.

WO publication No. 2004/081173 discloses novel plant derived regulatory sequences and constructs and methods of using such sequences for directing expression of exogenous polynucleotide sequences in plants.

WO publication No. 2005/121364 discloses polynucleotides and polypeptides involved in plant fiber development and methods of using same for improving fiber quality, yield and/or biomass of a fiber producing plant.

WO publication No. 2007/049275 discloses isolated polypeptides, polynucleotides encoding same, transgenic plants expressing same and methods of using same for increasing fertilizer use efficiency, plant abiotic stress tolerance and biomass.

WO publication No. 2007/020638 discloses methods of increasing abiotic stress tolerance and/or biomass in plants and plants generated thereby.

WO publication No. 2008/122980 discloses genes constructs and methods for increasing oil content, growth rate and biomass of plants.

WO publication No. 2008/075364 discloses polynucleotides involved in plant fiber development and methods of using same.

WO publication No. 2009/083958 discloses methods of increasing water use efficiency, fertilizer use efficiency, biotic/abiotic stress tolerance, yield and biomass in plant and plants generated thereby.

WO publication No. 2009/141824 discloses isolated polynucleotides and methods using same for increasing plant utility.

WO publication No. 2009/013750 discloses genes, constructs and methods of increasing abiotic stress tolerance, biomass and/or yield in plants generated thereby.

WO publication No. 2010/020941 discloses methods of increasing nitrogen use efficiency, abiotic stress tolerance, yield and biomass in plants and plants generated thereby.

WO publication No. 2010/076756 discloses isolated polynucleotides for increasing abiotic stress tolerance, yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, and/or nitrogen use efficiency of a plant.

WO2010/100595 publication discloses isolated polynucleotides and polypeptides, and methods of using same for increasing plant yield and/or agricultural characteristics.

WO publication No. 2010/049897 discloses isolated polynucleotides and polypeptides and methods of using same for increasing plant yield, biomass, growth rate, vigor, oil content, abiotic stress tolerance of plants and nitrogen use efficiency.

WO2010/143138 publication discloses isolated polynucleotides and polypeptides, and methods of using same for increasing nitrogen use efficiency, fertilizer use efficiency, yield, growth rate, vigor, biomass, oil content, abiotic stress tolerance and/or water use efficiency.

WO publication No. 2011/080674 discloses isolated polynucleotides and polypeptides and methods of using same for increasing plant yield, biomass, growth rate, vigor, oil content, abiotic stress tolerance of plants and nitrogen use efficiency.

WO2011/015985 publication discloses polynucleotides and polypeptides for increasing desirable plant qualities.

WO2011/135527 publication discloses isolated polynucleotides and polypeptides for increasing plant yield and/or agricultural characteristics.

WO2012/028993 publication discloses isolated polynucleotides and polypeptides, and methods of using same for increasing nitrogen use efficiency, yield, growth rate, vigor, biomass, oil content, and/or abiotic stress tolerance.

WO2012/085862 publication discloses isolated polynucleotides and polypeptides, and methods of using same for improving plant properties.

WO2012/150598 publication discloses isolated polynucleotides and polypeptides and methods of using same for increasing plant yield, biomass, growth rate, vigor, oil content, abiotic stress tolerance of plants and nitrogen use efficiency.

WO2013/027223 publication discloses isolated polynucleotides and polypeptides, and methods of using same for increasing plant yield and/or agricultural characteristics.

WO2013/080203 publication discloses isolated polynucleotides and polypeptides, and methods of using same for increasing nitrogen use efficiency, yield, growth rate, vigor, biomass, oil content, and/or abiotic stress tolerance.

WO2013/098819 publication discloses isolated polynucleotides and polypeptides, and methods of using same for increasing yield of plants.

WO2013/128448 publication discloses isolated polynucleotides and polypeptides and methods of using same for increasing plant yield, biomass, growth rate, vigor, oil content, abiotic stress tolerance of plants and nitrogen use efficiency.

SUMMARY OF THE INVENTION

According to an aspect of some embodiments of the present invention there is provided a method of increasing nitrogen use efficiency, yield, growth rate, biomass, vigor, oil content, seed yield, fiber yield, fiber quality, fiber length, photosynthetic capacity, and/or abiotic stress tolerance of a plant, comprising expressing within the plant an exogenous polynucleotide comprising a nucleic acid sequence encoding a polypeptide at least 80% identical to SEQ ID NO: 496-794, 2898-3645, 3647-4854 or 4855, thereby increasing the nitrogen use efficiency, yield, growth rate, biomass, vigor, oil content, seed yield, fiber yield, fiber quality, fiber length, photosynthetic capacity, and/or abiotic stress tolerance of the plant.

According to an aspect of some embodiments of the present invention there is provided a method of increasing nitrogen use efficiency, yield, growth rate, biomass, vigor, oil content, seed yield, fiber yield, fiber quality, fiber length, photosynthetic capacity, and/or abiotic stress tolerance of a plant, comprising expressing within the plant an exogenous polynucleotide comprising a nucleic acid sequence encoding a polypeptide selected from the group consisting of SEQ ID NOs: 496-794, 2898-4854 and 4855, thereby increasing the nitrogen use efficiency, yield, growth rate, biomass, vigor, oil content, seed yield, fiber yield, fiber quality, fiber length, photosynthetic capacity, and/or abiotic stress tolerance of the plant.

According to an aspect of some embodiments of the present invention there is provided a method of producing a crop comprising growing a crop plant transformed with an exogenous polynucleotide comprising a nucleic acid sequence encoding a polypeptide at least 80% homologous to the amino acid sequence selected from the group consisting of SEQ ID NOs: 496-794, 2898-3645, 3647-4854 and 4855, wherein the crop plant is derived from plants selected for increased nitrogen use efficiency, increased yield, increased growth rate, increased biomass, increased vigor, increased oil content, increased seed yield, increased fiber yield, increased fiber quality, increased fiber length, increased photosynthetic capacity, and/or increased abiotic stress tolerance as compared to a wild type plant of the same species which is grown under the same growth conditions, and the crop plant having the increased nitrogen use efficiency, increased yield, increased growth rate, increased biomass, increased vigor, increased oil content, increased seed yield, increased fiber yield, increased fiber quality, increased fiber length, increased photosynthetic capacity, and/or increased abiotic stress tolerance, thereby producing the crop.

According to an aspect of some embodiments of the present invention there is provided a method of increasing nitrogen use efficiency, yield, growth rate, biomass, vigor, oil content, seed yield, fiber yield, fiber quality, fiber length, photosynthetic capacity, and/or abiotic stress tolerance of a plant, comprising expressing within the plant an exogenous polynucleotide comprising a nucleic acid sequence at least 80% identical to SEQ ID NO: 1-495, 795-2896 or 2897, thereby increasing the nitrogen use efficiency, yield, growth rate, biomass, vigor, oil content, seed yield, fiber yield, fiber quality, fiber length, photosynthetic capacity, and/or abiotic stress tolerance of the plant.

According to an aspect of some embodiments of the present invention there is provided a method of increasing nitrogen use efficiency, yield, growth rate, biomass, vigor, oil content, seed yield, fiber yield, fiber quality, fiber length, photosynthetic capacity, and/or abiotic stress tolerance of a plant, comprising expressing within the plant an exogenous polynucleotide comprising the nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1-495, 795-2896 and 2897, thereby increasing the nitrogen use efficiency, yield, growth rate, biomass, vigor, oil content, seed yield, fiber yield, fiber quality, fiber length, photosynthetic capacity, and/or abiotic stress tolerance of the plant.

According to an aspect of some embodiments of the present invention there is provided a method of producing a crop comprising growing a crop plant transformed with an exogenous polynucleotide which comprises a nucleic acid sequence which is at least 80% identical to the nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1-495, 795-2896 and 2897, wherein the crop plant is derived from plants (parent plants) selected for increased nitrogen use efficiency, increased yield, increased growth rate, increased biomass, increased vigor, increased oil content, increased seed yield, increased fiber yield, increased fiber quality, increased fiber length, increased photosynthetic capacity, and/or increased abiotic stress tolerance as compared to a wild type plant of the same species which is grown under the same growth conditions, and the crop plant having the increased nitrogen use efficiency, increased yield, increased growth rate, increased biomass, increased vigor, increased oil content, increased seed yield, increased fiber yield, increased fiber quality, increased fiber length, increased photosynthetic capacity, and/or increased abiotic stress tolerance, thereby producing the crop.

According to an aspect of some embodiments of the present invention there is provided an isolated polynucleotide comprising a nucleic acid sequence encoding a polypeptide which comprises an amino acid sequence at least 80% homologous to the amino acid sequence set forth in SEQ ID NO:496-794, 2898-3645, 3647-4854 or 4855, wherein the amino acid sequence is capable of increasing nitrogen use efficiency, yield, growth rate, biomass, vigor, oil content, seed yield, fiber yield, fiber quality, fiber length, photosynthetic capacity, and/or abiotic stress tolerance of a plant.

According to an aspect of some embodiments of the present invention there is provided an isolated polynucleotide comprising a nucleic acid sequence encoding a polypeptide which comprises the amino acid sequence selected from the group consisting of SEQ ID NOs: 496-794, 2898-4854 and 4855.

According to an aspect of some embodiments of the present invention there is provided an isolated polynucleotide comprising a nucleic acid sequence at least 80% identical to SEQ ID NO: 1-495, 795-2896 or 2897, wherein the nucleic acid sequence is capable of increasing nitrogen use efficiency, yield, growth rate, biomass, vigor, oil content, seed yield, fiber yield, fiber quality, fiber length, photosynthetic capacity, and/or abiotic stress tolerance of a plant.

According to an aspect of some embodiments of the present invention there is provided an isolated polynucleotide comprising the nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1-495, 795-2896 and 2897.

According to an aspect of some embodiments of the present invention there is provided a nucleic acid construct comprising the isolated polynucleotide of some embodiments of the invention, and a promoter for directing transcription of the nucleic acid sequence in a host cell.

According to an aspect of some embodiments of the present invention there is provided an isolated polypeptide comprising an amino acid sequence at least 80% homologous to SEQ ID NO: 496-794, 2898-3645, 3647-4854 or 4855, wherein the amino acid sequence is capable of increasing nitrogen use efficiency, yield, growth rate, biomass, vigor, oil content, seed yield, fiber yield, fiber quality, fiber length, photosynthetic capacity, and/or abiotic stress tolerance of a plant.

According to an aspect of some embodiments of the present invention there is provided an isolated polypeptide comprising the amino acid sequence selected from the group consisting of SEQ ID NOs: 496-794, 2898-4854 and 4855.

According to an aspect of some embodiments of the present invention there is provided a plant cell exogenously expressing the polynucleotide of some embodiments of the invention, or the nucleic acid construct of some embodiments of the invention.

According to an aspect of some embodiments of the present invention there is provided a plant cell exogenously expressing the polypeptide of some embodiments of the invention.

According to an aspect of some embodiments of the present invention there is provided a transgenic plant comprising the nucleic acid construct of some embodiments of the invention or the plant cell of some embodiments of the invention.

According to an aspect of some embodiments of the present invention there is provided a method of growing a crop, the method comprising seeding seeds and/or planting plantlets of a plant transformed with the isolated polynucleotide of some embodiments of the invention, or with the nucleic acid construct of some embodiments of the invention, wherein the plant is derived from plants selected for at least one trait selected from the group consisting of: increased nitrogen use efficiency, increased abiotic stress tolerance, increased biomass, increased growth rate, increased vigor, increased yield and increased fiber yield, increased fiber quality, increased fiber length, increased photosynthetic capacity, and increased oil content as compared to a non-transformed plant, thereby growing the crop.

According to an aspect of some embodiments of the present invention there is provided a method of selecting a transformed plant having increased nitrogen use efficiency, yield, growth rate, biomass, vigor, oil content, seed yield, fiber yield, fiber quality, fiber length, photosynthetic capacity, and/or abiotic stress tolerance as compared to a wild type plant of the same species which is grown under the same growth conditions, the method comprising:

  • (a) providing plants transformed with an exogenous polynucleotide encoding a polypeptide comprising an amino acid sequence at least 80% homologous to the amino acid sequence selected from the group consisting of SEQ ID NOs:496-794, 2898-3645, 3647-4854 and 4855,
  • (b) selecting from the plants a plant having nitrogen use efficiency, increased yield, growth rate, biomass, vigor, oil content, seed yield, fiber yield, fiber quality, fiber length, photosynthetic capacity, and/or abiotic stress tolerance,
  • thereby selecting the plant having increased nitrogen use efficiency, yield, growth rate, biomass, vigor, oil content, seed yield, fiber yield, fiber quality, fiber length, photosynthetic capacity, and/or abiotic stress tolerance as compared to the wild type plant of the same species which is grown under the same growth conditions.

According to an aspect of some embodiments of the present invention there is provided a method of selecting a transformed plant having increased nitrogen use efficiency, yield, growth rate, biomass, vigor, oil content, seed yield, fiber yield, fiber quality, fiber length, photosynthetic capacity, and/or abiotic stress tolerance as compared to a wild type plant of the same species which is grown under the same growth conditions, the method comprising:

  • (a) providing plants transformed with an exogenous polynucleotide encoding a polypeptide comprising an amino acid sequence at least 80% identical to the nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1-495, 795-2896 and 2897,
  • (b) selecting from the plants a plant having increased nitrogen use efficiency, yield, growth rate, biomass, vigor, oil content, seed yield, fiber yield, fiber quality, fiber length, photosynthetic capacity, and/or abiotic stress tolerance,
  • thereby selecting the plant having increased nitrogen use efficiency, yield, growth rate, biomass, vigor, oil content, seed yield, fiber yield, fiber quality, fiber length, photosynthetic capacity, and/or abiotic stress tolerance as compared to the wild type plant of the same species which is grown under the same growth conditions.

According to some embodiments of the invention, the nucleic acid sequence encodes an amino acid sequence selected from the group consisting of SEQ ID NOs: 496-794, 2898-4854 and 4855.

According to some embodiments of the invention, the nucleic acid sequence is selected from the group consisting of SEQ ID NOs: 1-495, 795-2896 and 2897.

According to some embodiments of the invention, the polynucleotide consists of the nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1-495, 795-2896 and 2897.

According to some embodiments of the invention, the nucleic acid sequence encodes the amino acid sequence selected from the group consisting of SEQ ID NOs: 496-794, 2898-4854 and 4855.

According to some embodiments of the invention, the host cell is a plant cell.

According to some embodiments of the invention, the plant cell forms part of a plant.

According to some embodiments of the invention, the method further comprising growing the plant expressing the exogenous polynucleotide under the abiotic stress.

According to some embodiments of the invention, the abiotic stress is selected from the group consisting of salinity, drought, osmotic stress, water deprivation, flood, etiolation, low temperature, high temperature, heavy metal toxicity, anaerobiosis, nutrient deficiency, nitrogen deficiency, nutrient excess, atmospheric pollution and UV irradiation.

According to some embodiments of the invention, the yield comprises seed yield or oil yield.

According to some embodiments of the invention, the method further comprising growing the plant expressing the exogenous polynucleotide under nitrogen-limiting conditions.

According to some embodiments of the invention, the promoter is heterologous to the isolated polynucleotide and/or to the host cell.

According to some embodiments of the invention, the isolated polynucleotide is heterologous to the plant cell.

According to some embodiments of the invention, the non-transformed plant is a wild type plant of identical genetic background.

According to some embodiments of the invention, the non-transformed plant is a wild type plant of the same species.

According to some embodiments of the invention, the non-transformed plant is grown under identical growth conditions.

According to some embodiments of the invention, the method further comprising selecting a plant having an increased nitrogen use efficiency, yield, growth rate, biomass, vigor, oil content, seed yield, fiber yield, fiber quality, fiber length, photosynthetic capacity, and/or abiotic stress tolerance as compared to the wild type plant of the same species which is grown under the same growth conditions.

Unless otherwise defined, all technical and/or scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the invention pertains. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of embodiments of the invention, exemplary methods and/or materials are described below. In case of conflict, the patent specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and are not intended to be necessarily limiting.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

Some embodiments of the invention are herein described, by way of example only, with reference to the accompanying drawings. With specific reference now to the drawings in detail, it is stressed that the particulars shown are by way of example and for purposes of illustrative discussion of embodiments of the invention. In this regard, the description taken with the drawings makes apparent to those skilled in the art how embodiments of the invention may be practiced.

In the Drawings

FIG. 1 is a schematic illustration of the modified pGI binary plasmid containing the new At6669 promoter (SEQ ID NO:4880) and the GUSintron (pQYN 6669) used for expressing the isolated polynucleotide sequences of the invention. RB - T-DNA right border; LB - T-DNA left border; MCS - Multiple cloning site; RE - any restriction enzyme; NOS pro = nopaline synthase promoter; NPT-II = neomycin phosphotransferase gene; NOS ter = nopaline synthase terminator; Poly-A signal (polyadenylation signal); GUSintron - the GUS reporter gene (coding sequence and intron). The isolated polynucleotide sequences of the invention were cloned into the vector while replacing the GUSintron reporter gene.

FIG. 2 is a schematic illustration of the modified pGI binary plasmid containing the new At6669 promoter (SEQ ID NO: 4880) (pQFN or pQFNc) used for expressing the isolated polynucleotide sequences of the invention. RB - T-DNA right border; LB -T-DNA left border; MCS - Multiple cloning site; RE - any restriction enzyme; NOS pro = nopaline synthase promoter; NPT-II = neomycin phosphotransferase gene; NOS ter = nopaline synthase terminator; Poly-A signal (polyadenylation signal); The isolated polynucleotide sequences of the invention were cloned into the MCS of the vector.

FIGS. 3A-3F are images depicting visualization of root development of transgenic plants exogenously expressing the polynucleotide of some embodiments of the invention when grown in transparent agar plates under normal (FIGS. 3A-3B), osmotic stress (15% PEG; FIGS. 3C-3D) or nitrogen-limiting (FIGS. 3E-3F) conditions. The different transgenes were grown in transparent agar plates for 17 days (7 days nursery and 10 days after transplanting). The plates were photographed every 3-4 days starting at day 1 after transplanting. FIG. 3A - An image of a photograph of plants taken following 10 after transplanting days on agar plates when grown under normal (standard) conditions. FIG. 3B - An image of root analysis of the plants shown in FIG. 3A in which the lengths of the roots measured are represented by arrows. FIG. 3C - An image of a photograph of plants taken following 10 days after transplanting on agar plates, grown under high osmotic (PEG 15%) conditions. FIG. 3D - An image of root analysis of the plants shown in FIG. 3C in which the lengths of the roots measured are represented by arrows. FIG. 3E - An image of a photograph of plants taken following 10 days after transplanting on agar plates, grown under low nitrogen conditions. FIG. 3F - An image of root analysis of the plants shown in FIG. 3E in which the lengths of the roots measured are represented by arrows.

FIG. 4 is a schematic illustration of the modified pGI binary plasmid containing the Root Promoter (pQNa RP) used for expressing the isolated polynucleotide sequences of the invention. RB - T-DNA right border; LB - T-DNA left border; NOS pro = nopaline synthase promoter; NPT-II = neomycin phosphotransferase gene; NOS ter = nopaline synthase terminator; Poly-A signal (polyadenylation signal); The isolated polynucleotide sequences according to some embodiments of the invention were cloned into the MCS (Multiple cloning site) of the vector.

FIG. 5 is a schematic illustration of the pQYN plasmid.

FIG. 6 is a schematic illustration of the pQFN plasmid.

FIG. 7 is a schematic illustration of the pQFYN plasmid.

FIG. 8 is a schematic illustration of the modified pGI binary plasmid (pQXNc) used for expressing the isolated polynucleotide sequences of some embodiments of the invention. RB - T-DNA right border; LB - T-DNA left border; NOS pro = nopaline synthase promoter; NPT-II = neomycin phosphotransferase gene; NOS ter = nopaline synthase terminator; RE = any restriction enzyme; Poly-A signal (polyadenylation signal); 35S - the 35S promoter (pqfnc; SEQ ID NO: 4876). The isolated polynucleotide sequences of some embodiments of the invention were cloned into the MCS (Multiple cloning site) of the vector.

FIGS. 9A-9B are schematic illustrations of the pEBbVNi tDNA (FIG. 9A) and the pEBbNi tDNA (FIG. 9B) plasmids used in the Brachypodium experiments. pEBbVNi tDNA (FIG. 9A) was used for expression of the isolated polynucleotide sequences of some embodiments of the invention in Brachypodium. pEBbNi tDNA (FIG. 9B) was used for transformation into Brachypodium as a negative control. “RB” = right border; “2LBregion” = 2 repeats of left border; “35S” = 35S promoter (SEQ ID NO:4892); “NOS ter” = nopaline synthase terminator; “Bar ORF” - BAR open reading frame (GenBank Accession No. JQ293091.1; SEQ ID NO:5436); The isolated polynucleotide sequences of some embodiments of the invention were cloned into the Multiple cloning site of the vector using one or more of the indicated restriction enzyme sites.

DESCRIPTION OF SPECIFIC EMBODIMENTS OF THE INVENTION

The present inventors have identified novel polypeptides and polynucleotides which can be used to generate nucleic acid constructs, transgenic plants and to increase nitrogen use efficiency, fertilizer use efficiency, yield, growth rate, vigor, biomass, oil content, fiber yield, fiber quality, fiber length, photosynthetic capacity, abiotic stress tolerance and/or water use efficiency of a plant.

Thus, as shown in the Examples section which follows, the present inventors have utilized bioinformatics tools to identify polynucleotides which enhance/ increase fertilizer use efficiency (e.g., nitrogen use efficiency), yield (e.g., seed yield, oil yield, oil content), growth rate, biomass, vigor, fiber yield, fiber quality, fiber length, photosynthetic capacity, and/or abiotic stress tolerance of a plant. Genes which affect the trait-of-interest were identified (SEQ ID NOs: 496-794) for polypeptides; and SEQ ID NOs: 1-495 (for polynucleotides) based on expression profiles of genes of several Arabidopsis, Barley, Sorghum, Maize, tomato, and Foxtail millet ecotypes and accessions in various tissues and growth conditions, homology with genes known to affect the trait-of-interest and using digital expression profile in specific tissues and conditions (Tables 1, and 3-99, Examples 1 and 3-11 of the Examples section which follows). Homologous (e.g., orthologous) polypeptides and polynucleotides having the same function were also identified [SEQ ID NOs: 2898-4855 (for polypeptides), and SEQ ID NOs: 795-2897 (for polynucleotides); Table 2, Example 2 of the Examples section which follows]. The polynucleotides of some embodiments of the invention were cloned into binary vectors (Example 12, Table 100), and were further transformed into Arabidopsis and Brachypodium plants (Examples 13-15). Transgenic plants over-expressing the identified polynucleotides were found to exhibit increased biomass, growth rate, vigor and yield under normal growth conditions or under nitrogen limiting growth conditions (Tables 101-128; Examples 16-20), and increased tolerance to abiotic stress conditions (e.g., nutrient deficiency) as compared to control plants grown under the same growth conditions. Altogether, these results suggest the use of the novel polynucleotides and polypeptides of the invention (e.g., SEQ ID NOs: 496-794 and 2898-4855 and SEQ ID NOs: 1-495 and 795-2897) for increasing nitrogen use efficiency, fertilizer use efficiency, yield (e.g., oil yield, seed yield and oil content), growth rate, biomass, vigor, fiber yield, fiber quality, fiber length, photosynthetic capacity, water use efficiency and/or abiotic stress tolerance of a plant.

Thus, according to an aspect of some embodiments of the invention, there is provided method of increasing fertilizer use efficiency (e.g., nitrogen use efficiency), oil content, yield, growth rate, biomass, vigor, fiber yield, fiber quality, fiber length, photosynthetic capacity, and/or abiotic stress tolerance of a plant, comprising expressing within the plant an exogenous polynucleotide comprising a nucleic acid sequence encoding a polypeptide at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or more say 100% homologous to the amino acid sequence selected from the group consisting of SEQ ID NOs: 496-794, 2898-3645, 3647-4854 and 4855, thereby increasing the fertilizer use efficiency (e.g., nitrogen use efficiency), oil content, yield, growth rate, biomass, vigor, fiber yield, fiber quality, fiber length, photosynthetic capacity, and/or abiotic stress tolerance of the plant.

As used herein the phrase “plant yield” refers to the amount (e.g., as determined by weight or size) or quantity (numbers) of tissues or organs produced per plant or per growing season. Hence increased yield could affect the economic benefit one can obtain from the plant in a certain growing area and/or growing time.

It should be noted that a plant yield can be affected by various parameters including, but not limited to, plant biomass; plant vigor; growth rate; seed yield; seed or grain quantity; seed or grain quality; oil yield; content of oil, starch and/or protein in harvested organs (e.g., seeds or vegetative parts of the plant); number of flowers (florets) per panicle (expressed as a ratio of number of filled seeds over number of primary panicles); harvest index; number of plants grown per area; number and size of harvested organs per plant and per area; number of plants per growing area (density); number of harvested organs in field; total leaf area; carbon assimilation and carbon partitioning (the distribution/allocation of carbon within the plant); resistance to shade; number of harvestable organs (e.g. seeds), seeds per pod, weight per seed; and modified architecture [such as increase stalk diameter, thickness or improvement of physical properties (e.g. elasticity)].

As used herein the phrase “seed yield” refers to the number or weight of the seeds per plant, seeds per pod, or per growing area or to the weight of a single seed, or to the oil extracted per seed. Hence seed yield can be affected by seed dimensions (e.g., length, width, perimeter, area and/or volume), number of (filled) seeds and seed filling rate and by seed oil content. Hence increase seed yield per plant could affect the economic benefit one can obtain from the plant in a certain growing area and/or growing time; and increase seed yield per growing area could be achieved by increasing seed yield per plant, and/or by increasing number of plants grown on the same given area.

The term “seed” (also referred to as “grain” or “kernel”) as used herein refers to a small embryonic plant enclosed in a covering called the seed coat (usually with some stored food), the product of the ripened ovule of gymnosperm and angiosperm plants which occurs after fertilization and some growth within the mother plant.

The phrase “oil content” as used herein refers to the amount of lipids in a given plant organ, either the seeds (seed oil content) or the vegetative portion of the plant (vegetative oil content) and is typically expressed as percentage of dry weight (10% humidity of seeds) or wet weight (for vegetative portion).

It should be noted that oil content is affected by intrinsic oil production of a tissue (e.g., seed, vegetative portion), as well as the mass or size of the oil-producing tissue per plant or per growth period.

In one embodiment, increase in oil content of the plant can be achieved by increasing the size/mass of a plant’s tissue(s) which comprise oil per growth period. Thus, increased oil content of a plant can be achieved by increasing the yield, growth rate, biomass and vigor of the plant.

As used herein the phrase “plant biomass” refers to the amount (e.g., measured in grams of air-dry tissue) of a tissue produced from the plant in a growing season, which could also determine or affect the plant yield or the yield per growing area. An increase in plant biomass can be in the whole plant or in parts thereof such as aboveground (harvestable) parts, vegetative biomass, roots and seeds.

As used herein the phrase “growth rate” refers to the increase in plant organ/tissue size per time (can be measured in cm2 per day or cm/day).

As used herein the phrase “photosynthetic capacity” (also known as “Amax”) is a measure of the maximum rate at which leaves are able to fix carbon during photosynthesis. It is typically measured as the amount of carbon dioxide that is fixed per square meter per second, for example as µmol m-2 sec-1. Plants are able to increase their photosynthetic capacity by several modes of action, such as by increasing the total leaves area (e.g., by increase of leaves area, increase in the number of leaves, and increase in plant’s vigor, e.g., the ability of the plant to grow new leaves along time course) as well as by increasing the ability of the plant to efficiently execute carbon fixation in the leaves. Hence, the increase in total leaves area can be used as a reliable measurement parameter for photosynthetic capacity increment.

As used herein the phrase “plant vigor” refers to the amount (measured by weight) of tissue produced by the plant in a given time. Hence increased vigor could determine or affect the plant yield or the yield per growing time or growing area. In addition, early vigor (seed and/or seedling) results in improved field stand.

Improving early vigor is an important objective of modern rice breeding programs in both temperate and tropical rice cultivars. Long roots are important for proper soil anchorage in water-seeded rice. Where rice is sown directly into flooded fields, and where plants must emerge rapidly through water, longer shoots are associated with vigour. Where drill-seeding is practiced, longer mesocotyls and coleoptiles are important for good seedling emergence. The ability to engineer early vigor into plants would be of great importance in agriculture. For example, poor early vigor has been a limitation to the introduction of maize (Zea mays L.) hybrids based on Corn Belt germplasm in the European Atlantic.

It should be noted that a plant yield can be determined under stress (e.g., abiotic stress, nitrogen-limiting conditions) and/or non-stress (normal) conditions.

As used herein, the phrase “non-stress conditions” refers to the growth conditions (e.g., water, temperature, light-dark cycles, humidity, salt concentration, fertilizer concentration in soil, nutrient supply such as nitrogen, phosphorous and/or potassium), that do not significantly go beyond the everyday climatic and other abiotic conditions that plants may encounter, and which allow optimal growth, metabolism, reproduction and/or viability of a plant at any stage in its life cycle (e.g., in a crop plant from seed to a mature plant and back to seed again). Persons skilled in the art are aware of normal soil conditions and climatic conditions for a given plant in a given geographic location. It should be noted that while the non-stress conditions may include some mild variations from the optimal conditions (which vary from one type/species of a plant to another), such variations do not cause the plant to cease growing without the capacity to resume growth.

The phrase “abiotic stress” as used herein refers to any adverse effect on metabolism, growth, reproduction and/or viability of a plant. Accordingly, abiotic stress can be induced by suboptimal environmental growth conditions such as, for example, salinity, osmotic stress, water deprivation, drought, flooding, freezing, low or high temperature, heavy metal toxicity, anaerobiosis, nutrient deficiency (e.g., nitrogen deficiency or limited nitrogen), atmospheric pollution or UV irradiation. The implications of abiotic stress are discussed in the Background section.

The phrase “abiotic stress tolerance” as used herein refers to the ability of a plant to endure an abiotic stress without suffering a substantial alteration in metabolism, growth, productivity and/or viability.

Plants are subject to a range of environmental challenges. Several of these, including salt stress, general osmotic stress, drought stress and freezing stress, have the ability to impact whole plant and cellular water availability. Not surprisingly, then, plant responses to this collection of stresses are related. Zhu (2002) Ann. Rev. Plant Biol. 53: 247-273 et al. note that “most studies on water stress signaling have focused on salt stress primarily because plant responses to salt and drought are closely related and the mechanisms overlap”. Many examples of similar responses and pathways to this set of stresses have been documented. For example, the CBF transcription factors have been shown to condition resistance to salt, freezing and drought (Kasuga et al. (1999) Nature Biotech. 17: 287-291). The Arabidopsis rd29B gene is induced in response to both salt and dehydration stress, a process that is mediated largely through an ABA signal transduction process (Uno et al. (2000) Proc. Natl. Acad. Sci. USA 97: 11632-11637), resulting in altered activity of transcription factors that bind to an upstream element within the rd29B promoter. In Mesembryanthemum crystallinum (ice plant), Patharker and Cushman have shown that a calcium-dependent protein kinase (McCDPK1) is induced by exposure to both drought and salt stresses (Patharker and Cushman (2000) Plant J. 24: 679-691). The stress-induced kinase was also shown to phosphorylate a transcription factor, presumably altering its activity, although transcript levels of the target transcription factor are not altered in response to salt or drought stress. Similarly, Saijo et al. demonstrated that a rice salt/drought-induced calmodulin-dependent protein kinase (OsCDPK7) conferred increased salt and drought tolerance to rice when overexpressed (Saijo et al. (2000) Plant J. 23: 319-327).

Exposure to dehydration invokes similar survival strategies in plants as does freezing stress (see, for example, Yelenosky (1989) Plant Physiol 89: 444-451) and drought stress induces freezing tolerance (see, for example, Siminovitch et al. (1982) Plant Physiol 69: 250-255; and Guy et al. (1992) Planta 188: 265-270). In addition to the induction of cold-acclimation proteins, strategies that allow plants to survive in low water conditions may include, for example, reduced surface area, or surface oil or wax production. In another example increased solute content of the plant prevents evaporation and water loss due to heat, drought, salinity, osmoticum, and the like therefore providing a better plant tolerance to the above stresses.

It will be appreciated that some pathways involved in resistance to one stress (as described above), will also be involved in resistance to other stresses, regulated by the same or homologous genes. Of course, the overall resistance pathways are related, not identical, and therefore not all genes controlling resistance to one stress will control resistance to the other stresses. Nonetheless, if a gene conditions resistance to one of these stresses, it would be apparent to one skilled in the art to test for resistance to these related stresses. Methods of assessing stress resistance are further provided in the Examples section which follows.

As used herein the phrase “water use efficiency (WUE)” refers to the level of organic matter produced per unit of water consumed by the plant, i.e., the dry weight of a plant in relation to the plant’s water use, e.g., the biomass produced per unit transpiration.

As used herein the phrase “fertilizer use efficiency” refers to the metabolic process(es) which lead to an increase in the plant’s yield, biomass, vigor, and growth rate per fertilizer unit applied. The metabolic process can be the uptake, spread, absorbent, accumulation, relocation (within the plant) and use of one or more of the minerals and organic moieties absorbed by the plant, such as nitrogen, phosphates and/or potassium.

As used herein the phrase “fertilizer-limiting conditions” refers to growth conditions which include a level (e.g., concentration) of a fertilizer applied which is below the level needed for normal plant metabolism, growth, reproduction and/or viability.

As used herein the phrase “nitrogen use efficiency (NUE)” refers to the metabolic process(es) which lead to an increase in the plant’s yield, biomass, vigor, and growth rate per nitrogen unit applied. The metabolic process can be the uptake, spread, absorbent, accumulation, relocation (within the plant) and use of nitrogen absorbed by the plant.

As used herein the phrase “nitrogen-limiting conditions” refers to growth conditions which include a level (e.g., concentration) of nitrogen (e.g., ammonium or nitrate) applied which is below the level needed for normal plant metabolism, growth, reproduction and/or viability.

Improved plant NUE and FUE is translated in the field into either harvesting similar quantities of yield, while implementing less fertilizers, or increased yields gained by implementing the same levels of fertilizers. Thus, improved NUE or FUE has a direct effect on plant yield in the field. Thus, the polynucleotides and polypeptides of some embodiments of the invention positively affect plant yield, seed yield, and plant biomass. In addition, the benefit of improved plant NUE will certainly improve crop quality and biochemical constituents of the seed such as protein yield and oil yield.

It should be noted that improved ABST will confer plants with improved vigor also under non-stress conditions, resulting in crops having improved biomass and/or yield e.g., elongated fibers for the cotton industry, higher oil content.

The term “fiber” is usually inclusive of thick-walled conducting cells such as vessels and tracheids and to fibrillar aggregates of many individual fiber cells. Hence, the term “fiber” refers to (a) thick-walled conducting and non-conducting cells of the xylem; (b) fibers of extraxylary origin, including those from phloem, bark, ground tissue, and epidermis; and (c) fibers from stems, leaves, roots, seeds, and flowers or inflorescences (such as those of Sorghum vulgare used in the manufacture of brushes and brooms).

Example of fiber producing plants, include, but are not limited to, agricultural crops such as cotton, silk cotton tree (Kapok, Ceiba pentandra), desert willow, creosote bush, winterfat, balsa, kenaf, roselle, jute, sisal abaca, flax, corn, sugar cane, hemp, ramie, kapok, coir, bamboo, spanish moss and Agave spp. (e.g. sisal).

As used herein the phrase “fiber quality” refers to at least one fiber parameter which is agriculturally desired, or required in the fiber industry (further described hereinbelow). Examples of such parameters, include but are not limited to, fiber length, fiber strength, fiber fitness, fiber weight per unit length, maturity ratio and uniformity (further described hereinbelow).

Cotton fiber (lint) quality is typically measured according to fiber length, strength and fineness. Accordingly, the lint quality is considered higher when the fiber is longer, stronger and finer.

As used herein the phrase “fiber yield” refers to the amount or quantity of fibers produced from the fiber producing plant.

As used herein the term “increasing” refers to at least about 2%, at least about 3 %, at least about 4%, at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, increase in fertilizer use efficiency, nitrogen use efficiency, yield, seed yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, fiber length, photosynthetic capacity, and/or abiotic stress tolerance of a plant as compared to a native plant or a wild type plant [i.e., a plant not modified with the biomolecules (polynucleotide or polypeptides) of the invention, e.g., a non-transformed plant of the same species which is grown under the same (e.g., identical) growth conditions].

The phrase “expressing within the plant an exogenous polynucleotide” as used herein refers to upregulating the expression level of an exogenous polynucleotide within the plant by introducing the exogenous polynucleotide into a plant cell or plant and expressing by recombinant means, as further described herein below.

As used herein “expressing” refers to expression at the mRNA and optionally polypeptide level.

As used herein, the phrase “exogenous polynucleotide” refers to a heterologous nucleic acid sequence which may not be naturally expressed within the plant (e.g., a nucleic acid sequence from a different species) or which overexpression in the plant is desired. The exogenous polynucleotide may be introduced into the plant in a stable or transient manner, so as to produce a ribonucleic acid (RNA) molecule and/or a polypeptide molecule. It should be noted that the exogenous polynucleotide may comprise a nucleic acid sequence which is identical or partially homologous to an endogenous nucleic acid sequence of the plant.

The term “endogenous” as used herein refers to any polynucleotide or polypeptide which is present and/or naturally expressed within a plant or a cell thereof.

According to some embodiments of the invention, the exogenous polynucleotide of the invention comprises a nucleic acid sequence encoding a polypeptide having an amino acid sequence at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or more say 100% homologous to the amino acid sequence selected from the group consisting of SEQ ID NOs: 496-794, 2898-3645, 3647-4854 and 4855.

Homologous sequences include both orthologous and paralogous sequences. The term “paralogous” relates to gene-duplications within the genome of a species leading to paralogous genes. The term “orthologous” relates to homologous genes in different organisms due to ancestral relationship. Thus, orthologs are evolutionary counterparts derived from a single ancestral gene in the last common ancestor of given two species (Koonin EV and Galperin MY (Sequence - Evolution - Function: Computational Approaches in Comparative Genomics. Boston: Kluwer Academic; 2003. Chapter 2, Evolutionary Concept in Genetics and Genomics. Available from: ncbi (dot) nlm (dot) nih (dot) gov/books/NBK20255) and therefore have great likelihood of having the same function.

One option to identify orthologues in monocot plant species is by performing a reciprocal blast search. This may be done by a first blast involving blasting the sequence-of-interest against any sequence database, such as the publicly available NCBI database which may be found at: ncbi (dot) nlm (dot) nih (dot) gov. If orthologues in rice were sought, the sequence-of-interest would be blasted against, for example, the 28,469 full-length cDNA clones from Oryza sativa Nipponbare available at NCBI. The blast results may be filtered. The full-length sequences of either the filtered results or the non-filtered results are then blasted back (second blast) against the sequences of the organism from which the sequence-of-interest is derived. The results of the first and second blasts are then compared. An orthologue is identified when the sequence resulting in the highest score (best hit) in the first blast identifies in the second blast the query sequence (the original sequence-of-interest) as the best hit. Using the same rational a paralogue (homolog to a gene in the same organism) is found. In case of large sequence families, the ClustalW program may be used [ebi (dot) ac (dot) uk/Tools/clustalw2/index (dot) html], followed by a neighbor-joining tree (wikipedia (dot) org/wiki/Neighbor-joining) which helps visualizing the clustering.

Homology (e.g., percent homology, sequence identity + sequence similarity) can be determined using any homology comparison software computing a pairwise sequence alignment.

As used herein, “sequence identity” or “identity” in the context of two nucleic acid or polypeptide sequences includes reference to the residues in the two sequences which are the same when aligned. When percentage of sequence identity is used in reference to proteins it is recognized that residue positions which are not identical often differ by conservative amino acid substitutions, where amino acid residues are substituted for other amino acid residues with similar chemical properties (e.g. charge or hydrophobicity) and therefore do not change the functional properties of the molecule. Where sequences differ in conservative substitutions, the percent sequence identity may be adjusted upwards to correct for the conservative nature of the substitution. Sequences which differ by such conservative substitutions are said to have “sequence similarity” or “similarity”. Means for making this adjustment are well-known to those of skill in the art. Typically this involves scoring a conservative substitution as a partial rather than a full mismatch, thereby increasing the percentage sequence identity. Thus, for example, where an identical amino acid is given a score of 1 and a non-conservative substitution is given a score of zero, a conservative substitution is given a score between zero and 1. The scoring of conservative substitutions is calculated, e.g., according to the algorithm of Henikoff S and Henikoff JG. [Amino acid substitution matrices from protein blocks. Proc. Natl. Acad. Sci. U.S.A. 1992, 89(22): 10915-9].

Identity (e.g., percent homology) can be determined using any homology comparison software, including for example, the BlastN software of the National Center of Biotechnology Information (NCBI) such as by using default parameters.

According to some embodiments of the invention, the identity is a global identity, i.e., an identity over the entire amino acid or nucleic acid sequences of the invention and not over portions thereof.

According to some embodiments of the invention, the term “homology” or “homologous” refers to identity of two or more nucleic acid sequences; or identity of two or more amino acid sequences; or the identity of an amino acid sequence to one or more nucleic acid sequence.

According to some embodiments of the invention, the homology is a global homology, i.e., an homology over the entire amino acid or nucleic acid sequences of the invention and not over portions thereof.

The degree of homology or identity between two or more sequences can be determined using various known sequence comparison tools. Following is a non-limiting description of such tools which can be used along with some embodiments of the invention.

Pairwise global alignment was defined by S. B. Needleman and C. D. Wunsch, “A general method applicable to the search of similarities in the amino acid sequence of two proteins” Journal of Molecular Biology, 1970, pages 443-53, volume 48).

For example, when starting from a polypeptide sequence and comparing to other polypeptide sequences, the EMBOSS-6.0.1 Needleman-Wunsch algorithm (available from emboss(dot)sourceforge(dot)net/apps/cvs/emboss/apps/needle(dot)html) can be used to find the optimum alignment (including gaps) of two sequences along their entire length - a “Global alignment”. Default parameters for Needleman-Wunsch algorithm (EMBOSS-6.0.1) include: gapopen=10; gapextend=0.5; datafile= EBLOSUM62; brief=YES.

According to some embodiments of the invention, the parameters used with the EMBOSS-6.0.1 tool (for protein-protein comparison) include: gapopen=8; gapextend=2; datafile= EBLOSUM62; brief=YES.

According to some embodiments of the invention, the threshold used to determine homology using the EMBOSS-6.0.1 Needleman-Wunsch algorithm is 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94 %, 95%, 96%, 97%, 98%, 99%, or 100%.

When starting from a polypeptide sequence and comparing to polynucleotide sequences, the OneModel FramePlus algorithm [Halperin, E., Faigler, S. and Gill-More, R. (1999) - FramePlus: aligning DNA to protein sequences. Bioinformatics, 15, 867-873) (available from biocceleration(dot)com/Products(dot)html] can be used with following default parameters: model=frame+_p2n.model mode=local.

According to some embodiments of the invention, the parameters used with the OneModel FramePlus algorithm are model=frame+_p2n.model, mode=qglobal.

According to some embodiments of the invention, the threshold used to determine homology using the OneModel FramePlus algorithm is 80%, 81%, 82%, 83 %, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%.

When starting with a polynucleotide sequence and comparing to other polynucleotide sequences the EMBOSS-6.0.1 Needleman-Wunsch algorithm (available from emboss(dot)sourceforge(dot)net/apps/cvs/emboss/apps/needle(dot)html) can be used with the following default parameters: (EMBOSS-6.0.1) gapopen=10; gapextend=0.5; datafile= EDNAFULL; brief=YES.

According to some embodiments of the invention, the parameters used with the EMBOSS-6.0.1 Needleman-Wunsch algorithm are gapopen=10; gapextend=0.2; datafile= EDNAFULL; brief=YES.

According to some embodiments of the invention, the threshold used to determine homology using the EMBOSS-6.0.1 Needleman-Wunsch algorithm for comparison of polynucleotides with polynucleotides is 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98 %, 99%, or 100%.

According to some embodiment, determination of the degree of homology further requires employing the Smith-Waterman algorithm (for protein-protein comparison or nucleotide-nucleotide comparison).

Default parameters for GenCore 6.0 Smith-Waterman algorithm include: model =sw.model.

According to some embodiments of the invention, the threshold used to determine homology using the Smith-Waterman algorithm is 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97 %, 98%, 99%, or 100%.

According to some embodiments of the invention, the global homology is performed on sequences which are pre-selected by local homology to the polypeptide or polynucleotide of interest (e.g., 60% identity over 60% of the sequence length), prior to performing the global homology to the polypeptide or polynucleotide of interest (e.g., 80% global homology on the entire sequence). For example, homologous sequences are selected using the BLAST software with the Blastp and tBlastn algorithms as filters for the first stage, and the needle (EMBOSS package) or Frame+ algorithm alignment for the second stage. Local identity (Blast alignments) is defined with a very permissive cutoff - 60% Identity on a span of 60% of the sequences lengths because it is used only as a filter for the global alignment stage. In this specific embodiment (when the local identity is used), the default filtering of the Blast package is not utilized (by setting the parameter “-F F”).

In the second stage, homologs are defined based on a global identity of at least 80% to the core gene polypeptide sequence.

According to some embodiments of the invention, two distinct forms for finding the optimal global alignment for protein or nucleotide sequences are used:

  • 1. Between two proteins (following the blastp filter): EMBOSS-6.0.1 Needleman-Wunsch algorithm with the following modified parameters: gapopen=8 gapextend=2. The rest of the parameters are unchanged from the default options listed here:
    • Standard (Mandatory) qualifiers:
      • [-asequence] sequence Sequence filename and optional format, or reference (input USA)
      • [-bsequence] seqall Sequence(s) filename and optional format, or reference (input USA)
      • -gapopen float [10.0 for any sequence]. The gap open penalty is the score taken away when a gap is created. The best value depends on the choice of comparison matrix. The default value assumes you are using the EBLOSUM62 matrix for protein sequences, and the EDNAFULL matrix for nucleotide sequences. (Floating point number from 1.0 to 100.0)
      • -gapextend float [0.5 for any sequence]. The gap extension, penalty is added to the standard gap penalty for each base or residue in the gap. This is how long gaps are penalized. Usually you will expect a few long gaps rather than many short gaps, so the gap extension penalty should be lower than the gap penalty. An exception is where one or both sequences are single reads with possible sequencing errors in which case you would expect many single base gaps. You can get this result by setting the gap open penalty to zero (or very low) and using the gap extension penalty to control gap scoring. (Floating point number from 0.0 to 10.0)
      • [-outfile] align [*.needle] Output alignment file name
    • Additional (Optional) qualifiers:
      • -datafile matrixf [EBLOSUM62 for protein, EDNAFULL for DNA]. This is the scoring matrix file used when comparing sequences. By default it is the file ‘EBLOSUM62’ (for proteins) or the file ‘EDNAFULL’ (for nucleic sequences). These files are found in the ‘data’ directory of the EMBOSS installation.

Advanced (Unprompted) qualifiers: -[no]brief boolean [Y] Brief identity and similarity Associated qualifiers: “asequence” associated qualifiers sbegin1 integer Start of the sequence to be used send1 integer End of the sequence to be used sreverse1 boolean Reverse (if DNA) sask1 boolean Ask for begin/end/reverse snucleotide1 boolean Sequence is nucleotide sprotein1 boolean Sequence is protein slower1 boolean Make lower case supper1 boolean Make upper case sformat1 string Input sequence format sdbname1 string Database name sid1 string Entryname ufo1 string UFO features fformat1 string Features format fopenfile1 string Features file name “bsequence” associated qualifiers -sbegin2 integer Start of each sequence to be used send2 integer End of each sequence to be used sreverse2 boolean Reverse (if DNA) sask2 boolean Ask for begin/end/reverse snucleotide2 boolean Sequence is nucleotide sprotein2 boolean Sequence is protein slower2 boolean Make lower case supper2 boolean Make upper case sformat2 string Input sequence format sdbname2 string Database name sid2 string Entryname ufo2 string UFO features fformat2 string Features format fopenfile2 string Features file name “outfile” associated qualifiers aformat3 string Alignment format aextension3 string File name extension adirectory3 string Output directory aname3 string Base file name awidth3 integer Alignment width aaccshow3 boolean Show accession number in the header adesshow3 boolean Show description in the header ausashow3 boolean Show the full USA in the alignment aglobal3 boolean Show the full sequence in alignment General qualifiers: auto boolean Turn off prompts stdout boolean Write first file to standard output filter boolean Read first file from standard input, write first file to standard output options boolean Prompt for standard and additional values debug boolean Write debug output to program.dbg verbose boolean Report some/full command line options help boolean Report command line options. More information on associated and general qualifiers can be found with -help -verbose warning boolean Report warnings error boolean Report errors fatal boolean Report fatal errors die boolean Report dying program messages

2. Between a protein sequence and a nucleotide sequence (following the tblastn filter): GenCore 6.0 OneModel application utilizing the Frame+ algorithm with the following parameters: model=frame+_p2n.model mode=qglobal -q=protein.sequence -db= nucleotide.sequence. The rest of the parameters are unchanged from the default options:

  • Usage: om -model=<model_fname> [-q=]query [-db=]database [options]
  • model=<model_fname> Specifies the model that you want to run. All models supplied by Compugen are located in the directory $CGNROOT/models/. Valid command line parameters:
  • dev=<dev_name> Selects the device to be used by the application.
    • Valid devices are:
    • bic - Bioccelerator (valid for SW, XSW, FRAME_N2P, and FRAME_P2N models).
    • xlg - BioXL/G (valid for all models except XSW).
    • xlp - BioXL/P (valid for SW, FRAME+_N2P, and FRAME_P2N models).
    • xlh - BioXL/H (valid for SW, FRAME+_N2P, and FRAME_P2N models).
    • soft - Software device (for all models).
  • q=<query> Defines the query set. The query can be a sequence file or a database reference. You can specify a query by its name or by accession number. The format is detected automatically. However, you may specify a format using the -qfmt parameter. If you do not specify a query, the program prompts for one. If the query set is a database reference, an output file is produced for each sequence in the query.
  • db=<database name> Chooses the database set. The database set can be a sequence file or a database reference. The database format is detected automatically. However, you may specify a format using -dfmt parameter.
  • qacc Add this parameter to the command line if you specify query using accession numbers.
  • dacc Add this parameter to the command line if you specify a database using accession numbers.
  • dfmt/-qfmt=<format_type> Chooses the database/query format type. Possible formats are:
    • fasta - fasta with seq type auto-detected.
    • fastap - fasta protein seq.
    • fastan - fasta nucleic seq.
    • gcg - gcg format, type is auto-detected.
    • gcg9seq - gcg9 format, type is auto-detected.
    • gcg9seqp - gcg9 format protein seq.
    • gcg9seqn - gcg9 format nucleic seq.
    • nbrf - nbrf seq, type is auto-detected.
    • nbrfp - nbrf protein seq.
    • nbrfn - nbrf nucleic seq.
    • embl - embl and swissprot format.
    • genbank - genbank format (nucleic).
    • blast - blast format.
    • nbrf_gcg- nbrf-gcg seq, type is auto-detected.
    • nbrf_gcgp - nbrf-gcg protein seq.
    • nbrf_gcgn- nbrf-gcg nucleic seq.
    • raw - raw ascii sequence, type is auto-detected.
    • rawp - raw ascii protein sequence.
    • rawn - raw ascii nucleic sequence.
    • pir - pir codata format, type is auto-detected.
    • profile - gcg profile (valid only for -qfmt
    • in SW, XSW, FRAME_P2N, and FRAME+_P2N).
  • out=<out_fname> The name of the output file.
  • suffix=<name> The output file name suffix.
  • gapop=<n> Gap open penalty. This parameter is not valid for FRAME+. For FrameSearch the default is 12.0. For other searches the default is 10.0.
  • gapext=<n> Gap extend penalty. This parameter is not valid for FRAME+. For FrameSearch the default is 4.0. For other models: the default for protein searches is 0.05, and the default for nucleic searches is 1.0.
  • qgapop=<n> The penalty for opening a gap in the query sequence. The default is 10.0. Valid for XSW.
  • qgapext=<n> The penalty for extending a gap in the query sequence. The default is 0.05. Valid for XSW.
  • start=<n> The position in the query sequence to begin the search.
  • end=<n> The position in the query sequence to stop the search.
  • qtrans Performs a translated search, relevant for a nucleic query against a protein database. The nucleic query is translated to six reading frames and a result is given for each frame. Valid for SW and XSW.
  • dtrans Performs a translated search, relevant for a protein query against a DNA database. Each database entry is translated to six reading frames and a result is given for each frame. Valid for SW and XSW. Note: “-qtrans” and “-dtrans” options are mutually exclusive.
  • matrix=<matrix_file> Specifies the comparison matrix to be used in the search. The matrix must be in the BLAST format. If the matrix file is not located in $CGNROOT/tables/matrix, specify the full path as the value of the -matrix parameter.
  • trans=<transtab_name> Translation table. The default location for the table is $CGNROOT/tables/trans.
  • onestrand Restricts the search to just the top strand of the query/database nucleic sequence.
  • list=<n> The maximum size of the output hit list. The default is 50.
  • docalign=<n> The number of documentation lines preceding each alignment. The default is 10.
  • thr_score=<score_name> The score that places limits on the display of results. Scores that are smaller than -thr_min value or larger than -thr_max value are not shown. Valid options are: quality.
    • zscore.
    • escore.
  • thr_max=<n> The score upper threshold. Results that are larger than -thr_max value are not shown.
  • thr_min=<n> The score lower threshold. Results that are lower than -thr_min value are not shown.
  • align=<n> The number of alignments reported in the output file.
  • noalign Do not display alignment. Note: “-align” and “-noalign” parameters are mutually exclusive.
  • outfmt=<format_name> Specifies the output format type. The default format is PFS. Possible values are:
    • PFS - PFS text format
    • FASTA - FASTA text format
    • BLAST - BLAST text format
  • nonorm Do not perform score normalization.
  • norm=<norm_name> Specifies the normalization method. Valid options are:
    • log - logarithm normalization.
    • std - standard normalization.
    • stat - Pearson statistical method.
    Note: “-nonorm” and “-norm” parameters cannot be used together. Note: Parameters -xgapop, -xgapext, -fgapop, -fgapext, -ygapop, -ygapext, -delop, and
  • delext apply only to FRAME+.
  • xgapop=<n> The penalty for opening a gap when inserting a codon (triplet). The default is 12.0.
  • xgapext=<n> The penalty for extending a gap when inserting a codon (triplet). The default is 4.0.
  • ygapop=<n> The penalty for opening a gap when deleting an amino acid. The default is 12.0.
  • ygapext=<n> The penalty for extending a gap when deleting an amino acid. The default is 4.0.
  • fgapop=<n> The penalty for opening a gap when inserting a DNA base. The default is 6.0.
  • fgapext=<n> The penalty for extending a gap when inserting a DNA base. The default is 7.0.
  • delop=<n> The penalty for opening a gap when deleting a DNA base. The default is 6.0.
  • delext=<n> The penalty for extending a gap when deleting a DNA base. The default is 7.0.
  • silent No screen output is produced.
  • host=<host_name> The name of the host on which the server runs. By default, the application uses the host specified in the file $CGNROOT/cgnhosts.
  • wait Do not go to the background when the device is busy. This option is not relevant for the Parseq or Soft pseudo device.
  • batch Run the job in the background. When this option is specified, the file “$CGNROOT/defaults/batch.defaults” is used for choosing the batch command. If this file does not exist, the command “at now” is used to run the job. Note:“-batch” and “-wait” parameters are mutually exclusive.
  • version Prints the software version number.
  • help Displays this help message. To get more specific help type: “om -model=<model_fname> -help”.

According to some embodiments the homology is a local homology or a local identity.

Local alignments tools include, but are not limited to the BlastP, BlastN, BlastX or TBLASTN software of the National Center of Biotechnology Information (NCBI), FASTA, and the Smith-Waterman algorithm.

A tblastn search allows the comparison between a protein sequence to the six-frame translations of a nucleotide database. It can be a very productive way of finding homologous protein coding regions in unannotated nucleotide sequences such as expressed sequence tags (ESTs) and draft genome records (HTG), located in the BLAST databases est and htgs, respectively.

Default parameters for blastp include: Max target sequences: 100; Expected threshold: e-5; Word size: 3; Max matches in a query range: 0; Scoring parameters: Matrix - BLOSUM62; filters and masking: Filter - low complexity regions.

Local alignments tools, which can be used include, but are not limited to, the tBLASTX algorithm, which compares the six-frame conceptual translation products of a nucleotide query sequence (both strands) against a protein sequence database. Default parameters include: Max target sequences: 100; Expected threshold: 10; Word size: 3; Max matches in a query range: 0; Scoring parameters: Matrix - BLOSUM62; filters and masking: Filter - low complexity regions.

According to some embodiments of the invention, the exogenous polynucleotide of the invention encodes a polypeptide having an amino acid sequence at least about 80 %, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or more say 100% identical to the amino acid sequence selected from the group consisting of SEQ ID NOs:496-794, 2898-3645, 3647-4854 and 4855.

According to some embodiments of the invention, the exogenous polynucleotide of the invention encodes a polypeptide having the amino acid sequence selected from the group consisting of SEQ ID NOs: 496-794, 2898-4854 and 4855.

According to some embodiments of the invention, the method of increasing fertilizer use efficiency, nitrogen use efficiency, yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, fiber length, photosynthetic capacity, and/or abiotic stress tolerance of a plant, is effected by expressing within the plant an exogenous polynucleotide comprising a nucleic acid sequence encoding a polypeptide at least at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or more say 100% identical to the amino acid sequence selected from the group consisting of SEQ ID NOs:496-794, 2898-3645, 3647-4854 and 4855, thereby increasing the fertilizer use efficiency, nitrogen use efficiency, yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, fiber length, photosynthetic capacity and/or abiotic stress tolerance of the plant.

According to some embodiments of the invention, the exogenous polynucleotide encodes a polypeptide consisting of the amino acid sequence set forth by SEQ ID NO:496-794, 2898-4854 or 4855.

According to an aspect of some embodiments of the invention, the method of increasing fertilizer use efficiency, nitrogen use efficiency, yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, fiber length, photosynthetic capacity, and/or abiotic stress tolerance of a plant is effected by expressing within the plant an exogenous polynucleotide comprising a nucleic acid sequence encoding a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NOs:496-794, 2898-4854 and 4855, thereby increasing the fertilizer use efficiency, nitrogen use efficiency, yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, fiber length, photosynthetic capacity, and/or abiotic stress tolerance of the plant.

According to an aspect of some embodiments of the invention, there is provided a method of increasing fertilizer use efficiency, nitrogen use efficiency, yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, fiber length, photosynthetic capacity, and/or abiotic stress tolerance of a plant, comprising expressing within the plant an exogenous polynucleotide comprising a nucleic acid sequence encoding a polypeptide selected from the group consisting of SEQ ID NOs: 496-794, 2898-4854 and 4855, thereby increasing the fertilizer use efficiency, nitrogen use efficiency, yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, fiber length, photosynthetic capacity, and/or abiotic stress tolerance of the plant.

According to some embodiments of the invention, the exogenous polynucleotide encodes a polypeptide consisting of the amino acid sequence set forth by SEQ ID NO: 496-794, 2898-4854 or 4855.

According to some embodiments of the invention the exogenous polynucleotide comprises a nucleic acid sequence which is at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, e.g., 100% identical to the nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1-495, 795-2896 and 2897.

According to an aspect of some embodiments of the invention, there is provided a method of increasing fertilizer use efficiency, nitrogen use efficiency, yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, fiber length, photosynthetic capacity, and/or abiotic stress tolerance of a plant, comprising expressing within the plant an exogenous polynucleotide comprising a nucleic acid sequence at least about 80 %, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, e.g., 100% identical to the nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1-495, 795-2896 and 2897, thereby increasing the fertilizer use efficiency, nitrogen use efficiency, yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, fiber length, photosynthetic capacity, and/or abiotic stress tolerance of the plant.

According to some embodiments of the invention the exogenous polynucleotide is at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, e.g., 100% identical to the polynucleotide selected from the group consisting of SEQ ID NOs: 1-495, 795-2896 and 2897.

According to some embodiments of the invention the exogenous polynucleotide is set forth by SEQ ID NO: 1-495, 795-2896 or 2897.

According to some embodiments of the invention the method of increasing fertilizer use efficiency, nitrogen use efficiency, yield, growth rate, biomass, vigor, oil content, seed yield, fiber yield, fiber quality, fiber length, photosynthetic capacity, and/or abiotic stress tolerance of a plant further comprising selecting a plant having an increased fertilizer use efficiency, nitrogen use efficiency, yield, growth rate, biomass, vigor, oil content, seed yield, fiber yield, fiber quality, fiber length, photosynthetic capacity, and/or abiotic stress tolerance as compared to the wild type plant of the same species which is grown under the same growth conditions.

It should be noted that selecting a transformed plant having an increased trait as compared to a native (or non-transformed) plant grown under the same growth conditions is performed by selecting for the trait, e.g., validating the ability of the transformed plant to exhibit the increased trait using well known assays (e.g., seedling analyses, greenhouse assays) as is further described herein below.

According to an aspect of some embodiments of the invention, there is provided a method of selecting a transformed plant having increased fertilizer use efficiency, nitrogen use efficiency, yield, growth rate, biomass, vigor, oil content, seed yield, fiber yield, fiber quality, fiber length, photosynthetic capacity, and/or abiotic stress tolerance as compared to a wild type plant of the same species which is grown under the same growth conditions, the method comprising:

  • (a) providing plants transformed with an exogenous polynucleotide encoding a polypeptide comprising an amino acid sequence at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, e.g., 100% homologous (e.g., having sequence similarity or sequence identity) to the amino acid sequence selected from the group consisting of SEQ ID NOs: 496-794, 2898-3645, 3647-4854 and 4855,
  • (b) selecting from said plants a plant having increased fertilizer use efficiency, nitrogen use efficiency, yield, growth rate, biomass, vigor, oil content, seed yield, fiber yield, fiber quality, fiber length, photosynthetic capacity, and/or abiotic stress tolerance,
  • thereby selecting the plant having increased fertilizer use efficiency, nitrogen use efficiency, yield, growth rate, biomass, vigor, oil content, seed yield, fiber yield, fiber quality, fiber length, photosynthetic capacity, and/or abiotic stress tolerance as compared to the wild type plant of the same species which is grown under the same growth conditions.

According to an aspect of some embodiments of the invention, there is provided a method of selecting a transformed plant having increased fertilizer use efficiency, nitrogen use efficiency, yield, growth rate, biomass, vigor, oil content, seed yield, fiber yield, fiber quality, fiber length, photosynthetic capacity, and/or abiotic stress tolerance as compared to a wild type plant of the same species which is grown under the same growth conditions, the method comprising:

  • (a) providing plants transformed with an exogenous polynucleotide encoding a polypeptide comprising an amino acid sequence at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, e.g., 100% identical to the nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1-495, 795-2896 and 2897,
  • (b) selecting from said plants a plant having increased fertilizer use efficiency, nitrogen use efficiency, yield, growth rate, biomass, vigor, oil content, seed yield, fiber yield, fiber quality, fiber length, photosynthetic capacity, and/or abiotic stress tolerance,
  • thereby selecting the plant having increased fertilizer use efficiency, nitrogen use efficiency, yield, growth rate, biomass, vigor, oil content, seed yield, fiber yield, fiber quality, fiber length, photosynthetic capacity, and/or abiotic stress tolerance as compared to the wild type plant of the same species which is grown under the same growth conditions.

As used herein the term “polynucleotide” refers to a single or double stranded nucleic acid sequence which is isolated and provided in the form of an RNA sequence, a complementary polynucleotide sequence (cDNA), a genomic polynucleotide sequence and/or a composite polynucleotide sequences (e.g., a combination of the above).

The term “isolated” refers to at least partially separated from the natural environment e.g., from a plant cell.

As used herein the phrase “complementary polynucleotide sequence” refers to a sequence, which results from reverse transcription of messenger RNA using a reverse transcriptase or any other RNA dependent DNA polymerase. Such a sequence can be subsequently amplified in vivo or in vitro using a DNA dependent DNA polymerase.

As used herein the phrase “genomic polynucleotide sequence” refers to a sequence derived (isolated) from a chromosome and thus it represents a contiguous portion of a chromosome.

As used herein the phrase “composite polynucleotide sequence” refers to a sequence, which is at least partially complementary and at least partially genomic. A composite sequence can include some exonal sequences required to encode the polypeptide of the present invention, as well as some intronic sequences interposing therebetween. The intronic sequences can be of any source, including of other genes, and typically will include conserved splicing signal sequences. Such intronic sequences may further include cis acting expression regulatory elements.

Nucleic acid sequences encoding the polypeptides of the present invention may be optimized for expression. Examples of such sequence modifications include, but are not limited to, an altered G/C content to more closely approach that typically found in the plant species of interest, and the removal of codons atypically found in the plant species commonly referred to as codon optimization.

The phrase “codon optimization” refers to the selection of appropriate DNA nucleotides for use within a structural gene or fragment thereof that approaches codon usage within the plant of interest. Therefore, an optimized gene or nucleic acid sequence refers to a gene in which the nucleotide sequence of a native or naturally occurring gene has been modified in order to utilize statistically-preferred or statistically-favored codons within the plant. The nucleotide sequence typically is examined at the DNA level and the coding region optimized for expression in the plant species determined using any suitable procedure, for example as described in Sardana et al. (1996, Plant Cell Reports 15:677-681). In this method, the standard deviation of codon usage, a measure of codon usage bias, may be calculated by first finding the squared proportional deviation of usage of each codon of the native gene relative to that of highly expressed plant genes, followed by a calculation of the average squared deviation. The formula used is: 1 SDCU = n = 1 N [ ( Xn - Yn ) / Yn ] 2 / N, where Xn refers to the frequency of usage of codon n in highly expressed plant genes, where Yn to the frequency of usage of codon n in the gene of interest and N refers to the total number of codons in the gene of interest. A Table of codon usage from highly expressed genes of dicotyledonous plants is compiled using the data of Murray et al. (1989, Nuc Acids Res. 17:477-498).

One method of optimizing the nucleic acid sequence in accordance with the preferred codon usage for a particular plant cell type is based on the direct use, without performing any extra statistical calculations, of codon optimization Tables such as those provided on-line at the Codon Usage Database through the NIAS (National Institute of Agrobiological Sciences) DNA bank in Japan (kazusa (dot) or (dot) jp/codon/). The Codon Usage Database contains codon usage tables for a number of different species, with each codon usage Table having been statistically determined based on the data present in Genbank.

By using the above Tables to determine the most preferred or most favored codons for each amino acid in a particular species (for example, rice), a naturally-occurring nucleotide sequence encoding a protein of interest can be codon optimized for that particular plant species. This is effected by replacing codons that may have a low statistical incidence in the particular species genome with corresponding codons, in regard to an amino acid, that are statistically more favored. However, one or more less-favored codons may be selected to delete existing restriction sites, to create new ones at potentially useful junctions (5′ and 3′ ends to add signal peptide or termination cassettes, internal sites that might be used to cut and splice segments together to produce a correct full-length sequence), or to eliminate nucleotide sequences that may negatively effect mRNA stability or expression.

The naturally-occurring encoding nucleotide sequence may already, in advance of any modification, contain a number of codons that correspond to a statistically-favored codon in a particular plant species. Therefore, codon optimization of the native nucleotide sequence may comprise determining which codons, within the native nucleotide sequence, are not statistically-favored with regards to a particular plant, and modifying these codons in accordance with a codon usage table of the particular plant to produce a codon optimized derivative. A modified nucleotide sequence may be fully or partially optimized for plant codon usage provided that the protein encoded by the modified nucleotide sequence is produced at a level higher than the protein encoded by the corresponding naturally occurring or native gene. Construction of synthetic genes by altering the codon usage is described in for example PCT Pat. Application 93/07278.

According to some embodiments of the invention, the exogenous polynucleotide is a non-coding RNA.

As used herein the phrase ‘non-coding RNA” refers to an RNA molecule which does not encode an amino acid sequence (a polypeptide). Examples of such non-coding RNA molecules include, but are not limited to, an antisense RNA, a pre-miRNA (precursor of a microRNA), or a precursor of a Piwi-interacting RNA (piRNA).

Non-limiting examples of non-coding RNA polynucleotides are provided in SEQ ID NOs: 217, 218, 219, 287, 288, 495, 997, 1003, 1543 and 1703.

Thus, the invention encompasses nucleic acid sequences described hereinabove; fragments thereof, sequences hybridizable therewith, sequences homologous thereto, sequences encoding similar polypeptides with different codon usage, altered sequences characterized by mutations, such as deletion, insertion or substitution of one or more nucleotides, either naturally occurring or man induced, either randomly or in a targeted fashion.

According to some embodiments of the invention, the exogenous polynucleotide encodes a polypeptide comprising an amino acid sequence at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, e.g., 100% identical to the amino acid sequence of a naturally occurring plant orthologue of the polypeptide selected from the group consisting of SEQ ID NOs: 496-794, and 2898-4855.

According to some embodiments of the invention, the polypeptide comprising an amino acid sequence at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, e.g., 100% identical to the amino acid sequence of a naturally occurring plant orthologue of the polypeptide selected from the group consisting of SEQ ID NOs: 496-794, and 2898-4855.

The invention provides an isolated polynucleotide comprising a nucleic acid sequence at least about 80%, at least about 81%, at least about 82%, at least about 83 %, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, e.g., 100% identical to the polynucleotide selected from the group consisting of SEQ ID NOs: 1-495, 795-2896 and 2897.

According to some embodiments of the invention the nucleic acid sequence is capable of increasing nitrogen use efficiency, fertilizer use efficiency, yield, growth rate, vigor, biomass, oil content, fiber yield, fiber quality, fiber length, photosynthetic capacity, abiotic stress tolerance and/or water use efficiency of a plant.

According to some embodiments of the invention the isolated polynucleotide comprising the nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1-495, 795-2896 and 2897.

According to some embodiments of the invention the isolated polynucleotide is set forth by SEQ ID NO: 1-495, 795-2896 or 2897.

The invention provides an isolated polynucleotide comprising a nucleic acid sequence encoding a polypeptide which comprises an amino acid sequence at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or more say 100% homologous to the amino acid sequence selected from the group consisting of SEQ ID NOs: 496-794, 2898-3645, 3647-4854 and 4855.

According to some embodiments of the invention the amino acid sequence is capable of increasing nitrogen use efficiency, fertilizer use efficiency, yield, growth rate, vigor, biomass, oil content, fiber yield, fiber quality, fiber length, photosynthetic capacity, abiotic stress tolerance and/or water use efficiency of a plant.

The invention provides an isolated polynucleotide comprising a nucleic acid sequence encoding a polypeptide which comprises the amino acid sequence selected from the group consisting of SEQ ID NOs:496-794, 2898-4854 and 4855.

According to an aspect of some embodiments of the invention, there is provided a nucleic acid construct comprising the isolated polynucleotide of the invention, and a promoter for directing transcription of the nucleic acid sequence in a host cell.

The invention provides an isolated polypeptide comprising an amino acid sequence at least about 80%, at least about 81%, at least about 82%, at least about 83 %, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or more say 100% homologous to an amino acid sequence selected from the group consisting of SEQ ID NOs: 496-794, 2898-3645, 3647-4854 and 4855.

According to some embodiments of the invention, the polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NOs:496-794, 2898-4854 and 4855.

According to some embodiments of the invention, the polypeptide is set forth by SEQ ID NO: 496-794, 2898-4854 or 4855.

The invention also encompasses fragments of the above described polypeptides and polypeptides having mutations, such as deletions, insertions or substitutions of one or more amino acids, either naturally occurring or man induced, either randomly or in a targeted fashion.

The term ‘“plant” as used herein encompasses a whole plant, a grafted plant, ancestor(s) and progeny of the plants and plant parts, including seeds, shoots, stems, roots (including tubers), rootstock, scion, and plant cells, tissues and organs. The plant may be in any form including suspension cultures, embryos, meristematic regions, callus tissue, leaves, gametophytes, sporophytes, pollen, and microspores. Plants that are particularly useful in the methods of the invention include all plants which belong to the superfamily Viridiplantae, in particular monocotyledonous and dicotyledonous plants including a fodder or forage legume, ornamental plant, food crop, tree, or shrub selected from the list comprising Acacia spp., Acer spp., Actinidia spp., Aesculus spp., Agathis australis, Albizia amara, Alsophila tricolor, Andropogon spp., Arachis spp, Areca catechu, Astelia fragrans, Astragalus cicer, Baikiaea plurijuga, Betula spp., Brassica spp., Bruguiera gymnorrhiza, Burkea africana, Butea frondosa, Cadaba farinosa, Calliandra spp, Camellia sinensis, Canna indica, Capsicum spp., Cassia spp., Centroema pubescens, Chacoomeles spp., Cinnamomum cassia, Coffea arabica, Colophospermum mopane, Coronillia varia, Cotoneaster serotina, Crataegus spp., Cucumis spp., Cupressus spp., Cyathea dealbata, Cydonia oblonga, Cryptomeria japonica, Cymbopogon spp., Cynthea dealbata, Cydonia oblonga, Dalbergia monetaria, Davallia divaricata, Desmodium spp., Dicksonia squarosa, Dibeteropogon amplectens, Dioclea spp, Dolichos spp., Dorycnium rectum, Echinochloa pyramidalis, Ehraffia spp., Eleusine coracana, Eragrestis spp., Erythrina spp., Eucalypfus spp., Euclea schimperi, Eulalia vi/losa, Pagopyrum spp., Feijoa sellowlana, Fragaria spp., Flemingia spp, Freycinetia banksli, Geranium thunbergii, GinAgo biloba, Glycine javanica, Gliricidia spp, Gossypium hirsutum, Grevillea spp., Guibourtia coleosperma, Hedysarum spp., Hemaffhia altissima, Heteropogon contoffus, Hordeum vulgare, Hyparrhenia rufa, Hypericum erectum, Hypeffhelia dissolute, Indigo incamata, Iris spp., Leptarrhena pyrolifolia, Lespediza spp., Lettuca spp., Leucaena leucocephala, Loudetia simplex, Lotonus bainesli, Lotus spp., Macrotyloma axillare, Malus spp., Manihot esculenta, Medicago saliva, Metasequoia glyptostroboides, Musa sapientum, Nicotianum spp., Onobrychis spp., Omithopus spp., Oryza spp., Peltophorum africanum, Pennisetum spp., Persea gratissima, Petunia spp., Phaseolus spp., Phoenix canariensis, Phormium cookianum, Photinia spp., Picea glauca, Pinus spp., Pisum sativam, Podocarpus totara, Pogonarthria fleckii, Pogonaffhria squarrosa, Populus spp., Prosopis cineraria, Pseudotsuga menziesii, Pterolobium stellatum, Pyrus communis, Quercus spp., Rhaphiolepsis umbellata, Rhopalostylis sapida, Rhus natalensis, Ribes grossularia, Ribes spp., Robinia pseudoacacia, Rosa spp., Rubus spp., Salix spp., Schyzachyrium sanguineum, Sciadopitys vefficillata, Sequoia sempervirens, Sequoiadendron giganteum, Sorghum bicolor, Spinacia spp., Sporobolus fimbriatus, Stiburus alopecuroides, Stylosanthos humilis, Tadehagi spp, Taxodium distichum, Themeda triandra, Trifolium spp., Triticum spp., Tsuga heterophylla, Vaccinium spp., Vicia spp., Vitis vinifera, Watsonia pyramidata, Zantedeschia aethiopica, Zea mays, amaranth, artichoke, asparagus, broccoli, Brussels sprouts, cabbage, canola, carrot, cauliflower, celery, collard greens, flax, kale, lentil, oilseed rape, okra, onion, potato, rice, soybean, straw, sugar beet, sugar cane, sunflower, tomato, squash tea, maize, wheat, barley, rye, oat, peanut, pea, lentil and alfalfa, cotton, rapeseed, canola, pepper, sunflower, tobacco, eggplant, eucalyptus, a tree, an ornamental plant, a perennial grass and a forage crop. Alternatively algae and other non-Viridiplantae can be used for the methods of the present invention.

According to some embodiments of the invention, the plant used by the method of the invention is a crop plant such as rice, maize, wheat, barley, peanut, potato, sesame, olive tree, palm oil, banana, soybean, sunflower, canola, sugarcane, alfalfa, millet, leguminosae (bean, pea), flax, lupinus, rapeseed, tobacco, poplar and cotton.

According to some embodiments of the invention the plant is a dicotyledonous plant.

According to some embodiments of the invention the plant is a monocotyledonous plant.

According to some embodiments of the invention, there is provided a plant cell exogenously expressing the polynucleotide of some embodiments of the invention, the nucleic acid construct of some embodiments of the invention and/or the polypeptide of some embodiments of the invention.

According to some embodiments of the invention, expressing the exogenous polynucleotide of the invention within the plant is effected by transforming one or more cells of the plant with the exogenous polynucleotide, followed by generating a mature plant from the transformed cells and cultivating the mature plant under conditions suitable for expressing the exogenous polynucleotide within the mature plant.

According to some embodiments of the invention, the transformation is effected by introducing to the plant cell a nucleic acid construct which includes the exogenous polynucleotide of some embodiments of the invention and at least one promoter for directing transcription of the exogenous polynucleotide in a host cell (a plant cell). Further details of suitable transformation approaches are provided hereinbelow.

As mentioned, the nucleic acid construct according to some embodiments of the invention comprises a promoter sequence and the isolated polynucleotide of some embodiments of the invention.

According to some embodiments of the invention, the isolated polynucleotide is operably linked to the promoter sequence.

A coding nucleic acid sequence is “operably linked” to a regulatory sequence (e.g., promoter) if the regulatory sequence is capable of exerting a regulatory effect on the coding sequence linked thereto.

As used herein, the term “promoter” refers to a region of DNA which lies upstream of the transcriptional initiation site of a gene to which RNA polymerase binds to initiate transcription of RNA. The promoter controls where (e.g., which portion of a plant) and/or when (e.g., at which stage or condition in the lifetime of an organism) the gene is expressed.

According to some embodiments of the invention, the promoter is heterologous to the isolated polynucleotide and/or to the host cell.

As used herein the phrase “heterologous promoter” refers to a promoter from a different species or from the same species but from a different gene locus as of the isolated polynucleotide sequence.

According to some embodiments of the invention, the isolated polynucleotide is heterologous to the plant cell.

Any suitable promoter sequence can be used by the nucleic acid construct of the present invention. Preferably the promoter is a constitutive promoter, a tissue-specific, or an abiotic stress-inducible promoter.

According to some embodiments of the invention, the promoter is a plant promoter, which is suitable for expression of the exogenous polynucleotide in a plant cell.

Suitable promoters for expression in wheat include, but are not limited to, Wheat SPA promoter (SEQ ID NO: 4856; Albanietal, Plant Cell, 9: 171- 184, 1997, which is fully incorporated herein by reference), wheat LMW (SEQ ID NO: 4857 (longer LMW promoter), and SEQ ID NO: 4858 (LMW promoter) and HMW glutenin-1 (SEQ ID NO: 4859 (Wheat HMW glutenin-1 longer promoter); and SEQ ID NO: 4860 (Wheat HMW glutenin-1 Promoter); Thomas and Flavell, The Plant Cell 2:1171-1180; Furtado et al., 2009 Plant Biotechnology Journal 7:240-253, each of which is fully incorporated herein by reference), wheat alpha, beta and gamma gliadins [e.g., SEQ ID NO: 4861 (wheat alpha gliadin, B genome, promoter); SEQ ID NO: 4862 (wheat gamma gliadin promoter); EMBO 3:1409-15, 1984, which is fully incorporated herein by reference], wheat TdPR60 [SEQ ID NO: 4863 (wheat TdPR60 longer promoter) or SEQ ID NO:4864 (wheat TdPR60 promoter); Kovalchuk et al., Plant Mol Biol 71:81-98, 2009, which is fully incorporated herein by reference], maize Ub1 Promoter [cultivar Nongda 105 (SEQ ID NO: 4865); GenBank: DQ141598.1; Taylor et al., Plant Cell Rep 1993 12: 491-495, which is fully incorporated herein by reference; and cultivar B73 (SEQ ID NO:4866); Christensen, AH, et al. Plant Mol. Biol. 18 (4), 675-689 (1992), which is fully incorporated herein by reference]; rice actin 1 (SEQ ID NO: 4867; Mc Elroy et al. 1990, The Plant Cell, Vol. 2, 163-171, which is fully incorporated herein by reference), rice GOS2 [SEQ ID NO: 4868 (rice GOS2 longer promoter) and SEQ ID NO: 4869 (rice GOS2 Promoter); De Pater et al. Plant J. 1992; 2: 837-44, which is fully incorporated herein by reference], arabidopsis Phol [SEQ ID NO: 4870 (arabidopsis Phol Promoter); Hamburger et al., Plant Cell. 2002; 14: 889-902, which is fully incorporated herein by reference], ExpansinB promoters, e.g., rice ExpB5 [SEQ ID NO:4871 (rice ExpB5 longer promoter) and SEQ ID NO: 4872 (rice ExpB5 promoter)] and Barley ExpB1 [SEQ ID NO: 4873 (barley ExpB1 Promoter), Won et al. Mol Cells. 2010; 30:369-76, which is fully incorporated herein by reference], barley SS2 (sucrose synthase 2) [(SEQ ID NO: 4874), Guerin and Carbonero, Plant Physiology May 1997 vol. 114 no. 1 55-62, which is fully incorporated herein by reference], and rice PG5a [SEQ ID NO:4875, US 7,700,835, Nakase et al., Plant Mol Biol. 32:621-30, 1996, each of which is fully incorporated herein by reference].

Suitable constitutive promoters include, for example, CaMV 35S promoter [SEQ ID NO: 4876 (CaMV 35S (QFNC) Promoter); SEQ ID NO: 4877 (PJJ 35S from Brachypodium); SEQ ID NO: 4878 (CaMV 35S (OLD) Promoter) (Odell et al., Nature 313:810-812, 1985)], Arabidopsis At6669 promoter (SEQ ID NO: 4879 (Arabidopsis At6669 (OLD) Promoter); see PCT Publication No. WO04081173A2 or the new At6669 promoter (SEQ ID NO: 4880 (Arabidopsis At6669 (NEW) Promoter)); maize Ub1 Promoter [cultivar Nongda 105 (SEQ ID NO:4865); GenBank: DQ141598.1; Taylor et al., Plant Cell Rep 1993 12: 491-495, which is fully incorporated herein by reference; and cultivar B73 (SEQ ID NO:4866); Christensen, AH, et al. Plant Mol. Biol. 18 (4), 675-689 (1992), which is fully incorporated herein by reference]; rice actin 1 (SEQ ID NO: 4867, McElroy et al., Plant Cell 2:163-171, 1990); pEMU (Last et al., Theor. Appl. Genet. 81:581-588, 1991); CaMV 19S (Nilsson et al., Physiol. Plant 100:456-462, 1997); rice GOS2 [SEQ ID NO: 4868 (rice GOS2 longer Promoter) and SEQ ID NO: 4869 (rice GOS2 Promoter), de Pater et al, Plant J Nov;2(6):837-44, 1992]; RBCS promoter (SEQ ID NO: 4881); Rice cyclophilin (Bucholz et al, Plant Mol Biol. 25(5):837-43, 1994); Maize H3 histone (Lepetit et al, Mol. Gen. Genet. 231: 276-285, 1992); Actin 2 (An et al, Plant J. 10(1);107-121, 1996) and Synthetic Super MAS (Ni et al., The Plant Journal 7: 661-76, 1995). Other constitutive promoters include those in U.S. Pat. Nos. 5,659,026, 5,608,149; 5,608,144; 5,604,121; 5,569,597: 5,466,785; 5,399,680; 5,268,463; and 5,608,142.

Suitable tissue-specific promoters include, but not limited to, leaf-specific promoters [e.g., AT5G06690 (Thioredoxin) (high expression, SEQ ID NO: 4882), AT5G61520 (AtSTP3) (low expression, SEQ ID NO: 4883) described in Buttner et al 2000 Plant, Cell and Environment 23, 175-184, or the promoters described in Yamamoto et al., Plant J. 12:255-265, 1997; Kwon et al., Plant Physiol. 105:357-67, 1994; Yamamoto et al., Plant Cell Physiol. 35:773-778, 1994; Gotor et al., Plant J. 3:509-18, 1993; Orozco et al., Plant Mol. Biol. 23:1129-1138, 1993; and Matsuoka et al., Proc. Natl. Acad. Sci. USA 90:9586-9590, 1993; as well as Arabidopsis STP3 (AT5G61520) promoter (Buttner et al., Plant, Cell and Environment 23:175-184, 2000)], seed-preferred promoters [e.g., Napin (originated from Brassica napus which is characterized by a seed specific promoter activity; Stuitje A. R. et. al. Plant Biotechnology Journal 1 (4): 301-309; SEQ ID NO: 4884 (Brassica napus NAPIN Promoter) from seed specific genes (Simon, et al., Plant Mol. Biol. 5. 191, 1985; Scofield, et al., J. Biol. Chem. 262: 12202, 1987; Baszczynski, et al., Plant Mol. Biol. 14: 633, 1990), rice PG5a (SEQ ID NO: 4875; US 7,700,835), early seed development Arabidopsis BAN (AT1G61720) (SEQ ID NO: 4885, US 2009/0031450 A1), late seed development Arabidopsis ABI3 (AT3G24650) (SEQ ID NO: 4886 (Arabidopsis ABI3 (AT3G24650) longer Promoter) or 4887 (Arabidopsis ABI3 (AT3G24650) Promoter)) (Ng et al., Plant Molecular Biology 54: 25-38, 2004), Brazil Nut albumin (Pearson′ et al., Plant Mol. Biol. 18: 235- 245, 1992), legumin (Ellis, et al. Plant Mol. Biol. 10: 203-214, 1988), Glutelin (rice) (Takaiwa, et al., Mol. Gen. Genet. 208: 15-22, 1986; Takaiwa, et al., FEBS Letts. 221: 43-47, 1987), Zein (Matzke et al Plant Mol Biol, 143).323-32 1990), napA (Stalberg, et al, Planta 199: 515-519, 1996), Wheat SPA (SEQ ID NO:4856; Albanietal, Plant Cell, 9: 171- 184, 1997), sunflower oleosin (Cummins, et al., Plant Mol. Biol. 19: 873- 876, 1992)], endosperm specific promoters [e.g., wheat LMW (SEQ ID NO: 4857 (Wheat LMW Longer Promoter), and SEQ ID NO: 4858 (Wheat LMW Promoter) and HMW glutenin-1 [(SEQ ID NO: 4859 (Wheat HMW glutenin-1 longer Promoter)); and SEQ ID NO: 4860 (Wheat HMW glutenin-1 Promoter), Thomas and Flavell, The Plant Cell 2:1171-1180, 1990; Mol Gen Genet 216:81-90, 1989; NAR 17:461-2), wheat alpha, beta and gamma gliadins (SEQ ID NO: 4861 (wheat alpha gliadin (B genome) promoter); SEQ ID NO: 4862 (wheat gamma gliadin promoter); EMBO 3:1409-15, 1984), Barley ltrl promoter, barley B1, C, D hordein (Theor Appl Gen 98:1253-62, 1999; Plant J 4:343-55, 1993; Mol Gen Genet 250:750- 60, 1996), Barley DOF (Mena et al, The Plant Journal, 116(1): 53- 62, 1998), Biz2 (EP99106056.7), Barley SS2 (SEQ ID NO: 4874 (Barley SS2 Promoter); Guerin and Carbonero Plant Physiology 114: 1 55-62, 1997), wheat Tarp60 (Kovalchuk et al., Plant Mol Biol 71:81-98, 2009), barley D-hordein (D-Hor) and B-hordein (B-Hor) (Agnelo Furtado, Robert J. Henry and Alessandro Pellegrineschi (2009)], Synthetic promoter (Vicente-Carbajosa et al., Plant J. 13: 629-640, 1998), rice prolamin NRP33, rice -globulin Glb-1 (Wu et al, Plant Cell Physiology 39(8) 885- 889, 1998), rice alpha-globulin REB/OHP-1 (Nakase et al. Plant Mol. Biol. 33: 513-S22, 1997), rice ADP-glucose PP (Trans Res 6:157-68, 1997), maize ESR gene family (Plant J 12:235-46, 1997), sorgum gamma- kafirin (PMB 32:1029-35, 1996)], embryo specific promoters [e.g., rice OSH1 (Sato et al, Proc. Natl. Acad. Sci. USA, 93: 8117-8122), KNOX (Postma-Haarsma et al, Plant Mol. Biol. 39:257-71, 1999), rice oleosin (Wu et at, J. Biochem., 123:386, 1998)], and flower-specific promoters [e.g., AtPRP4, chalene synthase (chsA) (Van der Meer, et al., Plant Mol. Biol. 15, 95-109, 1990), LAT52 (Twell et al Mol. Gen Genet. 217:240-245; 1989), Arabidopsis apetala- 3 (Tilly et al., Development. 125:1647-57, 1998), Arabidopsis APETALA 1 (AT1G69120, AP1) (SEQ ID NO: 4888 (Arabidopsis (AT1G69120) APETALA 1)) (Hempel et al., Development 124:3845-3853, 1997)], and root promoters [e.g., the ROOTP promoter [SEQ ID NO: 4889]; rice ExpB5 (SEQ ID NO:4872 (rice ExpB5 Promoter); or SEQ ID NO: 4871 (rice ExpB5 longer Promoter)) and barley ExpB1 promoters (SEQ ID NO:4873) (Won et al. Mol. Cells 30: 369-376, 2010); arabidopsis ATTPS-CIN (AT3G25820) promoter (SEQ ID NO: 4890; Chen et al., Plant Phys 135:1956-66, 2004); arabidopsis Phol promoter (SEQ ID NO: 4870, Hamburger et al., Plant Cell. 14: 889-902, 2002), which is also slightly induced by stress].

Suitable abiotic stress-inducible promoters include, but not limited to, salt-inducible promoters such as RD29A (Yamaguchi-Shinozalei et al., Mol. Gen. Genet. 236:331-340, 1993); drought-inducible promoters such as maize rab17 gene promoter (Pla et. al., Plant Mol. Biol. 21:259-266, 1993), maize rab28 gene promoter (Busk et. al., Plant J. 11:1285-1295, 1997) and maize Ivr2 gene promoter (Pelleschi et. al., Plant Mol. Biol. 39:373-380, 1999); heat-inducible promoters such as heat tomato hsp80-promoter from tomato (U.S. Pat. No. 5,187,267).

The nucleic acid construct of some embodiments of the invention can further include an appropriate selectable marker and/or an origin of replication. According to some embodiments of the invention, the nucleic acid construct utilized is a shuttle vector, which can propagate both in E. coli (wherein the construct comprises an appropriate selectable marker and origin of replication) and be compatible with propagation in cells. The construct according to the present invention can be, for example, a plasmid, a bacmid, a phagemid, a cosmid, a phage, a virus or an artificial chromosome.

The nucleic acid construct of some embodiments of the invention can be utilized to stably or transiently transform plant cells. In stable transformation, the exogenous polynucleotide is integrated into the plant genome and as such it represents a stable and inherited trait. In transient transformation, the exogenous polynucleotide is expressed by the cell transformed but it is not integrated into the genome and as such it represents a transient trait.

There are various methods of introducing foreign genes into both monocotyledonous and dicotyledonous plants (Potrykus, I., Annu. Rev. Plant. Physiol., Plant. Mol. Biol. (1991) 42:205-225; Shimamoto et al., Nature (1989) 338:274-276).

The principle methods of causing stable integration of exogenous DNA into plant genomic DNA include two main approaches:

  • (i) Agrobacterium-mediated gene transfer: Klee et al. (1987) Annu. Rev. Plant Physiol. 38:467-486; Klee and Rogers in Cell Culture and Somatic Cell Genetics of Plants, Vol. 6, Molecular Biology of Plant Nuclear Genes, eds. Schell, J., and Vasil, L. K., Academic Publishers, San Diego, Calif. (1989) p. 2-25; Gatenby, in Plant Biotechnology, eds. Kung, S. and Arntzen, C. J., Butterworth Publishers, Boston, Mass. (1989) p. 93-112.
  • (ii) Direct DNA uptake: Paszkowski et al., in Cell Culture and Somatic Cell Genetics of Plants, Vol. 6, Molecular Biology of Plant Nuclear Genes eds. Schell, J., and Vasil, L. K., Academic Publishers, San Diego, Calif. (1989) p. 52-68; including methods for direct uptake of DNA into protoplasts, Toriyama, K. et al. (1988) Bio/Technology 6:1072-1074. DNA uptake induced by brief electric shock of plant cells: Zhang et al. Plant Cell Rep. (1988) 7:379-384. Fromm et al. Nature (1986) 319:791-793. DNA injection into plant cells or tissues by particle bombardment, Klein et al. Bio/Technology (1988) 6:559-563; McCabe et al. Bio/Technology (1988) 6:923-926; Sanford, Physiol. Plant. (1990) 79:206-209; by the use of micropipette systems: Neuhaus et al., Theor. Appl. Genet. (1987) 75:30-36; Neuhaus and Spangenberg, Physiol. Plant. (1990) 79:213-217; glass fibers or silicon carbide whisker transformation of cell cultures, embryos or callus tissue, U.S. Pat. No. 5,464,765 or by the direct incubation of DNA with germinating pollen, DeWet et al. in Experimental Manipulation of Ovule Tissue, eds. Chapman, G. P. and Mantell, S. H. and Daniels, W. Longman, London, (1985) p. 197-209; and Ohta, Proc. Natl. Acad. Sci. USA (1986) 83:715-719.

The Agrobacterium system includes the use of plasmid vectors that contain defined DNA segments that integrate into the plant genomic DNA. Methods of inoculation of the plant tissue vary depending upon the plant species and the Agrobacterium delivery system. A widely used approach is the leaf disc procedure which can be performed with any tissue explant that provides a good source for initiation of whole plant differentiation. See, e.g., Horsch et al. in Plant Molecular Biology Manual A5, Kluwer Academic Publishers, Dordrecht (1988) p. 1-9. A supplementary approach employs the Agrobacterium delivery system in combination with vacuum infiltration. The Agrobacterium system is especially viable in the creation of transgenic dicotyledonous plants.

There are various methods of direct DNA transfer into plant cells. In electroporation, the protoplasts are briefly exposed to a strong electric field. In microinjection, the DNA is mechanically injected directly into the cells using very small micropipettes. In microparticle bombardment, the DNA is adsorbed on microprojectiles such as magnesium sulfate crystals or tungsten particles, and the microprojectiles are physically accelerated into cells or plant tissues.

Following stable transformation plant propagation is exercised. The most common method of plant propagation is by seed. Regeneration by seed propagation, however, has the deficiency that due to heterozygosity there is a lack of uniformity in the crop, since seeds are produced by plants according to the genetic variances governed by Mendelian rules. Basically, each seed is genetically different and each will grow with its own specific traits. Therefore, it is preferred that the transformed plant be produced such that the regenerated plant has the identical traits and characteristics of the parent transgenic plant. Therefore, it is preferred that the transformed plant be regenerated by micropropagation which provides a rapid, consistent reproduction of the transformed plants.

Micropropagation is a process of growing new generation plants from a single piece of tissue that has been excised from a selected parent plant or cultivar. This process permits the mass reproduction of plants having the preferred tissue expressing the fusion protein. The new generation plants which are produced are genetically identical to, and have all of the characteristics of, the original plant. Micropropagation allows mass production of quality plant material in a short period of time and offers a rapid multiplication of selected cultivars in the preservation of the characteristics of the original transgenic or transformed plant. The advantages of cloning plants are the speed of plant multiplication and the quality and uniformity of plants produced.

Micropropagation is a multi-stage procedure that requires alteration of culture medium or growth conditions between stages. Thus, the micropropagation process involves four basic stages: Stage one, initial tissue culturing; stage two, tissue culture multiplication; stage three, differentiation and plant formation; and stage four, greenhouse culturing and hardening. During stage one, initial tissue culturing, the tissue culture is established and certified contaminant-free. During stage two, the initial tissue culture is multiplied until a sufficient number of tissue samples are produced from the seedlings to meet production goals. During stage three, the tissue samples grown in stage two are divided and grown into individual plantlets. At stage four, the transformed plantlets are transferred to a greenhouse for hardening where the plants’ tolerance to light is gradually increased so that it can be grown in the natural environment.

According to some embodiments of the invention, the transgenic plants are generated by transient transformation of leaf cells, meristematic cells or the whole plant.

Transient transformation can be effected by any of the direct DNA transfer methods described above or by viral infection using modified plant viruses.

Viruses that have been shown to be useful for the transformation of plant hosts include CaMV, Tobacco mosaic virus (TMV), brome mosaic virus (BMV) and Bean Common Mosaic Virus (BV or BCMV). Transformation of plants using plant viruses is described in U.S. Pat. No. 4,855,237 (bean golden mosaic virus; BGV), EP-A 67,553 (TMV), Japanese Published Application No. 63-14693 (TMV), EPA 194,809 (BV), EPA 278,667 (BV); and Gluzman, Y. et al., Communications in Molecular Biology: Viral Vectors, Cold Spring Harbor Laboratory, New York, pp. 172-189 (1988). Pseudovirus particles for use in expressing foreign DNA in many hosts, including plants are described in WO 87/06261.

According to some embodiments of the invention, the virus used for transient transformations is avirulent and thus is incapable of causing severe symptoms such as reduced growth rate, mosaic, ring spots, leaf roll, yellowing, streaking, pox formation, tumor formation and pitting. A suitable avirulent virus may be a naturally occurring avirulent virus or an artificially attenuated virus. Virus attenuation may be effected by using methods well known in the art including, but not limited to, sub-lethal heating, chemical treatment or by directed mutagenesis techniques such as described, for example, by Kurihara and Watanabe (Molecular Plant Pathology 4:259-269, 2003), Gal-on et al. (1992), Atreya et al. (1992) and Huet et al. (1994).

Suitable virus strains can be obtained from available sources such as, for example, the American Type culture Collection (ATCC) or by isolation from infected plants. Isolation of viruses from infected plant tissues can be effected by techniques well known in the art such as described, for example by Foster and Taylor, Eds. “Plant Virology Protocols: From Virus Isolation to Transgenic Resistance (Methods in Molecular Biology (Humana Pr), Vol 81)”, Humana Press, 1998. Briefly, tissues of an infected plant believed to contain a high concentration of a suitable virus, preferably young leaves and flower petals, are ground in a buffer solution (e.g., phosphate buffer solution) to produce a virus infected sap which can be used in subsequent inoculations.

Construction of plant RNA viruses for the introduction and expression of non-viral exogenous polynucleotide sequences in plants is demonstrated by the above references as well as by Dawson, W. O. et al., Virology (1989) 172:285-292; Takamatsu et al. EMBO J. (1987) 6:307-311; French et al. Science (1986) 231:1294-1297; Takamatsu et al. FEBS Letters (1990) 269:73-76; and U.S. Pat. No. 5,316,931.

When the virus is a DNA virus, suitable modifications can be made to the virus itself. Alternatively, the virus can first be cloned into a bacterial plasmid for ease of constructing the desired viral vector with the foreign DNA. The virus can then be excised from the plasmid. If the virus is a DNA virus, a bacterial origin of replication can be attached to the viral DNA, which is then replicated by the bacteria. Transcription and translation of this DNA will produce the coat protein which will encapsidate the viral DNA. If the virus is an RNA virus, the virus is generally cloned as a cDNA and inserted into a plasmid. The plasmid is then used to make all of the constructions. The RNA virus is then produced by transcribing the viral sequence of the plasmid and translation of the viral genes to produce the coat protein(s) which encapsidate the viral RNA.

In one embodiment, a plant viral polynucleotide is provided in which the native coat protein coding sequence has been deleted from a viral polynucleotide, a non-native plant viral coat protein coding sequence and a non-native promoter, preferably the subgenomic promoter of the non-native coat protein coding sequence, capable of expression in the plant host, packaging of the recombinant plant viral polynucleotide, and ensuring a systemic infection of the host by the recombinant plant viral polynucleotide, has been inserted. Alternatively, the coat protein gene may be inactivated by insertion of the non-native polynucleotide sequence within it, such that a protein is produced. The recombinant plant viral polynucleotide may contain one or more additional non-native subgenomic promoters. Each non-native subgenomic promoter is capable of transcribing or expressing adjacent genes or polynucleotide sequences in the plant host and incapable of recombination with each other and with native subgenomic promoters. Non-native (foreign) polynucleotide sequences may be inserted adjacent the native plant viral subgenomic promoter or the native and a non-native plant viral subgenomic promoters if more than one polynucleotide sequence is included. The non-native polynucleotide sequences are transcribed or expressed in the host plant under control of the subgenomic promoter to produce the desired products.

In a second embodiment, a recombinant plant viral polynucleotide is provided as in the first embodiment except that the native coat protein coding sequence is placed adjacent one of the non-native coat protein subgenomic promoters instead of a non-native coat protein coding sequence.

In a third embodiment, a recombinant plant viral polynucleotide is provided in which the native coat protein gene is adjacent its subgenomic promoter and one or more non-native subgenomic promoters have been inserted into the viral polynucleotide. The inserted non-native subgenomic promoters are capable of transcribing or expressing adjacent genes in a plant host and are incapable of recombination with each other and with native subgenomic promoters. Non-native polynucleotide sequences may be inserted adjacent the non-native subgenomic plant viral promoters such that the sequences are transcribed or expressed in the host plant under control of the subgenomic promoters to produce the desired product.

In a fourth embodiment, a recombinant plant viral polynucleotide is provided as in the third embodiment except that the native coat protein coding sequence is replaced by a non-native coat protein coding sequence.

The viral vectors are encapsidated by the coat proteins encoded by the recombinant plant viral polynucleotide to produce a recombinant plant virus. The recombinant plant viral polynucleotide or recombinant plant virus is used to infect appropriate host plants. The recombinant plant viral polynucleotide is capable of replication in the host, systemic spread in the host, and transcription or expression of foreign gene(s) (exogenous polynucleotide) in the host to produce the desired protein.

Techniques for inoculation of viruses to plants may be found in Foster and Taylor, eds. “Plant Virology Protocols: From Virus Isolation to Transgenic Resistance (Methods in Molecular Biology (Humana Pr), Vol 81)”, Humana Press, 1998; Maramorosh and Koprowski, eds. “Methods in Virology” 7 vols, Academic Press, New York 1967-1984; Hill, S.A. “Methods in Plant Virology”, Blackwell, Oxford, 1984; Walkey, D.G.A. “Applied Plant Virology”, Wiley, New York, 1985; and Kado and Agrawa, eds. “Principles and Techniques in Plant Virology”, Van Nostrand-Reinhold, New York.

In addition to the above, the polynucleotide of the present invention can also be introduced into a chloroplast genome thereby enabling chloroplast expression.

A technique for introducing exogenous polynucleotide sequences to the genome of the chloroplasts is known. This technique involves the following procedures. First, plant cells are chemically treated so as to reduce the number of chloroplasts per cell to about one. Then, the exogenous polynucleotide is introduced via particle bombardment into the cells with the aim of introducing at least one exogenous polynucleotide molecule into the chloroplasts. The exogenous polynucleotides selected such that it is integratable into the chloroplast’s genome via homologous recombination which is readily effected by enzymes inherent to the chloroplast. To this end, the exogenous polynucleotide includes, in addition to a gene of interest, at least one polynucleotide stretch which is derived from the chloroplast’s genome. In addition, the exogenous polynucleotide includes a selectable marker, which serves by sequential selection procedures to ascertain that all or substantially all of the copies of the chloroplast genomes following such selection will include the exogenous polynucleotide. Further details relating to this technique are found in U.S. Pat. Nos. 4,945,050; and 5,693,507 which are incorporated herein by reference. A polypeptide can thus be produced by the protein expression system of the chloroplast and become integrated into the chloroplast’s inner membrane.

According to some embodiments, there is provided a method of improving nitrogen use efficiency, fertilizer use efficiency, yield, growth rate, biomass, vigor, oil content, seed yield, fiber yield, fiber quality, fiber length, photosynthetic capacity, and/or abiotic stress tolerance of a grafted plant, the method comprising providing a scion that does not transgenically express a polynucleotide encoding a polypeptide at least 80% homologous to the amino acid sequence selected from the group consisting of SEQ ID NOs: 496-794, and 2898-4855 and a plant rootstock that transgenically expresses a polynucleotide encoding a polypeptide at least about 80%, at least about 81 %, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, e.g., 100% homologous (or identical) to the amino acid sequence selected from the group consisting of SEQ ID NOs: 496-794, 2898-3645, 3647-4854 and 4855 (e.g., in a constitutive or an abiotic stress responsive manner), thereby improving the nitrogen use efficiency, fertilizer use efficiency, yield, growth rate, biomass, vigor, oil content, seed yield, fiber yield, fiber quality, fiber length, photosynthetic capacity, and/or abiotic stress tolerance of the grafted plant.

In some embodiments, the plant scion is non-transgenic.

Several embodiments relate to a grafted plant exhibiting improved nitrogen use efficiency, fertilizer use efficiency, yield, growth rate, biomass, vigor, oil content, seed yield, fiber yield, fiber quality, fiber length, photosynthetic capacity, and/or abiotic stress tolerance, comprising a scion that does not transgenically express a polynucleotide encoding a polypeptide at least 80% homologous to the amino acid sequence selected from the group consisting of SEQ ID NOs: 496-794 and 2898-4855 and a plant rootstock that transgenically expresses a polynucleotide encoding a polypeptide at least at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, e.g., 100% homologous (or identical) to the amino acid sequence selected from the group consisting of SEQ ID NOs: 496-794, 2898-3645, 3647-4854 and 4855.

In some embodiments, the plant root stock transgenically expresses a polynucleotide encoding a polypeptide at least at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, e.g., 100% homologous (or identical) to the amino acid sequence selected from the group consisting of SEQ ID NOs: 496-794, 2898-3645, 3647-4854 and 4855 in a stress responsive manner.

According to some embodiments of the invention, the plant root stock transgenically expresses a polynucleotide encoding a polypeptide selected from the group consisting of SEQ ID NOs: 496-794, 2898-4854 and 4855.

According to some embodiments of the invention, the plant root stock transgenically expresses a polynucleotide comprising a nucleic acid sequence at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, e.g., 100% identical to the polynucleotide selected from the group consisting of SEQ ID NOs: 1-495, and 795-2897.

According to some embodiments of the invention, the plant root stock transgenically expresses a polynucleotide selected from the group consisting of SEQ ID NOs: 1-495, and 795-2897.

Since processes which increase nitrogen use efficiency, fertilizer use efficiency, oil content, yield, seed yield, fiber yield, fiber quality, fiber length, photosynthetic capacity, growth rate, biomass, vigor and/or abiotic stress tolerance of a plant can involve multiple genes acting additively or in synergy (see, for example, in Quesda et al., Plant Physiol. 130:951-063, 2002), the present invention also envisages expressing a plurality of exogenous polynucleotides in a single host plant to thereby achieve superior effect on nitrogen use efficiency, fertilizer use efficiency, oil content, yield, seed yield, fiber yield, fiber quality, fiber length, photosynthetic capacity, growth rate, biomass, vigor and/or abiotic stress tolerance.

Expressing a plurality of exogenous polynucleotides in a single host plant can be effected by co-introducing multiple nucleic acid constructs, each including a different exogenous polynucleotide, into a single plant cell. The transformed cell can then be regenerated into a mature plant using the methods described hereinabove.

Alternatively, expressing a plurality of exogenous polynucleotides in a single host plant can be effected by co-introducing into a single plant-cell a single nucleic-acid construct including a plurality of different exogenous polynucleotides. Such a construct can be designed with a single promoter sequence which can transcribe a polycistronic messenger RNA including all the different exogenous polynucleotide sequences. To enable co-translation of the different polypeptides encoded by the polycistronic messenger RNA, the polynucleotide sequences can be inter-linked via an internal ribosome entry site (IRES) sequence which facilitates translation of polynucleotide sequences positioned downstream of the IRES sequence. In this case, a transcribed polycistronic RNA molecule encoding the different polypeptides described above will be translated from both the capped 5′ end and the two internal IRES sequences of the polycistronic RNA molecule to thereby produce in the cell all different polypeptides. Alternatively, the construct can include several promoter sequences each linked to a different exogenous polynucleotide sequence.

The plant cell transformed with the construct including a plurality of different exogenous polynucleotides, can be regenerated into a mature plant, using the methods described hereinabove.

Alternatively, expressing a plurality of exogenous polynucleotides in a single host plant can be effected by introducing different nucleic acid constructs, including different exogenous polynucleotides, into a plurality of plants. The regenerated transformed plants can then be cross-bred and resultant progeny selected for superior abiotic stress tolerance, water use efficiency, fertilizer use efficiency, growth, biomass, yield and/or vigor traits, using conventional plant breeding techniques.

According to some embodiments of the invention, the method further comprising growing the plant expressing the exogenous polynucleotide under the abiotic stress.

Non-limiting examples of abiotic stress conditions include, salinity, osmotic stress, drought, water deprivation, excess of water (e.g., flood, waterlogging), etiolation, low temperature (e.g., cold stress), high temperature, heavy metal toxicity, anaerobiosis, nutrient deficiency (e.g., nitrogen deficiency or nitrogen limitation), nutrient excess, atmospheric pollution and UV irradiation.

According to some embodiments of the invention, the method further comprising growing the plant expressing the exogenous polynucleotide under fertilizer limiting conditions (e.g., nitrogen-limiting conditions). Non-limiting examples include growing the plant on soils with low nitrogen content (40-50% Nitrogen of the content present under normal or optimal conditions), or even under sever nitrogen deficiency (0-10% Nitrogen of the content present under normal or optimal conditions).

Thus, the invention encompasses plants exogenously expressing the polynucleotide(s), the nucleic acid constructs and/or polypeptide(s) of the invention.

Once expressed within the plant cell or the entire plant, the level of the polypeptide encoded by the exogenous polynucleotide can be determined by methods well known in the art such as, activity assays, Western blots using antibodies capable of specifically binding the polypeptide, Enzyme-Linked Immuno Sorbent Assay (ELISA), radio-immuno-assays (RIA), immunohistochemistry, immunocytochemistry, immunofluorescence and the like.

Methods of determining the level in the plant of the RNA transcribed from the exogenous polynucleotide are well known in the art and include, for example, Northern blot analysis, reverse transcription polymerase chain reaction (RT-PCR) analysis (including quantitative, semi-quantitative or real-time RT-PCR) and RNA-in situ hybridization.

The sequence information and annotations uncovered by the present teachings can be harnessed in favor of classical breeding. Thus, sub-sequence data of those polynucleotides described above, can be used as markers for marker assisted selection (MAS), in which a marker is used for indirect selection of a genetic determinant or determinants of a trait of interest (e.g., biomass, growth rate, oil content, yield, abiotic stress tolerance, water use efficiency, nitrogen use efficiency and/or fertilizer use efficiency). Nucleic acid data of the present teachings (DNA or RNA sequence) may contain or be linked to polymorphic sites or genetic markers on the genome such as restriction fragment length polymorphism (RFLP), microsatellites and single nucleotide polymorphism (SNP), DNA fingerprinting (DFP), amplified fragment length polymorphism (AFLP), expression level polymorphism, polymorphism of the encoded polypeptide and any other polymorphism at the DNA or RNA sequence.

Examples of marker assisted selections include, but are not limited to, selection for a morphological trait (e.g., a gene that affects form, coloration, male sterility or resistance such as the presence or absence of awn, leaf sheath coloration, height, grain color, aroma of rice); selection for a biochemical trait (e.g., a gene that encodes a protein that can be extracted and observed; for example, isozymes and storage proteins); selection for a biological trait (e.g., pathogen races or insect biotypes based on host pathogen or host parasite interaction can be used as a marker since the genetic constitution of an organism can affect its susceptibility to pathogens or parasites).

The polynucleotides and polypeptides described hereinabove can be used in a wide range of economical plants, in a safe and cost effective manner.

Plant lines exogenously expressing the polynucleotide or the polypeptide of the invention are screened to identify those that show the greatest increase of the desired plant trait.

Thus, according to an additional embodiment of the present invention, there is provided a method of evaluating a trait of a plant, the method comprising: (a) expressing in a plant or a portion thereof the nucleic acid construct of some embodiments of the invention; and (b) evaluating a trait of a plant as compared to a wild type plant of the same type (e.g., a plant not transformed with the claimed biomolecules); thereby evaluating the trait of the plant.

According to an aspect of some embodiments of the invention there is provided a method of producing a crop comprising growing a crop of a plant expressing an exogenous polynucleotide comprising a nucleic acid sequence encoding a polypeptide at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or more say 100% homologous (e.g., identical) to the amino acid sequence selected from the group consisting of SEQ ID NOs: 496-794, 2898-3645, 3647-4854 and 4855, wherein said plant is derived from a plant selected for increased fertilizer use efficiency, increased nitrogen use efficiency, increased abiotic stress tolerance, increased water use efficiency, increased growth rate, increased vigor, increased biomass, increased oil content, increased yield, increased seed yield, increased fiber yield, increased fiber quality, increased fiber length, and/or increased photosynthetic capacity as compared to a control plant, thereby producing the crop.

According to an aspect of some embodiments of the present invention there is provided a method of producing a crop comprising growing a crop plant transformed with an exogenous polynucleotide encoding a polypeptide at least 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or more say 100% homologous (e.g., identical) to the amino acid sequence selected from the group consisting of SEQ ID NOs: 496-794, 2898-3645, 3647-4854 and 4855, wherein the crop plant is derived from plants selected for increased abiotic stress tolerance, increased water use efficiency, increased growth rate, increased vigor, increased biomass, increased oil content, increased yield, increased seed yield, increased fiber yield, increased fiber quality, increased fiber length, increased photosynthetic capacity, and/or increased fertilizer use efficiency (e.g., increased nitrogen use efficiency) as compared to a wild type plant of the same species which is grown under the same growth conditions, and the crop plant having the increased abiotic stress tolerance, increased water use efficiency, increased growth rate, increased vigor, increased biomass, increased oil content, increased yield, increased seed yield, increased fiber yield, increased fiber quality, increased fiber length, increased photosynthetic capacity, and/or increased fertilizer use efficiency (e.g., increased nitrogen use efficiency), thereby producing the crop.

According to some embodiments of the invention the polypeptide is selected from the group consisting of SEQ ID NOs: 496-794, 2898-4854 and 4855.

According to an aspect of some embodiments of the invention there is provided a method of producing a crop comprising growing a crop of a plant expressing an exogenous polynucleotide which comprises a nucleic acid sequence which is at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, e.g., 100% identical to the nucleic acid sequence selected from the group consisting of SEQ ID NOs:1-495, 795-2896 and 2897, wherein said plant is derived from a plant (parent plant) that has been transformed to express the exogenous polynucleotide and that has been selected for increased abiotic stress tolerance, increased water use efficiency, increased growth rate, increased vigor, increased biomass, increased oil content, increased yield, increased seed yield, increased fiber yield, increased fiber quality, increased fiber length, increased photosynthetic capacity, and/or increased fertilizer use efficiency (e.g., increased nitrogen use efficiency) as compared to a control plant, thereby producing the crop.

According to an aspect of some embodiments of the present invention there is provided a method of producing a crop comprising growing a crop plant transformed with an exogenous polynucleotide at least 80%, at least about 81%, at least about 82 %, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or more say 100% identical to the nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1-495, 795-2896 and 2897, wherein the crop plant is derived from plants selected for increased abiotic stress tolerance, increased water use efficiency, increased growth rate, increased vigor, increased biomass, increased oil content, increased yield, increased seed yield, increased fiber yield, increased fiber quality, increased fiber length, increased photosynthetic capacity, and/or increased fertilizer use efficiency (e.g., increased nitrogen use efficiency) as compared to a wild type plant of the same species which is grown under the same growth conditions, and the crop plant having the increased abiotic stress tolerance, increased water use efficiency, increased growth rate, increased vigor, increased biomass, increased oil content, increased yield, increased seed yield, increased fiber yield, increased fiber quality, increased fiber length, increased photosynthetic capacity, and/or increased fertilizer use efficiency (e.g., increased nitrogen use efficiency), thereby producing the crop.

According to some embodiments of the invention the exogenous polynucleotide is selected from the group consisting of SEQ ID NOs: 1-495, 795-2896 and 2897.

According to an aspect of some embodiments of the invention there is provided a method of growing a crop comprising seeding seeds and/or planting plantlets of a plant transformed with the exogenous polynucleotide of the invention, e.g., the polynucleotide which encodes the polypeptide of some embodiments of the invention, wherein the plant is derived from plants selected for at least one trait selected from the group consisting of increased abiotic stress tolerance, increased water use efficiency, increased growth rate, increased vigor, increased biomass, increased oil content, increased yield, increased seed yield, increased fiber yield, increased fiber quality, increased fiber length, increased photosynthetic capacity, and/or increased fertilizer use efficiency (e.g., increased nitrogen use efficiency) as compared to a non-transformed plant.

According to some embodiments of the invention the method of growing a crop comprising seeding seeds and/or planting plantlets of a plant transformed with an exogenous polynucleotide comprising a nucleic acid sequence encoding a polypeptide at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, e.g., 100% identical to SEQ ID NO: 496-794, 2898-3645, 3647-4854 or 4855, wherein the plant is derived from plants selected for at least one trait selected from the group consisting of increased abiotic stress tolerance, increased water use efficiency, increased growth rate, increased vigor, increased biomass, increased oil content, increased yield, increased seed yield, increased fiber yield, increased fiber quality, increased fiber length, increased photosynthetic capacity, and/or increased fertilizer use efficiency (e.g., increased nitrogen use efficiency) as compared to a non-transformed plant, thereby growing the crop.

According to some embodiments of the invention the polypeptide is selected from the group consisting of SEQ ID NOs: 496-794, 2898-4854 and 4855.

According to some embodiments of the invention the method of growing a crop comprising seeding seeds and/or planting plantlets of a plant transformed with an exogenous polynucleotide comprising the nucleic acid sequence at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, e.g., 100% identical to SEQ ID NO: 1-495, 795-2896 or 2897, wherein the plant is derived from plants selected for at least one trait selected from the group consisting of increased abiotic stress tolerance, increased water use efficiency, increased growth rate, increased vigor, increased biomass, increased oil content, increased yield, increased seed yield, increased fiber yield, increased fiber quality, increased fiber length, increased photosynthetic capacity, and/or increased fertilizer use efficiency (e.g., increased nitrogen use efficiency) as compared to a non-transformed plant, thereby growing the crop.

According to some embodiments of the invention the exogenous polynucleotide is selected from the group consisting of SEQ ID NOs: 1-495, 795-2896 and 2897.

The effect of the transgene (the exogenous polynucleotide encoding the polypeptide) on abiotic stress tolerance can be determined using known methods such as detailed below and in the Examples section which follows.

Abiotic stress tolerance - Transformed (i.e., expressing the transgene) and non-transformed (wild type) plants are exposed to an abiotic stress condition, such as water deprivation, suboptimal temperature (low temperature, high temperature), nutrient deficiency, nutrient excess, a salt stress condition, osmotic stress, heavy metal toxicity, anaerobiosis, atmospheric pollution and UV irradiation.

Salinity tolerance assay - Transgenic plants with tolerance to high salt concentrations are expected to exhibit better germination, seedling vigor or growth in high salt. Salt stress can be effected in many ways such as, for example, by irrigating the plants with a hyperosmotic solution, by cultivating the plants hydroponically in a hyperosmotic growth solution (e.g., Hoagland solution), or by culturing the plants in a hyperosmotic growth medium [e.g., 50% Murashige-Skoog medium (MS medium)]. Since different plants vary considerably in their tolerance to salinity, the salt concentration in the irrigation water, growth solution, or growth medium can be adjusted according to the specific characteristics of the specific plant cultivar or variety, so as to inflict a mild or moderate effect on the physiology and/or morphology of the plants (for guidelines as to appropriate concentration see, Bernstein and Kafkafi, Root Growth Under Salinity Stress In: Plant Roots, The Hidden Half 3rd ed. Waisel Y, Eshel A and Kafkafi U. (editors) Marcel Dekker Inc., New York, 2002, and reference therein).

For example, a salinity tolerance test can be performed by irrigating plants at different developmental stages with increasing concentrations of sodium chloride (for example 50 mM, 100 mM, 200 mM, 400 mM NaCl) applied from the bottom and from above to ensure even dispersal of salt. Following exposure to the stress condition the plants are frequently monitored until substantial physiological and/or morphological effects appear in wild type plants. Thus, the external phenotypic appearance, degree of wilting and overall success to reach maturity and yield progeny are compared between control and transgenic plants.

Quantitative parameters of tolerance measured include, but are not limited to, the average wet and dry weight, growth rate, leaf size, leaf coverage (overall leaf area), the weight of the seeds yielded, the average seed size and the number of seeds produced per plant. Transformed plants not exhibiting substantial physiological and/or morphological effects, or exhibiting higher biomass than wild-type plants, are identified as abiotic stress tolerant plants.

Osmotic tolerance test - Osmotic stress assays (including sodium chloride and mannitol assays) are conducted to determine if an osmotic stress phenotype was sodium chloride-specific or if it was a general osmotic stress related phenotype. Plants which are tolerant to osmotic stress may have more tolerance to drought and/or freezing. For salt and osmotic stress germination experiments, the medium is supplemented for example with 50 mM, 100 mM, 200 mM NaCl or 100 mM, 200 mM NaCl, 400 mM mannitol.

Drought tolerance assay/Osmoticum assay - Tolerance to drought is performed to identify the genes conferring better plant survival after acute water deprivation. To analyze whether the transgenic plants are more tolerant to drought, an osmotic stress produced by the non-ionic osmolyte sorbitol in the medium can be performed. Control and transgenic plants are germinated and grown in plant-agar plates for 4 days, after which they are transferred to plates containing 500 mM sorbitol. The treatment causes growth retardation, then both control and transgenic plants are compared, by measuring plant weight (wet and dry), yield, and by growth rates measured as time to flowering.

Conversely, soil-based drought screens are performed with plants overexpressing the polynucleotides detailed above. Seeds from control Arabidopsis plants, or other transgenic plants overexpressing the polypeptide of the invention are germinated and transferred to pots. Drought stress is obtained after irrigation is ceased accompanied by placing the pots on absorbent paper to enhance the soil-drying rate. Transgenic and control plants are compared to each other when the majority of the control plants develop severe wilting. Plants are re-watered after obtaining a significant fraction of the control plants displaying a severe wilting. Plants are ranked comparing to controls for each of two criteria: tolerance to the drought conditions and recovery (survival) following re-watering.

Cold stress tolerance - To analyze cold stress, mature (25 day old) plants are transferred to 4° C. chambers for 1 or 2 weeks, with constitutive light. Later on plants are moved back to greenhouse. Two weeks later damages from chilling period, resulting in growth retardation and other phenotypes, are compared between both control and transgenic plants, by measuring plant weight (wet and dry), and by comparing growth rates measured as time to flowering, plant size, yield, and the like.

Heat stress tolerance - Heat stress tolerance is achieved by exposing the plants to temperatures above 34° C. for a certain period. Plant tolerance is examined after transferring the plants back to 22° C. for recovery and evaluation after 5 days relative to internal controls (non-transgenic plants) or plants not exposed to neither cold or heat stress.

Water use efficiency - can be determined as the biomass produced per unit transpiration. To analyze WUE, leaf relative water content can be measured in control and transgenic plants. Fresh weight (FW) is immediately recorded; then leaves are soaked for 8 hours in distilled water at room temperature in the dark, and the turgid weight (TW) is recorded. Total dry weight (DW) is recorded after drying the leaves at 60° C. to a constant weight. Relative water content (RWC) is calculated according to the following Formula I:

RWC= FW DW / TW DW × 100 ­­­Formula I

Fertilizer use efficiency - To analyze whether the transgenic plants are more responsive to fertilizers, plants are grown in agar plates or pots with a limited amount of fertilizer, as described, for example, in Examples 15-17 hereinbelow and in Yanagisawa et al (Proc Natl Acad Sci U S A. 2004; 101:7833-8). The plants are analyzed for their overall size, time to flowering, yield, protein content of shoot and/or grain. The parameters checked are the overall size of the mature plant, its wet and dry weight, the weight of the seeds yielded, the average seed size and the number of seeds produced per plant. Other parameters that may be tested are: the chlorophyll content of leaves (as nitrogen plant status and the degree of leaf verdure is highly correlated), amino acid and the total protein content of the seeds or other plant parts such as leaves or shoots, oil content, etc. Similarly, instead of providing nitrogen at limiting amounts, phosphate or potassium can be added at increasing concentrations. Again, the same parameters measured are the same as listed above. In this way, nitrogen use efficiency (NUE), phosphate use efficiency (PUE) and potassium use efficiency (KUE) are assessed, checking the ability of the transgenic plants to thrive under nutrient restraining conditions.

Nitrogen use efficiency - To analyze whether the transgenic plants (e.g., Arabidopsis plants) are more responsive to nitrogen, plant are grown in 0.75-3 mM (nitrogen deficient conditions) or 6-10 mM (optimal nitrogen concentration). Plants are allowed to grow for additional 25 days or until seed production. The plants are then analyzed for their overall size, time to flowering, yield, protein content of shoot and/or grain/ seed production. The parameters checked can be the overall size of the plant, wet and dry weight, the weight of the seeds yielded, the average seed size and the number of seeds produced per plant. Other parameters that may be tested are: the chlorophyll content of leaves (as nitrogen plant status and the degree of leaf greenness is highly correlated), amino acid and the total protein content of the seeds or other plant parts such as leaves or shoots and oil content. Transformed plants not exhibiting substantial physiological and/or morphological effects, or exhibiting higher measured parameters levels than wild-type plants, are identified as nitrogen use efficient plants.

Nitrogen Use efficiency assay using plantlets - The assay is done according to Yanagisawa-S. et al. with minor modifications (“Metabolic engineering with Dof1 transcription factor in plants: Improved nitrogen assimilation and growth under low-nitrogen conditions” Proc. Natl. Acad. Sci. USA 101, 7833-7838). Briefly, transgenic plants which are grown for 7-10 days in 0.5 x MS [Murashige-Skoog] supplemented with a selection agent are transferred to two nitrogen-limiting conditions: MS media in which the combined nitrogen concentration (NH4NO3 and KNO3) was 0.75 mM (nitrogen deficient conditions) or 6-15 mM (optimal nitrogen concentration). Plants are allowed to grow for additional 30-40 days and then photographed, individually removed from the Agar (the shoot without the roots) and immediately weighed (fresh weight) for later statistical analysis. Constructs for which only T1 seeds are available are sown on selective media and at least 20 seedlings (each one representing an independent transformation event) are carefully transferred to the nitrogen-limiting media. For constructs for which T2 seeds are available, different transformation events are analyzed. Usually, 20 randomly selected plants from each event are transferred to the nitrogen-limiting media allowed to grow for 3-4 additional weeks and individually weighed at the end of that period. Transgenic plants are compared to control plants grown in parallel under the same conditions. Mock- transgenic plants expressing the uidA reporter gene (GUS) under the same promoter or transgenic plants carrying the same promoter but lacking a reporter gene are used as control.

Nitrogen determination - The procedure for N (nitrogen) concentration determination in the structural parts of the plants involves the potassium persulfate digestion method to convert organic N to NO3- (Purcell and King 1996 Argon. J. 88:111-113, the modified Cd- mediated reduction of NO3- to NO2- (Vodovotz 1996 Biotechniques 20:390-394) and the measurement of nitrite by the Griess assay (Vodovotz 1996, supra). The absorbance values are measured at 550 nm against a standard curve of NaNO2. The procedure is described in details in Samonte et al. 2006 Agron. J. 98:168-176.

Germination tests - Germination tests compare the percentage of seeds from transgenic plants that could complete the germination process to the percentage of seeds from control plants that are treated in the same manner. Normal conditions are considered for example, incubations at 22° C. under 22-hour light 2-hour dark daily cycles. Evaluation of germination and seedling vigor is conducted between 4 and 14 days after planting. The basal media is 50% MS medium (Murashige and Skoog, 1962 Plant Physiology 15, 473-497).

Germination is checked also at unfavorable conditions such as cold (incubating at temperatures lower than 10° C. instead of 22° C.) or using seed inhibition solutions that contain high concentrations of an osmolyte such as sorbitol (at concentrations of 50 mM, 100 mM, 200 mM, 300 mM, 500 mM, and up to 1000 mM) or applying increasing concentrations of salt (of 50 mM, 100 mM, 200 mM, 300 mM, 500 mM NaCl).

The effect of the transgene on plant’s vigor, growth rate, biomass, yield and/or oil content can be determined using known methods.

Plant vigor - The plant vigor can be calculated by the increase in growth parameters such as leaf area, fiber length, rosette diameter, plant fresh weight and the like per time.

Growth rate - The growth rate can be measured using digital analysis of growing plants. For example, images of plants growing in greenhouse on plot basis can be captured every 3 days and the rosette area can be calculated by digital analysis. Rosette area growth is calculated using the difference of rosette area between days of sampling divided by the difference in days between samples.

Evaluation of growth rate can be done by measuring plant biomass produced, rosette area, leaf size or root length per time (can be measured in cm2 per day of leaf area).

Relative growth area can be calculated using Formula II.

Formula II: Relative growth rate area = Regression coefficient of area along time course

Thus, the relative growth area rate is in units of area units (e.g., mm2/day or cm2/day) and the relative length growth rate is in units of length units (e.g., cm/day or mm/day).

For example, RGR can be determined for plant height (Formula III), SPAD (Formula IV), Number of tillers (Formula V), root length (Formula VI), vegetative growth (Formula VII), leaf number (Formula VIII), rosette area (Formula IX), rosette diameter (Formula X), plot coverage (Formula XI), leaf blade area (Formula XII), and leaf area (Formula XIII).

Formula III: Relative growth rate of Plant height = Regression coefficient of Plant height along time course (measured in cm/day).

Formula IV: Relative growth rate of SPAD = Regression coefficient of SPAD measurements along time course.

Formula V: Relative growth rate of Number of tillers = Regression coefficient of Number of tillers along time course (measured in units of “number of tillers/day”).

Formula VI: Relative growth rate of root length = Regression coefficient of root length along time course (measured in cm per day).

Vegetative growth rate analysis - was calculated according to Formula VII below.

Formula VII: Relative growth rate of vegetative growth = Regression coefficient of vegetative weight along time course (measured in grams per day).

Formula VIII: Relative growth rate of leaf number = Regression coefficient of leaf number along time course (measured in number per day).

Formula IX: Relative growth rate of rosette area = Regression coefficient of rosette area along time course (measured in cm2 per day).

Formula X: Relative growth rate of rosette diameter = Regression coefficient of rosette diameter along time course (measured in cm per day).

Formula XI: Relative growth rate of plot coverage = Regression coefficient of plot (measured in cm2 per day).

Formula XII: Relative growth rate of leaf blade area = Regression coefficient of leaf area along time course (measured in cm2 per day).

Formula XIII: Relative growth rate of leaf area = Regression coefficient of leaf area along time course (measured in cm2 per day).

Formula XIV: 1000 Seed Weight = number of seed in sample/ sample weight X 1000

The Harvest Index can be calculated using Formulas XV, XVI, XVII, XVIII and XXXVII below.

Formula XV: Harvest Index (seed) = Average seed yield per plant/ Average dry weight.

Formula XVI: Harvest Index (Sorghum) = Average grain dry weight per Head / (Average vegetative dry weight per Head + Average Head dry weight)

Formula XVII: Harvest Index (Maize) = Average grain weight per plant/ (Average vegetative dry weight per plant plus Average grain weight per plant)

Harvest Index (for barley) - The harvest index is calculated using Formula XVIII.

Formula XVIII: Harvest Index (for barley and wheat) = Average spike dry weight per plant/ (Average vegetative dry weight per plant + Average spike dry weight per plant).

Following is a non-limited list of additional parameters which can be detected in order to show the effect of the transgene on the desired plant’s traits:

  • Formula XIX: Grain circularity = 4 x 3.14 (grain area/perimeter2)
  • Formula XX: internode volume = 3.14 x (d/2) 2 x 1
  • Formula XXI: Normalized ear weight per plant + vegetative dry weight.

Formula XXII: Root/Shoot Ratio = total weight of the root at harvest/ total weight of the vegetative portion above ground at harvest. (=RBiH/BiH)

Formula XXIII: Ratio of the number of pods per node on main stem at pod set = Total number of pods on main stem /Total number of nodes on main stem.

Formula XXIV: Ratio of total number of seeds in main stem to number of seeds on lateral branches = Total number of seeds on main stem at pod set/ Total number of seeds on lateral branches at pod set.

Formula XXV: Petiole Relative Area = (Petiole area)/Rosette area (measured in %).

Formula XXVI:% reproductive tiller percentage = Number of Reproductive tillers/number of tillers) X 100.

Formula XXVII: Spikes Index = Average Spikes weight per plant/ (Average vegetative dry weight per plant plus Average Spikes weight per plant).

Formula XXVIII: Relative growth rate of root coverage = Regression coefficient of root coverage along time course.

Formula XXIX: Seed Oil yield = Seed yield per plant (gr.) * Oil% in seed.

Formula XXX: shoot/root Ratio = total weight of the vegetative portion above ground at harvest/ total weight of the root at harvest.

Formula XXXI: Spikelets Index = Average Spikelets weight per plant/ (Average vegetative dry weight per plant plus Average Spikelets weight per plant).

Formula XXXII:% Canopy coverage = (1-(PAR_DOWN/PAR_UP))x100.

Formula XXXIII: leaf mass fraction = Leaf area / shoot FW.

Formula XXXIV: Relative growth rate based on dry weight = Regression coefficient of dry weight along time course.

Formula XXXV: Total dry matter (for Maize) = Normalized ear weight per plant + vegetative dry weight.

Formula XXXVI:

Agronomical NUE= Y i e l d p e r p l a n t K g . X Nitrogen Fertilization - Y i e l d p e r p l a n t K g . 0 % Nitrogen Fertilization F e r t i l i z e r X

Formula XXXVII: Harvest Index (brachypodium) = Average grain weight/average dry (vegetative + spikelet) weight per plant.

Formula XXXVIII: Harvest Index for Sorghum* (* when the plants were not dried) = FW (fresh weight) Heads/(FW Heads + FW Plants)

Grain fill rate [mg/day] - Rate of dry matter accumulation in grain. The grain fill rate is calculated using Formula XXXIX

Formula XXXIX: Grain fill rate [mg/day] = [Grain weight*ear-1 x 1000]/[Grain number*ear -1] x Grain filling duration].

Grain protein concentration - Grain protein content (g grain protein m-2) is estimated as the product of the mass of grain N (g grain N m-2) multiplied by the N/protein conversion ratio of k-5.13 (Mosse 1990, supra). The grain protein concentration is estimated as the ratio of grain protein content per unit mass of the grain (g grain protein kg-1 grain).

Fiber length - Fiber length can be measured using fibrograph. The fibrograph system was used to compute length in terms of “Upper Half Mean” length. The upper half mean (UHM) is the average length of longer half of the fiber distribution. The fibrograph measures length in span lengths at a given percentage point (cottoninc (dot) com/ClassificationofCotton/?Pg=4#Length).

According to some embodiments of the invention, increased yield of corn may be manifested as one or more of the following: increase in the number of plants per growing area, increase in the number of ears per plant, increase in the number of rows per ear, number of kernels per ear row, kernel weight, thousand kernel weight (1000-weight), ear length/diameter, increase oil content per kernel and increase starch content per kernel.

As mentioned, the increase of plant yield can be determined by various parameters. For example, increased yield of rice may be manifested by an increase in one or more of the following: number of plants per growing area, number of panicles per plant, number of spikelets per panicle, number of flowers per panicle, increase in the seed filling rate, increase in thousand kernel weight (1000-weight), increase oil content per seed, increase starch content per seed, among others. An increase in yield may also result in modified architecture, or may occur because of modified architecture.

Similarly, increased yield of soybean may be manifested by an increase in one or more of the following: number of plants per growing area, number of pods per plant, number of seeds per pod, increase in the seed filling rate, increase in thousand seed weight (1000-weight), reduce pod shattering, increase oil content per seed, increase protein content per seed, among others. An increase in yield may also result in modified architecture, or may occur because of modified architecture.

Increased yield of canola may be manifested by an increase in one or more of the following: number of plants per growing area, number of pods per plant, number of seeds per pod, increase in the seed filling rate, increase in thousand seed weight (1000-weight), reduce pod shattering, increase oil content per seed, among others. An increase in yield may also result in modified architecture, or may occur because of modified architecture.

Increased yield of cotton may be manifested by an increase in one or more of the following: number of plants per growing area, number of bolls per plant, number of seeds per boll, increase in the seed filling rate, increase in thousand seed weight (1000-weight), increase oil content per seed, improve fiber length, fiber strength, among others. An increase in yield may also result in modified architecture, or may occur because of modified architecture.

Oil content - The oil content of a plant can be determined by extraction of the oil from the seed or the vegetative portion of the plant. Briefly, lipids (oil) can be removed from the plant (e.g., seed) by grinding the plant tissue in the presence of specific solvents (e.g., hexane or petroleum ether) and extracting the oil in a continuous extractor. Indirect oil content analysis can be carried out using various known methods such as Nuclear Magnetic Resonance (NMR) Spectroscopy, which measures the resonance energy absorbed by hydrogen atoms in the liquid state of the sample [See for example, Conway TF. and Earle FR., 1963, Journal of the American Oil Chemists’ Society; Springer Berlin / Heidelberg, ISSN: 0003-021X (Print) 1558-9331 (Online)]; the Near Infrared (NI) Spectroscopy, which utilizes the absorption of near infrared energy (1100-2500 nm) by the sample; and a method described in WO/2001/023884, which is based on extracting oil a solvent, evaporating the solvent in a gas stream which forms oil particles, and directing a light into the gas stream and oil particles which forms a detectable reflected light.

Thus, the present invention is of high agricultural value for promoting the yield of commercially desired crops (e.g., biomass of vegetative organ such as poplar wood, or reproductive organ such as number of seeds or seed biomass).

Any of the transgenic plants described hereinabove or parts thereof may be processed to produce a feed, meal, protein or oil preparation, such as for ruminant animals.

The transgenic plants described hereinabove, which exhibit an increased oil content can be used to produce plant oil (by extracting the oil from the plant).

The plant oil (including the seed oil and/or the vegetative portion oil) produced according to the method of the invention may be combined with a variety of other ingredients. The specific ingredients included in a product are determined according to the intended use. Exemplary products include animal feed, raw material for chemical modification, biodegradable plastic, blended food product, edible oil, biofuel, cooking oil, lubricant, biodiesel, snack food, cosmetics, and fermentation process raw material. Exemplary products to be incorporated to the plant oil include animal feeds, human food products such as extruded snack foods, breads, as a food binding agent, aquaculture feeds, fermentable mixtures, food supplements, sport drinks, nutritional food bars, multi-vitamin supplements, diet drinks, and cereal foods.

According to some embodiments of the invention, the oil comprises a seed oil.

According to some embodiments of the invention, the oil comprises a vegetative portion oil (oil of the vegetative portion of the plant).

According to some embodiments of the invention, the plant cell forms a part of a plant.

According to another embodiment of the present invention, there is provided a food or feed comprising the plants or a portion thereof of the present invention.

As used herein the term “about” refers to ± 10%.

The terms “comprises”, “comprising”, “includes”, “including”, “having” and their conjugates mean “including but not limited to”.

The term “consisting of” means “including and limited to”.

The term “consisting essentially of” means that the composition, method or structure may include additional ingredients, steps and/or parts, but only if the additional ingredients, steps and/or parts do not materially alter the basic and novel characteristics of the claimed composition, method or structure.

As used herein, the singular form “a”, “an” and “the” include plural references unless the context clearly dictates otherwise. For example, the term “a compound” or “at least one compound” may include a plurality of compounds, including mixtures thereof.

Throughout this application, various embodiments of this invention may be presented in a range format. It should be understood that the description in range format is merely for convenience and brevity and should not be construed as an inflexible limitation on the scope of the invention. Accordingly, the description of a range should be considered to have specifically disclosed all the possible subranges as well as individual numerical values within that range. For example, description of a range such as from 1 to 6 should be considered to have specifically disclosed subranges such as from 1 to 3, from 1 to 4, from 1 to 5, from 2 to 4, from 2 to 6, from 3 to 6 etc., as well as individual numbers within that range, for example, 1, 2, 3, 4, 5, and 6. This applies regardless of the breadth of the range.

Whenever a numerical range is indicated herein, it is meant to include any cited numeral (fractional or integral) within the indicated range. The phrases “ranging/ranges between” a first indicate number and a second indicate number and “ranging/ranges from” a first indicate number “to” a second indicate number are used herein interchangeably and are meant to include the first and second indicated numbers and all the fractional and integral numerals therebetween.

As used herein the term “method” refers to manners, means, techniques and procedures for accomplishing a given task including, but not limited to, those manners, means, techniques and procedures either known to, or readily developed from known manners, means, techniques and procedures by practitioners of the chemical, pharmacological, biological, biochemical and medical arts.

When reference is made to particular sequence listings, such reference is to be understood to also encompass sequences that substantially correspond to its complementary sequence as including minor sequence variations, resulting from, e.g., sequencing errors, cloning errors, or other alterations resulting in base substitution, base deletion or base addition, provided that the frequency of such variations is less than 1 in 50 nucleotides, alternatively, less than 1 in 100 nucleotides, alternatively, less than 1 in 200 nucleotides, alternatively, less than 1 in 500 nucleotides, alternatively, less than 1 in 1000 nucleotides, alternatively, less than 1 in 5,000 nucleotides, alternatively, less than 1 in 10,000 nucleotides.

It is appreciated that certain features of the invention, which are, for clarity, described in the context of separate embodiments, may also be provided in combination in a single embodiment. Conversely, various features of the invention, which are, for brevity, described in the context of a single embodiment, may also be provided separately or in any suitable subcombination or as suitable in any other described embodiment of the invention. Certain features described in the context of various embodiments are not to be considered essential features of those embodiments, unless the embodiment is inoperative without those elements.

Various embodiments and aspects of the present invention as delineated hereinabove and as claimed in the claims section below find experimental support in the following examples.

EXAMPLES

Reference is now made to the following examples, which together with the above descriptions illustrate some embodiments of the invention in a non limiting fashion.

Generally, the nomenclature used herein and the laboratory procedures utilized in the present invention include molecular, biochemical, microbiological and recombinant DNA techniques. Such techniques are thoroughly explained in the literature. See, for example, “Molecular Cloning: A laboratory Manual” Sambrook et al., (1989); “Current Protocols in Molecular Biology” Volumes I-III Ausubel, R. M., ed. (1994); Ausubel et al., “Current Protocols in Molecular Biology”, John Wiley and Sons, Baltimore, Maryland (1989); Perbal, “A Practical Guide to Molecular Cloning”, John Wiley & Sons, New York (1988); Watson et al., “Recombinant DNA”, Scientific American Books, New York; Birren et al. (eds) “Genome Analysis: A Laboratory Manual Series”, Vols. 1-4, Cold Spring Harbor Laboratory Press, New York (1998); methodologies as set forth in U.S. Pat. Nos. 4,666,828; 4,683,202; 4,801,531; 5,192,659 and 5,272,057; “Cell Biology: A Laboratory Handbook”, Volumes I-III Cellis, J. E., ed. (1994); “Current Protocols in Immunology” Volumes I-III Coligan J. E., ed. (1994); Stites et al. (eds), “Basic and Clinical Immunology” (8th Edition), Appleton & Lange, Norwalk, CT (1994); Mishell and Shiigi (eds), “Selected Methods in Cellular Immunology”, W. H. Freeman and Co., New York (1980); available immunoassays are extensively described in the patent and scientific literature, see, for example, U.S. Pat. Nos. 3,791,932; 3,839,153; 3,850,752; 3,850,578; 3,853,987; 3,867,517; 3,879,262; 3,901,654; 3,935,074; 3,984,533; 3,996,345; 4,034,074; 4,098,876; 4,879,219; 5,011,771 and 5,281,521; “Oligonucleotide Synthesis” Gait, M. J., ed. (1984); “Nucleic Acid Hybridization” Hames, B. D., and Higgins S. J., eds. (1985); “Transcription and Translation” Hames, B. D., and Higgins S. J., Eds. (1984); “Animal Cell Culture” Freshney, R. I., ed. (1986); “Immobilized Cells and Enzymes” IRL Press, (1986); “A Practical Guide to Molecular Cloning” Perbal, B., (1984) and “Methods in Enzymology” Vol. 1-317, Academic Press; “PCR Protocols: A Guide To Methods And Applications”, Academic Press, San Diego, CA (1990); Marshak et al., “Strategies for Protein Purification and Characterization - A Laboratory Course Manual” CSHL Press (1996); all of which are incorporated by reference as if fully set forth herein. Other general references are provided throughout this document. The procedures therein are believed to be well known in the art and are provided for the convenience of the reader. All the information contained therein is incorporated herein by reference.

GENERAL EXPERIMENTAL AND BIOINFORMATICS METHODS

RNA extraction - Tissues growing at various growth conditions (as described below) were sampled and RNA was extracted using TRIzol Reagent from Invitrogen [Hypertext Transfer Protocol://World Wide Web (dot) invitrogen (dot) com/content (dot)cfm?pageid=469]. Approximately 30-50 mg of tissue was taken from samples. The weighed tissues were ground using pestle and mortar in liquid nitrogen and resuspended in 500 µl of TRIzol Reagent. To the homogenized lysate, 100 µl of chloroform was added followed by precipitation using isopropanol and two washes with 75% ethanol. The RNA was eluted in 30 µl of RNase-free water. RNA samples were cleaned up using Qiagen’s RNeasy minikit clean-up protocol as per the manufacturer’s protocol (QIAGEN Inc, CA USA). For convenience, each micro-array expression information tissue type has received an expression Set ID.

Correlation analysis - was performed for selected genes according to some embodiments of the invention, in which the characterized parameters (measured parameters according to the correlation IDs) were used as “x axis” for correlation with the tissue transcriptom which was used as the “Y axis”. For each gene and measured parameter a correlation coefficient “R” was calculated (using Pearson correlation) along with a p-value for the significance of the correlation. When the correlation coefficient (R) between the levels of a gene’s expression in a certain tissue and a phenotypic performance across ecotypes/variety/hybrid is high in absolute value (between 0.5-1), there is an association between the gene (specifically the expression level of this gene) the phenotypic characteristic (e.g., improved nitrogen use efficiency, abiotic stress tolerance, yield, growth rate and the like).

Example 1 Identifying Genes Which Increase Nitrogen Use Efficiency (NUE), Fertilizer Use Efficiency (FUE), Yield, Growth Rate, Vigor, Biomass, Oil Content, Abiotic Stress Tolerance (ABST) and/or Water Use Efficiency (WUE) in Plants

The present inventors have identified polynucleotides which upregulation of expression thereof in plants increases nitrogen use efficiency (NUE), fertilizer use efficiency (FUE), yield (e.g., seed yield, oil yield, biomass, grain quantity and/or quality), growth rate, vigor, biomass, oil content, fiber yield, fiber quality, fiber length, abiotic stress tolerance (ABST) and/or water use efficiency (WUE) of a plant.

All nucleotide sequence datasets used here were originated from publicly available databases or from performing sequencing using the Solexa technology (e.g. Barley and Sorghum). Sequence data from 100 different plant species was introduced into a single, comprehensive database. Other information on gene expression, protein annotation, enzymes and pathways were also incorporated. Major databases used include:

  • Genomes
    • Arabidopsis genome [TAIR genome version 6 (arabidopsis (dot) org/)]
    • Rice genome [IRGSP build 4.0 (rgp (dot) dna (dot) affrc (dot) go (dot) jp/IRGSP/)] .
    • Poplar [Populus trichocarpa release 1.1 from JGI (assembly release v1.0) (genome (dot) jgi-psf (dot) org/)]
    • Brachypodium [JGI 4x assembly, brachpodium (dot) org)]
    • Soybean [DOE-JGI SCP, version Glyma0 or Glyma1 (phytozome (dot) net/)] Grape [French-Italian Public Consortium for Grapevine Genome Characterization grapevine genome (genoscope (dot) cns (dot) fr /)]
    • Castobean [TIGR/J Craig Venter Institute 4x assembly [(msc (dot) jcvi (dot) org/r_communis]
    • Sorghum [DOE-JGI SCP, version Sbi1 [phytozome (dot) net/)].
    • Maize [maizesequence (dot) org/]
    • Cucumber [cucumber (dot) genomics (dot) org (dot) cn/page/cucumber/index (dot) jsp]
    • Tomato [solgenomics (dot) net/tomato/]
    • Cassava [phytozome (dot) net/cassava (dot) php]
  • Expressed EST and mRNA sequences were extracted from the following databases:
    • GenBank (ncbi (dot) nlm (dot) nih (dot) gov/Genbank/).
    • RefSeq (ncbi (dot) nlm (dot) nih (dot) gov/RefSeq/).
    • TAIR (arabidopsis (dot) org/).
  • Protein and pathway databases
    • Uniprot [uniprot (dot) org/].
    • AraCyc [arabidopsis (dot) org/biocyc/index (dot) jsp].
    • ENZYME [expasy (dot) org/enzyme/].
  • Microarray datasets were downloaded from:
    • GEO (ncbi (dot) nlm (dot) nih (dot) gov/geo/)
    • TAIR (Arabidopsis (dot) org/).
    • Proprietary micro-array data (See WO2008/122980 and Examples 3-11 below).
  • QTL and SNPs information
    • Gramene [gramene (dot) org/qtl/].
    • Panzea [panzea (dot) org/index (dot) html].
    • Soybean QTL: [soybeanbreederstoolbox(dot) com/].

Database Assembly - was performed to build a wide, rich, reliable annotated and easy database comprised of publicly available genomic mRNA, ESTs DNA sequences, data from various crops as well as gene expression, protein annotation and pathway, QTLs data, and other relevant information.

Database assembly is comprised of a toolbox of gene refining, structuring, annotation and analysis tools enabling to construct a tailored database for each gene discovery project. Gene refining and structuring tools enable to reliably detect splice variants and antisense transcripts, generating understanding of various potential phenotypic outcomes of a single gene. The capabilities of the “LEADS” platform of Compugen LTD for analyzing human genome have been confirmed and accepted by the scientific community [see e.g., “Widespread Antisense Transcription”, Yelin, et al. (2003) Nature Biotechnology 21, 379-85; “Splicing of Alu Sequences”, Lev-Maor, et al. (2003) Science 300 (5623), 1288-91; “Computational analysis of alternative splicing using EST tissue information”, Xie H et al. Genomics 2002], and have been proven most efficient in plant genomics as well.

EST clustering and gene assembly - For gene clustering and assembly of organisms with available genome sequence data (arabidopsis, rice, castorbean, grape, brachypodium, poplar, soybean, sorghum) the genomic LEADS version (GANG) was employed. This tool allows most accurate clustering of ESTs and mRNA sequences on genome, and predicts gene structure as well as alternative splicing events and anti-sense transcription.

For organisms with no available full genome sequence data, “expressed LEADS” clustering software was applied.

Gene annotation - Predicted genes and proteins were annotated as follows:

Sequences blast search [blast (dot) ncbi (dot) nlm (dot) nih (dot) gov /Blast (dot) cgi] against all plant UniProt [uniprot (dot) org/] was performed. Open reading frames of each putative transcript were analyzed and longest ORF with higher number of homologues was selected as predicted protein of the transcript. The predicted proteins were analyzed by InterPro [ebi (dot) ac (dot) uk/interpro/].

Blast against proteins from AraCyc and ENZYME databases was used to map the predicted transcripts to AraCyc pathways.

Predicted proteins from different species were compared using blast algorithm [ncbi (dot) nlm (dot) nih (dot) gov /Blast (dot) cgi] to validate the accuracy of the predicted protein sequence, and for efficient detection of orthologs.

Gene expression profiling - Several data sources were exploited for gene expression profiling, namely microarray data and digital expression profile (see below). According to gene expression profile, a correlation analysis was performed to identify genes which are co-regulated under different development stages and environmental conditions and associated with different phenotypes.

Publicly available microarray datasets were downloaded from TAIR and NCBI GEO sites, renormalized, and integrated into the database. Expression profiling is one of the most important resource data for identifying genes important for yield.

A digital expression profile summary was compiled for each cluster according to all keywords included in the sequence records comprising the cluster. Digital expression, also known as electronic Northern Blot, is a tool that displays virtual expression profile based on the EST sequences forming the gene cluster. The tool provides the expression profile of a cluster in terms of plant anatomy (e.g., the tissue/organ in which the gene is expressed), developmental stage (the developmental stages at which a gene can be found) and profile of treatment (provides the physiological conditions under which a gene is expressed such as drought, cold, pathogen infection, etc). Given a random distribution of ESTs in the different clusters, the digital expression provides a probability value that describes the probability of a cluster having a total of N ESTs to contain X ESTs from a certain collection of libraries. For the probability calculations, the following is taken into consideration: a) the number of ESTs in the cluster, b) the number of ESTs of the implicated and related libraries, c) the overall number of ESTs available representing the species. Thereby clusters with low probability values are highly enriched with ESTs from the group of libraries of interest indicating a specialized expression.

Recently, the accuracy of this system was demonstrated by Portnoy et al., 2009 (Analysis Of The Melon Fruit Transcriptome Based On 454 Pyrosequencing) in: Plant & Animal Genomes XVII Conference, San Diego, CA. Transcriptomic analysis, based on relative EST abundance in data was performed by 454 pyrosequencing of cDNA representing mRNA of the melon fruit. Fourteen double strand cDNA samples obtained from two genotypes, two fruit tissues (flesh and rind) and four developmental stages were sequenced. GS FLX pyrosequencing (Roche/454 Life Sciences) of non-normalized and purified cDNA samples yielded 1,150,657 expressed sequence tags (ESTs) that assembled into 67,477 unigenes (32,357 singletons and 35,120 contigs). Analysis of the data obtained against the Cucurbit Genomics Database [icugi (dot) org/] confirmed the accuracy of the sequencing and assembly. Expression patterns of selected genes fitted well their qRT-PCR data.

Overall, 215 genes were identified to have a major impact on nitrogen use efficiency, fertilizer use efficiency, yield (e.g., seed yield, oil yield, grain quantity and/or quality), growth rate, vigor, biomass, oil content, fiber yield, fiber quality, fiber length, abiotic stress tolerance and/or water use efficiency when expression thereof is increased in plants. The identified genes, their curated polynucleotide and polypeptide sequences, as well as their updated sequences according to GenBank database are summarized in Table 1, hereinbelow.

TABLE 1 Identified polynucleotides for increasing nitrogen use efficiency, fertilizer use efficiency, yield, growth rate, vigor, biomass, oil content, fiber yield, fiber quality, fiber length, abiotic stress tolerance and/or water use efficiency of a plant Gene Name Cluster tag Organism Polyn. SEQ ID NO: Polyp. SEQ ID NO: LNU749 barley|10v2|AV834836 barley 1 496 LNU749 barley|10v2|AV834836 barley 1 712 LNU750 barley|10v2|BE215751 barley 2 497 LNU750 barley|10v2|BE215751 barley 2 497 LNU751 barley|10v2|BE413235 barley 3 498 LNU752 barley|10v2|BE421033 barley 4 499 LNU753 barley|10v2|BE422116 barley 5 500 LNU754 barley|10v2|BE601673 barley 6 501 LNU756 barley|10v2|BF620955 barley 7 502 LNU757 barley|10v2|BF624113 barley 8 503 LNU758 barley|10v2|BF629458 barley 9 504 LNU759 barley|10v2|BM376337 barley 10 505 LNU760 barley|12v1|CX630466 barley 11 506 LNU761 barley|12v1|AJ463320 barley 12 507 LNU762 barley|12v1|AV834698 barley 13 508 LNU763 barley|12v1|AV836421 barley 14 509 LNU764 barley|12v1|AV914625 barley 15 510 LNU766 barley|12v1|AW983189 barley 16 511 LNU767 barley|12v1|BE196490 barley 17 512 LNU768 barley|12v1|BE216887 barley 18 513 LNU769 barley|12v1|BE437319 barley 19 514 LNU770 barley|12v1|BE602491 barley 20 515 LNU771 barley|12v1|BF064919 barley 21 516 LNU772 barley|12v1|BF253521 barley 22 517 LNU773 barley|12v1|BF256991 barley 23 518 LNU774 barley|12v1|BF258839 barley 24 519 LNU775 barley|12v1|BF266348 barley 25 520 LNU776 barley|12v1|BF266777 barley 26 521 LNU777 barley|12v1|BF628559 barley 27 522 LNU778 barley|12v1|BG300262 barley 28 523 LNU779 barley|12v1|BG309380 barley 29 524 LNU780 barley|12v1|BI779788 barley 30 525 LNU781 barley|12v1|BI948718 barley 31 526 LNU782 barley|12v1|BI1950988 barley 32 527 LNU783 barley|12v1|BI957813 barley 33 528 LNU784 barley|12v1|BQ762763 barley 34 529 LNU785 barley|12v1|BU986731 barley 35 530 LNU786 barley|12v1|EX599010 barley 36 531 LNU787 brachypodium|12v1|BRADI1G37175 brachypo dium 37 532 LNU788 brachypodium|12v1|BRADI1G51187 brachypo dium 38 533 LNU789 brachypodium|12v1|BRADI1G64180 brachypo dium 39 534 LNU790 brachypodium|12v1|BRADI1G64950 brachypo dium 40 535 LNU791 brachypodium|12v1|BRADI1G69030 brachypo dium 41 536 LNU792 brachypodium|12v1|BRADI2G51430 brachypo dium 42 537 LNU793 brachypodium|12v1|BRADI2G53980 brachypo dium 43 538 LNU794 brachypodium|12v1|BRADI3G16630T 2 brachypo dium 44 539 LNU795 brachypodium|12v1|BRADI4G01230 brachypo dium 45 540 LNU796 brachypodium|12v1|BRADI4G05020 brachypo dium 46 541 LNU797 brachypodium|12v1|BRADI4G07060 brachypo dium 47 542 LNU798 brachypodium|12v1|BRADI4G27334 brachypo dium 48 543 LNU799 brachypodium|12v1|BRADI4G29720 brachypo dium 49 544 LNU800 brachypodium|12v1|BRADISG16060 brachypo dium 50 545 LNU801 foxtail_millet|11v3|PHY7SI000598M foxtail_mi llet 51 546 LNU802 foxtail_millet|11v3|PHY7SI000948M foxtail_mi llet 52 547 LNU803 foxtail_millet|11v3|PHY7SI003585M foxtail_mi llet 53 548 LNU804 foxtail_millet|11v3|PHY7SI009882M foxtail_mi llet 54 549 LNU805 foxtail_millet|11v3|PHY7SI013938M foxtail_mi llet 55 550 LNU806 foxtail_millet|11v3|PHY7SI014253M foxtail_mi llet 56 551 LNU807 foxtail_millet|11v3|PHY7SI021778M foxtail_mi llet 57 552 LNU808 foxtail_millet|11v3|PHY7SI023199M foxtail_mi llet 58 553 LNU809 foxtail_millet|11v3|PHY7SI036241M foxtail_mi llet 59 554 LNU810 foxtail_millet|11v3|SICRP086135 foxtail_mi llet 60 555 LNU811 maize|10v1|AI601011 maize 61 556 LNU813 maize|10v1|AI629666 maize 62 557 LNU814 maize|10v1|AI637029 maize 63 558 LNU815 maize|10v1|AI979480 maize 64 559 LNU816 maize|10v1|AI979737 maize 65 560 LNU817 maize|10v1|AW231541 maize 66 561 LNU818 maize|10v1|AW267199 maize 67 562 LNU819 maize|10v1|AW282410 maize 68 563 LNU820 maize|10v1|AW288911 maize 69 564 LNU821 maize|10v1|AW497499 maize 70 565 LNU822 maize|10v1|AW927651 maize 71 566 LNU823 maize|10v1|BE512590 maize 72 567 LNU824 maize|10v1|BE552882 maize 73 568 LNU825 maize|10v1|BE575202 maize 74 569 LNU828 maize|10v1|BG458848 maize 75 570 LNU829 maize|10v1|BG549052 maize 76 571 LNU830 maize|10v1|BI679654 maize 77 572 LNU831 maize|10v1|BM269210 maize 78 573 LNU832 maize|10v1|BM895367 maize 79 574 LNU833 maize|10v1|BU036574 maize 80 575 LNU834 maize|10v1|CB816561 maize 81 576 LNU835 maize|10v1|CD986056 maize 82 577 LNU837 maize|10v1|CF064369 maize 83 578 LNU838 maize|10v1|CF634284 maize 84 579 LNU839 maize|10v1|CO523359 maize 85 580 LNU840 maize|10v1|DN208554 maize 86 581 LNU841 maize|10v1|DN225757 maize 87 582 LNU843 maize|10v1|EE187987 maize 88 583 LNU844 maize|10v1|T18396 maize 89 584 LNU845 maize|10v1|W21625 maize 90 585 LNU846 maize|gb170|AF093537 maize 91 586 LNU847 medicago|12v1|AL366283 medicago 92 587 LNU848 rice|11v1|AF072694 rice 93 588 LNU849 rice|11v1|AU057716 rice 94 589 LNU850 rice|11v1|BI306328 rice 95 590 LNU851 rice|11v1|BI813446 rice 96 591 LNU852 rice|11v1|CA764428 rice 97 592 LNU853 rice|11v1|ICB645176 rice 98 593 LNU854 rice|11v1|IGFXAF377947X27 rice 99 594 LNU856 sorghum|09v1|SB10G011070 sorghum 100 595 LNU857 sorghum|11v1|SB10G007600 sorghum 101 596 LNU858 sorghum|12v1|AW285114 sorghum 102 597 LNU861 sorghum|12v1|BE918914 sorghum 103 598 LNU862 sorghum|12v1|BG356040 sorghum 104 599 LNU864 sorghum|12v1|CD424245 sorghum 105 600 LNU865 sorghum|12v1|SB0169S002030 sorghum 106 601 LNU866 sorghum|12v1|SB01G003110 sorghum 107 602 LNU867 sorghum|12v1|SB01G004510 sorghum 108 603 LNU868 sorghum|12v1|SB01G005240 sorghum 109 604 LNU869 sorghum|12v1|SB01G006870 sorghum 110 605 LNU870 sorghum|12v1|SB01G006930 sorghum 111 606 LNU871 sorghum|12v1|SB01G007380 sorghum 112 607 LNU872 sorghum|12v1|SB01G011260 sorghum 113 608 LNU873 sorghum|12v1|SB01G011890 sorghum 114 609 LNU874 sorghum|12v1|SB01G015540 sorghum 115 610 LNU875 sorghum|12v1|SB01G017100 sorghum 116 611 LNU876 sorghum|12v1|SB01G032593P1 sorghum 117 612 LNU878 sorghum|12v1|SB01G035780 sorghum 118 613 LNU879 sorghum|12v1|SB01G040060 sorghum 119 614 LNU880 sorghum|12v1|SB01G046630 sorghum 120 615 LNU881 sorghum|12v1|SB01G047345 sorghum 121 616 LNU882 sorghum|12v1|SB01G048200 sorghum 122 617 LNU883 sorghum|12v1|SB01G048670 sorghum 123 618 LNU884 sorghum|12v1|SB01G048910 sorghum 124 619 LNU885 sorghum|12v1|SB02G001450 sorghum 125 620 LNU886 sorghum|12v1|SB02G002020 sorghum 126 621 LNU887 sorghum|12v1|SB02G003980 sorghum 127 622 LNU888 sorghum|12v1|SB02G009320 sorghum 128 623 LNU889 sorghum|12v1|SB02G023760 sorghum 129 624 LNU890 sorghum|12v1|SB02G027260 sorghum 130 625 LNU892 sorghum|12v1|SB02G033210 sorghum 131 626 LNU893 sorghum|12v1|SB02G036470 sorghum 132 627 LNU894 sorghum|12v1|SB02G039430 sorghum 133 628 LNU895 sorghum|12v1|SB02G042020 sorghum 134 629 LNU896 sorghum|12v1|SB02G043060 sorghum 135 630 LNU897 sorghum|12v1|SB02G043340 sorghum 136 631 LNU898 sorghum|12v1|SB03G001900 sorghum 137 632 LNU899 sorghum|12v1|SB03G003880 sorghum 138 633 LNU900 sorghuml12v1|SB03G004920 sorghum 139 634 LNU901 sorghum|12v1|SB03G006670 sorghum 140 635 LNU902 sorghum|12v1|SB03G009240 sorghum 141 636 LNU903 sorghum|12v1|SB03G013600 sorghum 142 637 LNU904 sorghum|12v1|SB03G015670 sorghum 143 638 LNU905 sorghum|12v1|SB03G025980 sorghum 144 639 LNU906 sorghum|12v1|SB03G028220 sorghum 145 640 LNU907 sorghum|12v1|SB03G029160 sorghum 146 641 LNU908 sorghum|12v1|SB03G030720 sorghum 147 642 LNU909 sorghum|12v1|SB03G032235 sorghum 148 643 LNU910 sorghum|12v1|SB03G034870 sorghum 149 644 LNU911 sorghum|12v1|SB03G035900 sorghum 150 645 LNU912 sorghum|12v1|SB03G037390 sorghum 151 646 LNU913 sorghum|12v1|SB03G039370 sorghum 152 647 LNU914 sorghum|12v1|SB04G000560 sorghum 153 648 LNU915 sorghum|12v1|SB04G000860 sorghum 154 649 LNU916 sorghum|12v1|SB04G003110 sorghum 155 650 LNU917 sorghum|12v1|SB04G005810 sorghum 156 651 LNU918 sorghum|12v1|SB04G005960 sorghum 157 652 LNU919 sorghum|12v1|SB04G008660 sorghum 158 653 LNU920 sorghum|12v1|SB04G019220 sorghum 159 654 LNU921 sorghum|12v1|SB04G023720 sorghum 160 655 LNU922 sorghum|12v1|SB04G031020 sorghum 161 656 LNU923 sorghum|12v1|SB04G031630 sorghum 162 657 LNU924 sorghum|12v1|SB04G031790 sorghum 163 658 LNU925 sorghum|12v1|SB04G031980 sorghum 164 659 LNU926 sorghum|12v1|SB04G032240 sorghum 165 660 LNU928 sorghum|12v1|SB04G035530 sorghum 166 661 LNU929 sorghum|12v1|SB04G036780 sorghum 167 662 LNU930 sorghum|12v1|SB04G037720 sorghum 168 663 LNU931 sorghum|12v1|SB05G000570 sorghum 169 664 LNU932 sorghum|12v1|SB05G001300 sorghum 170 665 LNU933 sorghum|12v1|SB05G005230 sorghum 171 666 LNU934 sorghum|12v1|SB05G006950 sorghum 172 667 LNU935 sorghum|12v1|SB05G020340 sorghum 173 668 LNU936 sorghum|12v1|SB05G021410 sorghum 174 669 LNU938 sorghum|12v1|SB05G025900 sorghum 175 670 LNU939 sorghum|12v1|SB06G015080 sorghum 176 671 LNU940 sorghum|12v1|SB06G016140 sorghum 177 672 LNU941 sorghum|12v1|SB06G018480 sorghum 178 673 LNU942 sorghum|12v1|SB06G019950 sorghum 179 674 LNU943 sorghum|12v1|SB06G020900 sorghum 180 675 LNU944 sorghum|12v1|SB07G000250 sorghum 181 676 LNU945 sorghum|12v1|SB07G004040 sorghum 182 677 LNU946 sorghum|12v1|SB07G004390 sorghum 183 678 LNU947 sorghum|12v1|SB07G021870 sorghum 184 679 LNU948 sorghum|12v1|SB07G027790 sorghum 185 680 LNU949 sorghum|12v1|SB08G002580 sorghum 186 681 LNU950 sorghum|12v1|SB08G002740 sorghum 187 682 LNU951 sorghum|12v1|SB08G003140 sorghum 188 683 LNU952 sorghum|12v1|SB08G007610 sorghum 189 684 LNU953 sorghum|12v1|SB08G015020 sorghum 190 685 LNU954 sorghum|12v1|SB08G016400 sorghum 191 686 LNU955 sorghum|12v1|SB08G016530 sorghum 192 687 LNU956 sorghum|12v1|SB08G018765 sorghum 193 688 LNU957 sorghum|12v1|SB08G020600 sorghum 194 689 LNU958 sorghum|12v1|SB08G021920 sorghum 195 690 LNU959 sorghum|12v1|SB09G021265 sorghum 196 691 LNU960 sorghum|12v1|SB09G021520 sorghum 197 692 LNU961 sorghum|12v1|SB09G026930 sorghum 198 693 LNU962 sorghum|12v1|SB09G026990 sorghum 199 694 LNU963 sorghum|12v1|SB10G002960 sorghum 200 695 LNU964 sorghum|12v1|SB10G023640 sorghum 201 696 LNU965 sorghum|12v1|SB10G026450 sorghum 202 697 LNU966 sorghum|12v1|SB10G026910 sorghum 203 698 LNU967 sorghum|12v1|SB10G028680 sorghum 204 699 LNU968 sorghum|12v1|SB10G030200 sorghum 205 700 LNU969 sorghum|12v1|XM_002468645 sorghum 206 701 LNU970 soybean|11v1|GLYMA13G20220 soybean 207 702 LNU971 tomato|11v1|AI772930 tomato 208 703 LNU972 tomato|11v1|AI775263 tomato 209 704 LNU975 tomato|11v1|BI422101 tomato 210 705 LNU976 wheat|12v3|CA596628 wheat 211 706 LNU977 wheat|12v3|CK152213 wheat 212 707 LNU760_ H1 brachypodium|12v1|BRADI1G02117 brachypo dium 213 708 LNU832_ H2 sorghum|12v1|SB03G013780 sorghum 214 709 LNU834_ H1 sorghum|12v1|SB02G003380 sorghum 215 710 LNU861_ H3 maize|10v1|CF635645 maize 216 711 LNU859 sorghum|12v1|AW677786 sorghum 217 - LNU860 sorghuml12v1|BE362249 sorghum 218 - LNU863 sorghum|12v1|BG410755 sorghum 219 - LNU750 barley|10v2|BE215751 barley 220 713 LNU760 barley|10v2|CX630466 barley 221 714 LNU771 barley|12v1|BF064919 barley 222 715 LNU772 barley|12v1|BF253521 barley 223 716 LNU783 barley|12v1|BI957813 barley 224 528 LNU785 barley|12v1|BU986731 barley 225 717 LNU786 barley|12v1|EX599010 barley 226 718 LNU787 brachypodium|12v1|BRADI1G37175 brachypo dium 227 719 LNU790 brachypodium|12v1|BRADI1G64950 brachypo dium 228 535 LNU792 brachypodium|12v1|BRADI2G51430 brachypo dium 229 537 LNU793 brachypodium|12v1|BRADI2G53980 brachypo dium 230 538 LNU795 brachypodium|12v1|BRADI4G01230 brachypo dium 231 720 LNU801 foxtail_millet|11v3|PHY7SI000598M foxtail_mi llet 232 546 LNU802 foxtail_millet|11v3|PHY7SI000948M foxtail_mi llet 233 547 LNU806 foxtail_millet|11v3|PHY7SI014253M foxtail_mi llet 234 721 LNU807 foxtail_millet|11v3|PHY7SI021778M foxtail_mi llet 235 552 LNU830 maize|10v1|BI679654 maize 236 572 LNU837 maize|10v1|CF064369 maize 237 722 LNU839 maize|10v1|C0523359 maize 238 580 LNU843 maize|10v1|EE187987 maize 239 723 LNU845 maize|10v1|W21625 maize 240 724 LNU847 medicago|12v1|AL366283 medicago 241 725 LNU848 rice|11v1|AF072694 rice 242 588 LNU851 rice|11v1|BI813446 rice 243 591 LNU856 sorghum|09v1|SB10G011070 sorghum 244 726 LNU858 sorghum|12v1|AW285114 sorghum 245 727 LNU862 sorghuml12v1|BG356040 sorghum 246 728 LNU864 sorghum|12v1|CD424245 sorghum 247 600 LNU866 sorghum|12v1|SB01G003110 sorghum 248 729 LNU870 sorghuml12v1|SB01G006930 sorghum 249 730 LNU873 sorghuml12v1|SB01G011890 sorghum 250 609 LNU876 sorghuml12v1|SB01G032593P1 sorghum 251 612 LNU886 sorghuml12v1|SB02G002020 sorghum 252 731 LNU887 sorghum|12v1|SB02G003980 sorghum 253 622 LNU889 sorghum|12v1|SB02G023760 sorghum 254 624 LNU892 sorghum|12v1|SB02G033210 sorghum 255 732 LNU896 sorghum|12v1|SB02G043060 sorghum 256 733 LNU897 sorghum|12v1|SB02G043340 sorghum 257 631 LNU902 sorghum|12v1|SB03G009240 sorghum 258 636 LNU905 sorghum|12v1|SB03G025980 sorghum 259 639 LNU906 sorghum|12v1|SB03G028220 sorghum 260 734 LNU908 sorghum|12v1|SB03G030720 sorghum 261 735 LNU910 sorghum|12v1|SB03G034870 sorghum 262 736 LNU911 sorghum|12v1|SB03G035900 sorghum 263 737 LNU914 sorghum|2vl|SB04G000560 sorghum 264 648 LNU919 sorghum|12v|SB04G008660 sorghum 265 653 LNU920 sorghum|2vl|SB04G019220 sorghum 266 654 LNU921 sorghum|12v1|SB04G023720 sorghum 267 655 LNU926 sorghum|2vlISB04G032240 sorghum 268 660 LNU929 sorghum|12v1|SB04G036780 sorghum 269 662 LNU931 sorghuml12v1|SB05G000570 sorghum 270 664 LNU932 sorghum|2vl|SB05G001300 sorghum 271 738 LNU935 sorghuml12v|SB05G020340 sorghum 272 668 LNU936 sorghum|12v1|SBOSG021410 sorghum 273 669 LNU938 sorghuml12v|SB05G025900 sorghum 274 670 LNU946 sorghuml12v|SB07G004390 sorghum 275 678 LNU951 sorghum|12v|SB08G003140 sorghum 276 739 LNU954 sorghum|12v|SB08G016400 sorghum 277 740 LNU956 sorghum|12v1|SB08G018765 sorghum 278 741 LNU960 sorghum|12v1|SB09G021520 sorghum 279 692 LNU962 sorghuml12v|SB09G026990 sorghum 280 694 LNU967 sorghum|12v|SB10G028680 sorghum 281 699 LNU969 sorghum|2vl|XM_002468645 sorghum 282 742 LNU972 tomato|11vl1|AI775263 tomato 283 743 LNU975 tomato|11v1|BI422101 tomato 284 744 LNU977 wheat|12v3|CK152213 wheat 285 745 LNU861_ H3 maize|10v1|CF635645 maize 286 746 LNU859 sorghuml12v1|AW677786 sorghum 287 - LNU863 sorghum|12v1|BG410755 sorghum 288 - LNU749 barley|10v2|AV834836 barley 289 747 LNU751 barley|10v2|BE413235 barley 290 498 LNU752 barley|10v2|BE421033 barley 291 748 LNU753 barley|10v2|BE422116 barley 292 500 LNU754 barley| 10v2|BE601673 barley 293 501 LNU756 barley|10v2|BF620955 barley 294 502 LNU757 barley|10v2|BF624113 barley 295 503 LNU758 barley|10v2|BF629458 barley 296 504 LNU759 barley|10v2|BM376337 barley 297 505 LNU761 barley|12v1|AJ463320 barley 298 507 LNU762 barley|12vl|AV834698 barley 299 508 LNU763 barley|12v1|AV836421 barley 300 509 LNU764 barley|12v1|AV914625 barley 301 510 LNU766 barley|12v1|AW983189 barley 302 749 LNU767 barley|12v1|BE196490 barley 303 512 LNU768 barley|12v1|BE216887 barley 304 513 LNU769 barley|12v1|BE437319 barley 305 750 LNU770 barley|12v1|BE602491 barley 306 515 LNU771 barley|12v1|BF064919 barley 307 516 LNU772 barley|12v1|BF253521 barley 308 517 LNU773 barley|12v1|BF256991 barley 309 751 LNU774 barley|12v1|BF258839 barley 310 519 LNU775 barley|12v1|BF266348 barley 311 520 LNU776 barley|12v1|BF266777 barley 312 752 LNU777 barley|12v1|BF628559 barley 313 522 LNU778 barley|12v1|BG300262 barley 314 523 LNU779 barley|12v1|BG309380 barley 315 524 LNU780 barley|12v1|BI779788 barley 316 753 LNU781 barley|12v1|BI948718 barley 317 526 LNU782 barley|12v1|BI950988 barley 318 527 LNU783 barley|12v1|BI957813 barley 319 528 LNU784 barley|12v1|BQ762763 barley 320 754 LNU785 barley|12v1|BU986731 barley 321 530 LNU786 barley|12v1|EX599010 barley 322 755 LNU787 brachypodium|12v1|BRADI1G37175 brachypo dium 323 532 LNU788 brachypodiuml12v1|BRADI1G51187 brachypo dium 324 756 LNU789 brachypodiuml12v1|BRADI1G64180 brachypo dium 325 534 LNU790 brachypodium|12v1|BRADI1G64950 brachypo dium 326 535 LNU791 brachypodium|12v1|BRADI1G69030 brachypo dium 327 536 LNU792 brachypodium|12v1|BRADI2G51430 brachypo dium 328 537 LNU793 brachypodium|12v1|BRAD I2G5 3980 brachypo dium 329 538 LNU794 brachypodiuml12v1|BRADI3G16630T2 brachypo dium 330 539 LNU795 brachypodium|12v1IBRADI4G01230 brachypo dium 331 757 LNU796 brachypodium|12v1|BRADI4G05020 brachypo dium 332 541 LNU797 brachypodium|12v1|BRADI4G07060 brachypo dium 333 542 LNU798 brachypodium|12v1|BRADI4G27334 brachypo dium 334 543 LNU799 brachypodium|12v1|BRADI4G29720 brachypo dium 335 544 LNU800 brachypodium|12v1|BRADI5G16060 brachypo dium 336 545 LNU801 foxtail_­millet|11v3|PHY7SI000598M foxtail_mi llet 337 546 LNU802 foxtail_­millet|11v3|PHY7SI000598M foxtail_mi llet 338 547 LNU803 foxtail_millet|1lv3IPHY7SI003585M foxtail_mi llet 339 548 LNU804 foxtail_­millet|11v3|PHY7SI000598M foxtail_mi llet 340 758 LNU805 foxtail_millet|11v3|PHY7SI013938M foxtail_mi llet 341 550 LNU806 foxtail_millet|11v3|PHY7SI014253M foxtail_mi llet 342 759 LNU807 foxtail_millet|11v3|PHY7SI021778M foxtail_mi llet 343 552 LNU808 foxtail_millet|11v3|PHY7SI023199M foxtail_mi llet 344 553 LNU809 foxtail_millet|11v3|PHY7SI036241M foxtail_mi llet 345 760 LNU811 maize|10v1|AI601011 maize 346 556 LNU813 maize|10v1|AI629666 maize 347 557 LNU814 maize|10v1|637029 maize 348 558 LNU815 maize|10v1|979480 maize 349 559 LNU816 maize|10v1|AI97973 7 maize 350 761 LNU817 maize|10v1|AW231541 maize 351 762 LNU818 maize|10v1|AW267199 maize 352 763 LNU819 maize|10v1|AW282410 maize 353 563 LNU820 maize|10v1|AW288911 maize 354 564 LNU821 maize|10v1|AW497499 maize 355 764 LNU822 maize|10v1|AW927651 maize 356 566 LNU823 maize|10v1|BE512590 maize 357 567 LNU824 maize|10v1|BE552882 maize 358 765 LNU825 maize|10v1|BE575202 maize 359 766 LNU828 maize|10v1|BG458848 maize 360 570 LNU829 maize|10v1|BG54905 2 maize 361 767 LNU830 maize|10v1|BI679654 maize 362 572 LNU831 maize|10v1|BM2692 10 maize 363 768 LNU833 maize| 10v1 |BU036574 maize 364 769 LNU835 maize| 10v1 |CD986056 maize 365 577 LNU837 maize|10v1|CF064369 maize 366 770 LNU838 maize|10v1|CF634284 maize 367 579 LNU839 maize|10v1|C0523359 maize 368 580 LNU840 maize|10v1|DN208554 maize 369 581 LNU841 maize|10v1|DN225757 maize 370 582 LNU843 maize|10v1|EE187987 maize 371 583 LNU844 maize|10v1|T18396 maize 372 584 LNU845 maize|10v1|W21625 maize 373 771 LNU846 maize|gb170|AF093537 maize 374 586 LNU847 medicago|12v1|AL366283 medicago 375 772 LNU848 rice|11v1|AF072694 rice 376 588 LNU849 rice|11v1|AU057716 rice 377 589 LNU850 rice|11v1|BI306328 rice 378 590 LNU851 rice|11v1|BI813446 rice 379 591 LNU852 rice|11v1|CA764428 rice 380 592 LNU853 rice|11v1|CB645176 rice 381 593 LNU854 rice|11v1 |GFXAF377947X27 rice 382 594 LNU856 sorghum|09v1|SB10G011070 sorghum 383 595 LNU857 sorghum|11v1|SB10G007600 sorghum 384 773 LNU858 sorghum|12vl|AW285114 sorghum 385 774 LNU862 sorghum|12v1|BG356040 sorghum 386 599 LNU864 sorghum|2vl|CD424245 sorghum 387 600 LNU865 sorghum|112v1|SB0169S002030 sorghum 388 601 LNU866 sorghum|12v1|SB01G003110 sorghum 389 775 LNU867 sorghum|12v|SB01G004510 sorghum 390 603 LNU868 sorghum|2vl|SB01G005240 sorghum 391 604 LNU869 sorghum|12v|SB01G006870 sorghum 392 605 LNU870 sorghum|12v1|SB01G006930 sorghum 393 606 LNU871 sorghum|12v|SB01G007380 sorghum 394 607 LNU872 sorghum|12v1|SB01G011260 sorghum 395 608 LNU873 sorghum|12v1|SB0IG011890 sorghum 396 609 LNU874 sorghum|12v|SB01G015540 sorghum 397 610 LNU875 sorghum|12v1|SB01G017100 sorghum 398 611 LNU876 sorghum|12v|SB01G032593P1 sorghum 399 612 LNU878 sorghum|12v|SB01G035780 sorghum 400 613 LNU879 sorghum|2vl|SB01G040060 sorghum 401 614 LNU880 sorghum|12v1|SB01G046630 sorghum 402 615 LNU881 sorghum|12v|SB01G047345 sorghum 403 616 LNU882 sorghum|12v1|SB01G048200 sorghum 404 617 LNU884 sorghum|12v|SB01G048910 sorghum 405 619 LNU885 sorghum|12v|SB02G001450 sorghum 406 620 LNU886 sorghum|2vlISB02G002020 sorghum 407 776 LNU887 sorghum|12v1|SB02G003980 sorghum 408 622 LNU888 sorghum|12vISB02G009320 sorghum 409 623 LNU889 sorghum|12v1|SB02G023760 sorghum 410 624 LNU890 sorghum|12v1|SB02G027260 sorghum 411 625 LNU892 sorghum|12v1|SB02G033210 sorghum 412 626 LNU893 sorghum|12v1|SB02G036470 sorghum 413 627 LNU894 sorghum|12v1|SB02G039430 sorghum 414 628 LNU895 sorghum|2vl|B02G042020 sorghum 415 629 LNU896 sorghum|12v1|SB02G043060 sorghum 416 630 LNU897 sorghum|12v1|SB02G043340 sorghum 417 777 LNU898 sorghum|12v|SB03G001900 sorghum 418 778 LNU899 sorghum|12v1|SB03G003880 sorghum 419 633 LNU900 sorghum|2vl|SB03G004920 sorghum 420 779 LNU901 sorghum|12v1|SB03G006670 sorghum 421 780 LNU902 sorghum|2vl|SB03G009240 sorghum 422 636 LNU903 sorghum|12v1|SB03G013600 sorghum 423 637 LNU904 sorghum|12v1|SB03G015670 sorghum 424 781 LNU905 sorghum|12v1|SB03G025980 sorghum 425 639 LNU906 sorghuml12v|SB03G028220 sorghum 426 782 LNU907 sorghum|12v|SB03G029160 sorghum 427 783 LNU908 sorghum|12v|SB03G030720 sorghum 428 642 LNU909 sorghum|12v1|SB03G032235 sorghum 429 784 LNU910 sorghum|12v1|SB03G034870 sorghum 430 644 LNU911 sorghum|12v1|SB03G035900 sorghum 431 785 LNU912 sorghum|12v1|SB03G037390 sorghum 432 646 LNU913 sorghum|12v1|SB03G039370 sorghum 433 647 LNU914 sorghum|2vl|SB04G000560 sorghum 434 648 LNU915 sorghum|12v1|SB04G000860 sorghum 435 649 LNU916 sorghum|12v1|SB04G003110 sorghum 436 650 LNU917 sorghum|12v1|SB04G005810 sorghum 437 651 LNU918 sorghum|12v1|SB04G005960 sorghum 438 652 LNU919 sorghum|12v1|SB04G008660 sorghum 439 653 LNU920 sorghum|12v1|SB04G019220 sorghum 440 654 LNU921 sorghum|12v1|SB04G023720 sorghum 441 655 LNU922 sorghum|12v1|SB04G031020 sorghum 442 656 LNU923 sorghum|12v1|SB04G031630 sorghum 443 657 LNU924 sorghum|12v1|SB04G031790 sorghum 444 658 LNU925 sorghum|12v1|SB04G031980 sorghum 445 659 LNU926 sorghum|12v1|SB04G032240 sorghum 446 660 LNU928 sorghum|12v1|SB04G035530 sorghum 447 661 LNU930 sorghum|12v1|SB04G037720 sorghum 448 786 LNU931 sorghuml12v1lSB05G000570 sorghum 449 664 LNU932 sorghum|2vl|SB05G001300 sorghum 450 787 LNU933 sorghum|12v1|SB05G005230 sorghum 451 666 LNU934 sorghuml12v|SB05G006950 sorghum 452 667 LNU935 sorghum|12v|SB05G020340 sorghum 453 788 LNU936 sorghum|12v1|SBOSG021410 sorghum 454 669 LNU938 sorghum|12v|SB05G025900 sorghum 455 789 LNU940 sorghum|12v1|SB06G016140 sorghum 456 672 LNU941 sorghuml12v|SB06G018480 sorghum 457 673 LNU942 sorghum|12v|SB06G019950 sorghum 458 674 LNU943 sorghum|2vl|SB06G020900 sorghum 459 675 LNU944 sorghum|12v|SB07G000250 sorghum 460 676 LNU945 sorghum|2vl|SB07G004040 sorghum 461 677 LNU946 sorghum|12v|SB07G004390 sorghum 462 678 LNU947 sorghum|12v|SB07G021870 sorghum 463 679 LNU948 sorghum|2vl|SB07G027790 sorghum 464 680 LNU949 sorghum|2vl|SB08G002580 sorghum 465 681 LNU950 sorghum|12v1|SB08G002740 sorghum 466 682 LNU951 sorghum|12vl |SB08G003140 sorghum 467 790 LNU952 sorghum|12v|SB08G007610 sorghum 468 684 LNU953 sorghum|2vl|SB08G015020 sorghum 469 685 LNU954 sorghum|12v|SB08G016400 sorghum 470 791 LNU955 sorghum|12v1|SB08G016530 sorghum 471 687 LNU956 sorghum|12v1|SB08G018765 sorghum 472 792 LNU957 sorghum|12v|SB08G020600 sorghum 473 689 LNU958 sorghum|12vl |SB08G021920 sorghum 474 690 LNU959 sorghum|12vl |SB09G021265 sorghum 475 691 LNU960 sorghum|12v|SB09G021520 sorghum 476 692 LNU961 sorghum|12v|SB09G026930 sorghum 477 693 LNU962 sorghum|12v|SB09G026990 sorghum 478 694 LNU963 sorghum|2vl|SB10G002960 sorghum 479 695 LNU964 sorghum|12v|SB10G023640 sorghum 480 696 LNU965 sorghum|12v|SB10G026450 sorghum 481 697 LNU966 sorghum|12v|SB10G026910 sorghum 482 698 LNU967 sorghum|12v|SB10G028680 sorghum 483 699 LNU968 sorghum|2vl|SB 10G030200 sorghum 484 793 LNU970 soybean|11v1|GLYMA13G20220 soybean 485 702 LNU971 tomato|11v1|AI772930 tomato 486 703 LNU972 tomato|11v1|AI775263 tomato 487 704 LNU975 tomato|11v1|BI422101 tomato 488 705 LNU976 wheat|12v3|CA596628 wheat 489 706 LNU977 wheat|12v3|CK152213 wheat 490 794 LNU760_ H1 brachypodium|12v1|BRADI1G02117 brachypo dium 491 708 LNU832_ H2 sorghum|12v1|SB03G013780 sorghum 492 709 LNU834_ H1 sorghum|12v1|SB02G003380 sorghum 493 710 LNU861_ H3 maize|10v1|CF635645 maize 494 711 LNU859 sorghum|12v1|AW677786 sorghum 495 - Table 1. Provided are the gene names, cluster names, organisms fmor which they are derived, and the sequence identifiers of the polynucleotides and polypeptide sequences. “Polyp.” = polypeptide; “Polyn.” - Polynucleotide.

Example 2 Identification of Homologous (e.g., Orthologous) Sequences That Increase Nitrogen use Efficiency, Fertilizer use Efficiency, Yield, Growth Rate, Vigor, Biomass, Oil Content, Abiotic Stress Tolerance and/or Water use Efficiency in Plants

The concepts of orthology and paralogy have recently been applied to functional characterizations and classifications on the scale of whole-genome comparisons. Orthologs and paralogs constitute two major types of homologs: The first evolved from a common ancestor by specialization, and the latter is related by duplication events. It is assumed that paralogs arising from ancient duplication events are likely to have diverged in function while true orthologs are more likely to retain identical function over evolutionary time.

To further investigate and identify putative orthologs of the genes affecting nitrogen use efficiency, fertilizer use efficiency, yield (e.g., seed yield, oil yield, biomass, grain quantity and/or quality), growth rate, vigor, biomass, oil content, abiotic stress tolerance and/or water use efficiency, all sequences were aligned using the BLAST (/Basic Local Alignment Search Tool/). Sequences sufficiently similar were tentatively grouped. These putative orthologs were further organized under a Phylogram - a branching diagram (tree) assumed to be a representation of the evolutionary relationships among the biological taxa. Putative ortholog groups were analyzed as to their agreement with the phylogram and in cases of disagreements these ortholog groups were broken accordingly. Expression data was analyzed and the EST libraries were classified using a fixed vocabulary of custom terms such as developmental stages (e.g., genes showing similar expression profile through development with up regulation at specific stage, such as at the seed filling stage) and/or plant organ (e.g., genes showing similar expression profile across their organs with up regulation at specific organs such as seed). The annotations from all the ESTs clustered to a gene were analyzed statistically by comparing their frequency in the cluster versus their abundance in the database, allowing the construction of a numeric and graphic expression profile of that gene, which is termed “digital expression”. The rationale of using these two complementary methods with methods of phenotypic association studies of QTLs, SNPs and phenotype expression correlation is based on the assumption that true orthologs are likely to retain identical function over evolutionary time. These methods provide different sets of indications on function similarities between two homologous genes, similarities in the sequence level - identical amino acids in the protein domains and similarity in expression profiles.

The search and identification of homologous genes involves the screening of sequence information available, for example, in public databases, which include but are not limited to the DNA Database of Japan (DDBJ), Genbank, and the European Molecular Biology Laboratory Nucleic Acid Sequence Database (EMBL) or versions thereof or the MIPS database. A number of different search algorithms have been developed, including but not limited to the suite of programs referred to as BLAST programs. There are five implementations of BLAST, three designed for nucleotide sequence queries (BLASTN, BLASTX, and TBLASTX) and two designed for protein sequence queries (BLASTP and TBLASTN) (Coulson, Trends in Biotechnology: 76-80, 1994; Birren et al., Genome Analysis, I: 543, 1997). Such methods involve alignment and comparison of sequences. The BLAST algorithm calculates percent sequence identity and performs a statistical analysis of the similarity between the two sequences. The software for performing BLAST analysis is publicly available through the National Centre for Biotechnology Information. Other such software or algorithms are GAP, BESTFIT, FASTA and TFASTA. GAP uses the algorithm of Needleman and Wunsch (J. Mol. Biol. 48: 443-453, 1970) to find the alignment of two complete sequences that maximizes the number of matches and minimizes the number of gaps.

The homologous genes may belong to the same gene family. The analysis of a gene family may be carried out using sequence similarity analysis. To perform this analysis one may use standard programs for multiple alignments e.g. Clustal W. A neighbor-joining tree of the proteins homologous to the genes of some embodiments of the invention may be used to provide an overview of structural and ancestral relationships. Sequence identity may be calculated using an alignment program as described above. It is expected that other plants will carry a similar functional gene (orthologue) or a family of similar genes and those genes will provide the same preferred phenotype as the genes presented here. Advantageously, these family members may be useful in the methods of some embodiments of the invention. Example of other plants include, but not limited to, barley (Hordeum vulgare), Arabidopsis (Arabidopsis thaliana), maize (Zea mays), cotton (Gossypium), Oilseed rape (Brassica napus), Rice (Oryza sativa), Sugar cane (Saccharum officinarum), Sorghum (Sorghum bicolor), Soybean (Glycine max), Sunflower (Helianthus annuus), Tomato (Lycopersicon esculentum) and Wheat (Triticum aestivum).

The above-mentioned analyses for sequence homology is preferably carried out on a full-length sequence, but may also be based on a comparison of certain regions such as conserved domains. The identification of such domains would also be well within the realm of the person skilled in the art and would involve, for example, a computer readable format of the nucleic acids of some embodiments of the invention, the use of alignment software programs and the use of publicly available information on protein domains, conserved motifs and boxes. This information is available in the PRODOM (biochem (dot) ucl (dot) ac (dot) uk/bsm/dbbrowser/protocol/prodomqry (dot) html), PIR (pir (dot) Georgetown (dot) edu/) or Pfam (sanger (dot) ac (dot) uk/Software/Pfam/) database. Sequence analysis programs designed for motif searching may be used for identification of fragments, regions and conserved domains as mentioned above. Preferred computer programs include, but are not limited to, MEME, SIGNALSCAN, and GENESCAN.

A person skilled in the art may use the homologous sequences provided herein to find similar sequences in other species and other organisms. Homologues of a protein encompass, peptides, oligopeptides, polypeptides, proteins and enzymes having amino acid substitutions, deletions and/or insertions relative to the unmodified protein in question and having similar biological and functional activity as the unmodified protein from which they are derived. To produce such homologues, amino acids of the protein may be replaced by other amino acids having similar properties (conservative changes, such as similar hydrophobicity, hydrophilicity, antigenicity, propensity to form or break a-helical structures or 3-sheet structures). Conservative substitution Tables are well known in the art [see for example Creighton (1984) Proteins. W.H. Freeman and Company]. Homologues of a nucleic acid encompass nucleic acids having nucleotide substitutions, deletions and/or insertions relative to the unmodified nucleic acid in question and having similar biological and functional activity as the unmodified nucleic acid from which they are derived.

Polynucleotides and polypeptides with significant homology to the identified genes described in Table 1 (Example 1 above) were identified from the databases using BLAST software with the Blastp and tBlastn algorithms as filters for the first stage, and the needle (EMBOSS package) or Frame+ algorithm alignment for the second stage. Local identity (Blast alignments) was defined with a very permissive cutoff - 60% Identity on a span of 60% of the sequences lengths because it is used only as a filter for the global alignment stage. The default filtering of the Blast package was not utilized (by setting the parameter “-F F”).

In the second stage, homologs were defined based on a global identity of at least 80% to the core gene polypeptide sequence. Two distinct forms for finding the optimal global alignment for protein or nucleotide sequences were used in this application:

  • 1. Between two proteins (following the blastp filter): EMBOSS-6.0.1 Needleman-Wunsch algorithm with the following modified parameters: gapopen=8 gapextend=2. The rest of the parameters were unchanged from the default options described hereinabove.
  • 2. Between a protein sequence and a nucleotide sequence (following the tblastn filter):
GenCore 6.0 OneModel application utilizing the Frame+ algorithm with the following parameters: model=frame+_p2n.model mode=qglobal -q=protein.sequence -db= nucleotide.sequence. The rest of the parameters are unchanged from the default options described hereinabove.

The query polypeptide sequences were SEQ ID NOs: 496-794 and the query polynucleotides were SEQ ID NOs: 1-495, and the identified orthologous and homologous sequences having at least 80% global sequence identity are provided in Table 2, below. These homologous genes are expected to increase plant yield, seed yield, oil yield, oil content, growth rate, fiber yield, fiber quality, fiber length, photosynthetic capacity, biomass, vigor, ABST and/or NUE of a plant.

TABLE 2 Homologues (e.g., orthologues) of the identified genes/polypeptides for increasing nitrogen use efficiency, fertilizer use efficiency, yield, seed yield, growth rate, vigor, biomass, oil content, fiber yield, fiber quality, fiber length, abiotic stress tolerance and/or water use efficiency of a plant Hom. Name Organism / Cluster tag Polyn. SEQ ID NO: Polyp. SEQ ID NO: Hom. To SEQ ID NO: Global Ident. Algor. LNU751_H1 wheat|12v3|CA652300 795 2898 498 89.1 globlastp LNU751_H2 rye|12v1|DRR001012339395 796 2899 498 88.45 glotblastn LNU752_H3 rye|12v1|DRR001012155230 797 2900 499 96.4 globlastp LNU752_H4 oat|11v11GR316906_P1 798 2901 499 90.7 globlastp LNU752_H5 brachypodium|12v1IBRADI2G38247_P1 799 2902 499 88.4 globlastp LNU752_H6 rye|12v1|DRR001012.244869 800 2903 499 84.8 globlastp LNU753_H1 pseudoroegnerialgb167|FF341151 801 2904 500 96.4 globlastp LNU753_H2 wheat|12v3|CA619061 802 2905 500 95.5 globlastp LNU753_H3 rye|12v1|DRR001013.175630 803 2906 500 93.7 globlastp LNU753_H4 brachypodium|12v1|BRADI1G76060_T1 804 2907 500 90.6 glotblastn LNU753_H5 rice|11v1|GFXAC099399X6 805 2908 500 87 globlastp LNU753_H6 barley|12v1|BE060847_P1 806 2909 500 80.3 globlastp LNU753_H7 wheat|12v3|BF474874 807 2910 500 80.3 globlastp LNU753_H8 rice|11V1|BM037785 808 2911 500 80 globlastp LNU754_H1 wheat|12v3|BE413658 809 2912 501 95.8 globlastp LNU754_H2 leymus|gb166|EG390263_P1 810 2913 501 95 globlastp LNU754_H3 pseudoroegneria|gb167|FF349286 811 2914 501 95 globlastp LNU754_H4 rye|12v1|DRR001012.101669 812 2915 501 95 globlastp LNU754_H5 brachypodium|12v1IBRADI2G06900_P1 813 2916 501 91.2 globlastp LNU754_H6 oat|11v1|GR365468_P1 814 2917 501 88.7 globlastp LNU754_H7 sorghum|2vlISB03G001930 815 2918 501 85.4 globlastp LNU754_H8 millet|10v1|EV0454PM027276_P1 816 2919 501 84.1 globlastp LNU754_H9 maize|10vl|AI600590_P1 817 2920 501 83.9 globlastp LNU754_H1 3 switchgrass|12v1|FE624722_P1 818 2921 501 83.7 globlastp LNU754_H1 0 foxtail_millet|11v3|PHY7SI002752M_P1 819 2922 501 83.3 globlastp LNU754_H1 1 rice|11v1|BE228738 820 2923 501 82 globlastp LNU754_H1 2 switchgrasslgb167|FE624722 821 2924 501 82 globlastp LNU756_H1 rye|12v1|DRR001012.433563 822 2925 502 94.9 globlastp LNU756_H2 rye|12v1|BE493902 823 2926 502 94.6 globlastp LNU756_H3 rye|12v1|DRR001012.24867 824 2926 502 94.6 globlastp LNU756_H4 wheat|12v3|BG606914 825 2927 502 94.6 globlastp LNU756_H5 brachypodium|12v1IBRADI2G24030_P1 826 2928 502 93.5 globlastp LNU756_H6 oat|11v1|GR329669_Pl 827 2929 502 92.4 globlastp LNU756_H7 rice|11v1|BF475232 828 2930 502 82.61 glotblastn LNU756_H8 foxtail_millet|11v3|EC612148_P1 829 2931 502 81.5 globlastp LNU756_H9 sugarcane|1Ov1|BU103174 830 2932 502 80.4 globlastp LNU756_H10 sorghum|12v1|SB09G021710 831 2933 502 80.1 globlastp LNU756_H12 switchgrass|112v1|DN150091_P1 832 2934 502 80 globlastp LNU756_H11 switchgrass|gb167|DN150091 833 2934 502 80 globlastp LNU757_H1 wheat|12v3|CA645023 834 2935 503 98.2 globlastp LNU757_H2 rye|12v1|DRR001012.10473 835 2936 503 97 globlastp LNU757_H3 rye|12v1|DRR001012.121839 836 2937 503 97 globlastp LNU757_H4 rye1|2v1|DRR001012.768638 837 2938 503 95.9 globlastp LNU757_H5 wheat|12v3|BE426208 838 2939 503 93.5 globlastp LNU757_H6 oat|11v1|GR328666_P1 839 2940 503 91.8 globlastp LNU758_H1 wheat|12v3|BG906982 840 2941 504 91.6 globlastp LNU758_H2 pseudoroegneria|gb167|FF345629 841 2942 504 87.1 globlastp LNU759_H1 rye|12v1|DRR001012.140285 842 2943 505 94 globlastp LNU759_H2 wheat|12v3|CA742547 843 2944 505 93 globlastp LNU759_H3 wheat|12v3|SRR043326X66986D1 844 2944 505 93 globlastp LNU759_H4 foxtail_millet|1lv3|PHY7SI023760M_Pl 845 2945 505 90 globlastp LNU759_H5 rice|11v1|CF293997 846 2946 505 87.4 globlastp LNU759_H11 switchgrass|12v1|FL787656_P1 847 2947 505 87 globlastp LNU759_H6 switchgrass|gb167|FL787656 848 2947 505 87 globlastp LNU759_H7 cynodon|10v1|ES299636_Pl 849 2948 505 86.1 globlastp LNU759_H12 switchgrass|12v1|FL779827_P1 850 2949 505 86 globlastp LNU759_H8 sorghuml12vISB09G022720 851 2950 505 83.5 globlastp LNU759_H9 brachypodium|12v1IBRADI2G23060_P1 852 2951 505 82.2 globlastp LNU759_H1 0 maize|10vl|EE680335_Pl 853 2952 505 82 globlastp LNU760_H2 pseudoroegnerialgb167|FF358412 854 2953 506 86.75 glotblastn LNU760_H3 rye|12v1|DRR001014.135934 855 2954 506 81.13 glotblastn LNU760_H4 switchgrass|12v1|FL773680_T1 856 2955 506 80.13 glotblastn LNU761_H1 wheat|12v3|BQ170294 857 2956 507 96.1 globlastp LNU761_H2 wheat|12v3|BG263661 858 2957 507 95.3 globlastp LNU761_H3 rye|12v1|BF429268 859 2958 507 95.1 globlastp LNU761_H4 brachypodium|12v1IBRADI2G61140_P1 860 2959 507 84.7 globlastp LNU761_H5 foxtail_millet|11v3|PHY7SI001000M_P1 861 2960 507 84.5 globlastp LNU761_H9 switchgrass|12v1|FE627078_P1 862 2961 507 83.8 globlastp LNU761_H6 switchgrass|gb167|FE605627 863 2962 507 82.8 globlastp LNU761_H7 rice|11v1|CR278964 864 2963 507 82.6 globlastp LNU761_H8 sorghum|2vlISB03G046200 865 2964 507 81.2 globlastp LNU762_H1 rye|12v1|DRR001012.142840 866 2965 508 93.9 globlastp LNU762_H2 rye|12v1|DRR001012.108084 867 2966 508 93.6 globlastp LNU762_H3 wheat|12v3|CA653618 868 2967 508 92.5 globlastp LNU762_H4 brachypodium|12v1IBRADI5G07300_Pl 869 2968 508 87.1 globlastp LNU762_H5 foxtail_millet|11v3|EC613160_P1 870 2969 508 81 globlastp LNU763_H1 wheat|12v3|BE517537 871 2970 509 93.3 globlastp LNU763_H2 pseudoroegneria|gb167|FF345 576 872 2971 509 91.3 globlastp LNU763_H3 rye|12v1|DRR001012.538230 873 2972 509 89.7 globlastp LNU763_H4 rye|12v1|DRR001012.104458 874 2973 509 89.1 globlastp LNU763_H5 rye|12v1|DRR001012.104992 875 2974 509 89.1 globlastp LNU763_H6 rye|12v1|DRR001012.307746 876 2975 509 89.1 glotblastn LNU763_H7 rye|12v1|DRR001012.403113 877 2976 509 86.58 glotblastn LNU764_H1 wheat|12v3|BE419722 878 2977 510 96 globlastp LNU764_H2 rye|12v1|DRR001012.148705 879 2978 510 95.6 globlastp LNU764_H3 wheat|12v3|AL817877 880 2979 510 94.8 globlastp LNU764_H4 rye|12v1|CB680462 881 2980 510 83.8 globlastp LNU764_H5 brachypodium|12v1IBRADI3G14080_P1 882 2981 510 83.6 globlastp LNU764_H6 sorghum|12vlISB07G002140 883 2982 510 82.4 globlastp LNU764_H7 foxtail_millet|11v3|EC613412_P1 884 2983 510 81.3 globlastp LNU764_H9 switchgrass|112v1|FE638335_P1 885 2984 510 80.9 globlastp LNU764_H8 switchgrass|gb167|FE649051 886 2985 510 80.57 glotblastn LNU764_H10 switchgrass|12v1|FL754424_P1 887 2986 510 80.3 globlastp LNU766_H1 wheat|12v3|BF483178 888 2987 511 96.6 globlastp LNU766_H2 rye|12v1|DRR001012.107386 889 2988 511 96.14 glotblastn LNU766_H3 brachypodiuml12v1IBRADI2G62060_T1 890 2989 511 90.68 glotblastn LNU766_H5 ricel11v1lBM419326 891 2990 511 85.8 globlastp LNU766_H6 foxtail_milletl11v3lGT090868_P1 892 2991 511 85.5 globlastp LNU766_H11 switchgrassl12v1lDT948944_P1 893 2992 511 85.4 globlastp LNU766_H12 switchgrassl12v1lFE657698_P1 894 2993 511 85.3 globlastp LNU766_H7 milletl10v1lEV0454PM004168_P1 895 2994 511 84.9 globlastp LNU766_H8 ryel12v1lDRR001012.124126 896 2995 511 84.7 globlastp LNU766_H9 maizel10v1lBM259345_P1 897 2996 511 84.5 globlastp LNU766_H10 sorghuml12v1lSB10G025840 898 2997 511 84.4 globlastp LNU767_H1 ryel12v1lDRR001012.555545 899 2998 512 92.3 globlastp LNU767_H2 wheatl12v3lBE419870 900 2999 512 91.2 globlastp LNU767_H3 loliuml10v1lAU246334_P1 901 3000 512 84.6 globlastp LNU768_H1 wheatl12v3lBI479814 902 3001 513 99.1 globlastp LNU768_H2 ryel12v1IDRR001013.174965 903 3002 513 98.2 globlastp LNU768_H3 ryel12v1IDRR001012.20806 904 3003 513 97.8 globlastp LNU768_H4 ryel12v1lDRR001012.266041 905 3004 513 97.35 glotblastn LNU768_H5 brachypodiuml12v1lBRADI2G56682_P1 906 3005 513 93.4 globlastp LNU768_H6 ricel11v1lCF294088 907 3006 513 93.4 globlastp LNU768_H15 switchgrassl12v1lFL692202_P1 908 3007 513 92.5 globlastp LNU768_H7 sorghuml12v1lSB01G021690 909 3008 513 92.5 globlastp LNU768_H8 switchgrasslgb167lFL692202 910 3007 513 92.5 globlastp LNU768_H9 maizel10v1lAI941829_P1 911 3009 513 92 globlastp LNU768_H16 switchgrassl12v1lGD014223_P1 912 3010 513 91.2 globlastp LNU768_H10 foxtail milletl11v3lPHY7SI034560M_T1 913 3011 513 90.35 glotblastn LNU768_H11 sugarcanel10v1lBQ536826 914 3012 513 90.3 globlastp LNU768_H12 oatl11v1lG0596074_P1 915 3013 513 84.5 globlastp LNU768_H13 amborellal12v3lSRR038634.15775_P1 916 3014 513 80.1 globlastp LNU768_H1 4 pineapplel10v1lDT336500_P1 917 3015 513 80.1 globlastp LNU769_H8 brachypodiuml12v1IBRADI4G21820_P1 918 3016 514 82.4 globlastp LNU769_H1 3 brachypodiuml12v1IBRADI2G16170_P1 919 3017 514 80.8 globlastp LNU769_H1 4 sorghuml12v1lSB05G007470 920 3018 514 80.8 globlastp LNU770_H1 wheatl12v3lBE398561 921 3019 515 96 globlastp LNU770_H2 ryel12v1lDRR001012.712789 922 3020 515 94.8 globlastp LNU770_H3 brachypodiuml12v1lBRADI1G56870­_P1 923 3021 515 82 globlastp LNU772_H1 wheatl12v3lBM135473 924 3022 517 96 globlastp LNU772_H2 ryel12v1lDRR001012.142915 925 3023 517 93.5 globlastp LNU772_H3 ryel12v1lDRR001012.612512 926 3024 517 93 globlastp LNU772_H4 brachypodiuml12v1IBRADI3G08480_P1 927 3025 517 90.5 globlastp LNU772_H5 oatl11v1lGO592678_P1 928 3026 517 88.9 globlastp LNU772_H8 milletl10v1lEV0454PM022643_P1 929 3027 517 86.6 globlastp LNU772_H6 ricel11v1lCB000951 930 3028 517 86.3 globlastp LNU772_H9 foxtail_milletl11v3lPHY7SI01870M_P1 931 3029 517 86 globlastp LNU772_H1 5 switchgrassl12v1lDN144396_P1 932 3030 517 84.3 globlastp LNU772_H13 sorghuml12v1lSB04G008000 933 3031 517 83.9 globlastp LNU772_H10 switchgrasslgb167lDN144396 934 3032 517 83.8 globlastp LNU772_H11 maizel10v1lAA979978_P1 935 3033 517 83.7 globlastp LNU772_H14 cynodonl10v1lES292031­_P1 936 3034 517 82.1 globlastp LNU773_H1 ryel12v1lDRR001012.115164 937 3035 518 94.6 globlastp LNU773_H2 brachypodiuml12v1lBRADI1G02440­_P1 938 3036 518 84.1 globlastp LNU773_H3 foxtail milletl1lv3lPHY7SI034229M_P1 939 3037 518 82.1 globlastp LNU773_H4 foxtail_milletl11v3lSICRP053164_P1 940 3037 518 82.1 globlastp LNU773_H5 ricel11v1lCB634493 941 3038 518 81.5 globlastp LNU774_H1 brachypodiuml12v1IBRADI4G38810P1 942 3039 519 82.9 globlastp LNU775_H1 ryel12v1lDRR001012.110859 943 3040 520 93.5 globlastp LNU775_H2 wheatl12v3lCD937862 944 3041 520 82.8 globlastp LNU775_H3 brachypodiuml12v1IBRADI2G04447_P1 945 3042 520 82.6 globlastp LNU777_H1 ryel12v1lDRR001012.142992 946 3043 522 92.4 globlastp LNU777_H2 ryel12v1lDRR001012.313229 947 3044 522 91.8 globlastp LNU777_H3 wheatl12v3lBE499027 948 3045 522 81.89 glotblastn LNU778_H1 wheatl12v3lBE402486 949 3046 523 96.9 globlastp LNU778_H2 wheatl12v3lSRR073321X42757D1 950 3047 523 96.9 globlastp LNU778_H3 wheatl12v3lCD871315 951 3048 523 91.7 globlastp LNU778_H4 brachypodiuml12v1IBRADI2G46340_P1 952 3049 523 91.6 globlastp LNU778_H5 ricel11v1lBI811994 953 3050 523 87.2 globlastp LNU778_H6 foxtail_milletl11v3lPHY7SI000364M_P1 954 3051 523 85.2 globlastp LNU778_H7 sorghuml12v1lSB03G030890 955 3052 523 85.1 globlastp LNU778_H8 maizel10v1lCA399726_P1 956 3053 523 84.5 globlastp LNU778_H9 maizel10v1lAI615203_T1 957 3054 523 83.35 glotblastn LNU779_H1 pseudoroegnerialgb167lFF346373 958 3055 524 98.1 globlastp LNU779_H2 ryel12v1lBE587009 959 3056 524 97.8 globlastp LNU779_H3 wheatl12v3lBE402818 960 3057 524 97.5 globlastp LNU779_H4 wheatl12v3lBE586120 961 3058 524 97.5 globlastp LNU779_H5 wheatl12v3lCV778626 962 3059 524 96.91 glotblastn LNU779_H6 oatl11v1lCN815634_T1 963 3060 524 94.44 glotblastn LNU779_H7 brachypodiuml12v1IBRADI3G42790_P1 964 3061 524 91.7 globlastp LNU779_H8 ricel11v1lBI794901 965 3062 524 88.6 globlastp LNU779_H9 foxtail_milletl11v3lPHY7SI014086M_P1 966 3063 524 87.7 globlastp LNU779_H10 switchgrasslgb167lDN144658 967 3064 524 87.7 globlastp LNU779_H11 switchgrasslgb167lFE631532 968 3065 524 87.7 globlastp LNU779_H12 milletl10v1lEV0454PM012215_P1 969 3066 524 87.4 globlastp LNU779_H13 maizel10v1lAI649552_P1 970 3067 524 86.8 globlastp LNU779_H14 sorghuml12v1ISB07G024220 971 3068 524 86.8 globlastp LNU779_H15 sugarcanel10v1lCA065962 972 3069 524 86.8 globlastp LNU779_H16 maize10v1lBG354183_P1 973 3070 524 83.7 globlastp LNU779_H17 switchgrassl12v1lFE639284_P1 974 3071 524 81.8 globlastp LNU781_H1 ryel12v1lDRR001012.110372 975 3072 526 98.9 globlastp LNU781_H2 ryel12v1lDRR001012.15876 976 3073 526 97.11 glotblastn LNU781_H3 wheatl12v3lCA666142 977 3074 526 96.1 globlastp LNU781_H4 brachypodiuml12v1lBRADI1G07870_P1 978 3075 526 91.3 globlastp LNU781_H5 foxtailmilletl11v3lEC612060_P1 979 3076 526 84.2 globlastp LNU781_H6 ricel11v1lBI118738 980 3077 526 84 globlastp LNU781_H7 sorghuml12v1lSB01G007340 981 3078 526 83.7 globlastp LNU781_H8 milletl10v1lEVO454PM114571_P1 982 3079 526 82.4 globlastp LNU781_H12 switchgrassl12v1lFL756770_P1 983 3080 526 82.2 globlastp LNU781_H9 maizel10v1lCA403670_P1 984 3081 526 82.2 globlastp LNU781_H10 wheatl12v3lCA593786 985 3082 526 81.84 glotblastn LNU781_H13 switchgrassl12v1lFE611031_P1 986 3083 526 80.8 globlastp LNU781_H11 maizel10v1lBM498386_P1 987 3084 526 80.3 globlastp LNU782_H1 wheatl12v3lBQ788965 988 3085 527 97.9 globlastp LNU782_H2 ryel12v1lDRR001012.594129 989 3086 527 96.2 globlastp LNU783_H1 ryel12v1lDRR001012.216554 990 3087 528 92.8 globlastp LNU783_H2 brachypodiuml12v1IBRADI2G04360_P1 991 3088 528 81.8 globlastp LNU783_H3 ricel11v1lBE040181 992 3089 528 80 globlastp LNU787_H12 ryel12v1lDRR001012.395832 993 3090 532 91.4 globlastp LNU787_H13 ryel12v1lDRR001012.20638 994 3091 532 90.8 globlastp LNU787_H1 pseudoroegnerialgb167lFF355972 995 3092 532 90.5 globlastp LNU787_H2 wheatl12v3lBG909595 996 3093 532 89.9 globlastp LNU787_H4 wheatl12v3lAL821420 997 - 532 89.63 glotblastn LNU787_H9 ricel11v1lAU092213 998 3094 532 87.7 globlastp LNU787_H6 switchgrasslgb167lGD0 10772 999 3095 532 86.5 globlastp LNU787_H8 foxtail_milletl11v3|PHY7SI006894M_P1 1000 3096 532 86.5 globlastp LNU787_H14 switchgrassl12v1lGD010772_P1 1001 3097 532 86.2 globlastp LNU787_H7 cenchruslgb166lEB661125_P1 1002 3098 532 86.2 globlastp LNU787_H10 milletl10v1lEVO454PM055809_T1 1003 - 532 84.97 glotblastn LNU787_H3 leymuslgb166lEG384638_P1 1004 3099 532 84.7 globlastp LNU787_H11 maizel10v1|AI670300_P1 1005 3100 532 83.7 globlastp LNU788_H1 ryel12v1lDRR001012.407094 1006 3101 533 91.4 globlastp LNU788_H2 ryel12v1lDRR001012.189907 1007 3102 533 91.1 globlastp LNU788_H3 wheatl12v3lBE606973 1008 3103 533 90.7 globlastp LNU788_H5 sorghuml12v1lSB10G003000 1009 3104 533 83.3 globlastp LNU789_H1 wheatl12v3lBJ312717 1010 3105 534 93.65 glotblastn LNU789_H2 wheatl12v3lCD898702 1011 3106 534 91.8 globlastp LNU789_H3 ryel12v1lDRR001012.152256 1012 3107 534 91.7 globlastp LNU789_H4 wheatl12v3lAL821622 1013 3108 534 91.1 globlastp LNU789_H5 barleyl12v1lBG344287_P1 1014 3109 534 90.2 globlastp LNU789_H6 foxtailmilletl1lv3lPHY7SI034969M_P1 1015 3110 534 89.2 globlastp LNU789_H7 switchgrasslgb167lFL695828 1016 3111 534 88.6 globlastp LNU789_H8 milletl10v1lEV0454PM015227_P1 1017 3112 534 87 globlastp LNU789_H13 switchgrassl12v1lFL695828_P1 1018 3113 534 86.8 globlastp LNU789_H9 ricel11v1lC27096 1019 3114 534 86.8 globlastp LNU789_H10 sorghuml12v1lSB01G037160 1020 3115 534 86.1 globlastp LNU789_H11 maizel10v1lAI783213_P1 1021 3116 534 85.9 globlastp LNU789_H12 sugarcanel10v1CA066166 1022 3117 534 85.6 globlastp LNU790_H1 ricel11v1lBI804641 1023 3118 535 90.8 globlastp LNU790_H2 maizel10v1lAI461507_P1 1024 3119 535 90.4 globlastp LNU790_H3 sorghuml12v1lSB01G038000 1025 3120 535 90.4 globlastp LNU790_H10 switchgrassl12v1lFE603656_P1 1026 3121 535 90.2 globlastp LNU790_H4 maizel10v1lBI096427_P1 1027 3122 535 90 globlastp LNU790_H5 foxtailmilletl1lv3lPHY7SI035653M_P1 1028 3123 535 89.6 globlastp LNU790_H6 ryel12v1lDRR001012.151815 1029 3124 535 88.6 globlastp LNU790_H7 switchgrasslgb167lDN142553 1030 3125 535 88.52 glotblastn LNU790_H8 milletl10v1lEVO454PM083041_P1 1031 3126 535 86.5 globlastp LNU790_H9 wheatl12v3lCA605241 1032 3127 535 82.3 globlastp LNU791_H1 sorghuml12v1lSB01G041890 1033 3128 536 89.6 globlastp LNU791_H2 wheatl12v3lERR125558X24074D1 1034 3129 536 89.6 globlastp LNU791_H3 ryel12v1lDRR001012.416966 1035 3130 536 88.7 globlastp LNU791_H4 foxtail milletl1lv3lPHY7SI038156M_P1 1036 3131 536 85.8 globlastp LNU791_H5 ricel11v1lCA752611 1037 3132 536 85.8 globlastp LNU791_H6 switchgrasslgb167lFL973644 1038 3133 536 85.8 globlastp LNU791_H7 milletl10v1IPMSLX0872180D1_P1 1039 3134 536 84.9 globlastp LNU792_H1 ryel12v1lGFXFJ374582X1 1040 3135 537 94 globlastp LNU792_H2 barleyl12v1lAV833692_P1 1041 3136 537 93.6 globlastp LNU792_H3 ricel11v1lAU056540 1042 3137 537 89.9 globlastp LNU792_H4 foxtail_milletl11v3lPHY7SI000485M_P1 1043 3138 537 88.7 globlastp LNU792_H10 switchgrassl12v1lFE640305_P1 1044 3139 537 88.3 globlastp LNU792_H5 maizel10v1lAW600616_P1 1045 3140 537 87.7 globlastp LNU792_H6 maizel10v1lCD439418_P1 1046 3141 537 84.7 globlastp LNU792_H7 wheatl12v3lBE412277 1047 3142 537 82.4 globlastp LNU792_H8 sorghuml12v1lSB03G036050 1048 3143 537 82.3 globlastp LNU792_H9 wheatl12v3lCA614780 1049 3144 537 80 globlastp LNU794_H1 wheatl12v3lBF201200 1050 3145 539 96.7 globlastp LNU794_H2 pseudoroegnerialgb167lFF344480 1051 3146 539 96.3 globlastp LNU794_H3 ryel12v1lDRR001012.108384 1052 3147 539 96.3 globlastp LNU794_H4 oatl11v1lGO588032_P1 1053 3148 539 95.5 globlastp LNU794_H5 ricel11v1lAF074750 1054 3149 539 89.8 globlastp LNU794_H13 switchgrassl12v1lFE601825_P1 1055 3150 539 88.5 globlastp LNU794_H6 switchgrasslgb167lFE601825 1056 3150 539 88.5 globlastp LNU794_H7 switchgrasslgb167lFE644897 1057 3151 539 88.1 globlastp LNU794_H8 sugarcanel10v1lCA102960 1058 3152 539 87.7 globlastp LNU794_H9 milled10v1lEVO454PM002886_P1 1059 3153 539 87.3 globlastp LNU794_H10 foxtail_milletl11v3lPHY7SI014266M_P1 1060 3154 539 86.5 globlastp LNU794_H11 sorghuml12v1lSB07G003760 1061 3155 539 86.5 globlastp LNU794_H12 maizel10v1lAI944207_P1 1062 3156 539 84.8 globlastp LNU794_H14 switchgrassl12v1lFL968985_ T1 1063 3157 539 80 glotblastn LNU797_H1 leymuslgb166lEG376487_P1 1064 3158 542 99.6 globlastp LNU797_H2 wheatl12v3lBE400744 1065 3159 542 99.2 globlastp LNU797_H3 wheatl12v3lBE406331 1066 3160 542 99.2 globlastp LNU797_H4 wheatl12v3lCA730405 1067 3159 542 99.2 globlastp LNU797_H5 ryel12v1lBF429235 1068 3161 542 98.7 globlastp LNU797_H6 fescuelgb161lCK801981_P1 1069 3162 542 98.3 globlastp LNU797_H7 oatl11v1lCN816314_P1 1070 3163 542 98.3 globlastp LNU797_H8 oatl11v1lGO589763_P1 1071 3164 542 97.9 globlastp LNU797_H9 ricel11v1lBE039235 1072 3165 542 97.9 globlastp LGP52 sorghuml12v1lSBOSG024560 1073 3166 542 97.5 globlastp LNU797_H10 brachypodiuml12v1IBRADI4G13740T2_P1 1074 3167 542 97.5 globlastp LNU797_H1 1 maizel10v1lAI395988_P1 1075 3166 542 97.5 globlastp LNU797_H1 2 sugarcanel10v1lBQ536939 1076 3166 542 97.5 globlastp LNU797_H1 3 cenchruslgb166lBM084421_P 1 1077 3168 542 97 globlastp LNU797_H1 4 foxtail_millet|11v3|PHY7SI026806M_P1 1078 3168 542 97 globlastp LNU797_H1 5 onion|12v1|CF439938_P1 1079 3169 542 97 globlastp LNU797_H1 6 onion|12v1|CF441222_P1 1080 3170 542 97 globlastp LNU797_H1 7 sorghum|12v1|SB01G046910 1081 3171 542 97 globlastp LGP52_H1 switchgrass|12v1|FE602145_ P1 1082 3172 542 96.6 globlastp LNU797_H1 8 euonymus|11v1|SRR070038X135997_P1 1083 3173 542 96.6 globlastp LNU797_H1 9 fescue|gb161|DT675202_P1 1084 3174 542 96.6 globlastp LNU797_H2 0 maize|10v1|AI714766_P1 1085 3175 542 96.6 globlastp LNU797_H2 1 millet|10v1|EVG454PM001587_P1 1086 3176 542 96.6 globlastp LNU797_H2 2 milletl 10v1|EVO454PM00570 9_P1 1087 3177 542 96.6 globlastp LNU797_H2 3 pseudoroegneria|gb167|FF343 070 1088 3178 542 96.6 globlastp LNU797_H2 4 rye|12v1|DRR001012.101136 1089 3178 542 96.6 globlastp LNU797_H2 5 rye|l2v1|DRR001012.112514 1090 3178 542 96.6 globlastp LNU797_H2 6 rye|12v1|DRR001012.193069 1091 3178 542 96.6 globlastp LNU797_H2 7 switchgrass|gb167|FE602145 1092 3172 542 96.6 globlastp LNU797_H2 8 switchgrass|gb167|FE619094 1093 3172 542 96.6 globlastp LNU797_H2 9 switchgrass|gb167|FE624039 1094 3172 542 96.6 globlastp LNU797_H3 0 arnica|11v1|SRR99034X109165_P1 1095 3179 542 96.2 globlastp LNU797_H3 1 artemisia|10v1|EY043858_P1 1096 3180 542 96.2 globlastp LNU797_H3 2 euonymus|11v1|SRR070038X 195269_P1 1097 3181 542 96.2 globlastp LNU797_H3 3 grape|11v1|GSVIVT01016670001_P1 1098 3182 542 96.2 globlastp LNU797_H3 4 soybean|11v1|GLYMA02G01700 1099 3183 542 96.2 globlastp LNU797_H3 4 soybean|12v1|GLYMA02G01700_P1 1100 3183 542 96.2 globlastp LNU797_H3 5 sunflower|12v1|CD848350 1101 3179 542 96.2 globlastp LNU797_H3 6 sunflowerl12vlIDY926327 1102 3179 542 96.2 globlastp LNU797_H3 7 wheat|12v3|BE398301 1103 3184 542 96.2 globlastp LNU797_H3 8 wheat|12v3|BE638088 1104 3185 542 96.2 globlastp LNU797_H3 9 wheat|12v3|CA616043 1105 3185 542 96.2 globlastp LGP52_H3 bean|12v2|CA898157_P1 1106 3186 542 95.8 globlastp LNU797_H4 0 amsonia|11v1|SRR098688X1 00584_P1 1107 3187 542 95.8 globlastp LNU797_H4 1 barley|12v1|BE420554_P1 1108 3188 542 95.8 globlastp LNU797_H4 2 bean|12v1|CA898157 1109 3186 542 95.8 globlastp LNU797_H4 3 chestnut|gb170|SRR006295S0000440_P1 1110 3189 542 95.8 globlastp LNU797_H4 4 cichorium|gb171|EH695394_P1 1111 3190 542 95.8 globlastp LNU797_H4 5 coffea|10v1|DV681794_P1 1112 3191 542 95.8 globlastp LNU797_H4 6 cotton|11v1|C0098301_P1 1113 3192 542 95.8 globlastp LNU797_H4 7 cowpea|12v1|FF391241_P1 1114 3186 542 95.8 globlastp LNU797_H4 8 dandelion|10v1|DR398974_P 1 1115 3190 542 95.8 globlastp LNU797_H4 9 eschscholzia|11v1|CK745182_P1 1116 3193 542 95.8 globlastp LNU797_H5 0 euonymus|11v1|SRR070038X148521_P1 1117 3194 542 95.8 globlastp LNU797_H5 1 gossypium_raimondii|12v1|DR460270_P1 1118 3195 542 95.8 globlastp LNU797_H5 2 heritieral10v1ISRR005794S00 01293_P1 1119 3196 542 95.8 globlastp LNU797_H5 3 lettuce|12v1|DW046332_P1 1120 3190 542 95.8 globlastp LNU797_H5 4 lotus|09v1|AW720222_P1 1121 3197 542 95.8 globlastp LNU797_H5 5 oak|10v1|FP043285_P1 1122 3189 542 95.8 globlastp LNU797_H5 6 sunflower|12v1|CD849067 1123 3198 542 95.8 globlastp LNU797_H5 7 tabernaemontana|11v1|SRR098689X106530 1124 3199 542 95.8 globlastp LNU797_H5 8 tragopogon|10v1|SRR020205S0002302 1125 3190 542 95.8 globlastp LNU797_H5 9 vinca|11v1|SRR098690X108966 1126 3200 542 95.8 globlastp LNU797_H6 0 vinca|11v1|SRR098690X131739 1127 3201 542 95.8 globlastp LGP52_H2 prunus_mume|13v1|BU045923_P1 1128 3202 542 95.4 globlastp LNU797_H6 1 ambrosia|11v1|SRR346935.111437_P1 1129 3203 542 95.4 globlastp LNU797_H6 2 ambrosia|11v1|SRR346943.182031_P1 1130 3203 542 95.4 globlastp LNU797_H6 3 arnica|11v1|SRR099034X103642_P1 1131 3204 542 95.4 globlastp LNU797_H6 4 banana|12v1|BBS104T3_P1 1132 3205 542 95.4 globlastp LNU797_H6 5 cacao|10v1|CU484574_P1 1133 3206 542 95.4 globlastp LNU797_H6 6 catharanthus|11v1|SRR098691X100536_P1 1134 3207 542 95.4 globlastp LNU797_H6 7 cotton|11v1|BE052796_P1 1135 3208 542 95.4 globlastp LNU797_H6 8 cotton|11v1|BF272890_P1 1136 3209 542 95.4 globlastp LNU797_H6 9 gossypium_raimondii|12v1|BE052796_P1 1137 3208 542 95.4 globlastp LNU797_H7 0 gossypium_raimondii|12v1|BG440472_P1 1138 3209 542 95.4 globlastp LNU797_H7 1 humulus|11v1|ES653444_P1 1139 3210 542 95.4 globlastp LNU797_H7 2 medicago|12v1|BE205283_P1 1140 3211 542 95.4 globlastp LNU797_H7 3 momordical 10v1ISRR071315S0000877_P1 1141 3212 542 95.4 globlastp LNU797_H7 4 nasturtium|11v1|SRR032558.130953_P1 1142 3213 542 95.4 globlastp LNU797_H7 5 poppy|11v1|SRR030261.67760_P1 1143 3214 542 95.4 globlastp LNU797_H7 6 prunus|10v1|BU045923 1144 3202 542 95.4 globlastp LNU797_H7 7 soybean|11v1|GLYMA10G01760 1145 3215 542 95.4 globlastp LNU797_H7 7 soybean|12v1|GLYMA10G01760_P1 1146 3215 542 95.4 globlastp LNU797_H7 8 soybean|11v1|GLYMA10G42650 1147 3213 542 95.4 globlastp LNU797_H7 8 soybean|12v1|GLYMA10G42650_P1 1148 3213 542 95.4 globlastp LNU797_H7 9 soybean|11v1|GLYMA20G24380 1149 3213 542 95.4 globlastp LNU797_H7 9 soybean|12v1IGLYMA20G24380_P1 1150 3213 542 95.4 globlastp LNU797_H8 0 trigonella|11v1ISRR066194X100358 1151 3211 542 95.4 globlastp LNU797_H8 1 wheat|12v3|BE516233 1152 3216 542 95.4 globlastp LNU797_H8 2 clover|gb162|BB904539_T1 1153 3217 542 95.36 glotblastn LNU797_H8 3 tripterygium|11v1|SRR098677X108743 1154 3218 542 95.36 glotblastn LNU797_H8 4 ambrosia|11v1|SRR346935.162287_T1 1155 3219 542 94.94 glotblastn LNU797_H8 5 arabidopsis_lyrata|09v1|JGIAL004906_P1 1156 3220 542 94.9 globlastp LNU797_H8 6 arabidopsis|10v1|AT1G53850_P1 1157 3220 542 94.9 globlastp LNU797_H8 7 arabidopsis|10v1|AT3G14290_P1 1158 3221 542 94.9 globlastp LNU797_H8 8 aristolochia|10v1|FD753041_P1 1159 3222 542 94.9 globlastp LNU797_H8 9 centaurea|gb166|EH720898_P1 1160 3223 542 94.9 globlastp LNU797_H9 0 chelidonium|11v1|SRR084752X101469_P1 1161 3224 542 94.9 globlastp LNU797_H9 1 chickpea|11v1|GR406082 1162 3225 542 94.9 globlastp LNU797_H9 1 chickpea|13v2|GR406082_P1 1163 3225 542 94.9 globlastp LNU797_H9 2 cirsium|11v1|SRR346952.1003064_P1 1164 3223 542 94.9 globlastp LNU797_H9 3 cirsium|11v1|SRR346952.101704_P1 1165 3223 542 94.9 globlastp LNU797_H9 4 clementine|11v1|CF418418_P1 1166 3226 542 94.9 globlastp LNU797_H9 5 cowpea|12v1|FF400036_P1 1167 3227 542 94.9 globlastp LNU797_H9 6 cynara|gb167|GE586707_P1 1168 3223 542 94.9 globlastp LNU797_H9 7 flaveria|11v1|SRR149229.124001_P1 1169 3228 542 94.9 globlastp LNU797_H9 8 flaveria|11v1|SRR149229.164802_P1 1170 3228 542 94.9 globlastp LNU797_H9 9 flaveria|11v1|SRR149229.187551_P1 1171 3228 542 94.9 globlastp LNU797_H1 00 flaveria|11v1|SRR149232.124521_P1 1172 3228 542 94.9 globlastp LNU797_H1 01 kiwi|gb166|FG416367_P1 1173 3229 542 94.9 globlastp LNU797_H1 02 oil_palm|11v1|GH636084_P1 1174 3230 542 94.9 globlastp LNU797_H1 03 orange|11v1|CB322089_PI 1175 3226 542 94.9 globlastp LNU797_H1 04 pea|11v1|AM161973_P1 1176 3231 542 94.9 globlastp LNU797_H1 05 pigeonpea|11v1|SRR054580X 103301_P1 1177 3232 542 94.9 globlastp LNU797_H1 06 poppy|11v1|FG610932_P1 1178 3233 542 94.9 globlastp LNU797_H1 07 safflower|gb162|EL375904 1179 3223 542 94.9 globlastp LNU797_H1 08 scabiosa|11v1|SRR063723X104505 1180 3234 542 94.9 globlastp LNU797_H1 09 valeriana|11v1|SRR099039X102707 1181 3235 542 94.9 globlastp LNU797_H1 10 watermelon|11v1|CK756307 1182 3236 542 94.9 globlastp LNU797_H1 11 antirrhinum|gb166|AJ793100_T1 1183 3237 542 94.51 glotblastn LNU797_H1 12 sarracenia|11v1|SRR192669.135220 1184 3238 542 94.51 glotblastn LGP52_H4 bean|12v2|CA905741_P1 1185 3239 542 94.5 globlastp LNU797_H1 13 arabidopsis_lyrata|09v1|JGIAL009899_P1 1186 3240 542 94.5 globlastp LNU797_H1 14 bean|12v1|CA905741 1187 3239 542 94.5 globlastp LNU797_H1 15 beech|11v1|SRR006293.26585_P1 1188 3241 542 94.5 globlastp LNU797_H1 16 beech|11v1|SRR006293.2685 9_P1 1189 3241 542 94.5 globlastp LNU797_H1 17 blueberry|12v1|CV090936_P1 1190 3242 542 94.5 globlastp LNU797_H1 18 blueberry|12v1|SRR353282X53162D1_P1 1191 3243 542 94.5 globlastp LNU797_H1 19 cleome_spinosa|10v1|GR932132_P1 1192 3244 542 94.5 globlastp LNU797_H1 20 eschscholzia|11v1|SRR014116.104453_P1 1193 3245 542 94.5 globlastp LNU797_H1 21 euphorbia|11v1|DV112478_P 1 1194 3246 542 94.5 globlastp LNU797_H1 22 oil_palm|11v1|EL688733_P1 1195 3247 542 94.5 globlastp LNU797_H1 23 peanut|10v1|CX128176_P1 1196 3248 542 94.5 globlastp LNU797_H1 24 salvia|10v1|SRR01455350016175 1197 3249 542 94.5 globlastp LNU797_H1 25 sesame|12v1|SESI12V1222326 1198 3250 542 94.5 globlastp LNU797_H1 26 thellungiella_parvulum|11v1|BY811542 1199 3251 542 94.5 globlastp LNU797_H1 27 apple|11v1|CN544917_P1 1200 3252 542 94.1 globlastp LNU797_H1 28 b_juncea|12v1|E6ANDIZ01A5869_P1 1201 3253 542 94.1 globlastp LNU797_H1 29 b_juncea|12v1|E6ANDIZ01AGQ24_P1 1202 3254 542 94.1 globlastp LNU797_H1 30 b_j uncea|12v1|E6ANDIZ01B06M7_P1 1203 3255 542 94.1 globlastp LNU797_H1 31 b_juncea|12v1|E6ANDIZ01BBFFF_P1 1204 3256 542 94.1 globlastp LNU797_H1 32 b_rapa|11v1|CD821133_P1 1205 3257 542 94.1 globlastp LNU797_H1 33 b_rapa|11v1|CD824786_P1 1206 3255 542 94.1 globlastp LNU797_H1 34 canola|11v1|CN734250_P1 1207 3257 542 94.1 globlastp LNU797_H1 35 canola|11v1|CN736323_P1 1208 3255 542 94.1 globlastp LNU797_H1 36 canola|11v1|EE457068_P1 1209 3255 542 94.1 globlastp LNU797_H1 37 cleome_spinosa|10v1|GR931830_P1 1210 3258 542 94.1 globlastp LNU797_H1 38 cucurbita|11v1|FG227107_P1 1211 3259 542 94.1 globlastp LNU797_H1 39 eucalyptus|11v2|CD669666_P1 1212 3260 542 94.1 globlastp LNU797_H1 40 euphorbia|11v1|SRR098678X123510_P1 1213 3261 542 94.1 globlastp LNU797_H1 41 fagopyrum|11v1ISRR063703X104315_P1 1214 3262 542 94.1 globlastp LNU797_H1 42 flaveria|11v1|SRR149229.113631_P1 1215 3263 542 94.1 globlastp LNU797_H1 43 orobanche|10v1|SRR023189S0023437_P1 1216 3264 542 94.1 globlastp LNU797_H1 44 phalaenopsis|11v1|CB033196_P1 1217 3265 542 94.1 globlastp LNU797_H1 45 platanus|11v1|SRR096786X100928_P1 1218 3266 542 94.1 globlastp LNU797_H1 46 poppy|11v1|FE964610_P1 1219 3267 542 94.1 globlastp LNU797_H1 47 radish|gb164|EV528186 1220 3255 542 94.1 globlastp LNU797_H1 48 spurge|gb161|DV112478 1221 3268 542 94.1 globlastp LNU797_H1 49 tobacco|gb162|AB001552 1222 3269 542 94.1 globlastp LNU797_H1 50 triphysaria|10v1|EX999501 1223 3270 542 94.1 globlastp LNU797_H1 51 triphysaria|10v1|EY014414 1224 3271 542 94.1 globlastp LNU797_H2 16 olea|13v1|SRR014463X18338D1_P1 1225 3272 542 94.1 globlastp LNU797_H1 52 ginseng|10v1|CN845666_T1 1226 3273 542 94.09 glotblastn LNU797_H1 53 sarracenia|11v1|SRR192669.1 05817 1227 3274 542 94.09 glotblastn LGP52_H5 castorbean|12v1|EE260427_P1 1228 3275 542 93.7 globlastp LGP52_H7 monkeyflowerl12vlIDV206269_P1 1229 3276 542 93.7 globlastp LNU797_H1 54 b_oleracea|gb161|DY026308_ P1 1230 3277 542 93.7 globlastp LNU797_H1 55 b_rapa|11v1|BG543962_P1 1231 3277 542 93.7 globlastp LNU797_H1 56 canola|11v1|DY006413_P1 1232 3277 542 93.7 globlastp LNU797_H1 57 canola|11v1|EE454294_P1 1233 3278 542 93.7 globlastp LNU797_H1 58 canola|11v1|EE454622_P1 1234 3277 542 93.7 globlastp LNU797_H1 60 cleome_gynandra|10v1|SRR015532S0002255_P1 1235 3279 542 93.7 globlastp LNU797_H1 61 cucumber|09v1|CK756307_P1 1236 3280 542 93.7 globlastp LNU797_H1 62 cucurbita|11v1|SRRO91276X151710_P1 1237 3281 542 93.7 globlastp LNU797_H1 63 hornbeam|12v1|SRR364455.122361_P1 1238 3282 542 93.7 globlastp LNU797_H1 64 ipomoea_nil|10v1|BJ559450_P1 1239 3283 542 93.7 globlastp LNU797_H1 65 melon|10v1|DV633226_P1 1240 3280 542 93.7 globlastp LNU797_H1 67 phylal11v2|SRR099035X105603_P1 1241 3284 542 93.7 globlastp LNU797_H1 68 poppy|11v1|SRR030259.236762_P1 1242 3285 542 93.7 globlastp LNU797_H1 69 radishlgb164|EV532244 1243 3277 542 93.7 globlastp LNU797_H1 70 radishlgb164|EV544576 1244 3286 542 93.7 globlastp LNU797_H1 71 radishlgb164|EW724310 1245 3287 542 93.7 globlastp LNU797_H1 72 radishlgb164|EX895850 1246 3277 542 93.7 globlastp LNU797_H1 73 solanum_phurejal09v1ISPHAJ487384 1247 3288 542 93.7 globlastp LNU797_H1 74 tomato|11v1|AB001552 1248 3289 542 93.7 globlastp LNU797_H1 75 tomato|11v1|AJ487384 1249 3288 542 93.7 globlastp LNU797_H1 88 poplar|13v1|3BU823181_P1 1250 3290 542 93.7 globlastp LNU797_H1 76 cassava|09v1IJGICASSAVA42237VALIDM1_T1 1251 3291 542 93.67 glotblastn LNU797_H1 77 fagopyrum|11v1ISRR063689X100469_T1 1252 3292 542 93.67 glotblastn LNU797_H1 78 fraxinus|11v1ISRR058827.113356_T1 1253 3293 542 93.67 glotblastn LNU797_H1 79 fraxinus|11v1ISRR058827.100546_T1 1254 3293 542 93.25 glotblastn LNU797_H1 80 platanus|11v1|SRR096786X125700_T1 1255 3294 542 93.25 glotblastn LGP52_H6 monkeyflower|12v1IDV206044_P1 1256 3295 542 93.2 globlastp LGP52_H8 nicotiana_benthamiana|12v1|BP748670_P1 1257 3296 542 93.2 globlastp LGP52_H10 nicotiana_benthamiana|12v1|CN747657_P1 1258 3297 542 93.2 globlastp LNU797_H1 81 fraxinus|11v1ISRR058827.105716_P1 1259 3298 542 93.2 globlastp LNU797_H1 82 ginger|gb164|DY345083_P1 1260 3299 542 93.2 globlastp LNU797_H1 83 jatropha|09v1|FM889898_P1 1261 3300 542 93.2 globlastp LNU797_H1 84 monkeyflowerl10v1IDV206044 1262 3295 542 93.2 globlastp LNU797_H1 85 orobanche|10v1ISRR023189S0003752_P1 1263 3301 542 93.2 globlastp LNU797_H1 86 pepper|12v1|BM067274_P1 1264 3302 542 93.2 globlastp LNU797_H1 87 phyla|11v2|SRR099035X28578_P1 1265 3303 542 93.2 globlastp LNU797_H1 88 poplar|10v1|BU823181 1266 3304 542 93.2 globlastp LNU797_H1 89 poplar|10v1|BU887035 1267 3305 542 93.2 globlastp LNU797_H1 89 poplar|13v1|BU887035_P1 1268 3305 542 93.2 globlastp LNU797_H1 90 rose|12v1|EC589334 1269 3306 542 93.2 globlastp LNU797_H1 91 salvia|10v1|FE536702 1270 3307 542 93.2 globlastp LNU797_H1 92 strawberryl11v1IDV439642 1271 3308 542 93.2 globlastp LNU797_H1 93 tobaccolgb162|CV018545 1272 3309 542 93.2 globlastp LNU797_H1 94 thellungiella_halophilum|11v1v1IBY811542 1273 3310 542 92.83 glotblastn LNU797_H2 62 nicotiana_benthamiana|12v1|EB425542_P1 1274 3311 542 92.8 globlastp LGP52_H9 zoster|12v1|AM766202_P1 1275 3312 542 92.8 globlastp LNU797_H1 95 eggplant|10v1|FS014765_P1 1276 3313 542 92.8 globlastp LNU797_H1 96 nuphar|gb166|CK746396_P1 1277 3314 542 92.8 globlastp LNU797_H1 97 partheniuml10v1IGW780462_P1 1278 3315 542 92.8 globlastp LNU797_H1 98 phalaenopsis|11v1ICB032504_P1 1279 3316 542 92.8 globlastp LNU797_H1 99 zosteral10v1IAM766202 1280 3312 542 92.8 globlastp LNU797_H2 00 banana|12v1|DN239316_P1 1281 3317 542 92.6 globlastp LNU797_H2 01 rye|12v1|DRR001012.220584 1282 3318 542 92.41 glotblastn LNU797_H2 63 olea|13v1|SRR014464X10873D1_P1 1283 3319 542 92.4 globlastp LGP52_H11 olea|13v|SRR014463X25018 D1_P1 1284 3320 542 92.4 globlastp LNU797_H2 02 amorphophallus|11v2|SRR08951X147361_P1 1285 3321 542 92.4 globlastp LNU797_H2 03 antirrhinum|gb166|AJ798448_P1 1286 3322 542 92.4 globlastp LNU797_H2 04 silene|11v1|GH294688 1287 3323 542 92.4 globlastp LNU797_H2 05 cycas|gb166|DR061950_P1 1288 3324 542 92 globlastp LNU797_H2 06 tobacco|gb162|EB425542 1289 3325 542 92 globlastp LNU797_H2 07 euphorbia|11v1|BP961521_T1 1290 3326 542 91.98 glotblastn LNU797_H2 08 zamia|gb166|FD773811 1291 3327 542 91.6 globlastp LNU797_H2 09 lovegrass|gb167|EH183763_T1 1292 3328 542 91.14 glotblastn LNU797_H2 10 tripterygium|11vlISRR098677X101097 1293 3329 542 91.1 globlastp LNU797_H2 11 vinca|11v1ISRR098690X109756 1294 3330 542 91.1 globlastp LNU797_H2 12 banana|12v1IMAGEN2012011862_P1 1295 3331 542 90.7 globlastp LNU797_H2 13 clementine|11v1|EY827323_T1 1296 3332 542 90.3 glotblastn LNU797_H2 14 orange|11v1|CF835946_T1 1297 3333 542 90.3 glotblastn LGP52_H12 nicotiana_benthamiana|12v1|FG198486_P1 1298 3334 542 90.1 globlastp LNU797_H2 15 aquilegia|10v2|DR919315_P1 1299 3335 542 90 globlastp LNU797_H2 16 olea|11v1|SRR014463.18338 1300 3336 542 89.8 globlastp LNU797_H2 17 petunia|gb171|FN002916_P1 1301 3337 542 89.8 globlastp LNU797_H2 18 guizotia|10v1|GE558856_P1 1302 3338 542 89.5 globlastp LNU797_H2 19 partheniuml10v1IGW785978_ P1 1303 3339 542 89.5 globlastp LNU797_H2 20 liriodendron|gb166ICK757590 _T1 1304 3340 542 89.03 glotblastn LNU797_H2 21 rye|12v1|DRR001012.749006 1305 3341 542 88.43 glotblastn LNU797_H2 22 ceratodon|10v1|SRR074890S0022447_P1 1306 3342 542 88.2 globlastp LGP52_H13 nicotiana_benthamiana|12v1|EH620293_T1 1307 3343 542 88.19 glotblastn LNU797_H2 23 ambrosia|11v1|SRR346943.100828_T1 1308 3344 542 87.76 glotblastn LNU797_H2 24 fraxinus|11v1ISRR058827.123528_T1 1309 3345 542 87.76 glotblastn LNU797_H2 25 physcomitrella|10v1|AJ225438_P1 1310 3346 542 87.3 globlastp LNU797_H2 26 physcomitrellal10v1IAW699661_P1 1311 3347 542 87.3 globlastp LNU797_H2 27 spikemoss|gb165|FE508399 1312 3348 542 87.3 globlastp LNU797_H2 28 cephalotaxus|11v1|SRR064395X105137_P1 1313 3349 542 86.9 globlastp LNU797_H2 29 cryptomeria|gb166|BP174342_P1 1314 3350 542 86.9 globlastp LNU797_H2 30 maritime_pinel10v1IBX249273_P1 1315 3351 542 86.9 globlastp LNU797_H2 31 pine|10v2|AW587810_P1 1316 3351 542 86.9 globlastp LNU797_H2 32 podocarpus|10v1|SRR065014S0007113_P1 1317 3352 542 86.9 globlastp LNU797_H2 33 potato|10v1|AJ487384_P1 1318 3353 542 86.9 globlastp LNU797_H2 34 sequoia|10v1|SRR065044S0017123 1319 3354 542 86.9 globlastp LNU797_H2 35 spruce|11v1IES249872 1320 3355 542 86.9 globlastp LNU797_H2 36 taxus|10v1SRR032523S0013310 1321 3349 542 86.9 globlastp LNU797_H2 37 flaveria|11v1|SRR149232.152816_P1 1322 3356 542 86.5 globlastp LNU797_H2 38 pseudotsuga|10v1ISRR065119S0007920 1323 3357 542 86.5 globlastp LNU797_H2 39 pteridium|11v1|SRR043594X10900 1324 3358 542 86.5 glotblastn LNU797_H2 40 marchantia|gb166 |BJ844657_ P1 1325 3359 542 86.1 globlastp LNU797_H2 41 sciadopitys|10v1|SRR065035S0004334 1326 3360 542 86.1 globlastp LNU797_H2 42 abies|11v2|SRR098676X104726_P1 1327 3361 542 85.7 globlastp LNU797_H2 43 cedrus|11v1|SRR065007X120238_P1 1328 3362 542 85.7 globlastp LNU797_H2 44 radish|gb|164|EV532879 1329 3363 542 85.2 globlastp LNU797_H2 45 tea|10v1|GT087989 1330 3364 542 85.2 globlastp LNU797_H2 46 nicotiana_benthamiana|gb1621CN747657 1331 3365 542 84.4 globlastp LNU797_H2 47 gnetum|10v1|EX949788_P1 1332 3366 542 84 globlastp LNU797_H2 48 sugarcane|10v1|BQ536868 1333 3367 542 83.9 globlastp LNU797_H2 49 liquorice|gb171|FS266885_P1 1334 3368 542 83.1 globlastp LNU797_H2 50 poppy|11v1|SRR096789.122184_P1 1335 3369 542 82.7 globlastp LNU797_H2 51 radishlgb164|EV529042 1336 3370 542 82.7 globlastp LNU797_H2 52 radish|gb164|EV539130 1337 3370 542 82.7 globlastp LNU797_H2 53 radishlgb164|EV542996 1338 3371 542 82.7 globlastp LNU797_H2 54 cyamopsis|10v1|EG989234_P1 1339 3372 542 82.3 globlastp LNU797_H2 55 poppy|11v1ISRR030267.187266_P1 1340 3373 542 82.3 globlastp LNU797_H2 56 flax|11v1|JG084720_T1 1341 3374 542 82.28 glotblastn LNU797_H2 57 gerbera|09v1|AJ754027_P1 1342 3375 542 81.9 globlastp LNU797_H2 58 distylium|11v1ISRR065077X153511_P1 1343 3376 542 81.4 globlastp LNU797_H2 59 lovegrass|gb167|EH185755_P 1 1344 3377 542 81.4 globlastp LNU797_H2 60 blueberry|12v1|SRR353285X11741D1_T1 1345 3378 542 81.01 glotblastn LNU797_H2 61 poppy|11v1|SRR096789.253826_T1 1346 3379 542 81.01 glotblastn LNU798_H1 barley|12v1|BE422159_P1 1347 3380 543 97 globlastp LNU798_H2 sorghum|12v1ISB02G019500 1348 3381 543 93.8 globlastp LNU798_H3 foxtail_millet|11v3|PHY7SI029445M_P1 1349 3382 543 93.7 globlastp LNU798_H4 maize|10v1|AI629903_P1 1350 3383 543 93.5 globlastp LNU798_H5 wheat|12v3|AL819672 1351 3384 543 91.4 globlastp LNU798_H6 rice|11v1|AU174198 1352 3385 543 91.2 globlastp LNU798_H1 0 switchgrass|12v1IFE609190_P1 1353 3386 543 91 globlastp LNU798_H7 wheat|12v3|BQ245545 1354 3387 543 91 globlastp LNU798_H8 millet|10v1|EVO454PM023052_P1 1355 3388 543 87.3 globlastp LNU798_H9 wheat|12v3|BG606377 1356 3389 543 85.4 globlastp LNU799_H1 oat|11v1|GR338611_P1 1357 3390 544 95.5 globlastp LNU799_H2 leymus|gb166|EG397348_P1 1358 3391 544 93.9 globlastp LNU799_H3 rye|12v1|DRR001012.356736 1359 3391 544 93.9 globlastp LNU799_H4 rye|12v1|DRR001012.648999 1360 3391 544 93.9 globlastp LNU799_H5 rye|12v1|DRR001012.761725 1361 3391 544 93.9 globlastp LNU799_H6 wheat|12v3|BE403020 1362 3391 544 93.9 globlastp LNU799_H7 barley|12v1|BI953338_P1 1363 3392 544 93.5 globlastp LNU799_H8 rice|11v1|AU085931 1364 3393 544 91.1 globlastp LNU799_H9 foxtail_millet|11v3|PHY7SI030913M_P1 1365 3394 544 84.4 globlastp LNU799_H1 0 millet|10v1IPMSLX0021480_P1 1366 3395 544 84.1 globlastp LNU799_H1 1 maize|10v1|FL234904_P1 1367 3396 544 84 globlastp LNU799_H1 2 maize|10v1|AW076436_P1 1368 3397 544 83.3 globlastp LNU799_H1 3 sorghum|12v1ISB02G024130 1369 3398 544 82.9 globlastp LNU799_H1 5 switchgrass|12v1|FE619626_P1 1370 3399 544 82.5 globlastp LNU799_H1 4 switchgrasslgb167|FE619626 1371 3400 544 81.7 globlastp LNU801_H9 switchgrassl12v1IFL970980_P1 1372 3401 546 93.1 globlastp LNU801_H1 millet|10v1|EVO454PM000992_P1 1373 3402 546 92.5 globlastp LNU801_H2 sorghum|12v1|SB03G046360 1374 3403 546 90 globlastp LNU801_H3 rice|11v1|BM420996 1375 3404 546 88.79 glotblastn LNU801_H4 maize|10v1|AI734386_P1 1376 3405 546 87.9 globlastp LNU801_H5 maize|10v1|BE552901_P1 1377 3406 546 87.2 globlastp LNU801_H6 barley|12v1|BE412491_P1 1378 3407 546 82.9 globlastp LNU801_H7 brachypodium|12v1IBRADI2G61240_P1 1379 3408 546 82 globlastp LNU801_H8 rye|12v1||DRR001012.134722 1380 3409 546 81.6 globlastp LNU802_H1 rice|11v1|C26804 1381 3410 547 91.3 globlastp LNU802_H2 foxtail_millet|11v3|PHY7SI021421M_P1 1382 3411 547 89.1 globlastp LNU802_H3 rice|11v1|BF475211 1383 3412 547 88.9 globlastp LNU802_H2 0 switchgrass|12v1|FL702067_P1 1384 3413 547 88.5 globlastp LNU802_H4 millet|10v1|EVO454PM003455_P1 1385 3414 547 88 globlastp LNU802_H5 sorghum|12v1|SB09G029750 1386 3415 547 87.8 globlastp LNU802_H6 brachypodium|12v1IBRADI2G15300T2_P1 1387 3416 547 87.2 globlastp LNU802_H7 wheat|12v3|BJ257279 1388 3417 547 86.9 globlastp LNU802_H8 wheat|12v3|SRR073321X559678D1 1389 3417 547 86.9 globlastp LNU802_H9 barley|12v1|AV833654_P1 1390 3418 547 86.7 globlastp LNU802_H1 0 rye|12v1|DRR001012.106866 1391 3419 547 86.5 globlastp LNU802_H1 1 wheat|12v3|CA497108 1392 3420 547 86.5 globlastp LNU802_H1 2 rye|12v1|DRR001012.119952 1393 3421 547 86.3 globlastp LNU802_H1 3 rye|12v1|DRR001012.141039 1394 3422 547 86.3 globlastp LNU802_H1 4 wheat|12v3|SRR043326X44117D1 1395 3423 547 85.7 globlastp LNU802_H1 5 rye|12v1|DRR001012.724073 1396 3424 547 84.84 glotblastn LNU802_H1 6 rye|12v1|DRR001012.794078 1397 3425 547 84.63 glotblastn LNU802_H1 7 _ rye|12v1|DRR001012.762098 1398 3426 547 84.6 globlastp LNU802_H1 8 _ oat|11v1|CN816181_P1 1399 3427 547 83.7 globlastp LNU802_H1 9 wheat|12v3|SRR043323X82204D1 1400 3428 547 81.48 glotblastn LNU803_H7 switchgrass|12v1|FL957205_P1 1401 3429 548 91.1 globlastp LNU803_H1 millet|10v1|EVO454PM050490_P1 1402 3430 548 89.9 globlastp LNU803_H8 switchgrass|12v1|JG811131_P1 1403 3431 548 88.6 globlastp LNU803_H2 brachypodium|12v1IBRADI2G60317_P1 1404 3432 548 88.6 globlastp LNU803_H3 switchgrasslgb167 |FL957205 1405 3433 548 86.1 globlastp LNU803_H9 switchgrass|12v1ISRR364496. 92662_T1 1406 3434 548 83.54 glotblastn LNU803_H4 wheat|12v3|SRR043323X35031D1 1407 3435 548 81.2 globlastp LNU803_H5 maize|10v1|AI629617_P1 1408 3436 548 81 globlastp LNU803_H6 maize|10v1|AW288544_P1 1409 3436 548 81 globlastp LNU805_H2 switchgrass|12v1|DN145962_T1 1410 3437 550 80.05 glotblastn LNU805_H1 switchgrass|gb167|DN145962 1411 3438 550 80 glotblastn LNU807_H1 sorghum|12v1ISB09G006610 1412 3439 552 96.1 globlastp LNU807_H1 2 switchgrass|12v1|FL935393_P1 1413 3440 552 94.6 globlastp LNU807_H2 maize|10v1|CD950739_P1 1414 3441 552 93.8 globlastp LNU807_H3 millet|10v1|EVO454PM000715_P1 1415 3442 552 88 globlastp LNU807_H4 wheat|12v3|BG605330 1416 3443 552 85.2 globlastp LNU807_H5 wheat|12v3|CA627721 1417 3444 552 85 globlastp LNU807_H6 wheat|12v3|SRR043323X42120D1 1418 3444 552 85 globlastp LNU807_H7 rye|12v1|DRR001012.103250 1419 3445 552 84.9 globlastp LNU807_H8 wheat|12v3|CD917464 1420 3446 552 84.7 globlastp LNU807_H9 brachypodium|12v1|BRADI4G26810_P1 1421 3447 552 84.3 globlastp LNU807_H1 0 rice|11v1|AA753940 1422 3448 552 84.3 globlastp LNU807_H1 1 rice|11v1|BI807965 1423 3449 552 84.3 globlastp LNU808_H1 millet|10v1|EVO454PM012822_P1 1424 3450 553 95 globlastp LNU808_H5 switchgrass|12v1|DN145950_P1 1425 3451 553 94.5 globlastp LNU808_H2 switchgrass|gb167|DN145950 1426 3451 553 94.5 globlastp LNU808_H6 switchgrass|12v1|FL698385_P1 1427 3452 553 93.1 globlastp LNU808_H3 sorghum|12v1|SB06G033120 1428 3453 553 90 globlastp LNU808_H4 maize|10v1|CF636626_P1 1429 3454 553 89 globlastp LNU809_H1 switchgrass|gb167|DN142820 1430 3455 554 93.9 globlastp LNU809_H2 maize|10v1|BE344743_P1 1431 3456 554 87.9 globlastp LNU809_H3 sorghum|12v1|SB01G001260 1432 3457 554 87.3 globlastp LNU809_H4 sugarcane|10v1|CA110374 1433 3458 554 84.7 globlastp LNU809_H5 rice|11v1|BI306268 1434 3459 554 82.4 globlastp LNU810_H1 foxtail_millet|11v3|SICRP020917_P1 1435 3460 555 95.8 globlastp LNU810_H2 foxtail_millet|11v3|PHY7SI012527M_T1 1436 3461 555 94.17 glotblastn LNU810_H3 foxtail_millet|11v3|SICRP100316_P1 1437 3462 555 89.2 globlastp LNU810_H4 millet|10v1|EV0454PM110704_T1 1438 3463 555 86.67 glotblastn LNU811_H1 sugarcane|10v1|BU103402 1439 3464 556 81.9 globlastp LNU811_H2 sorghum|12v1|SB09G001370 1440 3465 556 80.5 globlastp LNU813_H1 sorghum|12v1|SB01G011930 1441 3466 557 89 globlastp LNU815_H1 sorghum|12v1|SB03G031180 1442 3467 559 94 globlastp LNU815_H2 sugarcane|10v1|CA123143 1443 3468 559 93.4 globlastp LNU815_H1 1 switchgrass|12v1|SRR187765.104957_P1 1444 3469 559 91 globlastp LNU815_H1 2 switchgrass|12v1|FL826760_P1 1445 3470 559 89.3 globlastp LNU815_H3 foxtail_millet|11v3|PHY7SI003141M_P1 1446 3471 559 89.2 globlastp LNU815_H4 switchgrass|gb167|FL826760 1447 3472 559 88.7 globlastp LNU815_H5 rice|11v1|AU174360 1448 3473 559 88.6 globlastp LNU815_H6 millet|10v1|PMSLX0006943_P1 1449 3474 559 85.6 globlastp LNU815_H7 rye|12v1|DRR001012.175289 1450 3475 559 85 globlastp LNU815_H8 rye|12v1|DRR001012.458810 1451 3475 559 85 globlastp LNU815_H9 brachypodium|12v1|BRADI2G46560_T1 1452 3476 559 83.23 glotblastn LNU815_H1 0 wheat|12v3|BE442626 1453 3477 559 82.6 globlastp LNU816_H5 brachypodium|12v1|BRADI3G53550_P1 1454 3478 560 91.5 globlastp LNU816_H6 rice|11v1|CA759966 1455 3479 560 91.1 globlastp LNU816_H1 0 rye|12v1|DRR001014.10485 1456 3480 560 82.1 globlastp LNU817_H1 sorghum|12v1|SB06G032840 1457 3481 561 91.6 globlastp LNU817_H2 maize|10v1|AI714648_P1 1458 3482 561 88.9 globlastp LNU817_H3 foxtail_millet|11v3|PHY7SI018613M_P1 1459 3483 561 85.5 globlastp LNU817_H7 switchgrass|12v1|FL735544_P1 1460 3484 561 84.7 globlastp LNU817_H4 cenchrus|gb166|EB660297_P1 1461 3485 561 84.1 globlastp LNU817_H5 switchgrass|gb167|FL735544 1462 3486 561 82.9 globlastp LNU817_H6 millet|10v1|EV0454PM108926_P1 1463 3487 561 80.1 globlastp LNU819_H5 switchgrass|12v1|SRR187765. 390310_P1 1464 3488 563 86.8 globlastp LNU819_H1 maize|10v1|EU946864_P1 1465 3489 563 86.3 globlastp LNU819_H6 switchgrass|12v1|FL841069_P1 1466 3490 563 85.7 globlastp LNU819_H2 switchgrass|gb167|FL841069 1467 3491 563 84.6 globlastp LNU819_H3 sorghum|12v1|CF759244 1468 3492 563 82.42 glotblastn LNU819_H4 foxtail_millet|11v3|PHY7SI031669M_P1 1469 3493 563 80.2 globlastp LNU820_H1 sorghum|12v1|SB07G028630 1470 3494 564 91.3 globlastp LNU820_H2 millet|10v1|EVO454PM458338_P1 1471 3495 564 87 globlastp LNU820_H7 switchgrass|12v1|FE655496_P1 1472 3496 564 86.4 globlastp LNU820_H8 switchgrass|12v1|FE619575_P1 1473 3497 564 86.1 globlastp LNU820_H3 foxtail_millet|11v3|PHY7SI014065M_P1 1474 3498 564 86.1 globlastp LNU820_H4 switchgrass|gb167|FE619575 1475 3499 564 86.1 globlastp LNU820_H5 switchgrass|gb167|FE655496 1476 3500 564 81.6 globlastp LNU820_H6 brachypodium|12v1|BRADI3G39210_P1 1477 3501 564 80.7 globlastp LNU822_H1 foxtail_millet|11v3|PHY7SI011544M_P1 1478 3502 566 94.3 globlastp LNU822_H2 sorghum|12v1|SB06G001560 1479 3503 566 94.3 globlastp LNU822_H3 sugarcane|10v1|CA087712 1480 3503 566 94.3 globlastp LNU822_H4 wheat|12v3|CA484262 1481 3503 566 94.3 globlastp LNU822_H1 7 switchgrass|12v1|FL830389_P1 1482 3504 566 92.9 globlastp LNU822_H5 switchgrass|gb167|FL830388 1483 3504 566 92.9 globlastp LNU822_H6 cynodon|10v1|ES301162_P1 1484 3505 566 91.4 globlastp LNU822_H7 millet|10v1|EVO454PM225827_P1 1485 3506 566 91.4 globlastp LNU822_H1 8 switchgrass|12v1|FL830388_P1 1486 3507 566 90 globlastp LNU822_H8 brachypodium|12v1|BRADI5G00560_P1 1487 3508 566 90 globlastp LNU822_H9 barley|12v1|BI949537_P1 1488 3509 566 88.6 globlastp LNU822_H1 0 rice|11v1|AA750203 1489 3510 566 88.6 globlastp LNU822_H1 1 cynodonl10v1|ES294723_T1 1490 3511 566 87.14 glotblastn LNU822_H1 2 oat|11v1|GO594699_P1 1491 3512 566 85.7 globlastp LNU822_H1 3 wheat|12v3|BE490468 1492 3513 566 85.7 globlastp LNU822_H1 4 wheat|12v3|BI751481 1493 3513 566 85.7 globlastp LNU822_H1 5 oil_palm|11v1|SRR190699.168391_P1 1494 3514 566 81.4 globlastp LNU822_H1 6 zostera|10v1|SRR057351S0024697 1495 3515 566 80 globlastp LNU823_H1 sorghum|12v1|SB10G008020 1496 3516 567 96.4 globlastp LNU823_H2 maize|10v1|AI861542_P1 1497 3517 567 92.7 globlastp LNU823_H2 0 switchgrass|12v1|FE618890_P1 1498 3518 567 90.6 globlastp LNU823_H2 1 switchgrass|12v1|FE626264_P1 1499 3518 567 90.6 globlastp LNU823_H3 switchgrass|gb167|FE618890 1500 3518 567 90.6 globlastp LNU823_H4 cynodon|10v1|ES300242_P1 1501 3519 567 89.6 globlastp LNU823_H5 foxtail_millet|11v3|PHY7SI007340M_P1 1502 3520 567 89.1 globlastp LNU823_H6 lovegrass|gb167|EH186334_P1 1503 3521 567 87 globlastp LNU823_H7 millet|10v1|EV0454PM08428 6_P1 1504 3522 567 86.5 globlastp LNU823_H8 rice|11v1|BE230397 1505 3523 567 86 globlastp LNU823_H9 sugarcane|10v1|CA098201 1506 3524 567 84.9 globlastp LNU823_H1 0 leymus|gb166|CD808583_P1 1507 3525 567 83.5 globlastp LNU823_H1 1 wheat|12v3|BE416640 1508 3526 567 83.5 globlastp LNU823_H1 2 pseudoroegneria|gb167|FF347817 1509 3527 567 83 globlastp LNU823_H1 3 cenchrus|gb166|EB656741_P1 1510 3528 567 82.8 globlastp LNU823_H1 4 barley|12v1|BE603265-P1 1511 3529 567 82.5 globlastp LNU823_H1 5 oat|11v1|GO588574_P1 1512 3530 567 81.9 globlastp LNU823_H1 6 brachypodium|12v1|BRADI1G45240_P1 1513 3531 567 81.8 globlastp LNU823_H1 7 rye|12v1|BE495527 1514 3532 567 81.6 globlastp LNU823_H1 8 rye|12v1|BE587517 1515 3532 567 81.6 globlastp LNU823_H1 9 lolium|10v1|ES700436_P1 1516 3533 567 80.3 globlastp LNU824_H1 maize|10v1|BE575106_P1 1517 3534 568 97.8 globlastp LNU824_H5 millet|10v1|EVO454PM005683_P1 1518 3535 568 95.2 globlastp LNU824_H2 1 maize|10v1|BE056872_P1 1519 3536 568 89.4 globlastp LNU824_H2 7 wheat|12v3|BE400910 1520 3537 568 88 globlastp LNU824_H2 8 wheat|12v3|SRR073322X587000D1 1521 3538 568 88 globlastp LNU824_H2 9 rye|12v1|DRR001012.606957 1522 3539 568 87.96 glotblastn LNU824_H3 0 wheat|12v3|BQ483480 1523 3540 568 87.7 globlastp LNU824_H3 7 poplar|10v1|BI139016 1524 3541 568 81.3 globlastp LNU824_H3 7 poplar|13v1|BI139016_P1 1525 3541 568 81.3 globlastp LNU824_H4 2 tripterygium|11v1|SRR098677X102165 1526 3542 568 80.78 glotblastn LNU824_H4 7 banana|12v1|MAGEN2012015228_P1 1527 3543 568 80.5 globlastp LNU824_H4 9 platanus|11v1|SRR096786X106999­_T1 1528 3544 568 80.45 glotblastn LNU828_H1 sorghum|12v1|SB01G037440 1529 3545 570 93.9 globlastp LNU828_H2 sugarcane|10v1|CA069736 1530 3546 570 93.3 globlastp LNU828_H3 maize|10v1|BI991815_P1 1531 3547 570 88.2 globlastp LNU828_H4 foxtail_millet|11v3|EC613572_P1 1532 3548 570 87.5 globlastp LNU828_H1 0 switchgrass|12v1|FE628831_ P1 1533 3549 570 86.9 globlastp LNU828_H5 switchgrass|gb167|FE628831 1534 3549 570 86.9 globlastp LNU828_H1 1 switchgrass|12v1|FE635562_P1 1535 3550 570 86.6 globlastp LNU828_H6 switchgrass|gb167|FE635562 1536 3550 570 86.6 globlastp LNU828_H7 millet|10v1|EVO454PM010680_P1 1537 3551 570 84.3 globlastp LNU828_H8 rice|11v1|BF430629 1538 3552 570 80.9 globlastp LNU828_H9 cenchrus|gb166|BM084141_P1 1539 3553 570 80.8 globlastp LNU829_H1 sorghum|12v1|SB10G002790 1540 3554 571 94.5 globlastp LNU829_H4 foxtail_millet|11v3|PHY7SI007445M_P1 1541 3555 571 93.8 globlastp LNU700_H2 switchgrass|12v1|FE646787_T1 1542 3556 571 92.47 glotblastn LNU829_H5 switchgrass|gb167|FL894055 1543 - 571 91.1 glotblastn LNU830_H1 sorghum|12v1|SB05G022780 1544 3557 572 96.9 globlastp LNU830_H2 foxtail_millet|11v3|PHY7SI025963M_P1 1545 3558 572 96.2 globlastp LNU830_H3 maize|10v1|CD942361_P1 1546 3559 572 95.8 globlastp LNU830_H1 3 switchgrass|12v1|FL692292_T1 1547 3560 572 94.72 glotblastn LNU830_H1 4 switchgrass|12v1|FL694591_P1 1548 3561 572 94.5 globlastp LNU830_H4 rice|11v1|BE039844 1549 3562 572 91.9 globlastp LNU830_H5 brachypodium|12v1|BRADI4G15130_P1 1550 3563 572 90.5 globlastp LNU830_H6 rye|12v1|DRR001012.122402 1551 3564 572 89.7 globlastp LNU830_H7 wheat|12v3|BJ292957 1552 3565 572 89.6 globlastp LNU830_H8 millet|10v1|EVO454PM046481_P1 1553 3566 572 88.7 globlastp LNU830_H9 wheat|12v3|SRR400820X1166902D1 1554 3567 572 88.31 glotblastn LNU830_H1 0 wheat|12v3|CA640921 1555 3568 572 86.1 globlastp LNU830_H1 1 rye|12v1|DRR001013.178186 1556 3569 572 85.62 glotblastn LNU830_H1 2 wheat|12v3|BJ299341 1557 3570 572 80.7 globlastp LNU832_H3 switchgrass|12v1|FL740797_T1 1558 3571 574 83.82 glotblastn LNU832_H1 foxtail_millet|11v3|PHY7SI005129M_T1 1559 3572 574 83.82 glotblastn LNU833_H2 switchgrasslgb167|FE608977 1560 3573 575 87.3 globlastp LNU833_H4 switchgrass|12v1|FL864642_P1 1561 3574 575 87.1 globlastp LNU834_H3 switchgrass|12v1|FE628655_P1 1562 3575 576 88.5 globlastp LNU834_H4 switchgrass|12v1|FL721897_P1 1563 3576 576 87.1 globlastp LNU834_H2 foxtail_millet|11v3|PHY7SI032419M_P1 1564 3577 576 84.2 globlastp LNU835_H1 sorghum|12v1|SB03G036980 1565 3578 577 92.7 globlastp LNU835_H2 foxtail_millet|11v3|PHY7SI001322M_P1 1566 3579 577 87.8 globlastp LNU835_H3 switchgrass|12v1|FL816691_P1 1567 3580 577 86 globlastp LNU835_H4 switchgrass|12v1|DN148836_T1 1568 3581 577 82.43 glotblastn LNU837_H1 sugarcane|10v1|CA099580 1569 3582 578 93.6 globlastp LNU837_H3 sorghum|12v1|SB01G044830 1570 3583 578 89.7 globlastp LNU837_H2 foxtail_millet|11v3|PHY7SI036841M_P1 1571 3584 578 81.3 globlastp LNU838_H1 sorghum|12v1|SB08G016060 1572 3585 579 81.4 globlastp LNU838_H2 foxtail_millet|11v3|PHY7SI022177M_P1 1573 3586 579 80 globlastp LNU839_H1 sorghum|12v1|SB01G035480 1574 3587 580 94.7 globlastp LNU839_H6 switchgrass|12v1|FL711007_P1 1575 3588 580 92.7 globlastp LNU839_H2 foxtail_millet|11v3|PHY7SI034579M_P1 1576 3589 580 90.9 globlastp LNU839_H3 switchgrass|gb167|FL711007 1577 3590 580 90.26 glotblastn LNU839_H7 switchgrass|12v1|FL913070_P1 1578 3591 580 88.6 globlastp LNU839_H4 barley|12v1|AK365006_P1 1579 3592 580 83.1 globlastp LNU839_H5 rice|11v1|CI197575 1580 3593 580 82.7 globlastp LNU840_H1 maize|10v1|GRMZM2G126856T01_T1 1581 3594 581 89.53 glotblastn LNU840_H2 sorghum|12v1|SB01G012580 1582 3595 581 83.58 glotblastn LNU840_H3 switchgrass|12v1|SRR187767. 717986_P1 1583 3596 581 82.2 globlastp LNU841_H1 sorghum|12v1|SB08G017100 1584 3597 582 94.3 globlastp LNU841_H2 sorghum|12v1|XM_002442210 1585 3597 582 94.3 globlastp LNU841_H3 foxtail_millet|11v3|PHY7SI023738M_P1 1586 3598 582 93.3 globlastp LNU841_H4 foxtail_millet|11v3|PHY7SI02 3743M_P1 1587 3599 582 93.3 globlastp LNU841_H1 7 switchgrass|12v1|SRR187766.726682_P1 1588 3600 582 92.3 globlastp LNU841_H5 sorghum|12v1|SB08G017170 1589 3601 582 90.6 globlastp LNU841_H1 8 switchgrass|12v1|SRR187768.166352_P1 1590 3602 582 90.4 globlastp LNU841_H1 9 switchgrass|12v1|FL882657_P1 1591 3603 582 89.4 globlastp LNU841_H2 0 switchgrass|12v1|SRR187769. 1407427_P1 1592 3604 582 86.7 globlastp LNU841_H6 maize|10v1|GRMZM2G303536T01_P1 1593 3605 582 84.9 globlastp LNU841_H7 cynodon|10v1|ES306830_P1 1594 3606 582 84.6 globlastp LNU841_H8 wheat|12v3|CA658370 1595 3607 582 83.8 globlastp LNU841_H9 barley|12v1|HV12v1CRP170116_P1 1596 3608 582 82.9 globlastp LNU841_H1 0 rice|11v1|BI118730 1597 3609 582 82.9 globlastp LNU841_H1 1 rye|12v1|DRR001012.239987 1598 3608 582 82.9 globlastp LNU841_H1 2 brachypodium|12v1|BRADI4 G05620_P1 1599 3610 582 81.9 globlastp LNU841_H1 3 cynodon|10v1|ES298100_P1 1600 3611 582 81.7 globlastp LNU841_H1 4 rye|12v1|DRR001012.383938 1601 3612 582 81.7 globlastp LNU841_H2 1 switchgrass|12v1|SRR187771. 1169651_P1 1602 3613 582 81.2 globlastp LNU841_H1 5 brachypodium|12v1|BRADI4G05650_P1 1603 3614 582 81 globlastp LNU841_H2 2 switchgrass|12v1|SRR187769. 117822_P1 1604 3615 582 80.8 globlastp LNU841_H1 6 pseudoroegneria|gb167|FF355 748 1605 3616 582 80.8 globlastp LNU843_H2 foxtail_millet|11v3|PHY7SI005850M_P1 1606 3617 583 83.6 globlastp LNU843_H1 sorghum|12v1|SB10G014220 1607 3618 583 83.4 globlastp LNU843_H3 barley|12v1|BJ449862_P1 1608 3619 583 80.1 globlastp LNU844_H1 sorghum|12v1|SB06G023170 1609 3620 584 86.7 globlastp LNU844_H7 switchgrass|12v1|FE634672_P1 1610 3621 584 84 globlastp LNU844_H8 switchgrass|12v1|FL828787_P1 1611 3622 584 83.7 globlastp LNU844_H2 switchgrass|gb167|FE634672 1612 3623 584 83.6 globlastp LNU844_H3 foxtail_millet|11v3|PHY7SI010995M_P1 1613 3624 584 81.3 globlastp LNU844_H4 millet|10v1|EVO454PM170895_P1 1614 3625 584 81 globlastp LNU844_H5 brachypodium|12v1|BRADI5G16300_T1 1615 3626 584 80.59 glotblastn LNU844_H6 maize|10v1|CF632136_P1 1616 3627 584 80 globlastp LNU845_H1 sorghum|12v1|SB02G039730 1617 3628 585 91 globlastp LNU890_H1 sugarcane|10v1|CA092661 1618 3629 586 80.5 globlastp LNU890_H1 sugarcane|10v1|CA092661 1618 3629 625 88.1 globlastp LNU849_H1 rice|11v1|AF140491 1619 3630 589 98.67 glotblastn LNU849_H2 barley|12v1|BM443537_P1 1620 3631 589 87.5 globlastp LNU849_H3 leymus|gb166|EG396571_P1 1621 3632 589 87.5 globlastp LNU849_H4 maize|10v1|AI746262_P1 1622 3633 589 86.7 globlastp LNU849_H5 foxtail_millet|11v3|PHY7SI002848M_P1 1623 3634 589 86.6 globlastp LNU849_H6 pseudoroegneria|gb167|FF366817 1624 3635 589 86.6 globlastp LNU849_H7 rye|12v1|BE587488 1625 3636 589 86.6 globlastp LNU849_H8 rye|12v1|DRR001012.10525 1626 3636 589 86.6 globlastp LNU849_H9 sugarcane|10v1|CA065802 1627 3637 589 86.6 globlastp LNU849_H1 0 wheat|12v3|BQ483162 1628 3638 589 86.6 globlastp LNU849_H1 7 switchgrass|12v1|FE636162_P1 1629 3639 589 86.2 globlastp LNU849_H1 1 sorghum|12v1|SB03G030650 1630 3640 589 86.2 globlastp LNU849_H1 8 switchgrass|12v1|FE625302_P1 1631 3641 589 85.7 globlastp LNU849_H1 2 switchgrass|gb167|FE625301 1632 3642 589 85.7 globlastp LNU849_H1 3 brachypodium|12v1|BRADI2G46060_P1 1633 3643 589 85.3 globlastp LNU849_H1 4 oat|11v1|GR357640_T1 1634 3644 589 82.59 glotblastn LNU849_H1 5 millet|10v1|EVO454PM504671_P1 1635 3645 589 80.8 globlastp LNU849_H1 9 switchgrass|12v1|FL757304_T1 1636 3646 589 80.36 glotblastn LNU849_H1 6 switchgrass|gb167|FL757304 1637 3646 589 80.36 glotblastn LNU850_H1 maize|10v1|AI677001_P1 1638 3647 590 80.2 globlastp LNU852_H1 brachypodium|12v1|BRADI5G21580_P1 1639 3648 592 82 globlastp LNU852_H2 oat|11v1|GR321105_P1 1640 3649 592 81.8 globlastp LNU852_H3 barley|12v1|BF630808_P1 1641 3650 592 81.7 globlastp LNU852_H4 pseudoroegneria|gb167|FF354586 1642 3651 592 80.9 globlastp LNU852_H5 wheat|12v3|BE403524 1643 3652 592 80.7 globlastp LNU854_H1 rice|11v1|AA752561 1644 3653 594 95.94 glotblastn LNU854_H2 maize|10v1|AW330902_P1 1645 3654 594 90.8 globlastp LNU854_H3 sorghum|12v1|SB01G007880 1646 3655 594 90.8 globlastp LNU854_H2 2 switchgrass|12v1|FE619859_P1 1647 3656 594 90.1 globlastp LNU854_H4 wheat|12v3|BG604569 1648 3657 594 90 globlastp LNU854_H5 rye|12v1|DRR001012.108381 1649 3658 594 87.99 glotblastn LNU854_H6 switchgrass|gb167|FE619859 1650 3659 594 87.8 globlastp LNU854_H7 foxtail_millet|11v3|PHY7SI034415M_P1 1651 3660 594 86.4 globlastp LNU854_H8 banana|12v1|GFXAC186756X17_P1 1652 3661 594 82.9 globlastp LNU854_H9 banana|12v1|BBS110T3_P1 1653 3662 594 82.7 globlastp LNU854_H1 0 banana|12v1|MAGEN2012031765_T1 1654 3663 594 81.24 glotblastn LNU854_H1 1 oak|10v1|CU640269_P1 1655 3664 594 80.3 globlastp LNU854_H1 2 arabidopsis_1yrata|09v1|JGIAL026584_P1 1656 3665 594 80.2 globlastp LNU854_H1 3 b_juncea|12v1|E6ANDIZ01BGQGU_P1 1657 3666 594 80.2 globlastp LNU854_H1 4 b_rapa|11v1|CD832802_P1 1658 3666 594 80.2 globlastp LNU854_H1 5 canola|11v1|EE459921_P1 1659 3666 594 80.2 globlastp LNU854_H1 6 eucalyptus|11v2|SRR001659X91383_P1 1660 3667 594 80.2 globlastp LNU854_H1 7 b_juncea|12v1|AJ561120_P1 1661 3668 594 80.1 globlastp LNU854_H1 8 phalaenopsis|11v1|SRR125771.100605_P1 1662 3669 594 80.1 globlastp LNU854_H1 9 arabidopsis|10v1|AT4G16370_T1 1663 3670 594 80.05 glotblastn LNU854_H2 0 solanum_phureja|09v1|SPHAI 774365 1664 3671 594 80.05 glotblastn LNU854_H2 1 thellungiella_parvulum|11v1|BY803192 1665 3672 594 80 glotblastn LNU856_H2 switchgrass|gb167|FE644937 1666 3673 595 91.45 glotblastn LNU856_H7 maize|10v1|BM896061_P1 1667 3674 595 87.9 globlastp LNU861_H1 foxtail_millet|11v3|PHY7SI013407M_T1 1668 3675 598 97.26 glotblastn LNU861_H2 maize|10v1|CD438306_T1 1669 3676 598 94.32 glotblastn LNU861_H4 rice|11v1|CK071575 1670 3677 598 89.82 glotblastn LNU861_H5 rice|11v1|SOLX00081332 1671 3677 598 89.82 glotblastn LNU861_H6 brachypodium|12v1|BRADI3G37580_T1 1672 3678 598 89.67 glotblastn LNU861_H7 rye|12v1|DRR001012.202554 1673 3679 598 89.28 glotblastn LNU861_H8 barley|12v1|CA028638_T1 1674 3680 598 89.24 glotblastn LNU861_H9 rice|11v1|CA756830 1675 3681 598 82.97 glotblastn LNU861_H1 0 rice|11v1|CK008076 1676 3682 598 82.97 glotblastn LNU861_H1 1 foxtail_millet|11v3|PHY7SI031891M_T1 1677 3683 598 82.36 glotblastn LNU861_H1 2 wheat|12v3|SRR073321X296 640D1 1678 3684 598 81.5 globlastp LNU861_H1 3 barley|12v1|CA008529_T1 1679 3685 598 81.41 glotblastn LNU861_H1 4 maize|10v1|DN222557_T1 1680 3686 598 80.93 glotblastn LNU861_H1 5 brachypodium|12v1|BRADI4G31270_T1 1681 3687 598 80.58 glotblastn LNU861_H1 6 sorghum|12v1|SB02G025750 1682 3688 598 80.5 glotblastn LNU861_H1 7 maize|10v1|EE160122_T1 1683 3689 598 80.15 glotblastn LNU862_H1 sorghum|12v1|SB08G001030 1684 3690 599 94.5 globlastp LNU862_H3 foxtail_millet|11v3|PHY7SI009715M_P1 1685 3691 599 93.8 globlastp LNU862_H2 switchgrass|gb167|FL705388 1686 3692 599 93.7 globlastp LNU862_H1 6 switchgrass|12v1|FE626506_P1 1687 3693 599 93.3 globlastp LNU862_H6 foxtail_millet|11v3|PHY7SI026163M_P1 1688 3694 599 92.8 globlastp LNU862_H7 millet|10v1|EVO454PM031355_P1 1689 3695 599 91.9 globlastp LNU862_H5 millet|10v1|EVO454PM017321_P1 1690 3696 599 90.2 globlastp LNU862_H4 maize|10v1|CO449955_P1 1691 3697 599 89.5 globlastp LNU862_H8 rice|11v1|BI806647 1692 3698 599 87.7 globlastp LNU862_H9 rice|11v1|CK041467 1693 3699 599 86.82 glotblastn LNU862_H1 2 wheat|12v3|BE424023 1694 3700 599 82.5 globlastp LNU862_H1 1 brachypodium|12v1|BRADI4G26590_P1 1695 3701 599 82.3 globlastp LNU862_H1 4 rye|12v1|DRR001012.223104 1696 3702 599 82 globlastp LNU864_H1 sugarcane|10v1|CA284192 1697 3703 600 88.1 globlastp LNU864_H2 maize|10v1|BG841837_P1 1698 3704 600 83.3 globlastp LNU864_H3 maize|10v1|BM074912_P1 1699 3705 600 82 globlastp LNU864_H4 switchgrass|gb167|FL763699 1700 3706 600 82 globlastp LNU864_H7 switchgrass|12v1|FL763699_T1 1701 3707 600 81.97 glotblastn LNU864_H5 foxtail_millet|11v3|PHY7SI003614M_T1 1702 3708 600 80 glotblastn LNU864_H6 foxtail_millet|11v3|SOLX00021347_T1 1703 - 600 80 glotblastn LNU865_H4 switchgrass|12v1|FL867036_P1 1704 3709 601 90.7 globlastp LNU865_H5 switchgrass|12v1|FL693600_P1 1705 3710 601 90.1 globlastp LNU865_H1 foxtail_millet|11v3|PHY7SI019927M_P1 1706 3711 601 89.6 globlastp LNU865_H2 maize|10v1|AW056335_P1 1707 3712 601 87 globlastp LNU865_H3 brachypodium|12v1|BRADI3G55730_P1 1708 3713 601 80.6 globlastp LNU867_H1 maize|10v1|AI622284_P1 1709 3714 603 95.4 globlastp LNU867_H2 foxtail_millet|11v3|PHY7SI034422M_P1 1710 3715 603 91.4 globlastp LNU867_H6 switchgrass|12v1|FE639293_P1 1711 3716 603 88.8 globlastp LNU867_H3 rice|11v1|AU065908 1712 3717 603 85.1 globlastp LNU867_H4 brachypodium|12v1|BRADI1G04830_P1 1713 3718 603 84.5 globlastp LNU867_H5 rye|12v1|DRR001012.163223 1714 3719 603 83.4 globlastp LNU867_H7 switchgrass|12v1|DN143060_T1 1715 3720 603 80.57 glotblastn LNU868_H1 sugarcane|10v1|CA093083 1716 3721 604 89.96 glotblastn LNU868_H2 maize|10v1|AI947616_P1 1717 3722 604 89.2 globlastp LNU868_H9 switchgrass|12v1|FL739389_P1 1718 3723 604 88.8 globlastp LNU868_H3 foxtail_millet|11v3|PHY7SI037194M_P1 1719 3724 604 88.8 globlastp LNU868_H4 switchgrass|gb167|FL739389 1720 3723 604 88.8 globlastp LNU868_H5 cenchrus|gb166|BM084505_P 1 1721 3725 604 88 globlastp LNU868_H6 switchgrass|gb167|FL693838 1722 3726 604 88 globlastp LNU868_H1 0 switchgrass|12v1|FL693838_T1 1723 3727 604 87.95 glotblastn LNU868_H7 millet|10v1|PMSLX0030911D1_P1 1724 3728 604 86.7 globlastp LNU868_H8 rice|11v1|OSU16747 1725 3729 604 80.6 globlastp LNU869_H1 maize|10v1|BM266786_T1 1726 3730 605 84.71 glotblastn LNU870_H2 maize|10v1|CB616889_P1 1727 3731 606 93.7 globlastp LNU870_H5 switchgrass|12v1|FL933190_P1 1728 3732 606 89.8 globlastp LNU870_H6 switchgrass|12v1|FL689654_P1 1729 3733 606 89 globlastp LNU870_H3 maize|10v1|DR811947_P1 1730 3734 606 87.3 globlastp LNU870_H4 brachypodium|12v1|BRADI1 G07390_P1 1731 3735 606 83.6 globlastp LNU870_H7 rice|11v1|GFXAC107207X23 _P1 1732 3736 606 80.8 globlastp LNU871_H1 sugarcane|10v1|CA073953 1733 3737 607 97.59 glotblastn LNU871_H2 maize|10v1|H35900_P1 1734 3738 607 97 globlastp LNU871_H3 foxtail_millet|11v3|PHY7SI035239M_P1 1735 3739 607 92.2 globlastp LNU871_H4 millet|10v1|EVO454PM012409_P1 1736 3740 607 90.8 globlastp LNU871_H5 brachypodium|12v1|BRADI3G38220_P1 1737 3741 607 88.8 globlastp LNU871_H6 switchgrass|gb167|DN150454 1738 3742 607 88.2 globlastp LNU871_H1 0 switchgrass|12v1|DN150454_P1 1739 3743 607 88 globlastp LNU871_H7 wheat|12v3|CA663733 1740 3744 607 84.8 globlastp LNU871_H8 wheat|12v3|BQ240433 1741 3745 607 84.6 globlastp LNU871_H9 rye|12v1|DRR001012.137460 1742 3746 607 84.34 glotblastn LNU872_H1 sugarcane|10v1|CA074015 1743 3747 608 99 globlastp LNU872_H2 wheat|12v3|CA486412 1744 3748 608 99 globlastp LNU872_H3 maize|10v1|T70637_P1 1745 3749 608 96.7 globlastp LNU872_H4 maize|10v1|AI714486_P1 1746 3750 608 95.7 globlastp LNU872_H5 switchgrass|gb167|FL766492 1747 3751 608 94.4 globlastp LNU872_H6 cenchrus|gb166|BM083980_P1 1748 3752 608 93.9 globlastp LNU872_H7 millet|10v1|CD724561_P1 1749 3753 608 93.9 globlastp LNU872_H8 foxtail_millet|11v3|PHY7SI037482M_P1 1750 3754 608 92.9 globlastp LNU872_H9 switchgrass|gb167|FE626012 1751 3755 608 91.6 globlastp LNU872_H1 0 oat|11v1|GO591754_P1 1752 3756 608 88.7 globlastp LNU872_H1 1 rye|12v1|DRR001012.107218XX1 1753 3757 608 88.7 globlastp LNU872_H1 2 rye|12v1|DRR001012.112003 1754 3757 608 88.7 globlastp LNU872_H1 3 cynodon|10v1|ES292020_P1 1755 3758 608 88.6 globlastp LNU872_H1 4 rice|11v1|BI806552 1756 3759 608 88.3 globlastp LNU872_H1 5 barley|12v1|BE412496_P1 1757 3760 608 87.8 globlastp LNU872_H1 6 wheat|12v3|BE430362 1758 3761 608 87.8 globlastp LNU872_H1 7 pseudoroegneria|gb167|FF346564 1759 3762 608 87.3 globlastp LNU872_H1 8 brachypodium|12v1|BRADI1G11830_P1 1760 3763 608 87.1 globlastp LNU872_H1 9 lovegrass|gb167|EH183935_T1 1761 3764 608 85.51 glotblastn LNU873_H1 maize|10v1|CD969989_Pl 1762 3765 609 88.7 globlastp LNU873_H2 foxtail_millet|1 1v3|PHY7SI038649M_P1 1763 3766 609 83.1 globlastp LNU873_H4 switchgrass|12vl |FL842367_ T1 1764 3767 609 82.55 glotblastn LNU873_H5 switchgrass|12v1|FL842366_P1 1765 3768 609 82.1 globlastp LNU873_H3 foxtail_millet|11v3|SIPRD087917_T1 1766 3769 609 81.03 glotblastn LNU874_H1 maize|10v1|AW308694_P1 1767 3770 610 97 globlastp LNU874_H2 foxtail_millet|11v3|PHY7SI033940M_P1 1768 3771 610 93.6 globlastp LNU874_H3 brachypodium|12v1|BRADI1G15377_P1 1769 3772 610 88.1 globlastp LNU874_H4 wheat|12v3|BM137286 1770 3773 610 87.6 globlastp LNU874_H5 rice|11v1|BI797720 1771 3774 610 86.3 globlastp LNU874_H6 wheat|12v3|SRR043326X71705D1 1772 3775 610 80.7 globlastp LNU875_H1 maize|10v1|AI600310_P1 1773 3776 611 96.3 globlastp LNU875_H2 foxtail_millet|11v3|PHY7SI034375M_P1 1774 3777 611 92.2 globlastp LNU875_H9 switchgrass|12v1|FL692975_P1 1775 3778 611 91.7 globlastp LNU875_H3 rice|11v1|GFXAC025296X19 1776 3779 611 86.9 globlastp LNU875_H4 rye|12v1|DRR001012.181409 1777 3780 611 86.3 globlastp LNU875_H5 wheat|12v3|CA609528 1778 3781 611 86.2 globlastp LNU875_H6 wheat|12v3|CJ953973 1779 3782 611 86.2 globlastp LNU875_H7 wheat|12v3|BE417057 1780 3783 611 85.8 globlastp LNU875_H8 brachypodium|12v1|BRADI3G30830_P1 1781 3784 611 84.5 globlastp LNU878_H1 foxtail_millet|11v3|PHY7SI038002M_P1 1782 3785 613 96.2 globlastp LNU878_H2 maize|10v1|BE511455_P1 1783 3786 613 95.5 globlastp LNU878_H1 6 switchgrass|12v1|DN141295_P1 1784 3787 613 94.7 globlastp LNU878_H3 maize|10v1|AI947516_P1 1785 3788 613 94.7 globlastp LNU878_H4 millet|10v1|EVO454PM069646_P1 1786 3789 613 94.7 globlastp LNU878_H5 switchgrass|gb167|DN141295 1787 3787 613 94.7 globlastp LNU878_H6 sugarcane|10v1|CA084602 1788 3790 613 94 globlastp LNU878_H7 switchgrass|gb167|FE658531 1789 3791 613 94 globlastp LNU878_H8 cenchrus|gb166|EB665787_T1 1790 3792 613 90.98 glotblastn LNU878_H9 rice|11v1|BE040893 1791 3793 613 84.4 globlastp LNU878_H1 0 pseudoroegnerialgb167|FF366886 1792 3794 613 82.2 globlastp LNU878_H1 1 brachypodium|12v1|BRADI1G62860_P1 1793 3795 613 81.6 globlastp LNU878_H1 2 barley| 12v1 IBE455249_P1 1794 3796 613 80.9 globlastp LNU878_H1 3 pseudoroegnerialgb167|FF349713 1795 3797 613 80.9 globlastp LNU878_H1 4 rye|12v1|BE636984 1796 3798 613 80.7 globlastp LNU878_H1 5 wheat|12v3|CA655678 1797 3799 613 80.7 globlastp LNU879_H1 sugarcane|10v1|CA112170 1798 3800 614 96.8 globlastp LNU879_H2 maize|10v1|BG517175_P1 1799 3801 614 95.5 globlastp LNU879_H3 cynodon|10v1|ES301377_P1 1800 3802 614 89 globlastp LNU879_H4 wheat|12v3|BE426554 1801 3803 614 84 globlastp LNU879_H8 switchgrass|12v1|HO253185_T1 1802 3804 614 83.18 glotblastn LNU879_H5 rice|11v1|BI306445 1803 3805 614 83 globlastp LNU879_H6 barley|12v1|BJ454262_P1 1804 3806 614 82.2 globlastp LNU879_H7 brachypodium|12v1|BRADI1G67110_P1 1805 3807 614 81.7 globlastp LNU880_H1 sugarcane|10v1ICA065186 1806 3808 615 96.5 globlastp LNU880_H2 maize|10v1|AI600362_P1 1807 3809 615 95.1 globlastp LNU880_H3 foxtail_millet|11v3|PHY7SI035863M_P1 1808 3810 615 94.3 globlastp LNU880_H1 0 switchgrass|12v1|FE601297_P1 1809 3811 615 93.6 globlastp LNU880_H4 switchgrass|gb167IFE601297 1810 3812 615 92.9 globlastp LNU880_H1 1 switchgrass|12v1|FL761681_P1 1811 3813 615 91.7 globlastp LNU880_H5 brachypodium|12v1|BRADI1 G74650_P1 1812 3814 615 82.6 globlastp LNU880_H6 rice|11v1|BM037902 1813 3815 615 82.6 globlastp LNU880_H7 wheat|12v3|BF483896 1814 3816 615 81.9 globlastp LNU880_H8 rye|12v1|DRR001012.109304 1815 3817 615 81.4 globlastp LNU880_H9 rye|12v1|DRR001012.101331 1816 3818 615 81.2 globlastp LNU881_H1 maize|10v1|AI622122_P1 1817 3819 616 88.2 globlastp LNU881_H2 foxtail_millet|11v3|PHY7SI034179M_P1 1818 3820 616 83 globlastp LNU881_H3 switchgrass|12v1IFE597492_P1 1819 3821 616 80.5 globlastp LNU882_H1 maize|10v1|BM072852_P1 1820 3822 617 93.7 globlastp LNU882_H2 foxtail_millet|11v3|EC612475_P1 1821 3823 617 91.9 globlastp LNU882_H3 millet|10v1|EVO454PM047888_P1 1822 3824 617 91.5 globlastp LNU882_H4 rice|11v1|BI796737 1823 3825 617 89.4 globlastp LNU882_H5 barley|12v1|BF064865_P1 1824 3826 617 88.1 globlastp LNU882_H6 rye|12v1|DRR001012.119640 1825 3827 617 87.6 globlastp LNU882_H7 brachypodium|12v1|BRADI1G76280_P1 1826 3828 617 86.5 globlastp LNU883_H1 foxtail_millet|11v3|PHY7SI034726M_P1 1827 3829 618 95.2 globlastp LNU883_H2 maize|10v1|CO529769_P1 1828 3830 618 94.7 globlastp LNU883_H3 rice|11v1|BI803402 1829 3831 618 91 globlastp LNU883_H4 brachypodium|12v1|BRADI1G76640_T1 1830 3832 618 84.29 glotblastn LNU883_H5 wheat|12v3|CJ904265 1831 3833 618 82.1 globlastp LNU884_H1 maize|10v1|AI666123_P1 1832 3834 619 91.8 globlastp LNU884_H4 switchgrass|12v1|FL810399_P1 1833 3835 619 87.6 globlastp LNU884_H2 switchgrass|gb167|FL692715 1834 3836 619 87.6 globlastp LNU884_H5 switchgrass|12v1IFL692715_P1 1835 3837 619 86.6 globlastp LNU884_H3 foxtail_millet|11v3|EC613926_P1 1836 3838 619 85.9 globlastp LNU885_H1 maize|10v1|AA979999_P1 1837 3839 620 98.9 globlastp LNU885_H2 maize|10v1|AI932058_P1 1838 3840 620 98.3 globlastp LNU885_H3 switchgrasslgb167|FE598943 1839 3841 620 98.1 globlastp LNU885_H1 56 switchgrass|12v1|FE598943_P1 1840 3842 620 97.9 globlastp LNU885_H4 cenchrus|gb166|EB653919_P 1 1841 3843 620 97.9 globlastp LNU885_H5 sorghum|12v1|SB10G022220 1842 3844 620 97.9 globlastp LNU885_H6 foxtail_millet|11v3|PHY7SI006215M_P1 1843 3845 620 97.8 globlastp LNU885_H1 57 switchgrass|12v1|FE604237_P1 1844 3846 620 97.6 globlastp LNU885_H7 foxtail_millet|11v3|PHY7SI029447M_P1 1845 3847 620 97.6 globlastp LNU885_H8 millet|10v1|EVO454PM002715_P1 1846 3848 620 97.6 globlastp LNU885_H1 58 switchgrass|12v1|FE617027_ P1 1847 3849 620 97.2 globlastp LNU885_H9 switchgrass|gb167|FE617027 1848 3849 620 97.2 globlastp LNU885_H1 0 rice|11v1|AA753506 1849 3850 620 95.7 globlastp LNU885_H1 1 brachypodium|12v1|BRADI1G37790_P1 1850 3851 620 94.6 globlastp LNU885_H1 2 brachypodium|12v1|BRADI3G33860_P1 1851 3852 620 93.1 globlastp LNU885_H1 59 switchgrass|12v1|FE603637_P1 1852 3853 620 92.3 globlastp LNU885_H1 3 strawberry|11v1|CO381502 1853 3854 620 92.3 globlastp LNU885_H1 4 oat|11v1|CN815217_P1 1854 3855 620 92.1 globlastp LNU885_H1 5 potato|10v1|BG593674_P1 1855 3856 620 92.1 globlastp LNU885_H1 6 tomato|11v1|BG129608 1856 3857 620 92.1 globlastp LNU885_H1 7 liriodendron|gb166|CK755344_P1 1857 3858 620 92 globlastp LNU885_H1 8 oat|11v1|CN817660_P1 1858 3859 620 92 globlastp LNU885_H1 9 oil_palm|11v1|EL684287_P1 1859 3860 620 92 globlastp LNU885_H2 0 tobacco|gb162|BQ842866 1860 3861 620 92 globlastp LNU885_H2 1 watermelon|11v1IX85013 1861 3862 620 92 globlastp LNU885_H1 60 nicotiana_benthamiana|12v1|EB446376_P1 1862 3863 620 91.8 globlastp LNU885_H2 2 cucumber|09v1|X85013_P1 1863 3864 620 91.8 globlastp LNU885_H2 3 rye|12v1|BG264101 1864 3865 620 91.8 globlastp LNU885_H2 4 rye|12v1|DRR001012.133776 1865 3865 620 91.8 globlastp LNU885_H2 5 solanum_phureja|09v1ISPHBG129608 1866 3866 620 91.6 globlastp LNU885_H2 6 wheat|12v3|BE404507 1867 3867 620 91.6 globlastp LNU885_H2 7 wheat|12v3|BE406710 1868 3867 620 91.6 globlastp LNU885_H1 61 prunus_mume|13v1|BU044204_P1 1869 3868 620 91.4 globlastp LNU885_H2 8 aristolochial|10v1|SRR039082S0002361_T1 1870 3869 620 91.4 glotblastn LNU885_H2 9 eucalyptus|11v2|CD669053_P 1 1871 3870 620 91.4 globlastp LNU885_H3 0 oil_palm|11v1|EL681083_P1 1872 3871 620 91.4 globlastp LNU885_H3 1 peanut|10v1|EE126045_P1 1873 3872 620 91.4 globlastp LNU885_H3 2 phalaenopsis|11v1ICB032203XX1_P1 1874 3873 620 91.4 globlastp LNU885_H1 62 monkeyflower|12v1|DV206835_P1 1875 3874 620 91.2 globlastp LNU885_H3 3 amorphophallus| 11v2|SRR089351X173078_P1 1876 3875 620 91.2 globlastp LNU885_H3 4 catharanthus|11v1ISRR098691X112848_P1 1877 3876 620 91.2 globlastp LNU885_H3 5 flaveria|11v1|SRR149229.103924_P1 1878 3877 620 91.2 globlastp LNU885_H3 6 flaveria|11v1ISRR149229.114493_P1 1879 3877 620 91.2 globlastp LNU885_H3 7 monkeyflowerl10v1IDV206835 1880 3874 620 91.2 globlastp LNU885_H3 8 oak|10v1|DN950673_P1 1881 3878 620 91.2 globlastp LNU885_H3 9 plantago|11v2|SRR066373X102202_P1 1882 3879 620 91.2 globlastp LNU885_H4 0 wheat|12v3|BE403876 1883 3880 620 91.2 globlastp LNU885_H4 1 banana|12v1|BBS440T3_P1 1884 3881 620 91 globlastp LNU885_H4 2 cacao|10v1|CA796831_P1 1885 3882 620 91 globlastp LNU885_H4 3 cassava|09v1|CK643413_P1 1886 3883 620 91 globlastp LNU885_H4 4 chestnut|gb170|SRR006295S0006601_P1 1887 3884 620 91 globlastp LNU885_H4 5 cirsiumll1v1ISRR346952.128271_P1 1888 3885 620 91 globlastp LNU885_H4 6 lettuce|12v1|DW044389_P1 1889 3886 620 91 globlastp LNU885_H4 7 prunus|10v1|BU044204 1890 3887 620 91 globlastp LNU885_H4 8 switchgrasslgb167|FE604237 1891 3888 620 91 globlastp LNU885_H1 63 castorbean|12v1|T15265_P1 1892 3889 620 90.8 globlastp LNU885_H4 9 artemisia|10v1|EY033790_P1 1893 3890 620 90.8 globlastp LNU885_H5 0 cassava|09v1|CK647990_P1 1894 3891 620 90.8 globlastp LNU885_H5 1 castorbean|11v1|T15265 1895 3889 620 90.8 globlastp LNU885_H5 2 euphorbial11v1|AW990924_P 1 1896 3892 620 90.8 globlastp LNU885_H5 3 flaveria|11v1ISRR149232.246685_P1 1897 3893 620 90.8 globlastp LNU885_H5 4 gossypium_raimondii|12v1|DT557120_P1 1898 3894 620 90.8 globlastp LNU885_H5 5 grape|11v1|BM437210_P1 1899 3895 620 90.8 globlastp LNU885_H5 6 soybean|11v1|GLYMA11G37630 1900 3896 620 90.8 globlastp LNU885_H5 6 soybean|12v1|GLYMA11G37630_P1 1901 3896 620 90.8 globlastp LNU885_H1 64 olea|13v1|SRR014463X51856D1_P1 1902 3897 620 90.7 globlastp LNU885_H5 7 apple|11v1|CN490098_P1 1903 3898 620 90.7 globlastp LNU885_H5 8 clementine|11v1|CF417075_P1 1904 3899 620 90.7 globlastp LNU885_H5 9 cotton|11v1|AI054652_P1 1905 3900 620 90.7 globlastp LNU885_H6 0 orange|11v1|CF417075_P1 1906 3899 620 90.7 globlastp LNU885_H6 1 soybean|11v1|GLYMA18G01580 1907 3901 620 90.7 globlastp LNU885_H6 1 soybean|12v1|GLYMA1 8G01580_P1 1908 3901 620 90.7 globlastp LNU885_H6 2 amborella|12v3|FD432979_P1 1909 3902 620 90.5 globlastp LNU885_H6 3 amsonia|11v1|SRR098688X101304_P1 1910 3903 620 90.5 globlastp LNU885_H6 4 apple|11v1|CN489384_P1 1911 3904 620 90.5 globlastp LNU885_H6 5 aquilegia|10v2|DR937313_P1 1912 3905 620 90.5 globlastp LNU885_H6 6 centaurea|gb166|EH713231_P1 1913 3906 620 90.5 globlastp LNU885_H6 7 cichorium|gb171|EH673881_P1 1914 3907 620 90.5 globlastp LNU885_H6 8 cirsium|11v1|SRR346952.1001022_P1 1915 3906 620 90.5 globlastp LNU885_H6 9 cowpea|12v1|FF387653_P1 1916 3908 620 90.5 globlastp LNU885_H7 0 eschscholzia|11v1ICD476599_P1 1917 3909 620 90.5 globlastp LNU885_H7 1 eschscholzia|11v1ICD478545_P1 1918 3910 620 90.5 globlastp LNU885_H7 2 pigeonpea|11v1ISRR054580X107320_P1 1919 3911 620 90.5 globlastp LNU885_H7 3 rye|12v1|DRR001012.135185 1920 3912 620 90.5 globlastp LNU885_H7 4 triphysarial10v1IDR174094 1921 3913 620 90.5 globlastp LNU885_H1 65 monkeyflower|12v1IDV209559_P1 1922 3914 620 90.3 globlastp LNU885_H7 5 ambrosia|11v1ISRR346935.112544_P1 1923 3915 620 90.3 globlastp LNU885_H7 6 ambrosia|11v1ISRR346935.130001_P1 1924 3916 620 90.3 globlastp LNU885_H7 7 arnica|11v1ISRR099034X108499_P1 1925 3917 620 90.3 globlastp LNU885_H7 8 banana|12v1|FF558852_P1 1926 3918 620 90.3 globlastp LNU885_H7 9 blueberry|12v1|CV090498_P1 1927 3919 620 90.3 globlastp LNU885_H8 0 monkeyflowerl10v1IDV209559 1928 3914 620 90.3 globlastp LNU885_H8 1 trigonella|11v1ISRR066194X112617 1929 3920 620 90.3 globlastp LNU885_H8 2 triphysaria|10v1|BM357149 1930 3921 620 90.3 globlastp LNU885_H8 3 arnica|11v1ISRR099034X107278_T1 1931 3922 620 90.28 glotblastn LNU885_H8 4 orobanche|10v1ISRR023189S0002711_T1 1932 3923 620 90.28 glotblastn LNU885_H8 5 ambrosia|11v1ISRR346935.225484_P1 1933 3924 620 90.1 globlastp LNU885_H8 6 euonymus|11v1|SRR070038X106031_P1 1934 3925 620 90.1 globlastp LNU885_H8 7 gossypium_raimondii|12v1|AI 725994_P1 1935 3926 620 90.1 globlastp LNU885_H8 8 medicago|12v1|AW256519_P1 1936 3927 620 90.1 globlastp LNU885_H8 9 spruce|11v1IEF678303 1937 3928 620 90.1 globlastp LNU885_H9 0 spruce|11v1IES226997 1938 3929 620 90.1 globlastp LNU885_H9 1 spruce|11v1IEX358693 1939 3930 620 90.1 globlastp LNU885_H1 66 bean|12v2|CA898352_P1 1940 3931 620 89.9 globlastp LNU885_H9 2 bean|12v1|CA898352 1941 3931 620 89.9 globlastp LNU885_H9 3 beech|11v1ISRR006293.13457_P1 1942 3932 620 89.9 globlastp LNU885_H9 4 chelidonium|11v1|SRR084752X103249_P1 1943 3933 620 89.9 globlastp LNU885_H9 5 cotton|11v1|AI725994_P1 1944 3934 620 89.9 globlastp LNU885_H9 6 lettuce|12v1|DW066578_P1 1945 3935 620 89.9 globlastp LNU885_H9 7 poppy|11v1|SRR030259.334416_P1 1946 3936 620 89.9 globlastp LNU885_H9 8 tripterygium|11v1|SRR098677X103558 1947 3937 620 89.9 globlastp LNU885_H1 67 chickpea|13v2|ES560343_P1 1948 3938 620 89.7 globlastp LNU885_H9 9 abies|11v2|SRR098676X100633_P1 1949 3939 620 89.7 globlastp LNU885_H1 00 grape|11v1|GSVIVT01000590001_P1 1950 3940 620 89.7 globlastp LNU885_H1 01 pine|10v2|AW011601_P1 1951 3941 620 89.7 globlastp LNU885_H1 02 pseudotsuga|10v1|SRR065119S0006094 1952 3942 620 89.7 globlastp LNU885_H1 03 safflower|gb162|EL375744 1953 3943 620 89.7 globlastp LNU885_H1 04 sunflower|12v1|CD851729 1954 3944 620 89.7 globlastp LNU885_H1 05 vinca|11v1|SRR98690X103497 1955 3945 620 89.7 globlastp LNU885_H1 06 solanum_phureja|09v1|SPHBE920118 1956 3946 620 89.6 globlastp LNU885_H1 07 maritime_pine|10v1|BX251751_P1 1957 3947 620 89.5 globlastp LNU885_H1 08 poppy|11v1|FE964991_P1 1958 3948 620 89.5 globlastp LNU885_H1 09 radish|gb164|EV546967 1959 3949 620 89.5 globlastp LNU885_H1 10 valeriana|11v1|SRR099039X104384 1960 3950 620 89.5 globlastp LNU885_H1 11 cirsium|11v1|SRR346952.209008_P1 1961 3951 620 89.4 globlastp LNU885_H1 12 b_rapa|11v1|CD827580_P1 1962 3952 620 89.3 globlastp LNU885_H1 13 canola|11v1|CN735656_P1 1963 3953 620 89.3 globlastp LNU885_H1 14 canola|11v1|DY011412_P1 1964 3954 620 89.3 globlastp LNU885_H1 15 canola|11v1|EE444048_P1 1965 3955 620 89.3 globlastp LNU885_H1 16 poplar|10v1|AI162097 1966 3956 620 89.3 globlastp LNU885_H1 16 poplar|13v1|AI162097_P1 1967 3956 620 89.3 globlastp LNU885_H1 17 thellungiella_halophilum|11v1|DN774318 1968 3957 620 89.3 globlastp LNU885_H118 vinca|11v1|SRR098690X104249 1969 3958 620 89.3 globlastp LNU885_H1 19 b_juncea|12v1|E6ANDIZ01AULG5_P1 1970 3959 620 89.2 globlastp LNU885_H1 20 b_rapa|11v1|CD815423_P1 1971 3960 620 89.2 globlastp LNU885_H1 21 canola|11v1|DY006806_P1 1972 3961 620 89.2 globlastp LNU885_H1 22 radish|gb164|EW731499 1973 3962 620 89.2 globlastp LNU885_H1 23 tabernaemontana|11v1|SRR098689X100123 1974 3963 620 89.2 globlastp LNU885_H1 24 tripterygium|11v1|SRR098677X106478 1975 3964 620 89.2 globlastp LNU885_H1 25 ambrosia|11v1|SRR346935.160786_T1 1976 3965 620 89.16 glotblastn LNU885_H1 26 arabidopsis_lyrata|09v1|JGIAL002814_P1 1977 3966 620 89 globlastp LNU885_H1 27 b_rapa|11v1|CX188616_P1 1978 3967 620 89 globlastp LNU885_H1 28 canola|11v1|EE459861_T1 1979 3968 620 88.97 glotblastn LNU885_H1 29 centaurea|gb166|EL934279_T 1 1980 3969 620 88.97 glotblastn LNU885_H1 30 zostera|10v1|AM769778 1981 3970 620 88.97 glotblastn LNU885_H1 31 arabidopsis|10v1|AT1G24510_P1 1982 3971 620 88.8 globlastp LNU885_H1 32 poplar|10v1|BU831685 1983 3972 620 88.8 globlastp LNU885_H1 32 poplar|13v1|BU824523_P1 1984 3972 620 88.8 globlastp LNU885_H1 33 sequoia|10v1|SRR065044S00 07458 1985 3973 620 88.8 globlastp LNU885_H1 34 thellungiella_parvulum|11v1|DN774318 1986 3974 620 88.8 globlastp LNU885_H1 35 cephalotaxus|11v1|SRR064395X110135_P1 1987 3975 620 88.6 globlastp LNU885_H1 36 aquilegia|10v2|DR928892_P1 1988 3976 620 88.2 globlastp LNU885_H1 37 podocarpus|10v1|SRR065014S0010290_P1 1989 3977 620 88.2 globlastp LNU885_H1 38 sciadopitys|10v1|SRR065035S0017103 1990 3978 620 88.2 globlastp LNU885_H1 39 barley|12v1|BQ762736_T1 1991 3979 620 88.1 glotblastn LNU885_H1 40 pteridium|11v1|SRR043594X100385 1992 3980 620 88.04 glotblastn LNU885_H1 41 beet|12v1|BI543248_P1 1993 3981 620 88 globlastp LNU885_H1 42 gnetum|10v1|DN954800_T1 1994 3982 620 87.85 glotblastn LNU885_H1 43 nasturtium|11v1|SRR032558.163106_P1 1995 3983 620 87.3 globlastp LNU885_H1 44 physcomitrella|10v1|AW145268_P1 1996 3984 620 87.3 globlastp LNU885_H1 45 onion|12v1|SRR073446X113522D1_P1 1997 3985 620 86.9 globlastp LNU885_H1 68 zostera|12v1|SRR057351X10529D1_P1 1998 3986 620 86.7 globlastp LNU885_H1 46 zostera|10v1|SRR057351S0000962 1999 3986 620 86.7 globlastp LNU885_H1 47 spikemoss|gb165|FE443744 2000 3987 620 86.6 globlastp LNU885_H1 48 silene|11v1|SRR096785X166572 2001 3988 620 86.5 globlastp LNU885_H1 49 ceratodon|10v1|SRR074890S0022653_P1 2002 3989 620 86 globlastp LNU885_H1 50 vinca|11v1|SRR098690X104840 2003 3990 620 85.6 globlastp LNU885_H1 51 distylium|11v1|SRR065077X10363_T1 2004 3991 620 85.42 glotblastn LNU885_H1 69 olea|13v1|SRR014463X11934 D1_T1 2005 3992 620 85.23 glotblastn LNU885_H1 52 flaveria|11v1|SRR149229.10823_P1 2006 3993 620 84.7 globlastp LNU885_H1 53 taxus|10v1|SRR032523S0062074 2007 3994 620 84.1 globlastp LNU885_H1 54 switchgrass|gb167|DN151949 2008 3995 620 83.9 globlastp LNU885_H1 55 spikemoss|gb165|FE436590 2009 3996 620 83.6 globlastp LNU885_H1 70 nicotiana_benthamiana|12v1|BP752014_P1 2010 3997 620 82.1 globlastp LNU887_H1 maize|10v1|BG319820_P1 2011 3998 622 90.6 globlastp LNU887_H2 foxtail_millet|11v3|EC612301_P1 2012 3999 622 84.6 globlastp LNU887_H4 switchgrass|12v1|FL748385_P1 2013 4000 622 82.5 globlastp LNU887_H3 switchgrass|gb167|FL748385 2014 4001 622 81.4 glotblastn LNU887_H5 switchgrass|12v1|GD046086_P1 2015 4002 622 80.7 globlastp LNU888_H1 wheat|12v3|CD491419 2016 623 623 100 globlastp LNU888_H2 sugarcane|10v1|CA111963 2017 4003 623 92.3 globlastp LNU888_H6 switchgrass|12v1|SRR187765. 216058_P1 2018 4004 623 91.3 globlastp LNU888_H3 foxtail_millet|11v3|EC613111_P1 2019 4005 623 91.3 globlastp LNU888_H4 foxtail_millet|11v3|PHY7SI032010M_P1 2020 4006 623 91.3 globlastp LNU888_H5 maize|10v1|BM379136_P1 2021 4007 623 91.3 globlastp LNU888_H7 switchgrass|12v1|SRR187769.1154845_P1 2022 4008 623 89.4 globlastp LNU888_H8 switchgrass|12v1|DN149585_T1 2023 4009 623 84.62 glotblastn LNU889_H1 maize|10v1|AI966901_P1 2024 4010 624 87.1 globlastp LNU889_H3 switchgrass|12v1|SRR187768. 382752_P1 2025 4011 624 82 globlastp LNU889_H4 switchgrass|12v1|SRR187766. 665224_P1 2026 4012 624 80.9 globlastp LNU889_H2 switchgrass|gb167|FE616994 2027 4013 624 80.9 globlastp LNU892_H1 sorghum|12v1|SB02G033220 2028 4014 626 95.7 globlastp LNU892_H2 maize|10v1|AI619171_P1 2029 4015 626 92.7 globlastp LNU892_H3 sorghum|12v1|SB02G033200 2030 4016 626 90.4 globlastp LNU892_H4 foxtail_millet|11v3|PHY7SI029552M_P1 2031 4017 626 86.5 globlastp LNU892_H7 switchgrass|12v1|SRR187765. 29978_P1 2032 4018 626 86.1 globlastp LNU892_H8 switchgrass|12v1|GD022360_P1 2033 4019 626 85.5 globlastp LNU892_H5 foxtail_millet|11v3|PHY7SI029584M_P1 2034 4020 626 85.3 globlastp LNU892_H6 foxtail_millet|11v3|PHY7SI029578M_P1 2035 4021 626 81.8 globlastp LNU893_H1 3 switchgrass|12v1|FL793626_P1 2036 4022 627 98.6 globlastp LNU893_H1 4 switchgrass|12v1|SRR187771. 339181_P1 2037 4022 627 98.6 globlastp LNU893_H1 switchgrass|gb167|FL793626 2038 4022 627 98.6 globlastp LNU893_H2 barley|12v1|AW982181_P1 2039 4023 627 97.3 globlastp LNU893_H3 foxtail_millet|11v3|PHY7SI031280M_P1 2040 4024 627 97.3 globlastp LNU893_H4 maize|10v1|BG517269_P1 2041 4025 627 97.3 globlastp LNU893_H5 millet|10v1|EV0454PM670348_P1 2042 4024 627 97.3 globlastp LNU893_H6 rye|12v1|BE495982 2043 4023 627 97.3 globlastp LNU893_H7 wheat|12v3|CA728398 2044 4023 627 97.3 globlastp LNU893_H8 fescue|gb161|DT686545_P1 2045 4026 627 95.9 globlastp LNU893_H9 lolium|10v1|AU246324_P1 2046 4026 627 95.9 globlastp LNU893_H1 0 rice|11v1|CF330515 2047 4027 627 94.7 globlastp LNU893_H1 1 brachypodium|12v1|BRADI1G24640_P1 2048 4028 627 90.7 globlastp LNU893_H1 2 oil_palm|11v1|SRR190701.565537_P1 2049 4029 627 82.4 globlastp LNU894_H1 sorghum|12v1|SB02G039433 2050 4030 628 93.5 globlastp LNU894_H2 wheat|12v3|CA502683 2051 4030 628 93.5 globlastp LNU894_H3 sugarcane|10v1|CA147729 2052 4031 628 86.9 globlastp LNU895_H1 maize|10v1|AW244938_P1 2053 4032 629 91.2 globlastp LNU895_H2 switchgrass|gb167|FE641349 2054 4033 629 85.3 globlastp LNU895_H4 switchgrass|12v1|FE641349_P1 2055 4034 629 84.3 globlastp LNU895_H3 foxtail_millet|11v3|PHY7SI031608M_P1 2056 4035 629 82.4 globlastp LNU896_H1 maize|10v1|AW497539_P1 2057 4036 630 81.1 globlastp LNU899_H1 maize|10v1|AW288640_P1 2058 4037 633 91.6 globlastp LNU899_H2 foxtail_millet|11v3|PHY7SI000435M_P1 2059 4038 633 87.3 globlastp LNU899_H3 switchgrass|gb167|FL704161 2060 4039 633 86.64 glotblastn LNU899_H4 switchgrass|12v1|FL748364_P1 2061 4040 633 84.4 globlastp LNU899_H5 switchgrass|12v1|FL704161_P1 2062 4041 633 80.8 globlastp LNU900_H1 maize|10v1|AW052900_P1 2063 4042 634 93.6 globlastp LNU900_H2 foxtail_millet|11v3|PHY7SI002469M_P1 2064 4043 634 90.3 globlastp LNU900_H8 switchgrass|12v1|FL696960_P1 2065 4044 634 89.5 globlastp LNU900_H3 rye|12v1|DRR001012.183573 2066 4045 634 88.24 glotblastn LNU900_H4 barley|12v1|AJ466045_P1 2067 4046 634 87.5 globlastp LNU900_H5 wheat|12v3|CA743258 2068 4047 634 87.5 globlastp LNU900_H6 brachypodium|12v1|BRADI2G06440_P1 2069 4048 634 86.7 globlastp LNU901_H1 maize|10v1|AI964628_P1 2070 4049 635 90.1 globlastp LNU901_H1 0 switchgrass|12v1|FE638167_T1 2071 4050 635 83.6 glotblastn LNU902_H1 maize|10v1|AI622490_P1 2072 4051 636 93.4 globlastp LNU902_H2 foxtail_millet|11v3|PHY7SI002453M_P1 2073 4052 636 88.6 globlastp LNU902_H3 millet|10v1|EVO454PM024444_T1 2074 4053 636 86.16 glotblastn LNU902_H4 switchgrass|gb167|DN140927 2075 4054 636 84.08 glotblastn LNU902_H5 switchgrass|12v1|GD033452_T1 2076 4055 636 83.74 glotblastn LNU903_H1 maize|10v1|AI979716_P1 2077 4056 637 92.3 globlastp LNU903_H2 maize|10v1|AW216295_P1 2078 4057 637 91.1 globlastp LNU903_H3 foxtail_millet|11v3|EC612307_P1 2079 4058 637 89.9 globlastp LNU903_H5 switchgrass|12v1|FL699073_P1 2080 4059 637 88.1 globlastp LNU903_H4 switchgrass|gb167|DN150122 2081 4060 637 87.9 globlastp LNU904_H1 maize|10v1|AI947568_P1 2082 4061 638 83.1 globlastp LNU905_H1 maize|10v1|AW052874_P1 2083 4062 639 88.4 globlastp LNU908_H5 switchgrass|12v1|HO266689_P1 2084 4063 642 88.7 globlastp LNU908_H1 foxtail_millet|11v3|PHY7SI005411M_P1 2085 4064 642 88.6 globlastp LNU908_H6 switchgrass|12v1|FL973257_P1 2086 4065 642 88.1 globlastp LNU908_H7 switchgrass|12v1|SRR187765.276211_P1 2087 4065 642 88.1 globlastp LNU908_H2 maize|10v1|DT641006_P1 2088 4066 642 87.4 globlastp LNU908_H3 rice|11v1|CK056423 2089 4067 642 83.5 globlastp LNU908_H4 rice|11v1|HS372695 2090 4068 642 83.46 glotblastn LNU908_H8 wheat|12v3|SRR400820X635658D1_T1 2091 4069 642 80.12 glotblastn LNU908_H9 brachypodium|12v1|BRADI2G46140_P1 2092 4070 642 80.1 globlastp LNU909_H1 maize|10v1|BQ577951_P1 2093 4071 643 92.1 globlastp LNU910_H1 maize|10v1|BG837207_P1 2094 4072 644 90.1 globlastp LNU910_H2 sugarcane|10v1|CA242307 2095 4073 644 89.8 globlastp LNU910_H8 switchgrass|12v1|FL945810_P1 2096 4074 644 88.9 globlastp LNU910_H3 foxtail_millet|11v3|PHY7SI003477M_P1 2097 4075 644 88.9 globlastp LNU910_H4 switchgrass|gb167IFL927878 2098 4076 644 87.88 glotblastn LNU910_H5 millet|10v1|EVO454PM187011_P1 2099 4077 644 84.8 globlastp LNU910_H9 brachypodium|12v1|BRADI2G50130_P1 2100 4078 644 83 globlastp LNU910_H7 rice|11v1|BI795617 2101 4079 644 82 glotblastn LNU910_H6 maize|10v1|CD946808_T1 2102 4080 644 81.63 glotblastn LNU910_H1 0 brachypodium|12v1|BRADI2G50136_P1 2103 4081 644 80 globlastp LNU912_H9 switchgrass|12v1|FL792538_P1 2104 4082 646 91 globlastp LNU912_H1 foxtail_millet|11v3|PHY7SI001740M_P1 2105 4083 646 91 globlastp LNU912_H1 0 switchgrass|12v1|FL751233_P1 2106 4084 646 90.5 globlastp LNU912_H2 millet|10v1|EVO454PM056333_P1 2107 4085 646 89.8 globlastp LNU912_H3 maize|10v1|AI948274_P1 2108 4086 646 87.7 globlastp LNU912_H4 rice|11v1|BM420858 2109 4087 646 84.6 globlastp LNU912_H5 brachypodium|12v1|BRADI2G52680_P1 2110 4088 646 83.1 globlastp LNU912_H6 wheat|12v3|BU099391 2111 4089 646 80.9 globlastp LNU912_H7 wheat|12v3|BM136936 2112 4090 646 80.4 globlastp LNU912_H8 barley|12v1|AK371517_P1 2113 4091 646 80.3 globlastp LNU913_H1 sugarcane|10v1|CA082310 2114 4092 647 97.9 globlastp LNU913_H2 maize|10v1|W59840_P1 2115 4093 647 96.7 globlastp LNU913_H3 foxtail_millet|11v3|EC612650_P1 2116 4094 647 93.8 globlastp LNU913_H1 1 switchgrass|12v1|FE617311_P1 2117 4095 647 92.5 globlastp LNU913_H1 2 switchgrass|12v1|FE616665_P1 2118 4096 647 91.5 globlastp LNU913_H4 millet|10v1|EVO454PM018338_P1 2119 4097 647 86.1 globlastp LNU913_H5 switchgrass|gb167|FE616665 2120 4098 647 85.33 glotblastn LNU913_H6 rice|11v1|BI808261 2121 4099 647 83.3 globlastp LNU913_H7 brachypodium|12v1|BRADI2G54580_P1 2122 4100 647 82.4 globlastp LNU913_H8 rye|12v1|DRR001012.116346 2123 4101 647 82.2 globlastp LNU913_H9 wheat|12v3|BU100850 2124 4102 647 81.7 globlastp LNU913_H1 0 barley|12v1|AV834883_P1 2125 4103 647 81.6 globlastp LNU914_H1 sorghum|12v1|SB04G000570 2126 4104 648 94.5 globlastp LNU914_H2 maize|10v1|AI665003_P1 2127 4105 648 85.6 globlastp LNU914_H3 maize|10v1|AI372104_P1 2128 4106 648 84.4 globlastp LNU915_H1 foxtail_mllet|11v3|PHY7SI016626M_P1 2129 4107 649 88.4 globlastp LNU915_H3 switchgrass|12v1|FL695083_P1 2130 4108 649 87.8 globlastp LNU915_H2 maize|10v1|BE453841_P1 2131 4109 649 86.3 globlastp LNU916_H1 sorghum|12v1|AW284247 2132 4110 650 81.8 globlastp LNU917_H1 sugarcane|10v1|BQ534456 2133 4111 651 96.8 globlastp LNU917_H2 foxtail_millet|10v3|PHY7SI017544M_P1 2134 4112 651 91.2 globlastp LNU917_H3 maize|10v1|AI673988_P1 2135 4113 651 90.4 globlastp LNU917_H4 switchgrass|gb167|DN142589 2136 4114 651 90.2 globlastp LNU917_H5 millet|10v1|EVO454PM028850_P1 2137 4115 651 89.6 globlastp LNU917_H1 2 switchgrass|12v1IFL813544_P1 2138 4116 651 88.1 globlastp LNU917_H6 wheat|12v3|BE400183 2139 4117 651 85.1 globlastp LNU917_H7 rye|12v1|DRR001012.113593 2140 4118 651 84.3 globlastp LNU917_H8 leymus|gb166|EG375025_P1 2141 4119 651 84 globlastp LNU917_H9 brachypodium|12v1IBRADI3 G06290_P1 2142 4120 651 83.8 globlastp LNU917_H1 0 fescue|gb1611|DT701360_P1 2143 4121 651 82.4 globlastp LNU917_H1 1 maize|10v1|BQ048402_P1 2144 4122 651 82.3 globlastp LNU918_H1 maize|10v1|AJ006536_P1 2145 4123 652 85.6 globlastp LNU918_H2 maize|10v1|EY960159_T1 2146 4124 652 83.73 glotblastn LNU918_H3 switchgrass|gb167|DN149185 2147 4125 652 81.15 glotblastn LNU918_H4 switchgrass|12v1|DN149185_P1 2148 4126 652 80.6 globlastp LNU920_H1 sugarcane|10v1ICF576045 2149 4127 654 89.2 globlastp LNU920_H2 maize|10v1|Al677118_P1 2150 4128 654 84.2 globlastp LNU920_H5 switchgrass|12v1|FE646248_P1 2151 4129 654 81.5 globlastp LNU920_H3 foxtail_millet|11v3|PHY7SI018467M_P1 2152 4130 654 80.9 globlastp LNU920_H4 switchgrasslgb167|FE646248 2153 4131 654 80.9 globlastp LNU921_H1 maize|10v1ICA400159_P1 2154 4132 655 82 globlastp LNU922_H1 6 switchgrass|12v1|DN143068_P1 2155 4133 656 96.2 globlastp LNU922_H1 switchgrass|gb167|FE620798 2156 4134 656 96.2 globlastp LNU922_H2 foxtail_millet|11v3|PHY7SI017460M_P1 2157 4135 656 95.7 globlastp LNU922_H3 maize|10v1|AI901428_P1 2158 4136 656 95.7 globlastp LNU922_H4 switchgrass|gb167|DN143068 2159 4137 656 95.7 globlastp LNU922_H5 millet|10v1|EVO454PM010006_P1 2160 4138 656 94.9 globlastp LNU922_H6 maize|10v1|AA011883_P1 2161 4139 656 94.6 globlastp LNU922_H7 rice|11v1|BI805551 2162 4140 656 92.1 globlastp LNU922_H8 brachypodium|12v1IBRADI3G52340T2_P1 2163 4141 656 87 globlastp LNU922_H9 oat11|v1|CN817149_P1 2164 4142 656 86.5 globlastp LNU922_H1 0 wheat|12v3|BQ802727 2165 4143 656 86.5 globlastp LNU922_H1 1 brachypodium|12v1|BRADI5G01350_P1 2166 4144 656 86.2 globlastp LNU922_H1 2 barley|12v1|BE412861_P1 2167 4145 656 86 globlastp LNU922_H1 3 cenchrus|gb166|EB660552-P1 2168 4146 656 86 globlastp LNU922_H1 4 rye|12v1|BE586503 2169 4147 656 85.5 globlastp LNU922_H1 5 rye|12v1|DRR001012.249546 2170 4148 656 80.7 globlastp LNU923_H1 maize|10v1|BI273413_P1 2171 4149 657 81.5 globlastp LNU924_H1 sugarcane|10v1ICA070317 2172 4150 658 83.8 globlastp LNU924_H3 switchgrass|12v1|FL935940_P1 2173 4151 658 80.9 globlastp LNU924_H4 switchgrass|12v1|DN145033_P1 2174 4152 658 80.4 globlastp LNU924_H2 foxtail_millet|11v3|SOLX00022667_P1 2175 4153 658 80.4 globlastp LNU925_H1 maize|10vl|FL010481_P1 2176 4154 659 94.2 globlastp LNU925_H2 foxtail_millet|11v3|PHY7SI016794M_P1 2177 4155 659 89.5 globlastp LNU925_H9 switchgrass|12v1|SRR187770.1008801_P1 2178 4156 659 86 globlastp LNU925_H1 0 switchgrass|12v1|SRR187769. 231821_P1 2179 4157 659 85.7 globlastp LNU925_H3 brachypodium|12v1IBRADI3 G51590_P1 2180 4158 659 85.4 globlastp LNU925_H4 wheat|12v3|TA12V11729457 2181 4159 659 85.31 glotblastn LNU925_H5 barley|12v1|HV12v1CRP055339_P1 2182 4160 659 85 globlastp LNU925_H6 rice|11v1|CX104415 2183 4161 659 81.1 globlastp LNU925_H7 wheat|12v3|CA731766 2184 4162 659 80.2 globlastp LNU925_H8 barley|12v1|BI777343_P1 2185 4163 659 80.1 globlastp LNU926_H1 sugarcane|10v1|CA088361 2186 4164 660 96.4 globlastp LNU926_H2 foxtail_millet|11v3|PHY7SI017439M_P1 2187 4165 660 94.3 globlastp LNU926_H3 maize|10v1|BI389475_P1 2188 4166 660 93.7 globlastp LNU926_H4 maize|10v1|BM078145_P1 2189 4167 660 93.7 globlastp LNU926_H7 switchgrass|12v1|FL896622_P1 2190 4168 660 91.9 globlastp LNU926_H5 milled10v1|EV0454PM001369_P1 2191 4169 660 91.9 globlastp LNU926_H6 switchgrass|gb167|FL736268 2192 4170 660 91.3 globlastp LNU926_H8 switchgrass|12v1|FL736268_P1 2193 4171 660 91 globlastp LNU928_H1 maize|10v1|AI666263_P1 2194 4172 661 96.9 globlastp LNU928_H5 switchgrass|12v1|FL703064_P1 2195 4173 661 90.2 globlastp LNU928_H6 switchgrass|12v1|FL827336_P1 2196 4174 661 89.9 globlastp LNU928_H2 foxtail_millet|11v3|PHY7SI016502M_P1 2197 4175 661 89.6 globlastp LNU928_H3 rice|11v1|BI812770 2198 4176 661 80.26 glotblastn LNU928_H4 rye|12v1|DRR001012.253036 2199 4177 661 80.14 glotblastn LNU929_H1 sorghum|12v1|SB04G036770 2200 4178 662 85.4 globlastp LNU929_H2 maize|10v1|BG836023_P1 2201 4179 662 83.4 globlastp LNU929_H3 foxtail_millet|11v3|PHY7SI017734M_P1 2202 4180 662 83.1 globlastp LNU929_H5 switchgrass|12v1|FL792661_P1 2203 4181 662 82.8 globlastp LNU929_H6 switchgrass|12v1|SRR187772.1076529_P1 2204 4182 662 82.2 globlastp LNU929_H4 millet|10v1|EVO454PM007685_T1 2205 4183 662 80.76 glotblastn LNU931_H1 sugarcane|10v1|CA085385 2206 4184 664 95.3 globlastp LNU931_H2 foxtail_millet|11v3|PHY7SI026372M_P1 2207 4185 664 91.7 globlastp LNU931_H3 maize|10v1|AW052904_P1 2208 4186 664 90.9 globlastp LNU931_H4 foxtail_millet|11v3|PHY7SI010145M_P1 2209 4187 664 89.7 globlastp LNU931_H5 switchgrass|gb 167|FL690712 2210 4188 664 89.51 glotblastn LNU931_H1 3 switchgrass|12v1| FL690712_P1 2211 4189 664 88.8 globlastp LNU931_H6 sorghum|12v1|SB05G000560 2212 4190 664 88.8 globlastp LNU931_H7 sugarcane|10v1|CA1 83007 2213 4191 664 87.5 globlastp LNU931_H8 sorghum|12v1|ISB08G000580 2214 4192 664 87.1 globlastp LNU931_H9 millet|10v1|CD725261P1 2215 4193 664 86.9 globlastp LNU931_H1 0 foxtail_millet|11v3|PHY7SI006320M_P1 2216 4194 664 82.6 globlastp LNU931_H1 1 maize|10v1|AI795587_P1 2217 4195 664 82 globlastp LNU931_H1 4 switchgrass|12v1 |FE652169_P1 2218 4196 664 81.2 globlastp LNU931_H1 2 switchgrass|gb167|FE652169 2219 4196 664 81.2 globlastp LNU934_H1 sorghum|12v1||SB05G006960 2220 4197 667 97.7 globlastp LNU934_H2 maize|10v1|AI920383_P1 2221 4198 667 91.1 globlastp LNU934_H3 maize|10v11AI601020_P1 2222 4199 667 90.1 globlastp LNU934_H4 foxtail_millet|11v3|EC612232_P1 2223 4200 667 88.5 globlastp LNU934_H5 switchgrass|gb167|DN146252 2224 4201 667 88.1 globlastp LNU934_H6 switchgrass|gb167|FE626199 2225 4202 667 86.5 globlastp LNU934_H7 rice|11v1|BI801587 2226 4203 667 83.2 globlastp LNU936_H1 maize|10v1|AW120427_P1 2227 4204 669 81.4 globlastp LNU940_H1 sorghum|12v1|SB01G006570 2228 4205 672 92.4 globlastp LNU940_H1 6 switchgrass|12v1|GD019934_P1 2229 4206 672 89.1 globlastp LNU940_H2 maize|10v1|BM080112_P1 2230 4207 672 89.1 globlastp LNU940_H3 switchgrass|gb167|FL987004 2231 4206 672 89.1 globlastp LNU940_H4 foxtail_millet|11v3|PHY7SI039636M_P1 2232 4208 672 88 globlastp LNU940_H5 milled|10v1|EVO454PM050387_P1 2233 4209 672 88 globlastp LNU940_H1 7 switchgrass|12v1|FL987004_P1 2234 4210 672 87 globlastp LNU940_H1 8 switchgrass|12v1 |SRR187766.558595_P1 2235 4211 672 87 globlastp LNU940_H6 brachypodium|12v1IBRADI4G35010_P1 2236 4212 672 87 globlastp LNU940_H7 rice|11v1|AU172742 2237 4213 672 85.9 globlastp LNU940_H8 cenchrus|gb166|EB672242_P1 2238 4214 672 84.8 globlastp LNU940_H9 barley|12v1|BG415270_P1 2239 4215 672 83.7 globlastp LNU940_H1 0 pseudoroegnerialgb167|FF361949 2240 4216 672 83.7 globlastp LNU940_H1 1 fescue|gb161|DT690522_P1 2241 4217 672 82.6 globlastp LNU940_H1 2 rye|12v1|DRR001012.205554 2242 4218 672 82.6 globlastp LNU940_H1 3 rye|12v1|DRR001012.443974 2243 4218 672 82.6 globlastp LNU940_H1 4 wheat|12v3|BF474839 2244 4218 672 82.6 globlastp LNU940_H1 5 wheat|12v3|SRX035157S105600 2245 4219 672 80.4 globlastp LNU941_H1 sugarcane|10v1|DV636549 2246 4220 673 82.8 globlastp LNU942_H1 5 switchgrass|12v1|DN143194_P1 2247 4221 674 93 globlastp LNU942_H1 6 switchgrass|12v1|FE600191_P1 2248 4222 674 93 globlastp LNU942_H1 switchgrass|gb167|DN143194 2249 4221 674 93 globlastp LNU942_H2 maize|10v1|AI948177_P1 2250 4223 674 92.7 globlastp LNU942_H3 sugarcane|10v1|BU103195 2251 4224 674 92.6 globlastp LNU942_H4 sorghum|12v1|SB04G019760 2252 4225 674 92 globlastp LNU942_H5 maize|10v1|DV523108_P1 2253 4226 674 90.6 globlastp LNU942_H1 7 switchgrass|12v1|FE600082_P1 2254 4227 674 88.6 globlastp LNU942_H6 switchgrass|gb167|FE600082 2255 4228 674 88.3 globlastp LNU942_H7 foxtail_millet|11v3|PHY7SI010700M_P1 2256 4229 674 87.4 globlastp LNU942_H8 millet|10v1IPMSLX0006862D1_P1 2257 4230 674 87.3 globlastp LNU942_H9 foxtail_millet|11v3|PHY7SI020925M_P1 2258 4231 674 85.7 globlastp LNU942_H1 0 leymus|gb166|EG376656_P1 2259 4232 674 85.2 globlastp LNU942_H1 1 wheat|12v3|BE516147 2260 4233 674 85.2 globlastp LNU942_H1 2 rye|12v1|DRR001012.268452 2261 4234 674 84.23 glotblastn LNU942_H1 3 brachypodium|12v1IBRADI5G13320_P1 2262 4235 674 84.2 globlastp LNU942_H1 4 rice|11v1|BI798333 2263 4236 674 83 globlastp LNU942_H1 8 switchgrass|12v1|SRR187765.620238_T1 2264 4237 674 81.76 glotblastn LNU943_H1 maize|10v1|AW165435_P1 2265 4238 675 93.5 globlastp LNU943_H2 maize|10v1|BU582245_P1 2266 4239 675 92.1 globlastp LNU943_H3 sorghum|12v1|SB01G018160 2267 4240 675 91.5 globlastp LNU943_H4 foxtail_millet|11v3|PHY7SI022488M_P1 2268 4241 675 88.4 globlastp LNU943_H5 switchgrasslgb167IFL700923 2269 4242 675 87.5 globlastp LNU943_H9 switchgrass|12v1|FL946368_P1 2270 4243 675 86.7 globlastp LNU943_H6 foxtail_millet|11v3|PHY7SI010535M_P1 2271 4244 675 86.4 globlastp LNU943_H7 rice|11v1|CA762359 2272 4245 675 85 globlastp LNU943_H8 rye|12v1|DRR001012.256371 2273 4246 675 80.45 glotblastn LNU944_H1 maize|10v1|BE519358_P1 2274 4247 676 94.5 globlastp LNU944_H2 foxtail_millet|11v3|PHY7SI013344M_P1 2275 4248 676 90.2 globlastp LNU944_H1 4 switchgrass|12v1|FE605775_P1 2276 4249 676 89.6 globlastp LNU944_H3 switchgrass|gb167|FL691662 2277 4250 676 88.75 glotblastn LNU944_H1 5 switchgrassl12v1lFL693381_P1 2278 4251 676 87.4 globlastp LNU944_H4 rice|11v1|AU065195 2279 4252 676 85.1 globlastp LNU944_H5 rice|11v1|AA752897 2280 4253 676 84.5 globlastp LNU944_H6 brachypodium|12v1IBRADI5G26450_P1 2281 4254 676 83.4 globlastp LNU944_H1 6 switchgrass|12v1|FL693806_P1 2282 4255 676 82.9 globlastp LNU944_H7 brachypodium|12v1IBRADI3G12950_P1 2283 4256 676 82.5 globlastp LNU944_H8 foxtail_millet|11v3|EC612109_P1 2284 4257 676 82.2 globlastp LNU944_H9 sorghum|12v1|SB06G033190 2285 4258 676 82.1 globlastp LNU944_H1 0 rye|12vl|BE588044 2286 4259 676 81.9 globlastp LNU944_H1 1 barley112v11BE231241_P1 2287 4260 676 81.7 globlastp LNU944_H1 2 wheat|12v3|BE416410 2288 4261 676 81.5 globlastp LNU944_H1 3 maize|10v1|AW119989_P1 2289 4262 676 81.2 globlastp LNU945_H1 sugarcane|10v1ICA102004 2290 4263 677 95.7 globlastp LNU945_H2 maize|10v1|CF630693_P1 2291 4264 677 92.4 globlastp LNU945_H1 2 switchgrass|12v1|FE610584_P1 2292 4265 677 90.2 globlastp LNU945_H1 3 switchgrass|12v1|FL736798_P1 2293 4266 677 90.2 globlastp LNU945_H3 foxtail_millet|11v3|PHY7SI014236M_P1 2294 4267 677 89.6 globlastp LNU945_H4 switchgrass|gb167|FE610584 2295 4268 677 88.21 glotblastn LNU945_H5 brachypodium|12v1IBRADI3G16410_P1 2296 4269 677 86.1 globlastp LNU945_H6 wheat|12v3|BE399236 2297 4270 677 84.8 globlastp LNU945_H7 wheat|12v3|BF483870 2298 4271 677 84.8 globlastp LNU945_H8 rice|11v1|BI796904 2299 4272 677 84.3 globlastp LNU945_H9 oat|11v1|G0589349_P1 2300 4273 677 83.3 globlastp LNU945_H1 0 barley|12v1|AV835214_P1 2301 4274 677 83 globlastp LNU945_H1 1 rye|12v1|DRR001012.115501 2302 4275 677 81.5 globlastp LNU946_H3 switchgrass|12v1IFE622311_P1 2303 4276 678 88.1 globlastp LNU946_H1 foxtail_millet|11v3|PHY7SI013314M_P1 2304 4277 678 86.8 globlastp LNU946_H4 switchgrass|12v1IFE631618_P1 2305 4278 678 86.3 globlastp LNU946_H2 maize|10v1|CO517747_P1 2306 4279 678 85.3 globlastp LNU947_H1 maize|10v1|AW400079_T1 2307 4280 679 80.67 glotblastn LNU948_H1 maize|10v1|CF244014T1 2308 4281 680 85.13 glotblastn LNU949_H1 sugarcane|10v1ICA070316 2309 4282 681 91.6 globlastp LNU949_H2 millet|10v1|CD725957_P1 2310 4283 681 80.3 globlastp LNU950_H1 sugarcane|10v1|CA117340 2311 4284 682 93.5 globlastp LNU950_H2 sorghum|12v1|SB05G001050 2312 4285 682 88.5 globlastp LNU950_H3 foxtail_millet|11v3|PHY7SI026369M_P1 2313 4286 682 86.5 globlastp LNU950_H4 foxtail_millet|11v3|EC611923_P1 2314 4287 682 86.1 globlastp LNU950_H5 switchgrass|gb167|DN142564 2315 4288 682 85.8 globlastp LNU950_H2 1 switchgrass|12v1|FE601370_P1 2316 4289 682 85.6 globlastp LNU950_H2 2 switchgrass|12v1|DN142564_P1 2317 4290 682 84.9 globlastp LNU950_H6 maize|10v1|AI665950_P1 2318 4291 682 84.5 globlastp LNU950_H7 millet|10v1|EV0454PM003253_P1 2319 4292 682 84 globlastp LNU950_H8 millet|10v1|EV0454PM002572_P1 2320 4293 682 82.7 globlastp LNU950_H9 rice|11v1|BI808891 2321 4294 682 82.7 glotblastn LNU950_H1 0 rice|11v1|AF004947 2322 4295 682 82 globlastp LNU950_H1 1 wheat|12v3|BE412095 2323 4296 682 81.3 globlastp LNU950_H1 2 wheat|12v3|CA664401 2324 4297 682 81.3 globlastp LNU950_H1 3 wheat|12v3|SRR043323X26334D1 2325 4297 682 81.3 globlastp LNU950_H1 4 rice|11lv1|AU174185 2326 4298 682 81.1 globlastp LNU950_H1 5 barley|12v1|AV910430_P1 2327 4299 682 80.9 globlastp LNU950_H1 6 rye|12v1|DRR001012.134503 2328 4300 682 80.9 globlastp LNU950_H1 7 maize|10v1|DR804998_P1 2329 4301 682 80.7 globlastp LNU950_H1 8 maize|10v1|EG041994_P1 2330 4302 682 80.7 globlastp LNU950_H1 9 wheat|12v3|CA719005 2331 4303 682 80.7 globlastp LNU950_H2 0 maize|10v1|CF064453_P1 2332 4304 682 80.3 globlastp LNU953_H1 foxtail_millet|11v3|PHY7SI021031M_P1 2333 4305 685 98.5 globlastp LNU953_H2 maize|10v1|AI947816_P1 2334 4306 685 98 globlastp LNU953_H3 rice|11v1|BI810241 2335 4307 685 94.8 globlastp LNU953_H4 brachypodium|12v1IBRADI4G07167_P1 2336 4308 685 93.3 globlastp LNU953_H5 rye|12v1|BE587487 2337 4309 685 92.8 globlastp LNU953_H6 rice|11v1|AA752560 2338 4310 685 91.8 globlastp LNU953_H7 wheat|12v3|BE606922 2339 4311 685 89.93 glotblastn LNU953_H8 brachypodium|12v1IBRADI4G15710_P1 2340 4312 685 89.8 globlastp LNU953_H9 sorghum|12v1|SB05G022390 2341 4313 685 88.9 globlastp LNU953_H1 0 oil_palm|11v1|EY408711XX1_T1 2342 4314 685 88.62 glotblastn LNU953_H1 1 oil_palmi|11v1|ES323990_P1 2343 4315 685 87.5 globlastp LNU953_H1 2 banana|12v1|BBS995T3_P1 2344 4316 685 87.4 globlastp LNU953_H1 3 foxtail_millet|11v3|PHY7SI025878M_P1 2345 4317 685 87.4 globlastp LNU953_H1 4 aristolochia|10v1|FD752686_P1 2346 4318 685 87.1 globlastp LNU953_H1 5 amborella|12v3|FD433166_P1 2347 4319 685 86.8 globlastp LNU953_H1 6 banana112v11ES434911_P1 2348 4320 685 86.3 globlastp LNU953_H1 8 soybean|12v1|GLYMA02G43930_P1 2349 4321 685 86.1 globlastp LNU953_H1 7 pigeonpea|11v1|SRR054580X101829_P1 2350 4322 685 85.8 globlastp LNU953_H1 8 soybean|11v1|GLYMA14G04890 2351 4323 685 85.8 globlastp LNU953_H1 9 strawberry|11v1|CO379742 2352 4324 685 85.7 globlastp LNU953_H2 0 lotus|09v1|GFXAP006535X8_P1 2353 4325 685 85.5 globlastp LNU953_H2 1 medicago|12v1|BE204582_P1 2354 4326 685 85.5 globlastp LNU953_H2 2 poppy|11v1|SRR030259.226807_T1 2355 4327 685 85.49 glotblastn LNU953_H126 castorbean|12v1|XM_002514388_T1 2356 4328 685 85.47 glotblastn LNU953_H2 4 cotton|11v1|AI725579_P1 2357 4329 685 85.4 globlastp LNU953_H2 5 gossypium_raimondii|12v1|AI725579_P1 2358 4330 685 85.3 globlastp LNU953_H2 6 soybean|11v1|GLYMA02G43930 2359 4331 685 85.3 globlastp LNU953_H2 7 watermelon|11v1|AM738852 2360 4332 685 85.3 globlastp LNU953_H2 8 prunus|10v1|BU575191 2361 4333 685 85.2 globlastp LNU953_H1 27 soybean|12v1|GLYMA14G04890_P1 2362 4334 685 85.1 globlastp LNU953_H2 9 trigonella|11v1|SRR066194X104042 2363 4335 685 85.1 globlastp LNU953_H1 28 bean|12v2|CA899898_P1 2364 4336 685 85 globlastp LNU953_H1 29 bean|12v2|CB542475_P1 2365 4337 685 85 globlastp LNU953_H1 30 poplar|13v1|AI162526_P1 2366 4338 685 85 globlastp LNU953_H3 0 bean|12v1|CB542475 2367 4339 685 85 globlastp LNU953_H3 1 cassava|09v1|CK650982_P1 2368 4340 685 85 globlastp LNU953_H3 5 poplar|13v1|AI162784_P1 2369 4341 685 85 globlastp LNU953_H3 2 wheat|12v3|BE403992 2370 4342 685 84.94 glotblastn LNU953_H3 3 banana|12v1|ES435104_P1 2371 4343 685 84.9 globlastp LNU953_H3 4 euphorbia|11v1|BG467380_P1 2372 4344 685 84.9 globlastp LNU953_H3 5 poplar|10v1|AI162784 2373 4345 685 84.9 globlastp LNU953_H3 7 chickpea|13v2|GR396199_P1 2374 4346 685 84.9 globlastp LNU953_H6 4 poplar|13v1|BU815471_P1 2375 4347 685 84.9 globlastp LNU953_H3 6 medicago|12v1|AW684864_P1 2376 4348 685 84.8 globlastp LNU953_H3 7 chickpea|11v1|GR396199 2377 4349 685 84.77 glotblastn LNU953_H3 8 soybean|11v1|GLYMA20G11300 2378 4350 685 84.7 globlastp LNU953_H3 9 wheat|12v3|BE606346 2379 4351 685 84.7 globlastp LNU953_H1 31 poplar|13v1|BU820987_P1 2380 4352 685 84.6 globlastp LNU953_H4 0 aquilegia|10v2|DR913332_P1 2381 4353 685 84.6 globlastp LNU953_H4 1 flaveria|11v1|SRR149229.10069_P1 2382 4354 685 84.6 globlastp LNU953_H4 2 trigonella|11v1|SRR066194X163258 2383 4355 685 84.59 glotblastn LNU953_H4 3 abies|11v2|SRR098676X111217_P1 2384 4356 685 84.5 globlastp LNU953_H4 4 eucalyptus|11v2|CD668448_P1 2385 4357 685 84.5 globlastp LNU953_H4 5 flaveria|11v1|SRR149229.216232_P1 2386 4358 685 84.5 globlastp LNU953_H4 6 grape|11v1|GSVIVT01034603001_P1 2387 4359 685 84.5 globlastp LNU953_H4 7 euphorbia|11v1|DV127429_T1 2388 4360 685 84.49 glotblastn LNU953_H4 8 sunflower|12v1|CX947317 2389 4361 685 84.4 globlastp LNU953_H4 9 beech|11v1|SRR006293.655_ T1 2390 4362 685 84.33 glotblastn LNU953_H1 32 prunus_mume|13v1|BU57519 1_P1 2391 4363 685 84.3 globlastp LNU953_H5 0 apple|11v1|CN444562_P1 2392 4364 685 84.3 globlastp LNU953_H5 1 cassava|09v1|CK645234_P1 2393 4365 685 84.3 globlastp LNU953_H5 2 clementine|11v1|BQ623766_P1 2394 4366 685 84.3 globlastp LNU953_H5 3 pine|10v2|BF220411_P1 2395 4367 685 84.3 globlastp LNU953_H5 4 clementine|11v1|CB292767_P1 2396 4368 685 84.2 globlastp LNU953_H5 5 cucumber|09v1|AM731249_P1 2397 4369 685 84.2 globlastp LNU953_H5 6 orange|11v1|BQ623766_P1 2398 4370 685 84.2 globlastp LNU953_H5 7 aquilegia|10v2|DR925985_P1 2399 4371 685 84.1 globlastp LNU953_H5 8 banana|12v1|ES431466_P1 2400 4372 685 84.1 globlastp LNU953_H1 33 castorbean|12v1|XM_002524 074_P1 2401 4373 685 84 globlastp LNU953_H6 0 strawberry|11v1|DY674421 2402 4374 685 84 globlastp LNU953_H6 1 valeriana|11v1|SRR099039X1 2407 2403 4375 685 84 globlastp LNU953_H6 2 ambrosia|11v1|SRR346935.10 8676_T1 2404 4376 685 83.96 glotblastn LNU953_H6 3 cotton|11v1|BE052039XX1_T1 2405 4377 685 83.7 glotblastn LNU953_H6 4 poplar|10v1|BU815471 2406 4378 685 83.7 globlastp LNU953_H6 5 sunflower|12v1|DY931792 2407 4379 685 83.7 globlastp LNU953_H6 6 vinca|11v1|SRR098690X1034 74 2408 4380 685 83.7 globlastp LNU953_H1 34 prunus_mume|13v1|BU04159 0_P1 2409 4381 685 83.2 globlastp LNU953_H6 7 cephalotaxus|11v1|SRR06439 5X106034_P1 2410 4382 685 83.2 globlastp LNU953_H6 8 prunus|10v1|BU041590 2411 4383 685 83.2 globlastp LNU953_H6 9 cacao|10v1|CU471848_T1 2412 4384 685 82.93 glotblastn LNU953_H7 0 thellungiella_halophilum|11v1 |BY808976 2413 4385 685 82.9 globlastp LNU953_H1 35 prunus_mume|13v1|BU57300 2_P1 2414 4386 685 82.7 globlastp LNU953_H7 1 cotton|11v1|DT049082_P1 2415 4387 685 82.6 globlastp LNU953_H7 2 arabidopsis_lyrata|09v1|JGIA L020339_P1 2416 4388 685 82.5 globlastp LNU953_H7 3 b_rapa|11v1|CX189281_P1 2417 4389 685 82.5 globlastp LNU953_H7 4 canola|11v1|EE456851_T1 2418 4390 685 82.47 glotblastn LNU953_H7 5 eucalyptus|11v2|CU402999_P1 2419 4391 685 82.4 globlastp LNU953_H7 6 gossypium_raimondii|12v1|B F268450_P1 2420 4392 685 82.4 globlastp LNU953_H7 7 vinca|11v1|SRR098690X1067 48 2421 4393 685 82.33 glotblastn LNU953_H7 8 b_rapa|11v1|CD814501_P1 2422 4394 685 82.3 globlastp LNU953_H7 9 chelidonium|11v1|SRR08475 2X101848_P1 2423 4395 685 82.3 globlastp LNU953_H8 0 grape|11v1|GSVIVT0102249 8001_T1 2424 4396 685 82.27 glotblastn LNU953_H8 1 b_rapa|11v1|CD818738_P1 2425 4397 685 82.2 globlastp LNU953_H8 2 canola|11v1|EE553419_P1 2426 4398 685 82.2 globlastp LNU953_H8 3 flaveria|11v1|SRR149229.106 289_P1 2427 4399 685 82.2 globlastp LNU953_H8 4 arnica|11v1|SRR099034X101 325_T1 2428 4400 685 82.17 glotblastn LNU953_H8 5 arabidopsis|10v1|AT5G06600 _P1 2429 4401 685 82.1 globlastp LNU953_H8 6 orange|11v1|CB292767_P1 2430 4402 685 82.1 globlastp LNU953_H8 7 cucumber|09v1|DV737928_T1 2431 4403 685 82.05 glotblastn LNU953_H8 8 prunus|10v1|BU573002 2432 4404 685 81.94 glotblastn LNU953_H8 9 amorphophallus|11v2|SRR089 351X103224_T1 2433 4405 685 81.91 glotblastn LNU953_H9 0 millet|10v1|EV0454PM00032 1_P1 2434 4406 685 81.9 globlastp LNU953_H9 1 solanum_phureja|09v1|SPHB G123815 2435 4407 685 81.9 globlastp LNU953_H9 2 apple|11v1|CN495483_T1 2436 4408 685 81.72 glotblastn LNU953_H9 3 distylium|11v1|SRR065077X101856_T1 2437 4409 685 81.72 glotblastn LNU953_H1 36 monkeyflower|12v1|CV51976 0_P1 2438 4410 685 81.7 globlastp LNU953_H9 4 gossypium_raimondii|12v1|AI 726752_P1 2439 4411 685 81.7 globlastp LNU953_H9 5 monkeyflower|10v1|GO978886 2440 4410 685 81.7 globlastp LNU953_H9 6 silene|1v1|SRR096785X10574 2441 4412 685 81.7 globlastp LNU953_H9 7 tomato|11v1|BG123815 2442 4413 685 81.7 globlastp LNU953_H9 8 silene|11v1|SRR096785X100325 2443 4414 685 81.69 glotblastn LNU953_H9 9 poppy|11v1|SRR030259.1011 22_P1 2444 4415 685 81.6 globlastp LNU953_H1 00 arabidopsis_lyrata|09v1|JGIA L009620_P1 2445 4416 685 81.5 globlastp LNU953_H1 01 solanum_phureja|09v1|SPHB G626752 2446 4417 685 81.5 globlastp LNU953_H1 02 thellungiella_halophilum|11v1|BY815359 2447 4418 685 81.5 globlastp LNU953_H1 03 poplar|10v1|BU820987 2448 4419 685 81.41 glotblastn LNU953_H1 04 arabidopsis|10v1|AT3G11910 _P1 2449 4420 685 81.4 globlastp LNU953_H1 05 ambrosia|11v1|SRR346935.13 6915_T1 2450 4421 685 81.34 glotblastn LNU953_H1 06 tomato|11v1|AW030110 2451 4422 685 81.3 globlastp LNU953_H1 07 tomato|11v1|BG626752 2452 4423 685 81.3 globlastp LNU953_H1 08 valeriana|11v1SRR099039X1 02728 2453 4424 685 81.21 glotblastn LNU953_H1 37 olea|13v1|SRR014463X11603 D1_P1 2454 4425 685 81.2 globlastp LNU953_H1 09 thellungiella_parvulum|11v1|BY815359 2455 4426 685 81.2 globlastp LNU953_H1 38 nicotiana_benthamiana|12v1| AM816011_P1 2456 4427 685 81.1 globlastp LNU953_H1 10 eucalyptus|11v2|SRR001659X101826_P1 2457 4428 685 81.1 globlastp LNU953_H1 11 thellungiella_parvulum|11v1|BY808976 2458 4429 685 81.1 globlastp LNU953_H1 12 poppy|11v1|SRR030259.1229 82_P1 2459 4430 685 81 globlastp LNU953_H1 13 ambrosia|11v1|SRR346935.10 9483_T1 2460 4431 685 80.99 glotblastn LNU953_H1 14 cacao|10v1|CU631250_T1 2461 4432 685 80.94 glotblastn LNU953_H1 39 chickpea|13v2|GR398757_P1 2462 4433 685 80.9 globlastp LNU953_H1 40 nicotiana_benthamiana|12v1|BP749195_P1 2463 4434 685 80.9 globlastp LNU953_H1 15 spruce|11v1|EX356361 2464 4435 685 80.87 glotblastn LNU953_H1 16 taxus|10v1|SRR032523S0002 905 2465 4436 685 80.84 glotblastn LNU953_H1 17 cannabis|12v1|GR221441_P1 2466 4437 685 80.8 globlastp LNU953_H1 18 valeriana|11v1|SRR099039X1 02263 2467 4438 685 80.62 glotblastn LNU953_H1 19 canola|11v1|EE446069_P1 2468 4439 685 80.5 globlastp LNU953_H1 20 rice|11v1|BE230378 2469 4440 685 80.5 globlastp LNU953_H1 41 nicotiana_benthamiana|12v1| BP748980_P1 2470 4441 685 80.4 globlastp LNU953_H1 42 nicotiana_benthamiana|12v1| EG649585_P1 2471 4442 685 80.4 globlastp LNU953_H1 43 olea|13v1|SRR014463X13706 D1_P1 2472 4443 685 80.4 globlastp LNU953_H1 44 switchgrassl12v1|FE629023_ P1 2473 4444 685 80.3 globlastp LNU953_H1 45 nicotiana_benthamiana|12v1|EB682588_T1 2474 4445 685 80.28 glotblastn LNU953_H1 21 brachypodium|12v1|BRADI1 G56780_P1 2475 4446 685 80.2 globlastp LNU953_H1 22 rye|12v1|DRR001012.10357 2476 4447 685 80.2 globlastp LNU953_H1 23 amorphophallus|11v2|SRR089 351X111618_T1 2477 4448 685 80.14 glotblastn LNU953_H1 24 pine|10v2|AW043162_P1 2478 4449 685 80.1 globlastp LNU953_H1 25 pseudotsuga|10v1|SRR065119 S0024421 2479 4450 685 80.05 glotblastn LNU955_H1 2 switchgrass|12v1|DN142337_ P1 2480 4451 687 92 globlastp LNU955_H1 maize|10v1|C0522570_P1 2481 4452 687 91.5 globlastp LNU955_H2 foxtail_millet|11v3|PHY7SI02 1896M_P1 2482 4453 687 90.5 globlastp LNU955_H3 switchgrass|gb167|FL785019 2483 4454 687 86.7 globlastp LNU955_H1 3 switchgrass|12v1|FL785019_ P1 2484 4455 687 86.3 globlastp LNU955_H4 rice|11v1|CB665557 2485 4456 687 85.1 globlastp LNU955_H5 oat|11v1|GR314727_P1 2486 4457 687 84.3 globlastp LNU955_H1 4 switchgrass|12v1|SRR187771. 727771_T1 2487 4458 687 83.85 glotblastn LNU955_H6 wheat|12v3|CA625652 2488 4459 687 83.8 globlastp LNU955_H7 barley|12v1|BQ659274_P1 2489 4460 687 83.2 globlastp LNU955_H8 brachypodium|12v1|BRADI4 G06410_P1 2490 4461 687 83 globlastp LNU955_H9 rye|12v1|DRR001012.117807 2491 4462 687 82.8 globlastp LNU955_H1 0 millet|10v1|PMSLX0023357D2_P1 2492 4463 687 81.8 globlastp LNU955_H1 5 switchgrass|12v1|FL853651_ P1 2493 4464 687 81.7 globlastp LNU955_H1 1 foxtail_millet|11v3|PHY7SI02 1894M_P1 2494 4465 687 81.1 globlastp LNU955_H1 6 switchgrass|12v1|FL758990_ P1 2495 4466 687 80.4 globlastp LNU957_H1 maize|10v1|BI388870_P1 2496 4467 689 85.6 globlastp LNU957_H2 foxtail_millet|11v3|EC613819_T1 2497 4468 689 82.08 glotblastn LNU958_H1 maize|10v1|DR801342_P1 2498 4469 690 91 globlastp LNU958_H8 switchgrass|12v1|FL952819_ P1 2499 4470 690 88.1 globlastp LNU958_H2 foxtail_millet|11v3|PHY7SI02 2391M_P1 2500 4471 690 86.6 globlastp LNU958_H3 barley|12v1|BF623458_P1 2501 4472 690 82.1 globlastp LNU958_H4 rye|12v1|DRR001012.18630 2502 4473 690 81.8 globlastp LNU958_H5 brachypodium|12v1|BRADI4 G01370_P1 2503 4474 690 81.7 globlastp LNU958_H6 oat|11v1|GR331570_P1 2504 4475 690 81.7 globlastp LNU958_H9 switchgrass|12v1|SRR187769. 180209_P1 2505 4476 690 81.2 globlastp LNU958_H7 rice|11v1|C73705 2506 4477 690 80.9 globlastp LNU959_H1 foxtail_millet|11v3|SOLX00016974_P1 2507 4478 691 80.6 globlastp LNU959_H2 sugarcane|10v1|CA183011 2508 4479 691 80.1 globlastp LNU961_H1 maize|10v1|CF631183_P1 2509 4480 693 92.2 globlastp LNU961_H8 switchgrass|12v1|FE655607_ T1 2510 4481 693 91.32 glotblastn LNU961_H2 foxtail_millet|11v3|PHY7SI02 2987M_P1 2511 4482 693 89.4 globlastp LNU961_H3 switchgrass|gb167|FE655607 2512 4483 693 88.1 globlastp LNU961_H4 wheat|12v3|CA662505 2513 4484 693 81.7 globlastp LNU961_H5 oat|11v1|GR320475_P1 2514 4485 693 81.3 globlastp LNU961_H6 brachypodium|12v1|BRADI2 G18310_P1 2515 4486 693 81.1 globlastp LNU961_H7 rice|11v1|C24906 2516 4487 693 80.8 globlastp LNU963_H1 maize|10v1|BE238751_P1 2517 4488 695 96.4 globlastp LNU963_H2 foxtail_millet|11v3|EC613777 _P1 2518 4489 695 95.4 globlastp LNU963_H4 switchgrass|12v1|FE650575_ P1 2519 4490 695 90.1 globlastp LNU963_H3 rice|11v1|AA752580 2520 4491 695 86 globlastp LNU964_H1 maize|10v1|BE051847_P1 2521 4492 696 95 globlastp LNU964_H1 2 switchgrass|12v1IFL715928_ P1 2522 4493 696 94.6 globlastp LNU964_H2 foxtail_millet|11v3|PHY7SI00 8583M_P1 2523 4494 696 93.5 globlastp LNU964_H3 rice|11v1|CA753376 2524 4495 696 91.9 globlastp LNU964_H4 brachypodium|12v1|BRADI1 G36570_P1 2525 4496 696 90.6 globlastp LNU964_H5 wheat|12v3|CA593860 2526 4497 696 90 globlastp LNU964_H6 switchgrass|gb167IFL715928 2527 4498 696 88.91 glotblastn LNU964_H7 millet|10v1|EV0454PM02407 6_P1 2528 4499 696 84.1 globlastp LNU964_H8 rye|12v1|DRR001012.11081 2529 4500 696 83.98 glotblastn LNU964_H9 sorghum|12v1|SB04G006930 2530 4501 696 81.2 globlastp LNU964_H1 0 rice|11v1|CB096675 2531 4502 696 80.87 glotblastn LNU964_H1 3 switchgrass|12v1|FL988009_ T1 2532 4503 696 80.64 glotblastn LNU964_H1 1 foxtail_millet|11v3|PHY7SI01 7454M_P1 2533 4504 696 80.4 globlastp LNU965_H1 sugarcane|10v1|BQ533054 2534 4505 697 91.8 globlastp LNU965_H2 maize|10v1|T12687_P1 2535 4506 697 86.8 globlastp LNU965_H5 switchgrass|12v1|FE648444_ P1 2536 4507 697 82.3 globlastp LNU965_H3 switchgrass|gb167|FE648444 2537 4507 697 82.3 globlastp LNU965_H4 foxtail_millet|11v3|EC612769 _P1 2538 4508 697 81.6 globlastp LNU965_H6 switchgrass|12v1|FL899717_ T1 2539 4509 697 80.07 glotblastn LNU966_H1 foxtail_millet|11v3|EC612437 _P1 2540 4510 698 90 globlastp LNU966_H7 switchgrass|12v1|FL704069_ P1 2541 4511 698 88 globlastp LNU966_H2 brachypodium|12v1|BRADI1 G32350_P1 2542 4512 698 82.4 globlastp LNU966_H3 rye|12v1|DRR001012.705384 2543 4513 698 80.82 glotblastn LNU966_H4 rye|12v1|DRR001012.277281 2544 4514 698 80.46 glotblastn LNU966_H5 wheat|12v3|CD934973 2545 4515 698 80.46 glotblastn LNU966_H6 rice|11v1|BI808003 2546 4516 698 80.4 globlastp LNU967_H1 maize|10v1|CD001313_P1 2547 4517 699 90.5 globlastp LNU967_H2 foxtail_millet|11v3|PHY7SI00 5990M_P1 2548 4518 699 83.3 globlastp LNU970_H1 soybean|11v1|GLYMA10G05 870 2549 4519 702 98.2 globlastp LNU970_H6 4 soybean|12v1|GLYMA10G05 870_P1 2550 4520 702 95.6 globlastp LNU970_H2 cowpea|12v1|FF384004_P1 2551 4521 702 92.3 globlastp LNU970_H3 pigeonpea|11v1|GW351178_P1 2552 4522 702 92 globlastp LNU970_H6 5 bean|12v2|CA911706_P1 2553 4523 702 91.2 globlastp LNU970_H4 bean|12v1|CA911706 2554 4523 702 91.2 globlastp LNU970_H5 peanut|10v1|EE126306_P1 2555 4524 702 89.1 globlastp LNU970_H6 chickpea|11v1|SRR133517.11 3773 2556 4525 702 88.3 globlastp LNU970_H6 chickpea|13v2|SRR133517.11 3773_P1 2557 4525 702 88.3 globlastp LNU970_H8 soybean|12v1|GLYMA19G36 410_P1 2558 4526 702 88 globlastp LNU970_H7 pigeonpea|11v1|SRR054580X 124449_P1 2559 4527 702 87.2 globlastp LNU970_H8 soybean|11v1|GLYMA19G36 410 2560 4528 702 87.2 globlastp LNU970_H9 medicago|12v1|AW692607_P1 2561 4529 702 86.9 globlastp LNU970_H1 0 trigonella|11v1|SRR066194X 103697 2562 4530 702 86.5 globlastp LNU970_H1 1 soybean|11v1|GLYMA03G33 680 2563 4531 702 85.8 globlastp LNU970_H1 1 soybean|12v1IGLYMA03G33 680_P1 2564 4531 702 85.8 globlastp LNU970_H1 2 lotus|09v1|AW428709_P1 2565 4532 702 85.4 globlastp LNU970_H1 3 poplar|10v1|CA927561 2566 4533 702 85 globlastp LNU970_H6 6 nicotiana_benthamiana|12v1| CK284221_P1 2567 4534 702 84.3 globlastp LNU970_H1 4 cacao|10v1|CU479946_P1 2568 4535 702 84.3 globlastp LNU970_H1 5 grape|11v1|GSVIVT0102565 6001_P1 2569 4536 702 84.3 globlastp LNU970_H1 6 nicotiana_benthamiana|gb162| CK284221 2570 4534 702 84.3 globlastp LNU970_H6 7 poplar|13v1|CA927561_P1 2571 4537 702 83.9 globlastp LNU970_H1 7 catharanthus|11v1|EG556643 _P1 2572 4538 702 83.9 globlastp LNU970_H1 8 apple|11v1|CN580810_P1 2573 4539 702 83.6 globlastp LNU970_H1 9 chestnut|gb170|SRR00629550 024406_P1 2574 4540 702 83.6 globlastp LNU970_H6 8 castorbean|12v1|EG692405_P1 2575 4541 702 83.3 globlastp LNU970_H2 1 clementine|11v1|CF504408_P1 2576 4542 702 83.2 globlastp LNU970_H2 2 oak|10v1|FP025429-P1 2577 4543 702 83.2 globlastp LNU970_H2 3 orange|11v1|CF504408_P1 2578 4542 702 83.2 globlastp LNU970_H2 4 scabiosa|11v1|SRR063723X1 0102 2579 4544 702 83.2 globlastp LNU970_H2 5 beech|11v1|SRR006293.1521 5_T1 2580 4545 702 82.91 glotblastn LNU970_H6 9 prunus_mume|13v1|DN55366 0_P1 2581 4546 702 82.9 globlastp LNU970_H7 0 nicotiana_benthamiana|12v1| EH664749_P1 2582 4547 702 82.8 globlastp LNU970_H7 1 olea|13v1|SRR014463X18544 D1_P1 2583 4548 702 82.8 globlastp LNU970_H2 6 amsonia|11v1|SRRO98688X1 05338_P1 2584 4549 702 82.8 globlastp LNU970_H2 7 liquorice|gb171|FS241348_P1 2585 4550 702 82.8 globlastp LNU970_H2 8 poplar|10v1|AI163995 2586 4551 702 82.8 globlastp LNU970_H2 8 poplar|13v1|AI163995_P1 2587 4552 702 82.8 globlastp LNU970_H2 9 tabernaemontana|11v1|SRR09 8689X105363 2588 4553 702 82.8 globlastp LNU970_H3 0 strawberry|11v1|CO380524 2589 4554 702 82.6 globlastp LNU970_H7 2 nicotiana_benthamiana|12v1| EB425526_P1 2590 4555 702 82.5 globlastp LNU970_H3 1 blueberry|12v1|SRR353282X 4041D1_P1 2591 4556 702 82.5 globlastp LNU970_H3 2 eucalyptus|11v2|CT980284_P1 2592 4557 702 82.5 globlastp LNU970_H3 3 lotus|09v1|DC596145_P1 2593 4558 702 82.5 globlastp LNU970_H3 4 prunus|10v1|CN580810 2594 4559 702 82.2 globlastp LNU970_H3 5 tobacco|gb162|EB425526 2595 4560 702 82.1 globlastp LNU970_H3 6 tripterygium|11v1|SRR09867 7X12467 2596 4561 702 82.1 globlastp LNU970_H3 7 momordica|10v1|SRR071315 S0003149_P1 2597 4562 702 81.8 globlastp LNU970_H3 8 nasturtium|11v1|SRR032558. 101335_P1 2598 4563 702 81.8 globlastp LNU970_H3 9 cleome_spinosa|10v1|GR9331 44_T1 2599 4564 702 81.75 glotblastn LNU970_H4 0 cotton|11v1|AW186771_P1 2600 4565 702 81.6 globlastp LNU970_H7 3 olea|13v1|SRR014463X10063 D1_P1 2601 4566 702 81.4 globlastp LNU970_H4 1 valeriana|11v1|SRR099039X1 16523 2602 4567 702 81.4 globlastp LNU970_H4 2 watermelon|11v1|AM726470 2603 4568 702 81.4 globlastp LNU970_H4 3 gossypium_raimondii|12v1|A W186771_P1 2604 4569 702 81.2 globlastp LNU970_H4 4 euonymus|11v1|SRR070038X 13639_P1 2605 4570 702 81.1 globlastp LNU970_H4 5 euonymus|11v1|SRR070038X 296196_P1 2606 4571 702 81.1 globlastp LNU970_H4 6 triphysaria|10v1|DR170439 2607 4572 702 81.1 globlastp LNU970_H4 7 cassava|09v1|JGICASSAVA2 3572VALIDM1_P1 2608 4573 702 81 globlastp LNU970_H4 8 kiwi|gb166|FG404513_P1 2609 4574 702 81 globlastp LNU970_H4 9 solanum_phureja|09v1|SPHB G135560 2610 4575 702 81 globlastp LNU970_H5 0 cotton|11v1|C0081144_P1 2611 4576 702 80.9 globlastp LNU970_H5 1 gossypium_raimondii|12v1|AI 728093_P1 2612 4577 702 80.9 globlastp LNU970_H5 2 medicago|12v1|CA990040_P1 2613 4578 702 80.7 globlastp LNU970_H5 3 tomato|11v1|BG135560 2614 4579 702 80.7 globlastp LNU970_H5 4 vinca|11v1|SRR098690X1046 84 2615 4580 702 80.7 globlastp LNU970_H5 5 ambrosia|11v1|SRR346935.11 0771_P1 2616 4581 702 80.4 globlastp LNU970_H5 6 cottonl11v1|AI728093_P1 2617 4582 702 80.4 globlastp LNU970_H5 7 guizotia|10v1|GE557045_P1 2618 4583 702 80.4 globlastp LNU970_H5 8 sunflower|12v1|DY912319 2619 4584 702 80.4 globlastp LNU970_H5 9 coffea|10v1|DV663991_P1 2620 4585 702 80.3 globlastp LNU970_H6 0 cucurbita|11v1|SRR091276X1 25648_P1 2621 4586 702 80.3 globlastp LNU970_H6 1 cucumber|09v1|AM726470_T1 2622 4587 702 80.29 glotblastn LNU970_H6 2 sunflower|12v1|CD856036 2623 4588 702 80.1 globlastp LNU970_H6 3 cynara|gb167|GE590124_P1 2624 4589 702 80 globlastp LNU971_H1 tomato|11v1|AI487766 2625 4590 703 91.9 globlastp LNU971_H2 tomato|11v1|BG132158 2626 4591 703 91.7 globlastp LNU971_H3 tomato|11v1|BG589613 2627 4591 703 91.7 globlastp LNU971_H4 solanum_phureja|09v1|SPHAI 487915 2628 4592 703 89.5 glotblastn LNU971_H5 tomato|11v1|AW218573 2629 4593 703 89.41 glotblastn LNU971_H6 solanum_phureja|09v1|SPHAI 777070 2630 4594 703 87.66 glotblastn LNU971_H7 solanum_phureja|09v1ISPHD N168697 2631 4594 703 87.66 glotblastn LNU971_H8 solanum_phureja|09v1ISPHB G125614 2632 4595 703 87.5 globlastp LNU971_H9 tomato|11v1|AI777070 2633 4596 703 86.8 globlastp LNU971_H1 0 potato|10v1|BQ514990_T1 2634 4597 703 86.36 glotblastn LNU971_H1 1 solanum_phureja|09v1|SPHAI 772789 2635 4598 703 86.31 glotblastn LNU971_H1 2 solanum_phureja|09v1|SPHBI 431905 2636 4599 703 85.71 glotblastn LNU971_H1 3 potato|10v1|BI431905_P1 2637 4600 703 85.5 globlastp LNU971_H1 4 potato|10v1|CV475926_T1 2638 4601 703 85.47 glotblastn LNU971_H1 5 solanum_phureja|09v1ISPHB G132158 2639 4602 703 85.4 globlastp LNU971_H1 6 solanum_phureja|09v1|SPHAI 776714 2640 4603 703 85.3 globlastp LNU971_H1 7 eggplant|10v1|FS009193_P1 2641 4604 703 84 globlastp LNU971_H1 8 potato|10v1|BG589613_P1 2642 4605 703 83.8 globlastp LNU971_H1 9 tomato|11v1|SRR027939S023 2941 2643 4606 703 82.9 globlastp LNU971_H2 2 nicotiana_benthamiana|12v1| AM836977_T1 2644 4607 703 82.13 glotblastn LNU971_H2 0 tomato|11v1|BG125614 2645 4608 703 81.5 globlastp LNU971_H2 1 pepper|12v1|BM061037_P1 2646 4609 703 80.9 globlastp LNU972_H2 nicotiana_benthamiana|12v1| EB699638_P1 2647 4610 704 91.4 globlastp LNU975_H1 solanum_phureja|09v1|SPHBI 422101 2648 4611 705 85.2 glotblastn LNU975_H2 solanum_phureja|09v1ISPHAI 896166_T1 2649 4612 705 80.17 glotblastn LNU976_H1 pseudoroegneria|gb167|FF347 407 2650 4613 706 93.2 globlastp LNU976_H2 rye|12v1|DRR001012.364991 2651 4614 706 91.47 glotblastn LNU976_H3 leymus|gb166|CD808542_P1 2652 4615 706 89.9 globlastp LNU977_H2 wheat|12v3|BM137333 2653 4616 707 86.1 globlastp LNU977_H1 0 rice|11v1|C91689_P1 2654 4617 707 81.5 globlastp LNU977_H1 1 sorghum|12v1|SB01G048800 _P1 2655 4618 707 80.7 globlastp LNU977_H1 2 maize|10v1|CO519634_T1 2656 4619 707 80.23 glotblastn LNU750_H1 wheat|12v3|BQ744292 2657 4620 713 89.2 globlastp LNU750_H2 rye|12v1|DRR001012.14416 2658 4621 713 88.8 globlastp LNU771_H1 wheat|12v3|BM068568 2659 4622 715 96.7 globlastp LNU771_H2 rye|12v1|DRR001013.372156 2660 4623 715 87.38 glotblastn LNU771_H3 wheat|12v3|BE426855 2661 4624 715 84.3 globlastp LNU771_H4 fescue|gb161|DT701171_P1 2662 4625 715 84 globlastp LNU771_H5 rye|12v1|DRR001012.320596 2663 4626 715 82.4 globlastp LNU771_H6 rye|12v1|DRR001017.135239 6 2664 4627 715 81.6 globlastp LNU772_H7 lolium|10v1|EY457993_T1 2665 4628 716 91.41 glotblastn LNU772_H1 2 sorghum|12v1|CD209835 2666 4629 716 87.5 glotblastn LNU785_H1 rye|12v1|DRR001012.10208 2667 4630 717 95.63 glotblastn LNU785_H2 wheat|12v3|CA653207 2668 4631 717 89.2 globlastp LNU786_H1 wheat|12v3|BJ222677 2669 4632 718 94.89 glotblastn LNU786_H2 rye|12v1|DRR001012.114677 2670 4633 718 93.69 glotblastn LNU786_H4 brachypodium|12v1|BRADI3 G52470_T1 2671 4634 718 86.3 glotblastn LNU786_H5 wheat|12v3|SRR400820X100 908D1 2672 4635 718 84.9 glotblastn LNU786_H6 wheat|12v3|CA500094 2673 4636 718 83.88 glotblastn LNU786_H7 rice|11v1|AU062764 2674 4637 718 81.85 glotblastn LNU786_H8 maize|10v1|AW076421_T1 2675 4638 718 81.29 glotblastn LNU786_H9 foxtail_millet|11v3|PHY7SIO1 6091M_T1 2676 4639 718 81.18 glotblastn LNU786_H1 0 sorghum|12v1|SB04G030880 2677 4640 718 80.7 glotblastn LNU786_H1 1 switchgrass|12v1|FL710092_ T1 2678 4641 718 80.05 glotblastn LNU787_H5 sorghum|12v1|SB10G022920 2679 4642 719 85.9 globlastp LNU787_H1 5 switchgrass|12v1|GD039082_ T1 2680 4643 719 83.45 glotblastn LNU806_H3 rice|11v1|CI312268 2681 4644 721 84.1 glotblastn LNU806_H4 brachypodium|12v1IBRADI3 G14530_T1 2682 4645 721 83.18 glotblastn LNU806_H5 rye|12v1|DRR001012.245949 2683 4646 721 80.43 glotblastn LNU806_H6 wheat|12v3|CA745011 2684 4647 721 80.43 glotblastn LNU837_H8 switchgrass|12v1|FL706711_ T1 2685 4648 722 87.5 glotblastn LNU837_H4 foxtail_millet|11v3|PHY7SI03 6733M_T1 2686 4649 722 83.33 glotblastn LNU837_H9 switchgrass|12v1|FL875810_ T1 2687 4650 722 82.29 glotblastn LNU837_H5 switchgrass|gb167|FL706712 2688 4651 722 82.29 glotblastn LNU837_H1 0 switchgrass|12v1|FL893419_ T1 2689 4652 722 81.25 glotblastn LNU837_H6 switchgrass|gb167|FL696926 2690 4653 722 81.25 glotblastn LNU837_H1 1 switchgrass|12v1|FL696926_ T1 2691 4654 722 80.21 glotblastn LNU837_H7 millet|10v1|EVO454PM10671 5_T1 2692 4655 722 80.21 glotblastn LNU856_H1 foxtail_millet|11v3|PHY7SI00 6280M_P1 2693 4656 726 91.5 globlastp LNU856_H3 millet|10v1|CD725559_P1 2694 4657 726 90.5 globlastp LNU856_H4 sorghum|12v1|SB05G003390 2695 4658 726 90.3 globlastp LNU856_H5 foxtail_millet|11v3|PHY7SI01 7030M_P1 2696 4659 726 89.1 globlastp LNU856_H1 2 switchgrass|12v1|FL749250_ P1 2697 4660 726 88.9 globlastp LNU856_H6 maize|10v1|BM895627_P1 2698 4661 726 87.9 globlastp LNU856_H8 rice|11v1|BI811616 2699 4662 726 84.2 globlastp LNU856_H9 brachypodium|12v1|BRADI1 G43000_P1 2700 4663 726 82.4 globlastp LNU856_H1 0 brachypodium|12v1|BRADI2 G09570_P1 2701 4664 726 80.7 globlastp LNU856_H1 1 barley|12v1|BI949641_T1 2702 4665 726 80.08 glotblastn LNU862_H1 0 sugarcane|10v1|CA147410 2703 4666 728 84.3 globlastp LNU862_H1 3 maize|10v1|BU037296_P1 2704 4667 728 81.9 globlastp LNU862_H1 5 barley|12v1|AV921382_T1 2705 4668 728 80.84 glotblastn LNU866_H1 sorghum|12v1|SB12V1CUFF 392T1P3 2706 4669 729 95 globlastp LNU866_H2 maize|10v1|AI854982_P1 2707 4670 729 88.9 globlastp LNU866_H3 foxtail_millet|11v3|PHY7SI03 4627M_P1 2708 4671 729 83.2 globlastp LNU866_H4 millet|10v1|EVO454PM02444 1_T1 2709 4672 729 80.82 glotblastn LNU870_H1 foxtail_millet|11v3|PHY7SI03 4640M_P1 2710 4673 730 91.1 globlastp LNU910_H1 1 switchgrass|12v1|FL927878_ T1 2711 4674 736 93.48 glotblastn LNU911_H1 maize|10v1|AI622711_P1 2712 4675 737 83.6 globlastp LNU951_H1 foxtail_millet|11v3|PHY7SI00 9880M_P1 2713 4676 739 82.4 globlastp LNU951_H2 switchgrass|12v1|FL765313_ P1 2714 4677 739 80.3 globlastp LNU956_H1 sugarcane|10v1|BQ533901 2715 4678 741 93.94 glotblastn LNU956_H3 maize|10v1|AW191064_T1 2716 4679 741 87.59 glotblastn LNU956_H9 switchgrass|12v1|FL728285_ T1 2717 4680 741 82.79 glotblastn LNU956_H6 millet|10v1|EVO454PM00084 6_T1 2718 4681 741 82.04 glotblastn LNU956_H7 rice|11v1|AA749599 2719 4682 741 81.25 glotblastn LNU956_H8 brachypodium|12v1IBRADI4 G04270_T1 2720 4683 741 80 glotblastn LNU972_H1 solanum_phureja|09v1|SPHAI 775263 2721 4684 743 96.6 globlastp LNU977_H8 wheat|12v3|SRR400820X118 5207D1 2722 4685 745 87.8 globlastp LNU749_H1 wheat|12v3|BQ905774 2723 4686 747 93.4 globlastp LNU749_H2 rye|12v1|DRR001012.593230 2724 4687 747 90.9 globlastp LNU749_H3 brachypodium|12v1|BRADI4 G10110_P1 2725 4688 747 81.4 globlastp LNU752_H1 rye|12v1|DRR001012.165407 2726 4689 748 96.9 globlastp LNU752_H2 wheat|12v3|BE415379 2727 4690 748 96.7 globlastp LNU766_H4 brachypodium|12v1|BRADI1 G59210_P1 2728 4691 749 90 globlastp LNU769_H2 wheat|12v3|BE427519 2729 4692 750 94.4 globlastp LNU769_H1 wheat|12v3|BE402340 2730 4693 750 94.2 globlastp LNU769_H3 wheat|12v3|BQ841839 2731 4694 750 93.7 globlastp LNU769_H4 rye|12v1|BE705675 2732 4695 750 92.9 globlastp LNU769_H5 wheat|12v3|CA692455 2733 4696 750 92.5 globlastp LNU769_H6 rye|12v1|DRR001012.119684 2734 4697 750 91.9 globlastp LNU769_H7 wheat|12v3|CD888102 2735 4698 750 86.9 globlastp LNU769_H1 1 rice|11v1|AU030808 2736 4699 750 82.4 globlastp LNU769_H9 sorghum|12v1ISB09G026980 2737 4700 750 82.3 globlastp LNU769_H1 0 foxtail_millet|11v3|PHY7SI02 6215M_P1 2738 4701 750 82 globlastp LNU769_H1 2 maize|10v1|CD445089_P1 2739 4702 750 81.9 globlastp LNU769_H1 5 switchgrass|12v1|DN151230_ P1 2740 4703 750 81.2 globlastp LNU769_H1 6 switchgrass|12v1|GD008102_ T1 2741 4704 750 81.03 glotblastn LNU773_H6 sorghum|12v1|SB01G001980 2742 4705 751 80.6 globlastp LNU780_H1 wheat|12v3|BM137500 2743 4706 753 81.2 globlastp LNU784_H1 wheat|12v3|BE406457 2744 4707 754 84.1 globlastp LNU784_H2 rye|12v1|DRR001012.297633 2745 4708 754 81.7 globlastp LNU786_H3 rye|12v1|DRR001012.109215 2746 4709 755 90.1 globlastp LNU788_H4 foxtail_millet|11v3|PHY7SI00 6617M_P1 2747 4710 756 83.8 globlastp LNU804_H1 foxtail_millet|11v3|PHY7SI00 9871M_P1 2748 4711 758 82.5 globlastp LNU804_H2 switchgrass|gb167|FE603029 2749 4712 758 82 globlastp LNU804_H3 sorghum|12v1ISB06G022510 2750 4713 758 80.2 globlastp LNU804_H4 sorghum|12v1|SB06G022500 _P1 2751 4714 758 80 globlastp LNU806_H7 switchgrass|12v1|SRR187768. 79981_P1 2752 4715 759 88.3 globlastp LNU806_H8 switchgrass|12v1|DN145288_ P1 2753 4716 759 87.3 globlastp LNU806_H1 sorghum|12v1|SB07G002850 2754 4717 759 81.3 globlastp LNU806_H2 maize|10v1|CD966203_P1 2755 4718 759 80.6 globlastp LNU816_H1 foxtail_millet|11v3|GT091139 _P1 2756 4719 761 95.8 globlastp LNU816_H2 sorghum|12v1|SB04G029730 2757 4720 761 95.7 globlastp LNU816_H3 maize|10v1|BQ485722_P1 2758 4721 761 95.6 globlastp LNU816_H1 6 switchgrass|12v1IFL715086_ P1 2759 4722 761 94.6 globlastp LNU816_H4 millet|10v1|EVO454PM00853 5_P1 2760 4723 761 94.5 globlastp LNU816_H7 rye|12v1|BF145541 2761 4724 761 87.6 globlastp LNU816_H8 barley|12v1|AV909829_P1 2762 4725 761 86.6 globlastp LNU816_H1 7 switchgrass|12v1|FL746777_ P1 2763 4726 761 83.3 globlastp LNU816_H9 wheat|12v3|BE400688 2764 4727 761 82.5 globlastp LNU816_H1 1 wheat|12v3|TAU67717 2765 4728 761 82 globlastp LNU816_H1 2 barley|12v1|EX595315_P1 2766 4729 761 81.8 globlastp LNU816_H1 3 wheat|12v3|SRR400820X100 8111D1 2767 4730 761 80.88 glotblastn LNU816_H1 4 wheat|12v3|SRR400820X103 4615D1 2768 4731 761 80.88 glotblastn LNU816_H1 5 brachypodium|12v1|BRADI1 G42750_P1 2769 4732 761 80.7 globlastp LNU821_H1 sorghum|12v1|SB02G033100 2770 4733 764 95.9 globlastp LNU821_H2 foxtail_millet|11v3|PHY7SI02 9452M_P1 2771 4734 764 90.7 globlastp LNU821_H3 rice|11v1|BI808865 2772 4735 764 82.3 globlastp LNU821_H4 brachypodium|12v1|BRADI1 G28110T2_P1 2773 4736 764 81.1 globlastp LNU824_H2 sorghum|12v1|SB03G004750 2774 4737 765 96.9 globlastp LNU824_H3 sugarcane|10v1ICA072104 2775 4737 765 96.9 globlastp LNU824_H4 foxtail_millet|11v3|PHY7SI00 2015M_P1 2776 4738 765 95.8 globlastp LNU824_H6 switchgrasslgb167|FL699463 2777 4739 765 95.2 globlastp LNU824_H5 2 switchgrass|12v|FE635824_ P1 2778 4740 765 94.7 globlastp LNU824_H7 rice|11v1|U37978 2779 4741 765 92.7 globlastp LNU824_H8 brachypodium|12v1IBRADI2 G04130_P1 2780 4742 765 91.6 globlastp LNU824_H9 barley|12v1|BI954198_P1 2781 4743 765 91.3 globlastp LNU824_H1 0 fescue|gb161|DT698307_P1 2782 4744 765 91.3 globlastp LNU824_H1 1 oat|11v1|GO582430XX1_P1 2783 4745 765 91.3 globlastp LNU824_H1 2 rye|12v1|DRR001012.148971 2784 4743 765 91.3 globlastp LNU824_H1 3 rye|12v1|DRR001012.252020 2785 4743 765 91.3 globlastp LNU824_H1 4 rice|11v1|AB060277 2786 4746 765 91 globlastp LNU824_H1 5 wheat|12v3|BE444676 2787 4747 765 91 globlastp LNU824_H1 6 rye|12v1|DRR001012.21112 2788 4748 765 90.73 glotblastn LNU824_H1 7 sorghum|12v1ISB09G005010 2789 4749 765 89.9 globlastp LNU824_H5 3 switchgrass|12v1|DN141584_ P1 2790 4750 765 89.9 globlastp LNU824_H1 8 foxtail_millet|11v3|PHY7SI02 2491M_P1 2791 4751 765 89.6 globlastp LNU824_H1 9 maize|10v1|AI783320_P1 2792 4752 765 89.6 globlastp LNU824_H2 0 switchgrass|gb167|DN141584 2793 4753 765 89.6 globlastp LNU824_H5 4 switchgrass|12v1|FE599982_ P1 2794 4753 765 89.6 globlastp LNU824_H2 2 millet|10vl1|CD725074_P1 2795 4754 765 89.3 globlastp LNU824_H2 3 barley|12v1|BI959386_P1 2796 4755 765 88.8 globlastp LNU824_H2 4 brachypodium|12v1IBRADI2 G34470_P1 2797 4756 765 88.8 globlastp LNU824_H2 5 oat|11v1|CN816246_P1 2798 4757 765 88.5 globlastp LNU824_H2 6 rye|12v1|DRR001012.242642 2799 4758 765 88.2 globlastp LNU824_H3 1 rye|12v1|DRR001012.153481 2800 4759 765 85.7 globlastp LNU824_H5 5 switchgrass|12v1IDN145318_ P1 2801 4760 765 83.7 globlastp LNU824_H3 2 cacao|10v1|CU505404_P1 2802 4761 765 82.5 globlastp LNU824_H3 4 sugarcane|10v1|CA084205 2803 4762 765 82.3 globlastp LNU824_H3 3 euonymus|11v1|SRR070038X 188424_P1 2804 4763 765 82.1 globlastp LNU824_H3 5 grape|11v1IGSVIVT01024573001_P1 2805 4764 765 81.8 globlastp LNU824_H3 6 orange|11v1|CF418875_P1 2806 4765 765 81.6 globlastp LNU824_H4 3 tripterygiumll1v1ISRR09867 7X105610 2807 4766 765 81.01 glotblastn LNU824_H3 8 euphorbia|11v|DV129031_P1 2808 4767 765 81 globlastp LNU824_H3 9 papaya|gb165|EX228132_P1 2809 4768 765 81 globlastp LNU824_H4 0 amborella|12v3|CK763625_P1 2810 4769 765 80.8 globlastp LNU824_H4 8 grape|11v1IGSVIVT01032677001_P1 2811 4770 765 80.8 globlastp LNU824_H5 6 castorbean|12v1|EE260514_P 1 2812 4771 765 80.8 globlastp LNU824_H4 6 ambrosia|11v1ISRR346935.200226_P1 2813 4772 765 80.7 globlastp LNU824_H4 4 cottonl11v1|CO077706_P1 2814 4773 765 80.6 globlastp LNU824_H4 5 gossypium_raimondii|12v1|B E054298_P1 2815 4773 765 80.6 globlastp LNU824_H5 1 beech|11v1ISRR006293.9817_T1 2816 4774 765 80.39 glotblastn LNU824_H5 0 cotton|11v1|BE054298_P1 2817 4775 765 80.3 globlastp LNU824_H5 7 chestnut|gb170|SRR00629550 038807_P1 2818 4776 765 80.2 globlastp LNU824_H5 8 eucalyptus|11v2|CB967757_P 1 2819 4777 765 80.2 globlastp LNU824_H5 9 amsonia|11v1|SRR098688X1 58094_T1 2820 4778 765 80.17 glotblastn LNU829_H2 maize|10v1|SRR014550S0010 991_T1 2821 4779 767 94.63 glotblastn LNU829_H3 sugarcane|10v1ICF572667 2822 4780 767 94.48 glotblastn LNU829_H8 switchgrass|12v1|SRR187765.561639_P1 2823 4781 767 93.8 globlastp LNU829_H6 sorghum|12v1|SB12V2PRD0 06827 2824 4782 767 90 glotblastn LNU829_H7 rice|11v1IAF171223 2825 4783 767 81.4 globlastp LNU831_H1 sorghum|12v1|SB01G011000 2826 4784 768 84.92 glotblastn LNU831_H2 foxtail_millet|11v3|PHY7SI03 6219M_P1 2827 4785 768 84.1 globlastp LNU833_H1 sorshum|12v1ISB02G029650 2828 4786 769 91.9 globlastp LNU833_H3 foxtail_millet|11v3|EC612621_P1 2829 4787 769 87 globlastp LNU847_H1 trigonella|11v1ISRR066194X264388 2830 4788 772 94.4 globlastp LNU847_H2 soybean|12v1IGLYMA17G02 680_P1 2831 4789 772 83 globlastp LNU847_H3 bean|12v2|SRR001334.10255 2_P1 2832 4790 772 82 globlastp LNU847_H4 soybean|12v1|GLYMA07G38 020_P1 2833 4791 772 80.4 globlastp LNU858_H3 maize|10v1|BM266633_P1 2834 4792 774 93.5 globlastp LNU858_H4 maize|10v1|AI834674_P1 2835 4793 774 90.3 globlastp LNU858_H1 foxtail_millet|11v3|PHY7SI01 6470M_P1 2836 4794 774 86.9 globlastp LNU858_H2 millet|10v1|EVO454PM00243 6_P1 2837 4795 774 86.6 globlastp LNU858_H5 switchgrass|12v1IFE613408_ P1 2838 4796 774 85.2 globlastp LNU858_H6 switchgrass|12v1|FL693746_ P1 2839 4797 774 81.8 globlastp LNU898_H1 sorghum|12v1|SB04G003360 2840 4798 778 94.3 globlastp LNU898_H2 foxtail_millet|11v3|PHY7SI01 7281M_P1 2841 4799 778 93.7 globlastp LNU898_H3 milled10v1|EVO454PM00528 7_P1 2842 4800 778 93.7 globlastp LNU898_H4 maize|10v1|AI948259_T1 2843 4801 778 93.63 glotblastn LNU898_H5 maize|10v1|BQ538526_P1 2844 4802 778 93.2 globlastp LNU898_H9 switchgrass|12v1IFE615026_ P1 2845 4803 778 92.5 globlastp LNU898_H6 switchgrasslgb167|FL699057 2846 4804 778 91.84 glotblastn LNU898_H7 rice|11v1|BE229038 2847 4805 778 86 globlastp LNU898_H8 brachypodium|12v1IBRADI3 G03680_P1 2848 4806 778 82.9 globlastp LNU900_H7 rice|11v1IAU083413 2849 4807 779 83.4 globlastp LNU901_H2 maize|10v1|AW244952_P1 2850 4808 780 90.1 globlastp LNU901_H3 foxtail_millet|11v3|PHY7SI00 1444M_P1 2851 4809 780 88.8 globlastp LNU901_H4 brachypodium|12v1IBRADI2 G02560T2_P1 2852 4810 780 84.5 globlastp LNU901_H5 wheat|12v3|BE606820 2853 4811 780 83.6 globlastp LNU901_H8 rye|12v1|BE586835 2854 4812 780 82.47 glotblastn LNU901_H6 rice|11v1|BI806473 2855 4813 780 82.4 globlastp LNU901_H7 barley|12v1|BI952377_P1 2856 4814 780 82.4 globlastp LNU901_H9 rye|12v1|DRR001012.187398 2857 4815 780 81.42 glotblastn LNU904_H2 foxtail_millet|11v3|EC613499 _P1 2858 4816 781 82.1 globlastp LNU906_H1 maize|10v1|AW055628_P1 2859 4817 782 88.2 globlastp LNU906_H2 maize|10v1|BQ703950_P1 2860 4818 782 88.2 globlastp LNU906_H3 foxtail_millet|11v3|PHY7SI00 0363M_P1 2861 4819 782 84 globlastp LNU909_H2 foxtail_millet|11v3|PHY7SI00 0744M_P1 2862 4820 784 84.6 globlastp LNU909_H3 switchgrass|gb167IFL723049 2863 4821 784 82.21 glotblastn LNU909_H5 switchgrass|12v1IFL977640_ T1 2864 4822 784 82.1 glotblastn LNU909_H4 milled10v1|EVO454PM00817 9_P1 2865 4823 784 82.1 globlastp LNU911_H2 foxtail_millet|11v3|PHY7SI00 0115M_P1 2866 4824 785 85.1 globlastp LNU930_H1 maize|10v1|AW787241_P1 2867 4825 786 91.5 globlastp LNU930_H4 switchgrass|12v1|FL706853_ T1 2868 4826 786 83.49 glotblastn LNU930_H2 switchgrass|gb167|FE618499 2869 4827 786 82.9 globlastp LNU930_H5 switchgrass|12v1IFE618499_ P1 2870 4828 786 82.4 globlastp LNU930_H3 foxtail_millet|11v3|EC613524 _P1 2871 4829 786 80.8 globlastp LNU932_H1 maize|10v1|T27560_P1 2872 4830 787 85.1 globlastp LNU938_H1 maize|10v1|DN222454_P1 2873 4831 789 87.6 globlastp LNU938_H2 foxtail_millet|11v3|PHY7SI02 7048M_P1 2874 4832 789 83.9 globlastp LNU938_H4 switchgrass|12v1|SRR187769. 1104778_T1 2875 4833 789 83.33 glotblastn LNU938_H5 switchgrass|12v1FL787692_ P1 2876 4834 789 82.6 globlastp LNU938_H3 sorghum|12v1|SB0SG025910 2877 4835 789 81.1 globlastp LNU938_H6 foxtail_millet|11v3|PHY7SI02 7821M_P1 2878 4836 789 80.7 globlastp LNU954_H1 sugarcane|10v1|BQ533017_P 1 2879 4837 791 94.2 globlastp LNU954_H2 foxtail_millet|11v3|PHY7SI02 2586M_P1 2880 4838 791 83 globlastp LNU954_H3 cenchrus|gb166|EB653183_P 1 2881 4839 791 81 globlastp LNU956_H2 maize|10v1|AW520032_T1 2882 4840 792 89.58 glotblastn LNU956_H4 switchgrass|gb167IFL701157 2883 4841 792 85.12 glotblastn LNU956_H1 0 switchgrass|12v1|FL701157_ P1 2884 4842 792 83.3 globlastp LNU956_H5 foxtail_millet|11v3|PHY7SI02 1390M_P1 2885 4843 792 82.7 globlastp LNU968_H1 maize|10v1|BI233953_P1 2886 4844 793 80.7 globlastp LNU977_H4 rye|12v1|DRR001012.145037 2887 4845 794 97.3 globlastp LNU977_H5 rye|2v1|DRR001012.173329 2888 4846 794 96.7 globlastp LNU977_H6 rye|12v1|DRR001012.153346 2889 4847 794 96.7 globlastp LNU977_H7 barley|12v1|BF254361_P1 2890 4848 794 96.3 globlastp LNU977_H3 rye|12v1|DRR001012.735828 2891 4849 794 95.89 glotblastn LNU977_H1 wheat|12v3|BE398977 2892 4850 794 93.7 globlastp LNU977_H9 brachypodium|12v1|BRADI1 G76830_P1 2893 4851 794 88.3 globlastp LNU977_H1 3 millet|10v1||EVO454PM01239 9_T1 2894 4852 794 81.4 glotblastn LNU977_H1 4 foxtail_millet|11v3|PHY7SI03 5189M_P1 2895 4853 794 80.7 globlastp LNU977_H1 5 switchgrass|12v1|FL721232_ P1 2896 4854 794 80.3 globlastp LNU977_H1 6 switchgrass|12v1|FL901810_ T1 2897 4855 794 80.04 glotblastn Table 2: Provided are the homologous (e.g., orthologous) polypeptides and polynucleotides of the genes identified in Table 1 and of their cloned genes, which can increas nitrogen use efficiency, fertilizer use efficiency, yield, seed yield, growth rate, vigor, biomass, oil content, fiber yield, fiber quality, fiber length, abiotic stress tolerance and/or water use efficiency of a plant. Homology was calculated as% of identity over the aligned sequences. The query sequences were polypeptide sequences SEQ ID NOs:496-794 and polynucleotide sequences SEQ ID NOs: 1-495, and the subject sequences are polypeptide sequences or polynucleotide sequences which were dynamically translated in all six reading frames identified in the database based on greater than 80% identity to the query polypeptide sequences. “Polyp.”= polypeptide; “Polyn.” - Polynucleotide. Algor. = Algorithm. “globlastp” - global homology using blastp; “glotblastn” - global homology using tblastn. “Hom.” - homologous. “ident” = identity.

The output of the functional genomics approach described herein is a set of genes highly predicted to improve nitrogen use efficiency, fertilizer use efficiency, yield, seed yield, growth rate, vigor, biomass, oil content, fiber yield, fiber length, fiber quality, abiotic stress tolerance and/or water use efficiency of a plant by increasing their expression.

Although each gene is predicted to have its own impact, modifying the mode of expression of more than one gene or gene product (RNA, polypeptide) is expected to provide an additive or synergistic effect on the desired trait (e.g., nitrogen use efficiency, fertilizer use efficiency, yield, growth rate, vigor, biomass, oil content, abiotic stress tolerance and/or water use efficiency of a plant). Altering the expression of each gene described here alone or of a set of genes together increases the overall yield and/or other agronomic important traits, hence expects to increase agricultural productivity.

Example 3 Production of Barley Transcriptom and High Throughput Correlation Analysis Using 44K Barley Oligonucleotide Micro-Array

In order to produce a high throughput correlation analysis comparing between plant phenotype and gene expression level, the present inventors utilized a Barley oligonucleotide micro-array, produced by Agilent Technologies [chem. (dot) agilent (dot) com/Scripts/PDS (dot) asp?1Page=50879]. The array oligonucleotide represents about 47,500 Barley genes and transcripts. In order to define correlations between the levels of RNA expression and yield or vigor related parameters, various plant characteristics of 25 different Barley accessions were analyzed. Among them, 13 accessions encompassing the observed variance were selected for RNA expression analysis. The correlation between the RNA levels and the characterized parameters was analyzed using Pearson correlation test [davidmlane (dot) com/hyperstat/A34739 (dot) html].

Experimental Procedures

Analyzed Barley tissues - Five tissues at different developmental stages [meristem, flower, booting spike, stem, flag leaf], representing different plant characteristics, were sampled and RNA was extracted as described above. Each micro-array expression information tissue type has received a Set ID as summarized in Table 3 below.

TABLE 3 Barley transcriptom expression sets Expression Set Set ID booting spike 1 flowering spike 2 meristem 3 Stem 4 Table 3.

Barley yield components and vigor related parameters assessment - 25 Barley accessions in 4 repetitive blocks (named A, B, C, and D), each containing 4 plants per plot were grown at net house. Plants were phenotyped on a daily basis following the standard descriptor of barley (Table 4, below). Harvest was conducted while 50% of the spikes were dry to avoid spontaneous release of the seeds. Plants were separated to the vegetative part and spikes, of them, 5 spikes were threshed (grains were separated from the glumes) for additional grain analysis such as size measurement, grain count per spike and grain yield per spike. All material was oven dried and the seeds were threshed manually from the spikes prior to measurement of the seed characteristics (weight and size) using scanning and image analysis. The image analysis system included a personal desktop computer (Intel P4 3.0 GHz processor) and a public domain program - ImageJ 1.37 (Java based image processing program, which was developed at the U.S. National Institutes of Health and freely available on the internet [rsbweb (dot) nih (dot) gov/]. Next, analyzed data was saved to text files and processed using the JMP statistical analysis software (SAS institute).

TABLE 4 Barley standard descriptors Trait Parameter Range Description Growth habit Scoring 1-9 Prostrate (1) or Erect (9) Hairiness of basal leaves Scoring P (Presence)/A (Absence) Absence (1) or Presence (2) Stem pigmentation Scoring 1-5 Green (1), Basal only or Half or more (5) Days to Flowering Days Days from sowing to emergence of awns Plant height Centimeter (cm) Height from ground level to top of the longest spike excluding awns Spikes per plant Number Terminal Counting Spike length Centimeter (cm) Terminal Counting 5 spikes per plant Grains per spike Number Terminal Counting 5 spikes per plant Vegetative dry weight Gram Oven-dried for 48 hours at 70° C. Spikes dry weight Gram Oven-dried for 48 hours at 30° C. Table 4.

Grains per spike - At the end of the experiment (50% of the spikes were dry) all spikes from plots within blocks A-D were collected. The total number of grains from 5 spikes that were manually threshed was counted. The average grain per spike was calculated by dividing the total grain number by the number of spikes.

Grain average size (cm) - At the end of the experiment (50% of the spikes were dry) all spikes from plots within blocks A-D were collected. The total grains from 5 spikes that were manually threshed were scanned and images were analyzed using the digital imaging system. Grain scanning was done using Brother scanner (model DCP-135), at the 200 dpi resolution and analyzed with Image J software. The average grain size was calculated by dividing the total grain size by the total grain number.

Grain average weight (mgr) - At the end of the experiment (50% of the spikes were dry) all spikes from plots within blocks A-D were collected. The total grains from 5 spikes that were manually threshed were counted and weight. The average weight was calculated by dividing the total weight by the total grain number.

Grain yield per spike (gr) - At the end of the experiment (50% of the spikes were dry) all spikes from plots within blocks A-D were collected. The total grains from 5 spikes that were manually threshed were weight. The grain yield was calculated by dividing the total weight by the spike number.

Spike length analysis - At the end of the experiment (50% of the spikes were dry) all spikes from plots within blocks A-D were collected. The five chosen spikes per plant were measured using measuring tape excluding the awns.

Spike number analysis - At the end of the experiment (50% of the spikes were dry) all spikes from plots within blocks A-D were collected. The spikes per plant were counted.

Growth habit scoring - At the growth stage 10 (booting), each of the plants was scored for its growth habit nature. The scale that was used was 1 for prostate nature till 9 for erect.

Hairiness of basal leaves - At the growth stage 5 (leaf sheath strongly erect; end of tillering), each of the plants was scored for its hairiness nature of the leaf before the last. The scale that was used was 1 for prostate nature till 9 for erect.

Plant height - At the harvest stage (50% of spikes were dry) each of the plants was measured for its height using measuring tape. Height was measured from ground level to top of the longest spike excluding awns.

Days to flowering - Each of the plants was monitored for flowering date. Days of flowering was calculated from sowing date till flowering date.

Stem pigmentation - At the growth stage 10 (booting), each of the plants was scored for its stem color. The scale that was used was 1 for green till 5 for full purple.

Vegetative dry weight and spike yield - At the end of the experiment (50% of the spikes were dry) all spikes and vegetative material from plots within blocks A-D were collected. The biomass and spikes weight of each plot was separated, measured and divided by the number of plants.

Dry weight = total weight of the vegetative portion above ground (excluding roots) after drying at 70° C. in oven for 48 hours;

Spike yield per plant = total spike weight per plant (gr) after drying at 30° C. in oven for 48 hours.

Harvest Index (for barley) - The harvest index was calculated using Formula XVIII above.

TABLE 5 Barley correlated parameters (vectors) Correlated parameter with (units) Correlation Id Grain weight (miligrams) 1 Grains Size (mm2) 2 Grains per spike (numbers) 3 Growth habit (scores 1-9) 4 Hairiness of basal leaves (scoring 1-2) 5 Plant height (cm) 6 Seed Yield of 5 Spikes (gram) 7 Spike length (cm) 8 Spikes per plant (numbers) 9 Stem pigmentation (scoring 1-5) 10 Vegetative dry weight (gram) 11 days to flowering (days) 12 Table 5.

Experimental Results

13 different Barley accessions were grown and characterized for 13 parameters as described above. The average for each of the measured parameter was calculated using the JMP software and values are summarized in Tables 6 and 7 below. Subsequent correlation analysis between the various transcriptom sets (Table 3) and the average parameters, was conducted. Follow, results were integrated to the database.

TABLE 6 Measured parameters of correlation Ids in Barley accessions Accession /Parameter 1 2 3 4 5 6 Line-1 35.046 0.265 20.229 2.600 1.533 134.267 Line-2 28.065 0.229 17.983 2.000 1.333 130.500 Line-3 28.761 0.244 17.267 1.923 1.692 138.769 Line-4 17.869 0.166 17.733 3.167 1.083 114.583 Line-5 41.216 0.295 14.467 4.333 1.417 127.750 Line-6 29.734 0.275 16.783 2.692 1.692 129.385 Line-7 25.224 0.220 12.120 3.600 1.300 103.889 Line-8 34.994 0.278 14.067 3.500 1.188 121.625 Line-9 20.580 0.187 21.540 3.000 1.000 126.800 Line-10 27.501 0.224 12.100 3.667 1.167 99.833 Line-11 37.126 0.273 13.400 2.467 1.600 121.400 Line-12 29.564 0.271 15.283 3.500 1.083 118.417 Line-13 19.583 0.179 17.067 3.000 1.167 117.167 Table 6: Provided are the values of each of the parameters measured in Barley accessions according to the correlation identifications (Correlation IDs Table 5 above).

TABLE 7 Accession /Parameter 7 8 9 10 11 12 Line-1 3.559 12.036 48.846 1.133 78.871 62.400 Line-2 2.538 10.932 48.273 2.500 66.141 64.083 Line-3 2.583 11.825 37.417 1.692 68.491 65.154 Line-4 1.574 9.900 61.917 1.750 53.389 58.917 Line-5 3.030 11.682 33.273 2.333 68.300 63.000 Line-6 2.517 11.532 41.692 2.308 74.173 70.538 Line-7 1.549 8.863 40.000 1.700 35.354 52.800 Line-8 2.624 11.216 40.625 2.188 58.334 60.875 Line-9 2.300 11.108 62.000 2.300 62.230 58.100 Line-10 1.678 8.583 49.333 1.833 38.322 53.000 Line-11 2.677 10.179 50.600 3.067 68.306 60.400 Line-12 2.353 10.505 43.091 1.583 56.148 64.583 Line-13 1.673 9.803 51.400 2.167 42.682 56.000 Table 7. Provided are the values of each of the parameters measured in Barley accessions according to the correlation identifications (Correlation IDs Table 5 above).

TABLE 8 Correlation between the expression level of the selected polynucleotides of the invention and their homologues in specific tissues or developmental stages and the phenotypic performance across Barley accessions Gene Name R P value Exp. set Corr. Set ID Gene Name R P value Exp. set Corr. Set ID LNU750 0.80 5.15E-03 2 9 LNU756 0.70 1.59E-02 3 2 LNU756 0.73 1.05E-02 3 1 LNU756 0.74 8.57E-03 3 5 LNU757 0.75 7.80E-03 1 7 LNU757 0.74 8.71E-03 1 11 LNU761 0.74 9.03E-03 3 1 LNU761 0.72 1.20E-02 3 6 LNU761 0.85 9.78E-04 3 8 LNU761 0.88 4.09E-04 3 7 LNU761 0.76 6.14E-03 3 11 LNU766 0.73 1.10E-02 1 5 LNU767 0.82 2.06E-03 3 2 LNU767 0.87 5.84E-04 3 1 LNU767 0.77 6.08E-03 3 8 LNU767 0.94 1.99E-05 3 7 LNU767 0.85 9.09E-04 3 11 LNU767 0.76 6.33E-03 3 12 LNU768 0.79 3.98E-03 1 9 LNU768 0.73 1.74E-02 2 4 LNU768 0.75 7.84E-03 3 9 LNU770 0.72 1.20E-02 1 9 LNU771 0.70 2.32E-02 2 5 LNU771 0.78 4.51E-03 3 2 LNU771 0.74 9.02E-03 3 1 LNU773 0.75 7.74E-03 3 9 LNU774 0.81 2.78E-03 3 2 LNU774 0.87 4.25E-04 3 1 LNU774 0.71 1.36E-02 3 7 LNU780 0.70 1.56E-02 1 2 LNU780 0.77 6.07E-03 1 1 LNU780 0.86 1.40E-03 2 4 LNU782 0.74 8.54E-03 3 8 LNU785 0.70 1.57E-02 1 8 LNU834 0.75 7.95E-03 3 1 LNU839 0.75 7.95E-03 3 1 Table 8. Provided are the correlations (R) and p-values (P) between the expression levels of selected genes of some embodiments of the invention in various tissues or developmental stages (Expression sets) and the phenotypic performance in various yield (seed yield, oil yield, oil content), biomass, growth rate and/or vigor components [Correlation (Corr.) vector (Vec.) Expression (Exp.)] Corr. Vector = correlation vector specified in Table 5; Exp. Set = expression set specified in Table 3.

Example 4 Production of Barley Transcriptom and High Throughput Correlation Analysis Using 60K Barley Oligonucleotide Micro-Array

In order to produce a high throughput correlation analysis comparing between plant phenotype and gene expression level, the present inventors utilized a Barley oligonucleotide micro-array, produced by Agilent Technologies [chem. (dot) agilent (dot) com/Scripts/PDS (dot) asp?1Page=50879]. The array oligonucleotide represents about 60 K Barley genes and transcripts. In order to define correlations between the levels of RNA expression and yield or vigor related parameters, various plant characteristics of 15 different Barley accessions were analyzed. Among them, 10 accessions encompassing the observed variance were selected for RNA expression analysis. The correlation between the RNA levels and the characterized parameters was analyzed using Pearson correlation test [davidmlane (dot) com/hyperstat/A34739 (dot) html].

Experimental Procedures

Analyzed Barley tissues - Tissues at different developmental stages representing different plant characteristics, were sampled and RNA was extracted as described above. Each micro-array expression information tissue type has received a Set ID as summarized in Tables 9-11 below.

TABLE 9 Barley transcriptom expression sets under normal and low N conditions (at vegetative stage) Expression Set Set ID Adv root/T3/low N 1 Adv root/T3/normal 2 Leaf/T3/low N 3 Leaf/T3/normal 4 Root tip/T3/low N 5 Root tip/T3/normal 6 Table 9. Provided are the barley transcriptom expression sets under normal and low N (low nitrogen) conditions (at vegetative stage).

TABLE 10 Barley transcriptom expression sets under normal and low N conditions (at reproductive stage) Set ID Expression Set 1 reproductive/booting spike/low N 2 reproductive/booting spike/normal 3 reproductive/leaf/low N 4 reproductive/leaf/normal: 5 reproductive/stem/low N 6 reproductive/stem/normal Table 10. Provided are the barley transcriptom expression sets under normal and low N conditions (at reproductive stage).

TABLE 11 Barley transcriptom expression sets under drought conditions (at vegetative stage) Set ID Expression Set 1 Drought/booting spike/reproductive 2 Drought/leaf/reproductive 3 Drought/leaf/vegetative 4 Drought/meristems/vegetative 5 Drought/root tip/vegetative 6 Drought/root tip/vegetative Table 11. Provided are the barley transcriptom expression sets under drought conditions (at vegetative stage).

Barley yield components and vigor related parameters assessment - 15 Barley accessions in 5 repetitive blocks, each containing 5 plants per pot were grown at net house. Three different treatments were applied: plants were regularly fertilized and watered during plant growth until harvesting (as recommended for commercial growth, plants were irrigated 2-3 times a week, and fertilization was given in the first 1.5 months of the growth period) or under low Nitrogen (80% percent less Nitrogen) or under drought stress (cycles of drought and re-irrigating were conducted throughout the whole experiment, overall 40% less water were given in the drought treatment). Plants were phenotyped on a daily basis following the parameters listed in Table 12 below. Harvest was conducted while all the spikes were dry. All material was oven dried and the seeds were threshed manually from the spikes prior to measurement of the seed characteristics (weight and size) using scanning and image analysis. The image analysis system included a personal desktop computer (Intel P4 3.0 GHz processor) and a public domain program - ImageJ 1.37 (Java based image processing program, which was developed at the U.S. National Institutes of Health and freely available on the internet [rsbweb (dot) nih (dot) gov/]. Next, analyzed data was saved to text files and processed using the JMP statistical analysis software (SAS institute).

Grain yield (gr.) - At the end of the experiment all spikes of the pots were collected. The total grains from all spikes that were manually threshed were weighted. The grain yield was calculated by per plot or per plant.

Spike length and width analysis - At the end of the experiment the length and width of five chosen spikes per plant were measured using measuring tape excluding the awns.

Spike number analysis - The spikes per plant were counted.

Plant height - Each of the plants was measured for its height using measuring tape. Height was measured from ground level to top of the longest spike excluding awns at two time points at the Vegetative growth (30 days after sowing) and at harvest.

Spike weight - The biomass and spikes weight of each plot was separated, measured and divided by the number of plants.

Dry weight = total weight of the vegetative portion above ground (excluding roots) after drying at 70° C. in oven for 48 hours at two time points at the Vegetative growth (30 days after sowing) and at harvest.

Spikelet per spike = number of spikelets per spike was counted.

Root/Shoot Ratio - The Root/Shoot Ratio is calculated using Formula XXII above.

Total No. of tillers- all tillers were counted per plot at two time points at the Vegetative growth (30 days after sowing) and at harvest.

Percent of reproductive tillers - the number of reproductive tillers barring a spike at harvest was divided by the total numbers of tillers.

SPAD - Chlorophyll content was determined using a Minolta SPAD 502 chlorophyll meter and measurement was performed at time of flowering. SPAD meter readings were done on young fully developed leaf. Three measurements per leaf were taken per plot.

Root FW (gr.), root length (cm) and No. of lateral roots - 3 plants per plot were selected for measurement of root weight, root length and for counting the number of lateral roots formed.

Shoot FW (fresh weight) - weight of 3 plants per plot were recorded at different time-points.

Average Grain Area (cm2) - At the end of the growing period the grains were separated from the spike. A sample of ~200 grains was weighted, photographed and images were processed using the below described image processing system. The grain area was measured from those images and was divided by the number of grains.

Average Grain Length and width (cm) - At the end of the growing period the grains were separated from the spike. A sample of ~200 grains was weighted, photographed and images were processed using the below described image processing system. The sum of grain lengths or width (longest axis) was measured from those images and was divided by the number of grains.

Average Grain perimeter (cm) - At the end of the growing period the grains were separated from the spike. A sample of ~200 grains was weighted, photographed and images were processed using the below described image processing system. The sum of grain perimeter was measured from those images and was divided by the number of grains.

Heading date - the day in which booting stage was observed was recorded and number of days from sowing to heading was calculated.

Relative water content - Fresh weight (FW) of three leaves from three plants each from different seed ID was immediately recorded; then leaves were soaked for 8 hours in distilled water at room temperature in the dark, and the turgid weight (TW) was recorded. Total dry weight (DW) was recorded after drying the leaves at 60° C. to a constant weight. Relative water content (RWC) is calculated according to Formula I above.

Harvest Index (for barley) - The harvest index was calculated using Formula XVIII above.

Relative growth rate: the relative growth rate (RGR) of Plant Height (Formula III above), SPAD (Formula IV above) and number of tillers (Formula V above) were calculated using the indicated formulas.

Ratio Drought/Normal: Represents ratio for the specified parameter of Drought condition results divided by Normal conditions results (maintenance of phenotype under drought in comparison to normal conditions).

TABLE 12 Barley correlated parameters (vectors) under normal and low N conditions (at vegetative stage) Correlated parameter with Correlation ID Lateral roots per plant at TP3 [number] Normal 1 Leaf Area [cm2] 2 Leaf Number - TP4 - Low N [number] 3 Leaf maximal length at TP4 [mm] Normal 4 Leaf maximal width at TP4 [mm] Normal 5 Leaf maximal length at TP4 [mm] Low N 6 Leaf maximal width at TP4 [mm] Low N 7 Lateral roots per plant at TP3 [number] Low N 8 No of tillers -Low N -TP2 [number] 9 Num Leaves [number] 10 Num Seeds [number] 11 Num Spikes [number] 12 Num Tillers [number] 13 Plant Height (cm)-Normal 14 Plant Height (cm)-Low N 15 Plant Height (cm)-Low N-TP2 16 Root FW per plant at vegetative stage [gr.] Normal 17 Root length per plant at vegetative stage [cm] Normal 18 Root FW per plant at vegetative stage [gr.] Low N 19 Root length per plant at vegetative stage [cm] Low N 20 Chlorophyll level at vegetative stage [SPAD] Normal 21 Chlorophyll level at vegetative stage [SPAD] Low N 22 Seed Yield [gr.] 23 Seed Number (per plot)- Low N [number] 24 Seed Yield (gr) -Low N 25 Seed Yield (gr) -Normal 26 Shoot FW per plant at vegetative stage [gr.] Normal 27 Spike length [cm] Normal 28 Spike width [mm] Normal 29 Spike total weight (per plot)- normal [gr.] 30 Spike Length (cm)-Low N 31 Spike Width (cm)-Low N 32 Spike total weight (per plot)-Low N [gr.] 33 Total Tillers [number] 34 Total Leaf Area (mm2)-TP4 - Low N 35 Total No of Spikes per plot-Low N [number] 36 Total No of tillers per plot-Low N [number] 37 shoot FW (gr)-Low N -TP2 38 Table 12. Provided are the barley correlated parameters. “TP” = time point; “DW” = dry weight; “FW” = fresh weight; “Low N” = Low Nitrogen.

TABLE 13 Barley correlated parameters (vectors) under normal and low N conditions (at reproductive stage) Correlation ID Correlated parameter with 1 Grain Perimeter [mm] 2 Grain area [mm] 3 Grain length [mm] 4 Grain width [mm] 5 Grains DW/ Shoots DW 6 Grains per plot [number] 7 Grains weight per plant [gr.] 8 Grains weight per plot [gr.] 9 Plant Height [cm] 10 Roots DW [gr.] 11 Row number [number] 12 Spikes FW (Harvest) [gr.] 13 Spikes num [number] 14 Tillering (Harvest) [number] 15 Vegetative DW (Harvest) [gr.] 16 percent of reproductive tillers [percent] 17 shoot/root ratio Table 13. Provided are the barley correlated parameters under normal and low N conditions (at reproductive stage). “TP” = time point; “DW” = dry weight; “FW” = fresh weight; “Low N” = Low Nitrogen; “Relative water content [percent] Ratio Drought/Normal” -maintenance of phenotype under drought in comparison to normal conditions

TABLE 14 Barley correlated parameters (vectors) under drought conditions (at vegetative stage) Correlation ID Correlated parameter with 1 Chlorophyll level vegetative stage [SPAD] Drought 2 Shoot DW at harvest [gr.] 3 Shoot DW at harvest per plant [gr.] Drought 4 Shoot FW per plant at harvest [gr.] Drought 5 Grains per plant [number] Drought 6 Grain yield per plant [gr.] Drought 7 Harvest index 8 Heading date [days] Drought 9 RGR by plant height Drought 10 Number of tillers Relative growth rate 11 Plant height per plot at harvest [cm] Drought 12 RBiH/BiH 13 Relative water content vegetative [percent] Drought 14 Root DW per plant vegetative stage [gr.] Drought 15 Root FW per plant vegetative stage [gr.] Drought 16 Root length per plant vegetative [cm] Drought 17 RGR by chlorophyll levels Drought 18 Spike length [cm] Drought 19 Spikes per plant [number] Drought 20 Spikes yield per plant [gr.] Drought 21 Spike width [mm] Drought 22 Tillers per plant at harvest [number] Drought 23 Lateral roots per plant vegetative [number] Drought Table 14. Provided are the barley correlated parameters under drought conditions (at vegetative stage). “RBiH/BiH” = root- shoot ratio

Experimental Results

15 different Barley accessions were grown and characterized for different parameters as described above. Tables 12-14 describe the Barley correlated parameters. The average for each of the measured parameter was calculated using the JMP software and values are summarized in Tables 15-24 below. Subsequent correlation analysis between the various transcriptom sets and the average parameters was conducted. Follow, results were integrated to the database.

TABLE 15 Measured parameters of correlation IDs in Barley accessions under low N conditions (at vegetative stage) Corr. ID/ Line 3 6 7 8 9 15 16 19 20 22 Line-1 8.0 102.9 5.3 5.0 0.0 41.0 16.3 0.4 24.7 24.0 Line-2 8.0 107.8 5.2 6.0 0.0 82.0 18.8 0.2 21.7 23.3 Line-3 7.5 111.6 5.1 4.3 0.0 61.4 17.3 0.1 22.0 26.5 Line-4 8.5 142.4 5.3 6.0 0.0 59.4 26.0 0.4 21.7 23.9 Line-5 10.0 152.4 5.2 6.3 0.0 65.8 22.5 0.9 22.2 26.6 Line-6 11.5 149.3 5.3 6.0 0.0 47.8 18.2 0.5 23.0 23.2 Line-7 8.6 124.1 5.3 6.7 0.0 53.8 19.7 0.4 30.5 25.4 Line-8 6.3 95.0 5.1 4.7 0.0 56.4 19.8 0.3 22.8 24.2 Line-9 7.5 124.1 5.2 5.7 0.0 81.8 19.2 0.3 23.8 25.0 Line-10 10.0 135.2 5.1 7.3 0.0 44.6 19.2 0.6 24.5 26.1 Table 15: Provided are the values of each of the parameters (as described above) measured in Barley accessions (line) under low N conditions. Growth conditions are specified in the experimental procedure section.

TABLE 16 Measured parameters of correlation IDs in additional Barley accessions under low N conditions (at vegetative stage) Corr. ID/ Line 24 25 26 31 32 33 35 36 37 38 Line-1 230.2 9.8 46.4 15.2 8.0 13.7 39.4 12.2 16.2 0.4 Line-2 164.6 7.3 19.8 19.6 8.1 13.4 46.3 9.0 14.6 0.4 Line-3 88.3 3.3 10.8 16.3 9.4 9.2 51.5 11.6 16.0 0.3 Line-4 133.6 5.1 22.6 19.3 4.9 11.6 57.1 25.0 20.8 0.6 Line-5 106.0 6.0 30.3 90.2 9.6 11.3 67.8 7.8 12.5 0.8 Line-6 222.6 9.7 54.1 16.4 7.2 15.1 64.2 14.5 18.8 0.5 Line-7 219.2 7.4 37.0 20.4 7.1 12.2 52.4 15.0 21.2 0.5 Line-8 143.5 5.8 42.0 18.8 8.5 11.0 46.2 7.0 11.0 0.4 Line-9 201.8 7.8 35.4 18.8 10.0 12.2 68.0 5.4 6.8 0.5 Line-10 125.0 6.3 38.3 16.6 9.4 10.6 57.9 8.4 14.0 0.6 Table 16. Provided are the values of each of the parameters (as described above) measured in Barley accessions (line) under low N conditions. Growth conditions are specified in the experimental procedure section.

TABLE 17 Measured parameters of correlation IDs Barley accessions under normal conditions (at vegetative stage) Corr. ID/Line 1 2 4 5 10 11 12 13 14 14 Line-1 7.0 294.0 502.0 5.8 24.2 1090.0 41.5 2.0 64.7 64.7 Line-2 8.7 199.0 348.0 5.5 18.2 510.0 32.0 2.0 84.0 84.0 Line-3 8.3 273.0 499.0 5.8 22.7 242.0 36.0 1.0 67.4 67.4 Line-4 9.7 276.0 594.0 6.0 25.5 582.0 71.4 2.3 82.0 82.0 Line-5 10. 7 313.0 535.0 4.6 23.2 621.0 34.2 2.3 72.0 72.0 Line-6 9.7 309.0 551.0 5.3 28.3 1070.0 45.6 3.3 56.6 56.6 Line-7 9.7 259.0 479.0 5.8 22.2 903.0 49.8 2.3 65.8 65.8 Line-8 8.7 291.0 399.0 5.4 19.0 950.0 28.0 1.3 62.8 62.8 Line-9 10. 0 299.0 384.0 5.8 17.3 984.0 19.3 1.3 91.6 91.6 Line-10 9.7 296.0 470.0 6.0 22.0 768.0 38.0 1.7 66.2 66.2 Table 17: Provided are the values of each of the parameters (as described above) measured in Barley accessions (line) under normal conditions. Growth conditions are specified in the experimental procedure section.

TABLE 18 Measured parameters of correlation IDs in additional Barley accessions under normal conditions (at vegetative stage) Corr. ID/Line 17 18 21 23 27 28 29 30 34 Line-1 0.27 21.30 39.10 46.40 2.17 16.50 9.54 69.40 46.70 Line-2 0.27 15.00 41.40 19.80 1.90 19.20 9.05 39.40 41.60 Line-3 0.25 21.80 35.20 10.80 1.25 18.30 8.25 34.90 40.00 Line-4 0.35 20.30 33.70 22.60 3.00 20.40 6.55 50.30 48.80 Line-5 0.62 27.20 34.20 30.30 15.60 17.20 10.50 60.80 34.60 Line-6 0.27 16.00 42.80 54.10 3.02 19.10 8.83 79.10 48.60 Line-7 0.35 24.00 37.00 37.00 2.58 20.30 7.38 62.70 49.20 Line-8 0.32 13.50 36.90 42.00 1.75 21.70 10.40 60.00 29.00 Line-9 0.23 21.50 35.00 35.40 2.18 16.50 10.20 55.90 27.50 Line-10 0.27 15.20 36.80 38.30 1.82 16.10 10.30 59.70 38.80 Table 18. Provided are the values of each of the parameters (as described above) measured in Barley accessions (line) under normal conditions. Growth conditions are specified in the experimental procedure section.

TABLE 19 Measured parameters of correlation IDs in Barley accessions under low N conditions (at reproductive stage) Corr. ID/ Line 1 2 3 4 5 6 7 8 9 Line-1 2.24 0.25 0.89 0.35 0.40 683.40 6.65 33.24 76.40 Line-2 2.24 0.24 0.87 0.35 0.16 510.50 3.96 19.81 84.00 Line-3 2.18 0.24 0.86 0.35 1.01 1093.50 9.27 46.37 64.67 Line-4 2.05 0.23 0.80 0.37 0.79 767.60 7.65 38.25 66.20 Line-5 2.08 0.24 0.83 0.37 0.41 621.00 6.06 30.30 72.00 Line-6 2.03 0.25 0.78 0.41 0.99 1069.00 10.83 54.13 56.60 Line-7 2.25 0.24 0.90 0.35 0.67 987.75 7.94 39.69 68.00 Line-8 1.88 0.22 0.72 0.39 0.61 903.20 7.40 36.98 65.80 Line-9 2.09 0.23 0.82 0.36 0.28 581.80 4.52 22.58 82.00 Line-10 2.03 0.22 0.79 0.36 1.04 904.40 8.41 39.68 62.80 Line-11 2.02 0.24 0.80 0.37 0.12 242.40 2.00 10.84 67.40 Line-12 1.98 0.21 0.80 0.34 0.86 928.40 8.05 40.26 76.20 Line-13 1.69 0.18 0.65 0.35 0.58 984.20 7.08 35.37 91.60 Line-14 1.98 0.19 0.82 0.29 0.05 157.67 0.75 3.73 44.00 Line-15 1.89 0.17 0.77 0.29 0.08 263.25 1.14 5.68 52.75 Table 19: Provided are the values of each of the parameters (as described above) measured in Barley accessions (line) under low N conditions (at reproductive stage). Growth conditions are specified in the experimental procedure section.

TABLE 20 Measured parameters of correlation IDs in additional Barley accessions under low N conditions (at reproductive stage) Corr. ID/ Line 10 11 12 13 14 15 16 17 Line-1 118.30 6.00 69.84 38.60 44.25 89.20 82.30 1.48 Line-2 150.68 6.00 39.86 32.00 41.60 99.65 77.75 0.64 Line-3 86.28 6.00 69.40 41.50 46.67 45.79 86.69 0.84 Line-4 85.19 6.00 59.72 38.00 38.80 49.39 94.23 0.82 Line-5 120.31 6.00 60.83 34.20 34.60 74.32 89.74 1.15 Line-6 90.70 2.80 79.12 45.60 48.60 55.11 93.73 0.69 Line-7 40.58 6.00 63.50 30.00 32.40 47.29 89.49 1.26 Line-8 90.51 2.00 62.74 49.80 55.20 60.32 90.28 0.72 Line-9 92.59 2.00 50.30 71.40 50.60 88.01 91.21 1.17 Line-10 63.95 5.20 59.95 28.00 29.00 38.89 92.50 0.71 Line-11 286.63 6.00 34.92 36.00 40.00 97.71 91.73 0.38 Line-12 95.79 6.00 60.08 27.60 28.50 48.33 85.31 0.51 Line-13 34.04 6.00 55.88 23.60 27.50 62.52 2.16 Line-14 121.27 4.67 16.93 54.67 26.00 57.97 0.67 Line-15 206.75 4.00 21.70 48.00 72.78 0.40 Table 20. Provided are the values of each of the parameters (as described above) measured in Barley accessions (line) under low N conditions (at reproductive stage). Growth conditions are specified in the experimental procedure section.

TABLE 21 Measured parameters of correlation IDs Barley accessions under accessions under normal conditions (at reproductive stage) Corr. ID/ Line 1 2 3 4 5 6 7 8 9 Line-1 2.29 0.25 0.90 0.35 0.39 153.20 1.34 6.68 75.20 Line-2 2.33 0.25 0.92 0.35 0.42 164.60 1.46 7.31 82.00 Line-3 2.28 0.26 0.93 0.35 1.25 230.20 1.95 9.76 41.00 Line-4 2.08 0.24 0.82 0.36 0.69 125.00 1.26 6.29 44.60 Line-5 2.13 0.25 0.86 0.37 0.43 100.00 1.13 5.67 65.80 Line-6 1.96 0.23 0.76 0.38 0.87 222.60 1.95 9.74 47.80 Line-7 2.09 0.23 0.83 0.35 0.77 159.40 1.28 6.40 60.60 Line-8 1.88 0.21 0.74 0.36 0.53 219.20 1.47 7.35 53.80 Line-9 2.19 0.24 0.86 0.35 0.34 133.60 0.98 5.06 59.40 Line-10 1.88 0.20 0.73 0.35 0.87 134.40 1.16 5.43 56.40 Line-11 2.03 0.22 0.81 0.35 0.15 88.25 0.92 4.62 61.40 Line-12 2.11 0.23 0.85 0.35 0.58 174.25 1.34 6.67 65.60 Line-13 1.77 0.19 0.68 0.36 0.76 201.80 1.57 7.83 81.80 Line-14 2.00 0.19 0.81 0.30 0.05 86.67 0.29 1.44 69.00 Line-15 1.90 0.17 0.79 0.28 0.07 61.60 0.22 1.12 57.40 Table 21: Provided are the values of each of the parameters (as described above) measured in Barley accessions (line) under normal conditions (at reproductive stage). Growth conditions are specified in the experimental procedure section.

TABLE 22 Measured parameters of correlation IDs in additional Barley accessions under accessions under normal conditions (at reproductive stage) Corr. ID/ Line 10 11 12 13 14 15 16 17 Line-1 39.91 6.00 11.40 10.80 16.00 17.42 68.69 0.69 Line-2 26.24 6.00 13.44 9.00 14.60 17.76 61.85 1.08 Line-3 17.31 6.00 13.74 12.20 16.20 8.25 76.94 0.77 Line-4 32.91 6.00 10.62 8.40 14.00 7.28 59.63 0.38 Line-5 33.87 6.00 11.34 7.80 12.50 13.25 65.63 0.83 Line-6 83.84 2.00 15.06 14.50 18.80 11.32 79.84 0.42 Line-7 29.65 6.00 11.64 8.40 11.60 8.95 73.85 0.29 Line-8 37.21 2.00 12.18 15.00 21.20 14.18 71.01 0.57 Line-9 44.38 2.00 11.64 25.00 23.50 15.68 95.83 0.60 Line-10 14.46 5.20 8.76 7.00 11.00 6.42 64.87 0.55 Line-11 41.54 6.00 9.15 11.60 16.00 55.92 68.75 2.88 Line-12 23.75 6.00 12.42 7.60 10.75 11.54 74.24 1.36 Line-13 20.87 6.00 12.18 5.40 6.75 10.88 81.40 0.89 Line-14 49.69 2.00 5.68 16.40 35.00 58.92 37.14 2.49 Line-15 54.02 2.00 5.04 12.00 17.05 0.40 Table 22. Provided are the values of each of the parameters (as described above) measured in Barley accessions (line) under normal conditions (at reproductive stage). Growth conditions are specified in the experimental procedure section.

TABLE 23 Additional measured parameters of correlation IDs in Barley accessions under Drought conditions Corr. ID/ Line 1 2 3 4 5 6 7 8 9 10 11 Line -1 41.3 3 6.15 0.22 1.90 170. 00 5.55 0.47 75.0 0 0.27 0.07 46.0 0 Line -2 33.5 7 5.05 0.21 1.52 267. 50 9.80 0.66 71.0 0 0.86 0.10 52.8 0 Line -3 36.5 7 3.20 1.17 111. 00 3.55 0.53 65.0 0 0.73 0.06 35.0 0 Line -4 40.5 0 3.28 1.95 205. 33 7.20 0.69 0.88 0.07 38.0 0 Line -5 45.0 7 4.76 1.90 153. 60 5.28 0.53 66.7 5 0.40 0.16 45.2 0 Line -6 39.7 3 3.55 0.17 1.22 252. 50 7.75 0.69 90.0 0 0.94 0.06 48.0 0 Line -7 38.3 3 4.52 1.75 288. 40 9.92 0.69 90.0 0 0.70 0.10 37.6 7 Line -8 36.1 7 3.38 1.58 274. 50 10.2 5 0.75 0.71 0.05 41.2 0 Line -9 42.1 3 5.67 0.25 1.88 348. 50 8.50 0.60 90.0 0 0.77 0.10 40.8 0 Line -10 31.7 7 3.31 1.73 358. 00 14.0 3 0.81 0.80 0.06 49.8 6 Line -11 33.4 7 2.65 1.00 521. 39 17.5 2 0.87 0.92 0.06 43.0 0 Line -12 42.3 7 5.12 0.13 0.90 71.5 0 2.05 0.29 90.0 0 0.39 0.18 47.4 0 Line -13 42.2 7 6.86 0.19 0.90 160. 13 5.38 0.44 81.6 0 0.88 0.15 64.8 0 Line -14 36.7 7 3.11 0.22 1.43 376. 67 11.0 0 0.78 90.0 0 -0.13 0.02 52.6 0 Line -15 40.6 3 3.74 0.83 105. 00 2.56 0.41 0.20 0.44 32.0 0 Table 23: Provided are the values of each of the parameters (as described above) measured in Barley accessions (line) under drought growth conditions. Growth conditions are specified in the experimental procedure section.

TABLE 24 Additional measured parameters of correlation IDs in additional Barley accessions under Drought conditions Corr. ID/ Line 12 13 14 15 16 17 18 19 20 21 22 22 23 Line-1 0.01 80.60 77.52 2.07 21.67 0.09 16.70 4.20 17.72 8.64 11.68 11.68 8.33 Line-2 0.01 53.40 60.19 1.48 20.33 0.12 16.85 4.36 24.24 9.07 9.04 9.04 8.67 Line-3 0.01 55.87 27.13 1.12 22.00 0.00 13.27 7.60 18.20 7.83 10.92 10.92 7.33 Line-4 0.01 18.62 1.87 24.00 0.01 13.55 8.44 18.00 7.32 10.16 10.16 7.67 Line-5 0.03 43.22 117.42 1.67 20.67 0.04 14.19 4.92 19.50 8.74 10.32 10. 32 6.67 Line-6 0.02 69.78 70.72 1.68 18.33 - 0.07 15.64 3.43 15.00 7.62 8.78 8.78 6.67 Line-7 0.01 45.49 37.34 1.62 21.00 0.01 15.66 6.90 23.40 6.98 13.00 13.00 7.67 Line-8 0.01 76.51 25.56 0.85 20.33 0.00 17.49 5.80 28.16 8.05 7.44 7.44 6.67 Line-9 0.01 87.41 66.18 1.45 21.67 - 0.06 16.00 8.55 21.96 6.06 13.92 13.92 6.00 Line-10 0.01 22.13 1.38 19.67 0.04 18.31 9.67 33.03 6.73 11.00 11.00 8.67 Line-11 0.02 41.12 0.82 16.67 0.05 17.42 5.42 34.80 9.55 6.78 6.78 7.67 Line-12 0.02 58.32 116.95 0.58 17.00 0.00 14.23 3.05 11.73 7.84 8.45 8.45 6.33 Line-13 0.01 80.58 84.10 0.63 15.17 - 0.07 14.81 4.07 18.78 7.81 9.15 9.15 7.00 Line-14 0.01 73.09 37.46 1.07 27.00 0.03 16.54 3.72 21.00 8.35 5.12 5.12 7.00 Line-15 0.03 98.86 0.70 15.00 - 0.06 12.72 3.21 9.88 5.47 16.13 16.13 6.67 Table 24. Provided are the values of each of the parameters (as described above) measured in Barley accessions (line) under drought growth conditions. Growth conditions are specified in the experimental procedure section.

TABLE 25 Correlation between the expression level of selected genes of some embodiments of the invention in various tissues and the phenotypic performance under low nitrogen and normal conditions (at vegetative stage) across Barley accessions Gene Name R P value Exp. set Cor. Set ID Gene Name R P value Exp. set Cor. Set ID LNU749 0.76 1.75E-02 1 15 LNU750 0.73 2.45E-02 2 27 LNU750 0.77 1.54E-02 2 17 LNU750 0.87 2.60E-03 3 35 LNU751 0.89 1.30E-03 1 15 LNU751 0.98 2.69E- 2 27 06 LNU751 0.93 2.74E-04 2 17 LNU751 0.76 1.73E-02 3 15 LNU752 0.72 2.74E-02 1 15 LNU752 0.92 5.34E-04 2 27 LNU752 0.86 2.91E-03 2 17 LNU753 0.84 4.60E-03 3 31 LNU753 0.74 2.15E-02 3 19 LNU754 0.85 3.73E-03 1 19 LNU754 0.78 1.29E-02 1 38 LNU754 0.84 5.09E-03 2 21 LNU754 0.71 3.26E-02 3 31 LNU754 0.86 3.31E-03 3 19 LNU754 0.80 8.98E-03 3 3 LNU754 0.86 3.10E-03 3 38 LNU756 0.94 4.00E-04 4 18 LNU756 0.72 4.47E-02 4 27 LNU756 0.74 3.76E-02 4 17 LNU756 0.70 2.33E-02 5 35 LNU756 0.87 9.76E-04 5 8 LNU756 0.70 2.33E-02 5 38 LNU756 0.74 1.40E-02 5 6 LNU756 0.78 1.34E-02 3 31 LNU756 0.72 2.94E-02 3 38 LNU757 0.70 5.28E-02 6 28 LNU757 0.77 9.44E-03 5 6 LNU757 0.88 1.66E-03 3 20 LNU758 0.79 2.06E-02 4 14 LNU758 0.86 1.27E-03 5 20 LNU758 0.77 1.60E-02 3 24 LNU759 0.80 8.91E-03 3 3 LNU759 0.72 2.87E-02 3 8 LNU760 0.73 3.85E-02 4 18 LNU760 0.74 2.15E-02 3 19 LNU760 0.79 1.07E-02 3 3 LNU760 0.85 4.06E-03 3 22 LNU760 0.73 2.57E-02 3 38 LNU760 0.70 3.50E-02 3 6 LNU761 0.73 4.00E-02 6 10 LNU761 0.81 1.47E-02 6 27 LNU761 0.90 2.64E-03 6 13 LNU761 0.74 2.34E-02 1 15 LNU761 0.83 1.07E-02 4 14 LNU761 0.83 6.15E-03 2 27 LNU761 0.76 1.68E-02 2 17 LNU761 0.86 3.06E-03 3 31 LNU761 0.73 2.49E-02 3 19 LNU762 0.71 4.71E-02 6 27 LNU762 0.84 9.31E-03 6 13 LNU762 0.84 4.92E-03 1 7 LNU762 0.76 1.68E-02 1 37 LNU763 0.81 1.58E-02 6 5 LNU763 0.73 2.70E-02 2 18 LNU763 0.74 2.30E-02 2 27 LNU763 0.74 2.25E-02 2 17 LNU764 0.73 3.83E-02 4 18 LNU764 0.77 9.51E-03 5 26 LNU764 0.77 8.83E-03 5 7 LNU764 0.75 1.26E-02 5 25 LNU764 0.74 1.50E-02 5 33 LNU764 0.76 1.85E-02 3 7 LNU764 0.76 1.68E-02 3 36 LNU764 0.80 9.88E-03 3 16 LNU766 0.71 4.88E-02 6 27 LNU766 0.77 2.65E-02 6 13 LNU766 0.71 3.21E-02 1 8 LNU766 0.87 2.11E-03 1 20 LNU766 0.73 4.02E-02 4 14 LNU766 0.78 7.63E-03 5 19 LNU766 0.83 2.85E-03 5 3 LNU766 0.77 9.25E-03 5 8 LNU766 0.83 6.19E-03 2 21 LNU766 0.71 3.08E-02 3 15 LNU767 0.76 1.02E-02 5 31 LNU767 0.77 1.54E-02 3 31 LNU768 0.84 8.81E-03 6 13 LNU768 0.77 1.43E-02 1 35 LNU768 0.72 2.93E-02 1 6 LNU768 0.74 3.42E-02 4 10 LNU768 0.85 3.32E-03 3 31 LNU769 0.74 2.19E-02 1 24 LNU769 0.77 9.46E-03 5 20 LNU769 0.72 2.94E-02 2 11 LNU770 0.79 6.40E-03 5 19 LNU770 0.77 9.80E-03 5 35 LNU770 0.94 4.58E-05 5 38 LNU770 0.81 4.44E-03 5 6 LNU770 0.73 2.54E-02 3 19 LNU770 0.78 1.29E-02 3 3 LNU770 0.83 6.19E-03 3 38 LNU770 0.72 2.94E-02 3 6 LNU771 0.74 3.66E-02 4 10 LNU771 0.90 2.59E-03 4 18 LNU771 0.76 1.64E-02 2 29 LNU772 0.72 4.44E-02 6 5 LNU772 0.73 4.12E-02 4 34 LNU772 0.70 5.24E-02 4 18 LNU772 0.77 1.60E-02 2 18 LNU773 0.78 2.35E-02 6 12 LNU773 0.75 3.21E-02 6 27 LNU773 0.72 3.00E-02 1 20 LNU773 0.88 7.99E-04 5 8 LNU773 0.82 7.06E-03 3 31 LNU773 0.93 3.04E-04 3 19 LNU773 0.84 4.98E-03 3 3 LNU773 0.94 2.08E-04 3 38 LNU773 0.82 6.35E-03 3 6 LNU774 0.92 1.27E-03 6 5 LNU774 0.83 5.80E-03 1 31 LNU774 0.73 2.53E-02 1 19 LNU774 0.75 1.97E-02 1 38 LNU774 0.73 3.92E-02 4 1 LNU774 0.80 1.80E-02 4 27 LNU774 0.80 1.70E-02 4 17 LNU774 0.84 4.74E-03 2 18 LNU774 0.85 3.61E-03 2 27 LNU774 0.86 2.84E-03 2 17 LNU774 0.93 3.07E-04 3 31 LNU774 0.84 5.09E-03 3 19 LNU774 0.74 2.28E-02 3 35 LNU774 0.89 1.46E-03 3 38 LNU774 0.77 1.45E-02 3 6 LNU775 0.72 4.43E-02 6 21 LNU775 0.73 4.07E-02 6 27 LNU775 0.76 2.95E-02 6 13 LNU775 0.70 3.53E-02 1 24 LNU775 0.73 3.80E-02 4 2 LNU775 0.78 1.28E-02 3 31 LNU775 0.71 3.36E-02 3 38 LNU776 0.82 1.33E-02 4 28 LNU776 0.89 2.89E-03 4 13 LNU776 0.80 9.89E-03 3 31 LNU776 0.73 2.67E-02 3 19 LNU776 0.79 1.15E-02 3 35 LNU776 0.83 5.87E-03 3 38 LNU776 0.88 1.76E-03 3 6 LNU776 0.79 1.14E-02 3 16 LNU777 0.94 4.33E-04 6 17 LNU777 0.87 2.53E-03 1 19 LNU777 0.96 4.74E-05 1 38 LNU777 0.79 1.16E-02 1 6 LNU777 0.83 5.49E-03 3 31 LNU777 0.86 3.12E-03 3 19 LNU777 0.80 9.73E-03 3 38 LNU778 0.79 1.94E-02 6 13 LNU778 0.87 4.98E-03 6 14 LNU778 0.73 1.74E-02 5 25 LNU778 0.70 2.30E-02 5 33 LNU778 0.82 7.02E-03 2 2 LNU778 0.74 2.19E-02 3 3 LNU778 0.79 1.12E-02 3 38 LNU778 0.82 7.05E-03 3 6 LNU779 0.77 1.61E-02 3 19 LNU779 0.91 7.64E-04 3 3 LNU779 0.74 2.40E-02 3 8 LNU779 0.82 7.27E-03 3 38 LNU779 0.73 2.55E-02 3 6 LNU780 0.74 3.59E-02 4 1 LNU780 0.73 1.56E-02 5 8 LNU780 0.77 8.82E-03 5 38 LNU780 0.76 1.80E-02 2 27 LNU780 0.75 2.06E-02 2 17 LNU780 0.91 6.27E-04 3 31 LNU780 0.86 2.62E-03 3 19 LNU780 0.82 7.00E-03 3 38 LNU781 0.73 4.00E-02 6 17 LNU781 0.74 2.31E-02 1 31 LNU781 0.70 2.29E-02 5 19 LNU781 0.83 3.24E-03 5 38 LNU781 0.88 1.93E-03 2 27 LNU781 0.89 1.49E-03 2 17 LNU781 0.73 2.64E-02 3 15 LNU782 0.79 2.01E-02 4 34 LNU782 0.72 4.27E-02 4 21 LNU782 0.71 5.05E-02 4 13 LNU783 0.79 1.92E-02 6 13 LNU783 0.73 2.48E-02 3 7 LNU783 0.74 2.19E-02 3 36 LNU784 0.76 2.89E-02 6 5 LNU784 0.96 5.76E-05 2 27 LNU784 0.92 4.48E-04 2 17 LNU784 0.78 1.26E-02 3 35 LNU785 0.73 3.88E-02 6 34 LNU785 0.82 1.24E-02 6 12 LNU785 0.85 7.06E-03 6 10 LNU785 0.73 4.02E-02 6 4 LNU785 0.78 2.36E-02 6 27 LNU785 0.80 1.77E-02 6 13 LNU785 0.81 8.50E-03 1 20 LNU785 0.70 2.42E-02 5 7 LNU785 0.76 1.15E-02 5 24 LNU785 0.80 5.77E-03 5 25 LNU785 0.81 4.47E-03 5 33 LNU785 0.94 1.75E-04 2 27 LNU785 0.90 8.48E-04 2 17 Table 25. Provided are the correlations (R) between the expression levels yield improving genes and their homologs in various tissues [Expression (Exp) sets] and the phenotypic performance [yield, biomass, growth rate and/or vigor components (Correlation vector (Cor))] under normal and low nitrogen conditions across barley varieties. P = p value.

TABLE 26 Correlation between the expression level of selected genes of some embodiments of the invention in various tissues and the phenotypic performance under low nitrogen and normal conditions (at reproductive stage) across Barley accessions Gene Name R P value Exp. set Cor. Set ID Gene Name R P value Exp. set Cor. Set ID LNU749 0.701 2.39E-02 3 4 LNU749 0.744 1.36E-02 3 10 LNU749 0.715 2.00E-02 3 12 LNU749 0.730 1.66E-02 6 15 LNU749 0.801 5.32E-03 6 10 LNU749 0.713 2.05E-02 5 14 LNU749 0.736 1.52E-02 4 9 LNU750 0.707 2.22E-02 1 9 LNU751 0.854 1.67E-03 3 13 LNU753 0.713 2.06E-02 2 6 LNU753 0.781 7.69E-03 2 7 LNU753 0.814 4.12E-03 2 8 LNU753 0.752 1.22E-02 2 12 LNU753 0.793 6.18E-03 3 17 LNU754 0.707 2.23E-02 5 2 LNU754 0.708 2.21E-02 5 1 LNU754 0.734 1.56E-02 5 3 LNU756 0.759 1.10E-02 4 17 LNU757 0.886 6.40E-04 2 14 LNU757 0.837 2.52E-03 2 13 LNU757 0.761 1.05E-02 6 10 LNU757 0.747 1.29E-02 1 13 LNU758 0.765 9.99E-03 6 15 LNU758 0.746 1.32E-02 1 9 LNU759 0.720 1.88E-02 2 5 LNU759 0.739 1.45E-02 2 7 LNU759 0.715 2.01E-02 2 8 LNU760 0.732 1.61E-02 2 13 LNU761 0.784 7.28E-03 3 17 LNU761 0.759 1.08E-02 6 6 LNU761 0.720 1.89E-02 6 5 LNU761 0.737 1.49E-02 6 7 LNU761 0.731 1.62E-02 6 8 LNU761 0.745 1.33E-02 5 17 LNU762 0.745 1.34E-02 5 13 LNU763 0.721 1.87E-02 2 13 LNU763 0.838 2.46E-03 6 15 LNU763 0.797 5.78E-03 5 14 LNU763 0.719 1.91E-02 4 15 LNU764 0.729 1.68E-02 3 13 LNU764 0.719 1.91E-02 3 16 LNU764 0.746 1.32E-02 5 4 LNU764 0.709 2.17E- 5 10 LNU764 0.762 1.03E- 1 9 - - 02 - - - - 02 - - LNU766 0.766 9.84E-03 2 9 LNU766 0.718 1.94E-02 3 9 LNU766 0.763 1.03E-02 1 17 LNU766 0.782 7.49E-03 1 9 LNU767 0.822 3.53E-03 5 17 LNU768 0.728 1.70E-02 5 14 LNU769 0.705 2.28E-02 2 1 LNU769 0.713 2.07E-02 2 3 LNU769 0.819 3.79E-03 3 4 LNU769 0.820 3.67E-03 3 10 LNU769 0.723 1.81E-02 1 16 LNU770 0.732 1.62E-02 2 13 LNU770 0.848 1.93E-03 3 13 LNU770 0.772 8.95E-03 3 16 LNU771 0.714 2.04E-02 6 11 LNU771 0.724 1.80E-02 5 4 LNU771 0.855 1.61E-03 1 5 LNU772 0.718 1.93E-02 3 2 LNU772 0.789 6.71E-03 6 15 LNU773 0.801 5.36E-03 3 14 LNU773 0.797 5.81E-03 3 13 LNU773 0.860 1.43E-03 5 4 LNU773 0.836 2.56E-03 1 4 LNU774 0.765 9.96E-03 3 4 LNU774 0.710 3.21E-02 6 16 LNU774 0.848 1.94E-03 1 4 LNU774 0.722 1.84E-02 1 10 LNU775 0.842 2.23E-03 5 16 LNU775 0.753 1.19E-02 4 5 LNU776 0.804 5.07E-03 2 4 LNU776 0.786 7.03E-03 2 14 LNU776 0.717 1.97E-02 2 13 LNU776 0.708 2.21E-02 5 17 LNU777 0.834 2.67E-03 2 13 LNU777 0.769 9.38E-03 4 4 LNU778 0.709 2.16E-02 3 7 LNU778 0.805 4.95E-03 3 10 LNU778 0.714 2.04E-02 3 8 LNU778 0.712 2.10E-02 3 12 LNU778 0.750 1.24E-02 6 2 LNU778 0.759 1.09E-02 4 2 LNU778 0.803 5.15E-03 4 1 LNU778 0.803 5.20E-03 4 3 LNU779 0.856 1.58E-03 3 14 LNU779 0.873 9.80E-04 3 13 LNU779 0.772 8.88E-03 5 10 LNU781 0.715 2.01E-02 3 15 LNU782 0.733 1.58E-02 3 13 LNU782 0.776 8.33E-03 5 4 LNU782 0.730 1.66E-02 4 17 LNU782 0.784 7.30E-03 4 9 LNU782 0.806 4.87E-03 1 4 LNU782 0.858 1.48E-03 1 10 LNU783 0.734 1.57E-02 2 6 LNU783 0.829 3.01E-03 2 7 LNU783 0.848 1.93E-03 2 8 LNU783 0.800 5.45E-03 2 12 LNU783 0.758 1.11E-02 3 4 LNU783 0.734 1.57E-02 3 16 LNU783 0.724 1.79E-02 5 15 LNU783 0.885 6.72E-04 1 16 LNU784 0.801 5.32E-03 3 14 LNU784 0.763 1.03E-02 3 13 LNU784 0.846 2.03E-03 5 10 LNU784 0.744 1.37E-02 4 15 LNU784 0.713 2.07E-02 4 10 LNU784 0.779 7.88E-03 1 4 LNU784 0.832 2.86E-03 1 10 LNU785 0.740 1.43E-02 5 14 - - - - - Table 26. Provided are the correlations (R) between the expression levels yield improving genes and their homologs in various tissues [Expression (Exp) sets] and the phenotypic performance [yield, biomass, growth rate and/or vigor components (Correlation vector (Cor))] under normal and low nitrogen conditions across barley varieties. P = p value.

TABLE 27 Correlation between the expression level of selected genes of some embodiments of the invention in various tissues and the phenotypic performance under drought conditions across Barley accessions Gene Name R P value Exp. set Cor. Set ID Gene Name R P value Exp. set Cor. Set ID LNU749 0.859 2.82E-02 1 18 LNU749 0.780 6.74E-02 1 11 LNU749 0.818 4.66E-02 1 20 LNU749 0.798 1.76E-02 3 10 LNU749 0.759 2.90E-02 3 16 LNU749 0.727 4.12E-02 3 11 LNU749 0.735 3.79E-02 5 22 LNU749 0.858 6.39E-03 5 4 LNU749 0.763 2.77E-02 5 15 LNU749 0.739 2.30E-02 4 19 LNU749 0.844 1.69E-02 4 13 LNU749 0.730 2.56E-02 4 12 LNU749 0.717 2.96E-02 4 14 LNU750 0.855 2.99E-02 1 12 LNU750 0.820 4.59E-02 1 2 LNU750 0.872 2.37E-02 1 14 LNU750 0.912 4.21E-03 3 13 LNU750 0.816 1.35E-02 3 14 LNU750 0.787 2.05E-02 3 1 LNU750 0.700 7.97E-02 2 6 LNU751 0.754 8.34E-02 1 2 LNU751 0.762 7.82E-02 1 14 LNU751 0.743 9.09E-02 1 1 LNU751 0.778 2.29E-02 3 10 LNU751 0.887 3.28E-03 3 11 LNU751 0.737 5.88E-02 2 1 LNU751 0.700 3.56E-02 4 12 LNU753 0.734 3.82E-02 3 21 LNU753 0.843 1.73E-02 2 21 LNU753 0.819 2.41E-02 2 12 LNU753 0.777 2.33E-02 5 10 LNU753 0.840 9.13E-03 5 11 LNU753 0.749 3.24E-02 5 2 LNU754 0.743 9.03E-02 1 21 LNU754 0.711 4.80E-02 3 12 LNU754 0.849 1.57E-02 6 13 LNU754 0.747 2.08E-02 6 2 LNU754 0.706 3.36E-02 6 14 LNU754 0.970 6.62E-05 5 14 LNU756 0.784 6.48E-02 1 19 LNU756 0.797 5.77E-02 1 23 LNU756 0.945 3.89E-04 3 19 LNU756 0.767 2.64E-02 3 22 LNU756 0.830 5.66E-03 6 16 LNU756 0.825 2.23E-02 2 5 LNU756 0.835 1.93E-02 2 6 LNU756 0.744 5.51E-02 2 20 LNU756 0.883 3.69E-03 5 19 LNU756 0.886 1.45E-03 4 19 LNU756 0.818 7.03E-03 4 22 LNU756 0.758 1.79E-02 4 4 LNU757 0.713 1.12E-01 1 10 LNU757 0.857 2.94E-02 1 23 LNU757 0.712 1.13E-01 1 6 LNU757 0.798 5.73E-02 1 17 LNU757 0.759 7.99E-02 1 20 LNU757 0.754 5.01E-02 2 11 LNU757 0.882 3.71E-03 5 19 LNU758 0.842 8.67E-03 3 12 LNU758 0.777 3.98E-02 2 16 LNU758 0.768 1.56E-02 4 14 LNU759 0.708 1.15E-01 1 16 LNU759 0.855 6.85E-03 3 21 LNU761 0.712 1.13E-01 1 18 LNU761 0.804 1.62E-02 3 11 LNU761 0.765 2.71E-02 5 17 LNU762 0.774 7.09E-02 1 7 LNU762 0.933 6.54E-03 1 18 LNU762 0.755 8.26E-02 1 5 LNU762 0.922 8.91E-03 1 6 LNU762 0.914 1.08E-02 1 11 LNU762 0.977 7.65E-04 1 20 LNU762 0.934 6.70E-04 3 7 LNU762 0.865 5.58E-03 3 5 LNU762 0.840 9.05E-03 3 6 LNU762 0.752 3.14E-02 5 4 LNU762 0.731 3.94E-02 5 15 LNU764 0.811 1.46E-02 3 22 LNU764 0.838 9.40E-03 3 4 LNU764 0.700 5.30E-02 3 15 LNU764 0.812 7.89E-03 6 5 LNU764 0.772 1.47E-02 6 6 LNU764 0.798 3.13E-02 6 8 LNU764 0.824 2.26E-02 2 10 LNU764 0.794 3.31E-02 2 22 LNU764 0.871 1.08E-02 2 2 LNU764 0.904 5.15E-03 2 1 LNU764 0.724 1.04E-01 5 13 LNU764 0.858 6.46E-03 5 11 LNU764 0.869 1.11E-02 4 13 LNU764 0.725 2.72E-02 4 14 LNU764 0.852 1.50E-02 4 8 LNU766 0.845 3.41E-02 1 21 LNU766 0.797 1.79E-02 3 22 LNU766 0.838 9.35E-03 3 7 LNU766 0.731 3.95E-02 3 16 LNU766 0.787 2.03E-02 3 18 LNU766 0.897 2.51E-03 3 5 LNU766 0.939 5.37E-04 3 6 LNU766 0.714 4.66E-02 3 4 LNU766 0.832 1.04E-02 3 20 LNU766 0.833 5.27E-03 4 19 LNU766 0.864 2.69E-03 4 22 LNU766 0.867 2.49E-03 4 4 LNU767 0.782 6.60E-02 1 23 LNU767 0.754 8.34E-02 1 11 LNU767 0.764 7.73E-02 1 20 LNU767 0.920 1.20E-03 3 17 LNU767 0.737 2.34E-02 6 1 LNU767 0.740 5.72E-02 2 23 LNU767 0.876 9.67E-03 2 11 LNU768 0.769 7.37E-02 1 12 LNU768 0.774 2.43E-02 3 7 LNU768 0.894 6.70E-03 2 16 LNU768 0.766 4.48E-02 2 1 LNU768 0.787 1.19E-02 4 14 LNU770 0.854 3.03E-02 1 23 LNU770 0.849 7.68E-03 3 19 LNU770 0.861 6.00E-03 3 22 LNU770 0.730 6.26E-02 6 8 LNU770 0.728 6.37E-02 2 7 LNU770 0.709 7.46E-02 2 5 LNU770 0.769 4.31E-02 2 6 LNU770 0.817 2.49E-02 2 9 LNU770 0.708 7.53E-02 2 20 LNU770 0.752 1.95E-02 4 19 LNU771 0.735 9.61E-02 1 10 LNU771 0.860 1.30E-02 3 13 LNU771 0.806 1.58E-02 3 2 LNU771 0.852 7.21E-03 3 14 LNU771 0.779 2.26E-02 3 1 LNU771 0.829 2.12E-02 3 8 LNU771 0.725 2.70E-02 6 20 LNU771 0.830 2.08E-02 2 21 LNU771 0.766 4.46E-02 2 5 LNU771 0.749 5.28E-02 2 6 LNU771 0.858 1.34E-02 2 11 LNU771 0.822 2.32E-02 2 12 LNU771 0.958 2.60E-03 5 13 LNU771 0.838 9.44E-03 5 14 LNU771 0.921 1.18E-03 5 1 LNU771 0.710 3.22E-02 4 7 LNU771 0.701 3.55E-02 4 5 LNU771 0.742 2.20E-02 4 6 LNU771 0.745 2.13E-02 4 17 LNU771 0.753 1.91E-02 4 20 LNU772 0.738 9.40E-02 1 18 LNU772 0.749 3.25E-02 3 2 LNU772 0.708 3.29E-02 6 22 LNU772 0.848 3.90E-03 6 4 LNU772 0.754 3.05E-02 5 10 LNU772 0.811 1.47E-02 5 2 LNU772 0.790 1.14E-02 4 2 LNU773 0.772 2.49E-02 3 22 LNU773 0.802 1.66E-02 3 18 LNU773 0.720 6.80E-02 3 8 LNU773 0.899 5.87E-03 6 8 LNU773 0.796 3.24E-02 2 16 LNU774 0.713 1.12E-01 1 22 LNU774 0.705 1.18E-01 1 2 LNU774 0.739 2.28E-02 6 12 LNU774 0.791 1.95E-02 5 17 LNU775 0.747 3.30E-02 3 21 LNU775 0.800 1.70E-02 3 11 LNU775 0.729 4.03E-02 3 14 LNU775 0.725 6.51E-02 6 8 LNU775 0.822 2.33E-02 2 16 LNU775 0.718 4.50E-02 5 9 LNU775 0.731 3.92E-02 5 12 LNU775 0.802 9.27E-03 4 21 LNU776 0.811 5.04E-02 1 1 LNU776 0.808 1.52E-02 3 10 LNU776 0.777 2.33E-02 3 2 LNU776 0.778 3.94E-02 2 2 LNU776 0.734 6.04E-02 2 14 LNU776 0.786 3.61E-02 2 1 LNU776 0.904 8.21E-04 4 10 LNU776 0.741 2.25E-02 4 2 LNU777 0.947 3.54E-04 3 10 LNU777 0.892 2.88E-03 3 2 LNU778 0.712 4.75E-02 3 23 LNU778 0.709 3.24E-02 6 7 LNU778 0.789 1.16E-02 6 5 LNU778 0.805 8.79E-03 6 6 LNU778 0.784 3.71E-02 2 21 LNU778 0.975 9.07E-04 5 8 LNU778 0.703 3.45E-02 4 19 LNU778 0.748 2.04E-02 4 22 LNU780 0.778 6.87E-02 1 23 LNU780 0.785 3.65E-02 6 8 LNU781 0.807 5.20E-02 1 18 LNU781 0.917 1.00E-02 1 5 LNU781 0.837 3.79E-02 1 6 LNU781 0.880 2.06E-02 1 11 LNU781 0.765 7.63E-02 1 20 LNU781 0.910 1.68E-03 3 22 LNU782 0.818 4.67E-02 1 15 LNU782 0.889 3.18E-03 3 11 LNU782 0.715 3.04E-02 6 7 LNU782 0.886 7.89E-03 2 12 LNU782 0.908 4.65E-03 2 14 LNU782 0.721 4.37E-02 5 9 LNU782 0.856 3.21E-03 4 11 LNU782 0.747 2.06E-02 4 14 LNU783 0.762 2.81E-02 3 2 LNU783 0.735 2.40E-02 6 10 LNU783 0.820 2.39E-02 2 21 LNU784 0.782 6.61E-02 1 18 LNU784 0.897 1.54E-02 1 5 LNU784 0.790 6.13E-02 1 6 LNU784 0.746 8.83E-02 1 11 LNU784 0.724 1.04E-01 1 20 LNU784 0.701 5.29E-02 3 22 LNU784 0.776 4.02E-02 3 8 LNU784 0.748 2.04E-02 6 5 LNU784 0.885 8.15E-03 6 8 LNU784 0.710 3.20E-02 4 17 LNU785 0.726 1.03E-01 1 23 LNU785 0.706 1.17E-01 1 18 LNU785 0.779 6.77E-02 1 6 LNU785 0.845 3.43E-02 1 11 LNU785 0.846 3.39E-02 1 20 LNU785 0.708 4.96E-02 3 20 LNU785 0.708 7.53E-02 2 23 LNU785 0.738 5.81E-02 2 17 LNU785 0.769 4.31E-02 4 13 LNU785 0.813 7.74E-03 4 1 LNU834 0.826 4.28E-02 1 10 LNU834 0.866 2.56E-02 1 22 LNU834 0.767 7.48E-02 1 2 LNU834 0.765 7.64E-02 1 14 LNU834 0.824 6.35E-03 6 11 LNU834 0.782 3.78E-02 2 21 LNU834 0.810 2.71E-02 2 5 LNU834 0.792 3.36E-02 2 6 LNU834 0.838 1.87E-02 2 12 LNU834 0.708 7.50E-02 2 20 LNU839 0.826 4.28E-02 1 10 LNU839 0.866 2.56E-02 1 22 LNU839 0.767 7.48E-02 1 2 LNU839 0.765 7.64E-02 1 14 LNU839 0.824 6.35E-03 6 11 LNU839 0.782 3.78E-02 2 21 LNU839 0.810 2.71E-02 2 5 LNU839 0.792 3.36E-02 2 6 LNU839 0.838 1.87E-02 2 12 LNU839 0.708 7.50E-02 2 20 Table 27. Provided are the correlations (R) between the expression levels yield improving genes and their homologs in various tissues [Expression (Exp) sets] and the phenotypic performance [yield, biomass, growth rate and/or vigor components (Correlation vector (Cor))] under drought conditions across barley varieties. P = p value.

Example 5 Production of Sorghum Transcriptom and High Throughput Correlation Analysis With Yield, Nue, and Abst Related Parameters Measured in Fields Using 44K Sorguhm Oligonucleotide Micro-Arrays

In order to produce a high throughput correlation analysis between plant phenotype and gene expression level, the present inventors utilized a sorghum oligonucleotide micro-array, produced by Agilent Technologies [chem. (dot) agilent (dot) com/Scripts/PDS (dot) asp?1Page=50879]. The array oligonucleotide represents about 44,000 sorghum genes and transcripts. In order to define correlations between the levels of RNA expression with ABST, yield and NUE components or vigor related parameters, various plant characteristics of 17 different sorghum hybrids were analyzed. Among them, 10 hybrids encompassing the observed variance were selected for RNA expression analysis. The correlation between the RNA levels and the characterized parameters was analyzed using Pearson correlation test [davidmlane (dot) com/hyperstat/A34739 (dot) html].

Correlation of Sorghum Varieties Across Ecotypes Grown Under Regular Growth Conditions, Severe Drought Conditions and Low Nitrogen Conditions Experimental Procedures

17 Sorghum varieties were grown in 3 repetitive plots, in field. Briefly, the growing protocol was as follows:

  • 1. Regular growth conditions: sorghum plants were grown in the field using commercial fertilization and irrigation protocols (370 liter per meter2, fertilization of 14 units of 21% urea per entire growth period).
  • 2. Drought conditions: sorghum seeds were sown in soil and grown under normal condition until around 35 days from sowing, around stage V8 (eight green leaves are fully expanded, booting not started yet). At this point, irrigation was stopped, and severe drought stress was developed.
  • 3. Low Nitrogen fertilization conditions: sorghum plants were fertilized with 50% less amount of nitrogen in the field than the amount of nitrogen applied in the regular growth treatment. All the fertilizer was applied before flowering.
  • Analyzed Sorghum tissues - All 10 selected Sorghum hybrids were sample per each treatment. Tissues [Flag leaf, Flower meristem and Flower] from plants growing under normal conditions, severe drought stress and low nitrogen conditions were sampled and RNA was extracted as described above. Each micro-array expression information tissue type has received a Set ID as summarized in Table 28 below.

TABLE 28 Sorghum transcriptom expression sets in field experiments Expression Set Set ID Sorghum field/flag leaf/Drought 1 Sorghum field/flag leaf/Low N 2 Sorghum field/flag leaf/Normal 3 Sorghum field/flower meristem/Drought 4 Sorghum field/flower meristem/Low N 5 Sorghum field/flower meristem/Normal 6 Sorghum field/flower/Drought 7 Sorghum field/flower/Low N 8 Sorghum field/flower/Normal 9 Table 28: Provided are the sorghum transcriptom expression sets. Flag leaf = the leaf below the flower; Flower meristem = Apical meristem following panicle initiation; Flower = the flower at the anthesis day.

The following parameters were collected using digital imaging system:

  • Average Grain Area (cm2) - At the end of the growing period the grains were separated from the Plant ‘Head’. A sample of ~200 grains were weighted, photographed and images were processed using the below described image processing system. The grain area was measured from those images and was divided by the number of grains.
  • Average Grain Length (cm) - At the end of the growing period the grains were separated from the Plant ‘Head’. A sample of ~200 grains were weighted, photographed and images were processed using the below described image processing system. The sum of grain lengths (longest axis) was measured from those images and was divided by the number of grains.
  • Head Average Area (cm2) - At the end of the growing period 5 ‘Heads’ were, photographed and images were processed using the below described image processing system. The ‘Head’ area was measured from those images and was divided by the number of ‘Heads’.
  • Head Average Length (cm) - At the end of the growing period 5 ‘Heads’ were, photographed and images were processed using the below described image processing system. The ‘Head’ length (longest axis) was measured from those images and was divided by the number of ‘Heads’.

An image processing system was used, which consists of a personal desktop computer (Intel P4 3.0 GHz processor) and a public domain program - ImageJ 1.37, Java based image processing software, which was developed at the U.S. National Institutes of Health and is freely available on the internet at rsbweb (dot) nih (dot) gov/. Images were captured in resolution of 10 Mega Pixels (3888x2592 pixels) and stored in a low compression JPEG (Joint Photographic Experts Group standard) format. Next, image processing output data for seed area and seed length was saved to text files and analyzed using the JMP statistical analysis software (SAS institute).

Additional parameters were collected either by sampling 5 plants per plot or by measuring the parameter across all the plants within the plot.

Total Seed Weight per Head (gr.) - At the end of the experiment (plant ‘Heads’) heads from plots within blocks A-C were collected. 5 heads were separately threshed and grains were weighted, all additional heads were threshed together and weighted as well. The average grain weight per head was calculated by dividing the total grain weight by number of total heads per plot (based on plot). In case of 5 heads, the total grains weight of 5 heads was divided by 5.

FW Head per Plant gram - At the end of the experiment (when heads were harvested) total heads and 5 selected heads per plots within blocks A-C were collected separately. The heads (total and 5) were weighted (gr.) separately, and the average fresh weight per plant was calculated for total (FW Head/Plant gr. based on plot) and for 5 (FW Head/Plant gr. based on 5 plants) heads.

Plant height - Plants were characterized for height during growing period at 5 time points. In each measure, plants were measured for their height using a measuring tape. Height was measured from ground level to top of the longest leaf.

Plant leaf number - Plants were characterized for leaf number during growing period at 5 time points. In each measure, plants were measured for their leaf number by counting all the leaves of 3 selected plants per plot.

Relative Growth Rate - was calculated using Formulas III (above) and VIII (above).

SPAD - Chlorophyll content was determined using a Minolta SPAD 502 chlorophyll meter and measurement was performed 64 days post sowing. SPAD meter readings were done on young fully developed leaf. Three measurements per leaf were taken per plot.

Vegetative dry weight and Heads - At the end of the experiment (when inflorescence were dry) all inflorescence and vegetative material from plots within blocks A-C were collected. The biomass and heads weight of each plot was separated, measured and divided by the number of heads.

Dry weight = total weight of the vegetative portion above ground (excluding roots) after drying at 70° C. in oven for 48 hours;

Harvest Index (HI) (Sorghum)- The harvest index was calculated using Formula XVI above.

FW Heads/(FW Heads + FW Plants) - The total fresh weight of heads and their respective plant biomass was measured at the harvest day. The heads weight was divided by the sum of weights of heads and plants.

Experimental Results

17 different sorghum hybrids were grown and characterized for different parameters (Table 29). The average for each of the measured parameter was calculated using the JMP software (Tables 30-35) and a subsequent correlation analysis was performed (Table 36). Results were then integrated to the database.

TABLE 29 Sorghum correlated parameters (vectors) Correlation ID Correlated parameter with 1 Average Grain Area (cm2), Drought 2 Average Grain Area (cm2), Low N 3 Average Grain Area (cm2), Normal 4 FW - Head/Plant gr (based on plot), Drought 5 FW - Head/Plant gr (based on plot), Low N 6 FW - Head/Plant gr (based on plot), Normal 7 FW - Head/Plant gr (based on 5 plants), Low N 8 FW - Head/Plant gr (based on 5 plants), Normal 9 FW Heads / (FW Heads+ FW Plants)(all plot), Drought 10 FW Heads / (FW Heads+ FW Plants)(all plot), Low N 11 FW Heads / (FW Heads+ FW Plants)(all plot), Normal 12 FW/Plant gr (based on plot), Drought 13 FW/Plant gr (based on plot), Low N 14 FW/Plant gr (based on plot), Normal 15 Final Plant Height (cm), Drought 16 Final Plant Height (cm), Low N 17 Final Plant Height (cm), Normal 18 Head Average Area (cm2), Drought 19 Head Average Area (cm2), Low N 20 Head Average Area (cm2), Normal 21 Head Average Length (cm), Drought 22 Head Average Length (cm), Low N 23 Head Average Length (cm), Normal 24 Head Average Perimeter (cm), Drought 25 Head Average Perimeter (cm), Low N 26 Head Average Perimeter (cm), Normal 27 Head Average Width (cm), Drought 28 Head Average Width (cm), Low N 29 Head Average Width (cm), Normal 30 Leaf SPAD 64 DPS (Days Post Sowing), Drought 31 Leaf SPAD 64 DPS (Days Post Sowing), Low N 32 Leaf SPAD 64 DPS (Days Post Sowing), Normal 33 Lower Ratio Average Grain Area, Low N 34 Lower Ratio Average Grain Area, Normal 35 Lower Ratio Average Grain Length, Low N 36 Lower Ratio Average Grain Length, Normal 37 Lower Ratio Average Grain Perimeter, Low N 38 Lower Ratio Average Grain Perimeter, Normal 39 Lower Ratio Average Grain Width, Low N 40 Lower Ratio Average Grain Width, Normal 41 Total grain weight /Head (based on plot) gr, Low N 42 Total grain weight /Head gr (based on 5 heads), Low N 43 Total grain weight /Head gr (based on 5 heads), Normal 44 Total grain weight /Head gr (based on plot), Normal 45 Total grain weight /Head gr (based on plot) Drought 46 Upper Ratio Average Grain Area, Drought 47 Upper Ratio Average Grain Area, Low N 48 Upper Ratio Average Grain Area, Normal 49 [Grain Yield+plant biomass/SPAD 64 DPS], Normal 50 [Grain Yield+plant biomass/SPAD 64 DPS], Low N 51 [Grain yield /SPAD 64 DPS], Low N 52 [Grain yield /SPAD 64 DPS], Normal 53 [Plant biomass (FW)/SPAD 64 DPS], Drought 54 [Plant biomass (FW)/SPAD 64 DPS], Low N 55 [Plant biomass (FW)/SPAD 64 DPS], Normal Table 29. Provided are the Sorghum correlated parameters (vectors). “gr.” = grams; “SPAD” = chlorophyll levels; “FW” = Plant Fresh weight; “DW”= Plant Dry weight; “normal” = standard growth conditions; “DPS” = days post-sowing; “Low N” = Low Nitrogen. FW - Head/Plant gr. (based on 5 plants), fresh weigh of the harvested heads was divided by the number of heads that were phenotyped, Low N-low nitrogen conditions: Lower Ratio Average Grain Area grain area of the lower fraction of grains.

TABLE 30 Measured parameters in Sorghum accessions under normal conditions Seed ID/ Cor. ID 3 6 8 11 14 17 20 23 26 29 Line-1 0.11 175.1 5 406.5 0 0.51 162.5 6 95.25 120.1 4 25.58 61.22 5.97 Line-2 0.11 223.4 9 518.0 0 0.51 212.5 9 79.20 167.6 0 26.84 67.90 7.92 Line-3 0.13 56.40 148.0 0 0.12 334.8 3 197.8 5 85.14 21.02 56.26 4.87 Line-4 0.13 111.6 2 423.0 0 0.26 313.4 6 234.2 0 157.2 6 26.84 65.38 7.43 Line-5 0.14 67.34 92.00 0.12 462.2 8 189.4 0 104.0 0 23.14 67.46 5.59 Line-6 0.14 66.90 101.3 3 0.18 318.2 6 194.6 7 102.4 8 21.82 67.46 5.88 Line-7 0.11 126.1 8 423.5 0 0.46 151.1 4 117.2 5 168.5 4 31.33 74.35 6.78 Line-8 0.11 107.7 4 386.5 0 0.43 137.6 0 92.80 109.3 2 23.18 56.16 5.99 Line-9 0.10 123.8 6 409.5 0 0.43 167.9 8 112.6 5 135.1 3 25.70 61.64 6.62 Line-10 0.12 102.7 5 328.9 5 0.44 128.9 7 97.50 169.0 3 28.82 71.41 7.42 Line-11 0.12 82.33 391.0 0 0.46 97.62 98.00 156.1 0 28.13 68.57 6.99 Line-12 0.11 77.59 435.7 5 0.45 99.32 100.0 0 112.1 4 22.97 56.44 6.19 Line-13 0.12 91.17 429.5 0 0.45 112.2 4 105.6 0 154.7 4 28.09 67.79 7.02 Line-14 0.11 150.4 5 441.0 0 0.51 157.4 2 151.1 5 171.7 0 30.00 71.55 7.18 Line-15 0.11 109.1 0 415.7 5 0.46 130.5 5 117.1 0 168.5 1 30.54 78.94 7.00 Line-16 0.11 107.5 8 429.5 0 0.44 135.6 6 124.4 5 162.5 1 27.17 67.03 7.39 Table 30: Provided are the values of each of the parameters (as described above) measured in Sorghum accessions (line ID) under normal conditions. Growth conditions are specified in the experimental procedure section.

TABLE 31 Additional measured parameters in Sorghum accessions under normal conditions Seed ID/Cor. ID 32 34 36 38 40 43 44 48 49 52 55 Line-1 43.01 0.83 0.91 0.91 0.91 47.40 31.12 1.22 4.50 3.78 0.72 Line-2 0.74 0.88 0.87 0.83 46.30 26.35 1.30 8.17 7.74 0.43 Line-3 43.26 0.78 0.92 0.91 0.85 28.37 18.72 1.13 7.87 7.01 0.86 Line-4 44.74 0.80 0.91 0.95 0.87 70.40 38.38 1.14 10.68 10.10 0.58 Line-5 45.76 0.70 0.89 0.90 0.79 32.15 26.67 1.16 8.34 7.65 0.69 Line-6 41.61 0.70 0.88 0.92 0.80 49.23 28.85 1.15 4.40 3.34 1.05 Line-7 45.21 0.83 0.91 0.91 0.90 63.45 47.67 1.19 3.74 3.05 0.69 Line-8 45.14 0.81 0.90 0.91 0.89 44.45 31.00 1.24 4.83 3.90 0.93 Line-9 43.03 0.84 0.92 0.92 0.92 56.65 39.99 1.25 3.67 2.83 0.84 Line-10 45.59 0.79 0.92 0.93 0.85 60.00 38.36 1.24 2.89 2.18 0.72 Line-11 44.83 0.77 0.89 0.91 0.86 45.45 32.10 1.32 2.91 2.19 0.72 Line-12 45.33 0.80 0.91 0.92 0.89 58.19 32.69 1.22 3.12 2.41 0.71 Line-13 46.54 0.81 0.91 0.90 0.90 70.60 32.79 1.18 4.75 3.58 1.17 Line-14 43.99 0.82 0.91 0.91 0.91 70.10 51.53 1.18 3.69 2.90 0.79 Line-15 45.09 0.81 0.90 0.91 0.91 53.95 35.71 1.22 3.85 3.01 0.85 Line-16 45.14 0.82 0.90 0.91 0.90 59.87 38.31 1.25 5.84 4.85 0.98 Table 31: Provided are the values of each of the parameters (as described above) measured in Sorghum accessions (line ID) under normal conditions. Growth conditions are specified in the experimental procedure section.

TABLE 32 Measured parameters in Sorghum accessions under Low nitrogen conditions Seed ID/Cor. ID 2 5 7 10 13 16 19 22 25 28 31 Line-1 0.11 214.78 388.00 0.51 204.78 104.00 96.24 23.22 56.32 5.26 38.33 Line-2 0.11 205.05 428.67 0.51 199.64 80.93 214.72 25.58 79.20 10.41 38.98 Line-3 0.14 73.49 297.67 0.17 340.51 204.73 98.59 20.93 53.25 5.93 42.33 Line-4 0.12 122.96 280.00 0.39 240.60 125.40 182.83 28.43 76.21 8.25 40.90 Line-5 0.14 153.07 208.33 0.21 537.78 225.40 119.64 24.32 67.27 6.19 43.15 Line-6 0.13 93.23 303.67 0.19 359.40 208.07 110.19 22.64 59.49 6.12 39.85 Line-7 0.12 134.11 436.00 0.48 149.20 121.40 172.36 32.11 79.28 6.81 42.68 Line-8 0.12 77.44 376.33 0.38 129.06 100.27 84.81 20.38 51.52 5.25 43.31 Line-9 0.12 129.63 474.67 0.42 178.71 121.13 156.25 26.69 69.89 7.52 39.01 Line-10 0.13 99.83 437.67 0.44 124.27 94.53 136.71 26.31 66.18 6.59 42.71 Line-11 0.13 76.95 383.00 0.43 101.33 110.00 137.70 25.43 67.37 6.85 40.08 Line-12 0.12 84.25 375.00 0.39 132.12 115.07 96.54 23.11 57.90 5.32 43.98 Line-13 0.12 92.24 425.00 0.44 117.90 104.73 158.19 27.87 70.61 7.25 45.44 Line-14 0.12 138.83 434.00 0.44 176.99 173.67 163.95 28.88 73.76 7.19 44.75 Line-15 0.11 113.32 408.67 0.44 143.67 115.60 138.39 27.64 66.87 6.28 42.58 Line-16 0.12 95.50 378.50 0.43 126.98 138.80 135.46 25.52 65.40 6.57 43.81 Table 32: Provided are the values of each of the parameters (as described above) measured in Sorghum accessions (line ID) under low nitrogen conditions. Growth conditions are specified in the experimental procedure section.

TABLE 33 Additional measured parameters in Sorghum accessions under low nitrogen growth conditions Seed ID/ Cor. ID 33 35 37 39 41 42 47 50 51 54 Line-1 0.82 0.91 0.90 0.90 25.95 50.27 1.19 6.02 0.68 5.34 Line-2 0.77 0.90 0.88 0.85 30.57 50.93 1.31 5.91 0.78 5.12 Line-3 0.81 0.92 0.92 0.89 19.37 36.13 1.11 8.50 0.46 8.05 Line-4 0.79 0.90 0.90 0.88 35.62 73.10 1.22 6.75 0.87 5.88 Line-5 0.78 0.91 0.92 0.86 25.18 37.87 1.19 13.05 0.58 12.46 Line-6 0.80 0.93 0.92 0.87 22.18 36.40 1.18 9.58 0.56 9.02 Line-7 0.83 0.92 0.92 0.91 49.96 71.67 1.16 4.67 1.17 3.50 Line-8 0.79 0.89 0.89 0.89 27.48 35.00 1.23 3.61 0.63 2.98 Line-9 0.81 0.90 0.90 0.90 51.12 76.73 1.17 5.89 1.31 4.58 Line-10 0.77 0.91 0.91 0.86 36.84 57.58 1.22 3.77 0.86 2.91 Line-11 0.74 0.89 0.90 0.84 29.45 42.93 1.24 3.26 0.74 2.53 Line-12 0.80 0.90 0.90 0.90 26.70 36.47 1.19 3.61 0.61 3.00 Line-13 0.79 0.89 0.90 0.89 29.43 68.60 1.23 3.24 0.65 2.60 Line-14 0.82 0.91 0.91 0.91 51.12 71.80 1.16 5.10 1.14 3.96 Line-15 0.80 0.89 0.89 0.90 37.04 49.27 1.34 4.25 0.87 3.38 Line-16 0.81 0.89 0.90 0.90 39.85 43.87 1.21 3.81 0.91 2.90 Line-17 0.81 0.90 0.90 0.90 41.78 52.07 1.21 4.76 0.89 3.86 Table 33: Provided are the values of each of the parameters (as described above) measured in Sorghum accessions (line ID) under low nitrogen conditions. Growth conditions are specified in the experimental procedure section.

TABLE 34 Measured parameters in Sorghum accessions under drought conditions Seed ID/ Cor. ID 1 4 9 12 15 18 21 24 27 30 Line-1 0.10 154.90 0.42 207.99 89.40 83.14 21.63 52.78 4.83 40.58 Line-2 0.12 122.02 0.47 138.02 75.73 107.79 21.94 64.49 6.31 40.88 Line-3 0.11 130.51 0.42 255.41 92.10 88.68 21.57 56.59 5.16 45.01 Line-4 0.09 241.11 0.37 402.22 94.30 135.91 22.01 64.37 7.78 42.30 Line-5 0.09 69.03 0.23 233.55 150.80 90.77 20.99 53.21 5.28 45.24 Line-6 0.11 186.41 0.31 391.75 110.73 123.95 28.60 71.66 5.49 40.56 Line-7 62.11 0.41 89.31 99.20 86.06 21.35 55.61 5.04 44.80 Line-8 39.02 0.44 50.61 84.00 85.20 20.81 52.96 5.07 45.07 Line-9 58.94 0.40 87.02 99.00 113.10 24.69 69.83 5.77 40.65 Line-10 76.37 0.44 120.43 92.20 100.79 24.28 65.15 5.37 45.43 Line-11 33.47 0.47 37.21 81.93 80.41 21.95 55.27 4.66 42.58 Line-12 42.20 0.47 48.18 98.80 126.89 24.98 69.06 6.35 44.18 Line-13 41.53 0.48 44.20 86.47 86.41 19.49 53.32 5.58 44.60 Line-14 131.67 0.35 231.60 99.60 92.29 20.42 56.29 5.76 42.41 Line-15 60.84 0.35 116.01 83.00 77.89 16.81 49.12 5.86 43.25 Line-16 44.33 0.23 123.09 83.53 76.93 18.88 51.88 5.10 40.30 Line-17 185.44 0.33 342.50 92.30 40.75 Table 34: Provided are the values of each of the parameters (as described above) measured in Sorghum accessions (line ID) under drought conditions. Growth conditions are specified in the experimental procedure section.

TABLE 35 Additional Measured parameters in Sorghum accessions under drought conditions Seed ID/ Correlation ID 45 46 53 Line-1 22.114 1.305 5.126 Line-2 16.770 1.190 3.376 Line-3 9.189 1.285 5.674 Line-4 104.444 1.459 9.509 Line-5 3.235 1.206 5.163 Line-6 21.997 1.214 9.658 Line-7 9.975 1.993 Line-8 18.579 1.123 Line-9 29.271 2.141 Line-10 10.453 2.651 Line-11 14.765 0.874 Line-12 12.861 1.091 Line-13 18.237 0.991 Line-14 11.602 5.461 Line-15 18.647 2.682 Line-16 16.356 3.054 Line-17 8.405 Table 35: Provided are the values of each of the parameters (as described above) measured in Sorghum accessions (line ID) under drought conditions. Growth conditions are specified in the experimental procedure section.

TABLE 36 Correlation between the expression level of selected genes of some embodiments of the invention in various tissues and the phenotypic performance under normal or abiotic stress conditions across Sorghum accessions Gene Name R P value Exp. set Cor. Set ID Gene Name R P value Exp. set Cor. Set ID LNU856 0.849 3.76E-03 1 18 LNU856 0.827 5.96E-03 1 27 LNU856 0.830 5.57E-03 1 24 LNU857 0.748 2.04E-02 9 55 LNU858 0.841 2.31E-03 6 36 LNU858 0.781 7.71E-03 6 34 LNU858 0.741 1.41E-02 2 41 LNU858 0.721 1.85E-02 2 51 LNU858 0.788 6.74E-03 2 16 LNU858 0.736 1.53E-02 3 11 LNU858 0.826 3.23E-03 3 6 LNU858 0.711 2.10E-02 3 8 LNU859 0.717 1.97E-02 6 55 LNU859 0.829 3.04E-03 9 17 LNU859 0.713 2.07E-02 9 40 LNU859 0.736 1.52E-02 9 23 LNU859 0.819 3.78E-03 9 44 LNU859 0.785 7.10E-03 9 43 LNU859 0.706 2.26E-02 9 34 LNU859 0.764 1.00E-02 2 41 LNU859 0.782 7.47E-03 2 16 LNU859 0.717 1.97E-02 8 42 LNU860 0.789 6.70E-03 6 17 LNU860 0.706 2.24E-02 6 44 LNU860 0.773 8.80E-03 2 41 LNU860 0.711 2.11E-02 2 22 LNU860 0.891 5.43E-04 2 42 LNU860 0.757 1.13E-02 2 51 LNU860 0.760 1.07E-02 2 37 LNU860 0.877 8.51E-04 4 53 LNU860 0.854 1.65E-03 4 4 LNU860 0.878 8.41E-04 4 12 LNU860 0.728 1.69E-02 5 41 LNU860 0.845 2.10E-03 5 16 LNU860 0.713 3.09E-02 7 18 LNU860 0.723 1.81E-02 1 53 LNU860 0.726 1.74E-02 1 12 LNU861 0.835 2.63E-03 6 17 LNU861 0.707 2.22E-02 6 44 LNU861 0.794 6.15E-03 2 16 LNU861 0.792 6.35E-03 4 53 LNU861 0.802 5.22E-03 4 4 LNU861 0.790 6.53E-03 4 12 LNU861 0.871 2.26E-03 3 52 LNU861 0.874 2.05E-03 3 49 LNU861 0.892 5.26E-04 1 53 LNU861 0.890 5.56E-04 1 4 LNU861 0.879 8.08E-04 1 12 LNU862 0.716 1.98E-02 6 40 LNU862 0.767 9.63E-03 4 53 LNU862 0.767 9.58E-03 4 12 LNU862 0.726 2.69E-02 3 55 LNU862 0.797 5.81E-03 3 43 LNU862 0.753 1.20E-02 1 15 LNU863 0.857 3.15E-03 9 55 LNU863 0.758 1.11E-02 2 16 LNU863 0.878 8.46E-04 5 31 LNU863 0.776 8.30E-03 7 53 LNU863 0.751 1.22E-02 7 4 LNU863 0.770 9.20E-03 7 12 LNU864 0.816 3.97E-03 2 16 LNU864 0.700 2.42E-02 3 29 LNU864 0.729 1.67E-02 3 14 LNU864 0.736 1.53E-02 7 4 LNU864 0.708 2.20E-02 7 12 LNU865 0.719 1.90E-02 6 44 LNU865 0.740 1.43E-02 9 11 LNU865 0.754 1.17E-02 2 10 LNU865 0.742 1.40E-02 5 13 LNU865 0.774 8.53E-03 3 8 LNU866 0.752 1.22E-02 2 41 LNU866 0.844 2.13E-03 2 16 LNU866 0.848 3.91E-03 3 52 LNU866 0.746 1.32E-02 3 11 LNU866 0.868 1.13E-03 3 6 LNU866 0.805 8.85E-03 3 49 LNU866 0.734 1.56E-02 1 4 LNU867 0.719 1.92E-02 6 3 LNU867 0.704 2.31E-02 3 6 LNU868 0.916 2.00E-04 6 48 LNU868 0.804 5.04E-03 2 16 LNU868 0.821 3.59E-03 3 17 LNU868 0.819 3.75E-03 3 44 LNU869 0.719 1.90E-02 2 2 LNU869 0.790 6.49E-03 5 2 LNU870 0.906 3.04E-04 4 53 LNU870 0.829 3.00E-03 4 4 LNU870 0.912 2.33E-04 4 12 LNU870 0.723 1.82E-02 1 53 LNU870 0.733 1.58E-02 1 12 LNU871 0.752 1.22E-02 6 17 LNU871 0.720 1.89E-02 4 53 LNU871 0.709 2.16E-02 4 4 LNU871 0.735 1.53E-02 4 12 LNU871 0.747 1.30E-02 7 9 LNU871 0.717 2.98E-02 1 21 LNU872 0.714 2.05E-02 4 53 LNU872 0.710 2.13E-02 4 12 LNU872 0.735 1.55E-02 5 41 LNU872 0.743 2.19E-02 7 18 LNU873 0.732 1.61E-02 9 44 LNU873 0.848 1.95E-03 8 35 LNU873 0.768 1.56E-02 3 55 LNU874 0.715 2.02E-02 2 22 LNU874 0.855 1.60E-03 2 42 LNU874 0.727 1.72E-02 4 53 LNU874 0.710 2.15E-02 4 4 LNU874 0.736 1.53E-02 4 12 LNU874 0.724 1.79E-02 5 54 LNU874 0.777 8.13E-03 5 13 LNU875 0.839 2.41E-03 6 3 LNU876 0.793 6.15E-03 6 17 LNU876 0.705 3.38E-02 4 27 LNU876 0.867 1.17E-03 4 53 LNU876 0.809 4.56E-03 4 4 LNU876 0.866 1.21E-03 4 12 LNU876 0.780 7.72E-03 5 5 LNU876 0.731 1.62E-02 5 7 LNU876 0.830 2.95E-03 5 50 LNU876 0.776 8.26E-03 5 54 LNU876 0.842 2.24E-03 5 13 LNU876 0.793 1.07E-02 3 52 LNU876 0.784 1.24E-02 3 49 LNU876 0.894 4.83E-04 3 8 LNU878 0.718 1.94E-02 6 11 LNU878 0.725 1.76E-02 6 49 LNU878 0.778 8.03E-03 2 16 LNU879 0.756 1.15E-02 6 11 LNU879 0.707 2.21E-02 6 6 LNU879 0.704 2.32E-02 6 14 LNU879 0.771 9.10E-03 2 28 LNU879 0.913 2.22E-04 4 53 LNU879 0.820 3.70E-03 4 4 LNU879 0.916 1.99E-04 4 12 LNU879 0.717 1.97E-02 5 5 LNU879 0.773 8.76E-03 5 50 LNU879 0.734 1.56E-02 5 54 LNU879 0.849 1.89E-03 5 13 LNU880 0.718 1.93E-02 2 47 LNU881 0.789 6.64E-03 2 41 LNU881 0.730 1.66E-02 2 51 LNU881 0.755 1.17E-02 2 37 LNU881 0.931 8.91E-05 2 16 LNU882 0.785 1.22E-02 3 52 LNU882 0.794 1.07E-02 3 49 LNU882 0.724 2.75E-02 1 45 LNU883 0.799 5.57E-03 2 47 LNU883 0.743 2.19E-02 3 52 LNU883 0.887 6.25E-04 3 6 LNU883 0.786 7.03E-03 3 14 LNU883 0.742 2.22E-02 3 49 LNU883 0.720 1.89E-02 3 8 LNU883 0.719 1.91E-02 1 9 LNU883 0.747 2.07E-02 1 18 LNU883 0.784 1.23E-02 1 24 LNU883 0.744 2.17E-02 1 21 LNU884 0.874 9.44E-04 2 41 LNU884 0.745 1.35E-02 2 22 LNU884 0.767 9.63E-03 2 35 LNU884 0.872 1.02E-03 2 51 LNU884 0.743 1.38E-02 2 37 LNU884 0.779 1.33E-02 4 45 LNU884 0.809 4.58E-03 3 6 LNU885 0.845 2.08E-03 6 17 LNU885 0.879 8.12E-04 6 44 LNU885 0.712 2.10E-02 2 47 LNU885 0.891 5.48E-04 4 53 LNU885 0.788 6.83E-03 4 4 LNU885 0.897 4.40E-04 4 12 LNU885 0.721 1.87E-02 5 41 LNU885 0.711 2.13E-02 5 13 LNU885 0.724 1.78E-02 5 51 LNU885 0.843 2.18E-03 7 30 LNU885 0.705 2.28E-02 1 53 LNU885 0.716 1.99E-02 1 12 LNU886 0.862 1.35E-03 6 3 LNU887 0.710 3.23E-02 9 52 LNU887 0.714 3.07E-02 9 49 LNU887 0.725 1.76E-02 2 47 LNU888 0.858 1.50E-03 6 48 LNU888 0.742 1.41E-02 2 41 LNU888 0.732 1.62E-02 2 35 LNU888 0.811 4.39E-03 2 51 LNU888 0.716 1.99E-02 2 37 LNU888 0.706 2.26E-02 8 41 LNU888 0.741 1.42E-02 8 51 LNU888 0.787 6.95E-03 8 37 LNU888 0.855 1.64E-03 7 30 LNU889 0.971 3.19E-06 6 52 LNU889 0.851 1.80E-03 6 6 LNU889 0.884 6.87E-04 6 14 LNU889 0.948 3.02E-05 6 49 LNU889 0.763 1.02E-02 6 8 LNU890 0.796 5.88E-03 8 2 LNU890 0.779 7.92E-03 5 2 LNU892 0.717 1.96E-02 9 8 LNU892 0.915 5.43E-04 4 18 LNU892 0.892 1.23E-03 4 27 LNU892 0.864 2.70E-03 4 24 LNU892 0.733 1.59E-02 8 28 LNU892 0.734 2.43E-02 7 27 LNU893 0.818 3.85E-03 3 43 LNU894 0.850 1.84E-03 6 52 LNU894 0.815 4.08E-03 6 49 LNU894 0.802 5.22E-03 6 8 LNU894 0.840 4.64E-03 9 52 LNU894 0.855 1.61E-03 9 14 LNU894 0.808 8.35E-03 9 49 LNU894 0.871 1.04E-03 2 16 LNU894 0.711 3.16E-02 3 52 LNU894 0.862 1.33E-03 3 6 LNU894 0.829 3.05E-03 3 14 LNU894 0.733 1.59E-02 3 8 LNU894 0.718 2.93E-02 1 21 LNU895 0.716 1.97E-02 6 20 LNU895 0.720 1.88E-02 5 7 LNU895 0.716 1.97E-02 5 19 LNU895 0.868 1.13E-03 5 41 LNU895 0.792 6.32E-03 5 22 LNU895 0.797 5.75E-03 5 25 LNU895 0.817 3.91E-03 5 51 LNU895 0.748 1.28E-02 3 29 LNU895 0.727 1.72E-02 3 14 LNU897 0.746 1.32E-02 3 17 LNU897 0.790 6.56E-03 3 44 LNU899 0.701 2.39E-02 6 3 LNU899 0.717 1.96E-02 2 16 LNU900 0.894 4.83E-04 6 17 LNU900 0.713 2.05E-02 6 44 LNU900 0.710 2.14E-02 6 43 LNU900 0.765 9.88E-03 4 53 LNU900 0.772 8.88E-03 4 12 LNU900 0.883 7.13E-04 5 16 LNU901 0.920 1.62E-04 4 53 LNU901 0.869 1.10E-03 4 4 LNU901 0.916 1.93E-04 4 12 LNU901 0.770 9.12E-03 5 5 LNU901 0.767 9.70E-03 5 50 LNU901 0.768 9.54E-03 5 54 LNU901 0.807 4.75E-03 5 13 LNU902 0.886 6.47E-04 6 17 LNU902 0.856 1.59E-03 6 44 LNU903 0.714 2.04E-02 6 3 LNU903 0.785 7.13E-03 2 7 LNU903 0.738 1.48E-02 2 19 LNU903 0.829 3.05E-03 2 22 LNU903 0.786 7.04E-03 2 42 LNU903 0.840 2.36E-03 2 25 LNU904 0.738 1.48E-02 6 52 LNU904 0.731 1.64E-02 6 14 LNU904 0.751 1.24E-02 6 49 LNU904 0.765 9.94E-03 4 53 LNU904 0.718 1.94E-02 4 4 LNU904 0.767 9.63E-03 4 12 LNU904 0.732 1.61E-02 5 10 LNU905 0.710 2.14E-02 2 47 LNU905 0.872 2.17E-03 4 45 LNU905 0.800 5.42E-03 4 53 LNU905 0.854 1.65E-03 4 4 LNU905 0.785 7.10E-03 4 12 LNU905 0.714 2.04E-02 8 5 LNU905 0.725 1.76E-02 5 54 LNU905 0.761 1.06E-02 5 13 LNU905 0.822 6.54E-03 7 45 LNU905 0.720 2.86E-02 1 45 LNU906 0.749 1.26E-02 6 17 LNU906 0.778 8.04E-03 6 40 LNU906 0.832 2.85E-03 6 44 LNU906 0.805 4.95E-03 6 34 LNU906 0.745 1.35E-02 2 41 LNU906 0.855 1.63E-03 2 16 LNU906 0.939 5.71E-05 4 53 LNU906 0.868 1.12E-03 4 4 LNU906 0.943 4.37E-05 4 12 LNU907 0.700 2.42E-02 6 29 LNU907 0.829 3.00E-03 6 52 LNU907 0.825 3.28E-03 6 49 LNU907 0.790 6.50E-03 6 8 LNU907 0.791 6.44E-03 8 33 LNU907 0.706 2.26E-02 8 39 LNU907 0.836 2.59E-03 8 35 LNU907 0.746 1.32E-02 8 37 LNU908 0.701 2.41E-02 2 5 LNU908 0.725 1.77E-02 1 4 LNU909 0.805 4.99E-03 2 41 LNU909 0.745 1.34E-02 2 51 LNU909 0.920 1.66E-04 2 16 LNU909 0.789 1.14E-02 4 45 LNU909 0.822 3.51E-03 3 11 LNU909 0.771 9.03E-03 3 6 LNU910 0.761 1.05E-02 6 17 LNU910 0.743 1.37E-02 6 44 LNU910 0.743 1.38E-02 5 41 LNU910 0.732 1.62E-02 5 51 LNU910 0.767 9.66E-03 5 16 LNU910 0.761 1.71E-02 3 52 LNU910 0.781 1.30E-02 3 49 LNU910 0.763 1.02E-02 1 53 LNU910 0.761 1.05E-02 1 4 LNU910 0.768 9.45E-03 1 12 LNU911 0.716 1.99E-02 6 11 LNU911 0.774 8.56E-03 8 10 LNU911 0.708 2.18E-02 5 41 LNU911 0.712 2.09E-02 5 51 LNU911 0.733 1.59E-02 3 6 LNU911 0.760 1.08E-02 7 30 LNU912 0.773 8.74E-03 9 17 LNU912 0.706 2.25E-02 9 44 LNU912 0.710 2.15E-02 9 43 LNU912 0.712 2.08E-02 2 47 LNU912 0.702 3.48E-02 4 18 LNU912 0.717 1.96E-02 7 15 LNU912 0.902 3.58E-04 1 30 LNU913 0.713 2.06E-02 2 31 LNU913 0.705 2.29E-02 2 22 LNU913 0.726 1.75E-02 2 37 LNU913 0.760 1.08E-02 3 17 LNU913 0.746 1.33E-02 3 40 LNU913 0.821 3.63E-03 3 44 LNU913 0.803 5.19E-03 3 36 LNU913 0.777 8.20E-03 3 34 LNU914 0.713 2.07E-02 6 40 LNU914 0.759 1.09E-02 6 34 LNU914 0.716 1.98E-02 9 8 LNU914 0.707 2.22E-02 5 51 LNU916 0.753 1.92E-02 1 21 LNU917 0.750 1.25E-02 6 17 LNU917 0.728 1.70E-02 6 44 LNU917 0.900 3.94E-04 4 53 LNU917 0.794 6.13E-03 4 4 LNU917 0.904 3.29E-04 4 12 LNU917 0.959 4.46E-05 3 52 LNU917 0.830 2.97E-03 3 6 LNU917 0.925 3.50E-04 3 49 LNU917 0.804 5.09E-03 3 8 LNU917 0.728 2.62E-02 1 18 LNU918 0.837 2.54E-03 9 17 LNU918 0.757 1.13E-02 8 16 LNU918 0.748 1.29E-02 3 44 LNU919 0.791 6.48E-03 9 17 LNU919 0.756 1.14E-02 9 40 LNU919 0.758 1.11E-02 9 44 LNU919 0.758 1.10E-02 9 43 LNU919 0.709 2.16E-02 9 34 LNU919 0.896 4.55E-04 2 41 LNU919 0.733 1.59E-02 2 22 LNU919 0.736 1.52E-02 2 42 LNU919 0.836 2.56E-03 2 51 LNU919 0.780 7.74E-03 2 37 LNU919 0.769 9.37E-03 2 16 LNU919 0.870 1.05E-03 8 35 LNU919 0.708 2.19E-02 3 17 LNU920 0.728 1.71E-02 6 14 LNU920 0.727 1.72E-02 6 49 LNU920 0.790 1.12E-02 4 45 LNU921 0.701 2.40E-02 6 17 LNU921 0.876 8.95E-04 4 53 LNU921 0.804 5.05E-03 4 4 LNU921 0.867 1.16E-03 4 12 LNU922 0.819 3.73E-03 6 3 LNU922 0.740 1.44E-02 2 37 LNU922 0.796 5.83E-03 2 16 LNU922 0.779 7.87E-03 5 2 LNU922 0.701 2.39E-02 3 20 LNU922 0.820 6.77E-03 1 18 LNU922 0.864 2.66E-03 1 24 LNU922 0.886 1.47E-03 1 21 LNU923 0.785 7.10E-03 6 48 LNU923 0.734 1.56E-02 5 2 LNU923 0.897 4.27E-04 3 17 LNU923 0.714 2.03E-02 3 44 LNU924 0.824 3.39E-03 9 17 LNU924 0.746 1.32E-02 9 23 LNU924 0.734 1.56E-02 9 44 LNU924 0.803 5.20E-03 4 53 LNU924 0.820 3.66E-03 4 4 LNU924 0.808 4.66E-03 4 12 LNU924 0.702 2.36E-02 8 33 LNU924 0.723 1.81E-02 8 35 LNU925 0.715 2.00E-02 6 11 LNU925 0.737 1.49E-02 6 6 LNU925 0.701 2.38E-02 6 14 LNU925 0.782 7.53E-03 2 5 LNU925 0.716 1.98E-02 2 50 LNU925 0.737 1.51E-02 2 54 LNU925 0.765 9.87E-03 2 41 LNU925 0.710 2.14E-02 2 10 LNU925 0.785 7.18E-03 2 28 LNU925 0.717 1.95E-02 2 13 LNU925 0.752 1.22E-02 2 51 LNU925 0.761 1.05E-02 2 37 LNU925 0.734 1.56E-02 4 53 LNU925 0.751 1.22E-02 4 12 LNU925 0.824 3.40E-03 8 41 LNU925 0.787 6.84E-03 8 51 LNU925 0.770 9.16E-03 8 37 LNU925 0.814 4.16E-03 8 16 LNU925 0.825 6.15E-03 3 52 LNU925 0.711 2.13E-02 3 6 LNU925 0.762 1.71E-02 3 49 LNU925 0.817 3.91E-03 3 8 LNU926 0.823 3.43E-03 6 17 LNU926 0.706 2.26E-02 6 43 LNU926 0.778 8.05E-03 8 2 LNU926 0.715 2.02E-02 7 30 LNU928 0.840 4.57E-03 4 45 LNU928 0.733 2.47E-02 3 52 LNU928 0.793 1.08E-02 3 49 LNU928 0.712 3.13E-02 7 45 LNU928 0.855 1.60E-03 1 15 LNU930 0.754 1.18E-02 9 11 LNU930 0.748 1.28E-02 2 41 LNU930 0.714 2.03E-02 2 35 LNU930 0.757 1.13E-02 2 42 LNU930 0.748 1.29E-02 2 51 LNU930 0.733 1.60E-02 2 37 LNU930 0.702 2.35E-02 2 16 LNU930 0.774 1.45E-02 3 52 LNU930 0.767 1.59E-02 3 49 LNU931 0.834 2.72E-03 6 3 LNU931 0.797 5.77E-03 8 41 LNU931 0.795 5.99E-03 8 35 LNU931 0.836 2.60E-03 8 42 LNU931 0.836 2.60E-03 8 51 LNU931 0.859 1.44E-03 8 37 LNU931 0.709 2.16E-02 5 2 LNU932 0.829 5.69E-03 3 55 LNU932 0.703 3.47E-02 7 18 LNU932 0.799 9.81E-03 7 27 LNU932 0.729 2.58E-02 7 24 LNU933 0.771 9.00E-03 5 2 LNU933 0.778 8.03E-03 1 30 LNU934 0.834 2.71E-03 6 48 LNU934 0.868 1.13E-03 9 43 LNU934 0.711 2.10E-02 2 41 LNU934 0.755 1.16E-02 2 51 LNU934 0.757 1.12E-02 2 37 LNU934 0.716 1.98E-02 3 17 LNU934 0.897 4.31E-04 3 44 LNU935 0.739 1.46E-02 6 17 LNU935 0.781 7.62E-03 9 17 LNU935 0.765 1.62E-02 3 55 LNU935 0.927 3.22E-04 1 18 LNU935 0.815 7.47E-03 1 27 LNU935 0.871 2.21E-03 1 24 LNU935 0.735 2.42E-02 1 21 LNU936 0.739 1.46E-02 6 36 LNU936 0.735 1.55E-02 6 34 LNU936 0.786 7.01E-03 2 42 LNU936 0.734 1.56E-02 8 16 LNU938 0.743 1.39E-02 9 17 LNU938 0.847 2.00E-03 9 44 LNU938 0.836 2.57E-03 4 30 LNU939 0.830 2.95E-03 4 53 LNU939 0.777 8.25E-03 4 4 LNU939 0.830 2.98E-03 4 12 LNU939 0.821 3.56E-03 5 5 LNU939 0.821 3.60E-03 5 50 LNU939 0.869 1.11E-03 5 54 LNU939 0.900 3.91E-04 5 13 LNU939 0.954 6.53E-05 7 18 LNU939 0.894 1.15E-03 7 27 LNU939 0.904 8.15E-04 7 24 LNU940 0.784 7.31E-03 6 6 LNU940 0.762 1.04E-02 6 40 LNU940 0.748 1.29E-02 6 14 LNU940 0.730 1.64E-02 6 34 LNU940 0.718 2.95E-02 9 52 LNU940 0.841 2.28E-03 9 6 LNU940 0.715 2.02E-02 9 14 LNU940 0.713 2.05E-02 5 5 LNU940 0.721 1.86E-02 5 54 LNU940 0.767 9.62E-03 5 13 LNU941 0.893 5.02E-04 2 41 LNU941 0.753 1.20E-02 2 22 LNU941 0.741 1.42E-02 2 35 LNU941 0.721 1.87E-02 2 42 LNU941 0.891 5.44E-04 2 51 LNU941 0.824 3.37E-03 2 37 LNU941 0.857 1.52E-03 3 6 LNU942 0.716 1.99E-02 9 17 LNU942 0.786 6.97E-03 2 41 LNU942 0.737 1.50E-02 2 22 LNU942 0.740 1.43E-02 2 51 LNU942 0.839 2.43E-03 4 53 LNU942 0.829 3.01E-03 4 4 LNU942 0.846 2.01E-03 4 12 LNU942 0.895 4.67E-04 8 31 LNU942 0.885 1.52E-03 3 52 LNU942 0.884 1.56E-03 3 49 LNU942 0.771 9.09E-03 1 53 LNU942 0.792 6.32E-03 1 4 LNU942 0.761 1.06E-02 1 12 LNU943 0.720 1.88E-02 6 17 LNU943 0.766 9.80E-03 5 19 LNU943 0.773 8.75E-03 5 28 LNU943 0.701 2.38E-02 5 13 LNU944 0.803 5.12E-03 6 26 LNU944 0.861 1.38E-03 6 20 LNU944 0.805 4.92E-03 6 23 LNU944 0.718 1.95E-02 6 44 LNU944 0.804 5.03E-03 2 28 LNU944 0.750 1.25E-02 8 47 LNU944 0.795 1.05E-02 3 52 LNU944 0.747 2.08E-02 3 49 LNU944 0.752 1.22E-02 3 8 LNU945 0.703 2.34E-02 6 14 LNU945 0.813 4.27E-03 2 47 LNU945 0.805 4.92E-03 8 35 LNU946 0.791 6.43E-03 6 17 LNU946 0.795 5.99E-03 6 44 LNU946 0.898 4.26E-04 5 16 LNU946 0.745 1.34E-02 3 23 LNU946 0.867 2.49E-03 7 18 LNU946 0.899 9.92E-04 7 27 LNU946 0.796 1.02E-02 7 24 LNU947 0.736 1.52E-02 9 40 LNU947 0.741 1.41E-02 9 34 LNU947 0.717 1.96E-02 1 53 LNU947 0.847 1.98E-03 1 4 LNU947 0.705 2.29E-02 1 12 LNU948 0.780 7.76E-03 6 48 LNU948 0.710 2.15E-02 6 3 LNU948 0.705 2.27E-02 1 30 LNU949 0.751 1.23E-02 6 52 LNU949 0.800 5.48E-03 6 11 LNU949 0.834 2.72E-03 6 6 LNU949 0.736 1.52E-02 6 14 LNU949 0.758 1.11E-02 6 49 LNU949 0.730 1.66E-02 2 47 LNU949 0.764 1.01E-02 4 53 LNU949 0.843 2.17E-03 4 4 LNU949 0.756 1.14E-02 4 12 LNU949 0.795 6.00E-03 5 5 LNU949 0.805 4.96E-03 5 50 LNU949 0.780 7.77E-03 5 54 LNU949 0.799 5.56E-03 5 13 LNU949 0.758 1.11E-02 3 8 LNU950 0.739 1.47E-02 6 3 LNU951 0.744 1.37E-02 2 13 LNU952 0.838 4.78E-03 3 52 LNU952 0.870 1.07E-03 3 6 LNU952 0.776 1.39E-02 3 49 LNU952 0.796 5.90E-03 3 8 LNU952 0.785 1.21E-02 1 45 LNU952 0.786 7.02E-03 1 53 LNU952 0.728 1.70E-02 1 4 LNU952 0.774 8.66E-03 1 12 LNU953 0.774 1.44E-02 3 52 LNU953 0.771 1.51E-02 3 49 LNU953 0.726 1.74E-02 3 8 LNU954 0.814 4.13E-03 6 52 LNU954 0.715 2.02E-02 6 14 LNU954 0.793 6.19E-03 6 49 LNU954 0.726 2.69E-02 4 45 LNU954 0.860 1.42E-03 8 5 LNU954 0.861 1.36E-03 8 50 LNU954 0.851 1.79E-03 8 54 LNU954 0.739 1.46E-02 8 10 LNU954 0.871 1.04E-03 8 35 LNU954 0.782 7.52E-03 8 13 LNU954 0.802 5.29E-03 5 5 LNU954 0.774 8.55E-03 5 54 LNU954 0.762 1.04E-02 5 10 LNU954 0.750 2.00E-02 7 18 LNU954 0.730 2.57E-02 7 24 LNU955 0.732 1.61E-02 9 17 LNU955 0.805 8.86E-03 4 18 LNU955 0.812 7.90E-03 4 27 LNU955 0.728 2.63E-02 4 24 LNU955 0.824 3.40E-03 8 33 LNU955 0.851 1.80E-03 8 39 LNU955 0.705 2.27E-02 5 2 LNU955 0.710 2.15E-02 1 30 LNU956 0.786 1.21E-02 4 45 LNU956 0.787 1.19E-02 1 45 LNU957 0.749 1.27E-02 6 29 LNU957 0.743 1.37E-02 6 20 LNU957 0.782 1.27E-02 3 55 LNU958 0.801 5.37E-03 9 17 LNU958 0.773 8.77E-03 4 30 LNU958 0.800 5.47E-03 8 33 LNU958 0.799 5.53E-03 8 39 LNU958 0.759 1.09E-02 8 16 LNU958 0.720 1.88E-02 5 41 LNU958 0.886 6.41E-04 5 16 LNU959 0.827 3.13E-03 2 41 LNU959 0.747 1.29E-02 2 22 LNU959 0.757 1.13E-02 2 51 LNU959 0.778 8.02E-03 2 16 LNU959 0.727 1.72E-02 4 9 LNU959 0.928 3.02E-04 3 52 LNU959 0.871 1.03E-03 3 6 LNU959 0.701 2.39E-02 3 14 LNU959 0.893 1.17E-03 3 49 LNU959 0.771 8.97E-03 3 8 LNU960 0.865 1.23E-03 6 17 LNU960 0.886 6.43E-04 6 44 LNU960 0.771 9.08E-03 9 26 LNU960 0.807 4.82E-03 9 23 LNU960 0.722 1.83E-02 9 44 LNU960 0.754 1.17E-02 2 42 LNU960 0.759 1.10E-02 2 37 LNU960 0.932 8.55E-05 4 53 LNU960 0.870 1.05E-03 4 4 LNU960 0.932 8.83E-05 4 12 LNU960 0.738 1.49E-02 5 13 LNU960 0.703 2.34E-02 5 51 LNU961 0.738 1.47E-02 6 20 LNU961 0.803 5.15E-03 9 17 LNU961 0.836 2.56E-03 9 44 LNU961 0.735 1.54E-02 9 43 LNU961 0.745 1.35E-02 8 33 LNU961 0.824 3.40E-03 8 35 LNU961 0.781 7.62E-03 3 8 LNU961 0.874 2.06E-03 7 18 LNU961 0.954 6.50E-05 7 27 LNU961 0.789 1.14E-02 7 24 LNU962 0.808 4.66E-03 2 16 LNU962 0.725 1.76E-02 5 28 LNU962 0.897 1.06E-03 3 52 LNU962 0.848 1.93E-03 3 6 LNU962 0.892 1.22E-03 3 49 LNU962 0.706 3.36E-02 1 45 LNU964 0.706 2.24E-02 2 33 LNU964 0.778 8.03E-03 2 41 LNU964 0.756 1.14E-02 2 35 LNU964 0.820 3.71E-03 2 51 LNU964 0.820 3.71E-03 2 37 LNU964 0.778 8.06E-03 3 44 LNU964 0.713 2.06E-02 1 53 LNU964 0.712 2.08E-02 1 12 LNU965 0.828 3.08E-03 6 48 LNU965 0.745 1.35E-02 6 3 LNU965 0.779 7.92E-03 2 33 LNU965 0.885 6.71E-04 2 41 LNU965 0.767 9.59E-03 2 39 LNU965 0.829 3.04E-03 2 51 LNU965 0.861 1.39E-03 2 37 LNU965 0.875 9.24E-04 2 16 LNU966 0.709 2.17E-02 6 52 LNU966 0.708 2.20E-02 6 3 LNU966 0.748 1.29E-02 3 6 LNU966 0.716 3.00E-02 7 45 LNU967 0.800 5.48E-03 6 17 LNU967 0.766 9.82E-03 4 53 LNU967 0.707 2.22E-02 4 4 LNU967 0.768 9.41E-03 4 12 LNU968 0.771 9.02E-03 6 48 LNU968 0.719 1.90E-02 2 33 LNU968 0.919 1.71E-04 2 41 LNU968 0.904 3.35E-04 2 51 LNU968 0.781 7.72E-03 2 37 LNU968 0.734 1.56E-02 2 16 LNU968 0.788 6.83E-03 3 17 LNU968 0.826 3.22E-03 3 43 LNU969 0.805 4.95E-03 2 42 Table 36: Provided are the correlations (R) between the expression levels of yield improving genes and their homologues in tissues [Flag leaf, Flower meristem, stem and Flower; Expression sets (Exp)] and the phenotypic performance in various yield, biomass, growth rate and/or vigor components [Correlation vector (cor.)] under stress conditions or normal conditions across Sorghum accessions. P = p value.

Example 6 Production of Sorghum Transcriptom and High Throughput Correlation Analysis With Biomass, Nue, and Abst Related Parameters Measured in Semi-Hydroponics Conditions Using 44K Sorguhm Oligonucleotide Micro-Arrays

Sorghum vigor related parameters under low nitrogen, 100 mM NaCl, low temperature (10 ± 2° C.) and normal growth conditions - Ten Sorghum hybrids were grown in 3 repetitive plots, each containing 17 plants, at a net house under semi-hydroponics conditions. Briefly, the growing protocol was as follows: Sorghum seeds were sown in trays filled with a mix of vermiculite and peat in a 1:1 ratio. Following germination, the trays were transferred to the high salinity solution (100 mM NaCl in addition to the Full Hoagland solution), low temperature (10 ± 2° C. in the presence of Full Hoagland solution), low nitrogen solution (the amount of total nitrogen was reduced in 90% from the full Hoagland solution (i.e., to a final concentration of 10% from full Hoagland solution, final amount of 1.2 mM N) or at Normal growth solution (Full Hoagland containing 16 mM N solution, at 28 ± 2° C.). Plants were grown at 28 ± 2° C.

Full Hoagland solution consists of: KNO3 - 0.808 grams/liter, MgSO4 - 0.12 grams/liter, KH2PO4 - 0.172 grams/liter and 0.01% (volume/volume) of ‘Super coratin’ micro elements (Iron-EDDHA [ethylenediamine-N,N′-bis(2-hydroxyphenylacetic acid)]- 40.5 grams/liter; Mn - 20.2 grams/liter; Zn 10.1 grams/liter; Co 1.5 grams/liter; and Mo 1.1 grams/liter), solution’s pH should be 6.5 - 6.8].

Analyzed Sorghum tissues - All 10 selected Sorghum hybrids were sampled per each treatment. Three tissues [leaves, meristems and roots] growing at 100 mM NaCl, low temperature (10 ± 2° C.), low Nitrogen (1.2 mM N) or under Normal conditions were sampled and RNA was extracted as described above. Each micro-array expression information tissue type has received a Set ID as summarized in Table 37 below.

TABLE 37 Sorghum transcriptom expression sets under semi hydroponics conditions Set ID Expression Set 1 Sorghum root under cold 2 Sorghum root under normal conditions 3 Sorghum root under low N conditions 4 Sorghum root under 100 mM NaCl conditions 5 Sorghum meristem under cold 6 Sorghum meristem under normal conditions 7 Sorghum meristem under low N conditions 8 Sorghum meristem under 100 mM NaCl conditions Table 37: Provided are the Sorghum transcriptom expression sets. Cold conditions = 10 ± 2° C.; NaCl = 100 mM NaCl; low nitrogen =1.2 mM Nitrogen; Normal conditions = 16 mM Nitrogen.

Experimental Results

10 different Sorghum hybrids were grown and characterized for the following parameters: “Leaf No” = leaf number per plant (average of five plants); “Plant Height” = plant height [cm] (average of five plants); “DW Root/Plant” - root dry weight per plant (average of five plants); DW Shoot/Plant - shoot dry weight per plant (average of five plants) (Table 38). The average for each of the measured parameter was calculated using the JMP software and values are summarized in Tables 39-45 below. Subsequent correlation analysis was performed (Table 46). Results were then integrated to the database.

TABLE 38 Sorghum correlated parameters (vectors) Correlation ID Correlated parameter with 1 DW Root/Plant - 100 mM NaCl [gr.] 2 DW Root/Plant - Cold [gr.] 3 DW Root/Plant - Low Nitrogen [gr.] 4 DW Root/Plant -Normal [gr.] 5 DW Shoot/Plant - Low Nitrogen [gr.] 6 DW Shoot/Plant - 100 mM NaCl [gr.] 7 DW Shoot/Plant - Cold [gr.] 8 DW Shoot/Plant - Normal [gr.] 9 Leaf TP1 - 100 mM NaCl [number] 10 Leaf TP1 - Cold [number] 11 Leaf TP1 - Low Nitrogen [number] 12 Leaf TP1 - Normal [number] 13 Leaf TP2 - 100 mM NaCl [number] 14 Leaf TP2 - Cold [number] 15 Leaf TP2 - Low Nitrogen [number] 16 Leaf TP2 - Normal [number] 17 Leaf TP3 - 100 mM NaCl [number] 18 Leaf TP3 - Cold [number] 19 Leaf TP3 - Low Nitrogen [number] 20 Leaf TP3 - Normal [number] 21 Low N- NUE total biomass [gr.] 22 Low N- Shoot/Root 23 Low N-NUE roots 24 Low N-NUE shoots 25 Low N-percent-root biomass compared to normal 26 Low N-percent-shoot biomass compared to normal 27 Low N-percent-total biomass reduction compared to normal 28 N level/ Leaf [Low Nitrogen] 29 N level/ Leaf [100 mM NaCl] 30 N level/ Leaf [Cold] 31 N level/ Leaf [Normal] 32 Normal- Shoot/Root 33 Normal-NUE roots 34 Normal-NUE shoots 35 Normal-NUE total biomass 36 Plant Height TP1 - 100 mM NaCl [cm] 37 Plant Height TP1 - Cold [cm] 38 Plant Height TP1 - Low Nitrogen [cm] 39 Plant Height TP1 - Normal [cm] 40 Plant Height TP2 - Cold [cm] 41 Plant Height TP2 - Low Nitrogen [cm] 42 Plant Height TP2 - Normal [cm] 43 Plant Height TP2 -100 mM NaCl [cm] 44 Plant Height TP3 - 100 mM NaCl [cm] 45 Plant Height TP3 - Low Nitrogen [cm] 46 RGR Leaf Num Normal 47 Root Biomass [DW- gr.]/SPAD [100 mM NaCl] 48 Root Biomass [DW- gr.]/SPAD [Cold] 49 Root Biomass [DW- gr.]/SPAD [Low Nitrogen] 50 Root Biomass [DW- gr.]/SPAD [Normal] 51 SPAD - Cold 52 SPAD - Low Nitrogen 53 SPAD - Normal 54 SPAD 100 - mM NaCl 55 Shoot Biomass [DW- gr.]/SPAD [100 mM NaCl] 56 Shoot Biomass [DW- gr.]/SPAD [Cold] 57 Shoot Biomass [DW- gr.]/SPAD [Low Nitrogen] 58 Shoot Biomass [DW- gr.]/SPAD [Normal] 59 Total Biomass-Root+Shoot [DW- gr.]/SPAD [100 mM NaCl] 60 Total Biomass-Root+Shoot [DW- gr.]/SPAD [Cold] 61 Total Biomass-Root+Shoot [DW- gr.]/SPAD [Low Nitrogen] 62 Total Biomass-Root+Shoot[DW- gr.]/SPAD [Normal] Table 38: Provided are the Sorghum correlated parameters. Cold conditions = 10 ± 2° C.; NaCl = 100 mM NaCl; low nitrogen = 1.2 mM Nitrogen; Normal conditions = 16 mM Nitrogen * TP-1-2-3 refers to time points 1, 2 and 3.

TABLE 39 Sorghum accessions, measured parameters under low nitrogen growth conditions Cor. ID/line ID 3 5 11 15 19 38 41 45 52 1 Line-1 0.04 0.08 3.00 4.00 3.90 6.73 13.30 22.23 26.88 0.05 Line-2 0.11 0.19 3.13 4.58 4.27 9.77 20.63 31.07 28.02 0.10 Line-3 0.20 0.33 3.87 4.97 4.70 12.70 23.70 34.67 29.64 0.12 Line-4 0.10 0.16 3.53 4.73 4.23 8.67 18.03 30.03 31.52 0.07 Line-5 0.08 0.16 3.20 4.60 4.30 9.77 19.33 30.83 29.61 0.08 Line-6 0.09 0.16 3.13 4.70 4.57 9.23 19.20 29.87 26.82 0.08 Line-7 0.13 0.26 3.13 4.97 4.63 10.27 21.87 30.87 28.48 0.14 Line-8 0.09 0.20 3.30 4.87 4.67 10.10 22.13 32.40 28.21 0.10 Line-9 0.09 0.13 3.07 4.67 3.97 7.93 18.20 29.37 30.48 0.17 Line-10 0.09 0.18 3.07 4.57 4.10 8.23 21.00 30.70 27.63 0.14 Table 39: Provided are the values of each of the parameters (as described above) measured in Sorghum accessions (line ID) under low nitrogen conditions. Growth conditions are specified in the experimental procedure section.

TABLE 40 Additional sorghum accessions, measured parameters under low nitrogen growth conditions Corr. ID/line ID 21 22 23 24 25 26 27 28 49 57 61 Line-1 27.528 1.875 9.647 17.881 84.528 81.573 82.585 6.892 0.002 0.003 0.005 Line-2 64.124 1.707 23.538 40.586 80.954 79.164 79.812 6.568 0.004 0.007 0.011 Line-3 115.231 1.731 43.877 71.354 117.004 104.754 109.104 6.307 0.007 0.011 0.018 Line-4 58.017 1.568 22.580 35.436 100.519 103.497 102.317 7.446 0.003 0.005 0.008 Line-5 52.219 2.096 16.886 35.333 72.538 83.707 79.737 6.886 0.003 0.005 0.008 Line-6 35.103 1.815 12.440 22.663 71.777 83.215 78.767 5.873 0.003 0.006 0.009 Line-7 84.575 2.062 28.194 56.381 93.472 107.689 102.492 6.146 0.005 0.009 0.014 Line-8 63.728 2.097 20.528 43.200 76.051 81.386 79.588 6.046 0.003 0.007 0.010 Line-9 47.029 1.504 18.756 28.273 86.820 70.300 76.073 7.683 0.003 0.004 0.007 Line-10 59.998 1.999 20.086 39.912 80.511 75.859 77.355 6.740 0.003 0.007 0.010 Table 40: Provided are the values of each of the parameters (as described above) measured in Sorghum accessions (line ID) under low nitrogen conditions. Growth conditions are specified in the experimental procedure section.

TABLE 41 Sorghum accessions, measured parameters under salinity (100 mM NaCl) conditions Corr. ID/line ID 1 6 9 13 17 36 Line-1 0.050 0.094 3.000 4.000 4.000 7.900 Line-2 0.104 0.186 3.133 4.367 4.133 9.500 Line-3 0.124 0.202 3.400 4.867 4.567 10.933 Line-4 0.069 0.137 3.067 4.600 4.433 7.933 Line-5 0.076 0.130 3.333 4.500 4.067 9.700 Line-6 0.075 0.133 3.067 4.533 4.333 8.533 Line-7 0.135 0.154 3.067 4.500 4.133 8.900 Line-8 0.095 0.189 3.267 4.767 4.500 10.367 Line-9 0.165 0.099 3.000 4.320 3.780 7.000 Line-10 0.139 0.124 3.067 4.200 4.200 7.833 Table 41: Provided are the values of each of the parameters (as described above) measured in Sorghum accessions (line ID) under 100 mM NaCl growth conditions. Growth conditions are specified in the experimental procedure section.

TABLE 42 Additional Sorghum accessions, measured parameters under salinity (100 mM NaCl) conditions Corr. ID/line ID 29 47 55 59 43 44 54 Line-1 8.183 0.002 0.003 0.004 14.200 21.800 32.733 Line-2 8.503 0.003 0.005 0.008 16.267 23.167 35.144 Line-3 6.124 0.004 0.007 0.012 20.367 30.367 27.967 Line-4 6.977 0.002 0.004 0.007 13.333 22.833 30.933 Line-5 8.492 0.002 0.004 0.006 15.900 23.700 34.533 Line-6 6.921 0.003 0.004 0.007 16.533 23.300 29.989 Line-7 7.763 0.004 0.005 0.009 15.467 22.467 32.089 Line-8 7.079 0.003 0.006 0.009 18.933 26.833 31.856 Line-9 8.601 0.005 0.003 0.008 13.680 20.280 32.513 Line-10 8.172 0.004 0.004 0.008 15.767 23.567 34.322 Table 42: Provided are the values of each of the parameters (as described above) measured in Sorghum accessions (line ID) under 100 mM NaCl growth conditions. Growth conditions are specified in the experimental procedure section.

TABLE 43 Sorghum accessions, measured parameters under cold conditions Corr. ID/line ID 2 7 10 14 18 37 40 51 30 48 56 60 Line-1 0.068 0.078 3.000 3.900 4.733 6.500 11.167 28.622 6.047 0.002 0.003 0.005 Line-2 0.108 0.154 3.000 4.133 5.333 8.767 15.867 30.311 5.683 0.004 0.005 0.009 Line-3 0.163 0.189 3.500 4.633 5.433 10.400 18.433 27.044 4.978 0.006 0.007 0.013 Line-4 0.093 0.112 3.167 4.167 5.500 6.800 12.200 32.278 5.869 0.003 0.003 0.006 Line-5 0.084 0.130 3.400 4.267 5.333 9.033 16.033 28.278 5.302 0.003 0.005 0.008 Line-6 0.114 0.165 3.200 4.233 5.067 9.000 14.633 29.889 5.899 0.004 0.006 0.009 Line-7 0.137 0.152 3.133 4.200 4.500 7.967 14.600 32.467 7.215 0.004 0.005 0.009 Line-8 0.127 0.150 3.067 4.300 5.400 9.167 17.267 28.633 5.302 0.004 0.005 0.010 Line-9 0.108 0.112 3.067 4.167 5.367 6.500 13.433 31.711 5.909 0.003 0.004 0.007 Line-10 0.139 0.141 3.000 4.000 5.182 7.227 13.909 29.557 5.704 0.005 0.005 0.009 Table 43: Provided are the values of each of the parameters (as described above) measured in Sorghum accessions (line ID) under cold growth conditions. Growth conditions are specified in the experimental procedure section.

TABLE 44 Sorghum accessions, measured parameters under regular growth conditions Corr. ID/line ID 4 8 12 16 20 39 42 46 53 Line-1 0.053 0.101 3.000 4.167 5.333 7.467 14.967 0.155 26.700 Line-2 0.134 0.236 3.067 4.500 5.867 9.300 18.233 0.186 29.333 Line-3 0.173 0.313 3.800 4.800 6.200 12.867 22.100 0.159 29.856 Line-4 0.103 0.158 3.200 4.600 5.800 8.567 17.600 0.173 29.089 Line-5 0.107 0.194 3.233 4.533 5.800 8.933 18.067 0.171 24.978 Line-6 0.120 0.188 3.233 4.967 5.733 8.533 18.533 0.168 24.622 Line-7 0.139 0.241 3.133 4.600 5.733 10.667 22.833 0.174 30.789 Line-8 0.124 0.244 3.433 4.933 6.000 10.267 22.033 0.171 25.500 Line-9 0.099 0.185 3.000 4.500 5.600 7.867 20.033 0.174 32.889 Line-10 0.115 0.242 3.000 4.567 6.067 8.767 21.800 0.204 33.544 Table 44: Provided are the values of each of the parameters (as described above) measured in Sorghum accessions (line ID) under cold growth conditions. Growth conditions are specified in the experimental procedure section.

TABLE 45 Additional Sorghum accessions, measured parameters under regular growth conditions Corr. ID/line ID 31 32 33 34 35 50 58 62 Line-1 5.006 1.984 0.861 1.653 2.514 0.002 0.004 0.006 Line-2 5.000 1.936 2.193 3.866 6.059 0.005 0.008 0.013 Line-3 4.815 1.897 2.828 5.137 7.964 0.006 0.010 0.016 Line-4 5.015 1.586 1.694 2.582 4.276 0.004 0.005 0.009 Line-5 4.307 1.813 1.755 3.183 4.939 0.004 0.008 0.012 Line-6 4.295 1.579 1.960 3.081 5.041 0.005 0.008 0.012 Line-7 5.370 1.759 2.275 3.948 6.223 0.005 0.008 0.012 Line-8 4.250 1.988 2.036 4.003 6.038 0.005 0.010 0.014 Line-9 5.873 1.895 1.086 2.022 3.108 0.003 0.006 0.009 Line-10 5.529 2.198 1.881 3.968 5.849 0.003 0.007 0.011 Table 45: Provided are the values of each of the parameters (as described above) measured in Sorghum accessions (line ID) under regular growth conditions. Growth conditions are specified in the experimental procedure section.

TABLE 46 Correlation between the expression level of selected genes of some embodiments of the invention in roots and the phenotypic performance under normal or abiotic stress conditions across Sorghum accessions Gene Name R P value Exp . set Corr . Set ID Gene Name R P value Exp . set Corr . Set ID LNU856 0.862 1.26E-02 3 49 LNU856 0.860 1.31E-02 3 3 LNU856 0.933 2.14E-03 3 5 LNU856 0.812 2.67E-02 3 45 LNU856 0.851 1.52E-02 3 23 LNU856 0.896 6.34E-03 3 61 LNU856 0.928 2.59E-03 3 24 LNU856 0.921 3.24E-03 3 21 LNU856 0.877 9.56E-03 3 57 LNU856 0.855 1.42E-02 3 41 LNU856 0.801 9.50E-03 2 20 LNU856 0.840 2.37E-03 1 18 LNU857 0.716 7.05E-02 3 22 LNU857 0.812 7.87E-03 6 49 LNU857 0.777 1.37E-02 6 3 LNU857 0.778 1.36E-02 6 5 LNU857 0.777 1.37E-02 6 23 LNU857 0.811 7.92E-03 6 61 LNU857 0.778 1.36E-02 6 24 LNU857 0.787 1.19E-02 6 21 LNU857 0.727 2.65E-02 6 38 LNU857 0.795 1.04E-02 6 57 LNU857 0.703 3.47E-02 2 34 LNU857 0.757 1.82E-02 5 7 LNU857 0.744 2.15E-02 5 48 LNU857 0.701 3.52E-02 5 10 LNU857 0.858 3.08E-03 5 56 LNU857 0.827 5.94E-03 5 60 LNU857 0.847 3.99E-03 5 37 LNU857 0.871 2.26E-03 5 40 LNU857 0.854 3.42E-03 5 14 LNU859 0.899 3.96E-04 1 48 LNU859 0.850 1.84E-03 1 2 LNU859 0.712 2.10E-02 1 56 LNU859 0.829 3.04E-03 1 60 LNU860 0.848 1.59E-02 3 28 LNU860 0.721 2.82E-02 6 45 LNU861 0.756 1.85E-02 6 45 LNU861 0.768 1.57E-02 6 41 LNU861 0.700 3.57E-02 8 4 LNU861 0.776 1.40E-02 8 42 LNU862 0.705 7.70E-02 3 26 LNU862 0.804 8.99E-03 5 30 LNU863 0.792 1.09E-02 6 49 LNU863 0.790 1.13E-02 6 3 LNU863 0.734 2.43E-02 6 5 LNU863 0.790 1.13E-02 6 23 LNU863 0.756 1.84E-02 6 61 LNU863 0.734 2.43E-02 6 24 LNU863 0.764 1.65E-02 6 21 LNU863 0.720 2.88E-02 6 57 LNU863 0.738 2.32E-02 7 1 LNU863 0.818 7.05E-03 7 59 LNU863 0.838 4.83E-03 7 47 LNU863 0.766 1.60E-02 2 8 LNU863 0.781 1.29E-02 2 42 LNU863 0.709 3.26E-02 8 20 LNU863 0.838 4.76E-03 8 42 LNU864 0.801 3.04E-02 3 28 LNU864 0.897 1.05E-03 5 30 LNU866 0.719 6.86E-02 3 5 LNU866 0.720 6.82E-02 3 45 LNU866 0.721 6.77E-02 3 24 LNU866 0.705 7.71E-02 3 57 LNU866 0.817 2.48E-02 3 41 LNU870 0.840 1.80E-02 3 5 LNU870 0.861 1.28E-02 3 45 LNU870 0.766 4.45E-02 3 61 LNU870 0.790 3.46E-02 3 38 LNU870 0.829 2.11E-02 3 57 LNU870 0.879 9.10E-03 3 41 LNU870 0.705 3.39E-02 6 52 LNU871 0.701 3.55E-02 5 10 LNU872 0.739 5.75E-02 3 52 LNU872 0.793 1.09E-02 6 49 LNU872 0.780 1.32E-02 6 3 LNU872 0.800 9.62E-03 6 5 LNU872 0.739 2.29E-02 6 11 LNU872 0.780 1.32E-02 6 23 LNU872 0.802 9.38E-03 6 61 LNU872 0.800 9.62E-03 6 24 LNU872 0.802 9.33E-03 6 21 LNU872 0.841 4.52E-03 6 38 LNU872 0.791 1.11E-02 6 57 LNU876 0.809 2.75E-02 3 5 LNU876 0.792 3.39E-02 3 45 LNU876 0.703 7.82E-02 3 61 LNU876 0.705 7.70E-02 3 22 LNU876 0.877 9.56E-03 3 38 LNU876 0.713 7.21E-02 3 19 LNU876 0.723 6.66E-02 3 57 LNU876 0.801 9.52E-03 6 49 LNU876 0.830 5.65E-03 6 3 LNU876 0.790 1.12E-02 6 5 LNU876 0.782 1.28E-02 6 45 LNU876 0.798 9.87E-03 6 11 LNU876 0.830 5.65E-03 6 23 LNU876 0.774 1.43E-02 6 61 LNU876 0.790 1.12E-02 6 24 LNU876 0.797 1.01E-02 6 21 LNU876 0.773 1.45E-02 6 38 LNU876 0.760 1.74E-02 6 57 LNU876 0.754 1.90E-02 6 41 LNU876 0.740 2.25E-02 2 46 LNU876 0.713 3.12E-02 2 12 LNU876 0.827 5.95E-03 2 20 LNU876 0.807 8.53E-03 5 14 LNU876 0.720 1.89E-02 1 14 LNU878 0.901 5.64E-03 3 27 LNU878 0.825 2.22E-02 3 25 LNU878 0.779 3.88E-02 3 11 LNU878 0.793 3.33E-02 3 26 LNU878 0.755 1.16E-02 1 30 LNU879 0.877 9.44E-03 3 27 LNU879 0.724 6.60E-02 3 25 LNU879 0.904 5.24E-03 3 11 LNU879 0.749 5.28E-02 3 28 LNU879 0.897 6.12E-03 3 26 LNU879 0.724 2.73E-02 7 54 LNU879 0.811 7.99E-03 2 46 LNU879 0.888 1.37E-03 2 32 LNU879 0.711 3.17E-02 5 7 LNU879 0.821 6.73E-03 5 56 LNU879 0.761 1.71E-02 5 60 LNU879 0.832 5.38E-03 5 37 LNU879 0.785 1.23E-02 5 40 LNU879 0.820 6.79E-03 5 14 LNU879 0.741 1.43E-02 1 30 LNU881 0.731 6.19E-02 3 38 LNU883 0.744 5.51E-02 3 49 LNU883 0.750 5.21E-02 3 3 LNU883 0.901 5.61E-03 3 5 LNU883 0.794 3.30E-02 3 45 LNU883 0.708 7.50E-02 3 11 LNU883 0.828 2.14E-02 3 61 LNU883 0.781 3.82E-02 3 24 LNU883 0.747 5.34E-02 3 21 LNU883 0.701 7.93E-02 3 38 LNU883 0.753 5.08E-02 3 19 LNU883 0.839 1.83E-02 3 57 LNU883 0.768 4.35E-02 3 41 LNU883 0.700 3.57E-02 5 30 LNU884 0.745 5.48E-02 3 23 LNU884 0.725 6.54E-02 3 24 LNU884 0.750 5.23E-02 3 21 LNU884 0.704 7.77E-02 3 41 LNU884 0.714 3.09E-02 8 50 LNU884 0.713 3.12E-02 8 12 LNU884 0.729 1.67E-02 1 7 LNU884 0.748 1.28E-02 1 56 LNU884 0.787 6.95E-03 1 37 LNU885 0.851 1.51E-02 3 52 LNU885 0.709 7.44E-02 3 28 LNU885 0.736 2.37E-02 2 39 LNU885 0.821 6.72E-03 5 18 LNU888 0.835 1.93E-02 3 27 LNU888 0.844 1.70E-02 3 25 LNU888 0.762 4.66E-02 3 11 LNU889 0.794 1.06E-02 5 10 LNU889 0.740 2.27E-02 5 56 LNU889 0.710 3.22E-02 5 60 LNU889 0.713 3.11E-02 5 37 LNU889 0.847 3.95E-03 5 14 LNU892 0.799 3.12E-02 3 3 LNU892 0.796 3.23E-02 3 11 LNU895 0.803 2.96E-02 3 49 LNU895 0.857 1.37E-02 3 3 LNU895 0.845 1.66E-02 3 15 LNU895 0.718 6.92E-02 3 5 LNU895 0.868 1.14E-02 3 45 LNU895 0.877 9.60E-03 3 23 LNU895 0.700 7.99E-02 3 61 LNU895 0.765 4.53E-02 3 24 LNU895 0.826 2.22E-02 3 21 LNU895 0.717 6.97E-02 3 38 LNU895 0.779 3.91E-02 3 41 LNU895 0.723 2.77E-02 6 45 LNU895 0.707 3.31E-02 6 52 LNU895 0.710 3.21E-02 2 53 LNU895 0.825 6.24E-03 8 31 LNU895 0.787 1.18E-02 8 53 LNU895 0.765 9.90E-03 1 18 LNU896 0.773 4.15E-02 3 27 LNU896 0.806 2.87E-02 3 25 LNU896 0.703 2.33E-02 1 30 LNU897 0.715 3.05E-02 7 1 LNU897 0.710 3.21E-02 8 46 LNU897 0.751 1.97E-02 8 53 LNU898 0.717 7.00E-02 3 45 LNU898 0.918 3.53E-03 3 38 LNU898 0.705 3.41E-02 6 38 LNU898 0.771 9.01E-03 1 7 LNU898 0.779 7.96E-03 1 56 LNU898 0.723 1.82E-02 1 60 LNU898 0.834 2.68E-03 1 37 LNU898 0.825 3.31E-03 1 40 LNU901 0.808 8.46E-03 8 50 LNU901 0.726 2.68E-02 8 35 LNU901 0.831 5.48E-03 8 39 LNU901 0.786 1.20E-02 8 4 LNU901 0.735 2.42E-02 8 62 LNU901 0.796 1.03E-02 8 33 LNU902 0.761 1.73E-02 6 5 LNU902 0.738 2.33E-02 6 61 LNU902 0.761 1.73E-02 6 24 LNU902 0.738 2.32E-02 6 21 LNU902 0.753 1.91E-02 6 57 LNU902 0.714 3.06E-02 6 41 LNU902 0.887 1.44E-03 7 1 LNU902 0.923 3.91E-04 7 47 LNU902 0.767 1.59E-02 5 18 LNU903 0.701 7.93E-02 3 28 LNU903 0.768 1.57E-02 6 52 LNU903 0.863 1.29E-03 1 18 LNU904 0.777 3.97E-02 3 22 LNU904 0.716 3.01E-02 7 43 LNU905 0.807 2.82E-02 3 22 LNU905 0.708 3.27E-02 2 32 LNU906 0.767 4.41E-02 3 49 LNU906 0.729 6.29E-02 3 5 LNU906 0.810 2.73E-02 3 45 LNU906 0.777 3.97E-02 3 61 LNU906 0.778 3.95E-02 3 38 LNU906 0.750 5.22E-02 3 57 LNU906 0.816 2.53E-02 3 41 LNU907 0.758 1.79E-02 8 20 LNU910 0.825 6.17E-03 6 49 LNU910 0.846 4.09E-03 6 3 LNU910 0.828 5.87E-03 6 25 LNU910 0.725 2.71E-02 6 5 LNU910 0.846 4.09E-03 6 23 LNU910 0.745 2.12E-02 6 61 LNU910 0.725 2.71E-02 6 24 LNU910 0.780 1.32E-02 6 21 LNU911 0.880 8.99E-03 3 27 LNU911 0.745 5.47E-02 3 11 LNU911 0.849 1.56E-02 3 26 LNU913 0.720 2.88E-02 7 55 LNU913 0.762 1.71E-02 7 43 LNU913 0.709 3.25E-02 5 51 LNU914 0.778 3.95E-02 3 5 LNU914 0.709 7.45E-02 3 45 LNU914 0.807 2.83E-02 3 61 LNU914 0.794 3.30E-02 3 19 LNU914 0.840 1.81E-02 3 57 LNU914 0.774 4.12E-02 3 41 LNU914 0.787 1.19E-02 6 45 LNU914 0.808 8.36E-03 6 52 LNU914 0.726 2.67E-02 6 41 LNU915 0.841 1.77E-02 3 49 LNU915 0.887 7.78E-03 3 3 LNU915 0.837 1.87E-02 3 15 LNU915 0.710 7.36E-02 3 45 LNU915 0.702 7.90E-02 3 61 LNU915 0.701 3.53E-02 5 48 LNU915 0.759 1.76E-02 5 2 LNU917 0.840 4.56E-03 2 46 LNU917 0.737 2.36E-02 2 32 LNU917 0.888 1.38E-03 8 32 LNU918 0.824 2.27E-02 3 25 LNU918 0.859 3.03E-03 2 46 LNU918 0.714 3.06E-02 2 53 LNU918 0.748 2.04E-02 8 32 LNU919 0.907 4.82E-03 3 25 LNU920 0.743 2.18E-02 5 51 LNU922 0.717 2.98E-02 6 22 LNU922 0.803 5.12E-03 1 48 LNU922 0.749 1.26E-02 1 2 LNU922 0.769 9.35E-03 1 60 LNU924 0.759 1.78E-02 8 16 LNU926 0.705 7.68E-02 3 49 LNU926 0.713 3.12E-02 7 1 LNU926 0.792 1.10E-02 7 59 LNU926 0.726 2.67E-02 7 47 LNU926 0.802 9.37E-03 5 18 LNU929 0.811 2.68E-02 3 23 LNU929 0.726 6.46E-02 3 24 LNU929 0.773 4.16E-02 3 21 LNU929 0.834 5.24E-03 2 46 LNU930 0.734 6.01E-02 3 52 LNU930 0.757 4.87E-02 3 22 LNU931 0.729 2.59E-02 2 50 LNU931 0.769 1.54E-02 2 12 LNU931 0.759 1.77E-02 2 58 LNU931 0.759 1.78E-02 2 62 LNU932 0.749 2.01E-02 6 22 LNU933 0.881 8.82E-03 3 49 LNU933 0.887 7.74E-03 3 3 LNU933 0.742 5.60E-02 3 15 LNU933 0.803 2.97E-02 3 23 LNU933 0.713 7.22E-02 3 61 LNU933 0.798 9.90E-03 8 12 LNU933 0.713 3.12E-02 8 58 LNU934 0.817 2.48E-02 3 27 LNU934 0.818 2.45E-02 3 25 LNU934 0.803 2.98E-02 3 11 LNU934 0.703 7.80E-02 3 52 LNU934 0.861 2.90E-03 5 51 LNU934 0.771 1.50E-02 5 30 LNU935 0.736 2.38E-02 6 41 LNU935 0.700 3.57E-02 8 8 LNU935 0.758 1.78E-02 8 39 LNU935 0.746 2.10E-02 8 4 LNU935 0.856 3.25E-03 8 42 LNU940 0.851 1.51E-02 3 11 LNU940 0.904 5.20E-03 3 52 LNU941 0.785 3.66E-02 3 25 LNU942 0.916 3.72E-03 3 49 LNU942 0.915 3.90E-03 3 3 LNU942 0.786 3.61E-02 3 23 LNU942 0.759 4.80E-02 3 61 LNU942 0.784 1.25E-02 7 44 LNU942 0.764 1.66E-02 7 55 LNU942 0.871 2.24E-03 7 9 LNU942 0.793 1.08E-02 7 13 LNU942 0.792 1.09E-02 7 36 LNU942 0.744 2.15E-02 7 59 LNU942 0.811 8.01E-03 7 43 LNU942 0.767 1.59E-02 7 6 LNU942 0.744 2.16E-02 8 4 LNU943 0.713 3.11E-02 6 49 LNU943 0.750 1.99E-02 6 3 LNU943 0.790 1.12E-02 6 25 LNU943 0.750 1.99E-02 6 23 LNU944 0.715 7.09E-02 3 49 LNU944 0.739 5.78E-02 3 3 LNU944 0.928 2.57E-03 3 15 LNU944 0.807 2.81E-02 3 45 LNU944 0.735 6.01E-02 3 41 LNU944 0.710 3.21E-02 7 6 LNU944 0.826 6.07E-03 2 12 LNU944 0.721 2.83E-02 2 35 LNU944 0.715 3.05E-02 2 34 LNU944 0.742 2.21E-02 2 8 LNU944 0.714 3.07E-02 2 20 LNU944 0.826 6.06E-03 2 39 LNU944 0.748 2.04E-02 2 4 LNU944 0.739 2.30E-02 2 58 LNU944 0.734 2.44E-02 2 62 LNU944 0.711 3.17E-02 2 33 LNU945 0.830 2.08E-02 3 22 LNU945 0.746 2.10E-02 6 22 LNU952 0.789 1.15E-02 7 29 LNU952 0.814 7.65E-03 7 54 LNU952 0.708 3.28E-02 8 32 LNU953 0.805 2.91E-02 3 27 LNU953 0.776 4.04E-02 3 11 LNU953 0.906 4.97E-03 3 26 LNU953 0.729 2.58E-02 2 35 LNU953 0.734 2.43E-02 2 39 LNU953 0.701 3.53E-02 2 4 LNU953 0.769 1.55E-02 2 33 LNU953 0.741 1.43E-02 1 37 LNU954 0.707 3.31E-02 5 10 LNU955 0.718 2.95E-02 7 44 LNU955 0.725 2.70E-02 8 33 LNU956 0.720 6.80E-02 3 22 LNU956 0.713 3.11E-02 6 22 LNU958 0.797 3.17E-02 3 22 LNU958 0.826 6.10E-03 6 15 LNU958 0.724 2.75E-02 6 5 LNU958 0.798 9.93E-03 6 45 LNU958 0.704 3.43E-02 6 52 LNU958 0.724 2.75E-02 6 24 LNU958 0.711 3.18E-02 6 57 LNU958 0.809 8.24E-03 6 41 LNU958 0.846 4.08E-03 2 32 LNU958 0.766 1.61E-02 5 37 LNU958 0.789 1.14E-02 8 16 LNU958 0.792 1.09E-02 8 42 LNU959 0.799 3.12E-02 3 19 LNU959 0.723 2.78E-02 8 50 LNU959 0.749 2.03E-02 8 33 LNU960 0.742 5.60E-02 3 11 LNU962 0.739 5.80E-02 3 25 LNU964 0.837 1.88E-02 3 49 LNU964 0.852 1.49E-02 3 3 LNU964 0.727 6.44E-02 3 15 LNU964 0.884 8.34E-03 3 5 LNU964 0.760 4.75E-02 3 45 LNU964 0.834 1.97E-02 3 11 LNU964 0.778 3.93E-02 3 23 LNU964 0.756 4.91E-02 3 52 LNU964 0.841 1.76E-02 3 61 LNU964 0.813 2.63E-02 3 24 LNU964 0.819 2.41E-02 3 21 LNU964 0.780 3.84E-02 3 38 LNU964 0.808 2.77E-02 3 57 LNU964 0.716 7.03E-02 3 41 LNU964 0.700 3.57E-02 6 45 LNU964 0.705 3.40E-02 6 38 LNU965 0.798 3.15E-02 3 27 LNU965 0.848 1.59E-02 3 26 LNU966 0.743 5.59E-02 3 61 LNU966 0.757 4.86E-02 3 57 LNU967 0.874 1.01E-02 3 49 LNU967 0.890 7.28E-03 3 3 LNU967 0.779 3.88E-02 3 23 LNU967 0.702 7.88E-02 3 61 LNU967 0.787 1.18E-02 6 41 LNU968 0.732 6.15E-02 3 27 LNU969 0.717 2.98E-02 7 9 Table 46. Provided are the correlations (R) between the expression levels yield improving genes and their homologues in various tissues [Expression sets (Exp)] and the phenotypic performance [yield, biomass, growth rate and/or vigor components (Correlation vector)] under abiotic stress conditions (salinity) or normal conditions across Sorghum accessions. Cor. - Correlation vector as described hereinabove (Table 38). P = p value.

Example 7 Production of Maize Transcriptom and High Throughput Correlation Analysis with Yield And Nue Related Parameters Using 60K Maize Oligonucleotide Micro-Arrays

In order to produce a high throughput correlation analysis between plant phenotype and gene expression level, the present inventors utilized a maize oligonucleotide micro-array, produced by Agilent Technologies [chem. (dot) agilent (dot) com/Scripts/PDS (dot) asp?1Page=50879]. The array oligonucleotide represents about 44,000 maize genes and transcripts.

Correlation of Maize Hybrids Across Ecotypes Grown Under Regular Growth Conditions Experimental Procedures

12 Maize hybrids were grown in 3 repetitive plots, in field. Maize seeds were planted and plants were grown in the field using commercial fertilization and irrigation protocols (485 metric cubes of water per dunam, 30 units of uran 21% fertilization per entire growth period). In order to define correlations between the levels of RNA expression with stress and yield components or vigor related parameters, the 12 different maize hybrids were analyzed. Among them, 10 hybrids encompassing the observed variance were selected for RNA expression analysis. The correlation between the RNA levels and the characterized parameters was analyzed using Pearson correlation test [davidmlane (dot) com/hyperstat/A34739 (dot) html].

Analyzed Maize tissues - All 10 selected maize hybrids were sampled per 3 time points (TP2 = V6-V8, TP5 = R1-R2, TP6=R3-R4). Four types of plant tissues [Ear, flag leaf indicated in Table 47 as “leaf”, grain distal part, and internode] growing under Normal conditions were sampled and RNA was extracted as described above. Each micro-array expression information tissue type has received a Set ID as summarized in Table 47 below.

TABLE 47 Maize transcriptom expression sets Expression Set Set ID Maize field/Normal/Ear TP5 1 Maize field/Normal/Ear TP6 2 Maize field/Normal/Grain Distal 3 Maize field/Normal/Internode TP2 4 Maize field/Normal/Internode TP5 5 Maize field/Normal/Internode TP6 6 Maize field/Normal/Leaf TP2 7 Maize field/Normal/Leaf TP5 8 Table 47: Provided are the maize transcriptom expression sets. Leaf = the leaf below the main ear; Flower meristem = Apical meristem following male flower initiation; Ear = the female flower at the anthesis day. Grain Distal = maize developing grains from the cob extreme area, Grain Basal = maize developing grains from the cob basal area; Internodes = internodes located above and below the main ear in the plant. TP= time point.

The following parameters were collected using digital imaging system:

  • Grain Area (cm2) - At the end of the growing period the grains were separated from the ear. A sample of ~200 grains were weighted, photographed and images were processed using the below described image processing system. The grain area was measured from those images and was divided by the number of grains.
  • Grain Length and Grain width (cm) - At the end of the growing period the grains were separated from the ear. A sample of ~200 grains were weighted, photographed and images were processed using the below described image processing system. The sum of grain lengths /or width (longest axis) was measured from those images and was divided by the number of grains.
  • Ear Area (cm2) - At the end of the growing period 5 ears were, photographed and images were processed using the below described image processing system. The Ear area was measured from those images and was divided by the number of Ears.
  • Ear Length and Ear Width (cm) - At the end of the growing period 5 ears were, photographed and images were processed using the below described image processing system. The Ear length and width (longest axis) was measured from those images and was divided by the number of ears.

The image processing system was used, which consists of a personal desktop computer (Intel P4 3.0 GHz processor) and a public domain program - ImageJ 1.37, Java based image processing software, which was developed at the U.S. National Institutes of Health and is freely available on the internet at rsbweb (dot) nih (dot) gov/. Images were captured in resolution of 10 Mega Pixels (3888x2592 pixels) and stored in a low compression JPEG (Joint Photographic Experts Group standard) format. Next, image processing output data for seed area and seed length was saved to text files and analyzed using the JMP statistical analysis software (SAS institute).

Additional parameters were collected either by sampling 6 plants per plot or by measuring the parameter across all the plants within the plot.

Normalized Grain Weight per plant (gr.) - At the end of the experiment all ears from plots within blocks A-C were collected. Six ears were separately threshed and grains were weighted, all additional ears were threshed together and weighted as well. The average grain weight per ear was calculated by dividing the total grain weight by number of total ears per plot (based on plot). In case of 6 ears, the total grains weight of 6 ears was divided by 6.

Ear FW (gr.) - At the end of the experiment (when ears were harvested) total and 6 selected ears per plots within blocks A-C were collected separately. The plants with (total and 6) were weighted (gr.) separately and the average ear per plant was calculated for total [Ear FW (fresh weight) per plot] and for 6 (Ear FW per plant).

Plant height and Ear height - Plants were characterized for height at harvesting. In each measure, 6 plants were measured for their height using a measuring tape. Height was measured from ground level to top of the plant below the tassel. Ear height was measured from the ground level to the place were the main ear is located.

Leaf number per plant - Plants were characterized for leaf number during growing period at 5 time points. In each measure, plants were measured for their leaf number by counting all the leaves of 3 selected plants per plot.

Relative Growth Rate was calculated using Formulas II-XIII (described above).

SPAD - Chlorophyll content was determined using a Minolta SPAD 502 chlorophyll meter and measurement was performed 64 days post sowing. SPAD meter readings were done on young fully developed leaf. Three measurements per leaf were taken per plot. Data were taken after 46 and 54 days after sowing (DPS).

Dry weight per plant - At the end of the experiment (when inflorescence were dry) all vegetative material from plots within blocks A-C were collected.

Dry weight = total weight of the vegetative portion above ground (excluding roots) after drying at 70° C. in oven for 48 hours.

Harvest Index (HI) (Maize) - The harvest index was calculated using Formula XVII above.

Percent Filled Ear [%] - was calculated as the percentage of the Ear area with grains out of the total ear.

Cob diameter [cm] - The diameter of the cob without grains was measured using a ruler.

Kernel Row Number per Ear - The number of rows in each ear was counted.

Experimental Results

12 different maize hybrids were grown and characterized for different parameters. The correlated parameters are described in Table 48 below. The average for each of the measured parameter was calculated using the JMP software (Tables 49-50) and a subsequent correlation analysis was performed. Results were then integrated to the database.

TABLE 48 Maize correlated parameters (vectors) Correlated parameter with Correlation ID Cob Diameter mm 1 DW per Plant based on 6 gr 2 Ear Area cm2 3 Ear FW per Plant based on 6 gr 4 Ear Height cm 5 Ear Length cm 6 Ear Width cm 7 Ears FW per plant based on all gr 8 Filled per Whole Ear 9 Grain Area cm2 10 Grain Length cm 11 Grain Width cm 12 Growth Rate Leaf Num 13 Kernel Row Number per Ear 14 Leaf Number per Plant 15 Normalized Grain Weight per Plant based on all gr 16 Normalized Grain Weight per plant based on 6 gr 17 Percent Filled Ear 18 Plant Height per Plot cm 19 SPAD 46DPS TP2 20 SPAD 54DPS TP5 21 Table 48. SPAD 46DPS and SPAD 54DPS: Chlorophyl level after 46 and 54 days after sowing (DPS). “FW” = fresh weight; “DW” = dry weight.

TABLE 49 Measured parameters in Maize accessions under normal conditions Corr. ID/line ID 21 20 1 2 3 4 5 6 7 8 9 10 11 Line-1 54. 28 51. 67 28. 96 657 .50 85. 06 245 .83 135 .17 19. 69 5.5 8 278 .19 0.9 2 0.7 5 1.1 7 Line-2 57. 18 56. 41 25. 08 491 .67 85. 84 208 .33 122 .33 19. 06 5.1 5 217 .50 0.9 2 0.7 1 1.0 9 Line-3 56. 01 53. 55 28. 05 641 .11 90. 51 262 .22 131 .97 20. 52 5.6 7 288 .28 0.9 3 0.7 6 1.1 8 Line-4 59. 68 55. 21 25. 73 580 .56 95. 95 263 .89 114 .00 21. 34 5.5 3 247 .88 0.9 2 0.7 7 1.2 1 Line-5 54. 77 55. 30 28. 72 655 .56 91. 62 272 .22 135 .28 20. 92 5.7 3 280 .11 0.9 1 0.8 1 1.2 3 Line-6 59. 14 59. 35 25. 78 569 .44 72. 41 177 .78 94. 28 18. 23 5.2 3 175 .84 0.9 5 0.7 1 1.1 2 Line-7 57. 99 58. 48 26. 43 511 .11 74. 03 188 .89 120 .94 19. 02 5.2 2 192 .47 0.8 7 0.7 1 1.1 4 Line-8 60. 36 55. 88 25. 19 544 .44 76. 53 197 .22 107 .72 18. 57 5.3 3 204 .70 0.9 4 0.7 5 1.1 3 Line-9 54. 77 52. 98 Line-10 51. 39 53. 86 26. 67 574 .17 55. 20 141 .11 60. 44 16. 69 4.1 2 142 .72 0.8 0 0.5 0 0.9 2 Line-11 61. 14 59. 75 522 .22 95. 36 261 .11 112 .50 21. 70 5.5 8 264 .24 0.9 6 0.7 6 1.1 8 Line-12 53. 34 49. 99 Table 49. Provided are the values of each of the parameters (as described above) measured in maize accessions (line ID) under regular growth conditions. Growth conditions are specified in the experimental procedure section.

TABLE 50 Additional measured parameters in Maize accessions under normal growth conditions Corr. ID/line ID 12 13 14 15 16 17 18 19 Line-1 0.81 0.28 16.17 12.00 153.90 140.68 80.62 278.08 Line-2 0.81 0.22 14.67 11.11 135.88 139.54 86.76 260.50 Line-3 0.80 0.28 16.20 11.69 152.50 153.67 82.14 275.13 Line-4 0.80 0.27 15.89 11.78 159.16 176.98 92.71 238.50 Line-5 0.82 0.31 16.17 11.94 140.46 156.61 80.38 286.94 Line-6 0.80 0.24 15.17 12.33 117.14 119.67 82.76 224.83 Line-7 0.79 0.24 16.00 12.44 123.24 119.69 73.25 264.44 Line-8 0.84 0.27 14.83 12.22 131.27 133.51 81.06 251.61 Line-9 Line-10 0.68 0.19 14.27 9.28 40.84 54.32 81.06 163.78 Line-11 0.81 0.30 15.39 12.56 170.66 173.23 91.60 278.44 Line-12 Table 50. Provided are the values of each of the parameters (as described above) measured in maize accessions (line ID) under regular growth conditions. Growth conditions are specified in the experimental procedure section.

TABLE 51 Correlation between the expression level of selected genes of some embodiments of the invention in various tissues and the phenotypic performance under normal conditions across maize varieties Gene Name R P value Exp. set Cor. Set ID Gene Name R P value Exp. set Cor. Set ID LNU811 0.752 3.14E-02 8 13 LNU811 0.724 4.23E-02 8 11 LNU811 0.748 3.30E-02 8 10 LNU813 0.737 3.68E-02 5 12 LNU813 0.766 4.48E-02 4 15 LNU813 0.738 5.84E-02 4 19 LNU813 0.854 1.44E-02 4 5 LNU813 0.827 2.16E-02 4 8 LNU813 0.701 7.96E-02 4 4 LNU813 0.746 3.37E-02 8 11 LNU813 0.750 3.19E-02 8 6 LNU813 0.873 9.59E-04 6 20 LNU813 0.843 3.53E-02 2 15 LNU814 0.726 4.16E-02 5 11 LNU814 0.790 1.97E-02 5 6 LNU814 0.753 8.40E-02 4 1 LNU814 0.900 5.74E-03 4 14 LNU814 0.748 5.34E-02 4 6 LNU814 0.867 1.15E-02 4 8 LNU814 0.825 2.22E-02 4 4 LNU814 0.770 7.34E-02 7 1 LNU814 0.746 5.40E-02 7 14 LNU814 0.824 2.28E-02 7 13 LNU814 0.815 2.54E-02 7 6 LNU814 0.844 1.70E-02 7 8 LNU814 0.813 2.62E-02 7 4 LNU814 0.892 6.99E-03 1 14 LNU814 0.735 5.99E-02 1 8 LNU814 0.756 4.94E-02 1 4 LNU814 0.789 6.62E-03 6 6 LNU814 0.782 7.51E-03 6 8 LNU814 0.770 9.12E-03 6 4 LNU814 0.749 8.63E-02 2 3 LNU814 0.722 1.05E-01 2 16 LNU814 0.859 2.84E-02 2 6 LNU814 0.964 1.90E-03 2 9 LNU814 0.884 1.94E-02 2 18 LNU814 0.829 4.12E-02 2 17 LNU815 0.803 5.42E-02 2 9 LNU815 0.715 1.10E-01 2 18 LNU816 0.851 1.52E-02 4 19 LNU816 0.825 2.24E-02 4 5 LNU816 0.799 5.66E-02 1 1 LNU816 0.778 6.87E-02 2 12 LNU818 0.795 3.26E-02 4 12 LNU818 0.726 6.45E-02 1 14 LNU818 0.791 3.42E-02 1 15 LNU818 0.727 6.40E-02 1 11 LNU818 0.788 3.54E-02 1 9 LNU818 0.733 6.10E-02 1 10 LNU818 0.761 4.68E-02 1 7 LNU818 0.792 3.36E-02 1 12 LNU818 0.735 3.76E-02 8 13 LNU818 0.827 1.14E-02 8 11 LNU818 0.732 3.88E-02 8 10 LNU818 0.735 2.40E-02 3 15 LNU819 0.801 3.02E-02 4 18 LNU819 0.726 6.45E-02 1 3 LNU819 0.787 3.58E-02 1 6 LNU819 0.951 9.89E-04 1 18 LNU820 0.735 9.57E-02 2 12 LNU821 0.840 9.08E-03 5 3 LNU821 0.759 2.90E-02 5 16 LNU821 0.821 1.24E-02 5 11 LNU821 0.920 1.22E-03 5 6 LNU821 0.810 1.48E-02 5 4 LNU821 0.864 5.63E-03 5 17 LNU821 0.908 4.74E-03 1 14 LNU821 0.702 7.86E-02 1 13 LNU821 0.729 6.31E-02 1 6 LNU821 0.796 3.23E-02 1 8 LNU821 0.812 2.65E-02 1 4 LNU821 0.756 8.20E-02 2 9 LNU821 0.752 8.49E-02 2 18 LNU822 0.753 8.42E-02 4 1 LNU822 0.839 1.84E-02 4 2 LNU822 0.828 1.10E-02 8 1 LNU822 0.730 3.99E-02 8 14 LNU822 0.961 1.45E-04 8 13 LNU822 0.809 1.50E-02 8 11 LNU822 0.808 1.53E-02 8 10 LNU822 0.948 3.34E-04 8 2 LNU822 0.898 2.48E-03 8 7 LNU822 0.707 5.00E-02 8 8 LNU823 0.875 9.86E-03 7 3 LNU823 0.790 3.44E-02 7 16 LNU823 0.905 5.13E-03 7 6 LNU823 0.950 1.02E-03 7 18 LNU823 0.715 7.07E-02 7 19 LNU823 0.774 4.10E-02 7 8 LNU823 0.838 1.86E-02 7 4 LNU823 0.806 2.85E-02 7 17 LNU823 0.818 1.31E-02 8 12 LNU823 0.770 7.33E-02 2 9 LNU824 0.702 5.24E-02 5 2 LNU824 0.835 9.85E-03 5 12 LNU824 0.704 7.74E-02 1 5 LNU824 0.780 2.25E-02 3 1 LNU824 0.705 3.39E-02 3 5 LNU824 0.849 3.25E-02 2 12 LNU825 0.802 5.48E-02 2 12 LNU829 0.931 7.75E-04 8 1 LNU829 0.781 2.22E-02 8 13 LNU829 0.876 4.34E-03 8 19 LNU829 0.813 1.42E-02 8 2 LNU829 0.787 2.05E-02 8 5 LNU829 0.781 2.21E-02 8 7 LNU829 0.756 3.00E-02 8 8 LNU830 0.751 8.50E-02 2 9 LNU830 0.772 7.20E-02 2 18 LNU831 0.714 4.67E-02 8 2 LNU831 0.704 5.13E-02 8 7 LNU831 0.743 1.39E-02 6 8 LNU832 0.712 7.28E-02 7 3 LNU832 0.764 4.57E-02 7 16 LNU832 0.761 4.68E-02 7 11 LNU832 0.835 1.93E-02 7 10 LNU832 0.774 4.12E-02 7 19 LNU832 0.897 6.13E-03 7 5 LNU832 0.788 3.54E-02 7 7 LNU832 0.865 1.20E-02 7 12 LNU832 0.745 5.44E-02 7 17 LNU832 0.788 3.54E-02 1 15 LNU832 0.760 4.76E-02 1 13 LNU832 0.758 4.85E-02 1 9 LNU832 0.714 7.14E-02 1 10 LNU832 0.756 4.91E-02 1 7 LNU832 0.749 3.25E-02 8 12 LNU832 0.707 2.22E-02 6 10 LNU832 0.828 3.07E-03 6 12 LNU832 0.857 3.15E-03 3 15 LNU832 0.714 3.08E-02 3 10 LNU832 0.729 2.59E-02 3 12 LNU832 0.780 6.70E-02 2 12 LNU833 0.810 5.08E-02 7 1 LNU833 0.805 1.60E-02 8 1 LNU833 0.701 5.27E-02 8 14 LNU833 0.780 2.25E-02 8 2 LNU833 0.746 8.84E-02 2 14 LNU834 0.718 6.89E-02 4 3 LNU834 0.754 5.05E-02 4 6 LNU834 0.717 6.99E-02 4 10 LNU834 0.717 6.96E-02 4 19 LNU834 0.867 1.15E-02 4 5 LNU834 0.704 7.77E-02 4 7 LNU834 0.733 6.11E-02 4 8 LNU834 0.724 6.56E-02 4 12 LNU834 0.707 7.58E-02 4 4 LNU834 0.843 1.72E-02 7 15 LNU834 0.855 1.42E-02 7 21 LNU834 0.883 8.46E-03 7 9 LNU834 0.828 2.14E-02 7 12 LNU834 0.717 6.97E-02 1 15 LNU834 0.747 5.38E-02 1 9 LNU834 0.778 3.93E-02 1 10 LNU834 0.857 1.36E-02 1 12 LNU834 0.972 5.30E-05 8 13 LNU834 0.876 4.37E-03 8 11 LNU834 0.958 1.78E-04 8 10 LNU834 0.776 2.35E-02 8 2 LNU834 0.876 4.30E-03 8 7 LNU834 0.708 4.92E-02 8 8 LNU834 0.729 4.01E-02 8 4 LNU834 0.747 2.09E-02 3 3 LNU834 0.828 5.89E-03 3 16 LNU834 0.859 3.03E-03 3 15 LNU834 0.840 4.61E-03 3 13 LNU834 0.915 5.41E-04 3 11 LNU834 0.723 2.77E-02 3 6 LNU834 0.720 2.88E-02 3 9 LNU834 0.943 1.39E-04 3 10 LNU834 0.874 2.06E-03 3 19 LNU834 0.778 1.35E-02 3 5 LNU834 0.883 1.63E-03 3 7 LNU834 0.906 7.68E-04 3 12 LNU834 0.708 3.28E-02 3 4 LNU834 0.835 5.12E-03 3 17 LNU834 0.765 7.62E-02 2 15 LNU834 0.703 1.20E-01 2 9 LNU834 0.775 7.00E-02 2 18 LNU834 0.860 2.81E-02 2 12 LNU835 0.716 7.01E-02 4 16 LNU835 0.734 6.03E-02 4 15 LNU835 0.807 2.83E-02 4 9 LNU835 0.791 3.43E-02 4 10 LNU835 0.846 1.64E-02 4 19 LNU835 0.777 3.98E-02 4 5 LNU835 0.917 3.64E-03 4 12 LNU835 0.766 4.45E-02 1 3 LNU835 0.805 2.89E-02 1 16 LNU835 0.707 7.55E-02 1 9 LNU835 0.753 5.07E-02 1 10 LNU835 0.960 6.02E-04 1 19 LNU835 0.930 2.38E-03 1 5 LNU835 0.791 3.42E-02 1 7 LNU835 0.841 1.77E-02 1 8 LNU835 0.746 5.42E-02 1 12 LNU835 0.728 6.34E-02 1 4 LNU835 0.732 6.14E-02 1 17 LNU835 0.758 8.07E-02 2 9 LNU835 0.882 2.00E-02 2 12 LNU837 0.822 2.32E-02 1 14 LNU837 0.703 7.79E-02 1 4 LNU837 0.778 2.31E-02 8 11 LNU837 0.755 3.02E-02 8 7 LNU837 0.845 3.40E-02 2 14 LNU837 0.907 1.26E-02 2 5 LNU838 0.819 1.29E-02 5 19 LNU838 0.711 4.80E-02 5 5 LNU838 0.860 2.80E-02 2 9 LNU838 0.948 4.01E-03 2 18 LNU839 0.717 6.99E-02 4 10 LNU839 0.717 6.96E-02 4 19 LNU839 0.867 1.15E-02 4 5 LNU839 0.704 7.77E-02 4 7 LNU839 0.724 6.56E-02 4 12 LNU839 0.972 5.30E-05 8 13 LNU839 0.876 4.37E-03 8 11 LNU839 0.958 1.78E-04 8 10 LNU839 0.776 2.35E-02 8 2 LNU839 0.876 4.30E-03 8 7 LNU839 0.708 4.92E-02 8 8 LNU839 0.729 4.01E-02 8 4 LNU839 0.765 7.62E-02 2 15 LNU839 0.703 1.20E-01 2 9 LNU839 0.775 7.00E-02 2 18 LNU840 0.759 4.77E-02 1 19 LNU840 0.781 3.80E-02 1 8 LNU840 0.834 3.89E-02 2 18 LNU841 0.707 7.55E-02 7 16 LNU841 0.755 5.00E-02 7 10 LNU841 0.774 4.10E-02 7 19 LNU841 0.861 1.29E-02 7 5 LNU841 0.855 1.43E-02 7 12 LNU841 0.704 2.31E-02 6 3 LNU841 0.824 3.36E-03 6 8 LNU841 0.775 8.41E-03 6 4 LNU843 0.736 5.94E-02 7 3 LNU843 0.796 3.22E-02 7 16 LNU843 0.776 4.03E-02 7 21 LNU843 0.729 6.29E-02 7 9 LNU843 0.806 2.85E-02 7 10 LNU843 0.866 1.17E-02 7 19 LNU843 0.793 3.33E-02 7 5 LNU843 0.721 6.77E-02 7 7 LNU843 0.866 1.18E-02 7 12 LNU843 0.770 4.28E-02 7 17 LNU843 0.754 5.02E-02 1 15 LNU845 0.801 3.03E-02 7 6 LNU845 0.877 9.48E-03 7 18 LNU845 0.703 7.84E-02 7 4 LNU845 0.708 7.51E-02 7 17 LNU845 0.834 3.90E-02 2 14 LNU845 0.711 1.13E-01 2 5 LNU846 0.817 2.49E-02 7 3 LNU846 0.777 4.00E-02 7 16 LNU846 0.721 6.76E-02 7 13 LNU846 0.777 3.97E-02 7 11 LNU846 0.889 7.41E-03 7 6 LNU846 0.894 6.59E-03 7 18 LNU846 0.796 3.22E-02 7 4 LNU846 0.834 1.97E-02 7 17 LNU846 0.733 9.72E-02 2 9 LNU846 0.724 1.04E-01 2 12 Table 51. Provided are the correlations (R) between the expression levels yield improving genes and their homologs in various tissues [Expression (Exp) sets] and the phenotypic performance [yield, biomass, growth rate and/or vigor components (Correlation vector (Cor))] under normal conditions across maize varieties. P = p value.

Example 8 Production of Maize Transcriptom and High Throughput Correlation Analysis With Yield and Nue Related Parameters When Grown Under Reduced Nitrogen Fertilization Using 60K Maize Oligonucleotide Micro-Arrays

In order to produce a high throughput correlation analysis between plant phenotype and gene expression level, the present inventors utilized a maize oligonucleotide micro-array, produced by Agilent Technologies [chem. (dot) agilent (dot) com/Scripts/PDS (dot) asp?lPage=50879]. The array oligonucleotide represents about 44,000 maize genes and transcripts.

Correlation of Maize Hybrids Across Ecotypes Grown Under Low Nitrogen Conditions Experimental Procedures

12 Maize hybrids were grown in 3 repetitive plots, in field. Maize seeds were planted and plants were grown in the field using commercial fertilization and irrigation protocols (485 metric cubes of water per dunam, 30 units of uran 21% fertilization per entire growth period). In order to define correlations between the levels of RNA expression with NUE and yield components or vigor related parameters, the 12 different maize hybrids were analyzed. Among them, 11 hybrids encompassing the observed variance were selected for RNA expression analysis. The correlation between the RNA levels and the characterized parameters was analyzed using Pearson correlation test [davidmlane (dot) com/hyperstat/A34739 (dot) html].

Analyzed Maize tissues - All 10 selected maize hybrids were sampled per each treatment (low N and normal conditions), in three time points: TP2 = V6-V8 (six to eight collar leaf are visible, rapid growth phase and kernel row determination begins), TP5 = R1-R2 (silking-blister), TP6 = R3-R4 (milk-dough). Four types of plant tissues [Ear, flag leaf indicated in Tables 52-53 as leaf, grain distal part, and internode] were sampled and RNA was extracted as described above. Each micro-array expression information tissue type has received a Set ID as summarized in Tables 52-53 below.

TABLE 52 Maize under low N conditions transcriptom expression sets Expression Set Set ID Maize field/Low/N/Ear/TPS 1 Maize field/Low/N/Ear/TP6 2 Maize field/Low/N/Internodes/TP2 3 Maize field/Low/N/Internodes/TPS 4 Maize field/Low/N/Leaf/TP5 5 Maize field/Low/N/Leaf/TP6 6 Table 52: Provided are the maize transcriptom expression sets. Leaf = the leaf below the main ear; Flower meristem = Apical meristem following male flower initiation; Ear = the female flower at the anthesis day. Grain Distal= maize developing grains from the cob extreme area, Grain Basal= maize developing grains from the cob basal area; Internodes = internodes located above and below the main ear in the plant.

TABLE 53 Maize under normal conditions transcriptom expression sets Set ID Expression Set 1 Maize field/Normal/Ear/R1-R2 2 Maize field/Normal/Ear/R3-R4 3 Maize field Normal/Grain/Distal/R4-R5 4 Maize field Normal/Internode/R1-R2 5 Maize field Normal/Internode/R3-R4 6 Maize field Normal/Internode/V6-V8 7 Maize field Normal/Leaf/R1-R2 8 Maize field Normal/Leaf/V6-V8 Table 53: Provided are the maize transcriptom expression sets. Leaf = the leaf below the main ear; Flower meristem = Apical meristem following male flower initiation; Ear = the female flower at the anthesis day. Grain Distal= maize developing grains from the cob extreme area, Grain Basal= maize developing grains from the cob basal area; Internodes = internodes located above and below the main ear in the plant.

The following parameters were collected were collected either by sampling 6 plants per plot or by measuring the parameter across all the plants within the plot.

Seed yield per plant (Kg.) - At the end of the experiment all ears from plots within blocks A-C were collected. 6 ears were separately threshed and grains were weighted, all additional ears were threshed together and weighted as well. The average grain weight per ear was calculated by dividing the total grain weight by number of total ears per plot (based on plot). In case of 6 ears, the total grains weight of 6 ears was divided by 6.

Ear weight per plot (gr.) - At the end of the experiment (when ears were harvested) total and 6 selected ears per plots within blocks were collected separately. The plants with (total and 6) were weighted (gr.) separately and the average ear per plant was calculated for Ear weight per plot (total of 42 plants per plot).

Plant height and Ear height - Plants were characterized for height at harvesting. In each measure, 6 plants were measured for their height using a measuring tape. Height was measured from ground level to top of the plant below the tassel. Ear height was measured from the ground level to the place were the main ear is located.

Leaf number per plant - Plants were characterized for leaf number during growing period at 5 time points. In each measure, plants were measured for their leaf number by counting all the leaves of 3 selected plants per plot.

SPAD - Chlorophyll content was determined using a Minolta SPAD 502 chlorophyll meter and measurement was performed 64 days post sowing. SPAD meter readings were done on young fully developed leaf. Seven measurements per leaf were taken per plot. Data were taken after once per weeks after sowing.

Dry weight per plant - At the end of the experiment (when Inflorescence were dry) all vegetative material from plots within blocks A-C were collected.

Dry weight = total weight of the vegetative portion above ground (excluding roots) after drying at 70° C. in oven for 48 hours;

Ear length of Filled Ear [cm]- it was calculated as the length of the ear with grains out of the total ear.

Ear length and width [cm]- it was calculated as the length and width of the ear in the filled. Measurement was performed in 6 plants per each plot.

Kernel Row Number per Ear- The number of rows in each ear was counted.

Stalk width [cm]- The diameter of the stalk was measured in the internode located below the main ear. Measurement was performed in 6 plants per each plot.

Leaf area index [LAI]= total leaf area of all plants in a plot. Measurement was performed using a Leaf area-meter.

NUE [kg/kg] -is the ratio between total grain yield per total N applied in soil.

NUpE [kg/kg] -is the ratio between total plant biomass per total N applied in soil.

Yield/stalk width [kg/cm] -is the ratio between total grain yields and the width of the stalk.

Yield/LAI [kg] -is the ratio between total grain yields and total leaf area index.

Experimental Results

11 different maize hybrids were grown and characterized for different parameters. Tables 54-55 describe the Maize correlated parameters. The average for each of the measured parameter was calculated using the JMP software (Tables 56-59) and a subsequent correlation analysis was performed (Tables 60-61). Results were then integrated to the database.

TABLE 54 Maize under low N conditions correlated parameters (vectors) Correlation ID Correlated parameter with 1 Low N- Ear Length [cm] 2 Low N- Ear length of filled area [cm] 3 Low N- Ear with [mm] 4 Low N- Final Leaf Number 5 Low N- Final Main Ear Height [cm] 6 Low N- Final Plant Height [cm] 7 Low N- No of rows per ear 8 Low N- SPAD R1-2 9 Low N- SPAD R3-R4 10 Low N- Stalk width 20/08/09 close to TP5 [cm] 11 Low N- Ear weight per plot (42 plants per plot) [0 RH] [kg] 12 Low N- Final Plant DW [kg] 13 Low N- LAI 14 Low N- NUE yield kg/N applied in soil kg 15 Low N- NUE at early grain filling [R1-R2] yield Kg/N in plant SPAD 16 Low N- NUE at grain filling [R3-R4] yield Kg/ N in plant SPAD 17 Low N- NUpE [biomass/N applied] 18 Low N- Seed yield per dunam [kg] 19 Low N- Yield/LAI 20 Low N- Yield/stalk width 21 Low N- seed yield per 1 plant rest of the plot [0- RH in Kg] Table 54. “cm” = centimeters’ “mm” = millimeters; “kg” = kilograms; SPAD at R1-R2 and SPAD R3-R4: Chlorophyl level after early and late stages of grain filling; “NUE” = nitrogen use efficiency; “NUpE” = nitrogen uptake efficiency; “LAI” = leaf area; “N” = nitrogen; Low N = under low Nitrogen conditions; “Normal” = under normal conditions; “dunam” = 1000 m2.

TABLE 55 Maize under normal conditions correlated parameters (vectors) Correlation ID Correlated parameter with 1 Normal -Final Plant DW [kg] 2 Normal- Ear Length [cm] 3 Normal- Ear length of filled area [cm] 4 Normal- Ear with [mm] 5 Normal- Final Leaf Number [number] 6 Normal- Final Main Ear Height [cm] 7 Normal- Final Plant Height [cm] 8 Normal- No of rows per ear 9 Normal- SPAD R1-2 10 Normal- SPAD R3-R4 11 Normal- Stalk width TP5 [mm] 12 Normal- Ear weight per plot [kg] 13 Normal- LAI 14 Normal- NUE yield kg/N applied in soil kg 15 Normal- NUE at early grain filling [R1-R2] yield Kg/ N in plant SPAD 16 Normal- NUE at grain filling [R3-R4] yield Kg/ N in plant SPAD 17 Normal- NUpE [biomass/N applied] 18 Normal- Seed yield per dunam [kg] 19 Normal- Yield/LAI 20 Normal- Yield/stalk width 21 Normal- seed yield per 1 plant rest of the plot [0- RH in Kg] Table 55. “cm” = centimeters’ “mm” = millimeters; “kg” = kilograms; SPAD at R1-R2 and SPAD R3-R4: Chlorophyl level after early and late stages of grain filling; “NUE” = nitrogen use efficiency; “NUpE” = nitrogen uptake efficiency; “LAI” = leaf area; “N” = nitrogen; Low N = under low Nitrogen conditions; “Normal” = under normal conditions; “dunam” = 1000 m2.

TABLE 56 Measured parameters in Maize accessions under normal conditions Corr. ID/ Line 1 2 3 4 5 6 7 8 9 10 11 Line-1 1.26 7 19.9 44 16.2 33 51.0 75 11.8 00 130.31 1 273.4 56 16.1 11 56.88 9 59.9 33 2.9 11 Line-2 1.30 0 20.1 67 17.5 00 46.2 90 11.1 11 122.33 3 260.5 00 14.6 67 57.16 1 60.9 00 2.6 44 Line-3 1.33 3 18.1 11 17.7 22 45.9 19 13.2 78 127.66 7 288.0 00 15.4 44 59.27 2 56.8 92 2.7 11 Line-4 1.50 0 19.8 89 18.4 44 47.6 32 11.7 78 113.02 2 238.5 00 15.8 89 61.61 1 58.7 00 2.9 00 Line-5 1.30 0 19.5 00 15.6 67 51.4 07 11.9 44 135.27 8 286.9 44 16.1 67 58.62 8 58.7 00 2.7 00 Line-6 1.58 3 17.7 22 14.6 67 47.4 20 12.3 33 94.278 224.8 33 15.1 67 61.22 8 63.1 58 2.6 22 Line-7 1.41 7 17.6 67 12.9 44 47.2 53 12.4 44 120.94 4 264.4 44 16.0 00 60.16 7 59.7 50 2.9 22 Line-8 1.36 7 17.2 78 14.0 28 46.8 46 12.2 22 107.72 2 251.6 11 14.8 33 61.08 9 62.3 50 2.7 22 Line-9 11.3 83 20.5 00 18.7 78 49.2 75 12.5 56 112.50 0 278.4 44 15.3 89 62.20 0 61.9 25 2.8 44 Line-10 1.70 0 17.5 00 12.3 33 48.2 83 11.6 67 139.66 7 279.0 00 17.6 67 57.50 6 57.2 25 2.6 56 Line-11 0.41 7 19.8 56 16.0 67 41.8 37 9.27 8 60.444 163.7 78 14.2 67 52.04 4 49.3 42 2.2 56 Table 56. Provided are the values of each of the parameters (as described above) measured in maize accessions (line ID) under normal conditions. Growth conditions are specified in the experimental procedure section.

TABLE 57 Additional Measured parameters in Maize accessions under normal conditions Corr. ID/ Line 12 14 15 16 17 18 20 21 13 19 Line-1 8.943 4.452 23.43 1 24.97 8 0.008 1335. 625 456.7 07 0.167 3.208 426.0 86 Line-2 7.023 3.624 19.05 2 17.80 7 0.009 1087. 058 412.4 43 0.136 3.947 312.9 75 Line-3 7.533 4.008 20.29 3 20.33 2 0.009 1202. 532 443.3 68 0.150 3.332 307.2 77 Line-4 7.991 4.237 20.71 9 19.95 7 0.010 1271. 204 438.7 05 0.159 4.012 362.4 42 Line-5 8.483 4.010 20.48 6 19.02 6 0.009 1202. 966 446.6 59 0.150 3.864 314.1 38 Line-6 5.632 3.124 15.36 0 13.90 4 0.011 937.0 83 356.9 50 0.117 4.191 224.5 82 Line-7 6.100 3.286 16.38 3 16.23 4 0.009 985.8 93 337.4 86 0.123 3.969 266.4 37 Line-8 6.659 3.500 17.19 1 17.21 4 0.009 1050. 131 385.7 90 0.131 4.322 261.6 64 Line-9 8.402 4.551 21.95 5 21.01 7 0.076 1365. 293 481.9 42 0.171 2.888 482.3 29 Line-10 8.215 4.087 20.99 4 21.52 9 0.004 1226. 077 471.5 68 0.153 4.306 Line-11 1.879 1.003 5.725 5.519 0.003 300.9 28 139.7 28 0.038 Table 57. Provided are the values of each of the parameters (as described above) measured in maize accessions (line ID) under normal conditions. Growth conditions are specified in the experimental procedure section.

TABLE 58 Measured parameters in Maize accessions under low Nitrogen conditions Corr. ID/ Line 1 2 3 4 5 6 7 8 9 10 11 Line-1 20.6 14 18.3 98 46.7 13 15.0 24 158. 076 305. 836 14.1 81 60.2 36 59.2 86 2.76 4 6.60 5 Line-2 20.9 76 18.4 17 48.2 22 11.6 43 136. 238 270. 929 15.2 14 57.9 38 57.6 21 2.41 9 7.97 4 Line-3 20.2 22 19.7 78 48.3 23 13.5 00 128. 389 290. 611 15.0 00 58.7 61 58.4 00 2.65 0 9.63 4 Line-4 20.1 11 18.8 33 49.8 63 11.6 11 133. 056 252. 167 15.6 67 59.4 78 59.1 89 2.76 7 9.22 2 Line-5 20.1 11 16.2 22 52.8 73 11.8 33 137. 833 260. 222 16.0 00 58.5 00 58.1 94 2.67 2 7.63 0 Line-6 18.5 00 16.0 00 47.4 36 11.8 89 99.5 56 227. 222 15.9 44 64.0 39 62.6 67 2.59 4 7.21 5 Line-7 19.0 56 15.2 78 49.6 09 12.5 56 130. 167 271. 722 15.5 56 56.4 22 61.0 44 2.98 3 7.91 7 Line-8 18.2 50 15.6 94 48.5 67 11.6 67 114. 611 248. 611 14.5 00 60.0 00 59.8 67 2.61 1 28.9 61 Line-9 20.0 95 16.7 71 52.4 06 12.4 43 143. 862 279. 329 16.4 10 58.3 17 57.4 67 2.65 0 7.79 7 Line-10 17.8 06 14.0 56 42.6 34 9.27 8 61.6 11 171. 278 14.3 67 53.0 61 49.6 11 2.27 8 2.41 0 Line-11 1.2 50 19.5 56 50.0 03 13.1 67 114. 444 269. 778 15.7 44 61.7 17 61.8 67 2.81 7 9.77 5 Table 58: Provided are the values of each of the parameters (as described above) measured in maize accessions (line ID) under low nitrogen conditions. Growth conditions are specified in the experimental procedure section.

TABLE 59 Additional measured parameters in Maize accessions under low Nitrogen conditions Corr. ID/ Line 12 14 15 16 17 18 20 21 13 19 Line-1 1.593 7.225 18.02 3 18.35 2 0.011 083. 749 416.5 32 0.135 2.923 341.5 01 Line-2 1.429 8.411 21.78 7 21.91 9 0.010 1261. 635 528.3 83 0.158 3.155 408.0 93 Line-3 1.533 10.32 8 26.33 5 26.47 9 0.010 1549. 245 583.4 58 0.194 3.330 464.7 68 Line-4 1.950 9.986 25.14 4 25.33 3 0.013 1497. 865 541.0 17 0.187 2.873 522.2 58 Line-5 1.483 7.626 19.54 7 19.68 5 0.010 1143. 850 428.0 89 0.143 2.786 439.5 25 Line-6 1.600 7.728 18.04 9 18.54 1 0.011 1159. 260 444.2 94 0.145 3.764 312.5 81 Line-7 1.583 8.049 21.38 8 19.78 5 0.011 1207. 424 407.2 00 0.151 3.499 345.9 01 Line-8 1.283 8.334 20.78 8 20.91 7 0.009 1250. 052 477.4 38 0.156 5.016 287.7 35 Line-9 1.514 7.640 19.67 6 19.93 5 0.010 1146. 036 445.6 04 0.143 Line-10 0.433 2.555 7.213 7.722 0.003 383.2 19 167.9 02 0.048 Line-11 1.517 10.59 9 25.70 2 25.90 2 0.010 1589. 914 562.2 94 0.199 3.157 501.2 39 Table 59: Provided are the values of each of the parameters (as described above) measured in maize accessions (line ID) under low nitrogen conditions. Growth conditions are specified in the experimental procedure section.

TABLE 60 Correlation between the expression level of selected genes of some embodiments of the invention in various tissues and the phenotypic performance under normal conditions across maize varieties Gene Name R P value Exp . set Cor. Set ID Gene Name R P value Exp. set Cor. Set ID LNU811 0.880 2.07E-02 1 13 LNU811 0.809 5.10E-02 5 13 LNU811 0.748 3.29E-02 2 12 LNU811 0.896 2.58E-03 2 4 LNU811 0.814 1.39E-02 2 8 LNU811 0.855 3.02E-02 6 13 LNU813 0.945 4.45E-03 5 5 LNU813 0.934 6.46E-03 5 10 LNU813 0.825 4.34E-02 5 9 LNU813 0.718 4.48E-02 2 17 LNU813 0.757 2.96E-02 2 11 LNU813 0.718 4.48E-02 2 1 LNU813 0.747 5.37E-02 4 17 LNU813 0.747 5.37E-02 4 1 LNU813 0.849 7.73E-03 3 10 LNU813 0.809 2.74E-02 6 7 LNU813 0.704 7.72E-02 6 10 LNU813 0.701 7.93E-02 6 16 LNU813 0.851 1.52E-02 6 6 LNU813 0.743 5.58E-02 6 9 LNU814 0.766 4.47E-02 1 8 LNU814 0.976 8.47E-04 5 17 LNU814 0.713 1.11E-01 5 3 LNU814 0.976 8.47E-04 5 1 LNU814 0.725 1.03E-01 5 9 LNU814 0.702 1.20E-01 5 19 LNU814 0.745 3.41E-02 2 11 LNU814 0.718 6.94E-02 4 3 LNU814 0.757 4.90E-02 4 6 LNU814 0.847 1.61E-02 4 8 LNU814 0.711 7.30E-02 6 8 LNU815 0.736 3.72E-02 2 10 LNU815 0.845 8.22E-03 3 12 LNU815 0.833 1.02E-02 3 15 LNU815 0.761 2.83E-02 3 14 LNU815 0.877 4.20E-03 3 4 LNU815 0.881 3.87E-03 3 16 LNU815 0.761 2.83E-02 3 18 LNU815 0.761 2.83E-02 3 21 LNU815 0.725 4.20E-02 3 19 LNU815 0.794 1.87E-02 7 13 LNU816 0.807 5.22E-02 1 19 LNU816 0.710 7.39E-02 1 2 LNU816 0.945 4.48E-03 5 13 LNU816 0.711 4.80E-02 2 10 LNU816 0.866 2.58E-02 4 13 LNU816 0.705 5.09E-02 3 5 LNU816 0.833 2.01E-02 6 7 LNU816 0.738 5.82E-02 6 16 LNU816 0.726 6.47E-02 6 6 LNU816 0.816 7.34E-03 7 11 LNU816 0.759 1.78E-02 7 9 LNU817 0.728 1.01E-01 5 11 LNU818 0.708 7.51E-02 1 12 LNU818 0.731 6.18E-02 1 11 LNU818 0.879 9.14E-03 1 5 LNU818 0.719 6.85E-02 1 14 LNU818 0.907 4.80E-03 1 4 LNU818 0.937 1.84E-03 1 10 LNU818 0.719 6.85E-02 1 18 LNU818 0.719 6.85E-02 1 21 LNU818 0.814 2.60E-02 1 9 LNU818 0.721 6.75E-02 1 20 LNU818 0.741 9.18E-02 5 11 LNU818 0.796 5.80E-02 5 10 LNU818 0.766 7.60E-02 5 8 LNU818 0.758 2.94E-02 2 4 LNU818 0.789 2.00E-02 3 10 LNU818 0.869 2.47E-02 6 13 LNU818 0.700 7.98E-02 6 11 LNU818 0.758 4.81E-02 6 10 LNU818 0.805 8.91E-03 7 10 LNU818 0.801 9.46E-03 7 9 LNU819 0.772 4.19E-02 1 3 LNU819 0.770 7.32E-02 1 19 LNU819 0.773 4.15E-02 1 2 LNU819 0.813 4.92E-02 5 5 LNU819 0.722 1.83E-02 8 7 LNU819 0.769 9.28E-03 8 5 LNU819 0.709 2.18E-02 8 6 LNU819 0.742 5.64E-02 4 10 LNU819 0.713 4.73E-02 3 17 LNU819 0.713 4.73E-02 3 1 LNU819 0.727 6.44E-02 6 4 LNU820 0.714 4.66E-02 3 3 LNU820 0.749 3.25E-02 3 2 LNU821 0.702 7.87E-02 1 5 LNU821 0.753 5.08E-02 1 8 LNU822 0.824 1.18E-02 7 13 LNU823 0.705 7.67E-02 4 11 LNU823 0.879 9.16E-03 4 3 LNU823 0.795 3.25E-02 4 8 LNU823 0.812 4.97E-02 4 19 LNU823 0.717 4.54E-02 3 9 LNU823 0.710 7.37E-02 6 17 LNU823 0.710 7.37E-02 6 1 LNU823 0.702 3.50E-02 7 9 LNU824 0.704 7.74E-02 1 6 LNU824 0.791 1.93E-02 2 11 LNU824 0.764 2.72E-02 2 9 LNU824 0.754 1.89E-02 7 6 LNU825 0.725 4.18E-02 2 4 LNU825 0.706 5.04E-02 3 2 LNU828 0.829 4.12E-02 5 5 LNU829 0.894 2.72E-03 2 7 LNU829 0.771 2.52E-02 2 6 LNU829 0.907 7.49E-04 7 17 LNU829 0.907 7.49E-04 7 1 LNU830 0.862 2.73E-02 5 9 LNU830 0.738 3.67E-02 2 11 LNU831 0.790 3.44E-02 4 3 LNU832 0.734 6.02E-02 1 7 LNU832 0.932 2.24E-03 1 5 LNU832 0.714 1.11E-01 5 10 LNU832 0.778 3.92E-02 4 7 LNU832 0.809 2.74E-02 4 12 LNU832 0.747 5.34E-02 4 11 LNU832 0.814 2.60E-02 4 15 LNU832 0.780 3.86E-02 4 14 LNU832 0.822 2.33E-02 4 16 LNU832 0.917 3.65E-03 4 6 LNU832 0.780 3.86E-02 4 18 LNU832 0.780 3.86E-02 4 21 LNU832 0.803 2.98E-02 4 20 LNU832 0.722 6.68E-02 6 5 LNU832 0.703 3.48E-02 7 11 LNU832 0.809 8.29E-03 7 5 LNU832 0.709 3.24E-02 7 10 LNU832 0.795 1.05E-02 7 9 LNU833 0.843 3.50E-02 5 5 LNU833 0.728 1.01E-01 5 4 LNU833 0.789 1.99E-02 2 5 LNU833 0.823 3.43E-03 8 10 LNU833 0.710 7.40E-02 4 3 LNU833 0.721 4.37E-02 3 10 LNU833 0.740 9.27E-02 6 13 LNU833 0.702 7.84E-02 6 10 LNU833 0.884 3.56E-03 7 13 LNU834 0.935 6.23E-03 1 13 LNU834 0.847 1.62E-02 1 10 LNU834 0.754 5.01E-02 1 9 LNU834 0.853 3.08E-02 5 4 LNU834 0.804 5.40E-02 5 10 LNU834 0.712 1.13E-01 5 19 LNU834 0.807 5.22E-02 5 2 LNU834 0.707 5.00E-02 2 8 LNU834 0.727 1.73E-02 8 15 LNU834 0.731 1.64E-02 8 16 LNU834 0.735 2.42E-02 8 19 LNU834 0.792 3.39E-02 4 4 LNU834 0.947 1.20E-03 4 10 LNU834 0.871 1.07E-02 6 17 LNU834 0.720 6.82E-02 6 4 LNU834 0.820 2.38E-02 6 6 LNU834 0.871 1.07E-02 6 1 LNU834 0.825 4.33E-02 6 19 LNU834 0.706 7.62E-02 6 20 LNU834 0.779 1.33E-02 7 7 LNU834 0.801 9.44E-03 7 12 LNU834 0.716 3.00E-02 7 11 LNU834 0.742 2.22E-02 7 15 LNU834 0.768 1.57E-02 7 14 LNU834 0.853 3.46E-03 7 4 LNU834 0.712 3.13E-02 7 10 LNU834 0.761 1.73E-02 7 6 LNU834 0.768 1.57E-02 7 18 LNU834 0.768 1.57E-02 7 21 LNU834 0.764 1.65E-02 7 20 LNU835 0.966 3.91E-04 1 7 LNU835 0.793 3.32E-02 1 12 LNU835 0.743 5.55E-02 1 5 LNU835 0.816 2.52E-02 1 15 LNU835 0.778 3.92E-02 1 14 LNU835 0.836 1.91E-02 1 16 LNU835 0.915 3.86E-03 1 6 LNU835 0.778 3.92E-02 1 18 LNU835 0.778 3.92E-02 1 21 LNU835 0.822 2.34E-02 1 20 LNU835 0.753 8.37E-02 5 10 LNU835 0.772 2.48E-02 2 10 LNU835 0.881 8.80E-03 6 7 LNU835 0.811 2.69E-02 6 12 LNU835 0.711 7.35E-02 6 11 LNU835 0.724 6.57E-02 6 5 LNU835 0.809 2.76E-02 6 15 LNU835 0.801 3.06E-02 6 14 LNU835 0.759 4.77E-02 6 4 LNU835 0.821 2.36E-02 6 10 LNU835 0.812 2.66E-02 6 16 LNU835 0.814 2.59E-02 6 6 LNU835 0.801 3.06E-02 6 18 LNU835 0.801 3.06E-02 6 21 LNU835 0.833 2.00E-02 6 20 LNU837 0.713 7.24E-02 1 11 LNU837 0.879 9.15E-03 1 8 LNU837 0.737 9.44E-02 5 7 LNU837 0.845 3.41E-02 5 6 LNU837 0.731 2.54E-02 8 19 LNU837 0.752 5.14E-02 4 2 LNU838 0.821 4.54E-02 5 17 LNU838 0.715 1.10E-01 5 3 LNU838 0.821 4.54E-02 5 1 LNU838 0.784 2.14E-02 3 7 LNU838 0.717 4.53E-02 3 6 LNU839 0.853 3.08E-02 5 4 LNU839 0.712 1.13E-01 5 19 LNU839 0.807 5.22E-02 5 2 LNU839 0.707 5.00E-02 2 8 LNU839 0.820 2.38E-02 6 6 LNU840 0.842 1.74E-02 1 7 LNU840 0.701 7.90E-02 1 6 LNU840 0.884 1.95E-02 5 17 LNU840 0.884 1.95E-02 5 1 LNU841 0.754 5.01E-02 4 7 LNU841 0.761 4.68E-02 4 12 LNU841 0.781 3.80E-02 4 15 LNU841 0.729 6.29E-02 4 14 LNU841 0.760 4.76E-02 4 16 LNU841 0.894 6.56E-03 4 6 LNU841 0.729 6.29E-02 4 18 LNU841 0.729 6.29E-02 4 21 LNU841 0.769 4.32E-02 4 20 LNU843 0.761 4.69E-02 1 4 LNU843 0.726 6.49E-02 1 9 LNU843 0.717 1.97E-02 8 5 LNU843 0.828 2.15E-02 4 7 LNU843 0.864 1.21E-02 4 12 LNU843 0.800 3.08E-02 4 11 LNU843 0.852 1.48E-02 4 15 LNU843 0.840 1.79E-02 4 14 LNU843 0.742 5.64E-02 4 4 LNU843 0.717 6.98E-02 4 10 LNU843 0.859 1.34E-02 4 16 LNU843 0.834 1.98E-02 4 6 LNU843 0.840 1.79E-02 4 18 LNU843 0.840 1.79E-02 4 21 LNU843 0.848 1.59E-02 4 20 LNU844 0.894 1.63E-02 5 5 LNU845 0.761 7.91E-02 5 6 LNU845 0.800 1.71E-02 2 17 LNU845 0.800 1.71E-02 2 1 LNU845 0.825 1.17E-02 2 9 LNU845 0.710 2.14E-02 8 11 LNU845 0.874 1.01E-02 4 8 LNU846 0.809 5.14E-02 5 10 LNU846 0.787 2.06E-02 2 12 LNU846 0.865 5.50E-03 2 4 LNU846 0.707 4.99E-02 2 19 LNU846 0.735 1.55E-02 8 11 LNU846 0.706 2.26E-02 8 8 LNU846 0.746 5.39E-02 4 12 LNU846 0.819 2.41E-02 4 11 LNU846 0.737 5.88E-02 4 15 LNU846 0.771 4.23E-02 4 14 LNU846 0.796 3.24E-02 4 4 LNU846 0.703 7.81E-02 4 16 LNU846 0.771 4.23E-02 4 18 LNU846 0.899 5.94E-03 4 8 LNU846 0.771 4.23E-02 4 21 LNU846 0.726 6.45E-02 4 9 LNU846 0.755 8.24E-02 4 19 LNU846 0.724 6.56E-02 4 20 LNU846 0.809 8.33E-03 7 3 LNU846 0.849 7.69E-03 7 19 LNU846 0.746 2.09E-02 7 2 Table 60. Provided are the correlations (R) between the expression levels yield improving genes and their homologs in various tissues [Expression (Exp) sets] and the phenotypic performance [yield, biomass, growth rate and/or vigor components (Correlation vector (Cor))] under normal conditions across maize varieties. P = p value.

TABLE 61 Correlation between the expression level of selected genes of some embodiments of the invention in various tissues and the phenotypic performance under low N conditions across maize varieties Gene Name R P value Exp. set Corr. Set ID Gene Name R P value Exp. set Corr. Set ID LNU811 0.836 3.80E-02 1 13 LNU811 0.782 2.18E-02 5 19 LNU813 0.876 2.22E-02 1 13 LNU813 0.762 4.66E-02 1 11 LNU813 0.835 1.93E-02 1 2 LNU813 0.731 6.18E-02 1 1 LNU813 0.766 1.61E-02 5 7 LNU813 0.705 5.09E-02 5 19 LNU813 0.730 9.98E-02 6 10 LNU813 0.842 3.53E-02 6 9 LNU813 0.879 2.10E-02 6 5 LNU813 0.941 5.07E-03 6 6 LNU813 0.708 1.16E-01 6 15 LNU813 0.708 1.15E-01 6 19 LNU813 0.733 9.77E-02 6 1 LNU813 0.727 1.73E-02 3 10 LNU813 0.766 9.82E-03 3 9 LNU813 0.843 1.72E-02 8 13 LNU813 0.726 6.48E-02 7 13 LNU813 0.702 5.21E-02 7 8 LNU813 0.746 5.42E-02 4 6 LNU814 0.832 3.97E-02 1 19 LNU814 0.923 3.02E-03 1 2 LNU814 0.752 5.12E-02 1 1 LNU814 0.713 7.21E-02 1 16 LNU814 0.873 4.67E-03 5 13 LNU814 0.786 2.07E-02 5 19 LNU814 0.777 6.88E-02 6 18 LNU814 0.850 3.20E-02 6 4 LNU814 0.776 6.94E-02 6 8 LNU814 0.777 6.88E-02 6 14 LNU814 0.703 1.20E-01 6 20 LNU814 0.897 1.54E-02 6 6 LNU814 0.881 2.04E-02 6 15 LNU814 0.808 5.18E-02 6 19 LNU814 0.777 6.88E-02 6 2 LNU814 0.777 6.88E-02 6 21 LNU814 0.833 3.95E-02 6 16 LNU814 0.785 3.64E-02 8 13 LNU814 0.752 3.14E-02 8 10 LNU814 0.727 4.08E-02 8 4 LNU814 0.873 1.03E-02 7 13 LNU814 0.799 1.73E-02 7 11 LNU814 0.826 2.21E-02 7 19 LNU814 0.766 2.67E-02 7 2 LNU814 0.774 2.43E-02 2 10 LNU814 0.802 3.02E-02 4 5 LNU814 0.729 6.28E-02 4 11 LNU814 0.742 5.61E-02 4 15 LNU814 0.839 1.83E-02 4 19 LNU814 0.703 7.78E-02 4 2 LNU814 0.709 7.47E-02 4 16 LNU815 0.775 7.03E-02 6 13 LNU815 0.903 1.37E-02 6 11 LNU816 0.830 2.08E-02 1 1 LNU816 0.934 6.40E-03 6 3 LNU816 0.815 4.09E-03 3 9 LNU816 0.911 4.27E-03 8 13 LNU816 0.753 3.10E-02 8 7 LNU816 0.883 8.36E-03 7 13 LNU816 0.910 1.71E-03 7 11 LNU817 0.748 2.04E-02 5 6 LNU817 0.737 9.47E-02 6 5 LNU817 0.708 4.94E-02 2 10 LNU817 0.792 1.92E-02 2 4 LNU817 0.916 1.41E-03 2 5 LNU817 0.893 2.82E-03 2 6 LNU817 0.775 4.09E-02 4 6 LNU818 0.878 9.37E-03 1 8 LNU818 0.844 8.44E-03 5 13 LNU818 0.705 3.40E-02 5 11 LNU818 0.910 1.19E-02 6 18 LNU818 0.760 7.98E-02 6 4 LNU818 0.709 1.15E-01 6 8 LNU818 0.910 1.19E-02 6 14 LNU818 0.716 1.10E-01 6 20 LNU818 0.771 7.29E-02 6 15 LNU818 0.796 5.84E-02 6 19 LNU818 0.742 9.11E-02 6 2 LNU818 0.910 1.19E-02 6 21 LNU818 0.814 4.89E-02 6 16 LNU818 0.806 8.77E-03 3 13 LNU818 0.705 5.08E-02 8 8 LNU818 0.828 1.12E-02 7 8 LNU818 0.882 8.69E-03 2 13 LNU818 0.882 3.71E-03 2 11 LNU818 0.776 4.04E-02 4 9 LNU818 0.860 1.31E-02 4 8 LNU819 0.712 1.12E-01 6 18 LNU819 0.712 1.12E-01 6 14 LNU819 0.703 1.19E-01 6 15 LNU819 0.889 1.78E-02 6 19 LNU819 0.946 4.29E-03 6 1 LNU819 0.712 1.12E-01 6 21 LNU819 0.742 5.63E-02 4 17 LNU819 0.729 6.32E-02 4 8 LNU819 0.859 1.32E-02 4 7 LNU819 0.742 5.63E-02 4 12 LNU820 0.854 3.06E-02 6 10 LNU820 0.748 8.71E-02 6 3 LNU820 0.771 7.27E-02 6 5 LNU820 0.738 3.67E-02 8 17 LNU820 0.738 3.67E-02 8 12 LNU820 0.783 2.16E-02 2 18 LNU820 0.783 2.16E-02 2 14 LNU820 0.826 1.15E-02 2 20 LNU820 0.778 2.29E-02 2 15 LNU820 0.783 2.16E-02 2 21 LNU820 0.798 1.76E-02 2 16 LNU821 0.705 1.18E-01 1 19 LNU821 0.701 7.95E-02 1 2 LNU821 0.835 3.85E-02 6 8 LNU821 0.846 8.04E-03 2 18 LNU821 0.846 8.04E-03 2 14 LNU821 0.874 4.59E-03 2 20 LNU821 0.818 1.31E-02 2 15 LNU821 0.888 7.64E-03 2 19 LNU821 0.922 1.13E-03 2 2 LNU821 0.763 2.75E-02 2 1 LNU821 0.846 8.04E-03 2 21 LNU821 0.867 5.26E-03 2 16 LNU821 0.953 8.86E-04 4 17 LNU821 0.953 8.86E-04 4 12 LNU822 0.727 6.41E-02 8 19 LNU822 0.795 3.24E-02 4 17 LNU822 0.795 3.24E-02 4 12 LNU823 0.832 2.02E-02 1 17 LNU823 0.712 7.28E-02 1 9 LNU823 0.712 7.29E-02 1 3 LNU823 0.710 7.38E-02 1 5 LNU823 0.926 2.77E-03 1 7 LNU823 0.832 2.02E-02 1 12 LNU823 0.710 3.23E-02 5 10 LNU823 0.770 9.19E-03 3 3 LNU823 0.735 3.79E-02 2 3 LNU823 0.842 8.65E-03 2 7 LNU823 0.713 7.21E-02 4 4 LNU823 0.704 7.75E-02 4 7 LNU824 0.769 4.32E-02 1 18 LNU824 0.757 4.88E-02 1 4 LNU824 0.769 4.32E-02 1 14 LNU824 0.740 5.71E-02 1 15 LNU824 0.800 5.60E-02 1 19 LNU824 0.774 4.10E-02 1 2 LNU824 0.784 3.71E-02 1 1 LNU824 0.769 4.32E-02 1 21 LNU824 0.746 5.40E-02 1 16 LNU824 0.791 1.12E-02 5 9 LNU824 0.714 3.07E-02 5 4 LNU824 0.758 4.85E-02 8 19 LNU824 0.703 5.17E-02 2 17 LNU824 0.835 9.93E-03 2 4 LNU824 0.877 4.25E-03 2 5 LNU824 0.889 3.12E-03 2 6 LNU824 0.703 5.17E-02 2 12 LNU824 0.786 3.60E-02 4 13 LNU824 0.846 1.65E-02 4 11 LNU825 0.800 3.06E-02 1 8 LNU825 0.916 3.70E-03 8 13 LNU825 0.885 3.45E-03 8 11 LNU825 0.729 4.03E-02 7 8 LNU825 0.908 4.75E-03 2 13 LNU825 0.804 1.62E-02 2 11 LNU825 0.740 5.74E-02 4 17 LNU825 0.740 5.74E-02 4 12 LNU828 0.990 1.44E-04 6 5 LNU828 0.823 4.40E-02 6 6 LNU828 0.721 1.06E-01 6 15 LNU829 0.805 2.91E-02 4 8 LNU830 0.762 2.78E-02 5 19 LNU830 0.748 8.74E-02 6 7 LNU831 0.939 5.45E-03 1 13 LNU831 0.715 7.09E-02 1 11 LNU831 0.904 2.03E-03 5 13 LNU831 0.757 1.81E-02 5 11 LNU831 0.702 7.90E-02 8 13 LNU831 0.894 6.66E-03 2 13 LNU831 0.921 3.25E-03 4 13 LNU831 0.978 1.40E-04 4 11 LNU832 0.825 2.23E-02 1 5 LNU832 0.768 4.36E-02 1 20 LNU832 0.866 1.18E-02 1 6 LNU832 0.719 6.85E-02 1 15 LNU832 0.801 3.05E-02 1 1 LNU832 0.706 7.60E-02 1 16 LNU832 0.895 1.61E-02 6 5 LNU832 0.875 2.24E-02 6 6 LNU832 0.856 3.21E-03 3 13 LNU832 0.767 9.66E-03 3 9 LNU832 0.827 3.13E-03 3 11 LNU832 0.707 4.96E-02 8 5 LNU832 0.746 3.36E-02 8 11 LNU832 0.713 4.73E-02 8 6 LNU832 0.797 1.79E-02 7 18 LNU832 0.827 1.13E-02 7 4 LNU832 0.725 4.20E-02 7 3 LNU832 0.893 2.85E-03 7 5 LNU832 0.797 1.79E-02 7 14 LNU832 0.829 1.09E-02 7 20 LNU832 0.944 4.10E-04 7 6 LNU832 0.839 9.28E-03 7 15 LNU832 0.797 1.79E-02 7 21 LNU832 0.817 1.33E-02 7 16 LNU832 0.809 1.51E-02 2 9 LNU832 0.734 3.80E-02 2 4 LNU832 0.717 4.54E-02 2 11 LNU832 0.751 3.17E-02 2 6 LNU833 0.778 3.96E-02 1 10 LNU833 0.813 2.61E-02 1 5 LNU833 0.765 4.51E-02 1 11 LNU833 0.746 5.44E-02 1 6 LNU833 0.873 1.02E-02 1 1 LNU833 0.776 6.99E-02 6 8 LNU833 0.738 9.37E-02 6 11 LNU833 0.853 1.46E-02 7 13 LNU833 0.904 2.03E-03 7 11 LNU833 0.715 4.62E-02 2 20 LNU833 0.738 3.66E-02 2 11 LNU833 0.715 4.63E-02 2 16 LNU833 0.745 5.46E-02 4 9 LNU833 0.836 1.92E-02 4 8 LNU834 0.820 2.41E-02 1 18 LNU834 0.737 5.87E-02 1 10 LNU834 0.871 1.07E-02 1 17 LNU834 0.810 2.71E-02 1 9 LNU834 0.722 6.72E-02 1 4 LNU834 0.819 2.43E-02 1 3 LNU834 0.805 2.90E-02 1 5 LNU834 0.894 6.67E-03 1 7 LNU834 0.820 2.41E-02 1 14 LNU834 0.750 5.23E-02 1 20 LNU834 0.803 2.96E-02 1 6 LNU834 0.869 1.10E-02 1 15 LNU834 0.871 1.07E-02 1 12 LNU834 0.886 1.88E-02 1 19 LNU834 0.805 2.88E-02 1 2 LNU834 0.724 6.61E-02 1 1 LNU834 0.820 2.41E-02 1 21 LNU834 0.852 1.49E-02 1 16 LNU834 0.927 7.87E-03 6 18 LNU834 0.846 3.38E-02 6 4 LNU834 0.927 7.87E-03 6 14 LNU834 0.831 4.03E-02 6 15 LNU834 0.879 2.12E-02 6 19 LNU834 0.758 8.05E-02 6 2 LNU834 0.927 7.87E-03 6 21 LNU834 0.839 3.69E-02 6 16 LNU834 0.723 2.78E-02 3 13 LNU834 0.743 1.37E-02 3 17 LNU834 0.786 7.05E-03 3 9 LNU834 0.711 2.12E-02 3 3 LNU834 0.795 6.03E-03 3 11 LNU834 0.743 1.37E-02 3 12 LNU834 0.700 5.31E-02 8 10 LNU834 0.927 9.31E-04 8 4 LNU834 0.758 2.93E-02 8 5 LNU834 0.855 6.81E-03 8 6 LNU834 0.775 2.38E-02 7 7 LNU834 0.760 2.87E-02 7 11 LNU834 0.933 2.14E-03 2 13 LNU834 0.748 3.29E-02 2 17 LNU834 0.765 2.69E-02 2 9 LNU834 0.883 3.63E-03 2 4 LNU834 0.851 7.38E-03 2 5 LNU834 0.850 7.48E-03 2 6 LNU834 0.748 3.29E-02 2 12 LNU834 0.822 2.31E-02 4 13 LNU834 0.990 1.73E-05 4 11 LNU835 0.867 1.16E-02 1 8 LNU835 0.710 7.37E-02 1 20 LNU835 0.822 4.45E-02 6 11 LNU835 0.754 1.89E-02 3 13 LNU835 0.892 6.97E-03 8 13 LNU835 0.973 4.88E-05 8 11 LNU835 0.739 3.61E-02 7 5 LNU835 0.711 4.81E-02 7 20 LNU835 0.788 2.01E-02 2 4 LNU835 0.780 2.25E-02 2 6 LNU835 0.881 8.78E-03 4 13 LNU837 0.897 1.54E-02 1 19 LNU837 0.776 4.02E-02 1 2 LNU837 0.825 2.24E-02 1 1 LNU838 0.941 1.55E-03 4 13 LNU838 0.953 9.08E-04 4 11 LNU839 0.820 2.41E-02 1 18 LNU839 0.739 5.77E-02 1 17 LNU839 0.722 6.72E-02 1 4 LNU839 0.740 5.73E-02 1 3 LNU839 0.805 2.90E-02 1 5 LNU839 0.820 2.41E-02 1 14 LNU839 0.750 5.23E-02 1 20 LNU839 0.803 2.96E-02 1 6 LNU839 0.869 1.10E-02 1 15 LNU839 0.739 5.77E-02 1 12 LNU839 0.886 1.88E-02 1 19 LNU839 0.805 2.88E-02 1 2 LNU839 0.724 6.61E-02 1 1 LNU839 0.820 2.41E-02 1 21 LNU839 0.852 1.49E-02 1 16 LNU839 0.927 7.87E-03 6 18 LNU839 0.846 3.38E-02 6 4 LNU839 0.731 9.85E-02 6 8 LNU839 0.927 7.87E-03 6 14 LNU839 0.831 4.03E-02 6 15 LNU839 0.879 2.12E-02 6 19 LNU839 0.758 8.05E-02 6 2 LNU839 0.927 7.87E-03 6 21 LNU839 0.839 3.69E-02 6 16 LNU839 0.723 2.78E-02 3 13 LNU839 0.795 6.03E-03 3 11 LNU839 0.760 2.87E-02 7 11 LNU839 0.883 3.63E-03 2 4 LNU839 0.851 7.38E-03 2 5 LNU839 0.850 7.48E-03 2 6 LNU839 0.822 2.31E-02 4 13 LNU839 0.752 5.11E-02 4 9 LNU839 0.930 2.40E-03 4 8 LNU839 0.990 1.73E-05 4 11 LNU840 0.701 5.28E-02 7 9 LNU841 0.843 3.50E-02 6 13 LNU841 0.737 3.69E-02 8 8 LNU841 0.929 2.48E-03 7 13 LNU841 0.808 1.54E-02 7 11 LNU843 0.701 7.94E-02 1 18 LNU843 0.871 1.07E-02 1 10 LNU843 0.890 7.22E-03 1 17 LNU843 0.787 3.58E-02 1 9 LNU843 0.803 2.97E-02 1 3 LNU843 0.821 2.36E-02 1 7 LNU843 0.701 7.94E-02 1 14 LNU843 0.890 7.22E-03 1 12 LNU843 0.701 7.94E-02 1 21 LNU843 0.722 1.84E-02 3 10 LNU844 0.745 8.95E-02 6 10 LNU844 0.865 5.60E-03 8 7 LNU844 0.765 2.69E-02 7 17 LNU844 0.814 1.38E-02 7 7 LNU844 0.765 2.69E-02 7 12 LNU845 0.823 2.28E-02 1 18 LNU845 0.706 7.65E-02 1 17 LNU845 0.786 3.60E-02 1 9 LNU845 0.746 5.42E-02 1 3 LNU845 0.903 5.33E-03 1 5 LNU845 0.823 2.28E-02 1 14 LNU845 0.847 1.61E-02 1 20 LNU845 0.840 1.81E-02 1 6 LNU845 0.871 1.06E-02 1 15 LNU845 0.706 7.65E-02 1 12 LNU845 0.818 4.68E-02 1 19 LNU845 0.879 9.12E-03 1 2 LNU845 0.909 4.59E-03 1 1 LNU845 0.823 2.28E-02 1 21 LNU845 0.873 1.04E-02 1 16 LNU845 0.818 4.64E-02 6 9 LNU845 0.894 1.62E-02 6 7 LNU845 0.705 2.28E-02 3 7 LNU845 0.710 3.20E-02 3 19 LNU845 0.785 7.12E-03 3 1 LNU845 0.784 2.12E-02 8 17 LNU845 0.839 9.14E-03 8 9 LNU845 0.816 1.35E-02 8 8 LNU845 0.740 3.58E-02 8 7 LNU845 0.717 4.54E-02 8 20 LNU845 0.784 2.12E-02 8 12 LNU845 0.763 2.75E-02 7 9 LNU845 0.762 2.79E-02 7 8 LNU845 0.797 3.17E-02 4 5 LNU845 0.703 7.81E-02 4 6 LNU846 0.711 1.13E-01 6 10 LNU846 0.791 6.08E-02 6 3 LNU846 0.843 8.57E-03 8 17 LNU846 0.881 3.86E-03 8 5 LNU846 0.788 2.03E-02 8 6 LNU846 0.843 8.57E-03 8 12 LNU846 0.779 2.26E-02 7 10 LNU846 0.701 5.25E-02 2 18 LNU846 0.820 1.26E-02 2 10 LNU846 0.845 8.19E-03 2 9 LNU846 0.832 1.05E-02 2 3 LNU846 0.701 5.25E-02 2 14 LNU846 0.724 4.25E-02 2 6 LNU846 0.711 4.82E-02 2 15 LNU846 0.701 5.25E-02 2 21 Table 61. Provided are the correlations (R) between the expression levels yield improving genes and their homologs in various tissues [Expression (Exp) sets] and the phenotypic performance [yield, biomass, growth rate and/or vigor components (Correlation vector (Cor))] under low Nitrogen conditions across maize varieties. P = p value.

Example 9 Production of Tomato Transcriptom and High Throughput Correlation Analysis Using 44K Tomato Oligonucleotide Micro-Array

In order to produce a high throughput correlation analysis between NUE related phenotypes and gene expression, the present inventors utilized a Tomato oligonucleotide micro-array, produced by Agilent Technologies [chem. (dot) agilent (dot) com/Scripts/PDS (dot) asp?lPage=50879]. The array oligonucleotide represents about 44,000 Tomato genes and transcripts. In order to define correlations between the levels of RNA expression with NUE, ABST, yield components or vigor related parameters various plant characteristics of 18 different Tomato varieties were analyzed. Among them, 10 varieties encompassing the observed variance were selected for RNA expression analysis. The correlation between the RNA levels and the characterized parameters was analyzed using Pearson correlation test [davidmlane (dot) com/hyperstat/A34739 (dot) html].

Correlation of Tomato Varieties Across Ecotypes Grown Under Low Nitrogen, Drought and Regular Growth Conditions Experimental Procedures

10 Tomato varieties were grown in 3 repetitive blocks, each containing 6 plants per plot were grown at net house. Briefly, the growing protocol was as follows:

  • 1. Regular growth conditions: Tomato varieties were grown under normal conditions (4-6 Liters/m2 of water per day and fertilized with NPK as recommended in protocols for commercial tomato production).
  • 2. Low Nitrogen fertilization conditions: Tomato varieties were grown under normal conditions (4-6 Liters/m2 per day and fertilized with NPK as recommended in protocols for commercial tomato production) until flower stage. At this time, Nitrogen fertilization was stopped.
  • 3. Drought stress: Tomato variety was grown under normal conditions (4-6 Liters/m2 per day) until flower stage. At this time, irrigation was reduced to 50% compared to normal conditions.

Plants were phenotyped on a daily basis following the standard descriptor of tomato (Table 63). Harvest was conducted while 50% of the fruits were red (mature). Plants were separated to the vegetative part and fruits, of them, 2 nodes were analyzed for additional inflorescent parameters such as size, number of flowers, and inflorescent weight. Fresh weight of all vegetative material was measured. Fruits were separated to colors (red vs. green) and in accordance with the fruit size (small, medium and large). Next, analyzed data was saved to text files and processed using the JMP statistical analysis software (SAS institute). Data parameters collected are summarized in Tables 64-70, hereinbelow.

Analyzed Tomato tissues - Two tissues at different developmental stages [flower and leaf], representing different plant characteristics, were sampled and RNA was extracted as described above. For convenience, each micro-array expression information tissue type has received a Set ID as summarized in Table 62 below.

TABLE 62 Tomato transcriptom expression sets Set ID Expression Set 1 Tomato field/NUE/leaf 2 Tomato field/NUE/flower 3 Tomato field/Drought/leaf 4 Tomato field/Normal/leaf 5 Tomato field/Normal/flower 6 Tomato field/Drought/flower 7 Tomato field Drought leaf 8 Tomato field Drought flower 9 Tomato field NUE leaf 10 Tomato field NUE flower 11 Tomato field Normal leaf 12 Tomato field Normal flower Table 62: Provided are the identification (ID) letters of each of the tomato expression sets.

Table 63 provides the tomato correlated parameters (Vectors). The average for each of the measured parameter was calculated using the JMP software and values are summarized in Tables 64-70 below. Subsequent correlation analysis was conducted (Table 71). Results were integrated to the database.

TABLE 63 Tomato correlated parameters (vectors) Correlated parameter with Correlation ID 100 weight green fruit (Drought) [kg] 1 100 weight green fruit (Low N) [kg] 2 100 weight green fruit (Normal) [kg] 3 100 weight red fruit (Drought) [kg] 4 100 weight red fruit (Low N) [kg] 5 100 weight red fruit (Normal) [kg] 6 Cluster Weight NUE/Normal [kg] 7 FW NUE/Normal [gr.] 8 FW drought/Normal [gr.] 9 FW/Plant (NUE) [gr.] 10 FW/Plant (Normal) [gr.] 11 FW/Plant Drought [gr.] 12 Fruit Drought/NUE [gr.] 13 Fruit NUE/Normal [gr.] 14 Fruit Yield Drought/Normal [gr.] 15 Fruit Yield/Plant (NUE) [gr.] 16 Fruit Yield/Plant Drought [gr.] 17 Fruit yield /Plant (Normal) [gr.] 18 HI [yield/yield+biomass] (Low N) 19 HI [yield/yield+biomass] (Normal) 20 Leaflet Length [cm] (Low N) [cm] 21 Leaflet Length [cm] (Normal) [cm] 22 Leaflet Length [cm]) (Drought) [cm] 23 Leaflet Width (Low N) [cm] 24 Leaflet Width (Normal) [cm] 25 Leaflet Width [cm] (Drought) [cm] 26 NUE [yield/SPAD] (Low N) 27 NUE [yield/SPAD] (Normal) 28 NUE2 [total biomass/SPAD] (Low N) 29 NUE2 [total biomass/SPAD] (Normal) 30 NUpE [biomass/SPAD] (Low N) 31 NUpE [biomass/SPAD] (Normal) 32 No flowers (NUE) 33 No flowers (Normal) 34 Num of Flower Drought/NUE 35 Num of Flower Drought/Normal 36 Num of flowers (Drought) 37 Num. Flowers NUE/Normal 38 RWC (Normal) [%] 39 RWC Drought [%] 40 RWC Drought/Normal [%] 41 RWC NUE [%] 42 RWC NUE/Normal [%] 43 SAPD 100% RWC NUE/Normal [SPAD unit] 44 SLA [leaf area/plant biomass] (Low N) 45 SLA [leaf area/plant biomass] (Normal) 46 SPAD (Normal) [SPAD unit] 47 SPAD 100% RWC (NUE) [SPAD unit] 48 SPAD 100% RWC (Normal) [SPAD unit] 49 SPAD NUE [SPAD unit] 50 SPAD NUE/Normal [SPAD unit] 51 Total Leaf Area [cm^2] (Low N) 52 Total Leaf Area [cm^2] (Normal) 53 Total Leaf Area [cm^2]) (Drought) 54 Weight Flower clusters (Normal) [gr.] 55 Weight clusters (flowers) (NUE) [gr.] 56 Weight flower clusters (Drought) [gr.] 57 Yield/SLA (Low N) 58 Yield/SLA (Normal) 59 Yield/total leaf area (Low N) 60 Yield/total leaf area (Normal) 61 average red fruit weight (NUE) [gr.] 62 average red fruit weight (Normal) [gr.] 63 average red fruit weight Drought [gr.] 64 flower cluster weight Drought/NUE [gr.] 65 flower cluster weight Drought/Normal [gr.] 66 red fruit weight Drought/Normal [gr.] 67 Table 63. Provided are the tomato correlated parameters. “gr.” = grams; “FW” = fresh weight; “NUE” = nitrogen use efficiency; “RWC” = relative water content; “NUpE” = nitrogen uptake efficiency; “SPAD” = chlorophyll levels; “HI” = harvest index (vegetative weight divided on yield); “SLA” = specific leaf area (leaf area divided by leaf dry weight).

Fruit Yield (grams) - At the end of the experiment [when 50% of the fruit were ripe (red)] all fruits from plots within blocks A-C were collected. The total fruits were counted and weighted. The average fruits weight was calculated by dividing the total fruit weight by the number of fruits.

Yield/SLA and Yield/total leaf area - Fruit yield divided by the specific leaf area or the total leaf area gives a measurement of the balance between reproductive and vegetative processes.

Plant Fresh Weight (grams) - At the end of the experiment [when 50% of the fruit were ripe (red)] all plants from plots within blocks A-C were collected. Fresh weight was measured (grams).

Inflorescence Weight (grams) - At the end of the experiment [when 50% of the fruits were ripe (red)] two inflorescence from plots within blocks A-C were collected. The inflorescence weight (gr.) and number of flowers per inflorescence were counted.

SPAD - Chlorophyll content was determined using a Minolta SPAD 502 chlorophyll meter and measurement was performed at time of flowering. SPAD meter readings were done on young fully developed leaf. Three measurements per leaf were taken per plot.

Water use efficiency (WUE) - can be determined as the biomass produced per unit transpiration. To analyze WUE, leaf relative water content was measured in control and transgenic plants. Fresh weight (FW) was immediately recorded; then leaves were soaked for 8 hours in distilled water at room temperature in the dark, and the turgid weight (TW) was recorded. Total dry weight (DW) was recorded after drying the leaves at 60° C. to a constant weight. Relative water content (RWC) was calculated according to the following Formula I [(FW - DW/TW - DW) x 100] as described above.

Plants that maintain high relative water content (RWC) compared to control lines were considered more tolerant to drought than those exhibiting reduced relative water content.

Experimental Results

TABLE 64 Measured parameters in Tomato accessions under drought conditions line ID/Co r. ID 9 12 13 15 17 35 36 37 40 41 57 64 Line-1 1.717 2.620 1.151 0.565 0.467 0.877 2.941 16.667 72.120 0.990 0.368 0.009 Line-2 0.344 1.092 0.732 1.415 0.483 1.219 0.336 6.500 74.510 0.974 0.407 0.195 Line-3 0.611 1.847 1.321 1.274 0.629 1.741 2.474 15.667 65.330 1.016 0.325 0.209 Line-4 2.630 2.221 0.756 2.876 0.347 1.564 2.652 20.333 72.220 1.077 0.288 0.005 Line-5 1.177 2.634 1.513 4.201 2.044 1.094 1.207 11.67 66.30 1.207 0.551 0.102 Line-6 1.365 2.708 0.705 0.550 0.250 1.520 3.040 25.333 68.330 0.880 0.311 0.002 Line-7 4.018 3.406 5.063 0.085 0.045 4.956 5.947 29.733 78.130 1.343 0.445 0.035 Line-8 1.010 2.108 0.891 1.030 0.453 1.083 2.080 17.333 18.460 0.278 0.555 0.006 Line-9 0.608 1.948 0.671 1.392 0.292 0.978 1.467 14.667 73.210 1.131 0.304 0.005 Line-10 0.640 1.763 2.171 3.280 1.017 4.944 4.238 29.667 62.500 0.831 0.315 0.005 Line-11 0.950 1.721 0.377 0.906 0.600 0.882 1.667 15.000 67.210 1.015 0.308 0.005 Line-12 0.510 1.923 1.273 2.618 0.494 0.795 1.292 10.333 75.760 1.199 0.311 0.012 Line-13 1.168 2.206 0.842 0.319 0.272 2.115 3.438 18.33 62.820 1.107 8.360 0.005 Line-14 0.938 3.731 0.512 2.484 0.679 1.286 1.500 12.000 70.690 1.966 0.288 0.006 Line-15 0.352 0.754 0.984 0.405 0.140 1.605 2.652 20.333 55.750 0.718 0.342 0.303 Line-16 1.063 1.757 1.337 1.619 0.529 1.900 1.407 12.667 75.220 0.752 0.441 0.138 Line-17 0.208 0.626 0.384 1.763 0.554 1.357 1.188 12.667 63.680 1.008 0.268 0.040 Line-18 0.483 1.109 0.837 1.424 0.414 1.417 1.29 11.333 62.310 0.829 0.426 0.089 Table 64: Provided are the values of each of the parameters (as described above) measured in Sorghum accessions (line ID) under drought growth conditions. Growth conditions are specified in the experimental procedure section.

TABLE 65 Additional Measured parameters in Tomato accessions under drought conditions line ID/Cor. ID 65 66 67 1 4 23 26 54 Line-1 0.689 0.315 0.193 Line-2 1.110 1.190 24.373 Line-3 1.060 0.469 25.384 Line-4 0.823 0.005 0.016 Line-5 1.163 1.252 20.259 Line-6 1.250 0.028 0.036 Line-7 1.517 0.563 0.150 Line-8 1.190 0.963 0.022 Line-9 0.759 0.416 0.863 Line-10 1.039 0.378 0.737 Line-11 0.376 0.358 0.090 Line-12 0.778 0.622 1.715 0.8 0.88667 5.1504 2.55142 337.63 Line-13 24.115 8.196 0.171 0.28 0.34667 3.38139 2.04437 130.779 Line-14 0.673 0.411 0.024 0.38 0.62667 7.13977 4.16522 557.927 Line-15 0.967 0.907 10.501 0.63333 2.27 5.47615 3.08653 176.671 Line-16 0.988 0.669 27.890 2.86 7.4 8.62307 4.69436 791.863 Line-17 0.949 0.383 11.789 1.16 2.94 6.34602 3.86722 517.049 Line-18 0.907 1.305 9.979 4.39667 11.6 6.77153 2.9104 832.265 Table 65: Provided are the values of each of the parameters (as described above) measured in Tomato accessions (line ID) under drought conditions. Growth conditions are specified in the experimental procedure section.

TABLE 66 Measured parameters in Tomato accessions under low nitrogen conditions line ID/Cor. ID 7 8 10 14 16 33 38 42 43 44 48 Line-1 0.457 2.649 4.041 0.491 0.406 19.000 3.353 74.070 1.017 0.787 28.469 Line-2 1.072 0.382 1.213 1.932 0.660 5.333 0.276 99.080 1.296 1.372 39.039 Line-3 0.442 0.743 2.246 0.965 0.477 9.000 1.421 69.490 1.081 0.920 33.009 Line-4 0.006 3.008 2.540 3.802 0.458 13.000 1.696 63.240 0.943 0.753 23.418 Line-5 1.076 0.827 1.850 2.776 1.351 10.667 1.103 77.360 1.412 1.309 34.528 Line-6 0.022 1.544 3.063 0.780 0.354 16.667 2.000 77.910 1.004 0.965 32.513 Line-7 0.371 3.697 3.134 0.017 0.009 6.000 1.200 80.490 1.383 1.107 27.661 Line-8 0.809 1.218 2.542 1.157 0.509 16.000 1.920 67.400 1.013 0.949 33.676 Line-9 0.548 0.575 1.844 2.074 0.436 15.000 1.500 67.160 1.038 0.793 30.045 Line-10 0.364 0.551 1.517 1.511 0.468 6.000 0.857 66.070 0.878 0.924 35.502 Line-11 0.953 1.056 1.913 2.406 1.593 17.000 1.889 69.570 1.050 0.937 24.812 Line-12 0.800 0.492 1.856 2.056 0.388 13.000 1.625 69.300 1.096 1.356 40.771 Line-13 0.340 1.310 2.472 0.379 0.323 8.667 1.625 100.000 1.761 1.443 47.467 Line-14 0.611 1.361 2.621 1.642 0.449 9.333 1.167 57.660 1.603 1.502 26.064 Line-15 0.938 0.506 1.084 0.412 0.143 12.667 1.652 90.790 1.170 1.046 35.378 Line-16 0.677 0.705 1.166 1.211 0.396 6.667 0.741 68.000 0.680 0.562 30.600 Line-17 0.404 0.306 0.921 4.587 1.442 9.333 0.875 59.650 0.944 1.484 38.971 Line-18 1.439 0.474 1.088 1.700 0.495 8.000 0.889 72.170 0.961 0.843 37.456 Table 66: Provided are the values of each of the parameters (as described above) measured in Tomato accessions (Seed ID) under low nitrogen growth conditions. Growth conditions are specified in the experimental procedure section.

TABLE 67 Additional measured parameters in Tomato accessions under low nitrogen conditions line ID/Co r. ID 50 51 56 62 2 19 21 24 27 29 31 Line-1 38.400 0.773 0.533 0.024 0.87 0.0912 6.39865 3.46688 0.01425 0.15619 0.14195 Line-2 39.400 1.059 0.367 0.191 3.66333 0.35231 5.92027 1.97373 0.01691 0.04799 0.03108 Line-3 47.500 0.851 0.307 0.006 0.56667 0.1751 3.68636 1.78501 0.01444 0.08247 0.06803 Line-4 37.000 0.797 0.50 0.005 0.37 0.15286 5.42713 2.55198 0.01957 0.12803 0.10846 Line-5 44.600 0.925 0.473 0.096 3.40333 0.42208 6.95119 3.51776 0.03913 0.09271 0.05358 Line-6 41.700 0.961 0.249 0.004 0.68333 0.10371 3.73374 1.73101 0.0109 0.10512 0.09422 Line-7 34.400 0.802 0.293 0.006 0.45333 0.00283 4.38515 1.87221 0.00032 0.11364 0.11332 Line-8 50.000 0.938 0.467 0.007 0.47333 0.16679 6.72386 3.54186 0.01511 0.0906 0.07549 Line-9 44.700 0.764 0.400 0.006 0.54 0.19103 6.65657 3.27815 0.0145 0.07589 0.06139 Line-10 53.700 1.051 0.303 0.013 0.39333 0.23594 4.38654 2.5225 0.01319 0.05591 0.04272 Line-11 35.700 0.893 0.820 0.021 0.97 0.45446 3.90107 2.60788 0.06422 0.1413 0.07709 Line-12 58.800 1.235 0.400 0.005 0.91333 0.17306 5.29057 2.61233 0.00952 0.05504 0.04551 Line-13 47.500 0.820 0.347 0.006 0.36333 0.11548 6.31683 3.57772 0.0068 0.05888 0.05208 Line-14 45.200 0.936 0.428 0.047 0.34667 0.14622 5.1126 2.5642 0.01722 0.11779 0.1005 Line-15 39.000 0.894 0.353 0.357 0.56667 0.11634 4.72494 2.48302 0.00404 0.03469 0.03065 Line-16 45.000 0.826 0.447 0.037 4.38333 0.25338 6.83245 3.43048 0.01293 0.05102 0.03809 Line-17 65.300 1.570 0.283 0.626 2.02 0.61025 7.09701 3.29874 0.03701 0.06064 0.02364 Line-18 51.900 0.878 0.470 - 8.13 0.31274 8.21338 3.68939 0.01322 0.04226 0.02904 Table 67: Provided are the values of each of the parameters (as described above) measured in Tomato accessions (Seed ID) under low nitrogen growth conditions. Growth conditions are specified in the experimental procedure section.

TABLE 68 Additional measured parameters in Tomato accessions under low nitrogen conditions line ID/Cor. ID 45 52 58 60 5 Line-1 140.044 565.932 0.0029 0.00072 1.06 Line-2 317.118 384.77 0.00208 0.00172 6.86667 Line-3 131.293 294.827 0.00363 0.00162 0.64667 Line-4 148.817 377.995 0.00308 0.00121 0.53 Line-5 257.51 476.393 0.00525 0.00284 7.17333 Line-6 64.3367 197.085 0.00551 0.0018 0.44 Line-7 144.599 453.236 6.1E-05 2E-05 Line-8 246.05 625.515 0.00207 0.00081 0.55333 Line-9 405.548 748.01 0.00107 0.00058 0.74667 Line-10 299.316 453.962 0.00156 0.00103 0.58 Line-11 86.1901 164.853 0.01849 0.00967 1.26667 Line-12 182.319 338.303 0.00213 0.00115 1.34 Line-13 160.178 395.995 0.00202 0.00082 0.52 Line-14 90.0951 236.149 0.00498 0.0019 0.57333 Line-15 160.99 174.585 0.00089 0.00082 0.94333 Line-16 379.028 441.778 0.00104 0.0009 6.17 Line-17 531.079 489.183 0.00272 0.00295 3.67333 Line-18 650.684 707.8 0.00076 0.0007 11.325 Table 68: Provided are the values of each of the parameters (as described above) measured in Tomato accessions (Seed ID) under low nitrogen growth conditions. Growth conditions are specified in the experimental procedure section.

TABLE 69 Measured parameters in Tomato accessions under normal conditions line ID/Cor. ID 11 18 34 39 47 49 55 63 20 28 Line-1 1.526 0.826 5.667 72.830 49.700 36.170 1.167 0.048 0.351 0.017 Line-2 3.174 0.342 19.333 76.470 37.200 28.447 0.342 0.008 0.097 0.009 Line-3 3.022 0.494 6.333 64.290 55.800 35.893 0.693 0.008 0.140 0.009 Line-4 0.844 0.121 7.667 67.070 46.400 31.085 56.348 0.286 0.125 0.003 Line-5 2.238 0.487 9.667 54.790 48.200 26.384 0.440 0.005 0.179 0.010 Line-6 1.984 0.454 8.333 77.610 43.400 33.684 11.313 0.054 0.186 0.010 Line-7 0.848 0.529 5.000 58.180 42.900 24.979 0.790 0.231 0.384 0.012 Line-8 2.088 0.440 8.333 66.510 53.300 35.472 0.577 0.290 0.174 0.008 Line-9 3.206 0.210 10.000 64.710 58.500 37.875 0.730 0.006 0.061 0.004 Line-10 2.754 0.310 7.000 75.250 51.100 38.426 0.833 0.007 0.101 0.006 Line-11 1.811 0.662 9.000 66.230 40.000 26.494 0.860 0.058 0.268 0.017 Line-12 3.770 0.189 8.000 63.210 47.600 30.066 0.500 0.007 0.048 0.004 Line-13 1.88 0.852 5.333 56.770 57.900 32.889 1.020 0.026 0.311 0.015 Line-14 1.926 0.273 8.000 35.960 48.300 17.354 0.700 0.261 0.124 0.006 Line-15 2.143 0.347 7.667 77.620 43.600 33.818 0.377 0.029 0.139 0.008 Line-16 1.652 0.327 9.000 100.000 54.500 54.467 0.660 0.005 0.165 0.006 Line-17 3.011 0.314 10.667 63.160 41.600 26.253 0.700 0.003 0.095 0.008 Line-18 2.294 0.291 9.000 75.130 59.100 44.427 0.327 0.009 0.113 0.005 Table 69: Provided are the values of each of the parameters (as described above) measured in Tomato accessions (lined ID) under normal growth conditions. Growth conditions are specified in the experimental procedure section.

TABLE 70 Additional measured parameters in Tomato accessions under normal conditions line ID/Cor. ID 30 32 3 6 22 25 46 53 59 61 Line-1 0.047 0.031 Line-2 0.095 0.085 Line-3 0.063 0.054 0.55667 0.82333 6.34284 3.69046 140.989 426.099 0.0035 0.00116 Line-4 0.021 0.018 3.05333 2.45667 7.98803 4.76756 689.665 582.384 0.00017 0.00021 Line-5 0.057 0.046 0.24 0.50333 5.59331 3.43357 130.22 291.403 0.00374 0.00167 Line-6 0.056 0.046 2.57667 2.76 7.69722 4.56061 299.118 593.583 0.00152 0.00077 Line-7 0.032 0.020 6.32333 5.31667 7.84568 4.43534 1117.74 947.594 0.00047 0.00056 Line-8 0.047 0.039 5.75333 5.24 6.21698 3.15039 111.77 233.352 0.00394 0.00189 Line-9 0.058 0.055 0.37667 0.61 6.1597 3.36888 106.294 340.731 0.00198 0.00062 Line-10 0.060 0.054 0.29667 0.66 5.65211 3.13112 123.139 339.111 0.00252 0.00091 Line-11 0.062 0.045 1.95333 2.70333 4.39488 2.39632 104.986 190.141 0.00631 0.00348 Line-12 0.083 0.079 2.53333 0.7 4.44138 2.02436 111.88 421.789 0.00169 0.00045 Line-13 0.047 0.033 1.42333 2.64 6.7696 3.8002 307.946 581.334 0.00277 0.00147 Line-14 0.046 0.040 2.03 4.67 7.41586 3.7433 419.365 807.511 0.00065 0.00034 Line-15 0.057 0.049 1.385 2.16667 6.70898 2.97523 365.812 784.056 0.00095 0.00044 Line-16 0.036 0.030 2.27 0.49333 5.86525 3.21956 212.926 351.801 0.00153 0.00093 Line-17 0.080 0.072 0.45 0.34333 4.16 2.08898 84.9441 255.776 0.0037 0.00123 Line-18 0.044 0.039 0.41667 0.75333 10.2902 5.91228 469.874 1078.1 0.00062 0.00027 Table 70: Provided are the values of each of the parameters (as described above) measured in Tomato accessions (line ID) under normal growth conditions. Growth conditions are specified in the experimental procedure section.

TABLE 71 Correlation between the expression level of selected genes of some embodiments of the invention in various tissues and the phenotypic performance under normal and stress conditions across tomato ecotypes Gene Name R P value Exp. set Cor. Set ID Gene Name R P value Exp. set Cor. Set ID LNU971 0.830 5.67E-03 11 32 LNU971 0.836 5.02E-03 11 30 LNU971 0.730 1.66E-02 10 52 LNU971 0.986 1.83E-07 1 55 LNU972 0.787 1.18E-02 11 20 LNU972 0.802 9.36E-03 11 28 LNU972 0.782 2.19E-02 12 59 LNU972 0.783 2.15E-02 12 61 LNU973 0.793 6.26E-03 3 43 LNU973 0.773 2.44E-02 12 3 LNU973 0.825 3.31E-03 2 49 LNU974 0.700 2.41E-02 10 52 LNU975 0.739 1.45E-02 3 51 LNU975 0.857 3.15E-03 3 62 LNU975 0.927 1.12E-04 1 55 LNU975 0.825 3.30E-03 1 63 Table 71. Provided are the correlations (R) between the expression levels yield improving genes and their homologs in various tissues [Expression (Exp) sets] and the phenotypic performance [yield, biomass, growth rate and/or vigor components (Correlation vector (Cor))] under normal and low nitrogen conditions across tomato ecotypes. P = p value.

Correlation of early vigor traits across collection of Tomato ecotypes under Low nitrogen, 300 mM NaCl, and normal growth conditions - Ten tomato hybrids were grown in 3 repetitive plots, each containing 17 plants, at a net house under semi-hydroponics conditions. Briefly, the growing protocol was as follows: Tomato seeds were sown in trays filled with a mix of vermiculite and peat in a 1:1 ratio. Following germination, the trays were transferred to the high salinity solution (300 mM NaCl in addition to the Full Hoagland solution), low nitrogen (“low N”) solution (the amount of total nitrogen was reduced in 90% from the full Hoagland solution, final amount of 0.8 mM N), or at Normal growth solution (Full Hoagland containing 8 mM N solution, grown at 28 ± 2° C.). Plants were grown at 28 ± 2° C.

Full Hoagland solution consists of: KNO3 - 0.808 grams/liter, MgSO4 - 0.12 grams/liter, KH2PO4 - 0.172 grams/liter and 0.01% (volume/volume) of ‘Super coratin’ micro elements (Iron-EDDHA [ethylenediamine-N,N′-bis(2-hydroxyphenylacetic acid)]- 40.5 grams/liter; Mn - 20.2 grams/liter; Zn 10.1 grams/liter; Co 1.5 grams/liter; and Mo 1.1 grams/liter), solution’s pH should be 6.5 - 6.8.

Analyzed tomato tissues - All 10 selected Tomato varieties were sample per each treatment. Three tissues [leaves, meristems and flowers] were sampled and RNA was extracted as described above. For convenience, each micro-array expression information tissue type has received a Set ID as summarized in Table 72 below.

TABLE 72 Tomato transcriptom experimental sets Set ID Expression Set 1 Normal/leaf 2 Normal/root 3 Low N/leaf 4 Low N /root 5 Salinity/leaf 6 Salinity/root 7 Low N /root 8 Low N /leaf 9 Normal/root 10 Normal/leaf 11 Salinity/root 12 Salinity/leaf Table 72. Provided are the tomato transcriptom experimental sets.

Tomato vigor related parameters - following 5 weeks of growing, plant were harvested and analyzed for Leaf number, plant height, chlorophyll levels (SPAD units), different indices of nitrogen use efficiency (NUE) and plant biomass. Next, analyzed data was saved to text files and processed using the JMP statistical analysis software (SAS institute). Data parameters collected are summarized in Table 73, herein below.

TABLE 73 Tomato correlated parameters (vectors) Correlation ID Correlated parameter with 1 Leaf No. Low N/Normal [number] 2 Leaf No. NaCl/Normal [number] 3 Leaf No. NaCl/Low N [number] 4 N level/Leaf [spad unit/leaf] 5 NUE roots (Root Biomass [DW] /SPAD) 6 NUE shoots (shoot Biomass [DW] /SPAD) 7 NUE total biomass (Total Biomass [DW] /SPAD) 8 Percent Root Biomass reduction compared to normal [%] 9 Percent Shoot Biomass reduction compared to normal[%] 10 Plant Height Low N/Normal [cm] 11 Plant Height NaCl/Low N [cm] 12 Plant Height NaCl/Normal [cm] 13 Plant biomass NaCl [cm] 14 Plant height Low N [cm] 15 Plant height NaCl [cm] 16 Plant height Normal [cm] 17 Root Biomass[DW] /SPAD 18 SPAD Low N/Normal [SPAD unit] 19 SPAD Low N [SPAD unit] 20 SPAD Normal [SPAD unit] 21 Shoot Biomass [DW] /SPAD 22 Shoot/Root 23 Total Biomass [Root+Shoot DW] /SPAD 24 height Normal 25 leaf No. Low N 26 leaf No. Normal 27 leaf No. NaCl Table 73. Provided are the tomato correlated parameters,. “DW” = dry weight; “cm” = centimeter. “Leaf No.” = leaf number.

Experimental Results

10 different Tomato varieties were grown and characterized for parameters as described above. The average for each of the measured parameter was calculated using the JMP software and values are summarized in Tables 74-77 below. Subsequent correlation analysis was conducted (Table 78). Follow, results were integrated to the database.

TABLE 74 Measured parameters in Tomato accessions under low nitrogen conditions Cor. ID/Line 1 10 14 18 19 24 25 4 5 Line-1 0.850 0.810 36.780 1.010 34.570 45.330 5.560 10.854 6.990 Line-2 0.900 0.830 39.890 0.980 24.870 47.780 6.220 11.409 2.540 Line-3 0.980 0.840 34.440 1.020 28.580 40.780 7.220 Line-4 1.090 0.850 47.000 1.000 31.580 55.330 6.780 10.438 7.040 Line-5 0.880 0.830 46.440 0.980 29.720 56.220 5.560 11.169 5.040 Line-6 1.020 0.930 45.440 0.980 31.830 48.670 6.560 8.929 8.010 Line-7 0.870 0.850 47.670 0.930 30.330 55.780 5.110 7.926 15.090 Line-8 1.060 1.050 39.330 1.050 30.290 37.440 5.890 7.993 9.020 Line-9 0.910 0.840 41.780 1.010 31.320 49.560 5.560 10.304 8.780 Line-10 1.120 0.880 41.000 0.990 28.770 46.330 6.330 8.585 7.250 Line-11 11.528 7.730 Line-12 14.491 15.940 Table 74. Provided are the values of each of the parameters (as described above) measured in Tomato accessions (Line) under low nitrogen growth conditions. Growth conditions are specified in the experimental procedure section.

TABLE 75 Additional measured parameters in Tomato accessions under low nitrogen conditions Cor. ID/Line 6 7 8 9 17 21 22 23 Line-1 35.350 58.470 62.592 75.380 0.001 0.004 5.010 0.005 Line-2 24.090 63.750 54.158 55.112 0.000 0.003 11.393 0.003 Line-3 Line-4 65.020 69.290 70.547 49.726 0.001 0.007 9.494 0.008 Line-5 46.710 71.100 59.685 63.189 0.001 0.005 11.600 0.005 Line-6 46.670 60.540 96.129 82.667 0.001 0.005 8.200 0.006 Line-7 120.070 73.900 106.502 66.924 0.001 0.011 10.375 0.013 Line-8 60.090 68.810 111.905 107.983 0.001 0.007 10.523 0.008 Line-9 66.270 66.740 81.644 55.401 0.001 0.007 8.242 0.008 Line-10 56.460 70.820 32.214 54.433 0.001 0.007 7.967 0.008 Line-11 38.350 69.700 143.714 62.155 0.001 0.004 6.414 0.005 Line-12 60.320 49.720 87.471 59.746 0.001 0.006 3.909 0.007 Table 75. Provided are the values of each of the parameters (as described above) measured in Tomato accessions (Line) under low nitrogen growth conditions. Growth conditions are specified in the experimental procedure section.

TABLE 76 Measured parameters in Tomato accessions under normal conditions Corr. ID/Line 16 20 26 4 5 6 7 17 21 22 23 Line-1 45.330 34.300 6.560 9.293 1.120 4.690 7.470 0.001 0.005 5.400 0.006 Line-2 47.780 25.310 6.890 8.868 0.470 4.370 8.630 0.001 0.005 10.021 0.006 Line-3 40.780 28.120 7.330 Line-4 55.330 31.430 6.220 8.433 1.000 13.080 8.850 0.001 0.014 15.417 0.015 Line-5 56.220 30.240 6.330 9.827 0.840 7.390 7.220 0.001 0.008 8.833 0.009 Line-6 48.670 32.430 6.440 8.573 0.830 5.650 7.870 0.001 0.005 7.519 0.006 Line-7 55.780 32.580 5.890 6.567 0.940 17.940 9.090 0.001 0.017 12.611 0.019 Line-8 37.440 28.770 5.560 6.968 0.810 5.50 7.910 0.001 0.007 7.989 0.008 Line-9 49.560 30.920 6.110 8.710 1.080 11.960 8.550 0.001 0.011 14.306 0.012 Line-10 46.330 28.990 5.670 7.348 2.250 10.370 8.680 0.003 0.012 4.797 0.014 Line-11 10.181 0.540 6.170 9.100 0.001 0.006 0.007 Line-12 9.370 1.820 10.100 6.240 0.002 0.009 0.011 Table 76. Provided are the values of each of the parameters (as described above) measured in Tomato accessions (Line) under normal growth conditions. Growth conditions are specified in the experimental procedure section.

TABLE 77 Measured parameters in Tomato accessions under salinity conditions Cor. ID/Line 2 3 11 12 13 15 27 4 21 17 23 Line-1 0.50 0.640 0.150 0.120 0.360 5.600 3.560 11.400 0.001 0.000 0.001 Line-2 0.570 0.630 0.160 0.140 0.440 6.460 3.940 11.639 0.001 0.000 0.001 Line-3 0.680 0.690 0.250 0.210 0.260 8.470 5.000 Line-4 0.640 0.590 0.180 0.150 0.710 8.560 4.000 10.788 0.001 0.000 0.001 Line-5 0.560 0.640 0.190 0.160 0.460 8.870 3.560 10.776 0.002 0.000 0.002 Line-6 0.680 0.670 0.170 0.160 0.540 7.560 4.390 6.952 0.001 0.000 0.001 Line-7 0.540 0.620 0.180 0.150 0.660 8.640 3.170 9.213 0.001 0.000 0.001 Line-8 0.670 0.630 0.140 0.150 0.400 5.570 3.720 8.538 0.001 0.000 0.001 Line-9 0.650 0.720 0.140 0.120 0.520 5.820 4.000 10.370 0.001 0.000 0.001 Line-10 0.750 0.680 0.230 0.200 0.450 9.360 4.280 8.840 0.001 Line-11 10.434 0.001 0.000 0.001 Line-12 12.429 0.001 0.000 0.001 Table 77. Provided are the values of each of the parameters (as described above) measured in Tomato accessions (Line) under salinity growth conditions. Growth conditions are specified in the experimental procedure section.

TABLE 78 Correlation between the expression level of selected genes of some embodiments of the invention in various tissues and the phenotypic performance under normal and stress conditions across tomato ecotypes Gene Name R P value Exp. set Cor. Set ID Gene Name R P value Exp. set Cor. Set ID LNU971 0.729 4.01E-02 4 10 LNU971 0.878 1.86E-03 4 9 LNU971 0.845 4.12E-03 6 21 LNU971 0.786 2.07E-02 6 23 LNU971 0.736 2.38E-02 3 8 LNU971 0.736 2.39E-02 8 8 LNU972 0.843 4.32E-03 6 21 LNU972 0.798 1.76E-02 6 23 LNU972 0.817 7.24E-03 3 8 LNU973 0.808 1.52E-02 3 10 LNU973 0.716 2.99E-02 3 9 LNU974 0.738 3.65E-02 1 20 LNU974 0.724 2.73E-02 4 4 LNU974 0.757 2.97E-02 4 1 LNU974 0.730 2.56E-02 3 8 LNU974 0.715 3.05E-02 7 4 LNU974 0.737 2.34E-02 8 8 LNU975 0.729 2.57E-02 9 4 LNU975 0.773 1.45E-02 4 4 LNU975 0.736 2.36E-02 3 8 LNU975 0.729 2.58E-02 2 4 LNU975 0.839 9.17E-03 2 26 LNU975 0.778 1.36E-02 7 4 Table 78. Provided are the correlations (R) between the expression levels yield improving genes and their homologs in various tissues [Expression (Exp) sets] and the phenotypic performance [yield, biomass, growth rate and/or vigor components (Correlation vector (Corr))] under normal and low nitrogen conditions across tomato ecotypes. P = p value.

Example 10 Production of Maize Transcriptom and High Throughput Correlation Analysis When Grown Under Normal And Defoliation Conditions Using 60K Maize Oligonucleotide Micro-Array

To produce a high throughput correlation analysis, the present inventors utilized a Maize oligonucleotide micro-array, produced by Agilent Technologies [chem. (dot) agilent (dot) com/Scripts/PDS (dot) asp?lPage=50879]. The array oligonucleotide represents about 60K Maize genes and transcripts designed based on data from Public databases (Example 1). To define correlations between the levels of RNA expression and yield, biomass components or vigor related parameters, various plant characteristics of 13 different Maize varieties were analyzed under normal conditions and defoliation treatment. Same varieties were subjected to RNA expression analysis. The correlation between the RNA levels and the characterized parameters was analyzed using Pearson correlation test [davidmlane (dot) com/hyperstat/A34739 (dot) html].

Experimental Procedures

13 maize varieties lines were grown in 6 repetitive plots, in field. Maize seeds were planted and plants were grown in the field using commercial fertilization and irrigation protocols. After silking 3 plots in every varieties line underwent the defoliation treatment. In this treatment all the leaves above the ear were removed. After the treatment all the plants were grown according to the same commercial fertilization and irrigation protocols.

Three tissues at flowering developmental (R1) stage including leaf (flowering -R1), stem (flowering -R1), and flowering meristem (flowering -R1) representing different plant characteristics, were sampled from treated and untreated plants. RNA was extracted as described in “GENERAL EXPERIMENTAL AND BIOINFORMATICS METHODS”. For convenience, each micro-array expression information tissue type has received a Set ID as summarized in Tables 79-80 below.

TABLE 79 Tissues used for Maize transcriptom expression sets (Under normal conditions) Expression Set Set ID Female meristem/Normal 1 leaf/Normal 2 stem/Normal 3 Table 79: Provided are the identification (ID) number of each of the Maize expression sets.

TABLE 80 Tissues used for Maize transcriptom expression sets (Under defoliation conditions) Expression Set Set ID Female meristem/Defoliation: 1 leaf/Defoliation 2 stem/Defoliation 3 Table 80: Provided are the identification (ID) number of each of the Maize expression sets.

The following parameters were collected by imaging.

The image processing system was used, which consists of a personal desktop computer (Intel P4 3.0 GHz processor) and a public domain program - ImageJ 1.37, Java based image processing software, which was developed at the U.S. National Institutes of Health and is freely available on the internet at rsbweb (dot) nih (dot) gov/. Images were captured in resolution of 10 Mega Pixels (3888x2592 pixels) and stored in a low compression JPEG (Joint Photographic Experts Group standard) format. Next, image processing output data for seed area and seed length was saved to text files and analyzed using the JMP statistical analysis software (SAS institute).

1000 grain weight - At the end of the experiment all seeds from all plots were collected and weighedand the weight of 1000 was calculated.

Ear Area (cm2)- At the end of the growing period 5 ears were, photographed and images were processed using the below described image processing system. The Ear area was measured from those images and was divided by the number of ears.

Ear Length and Ear Width (cm) - At the end of the growing period 6 ears were, photographed and images were processed using the below described image processing system. The Ear length and width (longest axis) was measured from those images and was divided by the number of ears.

Grain Area (cm2) - At the end of the growing period the grains were separated from the ear. A sample of ~200 grains were weight, photographed and images were processed using the below described image processing system. The grain area was measured from those images and was divided by the number of grains.

Grain Length and Grain width (cm) - At the end of the growing period the grains were separated from the ear. A sample of ~200 grains were weight, photographed and images were processed using the below described image processing system. The sum of grain lengths /or width (longest axis) was measured from those images and was divided by the number of grains.

Grain Perimeter (cm) - At the end of the growing period the grains were separated from the ear. A sample of ~200 grains were weight, photographed and images were processed using the below described image processing system. The sum of grain perimeter was measured from those images and was divided by the number of grains.

Ear filled grain area (cm2) - At the end of the growing period 5 ears were, photographed and images were processed using the below described image processing system. The Ear area filled with kernels was measured from those images and was divided by the number of Ears.

Filled per Whole Ear - was calculated as the length of the ear with grains out of the total ear.

Additional parameters were collected either by sampling 6 plants per plot or by measuring the parameter across all the plants within the plot.

Cob width [cm] - The diameter of the cob without grains was measured using a ruler.

Ear average weight [kg] - At the end of the experiment (when ears were harvested) total and 6 selected ears per plots were collected. The ears were weighted and the average ear per plant was calculated. The ear weight was normalized using the relative humidity to be 0%.

Plant height and Ear height - Plants were characterized for height at harvesting. In each measure, 6 plants were measured for their height using a measuring tape. Height was measured from ground level to top of the plant below the tassel. Ear height was measured from the ground level to the place were the main ear is located

Ear row num - The number of rows per ear was counted.

Ear fresh weight per plant (GF)- During the grain filling period (GF) and total and 6 selected ears per plot were collected separately. The ears were weighted and the average ear weight per plant was calculated.

Ears dry weight -At the end of the experiment (when ears were harvested) total and 6 selected ears per plots were collected and weighted. The ear weight was normalized using the relative humidity to be 0%.

Ears fresh weight -At the end of the experiment (when ears were harvested) total and 6 selected ears per plots were collected and weighted.

Ears per plant-number of ears per plant were counted.

Grains weight (Kg.) - At the end of the experiment all ears were collected. Ears from 6 plants from each plot were separately threshed and grains were weighted.

Grains dry weight (Kg.) - At the end of the experiment all ears were collected. Ears from 6 plants from each plot were separately threshed and grains were weighted. The grain weight was normalized using the relative humidity to be 0%.

Grain weight per ear (Kg.) - At the end of the experiment all ears were collected. 5 ears from each plot were separately threshed and grains were weighted. The average grain weight per ear was calculated by dividing the total grain weight by the number of ears.

Leaves area per plant (GF) and (HD) [LAI]= Total leaf area of 6 plants in a plot his parameter was measured at two time points during the course of the experiment; at heading (HD) and during the grain filling period (GF). Measurement was performed using a Leaf area-meter at two time points in the course of the experiment; during the grain filling period and at the heading stage (VT).

Leaves fresh weight (GF) and (HD) - This parameter was measured at two time points during the course of the experiment; at heading (HD) and during the grain filling period (GF). Leaves used for measurement of the LAI were weighted.

Lower stem fresh weight (GF) (HD) and (H) - This parameter was measured at three time points during the course of the experiment: at heading (HD), during the grain filling period (GF) and at harvest (H). Lower internodes from at least 4 plants per plot were separated from the plant and weighted. The average internode weight per plant was calculated by dividing the total grain weight by the number of plants.

Lower stem length (GF) (HD) and (H) - This parameter was measured at three time points during the course of the experiment; at heading (HD), during the grain filling period (GF) and at harvest (H). Lower internodes from at least 4 plants per plot were separated from the plant and their length was measured using a ruler. The average internode length per plant was calculated by dividing the total grain weight by the number of plants.

Lower stem width (GF) (HD) and (H) - This parameter was measured at three time points during the course of the experiment: at heading (HD), during the grain filling period (GF) and at harvest (H). Lower internodes from at least 4 plants per plot were separated from the plant and their diameter was measured using a caliber. The average internode width per plant was calculated by dividing the total grain weight by the number of plants.

Plant height growth: the relative growth rate (RGR) of Plant Height was calculated using Formula III above.

SPAD - Chlorophyll content was determined using a Minolta SPAD 502 chlorophyll meter and measurement was performed 64 days post sowing. SPAD meter readings were done on young fully developed leaf. Three measurements per leaf were taken per plot. Data were taken after 46 and 54 days after sowing (DPS).

Stem fresh weight (GF) and (HD)- This parameter was measured at two time points during the course of the experiment: at heading (HD) and during the grain filling period (GF).Stems of the plants used for measurement of the LAI were weighted.

Total dry matter was calculated using Formula XXXV.

Upper stem fresh weight (GF) (HD) and (H) - This parameter was measured at three time points during the course of the experiment; at heading (HD), during the grain filling period (GF)and at harvest(H). Upper internodes from at least 4 plants per plot were separated from the plant and weighted. The average internode weight per plant was calculated by dividing the total grain weight by the number of plants.

Upper stem length (GF) (HD) and (H) - This parameter was measured at three time points during the course of the experiment; at heading (HD), during the grain filling period (GF) and at harvest (H). Upper internodes from at least 4 plants per plot were separated from the plant and their length was measured using a ruler. The average internode length per plant was calculated by dividing the total grain weight by the number of plants.

Upper stem width (GF) (HD) and (H) (mm) - This parameter was measured at three time points during the course of the experiment; at heading (HD), during the grain filling period (GF)and at harvest(H). Upper internodes from at least 4 plants per plot were separated from the plant and their diameter was measured using a caliber. The average internode width per plant was calculated by dividing the total grain weight by the number of plants.

Vegetative dry weight (Kg.) - total weight of the vegetative portion of 6 plants (above ground excluding roots) after drying at 70° C. in oven for 48 hours weight by the number of plants.

Vegetative fresh weight (Kg.) - total weight of the vegetative portion of 6 plants (above ground excluding roots).

Node number - nodes on the stem were counted at the heading stage of plant development.

TABLE 81 Maize correlated parameters (vectors) under normal conditions and under defoliation Normal conditions Defoliation Correlated parameter with Correlation ID Correlated parameter with Correlati on ID 1000 grains weight [g] 1 1000 grains weight [g] 1 Cob width [mm] 2 Cob width [mm] 2 Ear Area [cm2] 3 Ear Area [cm2] 3 Ear Filled Grain Area [cm2] 4 Ear Filled Grain Area [cm2] 4 Ear Width [cm] 5 Ear Width [cm] 5 Ear avr weight [g] 6 Ear avr weight [g] 6 Ear height [cm] 7 Ear height [cm] 7 Ear length (feret’s) [cm] 8 Ear length (feret’s) [cm] 8 Ear row num 9 Ear row num 9 Ears FW per plant (GF) [g/plant] 10 Ears dry weight (SP) [g/plant] 10 Ears dry weight (SP) [kg] 11 Ears fresh weight (SP) [kg] 11 Ears fresh weight (SP) [kg] 12 Ears per plant (SP) [g/plant] 12 Ears per plant (SP) [g/plant] 13 Filled / Whole Ear [value] 13 Filled / Whole Ear [value] 14 Grain Perimeter [cm] 14 Grain Perimeter [cm] 15 Grain RH [%] 15 Grain RH [%] 16 Grain area [cm2] 16 Grain area [cm2] 17 Grain length [cm] 17 Grain length [cm] 18 Grain width [cm] 18 Grain width [cm] 19 Grains dry weight (SP) [kg] 19 Grains dry weight (SP) [kg] 20 Grains weight (SP) [kg] 20 Grains weight (SP) [kg] 21 Grains weight per ear (SP) [kg] 21 Grains weight per ear (SP) [kg] 22 Leaves FW (hd) [g] 22 Leaves FW (GF) [g] 23 Leaves area PP (hd) [cm2] 23 Leaves FW (hd) [g] 24 Leaves num (LAI) (hd) 24 Leaves area PP (GF) [cm2] 25 Leaves num 1 25 Leaves area PP (hd) [cm2] 26 Leaves temperature (GF) 26 Leaves num (LAI) (hd) 27 Lower Stem FW (h) [g] 27 Leaves num 1 28 Lower Stem FW (hd) [g] 28 Leaves temperature (GF) 29 Lower Stem length (h) [cm] 29 Lower Stem FW (GF) [g] 30 Lower Stem length (hd) [cm] 30 Lower Stem FW (h) [g] 31 Lower Stem width (h) [mm] 31 Lower Stem FW (hd) [g] 32 Lower Stem width (hd) [mm] 32 Lower Stem length (GF) [cm] 33 Node number 33 Lower Stem length (h) [cm] 34 Num days to Heading (field) 34 Lower Stem length (hd) [cm] 35 Plant height [cm] 35 Lower Stem width (GF) [cm] 36 Plant height growth [cm/day] 36 Lower Stem width (h) [mm] 37 SPAD (GF) [value] 37 Lower Stem width (hd) [mm] 38 Stem FW (hd) [mm] 38 Node number 39 Total dry matter (SP) [kg] 39 Num days to Heading (field) 40 Upper Stem FW (h) [g] 40 Plant height [cm] 41 Upper Stem length (h) [cm] 41 Plant height growth [cm/day] 42 Upper Stem width (h) [mm] 42 SPAD (GF) [value] 43 Vegetative DW (SP) [kg] 43 Stem FW (GF) [g] 44 Vegetative FW (SP) [kg] 44 Stem FW (hd) [g] 45 Total dry matter (SP) [kg] 46 Upper Stem FW (GF) [g] 47 Upper Stem FW (h) [g] 48 Upper Stem length (GF) [cm] 49 Upper Stem length (h) [cm] 50 Upper Stem width (GF) [mm] 51 Upper Stem width (h) [mm] 52 Vegetative DW (SP) [kg] 53 Vegetative FW (SP) [kg] 54 Table 81. Provided are the maize correlated parameters,. “NUE” = nitrogen use efficiency; “DW” = dry weight; “cm” = centimeter, “GF” =grain filling, “PP”= per plant, “h”= harvest, “avr” = average, “NUM” = number. “mm” = millimeter; “g” = grams; “kg” = kilograms; “cm” = centimeter.

Thirteen maize varieties were grown, and characterized for parameters, as described above. The average for each parameter was calculated using the JMP software, and values are summarized in Tables 82-85 below. Subsequent correlation between the various transcriptom sets for all or sub set of lines was done by the bioinformatic unit and results were integrated into the database (Tables 86-87 below).

TABLE 82 Measured parameters in Maize varieties under normal conditions Ecotype/Treatment Line-1 Line-2 Line-3 Line-4 Line-5 Line-6 1 241.091 296.503 232.402 263.250 305.376 303.614 2 23.427 24.633 22.149 25.106 24.714 23.207 3 47.516 82.296 36.009 74.626 61.731 76.997 4 46.808 80.887 17.431 72.415 56.829 73.430 5 4.249 4.656 3.210 4.787 5.016 4.961 6 22.854 209.500 55.556 164.627 132.917 177.444 7 71.139 121.667 110.611 134.235 89.333 149.639 8 13.937 22.091 13.897 19.622 16.062 20.024 9 11.778 13.000 13.750 14.944 15.471 14.556 10 228.743 351.262 201.689 323.077 217.161 307.874 11 0.615 1.257 0.333 1.087 0.798 1.065 12 0.688 1.687 0.468 1.457 1.072 1.412 13 1.667 1.000 1.000 1.111 1.000 1.000 14 0.985 0.982 0.406 0.969 0.919 0.953 15 3.146 3.299 2.793 3.233 3.318 3.275 16 12.700 12.500 12.367 12.367 12.233 11.967 17 0.652 0.720 0.517 0.667 0.705 0.706 18 1.058 1.125 0.895 1.123 1.155 1.133 19 0.783 0.808 0.734 0.753 0.776 0.789 20 0.415 0.907 0.121 0.800 0.367 0.766 21 0.475 1.037 0.138 0.913 0.418 0.869 22 0.069 0.151 0.020 0.133 0.061 0.128 23 137.328 230.129 141.263 197.636 154.760 201.031 24 96.392 110.968 103.967 80.570 119.360 157.210 25 4186.917 7034.596 4884.333 6402.795 4297.250 6353.074 26 4341.250 3171.000 4347.500 3527.000 4517.333 3984.750 27 9.000 8.000 8.833 6.750 8.500 7.750 28 4.333 4.833 3.917 4.167 4.000 4.833 29 32.294 33.111 35.214 33.517 34.526 33.869 30 29.703 35.403 15.660 25.025 23.986 26.514 31 33.690 23.517 21.746 20.340 23.466 25.083 32 38.818 72.988 36.998 59.900 32.614 74.715 33 13.417 19.350 15.833 20.400 16.342 20.925 34 12.484 16.761 16.094 20.022 15.006 22.594 35 9.417 14.500 14.133 17.750 11.083 20.000 36 20.208 19.855 15.904 16.841 15.593 16.139 37 21.518 19.423 15.819 17.188 17.028 16.086 38 23.494 24.138 20.247 20.533 20.812 20.973 39 14.667 15.222 13.778 14.556 13.667 14.611 40 74.000 69.667 74.000 71.000 74.000 69.667 41 173.389 265.111 203.556 255.944 177.444 271.111 42 4.030 6.302 4.153 6.519 4.358 7.144 43 60.952 59.772 48.589 53.170 57.919 53.206 44 447.155 649.026 347.648 489.318 404.783 524.055 45 468.300 758.610 392.713 587.875 437.855 801.320 46 1.615 2.565 1.411 2.058 1.835 2.316 47 14.369 19.614 8.862 15.539 13.003 17.824 48 10.441 12.937 8.003 11.212 10.438 12.975 49 11.792 16.633 13.917 18.755 13.217 18.375 50 10.422 16.928 13.683 18.756 12.306 18.717

TABLE 83 Measured parameters in Maize varieties under normal conditions, additional maize lines Ecotype/Treatme nt Line-14 Line-15 Line-16 Line-17 Line-18 Line-19 Line-20 1 290.881 202.573 250.257 275.409 306.201 256.858 187.316 2 23.184 25.919 24.876 22.751 26.468 21.662 24.046 3 78.355 51.175 93.914 57.832 96.772 64.428 55.077 4 74.411 45.927 92.312 54.139 95.429 61.811 51.437 5 4.786 4.368 5.182 4.430 5.001 4.091 4.264 6 147.490 101.917 207.111 100.476 228.444 129.889 84.805 7 118.389 117.889 145.235 99.222 133.778 81.444 125.000 8 20.313 14.750 22.601 16.653 23.837 19.849 16.955 9 16.118 15.944 15.889 13.545 14.000 12.667 17.941 10 325.083 244.997 327.145 241.060 363.704 262.126 146.149 11 1.159 0.612 1.292 0.632 1.371 0.779 0.690 12 1.800 0.704 1.595 0.865 1.739 1.213 0.861 13 1.000 1.000 1.056 1.056 1.000 1.000 0.944 14 0.930 0.889 0.982 0.934 0.986 0.955 0.934 15 3.246 2.860 3.182 3.082 3.291 2.946 2.810 16 12.600 12.033 12.233 11.200 11.967 13.133 11.667 17 0.665 0.526 0.646 0.627 0.705 0.587 0.495 18 1.142 0.992 1.118 1.041 1.151 0.969 0.962 19 0.740 0.672 0.730 0.763 0.774 0.767 0.653 20 0.820 0.362 0.921 0.419 1.017 0.516 0.408 21 0.940 0.411 1.050 0.471 1.155 0.595 0.462 22 0.137 0.064 0.154 0.073 0.169 0.086 0.073 23 212.413 137.330 181.432 133.844 199.221 155.821 140.336 24 116.750 96.150 106.945 107.158 85.973 98.842 134.450 25 7123.475 4162.750 6075.206 4339.788 6597.666 4756.583 4209.091 26 4205.500 27 7.000 8.667 7.250 7.833 7.250 9.000 9.833 28 4.250 3.833 4.833 3.333 4.083 3.833 4.167 29 33.185 34.815 33.659 36.480 33.781 34.431 34.898 30 27.606 24.589 25.264 24.006 26.178 21.142 29.925 31 20.603 15.197 16.347 19.856 18.901 22.333 31.712 32 60.358 50.068 63.067 46.065 55.885 29.802 68.184 33 18.083 17.700 20.182 15.475 19.808 16.042 23.075 34 17.072 18.267 20.694 14.622 18.478 16.206 21.117 35 15.000 12.333 18.675 14.633 20.500 11.240 18.333 36 18.105 16.705 17.094 15.435 16.868 15.521 14.653 37 17.962 15.953 18.421 16.266 17.434 15.489 16.656 38 23.473 21.292 20.973 20.593 21.458 18.966 22.008 39 14.278 13.889 14.722 14.444 15.444 12.556 13.389 40 72.000 74.000 69.667 74.000 71.000 74.000 68.333 41 244.250 215.206 273.556 229.889 273.222 194.056 260.167 42 5.603 4.686 6.960 4.424 7.017 4.298 6.424 43 55.376 56.450 56.759 54.600 55.812 52.548 61.457 44 507.783 475.345 549.336 463.157 509.738 324.976 477.917 45 660.695 468.267 724.575 435.500 618.460 339.267 592.130 46 2.233 1.347 2.727 1.503 2.331 1.560 1.615 47 15.849 12.442 14.395 16.773 17.848 13.457 20.847 48 9.723 3.074 6.981 9.759 9.396 11.344 16.205 49 17.067 14.467 17.518 17.542 18.150 15.625 20.150 50 16.417 12.094 18.339 15.622 16.628 16.572 18.494

TABLE 84 Measured parameters in Maize varieties under defoliation Ecotype/Treatment Line-2 Line-3 Line-4 Line-5 Line-6 Line-7 1 280.025 249.808 251.859 244.024 294.292 262.463 2 19.028 21.874 22.115 19.269 16.306 21.460 3 53.600 NA 45.503 25.764 38.307 37.749 4 51.497 NA 42.952 21.912 34.591 36.008 5 4.181 NA 4.207 3.376 3.919 3.945 6 89.202 56.056 100.750 26.773 73.389 79.167 7 119.444 102.778 131.556 91.375 145.528 121.000 8 16.338 NA 13.626 10.542 12.889 12.481 9 12.706 13.909 14.357 13.600 13.000 13.167 10 0.747 0.317 0.583 0.189 0.440 0.475 11 0.973 0.464 0.833 0.250 0.629 0.637 12 1.000 0.944 0.944 0.471 1.000 1.000 13 0.954 NA 0.915 0.820 0.873 0.951 14 3.109 2.936 3.144 2.894 3.179 2.919 15 13.467 12.767 12.367 13.200 12.833 12.400 16 0.649 0.562 0.632 0.563 0.669 0.570 17 1.052 0.947 1.080 0.957 1.079 0.956 18 0.777 0.753 0.740 0.729 0.781 0.757 19 0.523 0.155 0.400 0.087 0.289 0.283 20 0.604 0.178 0.456 0.097 0.331 0.323 21 0.087 0.027 0.069 0.021 0.048 0.047 22 112.270 78.475 94.985 107.475 125.138 93.500 23 3914.000 NA 3480.000 NA 4276.500 NA 24 7.750 8.000 7.500 8.667 8.000 8.167 25 4.500 3.917 4.083 4.917 4.333 4.583 26 32.472 34.626 33.093 34.456 33.637 32.433 27 23.021 18.392 26.502 19.689 26.975 14.456 28 64.160 30.778 53.813 28.248 56.413 47.118 29 16.294 15.306 21.439 14.294 20.850 14.056 30 15.150 12.250 18.500 9.133 16.667 14.917 31 19.539 15.813 16.899 15.916 15.793 15.517 32 24.300 18.868 20.565 21.737 21.058 22.490 33 15.167 13.167 14.389 13.294 15.000 13.833 34 72.000 78.000 73.000 74.000 73.000 74.000 35 251.417 191.000 248.639 175.500 268.056 203.444 36 6.385 3.787 6.319 4.232 6.315 4.214 37 61.213 47.106 57.363 55.451 58.022 58.156 38 713.540 323.125 538.043 442.733 705.525 421.642

TABLE 85 Measured parameters in Maize varieties under defoliation, additional maize lines Ecotype/Treatment Line-14 Line-15 Line-16 Line-17 Line-18 Line-19 Line-20 1 230.119 200.087 271.250 236.886 259.427 218.764 203.643 2 19.768 23.640 22.441 20.880 20.283 20.871 21.198 3 39.827 32.330 47.329 21.782 65.896 37.337 63.114 4 36.313 25.193 43.339 20.167 64.803 34.644 54.962 5 4.099 3.520 4.202 2.743 4.664 3.532 4.562 6 85.044 53.044 33.100 92.167 161.761 66.500 89.497 7 123.375 112.722 135.000 96.000 136.500 73.500 113.944 8 13.214 11.957 14.818 10.472 17.602 13.734 17.210 9 14.063 15.125 13.750 12.333 13.938 12.471 18.000 10 0.454 0.300 0.630 0.128 0.803 0.399 0.478 11 0.648 0.371 0.819 0.136 1.148 0.739 0.599 12 0.889 0.944 1.000 0.222 0.882 1.000 0.944 13 0.905 0.709 0.905 0.933 0.983 0.918 0.757 14 3.130 2.558 3.016 2.810 3.117 2.767 2.934 15 12.567 13.000 13.150 12.800 13.150 12.967 11.700 16 0.631 0.442 0.610 0.528 0.623 0.513 0.543 17 1.066 0.826 1.024 0.932 1.084 0.927 1.020 18 0.750 0.672 0.750 0.716 0.724 0.699 0.670 19 0.302 0.143 0.439 0.044 0.667 0.255 0.359 20 0.345 0.165 0.505 0.050 0.767 0.293 0.406 21 0.056 0.025 0.073 0.026 0.124 0.043 0.076 22 113.783 93.190 93.738 94.367 89.858 91.600 122.070 23 3436.00 0 NA 4593.00 0 NA 4315.50 0 NA NA 24 6.750 8.800 7.500 7.833 6.250 8.500 9.400 25 4.417 4.667 4.500 4.000 4.083 4.333 4.167 26 33.433 32.831 33.424 33.020 33.981 31.871 33.320 27 27.885 17.561 17.329 17.691 20.510 23.057 34.332 28 64.188 48.835 76.233 45.857 57.850 27.597 59.030 29 18.759 17.972 20.883 13.228 17.828 14.911 20.122 30 16.100 12.917 14.833 12.917 17.500 10.667 17.200 31 18.215 17.289 17.233 16.176 17.882 15.890 18.708 32 20.955 22.352 22.470 20.057 21.230 18.472 20.590 33 14.389 13.667 14.667 14.222 15.611 12.333 13.111 34 71.000 74.000 70.667 74.000 71.000 75.333 72.000 35 254.639 210.222 261.944 215.889 268.878 181.722 251.000 36 6.482 4.912 6.282 4.450 7.044 3.711 5.808 37 59.654 58.322 59.985 54.907 56.761 50.606 60.657 38 673.238 485.700 738.368 392.267 692.225 327.840 539.167

Tables 86 and 87 here in below provide the correlations (R) between the expression levels yield improving genes and their homologs in various tissues [Expression (Exp) sets] and the phenotypic performance [yield, biomass, growth rate and/or vigor components (Correlation vector (Cor))] under normal and defoliation conditions across maize varieties. P = p value.

TABLE 86 Correlation between the expression level of selected genes of some embodiments of the invention in various tissues and the phenotypic performance under normal conditions across maize varieties Gene Name R P value Exp. set Cor. Set ID Gene Name R P value Exp . set Cor. Set ID LNU814 0.711 1.41E-02 3 26 LNU824 0.727 3.85E-05 3 50 LNU824 0.843 1.24E-07 3 12 LNU824 0.720 4.95E-05 3 6 LNU824 0.770 6.81E-06 3 20 LNU824 0.779 4.47E-06 3 11 LNU824 0.775 5.45E-06 3 21 LNU824 0.752 1.44E-05 3 25 LNU824 0.701 9.54E-05 3 10 LNU824 0.754 1.34E-05 3 22 LNU824 0.776 1.35E-05 2 50 LNU824 0.704 1.76E-04 2 23 LNU824 0.743 4.96E-05 2 12 LNU824 0.708 1.56E-04 2 11 LNU832 0.766 1.60E-02 2 26 LNU813 0.722 1.21E-02 2 49 LNU813 0.738 6.14E-03 3 13 LNU814 0.700 1.12E-02 3 32 LNU813 0.719 1.26E-02 2 48 LNU815 0.835 7.34E-04 1 36 LNU814 0.729 1.10E-02 1 5 LNU815 0.732 6.85E-03 1 19 LNU815 0.705 1.05E-02 1 1 LNU816 0.703 1.57E-02 2 7 LNU815 0.753 4.68E-03 1 30 LNU817 0.840 1.21E-03 2 38 LNU816 0.722 7.99E-03 1 13 LNU818 0.834 7.40E-04 3 37 LNU818 0.731 6.92E-03 3 28 LNU818 0.737 9.61E-03 2 41 LNU818 0.794 2.02E-03 3 7 LNU818 0.770 5.60E-03 2 34 LNU818 0.700 1.64E-02 2 51 LNU818 0.749 8.04E-03 1 5 LNU818 0.829 1.60E-03 2 7 LNU819 0.712 1.40E-02 2 40 LNU819 0.764 6.20E-03 3 5 LNU820 0.755 4.57E-03 3 18 LNU819 0.713 1.37E-02 1 5 LNU820 0.834 7.46E-04 3 32 LNU820 0.794 2.05E-03 3 46 LNU820 0.704 1.07E-02 3 21 LNU820 0.712 9.44E-03 3 20 LNU820 0.759 4.22E-03 1 36 LNU820 0.712 9.44E-03 3 22 LNU821 0.715 8.92E-03 3 51 LNU820 0.736 6.32E-03 1 19 LNU823 0.780 2.76E-03 3 34 LNU823 0.766 3.65E-03 3 51 LNU823 0.757 4.38E-03 3 42 LNU823 0.741 5.79E-03 3 33 LNU823 0.726 7.47E-03 3 35 LNU823 0.776 3.03E-03 3 43 LNU823 0.753 1.19E-02 2 8 LNU823 0.744 8.61E-03 2 51 LNU825 0.745 5.38E-03 3 19 LNU824 0.705 1.05E-02 3 13 LNU828 0.726 7.57E-03 3 34 LNU825 0.704 1.56E-02 2 1 LNU828 0.719 8.47E-03 1 49 LNU828 0.804 1.62E-03 3 33 LNU828 0.726 7.53E-03 1 48 LNU828 0.789 2.31E-03 1 45 LNU829 0.713 9.30E-03 3 19 LNU828 0.823 1.02E-03 1 30 LNU831 0.865 2.82E-04 1 36 LNU831 0.746 5.30E-03 3 44 LNU834 0.730 6.97E-03 1 24 LNU831 0.777 2.96E-03 1 53 LNU834 0.805 1.57E-03 1 34 LNU834 0.751 7.71E-03 1 5 LNU834 0.702 1.09E-02 1 46 LNU834 0.723 7.92E-03 1 18 LNU834 0.767 3.57E-03 1 20 LNU834 0.829 8.51E-04 1 32 LNU834 0.751 4.89E-03 1 11 LNU834 0.723 7.86E-03 1 7 LNU834 0.767 3.57E-03 1 22 LNU834 0.758 4.28E-03 1 21 LNU835 0.876 1.86E-04 1 49 LNU835 0.725 1.15E-02 2 51 LNU835 0.809 1.46E-03 1 44 LNU835 0.748 5.16E-03 1 52 LNU835 0.925 1.61E-05 1 48 LNU835 0.869 2.39E-04 1 45 LNU835 0.806 1.54E-03 1 31 LNU835 0.784 2.52E-03 1 10 LNU839 0.751 7.71E-03 1 5 LNU835 0.916 2.89E-05 1 30 LNU841 0.792 3.65E-03 2 25 LNU840 0.844 5.57E-04 1 25 LNU841 0.845 5.38E-04 1 36 LNU841 0.710 9.70E-03 1 47 LNU841 0.849 4.80E-04 1 37 LNU841 0.854 4.03E-04 1 53 LNU841 0.729 7.17E-03 1 54 LNU841 0.772 3.27E-03 1 55 LNU844 0.716 8.75E-03 3 46 LNU844 0.724 7.79E-03 3 24 LNU844 0.758 4.28E-03 3 20 LNU844 0.812 1.34E-03 3 32 LNU844 0.747 5.21E-03 3 21 LNU844 0.717 8.64E-03 3 11 LNU844 0.835 7.31E-04 1 44 LNU844 0.758 4.28E-03 3 22 LNU844 0.727 7.35E-03 1 55 LNU844 0.731 6.88E-03 1 45 LNU845 0.799 1.81E-03 3 33 Table 86.

TABLE 87 Correlation between the expression level of selected genes of some embodiments of the invention in various tissues and the phenotypic performance under defoliation across maize varieties Gene Name R P value Exp. set Cor. Set ID Gene Name R P value Exp. set Cor. Set ID LNU814 0.761 1.01E-05 3 21 LNU819 0.765 8.32E-06 1 21 LNU824 0.720 4.95E-05 3 41 LNU824 0.715 5.85E-05 2 41 LNU824 0.719 5.18E-05 2 11 LNU829 0.725 7.62E-03 3 23 LNU829 0.753 1.41E-05 3 21 LNU832 0.703 8.91E-05 1 21 LNU835 0.720 4.98E-05 1 21 LNU813 0.721 8.15E-03 2 15 LNU813 0.740 5.93E-03 1 22 LNU814 0.701 1.11E-02 1 36 LNU814 0.701 1.11E-02 3 24 LNU815 0.766 3.70E-03 3 16 LNU815 0.710 9.74E-03 3 14 LNU815 0.773 3.20E-03 1 18 LNU815 0.769 3.49E-03 1 16 LNU816 0.714 9.14E-03 1 21 LNU816 0.751 4.86E-03 3 2 LNU817 0.718 8.54E-03 1 22 LNU817 0.732 6.79E-03 3 24 LNU819 0.754 4.59E-03 2 22 LNU819 0.716 8.80E-03 3 42 LNU819 0.767 3.57E-03 2 2 LNU819 0.792 2.16E-03 2 5 LNU819 0.730 6.98E-03 2 7 LNU819 0.733 6.71E-03 2 37 LNU823 0.706 1.03E-02 3 14 LNU820 0.771 3.29E-03 1 36 LNU823 0.738 6.19E-03 3 1 LNU823 0.765 3.78E-03 3 16 LNU824 0.834 7.54E-04 1 36 LNU823 0.764 3.81E-03 1 36 LNU829 0.725 7.62E-03 3 23 LNU825 0.700 1.12E-02 3 8 LNU829 0.870 2.32E-04 1 36 LNU829 0.744 5.55E-03 3 32 LNU831 0.703 1.08E-02 3 31 LNU829 0.733 6.68E-03 2 27 LNU833 0.752 4.82E-03 2 42 LNU832 0.712 9.33E-03 3 40 LNU834 0.771 3.30E-03 3 30 LNU834 0.723 7.83E-03 3 2 LNU837 0.748 5.16E-03 3 22 LNU834 0.705 1.05E-02 1 21 LNU837 0.786 2.45E-03 2 22 LNU837 0.728 7.24E-03 3 37 LNU837 0.718 8.55E-03 2 31 LNU837 0.768 3.56E-03 2 37 LNU839 0.771 3.30E-03 3 30 LNU837 0.728 7.24E-03 2 24 LNU843 0.709 9.87E-03 1 32 LNU841 0.815 1.23E-03 3 26 LNU844 0.827 9.07E-04 1 2 LNU844 0.731 6.88E-03 1 5 LNU845 0.805 1.57E-03 3 2 LNU844 0.808 1.49E-03 1 9 LNU813 0.783 2.59E-03 3 4 LNU845 0.779 2.85E-03 1 30 LNU813 0.737 6.26E-03 3 8 LNU811 0.733 4.40E-03 1 15 LNU813 0.701 7.60E-03 1 11 LNU813 0.760 4.15E-03 3 3 LNU814 0.744 3.54E-03 3 6 LNU813 0.749 3.23E-03 3 26 LNU814 0.832 4.23E-04 1 21 LNU814 0.721 5.42E-03 3 1 LNU815 0.806 8.77E-04 1 21 LNU814 0.819 6.19E-04 3 21 LNU816 0.871 1.07E-04 3 9 LNU815 0.703 7.34E-03 1 6 LNU816 0.722 5.28E-03 1 44 LNU816 0.724 5.11E-03 3 28 LNU817 0.707 6.87E-03 3 2 LNU816 0.750 3.16E-03 1 40 LNU817 0.716 5.92E-03 2 12 LNU816 0.854 2.00E-04 1 27 LNU818 0.702 7.45E-03 1 39 LNU817 0.764 2.35E-03 1 2 LNU818 0.743 3.64E-03 1 11 LNU818 0.791 1.27E-03 1 22 LNU818 0.756 2.77E-03 1 19 LNU818 0.796 1.12E-03 1 38 LNU818 0.765 2.33E-03 1 20 LNU818 0.707 6.93E-03 1 37 LNU819 0.704 1.07E-02 3 4 LNU818 0.740 3.82E-03 1 10 LNU819 0.717 5.84E-03 3 30 LNU818 0.733 4.40E-03 1 32 LNU819 0.809 8.02E-04 1 16 LNU819 0.745 3.45E-03 3 28 LNU819 0.731 4.53E-03 1 6 LNU819 0.741 3.75E-03 1 14 LNU819 0.925 5.82E-06 1 21 LNU819 0.839 3.34E-04 1 1 LNU821 0.751 3.07E-03 1 6 LNU819 0.830 4.53E-04 1 18 LNU821 0.886 5.50E-05 1 21 LNU821 0.704 7.29E-03 1 1 LNU822 0.710 6.59E-03 2 44 LNU821 0.700 1.12E-02 1 8 LNU824 0.707 6.94E-03 1 41 LNU822 0.756 2.77E-03 2 31 LNU825 0.761 2.54E-03 3 40 LNU823 0.709 9.90E-03 1 8 LNU825 0.736 4.13E-03 2 16 LNU824 0.749 3.19E-03 1 43 LNU825 0.749 3.20E-03 2 18 LNU825 0.700 7.70E-03 3 27 LNU829 0.739 3.94E-03 3 14 LNU825 0.707 6.85E-03 2 6 LNU829 0.848 2.48E-04 3 1 LNU829 0.757 4.39E-03 3 4 LNU829 0.709 9.84E-03 3 3 LNU829 0.773 1.93E-03 3 16 LNU829 0.931 3.74E-06 3 21 LNU829 0.771 2.02E-03 3 18 LNU831 0.771 2.02E-03 2 10 LNU829 0.740 5.92E-03 3 8 LNU832 0.799 1.05E-03 1 41 LNU831 0.714 6.16E-03 2 33 LNU832 0.785 1.46E-03 1 21 LNU831 0.711 6.49E-03 2 20 LNU834 0.723 5.22E-03 3 35 LNU832 0.726 7.53E-03 1 8 LNU834 0.708 6.75E-03 1 33 LNU832 0.783 1.54E-03 2 34 LNU835 0.726 5.00E-03 1 6 LNU834 0.746 3.40E-03 3 6 LNU835 0.828 4.72E-04 1 21 LNU835 0.715 5.98E-03 1 1 LNU835 0.756 2.80E-03 2 18 LNU835 0.704 7.26E-03 1 18 LNU838 0.744 3.57E-03 1 41 LNU835 0.718 5.69E-03 2 1 LNU838 0.746 5.33E-03 1 8 LNU835 0.841 3.17E-04 2 21 LNU839 0.746 3.40E-03 3 6 LNU838 0.750 3.16E-03 1 40 LNU841 0.719 5.61E-03 1 21 LNU839 0.723 5.22E-03 3 35 LNU843 0.734 4.27E-03 2 27 LNU839 0.708 6.75E-03 1 33 LNU846 0.739 3.91E-03 2 36 LNU841 0.745 3.46E-03 2 2 LNU846 0.714 6.16E-03 2 29 Table 87.

Example 11 Production of Foxtail Millet Transcriptom and High Throughput Correlation Analysis Using 60K Foxtail Millet Oligonucleotide Micro-Array

In order to produce a high throughput correlation analysis comparing between plant phenotype and gene expression level, the present inventors utilized a foxtail millet oligonucleotide micro-array, produced by Agilent Technologies [chem. (dot) agilent (dot) com/Scripts/PDS (dot) asp?lPage=50879]. The array oligonucleotide represents about 60K foxtail millet genes and transcripts. In order to define correlations between the levels of RNA expression and yield or vigor related parameters, various plant characteristics of 14 different foxtail millet accessions were analyzed. Among them, 11 accessions encompassing the observed variance were selected for RNA expression analysis. The correlation between the RNA levels and the characterized parameters was analyzed using Pearson correlation test [davidmlane (dot) com/hyperstat/A34739 (dot) html].

Experimental Procedures

14 foxtail millet varieties were grown in 5 repetitive plots, in field. Briefly, the growing protocol was as follows:

  • 1. Regular growth conditions: foxtail millet plants were grown in the field using commercial fertilization and irrigation protocols, which include 283 m3 water per dunam (100 square meters) per entire growth period and fertilization of 16 units of URAN® 32% (Nitrogen Fertilizer Solution; PCS Sales, Northbrook, IL, USA) (normal growth conditions).
  • 2. Drought conditions: foxtail millet seeds were sown in soil and grown under normal condition until heading stage (22 days from sowing), drought treatment was imposed by irrigating plants with 50% water relative to the normal treatment from this stage (171 m3 water per dunam (100 square meters) per entire growth period).

Analyzed foxtail millet tissues - All 14 foxtail millet lines were sample per each treatment. Three tissues [leaf, flower, and stem] at 2 different developmental stages [flowering, grain filling], representing different plant characteristics, were sampled and RNA was extracted as described above. Each micro-array expression information tissue type has received a Set ID as summarized in Tables 88-89 below.

TABLE 88 Foxtail millet transcriptom expression sets under drought conditions Expression Set Set ID flower:flowering stage:drought 1 leaf:flowering stage:drought 2 stem:flowering stage:drought 3 grain:grain filling stage:drought 4 leaf:grain filling stage:drought 5 stem:grain filling stage:drought 6 Table 88. Provided are the barley transcriptome expression sets under drought conditions

TABLE 89 Foxtail millet transcriptom expression sets under normal conditions Expression Set Set ID flower:flowering stage 1 leaf:flowering stage 2 grain:grain filling stage:normal 4 leaf: grain filling stage:normal 5 stem:grain filling stage:normal 6 Table 89. Provided are the barley transcriptome expression sets under normal conditions

Foxtail millet yield components and vigor related parameters assessment -Plants were continuously phenotyped during the growth period and at harvest (Table 102, below). The image analysis system included a personal desktop computer (Intel P4 3.0 GHz processor) and a public domain program - ImageJ 1.37 (Java based image processing program, which was developed at the U.S. National Institutes of Health and freely available on the internet [Hypertext Transfer Protocol://rsbweb (dot) nih (dot) gov/]. Next, analyzed data was saved to text files and processed using the JMP statistical analysis software (SAS institute).

The following parameters were collected using digital imaging system:

  • At the end of the growing period the grains were separated from the Plant ‘Head’ and the following parameters were measured and collected:
  • Average Grain Area (cm2) - A sample of ~200 grains was weighted, photographed and images were processed using the below described image processing system. The grain area was measured from those images and was divided by the number of grains.
  • Average Grain Length and width (cm) - A sample of ~200 grains was weighted, photographed and images were processed using the below described image processing system. The sum of grain lengths and width (longest axis) were measured from those images and were divided by the number of grains.

At the end of the growing period 14 ‘Heads’ were photographed and images were processed using the below described image processing system.

Average Grain Perimeter (cm) - At the end of the growing period the grains were separated from the Plant ‘Head’. A sample of ~200 grains were weighted, photographed and images were processed using the below described image processing system. The sum of grain perimeter was measured from those images and was divided by the number of grains.

Head Average Area (cm2) The ‘Head’ area was measured from those images and was divided by the number of ‘Heads’.

Head Average Length and width (mm) The ‘Head’ length and width (longest axis) were measured from those images and were divided by the number of ‘Heads’.

The image processing system was used, which consists of a personal desktop computer (Intel P4 3.0 GHz processor) and a public domain program - ImageJ 1.37, Java based image processing software, which was developed at the U.S. National Institutes of Health and is freely available on the internet at Hypertext Transfer Protocol://rsbweb (dot) nih (dot) gov/. Images were captured in resolution of 10 Mega Pixels (3888x2592 pixels) and stored in a low compression JPEG (Joint Photographic Experts Group standard) format. Next, image processing output data for seed area and seed length was saved to text files and analyzed using the JMP statistical analysis software (SAS institute).

Additional parameters were collected either by sampling 5 plants per plot or by measuring the parameter across all the plants within the plot.

Head weight (gr.) and head number (num.) - At the end of the experiment, heads were harvested from each plot and were counted and weighted.

Total Grain Yield (gr.) - At the end of the experiment (plant ‘Heads’) heads from plots were collected, the heads were threshed and grains were weighted. In addition, the average grain weight per head was calculated by dividing the total grain weight by number of total heads per plot (based on plot).

1000 Seeds weight [gr] - weight of 1000 seeds per plot

Biomass at harvest - At the end of the experiment the vegetative portion above ground (excluding roots) from plots was weighted.

Total dry mater per plot - Calculated as Vegetative portion above ground plus all the heads dry weight per plot.

Num days to anthesis - Calculated as the number of days from sowing till 50% of the plot arrives anthesis.

Maintenance of performance under drought conditions: Represent ratio for the specified parameter of Drought condition results divided by Normal conditions results (maintenance of phenotype under drought in comparison to normal conditions). Data parameters collected are summarized in Table 90, herein below.

TABLE 90 Foxtail millet correlated parameters (vectors) Correlated parameter with Correlation ID 1000 grain weight (gr) 1 Biomass at harvest (1 M) (Kg.) 2 Grain Perimeter (cm) 3 Grain area (cm2) 4 Grain length (cm) 5 Grain width (cm) 6 Grains yield per Head (plot) (gr) 7 Head Area (cm2) 8 Head Width (cm) 9 Head length (cm) 10 Heads num 11 Num days to Anthesis 12 Total Grains yield (gr) 13 Total dry matter (1 M) (Kg.) 14 Total heads weight (Kg.) 15 Table 90. Provided are the foxtail millet collected parameters.

Experimental Results

14 different foxtail millet accessions were grown and characterized for different parameters as described above (Table 90). The average for each of the measured parameter was calculated using the JMP software and values are summarized in Tables 91-96 below. Subsequent correlation analysis between the various transcriptom sets and the average parameters (Tables 91-96) was conducted (Tables 97-99). Follow, results were integrated to the database.

TABLE 91 Measured parameters of correlation IDs in foxtail millet accessions under drought conditions Line/C or. ID 1 2 3 4 5 6 7 8 Line-1 2.6392 1.5284 0.6825 0.0333 0.2416 0.1755 3.0533 35.7477 Line-2 3.3285 3.4592 0.7215 0.0373 0.2445 0.1943 8.8318 50.7137 Line-3 2.6105 2.8720 0.6888 0.0335 0.2496 0.1707 1.3364 18.3997 Line-4 2.2948 2.9348 0.6827 0.0319 0.2543 0.1597 1.0933 14.9379 Line-5 2.3036 3.0224 0.6902 0.0326 0.2568 0.1618 1.3094 17.6865 Line-6 2.6419 2.6648 0.6923 0.0334 0.2504 0.1701 0.4864 9.9107 Line-7 2.2151 2.9750 0.6481 0.0297 0.2331 0.1626 1.6279 20.9859 Line-8 1.8374 0.7652 0.5695 0.0238 0.1944 0.1561 3.7375 39.9290 Line-9 2.5396 2.6616 0.6607 0.0317 0.2230 0.1807 9.9001 42.1487 Line-10 1.6912 2.9464 0.5929 0.0252 0.2034 0.1581 4.1426 43.5237 Line-11 3.0961 3.2304 0.7204 0.0365 0.2608 0.1782 2.9746 26.9309 Line-12 2.5413 3.3032 0.6747 0.0321 0.2448 0.1665 1.3047 21.2295 Line-13 3.2382 2.6316 0.7484 0.0391 0.2700 0.1842 0.3629 7.3024 Line-14 2.2454 0.8856 0.6593 0.0301 0.2417 0.1586 1.7407 13.1262 Table 91: Provided are the values of each of the parameters (as described above) measured in Foxtail millet accessions (line) under drought growth conditions. Growth conditions are specified in the experimental procedure section

TABLE 92 Additional measured parameters of correlation IDs in foxtail millet accessions under drought conditions Line/Cor . ID 9 10 11 12 13 14 15 Line-1 1.8708 22.3630 374.4 34 1141.493 8 0.5038 2.8880 Line-2 2.6767 21.8851 127 41 1116.178 2 0.7328 6.0868 Line-3 1.3254 16.5045 737.8 51 988.2113 0.7984 5.3252 Line-4 1.3341 13.3077 1100.8 41 1202.773 3 0.6160 5.4020 Line-5 1.5008 13.9981 1047.2 41 1360.510 6 0.7079 5.5700 Line-6 1.1661 9.1123 2050 30 995.1714 0.4700 5.2800 Line-7 1.6655 15.0971 581.5 38 946.8482 0.6075 5.1205 Line-8 2.1528 21.1335 311.6 30 1159.783 9 0.3491 2.2884 Line-9 2.3622 20.0249 147.2 38 1391.388 2 0.4366 5.8340 Line-10 2.3216 21.7995 95.4 NA 394.5104 0.6448 4.3164 Line-11 1.5449 20.7968 414.4 44 1199.501 6 0.7484 5.6392 Line-12 1.5902 15.8491 667.8 51 872.4820 0.8724 5.1316 Line-13 1.2536 6.4468 2441 31 873.9356 0.5228 5.1264 Line-14 1.7376 9.1779 687.5 27 1187.9820 0.3605 2.3065 Table 92: Provided are the values of each of the parameters (as described above) measured in Foxtail millet accessions (line) under drought growth conditions. Growth conditions are specified in the experimental procedure section

TABLE 93 Measured parameters of correlation IDs in foxtail millet accessions for Maintenance of performance under drought conditions Line/Cor . ID 1 2 3 4 5 6 7 Line-1 107.28492 63.80296 101.14903 103.09389 100.71910 102.26639 89.85420 Line-2 97.44009 86.66199 100.63477 101.05865 101.13165 100.03126 121.1905 Line-3 99.89264 90.61080 101.03545 102.80522 100.39213 102.38873 76.40597 Line-4 97.29088 81.97765 100.28207 100.87451 100.43193 100.42313 83.95708 Line-5 95.73134 84.03025 100.56979 101.56544 100.17700 101.33417 83.22790 Line-6 99.52308 87.17613 99.36660 99.75367 99.50116 100.23080 70.03712 Line-7 101.3838 73.57305 100.8677 101.1388 101.0330 100.2182 77.37223 Line-8 102.16287 66.77138 99.64822 99.96068 99.16887 100.78369 111.7403 Line-9 94.53807 83.21661 99.83736 98.88644 100.70881 98.15907 86.38569 Line-10 102.69124 75.47131 101.82094 102.67156 102.00421 100.61236 57.78836 Line-11 97.60676 90.15405 98.93543 97.94887 99.40096 98.50410 68.36558 Line-12 97.81459 89.80968 97.98844 96.37703 97.77776 98.54474 57.64576 Line-13 101.68636 89.51020 100.39095 101.18981 100.33465 100.85848 83.16443 Line-14 99.50250 59.88639 99.19422 99.24780 98.98318 100.25762 132.38018 Table 93: Provided are the values of each of the parameters (as described above) measured in Foxtail millet accessions (line) for maintenance of performance under drought (calculated as% of change under drought vs normal growth conditions). Growth conditions are specified in the experimental procedure section.

TABLE 94 Additional measured parameters of correlation IDs in foxtail millet accessions for Maintenance of performance under drought conditions Line/ Cor. ID 8 9 10 11 12 13 14 Line-1 94.50182 98.17799 96.68963 87.55847 78.74402 71.70254 75.80848 Line-2 87.63360 98.29102 90.24976 85.12064 104.52251 85.76779 102.30604 Line-3 93.93199 99.87804 93.9717 4 85.09804 64.38181 2.89037 85.90141 Line-4 87.35732 98.42025 89.95839 91.42857 76.74662 66.68110 95.83452 Line-5 89.50996 97.94159 91.00586 91.34682 75.80281 78.32485 88.82439 Line-6 105.26046 98.75548 106.44273 96.15385 67.41849 98.01877 86.91644 Line-7 91.55461 98.97568 93.88055 77.30657 59.82989 66.27755 81.03596 Line-8 97.65054 101.33701 96.59358 79.04617 88.00374 77.03001 81.18348 Line-9 93.05666 94.53334 98.09741 78.88532 65.27431 73.53882 80.43346 Line-10 88.21016 95.66287 93.49773 72.38240 42.06192 64.63512 82.30493 Line-11 97.27140 99.48243 99.65504 95.43989 63.79603 81.97152 85.75426 Line-12 87.80382 100.35077 88.13167 103.31064 61.13590 84.96299 87.70167 Line-13 102.45818 100.81763 101.47055 87.24712 71.85533 83.88960 91.15220 Line-14 89.37679 95.46426 93.80683 69.12327 91.61620 77.76100 84.42533 Table 94: Provided are the values of each of the parameters (as described above) measured in Foxtail millet accessions (line) for maintenance of performance under drought (calculated as% of change under drought vs normal growth conditions). Growth conditions are specified in the experimental procedure section

TABLE 95 Measured parameters of correlation IDs in foxtail millet accessions under normal conditions Line/Cor . ID 1 2 3 4 5 6 7 Line-1 2.45995 2.39550 0.67477 0.03230 0.23989 0.17157 3.39810 Line-2 3.41596 3.99160 0.71695 0.03689 0.24172 0.19428 7.28754 Line-3 2.61327 3.16960 0.68170 0.03255 0.24860 0.16670 1.74902 Line-4 2.35874 3.58000 0.68083 0.03161 0.25317 0.15900 1.30220 Line-5 2.40635 3.59680 0.68626 0.03213 0.25634 0.15968 1.57325 Line-6 2.65459 3.05680 0.69667 0.03353 0.25168 0.16966 0.69451 Line-7 2.18488 4.04360 0.64249 0.02941 0.23076 0.16223 2.10395 Line-8 1.79847 1.14600 0.57148 0.02386 0.19607 0.15493 3.34479 Line-9 2.68629 3.19840 0.66174 0.03201 0.22145 0.18410 11.46040 Line-10 1.64690 3.90400 0.58226 0.02458 0.19936 0.15712 7.16855 Line-11 3.17197 3.58320 0.72818 0.03729 0.26240 0.18093 4.35102 Line-12 2.59803 3.67800 0.68858 0.03326 0.25037 0.16901 2.26328 Line-13 3.18446 2.94000 0.74550 0.03864 0.26910 0.18267 0.43640 Line-14 2.25661 1.47880 0.66464 0.03032 0.24416 0.15822 1.31493 Table 95: Provided are the values of each of the parameters (as described above) measured in Foxtail millet accessions (line) under normal growth conditions. Growth conditions are specified in the experimental procedure section

TABLE 96 Additional measured parameters of correlation IDs in foxtail millet accessions under normal conditions Line/Cor . ID 8 9 10 11 12 13 14 Line-1 37.82752 1.90548 23.12861 427.60000 1449.62604 0.70263 3.80960 Line-2 57.87014 2.72325 24.24950 149.20000 1067.88312 0.85440 5.94960 Line-3 19.58832 1.32700 17.56325 867.0000 0 1534.923 10 0.96320 6.19920 Line-4 17.09980 1.35550 14.79317 1204.00000 1567.20040 0.92380 5.63680 Line-5 19.75921 1.53239 15.38157 1146.40000 1794.80240 0.90380 6.27080 Line-6 9.41542 1.18075 8.56073 2132.00000 1476.11048 0.47950 6.07480 Line-7 22.92173 1.68275 16.08119 752.2000 1582.567 0.91660 6.31880 Line-8 40.88973 2.12436 21.87883 394.20000 1317.88024 0.45320 2.81880 Line-9 45.29355 2.49875 20.41332 186.60000 2131.60156 0.59370 7.25320 Line-10 49.34091 2.42686 23.31557 131.80000 937.92760 0.99760 5.24440 Line-11 27.68630 1.55289 20.86882 434.20000 1880.21340 0.91300 6.57600 Line-12 24.17832 1.58464 17.98348 646.40000 1427.11884 1.02680 5.85120 Line-13 7.12724 1.24343 6.35334 2797.80000 1216.24320 0.62320 5.62400 Line-14 14.68632 1.82013 9.78380 994.60000 1296.69424 0.46360 2.73200 Table 96: Provided are the values of each of the parameters (as described above) measured in Foxtail millet accessions (line) under normal growth conditions. Growth conditions are specified in the experimental procedure section

TABLE 97 Correlation between the expression level of selected genes of some embodiments of the invention in various tissues and the phenotypic performance under drought conditions across foxtail millet varieties Gene Name R P value Exp. set Cor. Set ID Gene Name R P value Exp. set Cor. Set ID LNU801 0.761 1.05E-02 2 16 LNU801 0.789 6.66E-03 2 2 LNU801 0.735 1.55E-02 2 17 LNU802 0.846 3.37E-02 1 1 LNU802 0.817 4.71E-02 1 4 LNU802 0.817 4.72E-02 1 10 LNU802 0.750 8.58E-02 1 3 LNU802 0.795 5.87E-02 1 11 LNU802 0.785 6.42E-02 1 8 LNU802 0.870 2.42E-02 1 6 LNU802 0.854 3.03E-02 1 9 LNU803 0.824 4.40E-02 1 13 LNU804 0.736 9.50E-02 1 12 LNU804 0.711 1.13E-01 1 7 LNU805 0.795 5.97E-03 2 7 LNU806 0.797 5.77E-02 1 7 LNU806 0.756 1.14E-02 2 1 LNU806 0.816 3.96E-03 2 6 LNU807 0.760 7.96E-02 1 15 LNU807 0.865 2.60E-02 1 10 LNU807 0.792 6.05E-02 1 11 LNU807 0.857 2.91E-02 1 8 LNU807 0.873 2.30E-02 1 9 LNU807 0.739 1.47E-02 2 10 LNU807 0.803 5.12E-03 2 8 LNU807 0.737 1.50E-02 2 9 LNU808 0.828 3.12E-03 2 5 LNU809 0.703 1.19E-01 1 16 LNU809 0.721 1.06E-01 1 2 LNU809 0.709 2.16E-02 3 15 LNU810 0.713 2.07E-02 2 13 LNU810 0.705 2.28E-02 3 16 LNU810 0.703 2.33E-02 3 13 Table 97. Correlations (R) between the genes expression levels in various tissues and the phenotypic performance. “Corr. ID” - correlation set ID according to the correlated parameters Table above. “Exp. Set” - Expression set. “R” = Pearson correlation coefficient; “P” = p value.

TABLE 98 Correlation between the expression level of selected genes of some embodiments of the invention in various tissues and the phenotypic performance of maintenance of performance under drought conditions across foxtail millet varieties Gene Name R P value Exp. set Cor. Set ID Gene Name R P value Exp. set Cor. Set ID LNU802 0.736 1.53E-02 1 1 LNU802 0.818 3.82E-03 1 16 LNU802 0.711 2.11E-02 1 13 LNU804 0.728 2.62E-02 3 1 LNU804 0.701 3.55E-02 3 6 LNU804 0.917 7.23E-05 2 1 LNU804 0.883 3.20E-04 2 4 LNU804 0.808 2.61E-03 2 3 LNU804 0.863 6.21E-04 2 6 LNU807 0.712 1.40E-02 2 11 LNU810 0.761 1.06E-02 1 16 LNU810 0.706 2.25E-02 1 13 LNU802 0.736 1.53E-02 1 1 LNU802 0.818 3.82E-03 1 16 LNU802 0.711 2.11E-02 1 13 LNU804 0.728 2.62E-02 3 1 LNU804 0.701 3.55E-02 3 6 LNU804 0.917 7.23E-05 2 1 LNU804 0.883 3.20E-04 2 4 LNU804 0.808 2.61E-03 2 3 LNU804 0.863 6.21E-04 2 6 LNU807 0.712 1.40E-02 2 11 LNU810 0.761 1.06E-02 1 16 LNU810 0.706 2.25E-02 1 13 Table 98. Correlations (R) between the genes expression levels in various tissues and the phenotypic performance. “Corr. ID “ - correlation set ID according to the correlated parameters Table above. “Exp. Set” - Expression set. “R” = Pearson correlation coefficient; “P” = p value.

TABLE 99 Correlation between the expression level of selected genes of some embodiments of the invention in various tissues and the phenotypic performance under normal conditions across foxtail millet varieties Gene Name R P value Exp. set Cor. Set ID Gene Name R P value Exp. set Cor. Set ID LNU801 0.752 1.22E-02 2 15 LNU802 0.711 1.42E-02 1 16 LNU802 0.740 9.19E-03 1 13 LNU803 0.704 2.30E-02 2 12 LNU804 0.703 1.59E-02 1 5 LNU804 0.748 8.11E-03 1 4 LNU804 0.779 4.76E-03 1 3 LNU805 0.748 1.29E-02 2 12 LNU806 0.814 4.13E-03 2 11 LNU807 0.765 6.06E-03 1 16 LNU807 0.713 1.38E-02 1 2 LNU809 0.786 4.09E-03 1 12 LNU809 0.811 4.42E-03 2 17 LNU801 0.703 5.17E-02 3 1 LNU801 0.783 7.38E-03 2 8 LNU801 0.823 1.21E-02 3 6 LNU801 0.759 2.90E-02 3 17 LNU801 0.744 9.00E-02 1 11 LNU801 0.832 4.00E-02 1 10 LNU801 0.810 5.07E-02 1 9 LNU801 0.787 6.31E-02 1 6 LNU802 0.756 1.13E-02 2 13 LNU802 0.764 1.01E-02 2 14 LNU802 0.904 2.09E-03 3 4 LNU802 0.878 4.14E-03 3 1 LNU802 0.817 4.70E-02 1 1 LNU802 0.844 8.46E-03 3 3 LNU802 0.764 7.68E-02 1 11 LNU802 0.890 1.75E-02 1 10 LNU802 0.863 2.68E-02 1 9 LNU802 0.866 2.57E-02 1 6 LNU803 0.833 3.94E-02 1 15 LNU803 0.800 1.72E-02 3 15 LNU804 0.886 1.88E-02 1 11 LNU804 0.837 3.77E-02 1 10 LNU804 0.834 3.91E-02 1 6 LNU804 0.717 1.09E-01 1 8 LNU805 0.774 8.66E-03 2 5 LNU804 0.844 3.47E-02 1 9 LNU805 0.828 4.18E-02 1 10 LNU805 0.722 1.83E-02 2 7 LNU805 0.778 6.84E-02 1 6 LNU805 0.938 5.71E-03 1 8 LNU806 0.838 2.47E-03 2 8 LNU805 0.726 1.03E-01 1 9 LNU806 0.733 1.60E-02 2 9 LNU806 0.793 6.19E-03 2 6 LNU806 0.715 4.63E-02 3 11 LNU806 0.700 5.30E-02 3 15 LNU806 0.741 9.19E-02 1 4 LNU806 0.818 4.65E-02 1 1 LNU806 0.985 3.40E-04 1 11 LNU806 0.854 3.02E-02 1 10 LNU806 0.936 5.93E-03 1 9 LNU806 0.902 1.40E-02 1 6 LNU807 0.765 9.98E-03 2 8 LNU807 0.766 9.71E-03 2 10 LNU807 0.823 1.20E-02 3 12 LNU807 0.806 4.89E-03 2 9 LNU807 0.816 4.77E-02 1 10 LNU807 0.750 8.57E-02 1 1 LNU807 0.810 5.07E-02 1 6 LNU807 0.709 1.14E-01 1 11 LNU808 0.725 4.19E-02 3 4 LNU807 0.803 5.44E-02 1 9 LNU808 0.871 4.83E-03 3 12 LNU808 0.766 2.65E-02 3 3 LNU808 0.955 3.05E-03 1 10 LNU808 0.716 1.09E-01 1 1 LNU808 0.902 1.38E-02 1 6 LNU808 0.867 2.53E-02 1 8 LNU809 0.706 2.25E-02 2 2 LNU808 0.881 2.06E-02 1 9 LNU809 0.823 1.21E-02 3 10 LNU809 0.828 1.11E-02 3 15 LNU809 0.930 8.08E-04 3 8 LNU809 0.856 6.71E-03 3 11 LNU809 0.885 1.91E-02 1 16 LNU809 0.981 1.74E-05 3 9 LNU809 0.770 7.31E-02 1 13 LNU809 0.872 2.37E-02 1 5 LNU810 0.722 1.85E-02 2 16 LNU809 0.792 6.03E-02 1 12 LNU810 0.724 4.22E-02 3 16 LNU810 0.785 7.20E-03 2 13 LNU810 0.707 1.16E-01 1 13 LNU810 0.722 4.31E-02 3 14 LNU810 0.792 6.04E-02 1 12 Table 99. Correlations (R) between the genes expression levels in various tissues and the phenotypic performance. “Corr. ID “ - correlation set ID according to the correlated parameters Table above. “Exp. Set” - Expression set. “R” = Pearson correlation coefficient; “P” = p value.

Example 12 Gene Cloning and Generation of Binary Vectors for Plant Expression

To validate their role in improving yield, selected genes were over-expressed in plants, as follows.

Cloning Strategy

Selected genes from those presented in Examples 1-13 hereinabove were cloned into binary vectors for the generation of transgenic plants. For cloning, the full-length open reading frames (ORFs) were identified. EST clusters and in some cases mRNA sequences were analyzed to identify the entire open reading frame by comparing the results of several translation algorithms to known proteins from other plant species.

In order to clone the full-length cDNAs, reverse transcription (RT) followed by polymerase chain reaction (PCR; RT-PCR) was performed on total RNA extracted from leaves, roots or other plant tissues, growing under normal/limiting or stress conditions. Total RNA extraction, production of cDNA and PCR amplification was performed using standard protocols described elsewhere (Sambrook J., E.F. Fritsch, and T. Maniatis. 1989. Molecular Cloning. A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, New York.) which are well known to those skilled in the art. PCR products were purified using PCR purification kit (Qiagen).

Usually, 2 sets of primers were prepared for the amplification of each gene, via nested PCR (if required). Both sets of primers were used for amplification on a cDNA. In case no product was obtained, a nested PCR reaction was performed. Nested PCR was performed by amplification of the gene using external primers and then using the produced PCR product as a template for a second PCR reaction, where the internal set of primers were used. Alternatively, one or two of the internal primers were used for gene amplification, both in the first and the second PCR reactions (meaning only 2-3 primers are designed for a gene). To facilitate further cloning of the cDNAs, an 8-12 base pairs (bp) extension was added to the 5′ of each internal primer. The primer extension includes an endonuclease restriction site. The restriction sites were selected using two parameters: (a) the restriction site does not exist in the cDNA sequence; and (b) the restriction sites in the forward and reverse primers were designed such that the digested cDNA was inserted in the sense direction into the binary vector utilized for transformation.

PCR products were digested with the restriction endonucleases (New England BioLabs Inc) according to the sites designed in the primers. Each digested/ undigested PCR product was inserted into a high copy vector pUC19 (New England BioLabs Inc], or into plasmids originating from this vector. In some cases the undigested PCR product was inserted into pCR-Blunt II-TOPO (Invitrogen) or into pJET1.2 (CloneJET PCR Cloning Kit, Thermo Scientific) or directly into the binary vector. The digested/ undigested products and the linearized plasmid vector were ligated using T4 DNA ligase enzyme (Roche, Switzerland or other manufacturers). In cases where pCR-Blunt II-TOPO is used no T4 ligase is needed.

Sequencing of the inserted genes was performed, using the ABI 377 sequencer (Applied Biosystems). In some cases, after confirming the sequences of the cloned genes, the cloned cDNA was introduced into a modified pGI binary vector containing the At6669 promoter (e.g., pQFNc) and the NOS terminator (SEQ ID NO: 4891) via digestion with appropriate restriction endonucleases.

In case of Brachypodium transformation, after confirming the sequences of the cloned genes, the cloned cDNAs were introduced into pEBbVNi (FIG. 9A) containing 35S promoter (SEQ ID NO: 4892) and the NOS terminator (SEQ ID NO:4891) via digestion with appropriate restriction endonucleases. The genes were cloned downstream to the 35S promoter and upstream to the NOS terminator.

Several DNA sequences of the selected genes were synthesized by GeneArt (Life Technologies, Grand Island, NY, USA). Synthetic DNA was designed in silico. Suitable restriction enzymes sites were added to the cloned sequences at the 5′ end and at the 3′ end to enable later cloning into the desired binary vector.

Binary vectors - The pPI plasmid vector was constructed by inserting a synthetic poly-(A) signal sequence, originating from pGL3 basic plasmid vector (Promega, GenBank Accession No. U47295; nucleotides 4658-4811) into the HindIII restriction site of the binary vector pBI101.3 (Clontech, GenBank Accession No. U12640). pGI is similar to pPI, but the original gene in the backbone is GUS-Intron and not GUS.

The modified pGI vector (e.g., pQFN, pQFNc, pQYN_6669, pQNa_RP, pQFYN or pQXNc) is a modified version of the pGI vector in which the cassette is inverted between the left and right borders so the gene and its corresponding promoter are close to the right border and the NPTII gene is close to the left border.

At6669, the new Arabidopsis thaliana promoter sequence (SEQ ID NO:4880) was inserted in the modified pGI binary vector, upstream to the cloned genes, followed by DNA ligation and binary plasmid extraction from positive E. coli colonies, as described above. Colonies were analyzed by PCR using the primers covering the insert which were designed to span the introduced promoter and gene. Positive plasmids were identified, isolated and sequenced.

pEBbVNi (FIG. 9A) is a modified version of pJJ2LB in which the Hygromycin resistance gene was replaced with the BAR gene which confers resistance to the BASTA herbicide [BAR gene coding sequence is provided in GenBank Accession No. JQ293091.1 (SEQ ID NO:5436); further description is provided in Akama K, et al. “Efficient Agrobacterium-mediated transformation of Arabidopsis thaliana using the bar gene as selectable marker”, Plant Cell Rep. 1995, 14(7):450-4; Christiansen P, et al. “A rapid and efficient transformation protocol for the grass Brachypodium distachyon”, Plant Cell Rep. 2005 Mar;23(10-11):751-8. Epub 2004 Oct 19; and Păcurar DI, et al. “A high-throughput Agrobacterium-mediated transformation system for the grass model species Brachypodium distachyon L”, Transgenic Res. 2008 17(5):965-75; each of which is fully incorporated herein by reference in its entirety]. The pEBbVNi construct contains the 35S promoter (SEQ ID NO:4892). pJJ2LB is a modified version of pCambia0305.2 (Cambia).

In case genomic DNA was cloned, the genes were amplified by direct PCR on genomic DNA extracted from leaf tissue using the DNAeasy kit (Qiagen Cat. No. 69104).

Selected genes cloned by the present inventors are provided in Table 100 below.

TABLE 100 Gene Name High copy plasmid Organism Primers used SEQ ID NOs: Polynucleotide SEQ ID NO: Polypeptide SEQ ID NO: LNU749 pQFNc_LNU749 barley 5383, 4897, 5412, 4906 289 747 LNU750 pQFNc_LNU750 barley 5182, 5357, 5182, 5245 2 497 LNU751 pQFNc_LNU751 barley 5096, 5214, 5073, 5362 290 498 LNU752 pUC19c_LNU752 barley 5087, 5232, 5087, 5232 291 748 LNU753 pQFNc_LNU753 barley 5416, 4974, 5416, 4972 292 500 LNU754 pQFNc_LNU754 barley 5067, 5338, 5067, 5338 293 501 LNU756 pQFNc_LNU756 barley 5019, 5321, 5164, 5326 294 502 LNU757 pQFNc_LNU757 barley 5088, 5273, 5137, 5257 295 503 LNU758 pMA-RQ_LNU758_GA 296 504 LNU759 pQFNc_LNU759 barley 5392, 4949, 5402, 4976 297 505 LNU760_H1 pQFNc_LNU760_H1 brachypodium 5043, 5359, 5043, 5359 491 708 LNU761 pUC19c_LNU761 barley 5373, 4954, 5373, 4962 298 507 LNU762 pQFNc_LNU762 barley 5371, 4898, 5391, 4912 299 508 LNU763 pQFNc_LNU763 barley 5149, 5349, 5026, 5228 300 509 LNU764 pUC19c_LNU764 barley 5396, 4899, 5396, 4913 301 510 LNU766 pUC19c_LNU766 barley 5125, 4965, 5125, 4965 302 749 LNU767 pMA_LNU767_GA 303 512 LNU768 pQFNc_LNU768 barley 5146, 5345, 5146, 5332 304 513 LNU769 pUC19c_LNU769 barley 4929, 4987, 4929, 4989 305 750 LNU770 pQFNc_LNU770 barley 5201, 5316, 5061, 5240 306 515 LNU771 pQFNc_LNU771 barley 5175, 5242, 5175, 5242 307 516 LNU772 TopoB_LNU772 barley 5107, 5351, 5107, 5285 308 517 LNU773 TopoB_LNU773 barley 5165, 4960, 5165, 4960 309 751 LNU774 pQFNc_LNU774 barley 4928, 4943, 4928, 4943 310 519 LNU775 pQFNc_LNU775 barley 5389, 5183, 5389, 5183 311 520 LNU776 pUC19_LNU776 barley 5075, 5266, 5085, 5266 312 752 LNU777 pQFNc_LNU777 barley 5174, 5205, 5174, 5205 313 522 LNU778 pMK-RQ_LNU778_GA 314 523 LNU779 pQFNc_LNU779 barley 5428, 4902, 5403, 4895 315 524 LNU780 pQFNc_LNU780 barley 5098, 5354, 5098, 5354 316 753 LNU781 pMA-RQ_LNU781_GA 317 526 LNU782 pQFNc_LNU782 barley 5415, 4996, 5415, 4996 318 527 LNU783 pQFNc_LNU783 barley 5103, 5212, 5160, 5238 319 528 LNU784 pQFNc_LNU784 barley 5143, 5243, 5143, 5243 320 754 LNU785 TopoB_LNU785 barley 5111, 5246, 5056, 5282 321 530 LNU786 TopoB_LNU786 barley 5082, 5010, 5082, 5000 322 755 LNU787 pMA-RQ_LNU787_GA 323 532 LNU788 pQFNc_LNU788 brachypodium 5184, 5310, 5153, 5227 324 756 LNU789 pQFNc_LNU789 brachypodium 5409, 5001, 5414, 5013 325 534 LNU790 pQFNc_LNU790 brachypodium 5101, 5237, 5101, 5237 326 535 LNU791 pQFNc_LNU791 brachypodium 5080, 5203, 5080, 5203 327 536 LNU792 pQFNc_LNU792 brachypodium 5055, 5003, 5018, 5006 328 537 LNU793 pUC19c_LNU793 brachypodium 5144, 5253, 5023, 5343 329 538 LNU794 pMA-T_LNU794_GA 330 539 LNU795 pQFNc_LNU795 brachypodium 5119, 5234, 5119, 5234 331 757 LNU796 pQFNc_LNU796 brachypodium 5400, 4971, 5400, 4971 332 541 LNU797 pQFNc_LNU797 brachypodium 5148, 5358, 5123, 5287 333 542 LNU798 pMA-RQ_LNU798_GA 334 543 LNU799 pQFNc_LNU799 Brachypodiums distachyon ND 5390, 5028, 5390, 5028 335 544 LNU800 pQFNc_LNU800 brachypodium 5063, 5337, 5069, 5236 336 545 LNU801 pUC19d_LNU801 foxtail millet 5002, 4923, 5002, 4930 337 546 LNU802 pUC19c_LNU802 foxtail millet 5186, 5344, 5186, 5262 338 547 LNU803 pQFNc_LNU803 foxtail millet 5092, 5218, 5052, 5356 339 548 LNU804 pUC19c_LNU804 foxtail millet 5062, 5215, 5131, 5292 340 758 LNU805 pQFNc_LNU805 foxtail millet 5395, 4893, 5431, 4900 341 550 LNU806 pQFNc_LNU806 foxtail millet 5401, 4940, 5376, 4975 342 759 LNU807 pUC19c_LNU807 foxtail millet 4926, 4907, 4927, 4911 343 552 LNU808 pQFNc_LNU808 foxtail millet 5124, 5366, 5099, 5221 344 553 LNU809 pQFNc_LNU809 foxtail millet 5033, 5275, 5033, 5275 345 760 LNU811 pUC19c_LNU811 maize 5021, 5259, 5021, 5259 346 556 LNU813 pQFNc_LNU813 maize 5387, 4968, 5387, 4968 347 557 LNU814 pMA-RQ_LNU814_GA 348 558 LNU815 pQFNc_LNU815 maize 5115, 5334, 5158, 5335 349 559 LNU816 pUC19c_LNU816 maize 4916, 4937, 4918, 4932 350 761 LNU817 pQFNc_LNU817 maize 5135, 5244, 5135, 5244 351 762 LNU818 TopoB_LNU818 maize 5369, 5077, 5372, 5138 352 763 LNU819 pQFNc_LNU819 maize 5038, 5283, 5038, 5283 353 563 LNU820 pQFNc_LNU820 maize 5150, 5249, 5150, 5249 354 564 LNU821 TopoB_LNU821 maize 5393, 5104, 5393, 5104 355 764 LNU822 pMA-T_LNU822_GA 356 566 LNU823 pQFNc_LNU823 maize 5042, 5339, 5095, 5225 357 567 LNU824 pQFNc_LNU824 maize 5051, 5361, 5051, 5361 358 765 LNU825 pQFNc_LNU825 maize 5079, 5324, 5079, 5324 359 766 LNU828 pQFNc_LNU828 maize 5426, 4981, 5426, 4981 360 570 LNU829 pQFNc_LNU829 maize 5024, 5217, 5059, 5220 361 767 LNU830 TopoB_LNU830 maize 5004, 4985, 5004, 4985 362 572 LNU831 pQFNc_LNU831 maize 5118, 5226, 5142, 5224 363 768 LNU832_H2 pQFNc_LNU832_H2 sorghum 5418, 5083, 5418, 5083 492 709 LNU833 pUC19c_LNU833 maize 5110, 5250, 5025, 5223 364 769 LNU834_H1 pMA-RQ_LNU834_H1_GA 493 710 LNU835 pUC19c_LNU835 maize 5384, 5189, 5394, 5199 365 577 LNU837 TopoB_LNU837 maize 5040, 5260, 5040, 5260 366 770 LNU838 pQFNc_LNU838 maize 5434, 4956, 5434, 4956 367 579 LNU839 pQFNc_LNU839 maize 4931, 4966, 4931, 4966 368 580 LNU840 pQFNc_LNU840 maize 5020, 5261, 5020, 5308 369 581 LNU841 pQFNc_LNU841 maize 5197, 5435 370 582 LNU843 pUC19_LNU843 maize 5022, 5009, 5022, 5005 371 583 LNU844 pQFNc_LNU844 maize 4933, 4958, 4936, 4991 372 584 LNU845 TopoB_LNU845 maize 5375, 4986, 5413, 4994 373 771 LNU846 pUC19c_LNU846 maize 5058, 5286, 5162, 5269 374 586 LNU847 pUC19c_LNU847 medicago 5430, 4905, 5419, 4910 375 772 LNU848 pQFNc_LNU848 rice 5060, 5268, 5035, 5314 376 588 LNU849 pMA_LNU849_GA 377 589 LNU850 pMA_LNU850_GA 378 590 LNU851 pMA-RQ_LNU851_GA 379 591 LNU852 pMK-RQ_LNU852_GA 380 592 LNU853 TopoB_LNU853 rice 4983, 4909, 4983, 4909 381 593 LNU854 pUC19c_LNU854 rice 4935, 4973, 4938, 4979 382 594 LNU856 pUC19c_LNU856 sorghum 5198, 5241, 5198, 5241 383 595 LNU857 pQFNc_LNU857 sorghum 5070, 5350, 5070, 5208 384 773 LNU858 pUC19_LNU858 sorghum 5427, 4964, 5427, 4964 385 774 LNU859 TopoB_LNU859 sorghum 5417, 4999, 5417, 4999 495 - LNU861_H3 pMA_LNU861_H3_GA 494 711 LNU862 TopoB_LNU862 sorghum 5422, 4957, 5406, 4970 386 599 LNU864 pQFNc_LNU864 sorghum 5140, 5336, 5017, 5309 387 600 LNU865 pUC19c_LNU865 sorghum 5181, 5346, 5181, 5346 388 601 LNU866 pQFNc_LNU866 sorghum 5151, 5307, 5185, 5363 389 775 LNU867 pUC19c_LNU867 sorghum 5045, 5353, 5045, 5353 390 603 LNU868 pQFNc_LNU868 sorghum 5084, 5333, 5159, 5291 391 604 LNU869 pQFNc_LNU869 sorghum 5170, 5272, 5170, 5289 392 605 LNU870 pUC19c_LNU870 sorghum 5108, 5322, 5132, 5204 393 606 LNU871 pUC19c_LNU871 sorghum 5404, 4955, 5404, 4955 394 607 LNU872 pQFNc_LNU872 sorghum 5177, 5248, 5048, 5231 395 608 LNU873 pUC19_LNU873 sorghum 4934, 4967, 4934, 4967 396 609 LNU874 TopoB_LNU874 sorghum 5027, 5012, 5027, 5007 397 610 LNU875 pUC19c_LNU875 sorghum 5423, 4945, 5386, 4995 398 611 LNU876 TopoB_LNU876 sorghum 5178, 5263, 5136, 5213 399 612 LNU878 pQFNc_LNU878 sorghum 5432, 5166, 5432, 5166 400 613 LNU879 pQFNc_LNU879 sorghum 5112, 5288, 5112, 5288 401 614 LNU880 pUC19c_LNU880 sorghum 5109, 5303, 5157, 5296 402 615 LNU881 pUC19c_LNU881 sorghum 4915, 5105, 4917, 5106 403 616 LNU882 pUC19c_LNU882 sorghum 4978, 4896, 4977, 4904 404 617 LNU884 pMA-RQ_LNU884_GA 405 619 LNU885 pMA_LNU885_GA 406 620 LNU886 pQFNc_LNU886 sorghum 5011, 4939, 5008, 4925 407 776 LNU887 TopoB_LNU887 sorghum 4924, 4982, 4924, 4982 408 622 LNU888 pQFNc_LNU888 sorghum 5081, 5278, 5081, 5278 409 623 LNU889 pUC19c_LNU889 sorghum 5411, 4961, 5411, 4961 410 624 LNU890 pUC19c_LNU890 sorghum 5076, 5211, 5076, 5211 411 625 LNU892 pMA-RQ_LNU892_GA 412 626 LNU893 pQFNc_LNU893 sorghum 5036, 5277, 5030, 5277 413 627 LNU894 pUC19c_LNU894 sorghum 5155, 5219, 5155, 5313 414 628 LNU895 pQFNc_LNU895 sorghum 5398, 5071, 5398, 5169 415 629 LNU896 pUC19_LNU896 sorghum 5130, 5206, 5133, 5300 416 630 LNU897 pQFNc_LNU897 sorghum 5037, 5210, 5032, 5229 417 777 LNU898 pUC19_LNU898 sorghum 5176, 4950, 5128, 4992 418 778 LNU899 pUC19_LNU899 sorghum 5195, 5348, 5113, 5355 419 633 LNU900 pQFNc_LNU900 sorghum 5086, 5270, 5086, 5270 420 779 LNU901 TopoB_LNU901 sorghum 5163, 5280 421 780 LNU902 pQFNc_LNU902 sorghum 5129, 5311, 5167, 5264 422 636 LNU903 pMK-RQ_LNU903_GA 423 637 LNU904 pUC19c_LNU904 sorghum 5368, 5057, 5421, 5188 424 781 LNU905 pUC19c_LNU905 sorghum 5029, 5235, 5091, 5319 425 639 LNU906 pQFNc_LNU906 sorghum 5154, 5325, 5050, 5274 426 782 LNU907 pQFNc_LNU907 sorghum 5377, 5360, 5377, 5360 427 783 LNU908 pQFNc_LNU908 sorghum 5397, 5065, 5382, 5041 428 642 LNU909 pUC19c_LNU909 sorghum 5424, 4998, 5407, 4941 429 784 LNU910 pQFNc_LNU910 sorghum 5200, 5279, 5200, 5279 430 644 LNU911 pUC19_LNU911 sorghum 5090, 5202, 5194, 5230 431 785 LNU912 pQFNc_LNU912 sorghum 5187, 5327, 5074, 5299 432 646 LNU913 pUC19_LNU913 sorghum 5156, 5015, 5196, 5014 433 647 LNU914 TopoB_LNU914 sorghum 4914, 4919, 4920, 4921 434 648 LNU915 pUC19c_LNU915 sorghum 5134, 5239, 5134, 5239 435 649 LNU916 TopoB_LNU916 sorghum 5180, 5276, 5190, 5290 436 650 LNU917 pQFNc_LNU917 sorghum 5168, 5347, 5121, 5233 437 651 LNU918 pUC19c_LNU918 sorghum 5381, 4980, 5381, 4980 438 652 LNU919 pMA_LNU919_GA 439 653 LNU920 pMA-RQ_LNU920_GA 440 654 LNU921 pQFNc_LNU921 sorghum 5094, 5222, 5193, 5256 441 655 LNU922 pMA-T_LNU922_GA 442 656 LNU923 pQFNc_LNU923 sorghum 5173, 5293, 5173, 5293 443 657 LNU924 pQFNc_LNU924 sorghum 5049, 5365 444 658 LNU925 pUC19c_LNU925 sorghum 5410, 5097, 5405, 5066 445 659 LNU926 pQFNc_LNU926 sorghum 5145, 5301, 5145, 5320 446 660 LNU928 pUC19c_LNU928 sorghum 5114, 5252, 5141, 5329 447 661 LNU930 pUC19c_LNU930 sorghum 5039, 5251, 5089, 5209 448 786 LNU931 pMA_LNU931_GA 449 664 LNU932 TopoB_LNU932 sorghum 5117, 5255, 5117, 5255 450 787 LNU933 pQFNc_LNU933 sorghum 5379, 5046, 5433, 5191 451 666 LNU934 pOA_LNU934_GA 452 667 LNU935 pQFNc_LNU935 sorghum 5152, 5267, 5152, 5267 453 788 LNU936 pMA-RQ_LNU936_GA 454 669 LNU938 pQFNc_LNU938 sorghum 5072, 5284, 5047, 5265 455 789 LNU940 pQFNc_LNU940 sorghum 5161, 5254, 5161, 5254 456 672 LNU941 pQFNc_LNU941 sorghum 5031, 5323, 5031, 5323 457 673 LNU942 pQFNc_LNU942 sorghum 5054, 5258 458 674 LNU943 pQFNc_LNU943 sorghum 5388, 4948, 5385, 4944 459 675 LNU944 pUC19_LNU944 sorghum 5100, 5294, 5100, 5342 460 676 LNU945 pMA-RQ_LNU945_GA 461 677 LNU946 pUC19_LNU946 sorghum 4984, 4908, 4959, 4901 462 678 LNU947 pQFNc_LNU947 sorghum 5370, 4946, 5370, 4946 463 679 LNU948 pUC19c_LNU948 sorghum 5120, 5306, 5127, 5216 464 680 LNU949 pMA-RQ_LNU949_GA 465 681 LNU950 pUC19c_LNU950 sorghum 5116, 5312, 5116, 5312 466 682 LNU951 pQFNc_LNU951 sorghum 4922, 4951, 4922, 4951 467 790 LNU952 pUC19c_LNU952 sorghum 5380, 4997, 5378, 4947 468 684 LNU953 pUC19c_LNU953 sorghum 5078, 5247, 5078, 5207 469 685 LNU954 pQFNc_LNU954 sorghum 5139, 5340, 5044, 5298 470 791 LNU955 pMA_LNU955_GA 471 687 LNU956 pQFNc_LNU956 sorghum 5429, 4993, 5425, 4952 472 792 LNU957 pMK-RQ_LNU957_GA 473 689 LNU958 pQFNc_LNU958 sorghum 5122, 5295, 5122, 5295 474 690 LNU959 pUC19c_LNU959 sorghum 5172, 5297 475 691 LNU960 pUC19_LNU960 sorghum 5147, 5304, 5034, 5331 476 692 LNU961 pOA_LNU961_GA 477 693 LNU962 pUC19_LNU962 sorghum 4988, 4894, 4990, 4903 478 694 LNU963 pUC19c_LNU963 sorghum 5420, 4942, 5408, 4963 479 695 LNU964 pMA-RQ_LNU964_GA 480 696 LNU965 pQFNc_LNU965 sorghum 5102, 5302 481 697 LNU966 TopoB_LNU966 sorghum 5068, 5328, 5192, 5330 482 698 LNU967 pUC19_LNU967 sorghum 5399, 4953, 5374, 4969 483 699 LNU968 pQFNc_LNU968 sorghum 5093, 5315 484 793 LNU970 pMA-T_LNU970_GA 485 702 LNU971 pMA-T_LNU971_GA 486 703 LNU972 TopoB_LNU972 tomato 5171, 5305, 5126, 5318 487 704 LNU975 pQFNc_LNU975 tomato 5064, 5367, 5016, 5271 488 705 LNU976 pQFNc_LNU976 wheat 5053, 5341, 5179, 5352 489 706 LNU977 pQFNc_LNU977 wheat 5281, 5364, 5281, 5317 490 794 Table 100. Provided are the names of the cloned genes, the high copy plasmids, the organism from which the gene was cloned, the primers used for cloning, and the sequence identifiers of the polynucleotides and polypeptides of the cloned genes.

Example 13 Transforming Agrobacterium Tumefaciens Cells With Binary Vectors Harboring the Polynucleotides of the Invention

The above described binary vectors were used to transform Agrobacterium cells. Two additional binary constructs, having only the At6669 or the 35S promoter, or no additional promoter were used as negative controls.

The binary vectors were introduced to Agrobacterium tumefaciens GV301 or LB4404 (for Arabidopsis) or to AGL1 (for Brachypodium) competent cells (about 109 cells/mL) by electroporation. The electroporation was performed using a MicroPulser electroporator (Biorad), 0.2 cm cuvettes (Biorad) and EC-2 electroporation program (Biorad). The treated cells were cultured in LB liquid medium at 28° C. for 3 hours, then plated over LB agar supplemented with gentamycin (for Arabidopsis; 50 mg/L; for Agrobacterium strains GV301) or streptomycin (for Arabidopsis; 300 mg/L; for Agrobacterium strain LB4404); or with Carbenicillin (for Brachypodium; 50 mg/L) and kanamycin (for Arabidopsis and Brachypodium; 50 mg/L) at 28° C. for 48 hours. Abrobacterium colonies, which were developed on the selective media, were further analyzed by PCR using the primers designed to span the inserted sequence in the pPI plasmid. The resulting PCR products were isolated and sequenced to verify that the correct polynucleotide sequences of the invention are properly introduced to the Agrobacterium cells.

Example 14 Transformation of Arabidopsis Thaliana Plants With The Polynucleotides of the Invention

Arabidopsis thaliana Columbia plants (T0 plants) were transformed using the Floral Dip procedure described by Clough and Bent, 1998 (Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735-43) and by Desfeux et al., 2000 (Female Reproductive Tissues Are the Primary Target of Agrobacterium-Mediated Transformation by the Arabidopsis Floral-Dip Method. Plant Physiol, July 2000, Vol. 123, pp. 895-904), with minor modifications. Briefly, T0 Plants were sown in 250 ml pots filled with wet peat-based growth mix. The pots were covered with aluminum foil and a plastic dome, kept at 4° C. for 3-4 days, then uncovered and incubated in a growth chamber at 18-24° C. under 16/8 hour light/dark cycles. The T0 plants were ready for transformation six days before anthesis.

Single colonies of Agrobacterium carrying the binary constructs were generated as described in Examples 12-13 above. Colonies were cultured in LB medium supplemented with kanamycin (50 mg/L) and gentamycin (50 mg/L). The cultures were incubated at 28° C. for 48 hours under vigorous shaking and then centrifuged at 4000 rpm for 5 minutes. The pellets comprising the Agrobacterium cells were re-suspended in a transformation medium containing half-strength (2.15 g/L) Murashige-Skoog (Duchefa); 0.044 µM benzylamino purine (Sigma); 112 µg/L B5 Gambourg vitamins (Sigma); 5% sucrose; and 0.2 ml/L Silwet L-77 (OSI Specialists, CT) in double-distilled water, at pH of 5.7.

Transformation of T0 plants was performed by inverting each plant into an Agrobacterium suspension, such that the above ground plant tissue was submerged for 3-5 seconds. Each inoculated T0 plant was immediately placed in a plastic tray, then covered with clear plastic dome to maintain humidity and is kept in the dark at room temperature for 18 hours, to facilitate infection and transformation. Transformed (transgenic) plants were then uncovered and transferred to a greenhouse for recovery and maturation. The transgenic T0 plants were grown in the greenhouse for 3-5 weeks until siliques were brown and dry. Seeds were harvested from plants and kept at room temperature until sowing.

For generating T1 and T2 transgenic plants harboring the genes, seeds collected from transgenic T0 plants were surface-sterilized by soaking in 70% ethanol for 1 minute, followed by soaking in 5% sodium hypochloride and 0.05% triton for 5 minutes. The surface-sterilized seeds were thoroughly washed in sterile distilled water then placed on culture plates containing half-strength Murashige-Skoog (Duchefa); 2% sucrose; 0.8% plant agar; 50 mM kanamycin; and 200 mM carbenicylin (Duchefa). The culture plates were incubated at 4° C. for 48 hours, then transferred to a growth room at 25° C. for an additional week of incubation. Vital T1 Arabidopsis plants were transferred to fresh culture plates for another week of incubation. Following incubation the T1 plants were removed from culture plates and planted in growth mix contained in 250 ml pots. The transgenic plants were allowed to grow in a greenhouse to maturity. Seeds harvested from T1 plants were cultured and grown to maturity as T2 plants under the same conditions as used for culturing and growing the T1 plants.

Example 15 Transformation of Brachypodium Distachyon Plants With the Polynucleotides of the Invention

Similar to the Arabidopsis model plant, Brachypodium distachyon has several features that recommend it as a model plant for functional genomic studies, especially in the grasses. Traits that make it an ideal model include its small genome (-160 Mbp for a diploid genome and 355 Mbp for a polyploidy genome), small physical stature, a short lifecycle, and few growth requirements. Brachypodium is related to the major cereal grain species but it is understood to be more closely related to the Triticeae (wheat, barley) than to the other cereals. Brachypodium, with its polyploidy accessions, can serve as an ideal model for these grains (whose genomics size and complexity is a major barrier to biotechnological improvement).

Brachypodium distachyon embryogenic calli were transformed using the procedure described by Vogel and Hill (2008) [High-efficiency Agrobacterium-mediated transformation of Brachypodium distachyon inbred line Bd21-3. Plant Cell Rep 27:471-478], Vain et al (2008) [Agrobacterium-mediated transformation of the temperate grass Brachypodium distachyon (genotypeBd21) for T-DNA insertional mutagenesis. Plant Biotechnology J 6: 236-245], and Vogel J, et al. (2006) [Agrobacterium mediated transformation and inbred line development in the model grass Brachypodium distachyon. Plant Cell Tiss Org. Cult. 85:199-211], each of which is fully incorporated herein by reference, with some minor modifications, which are briefly summarized hereinbelow.

Callus initiation - Immature spikes (about 2 months after seeding) were harvested at the very beginning of seeds filling. Spikes were then husked and surface sterilized with 3% NaClO containing 0.1% Tween 20, shaked on a gyratory shaker at low speed for 20 minutes. Following three rinses with sterile distilled water, embryos were excised under a dissecting microscope in a laminar flow hood using fine forceps.

Excised embryos (size ~0.3 mm, bell shaped) were placed on callus induction medium (CIM) [LS salts (Linsmaier, E. M. & Skoog, F. 1965. Physiol. Plantarum 18, 100) and vitamins plus 3% sucrose, 6 mg/L CuSO4, 2.5 mg/1 2,4-Dichlorophenoxyacetic Acid, pH 5.8 and 0.25% phytagel (Sigma)] scutellar side down, 100 embryos on a plate, and incubated at 28° C. in the dark. One week later, the embryonic calli was cleaned from emerging roots, shoots and somatic calli, and was subcultured onto fresh CIM medium. During culture, yellowish embryogenic callus (EC) appeared and were further selected (e.g., picked and transferred) for further incubation in the same conditions for additional 2 weeks. Twenty-five pieces of sub-cultured calli were then separately placed on 90 X 15 mm petri plates, and incubated as before for three additional weeks.

Transformation - As described in Vogel and Hill (2008, Supra), Agrobacterium was scraped off 2-day-old MGL plates (plates with the MGL medium which contains: Tryptone 5 g/l,Yeast Extract 2.5 g/1, NaCl 5 g/1, D-Mannitol 5 g/1, MgSO4*7H2O 0.204 g/1, K2HPO4 0.25 g/1, Glutamic Acid 1.2 g/1, Plant Agar 7.5 g/1) and resuspended in liquid MS medium supplemented with 200 µM acetosyringone to an optic density (OD) at 600 nm (OD600) of 0.6. Once the desired OD was attained, 1 ml of 10% Synperonic PE/F68 (Sigma) per 100 ml of inoculation medium was added.

To begin inoculation, 300 callus pieces were placed in approximately 12 plates (25 callus pieces in each plate) and covered with the Agrobacterium suspension (8-8.5 ml). The callus was incubated in the Agrobacterium suspension for 15 minutes with occasional gentle rocking. After incubation, the Agrobacterium suspension was aspirated off and the calli were then transferred into co-cultivation plates, prepared by placing a sterile 7-cm diameter filter paper in an empty 90 X 15 mm petri plate. The calli pieces were then gently distributed on the filter paper. One co-cultivation plate was used for two starting callus plates (50 initial calli pieces). The co-cultivation plates were then sealed with parafilm and incubated at 22° C. in the dark for 3 days.

The callus pieces were then individually transferred onto CIM medium as described above, which was further supplemented with 200 mg/1 Ticarcillin (to kill the Agrobacterium) and Bialaphos (5 mg/L) (for selection of the transformed resistant embryogenic calli sections), and incubated at 28° C. in the dark for 14 days.

The calli pieces were then transferred to shoot induction media (SIM; LS salts and vitamins plus 3% Maltose monohydrate) supplemented with 200 mg/1 Ticarcillin, Bialaphos (5 mg/L), Indol-3-acetic acid (IAA) (0.25 mg/L), and 6-Benzylaminopurine (BAP) (1 mg/L), and were sub-cultured in light to the same media after 10 days (total of 20 days). At each sub-culture all the pieces from a single callus were kept together to maintain their independence and were incubated under the following conditions: lighting to a level of 60 lE m-2 s-1, a 16-h light, 8-h dark photoperiod and a constant 24° C. temperature. Plantlets emerged from the transformed calli.

When plantlets were large enough to handle without damage, they were transferred to plates containing the above mentioned shoot induction media (SIM) without Bialaphos. Each plantlet was considered as a different event. The plantlets grew axillary tillers and eventually became bushy. Each bush from the same plant (event ID) was then divided to tissue culture boxes (“Humus”) containing “rooting medium” [MS basal salts, 3% sucrose, 3 g/L phytagel, 2 mg/1 α-Naphthalene Acetic Acid (NAA) and 1 mg/L IAA and Ticarcillin 200 mg/L, PH 5.8). All plants in a “Humus box” were different plants of the same transformation event.

When plantlets established roots they were transplanted to soil and transferred to a greenhouse. To verify the transgenic status of plants containing the other constructs, T0 plants were subjected to PCR as previously described by Vogel et al. 2006 [Agrobacterium mediated transformation and inbred line development in the model grass Brachypodium distachyon. Plant Cell Tiss Org. Cult. 85:199-211].

Example 16 Evaluating Transgenic Arabidopsis Nue Under Low or Normal Nitrogen Conditions Using Seedling Assays Assay 1: Plant Growth Under Low and Favorable Nitrogen Concentration Levels

Surface sterilized seeds were sown in basal media [50% Murashige-Skoog medium (MS) supplemented with 0.8% plant agar as solidifying agent] in the presence of Kanamycin (used as a selecting agent). After sowing, plates were transferred for 2-3 days for stratification at 4° C. and then grown at 25° C. under 12-hour light 12-hour dark daily cycles for 7 to 10 days. At this time point, seedlings randomly chosen were carefully transferred to plates containing ½ MS media (15 mM N) for the normal nitrogen concentration treatment and 0.30 mM nitrogen for the low nitrogen concentration treatments. For experiments performed in T2 lines, each plate contained 5 seedlings of the same transgenic event, and 3-4 different plates (replicates) for each event. For each polynucleotide of the invention at least four-five independent transformation events were analyzed from each construct. For experiments performed in T1 lines, each plate contained 5 seedlings of 5 independent transgenic events and 3-4 different plates (replicates) were planted. In total, for T1 lines, 20 independent events were evaluated. Plants expressing the polynucleotides of the invention were compared to the average measurement of the control plants (empty vector or GUS reporter gene under the same promoter) used in the same experiment.

Digital imaging - A laboratory image acquisition system, which consists of a digital reflex camera (Canon EOS 300D) attached with a 55 mm focal length lens (Canon EF-S series), mounted on a reproduction device (Kaiser RS), which includes 4 light units (4 x 150 Watts light bulb) and located in a darkroom, is used for capturing images of plantlets sawn in agar plates.

The image capturing process was repeated every 3-4 days starting at day 1 till day 10 (see for example the images in FIGS. 3A-3B). An image analysis system was used, which consists of a personal desktop computer (Intel P4 3.0 GHz processor) and a public domain program - ImageJ 1.39 [Java based image processing program which was developed at the U.S. National Institutes of Health and freely available on the internet at rsbweb (dot) nih (dot) gov/]. Images are captured in resolution of 10 Mega Pixels (3888 x 2592 pixels) and stored in a low compression JPEG (Joint Photographic Experts Group standard) format. Next, analyzed data was saved to text files and processed using the JMP statistical analysis software (SAS institute).

Seedling analysis - Using the digital analysis seedling data was calculated, including leaf area, root coverage and root length.

The relative growth rate for the various seedling parameters was calculated according to the following Formulas XIII (Relative growth rate of leaf area) and VI (Relative growth rate of root length).

At the end of the experiment, plantlets were removed from the media and weighed for the determination of plant fresh weight. Plantlets were then dried for 24 hours at 60° C., and weighed again to measure plant dry weight for later statistical analysis. Growth rate was determined by comparing the leaf area coverage, root coverage and root length, between each couple of sequential photographs, and results were used to resolve the effect of the gene introduced on plant vigor under optimal conditions. Similarly, the effect of the gene introduced on biomass accumulation, under optimal conditions, was determined by comparing the plants’ fresh and dry weight to that of control plants (containing an empty vector or the GUS reporter gene under the same promoter). From every construct created, 3-5 independent transformation events are examined in replicates.

Statistical analyses - To identify genes conferring significantly improved plant vigor or enlarged root architecture, the results obtained from the transgenic plants were compared to those obtained from control plants. To identify outperforming genes and constructs, results from the independent transformation events tested were analyzed separately. To evaluate the effect of a gene event over a control the data was analyzed by Student’s t-test and the p value was calculated. Results were considered significant if p ≤ 0.1. The JMP statistics software package was used (Version 5.2.1, SAS Institute Inc., Cary, NC, USA).

Experimental Results

The genes presented in the following Tables were cloned under the regulation of a constitutive promoter (At6669). Evaluation of the effect of transformation in a plant of each gene was carried out by testing the performance of different number of transformation events. Some of the genes were evaluated in more than one seedling assay. The results obtained in these second experiments were significantly positive as well. Event with p-value <0.1 was considered statistically significant.

The genes presented in Tables 101-104 showed a significant improvement in plant NUE since they produced larger plant biomass (plant fresh and dry weight; leaf area, root length and root coverage) in T2 generation (Tables 101-102) or T1 generation (Tables 103-104) when grown under limiting nitrogen growth conditions, compared to control plants that were grown under identical growth conditions. Plants producing larger root biomass have better possibilities to absorb larger amount of nitrogen from soil.

TABLE 101 Genes showing improved plant performance at nitrogen deficient conditions (T2 generation) Gene Name Event # Dry Weight [mg] Fresh Weight [mg] Ave. P-Val. % Incr. Ave. P- Val. % Incr. LNU938 80352.1 5.65 L 46 117.0 0.24 68 LNU938 80353.1 - - - 103.8 0.04 49 LNU938 80355.5 5.40 0.18 40 90.1 0.22 29 LNU910 80350.1 5.03 0.17 30 103.2 0.09 48 LNU869 80083.3 5.75 L 49 86.0 0.21 23 LNU869 80084.4 5.35 0.10 39 - - - LNU869 80085.2 4.62 0.27 20 - - - LNU869 80085.3 5.15 0.03 34 85.8 0.23 23 LNU840 78676.4 - - - 84.8 0.26 22 LNU837 79574.5 4.60 0.26 19 - - - LNU837 79574.7 4.98 0.04 29 91.5 0.17 31 LNU771 80077.2 5.28 0.02 37 85.8 0.06 23 LNU771 80079.3 - - - 103.7 0.14 49 CONT. - 3.86 - - 69.7 - - LNU964 80552.4 4.77 0.04 14 94.8 0.29 19 LNU964 80552.6 5.05 0.01 20 103.2 0.06 30 LNU957 80437.1 5.95 L 42 95.0 0.14 20 LNU957 80437.6 5.28 0.29 26 99.7 0.05 26 LNU953 80428.1 5.62 0.05 34 115.3 0.15 45 LNU952 78218.3 - - - 104.1 0.14 31 LNU920 78510.1 5.40 0.08 29 105.0 L 32 LNU914 80514.5 5.50 0.02 31 86.1 0.14 8 LNU911 80420.5 - - - 98.4 0.29 24 LNU911 80424.2 5.15 0.03 23 127.8 0.09 61 LNU903 80417.6 - - - 98.2 0.01 24 LNU901 80474.5 4.62 0.28 10 - - - LNU901 80476.4 4.85 0.18 15 - - - LNU897 80448.3 5.40 0.20 29 99.0 0.03 25 LNU897 80449.1 4.70 0.10 12 - - - LNU892 80410.1 - - - 98.8 0.10 24 LNU892 80412.1 4.85 0.13 15 96.0 0.17 21 LNU884 80407.1 6.17 0.02 47 116.2 L 46 LNU884 80407.5 4.88 0.22 16 - - - LNU872 77724.7 5.15 0.13 23 99.7 L 26 LNU872 77725.4 5.10 0.11 21 90.4 0.05 14 LNU869 80084.3 5.30 L 26 93.6 0.05 18 LNU869 80084.4 5.53 0.02 32 114.5 L 44 LNU866 80443.5 5.17 0.09 23 - - - LNU866 80444.2 5.07 0.09 21 - - - LNU844 80342.1 4.55 0.17 8 - - - LNU844 80344.2 5.05 0.21 20 95.6 0.12 20 LNU834_H1 80402.7 5.38 0.17 28 112.4 0.08 42 LNU791 77893.1 5.05 0.08 20 - - - LNU749 80793.5 - - - 95.5 0.21 20 CONT. - 4.20 - - 79.4 - - LNU975 80622.1 5.33 0.02 27 - - - LNU975 80624.3 5.00 0.07 19 - - - LNU819 78133.3 5.53 0.02 32 89.4 0.11 12 LNU817 80596.2 4.68 0.19 12 - - - LNU801 78584.7 4.93 0.04 18 - - - LNU800 77896.2 6.38 L 52 127.4 0.22 60 LNU794 78522.1 5.22 0.08 25 - - - LNU760_H1 80127.4 4.88 0.12 16 87.1 0.16 9 CONT. - 4.19 - - 79.9 - - LNU971 78395.1 - - - 92.1 0.13 32 LNU971 78395.5 - - - 94.8 0.21 36 LNU944 79779.3 4.07 0.27 14 - - - LNU944 79781.6 - - - 98.0 0.11 41 LNU931 79774.5 3.92 0.28 10 - - - LNU930 79770.5 4.88 0.03 36 - - - LNU930 79772.1 3.98 0.11 11 - - - LNU928 78211.4 4.50 0.16 26 94.9 0.18 36 LNU928 78215.4 4.28 0.03 19 - - - LNU917 77498.2 4.42 0.09 24 88.8 0.24 28 LNU917 77500.1 4.55 0.01 27 - - - LNU906 79219.6 - - - 87.2 0.17 25 LNU904 78987.1 - - - 115.6 0.29 66 LNU904 78987.2 4.33 0.01 21 - - - LNU874 78369.1 - - - 85.5 0.12 23 LNU870 78501.1 4.53 0.01 26 - - - LNU870 78505.1 4.12 0.06 15 104.9 0.11 51 LNU870 78505.7 4.22 0.14 18 97.9 0.29 41 LNU867 79589.3 4.40 0.03 23 - - - LNU862 79757.1 4.45 0.08 24 76.6 0.22 10 LNU856 79753.3 - - - 80.9 0.14 16 LNU856 79753.5 4.65 0.21 30 97.0 0.20 39 LNU829 77912.5 4.38 0.11 22 114.0 0.26 64 LNU825 77716.4 4.03 0.20 13 - - - LNU796 78235.7 4.35 0.27 22 - - - LNU792 79161.2 4.33 L 21 - - - LNU792 79215.1 4.15 0.14 16 - - - LNU763 77588.7 - - - 97.1 0.26 39 LNU758 79739.5 4.00 0.18 12 - - - LNU758 79740.3 - - - 99.3 0.29 43 CONT. - 3.58 - - 69.6 - - LNU955 80432.7 5.25 0.02 35 - - - LNU953 80428.1 - - - 84.9 0.17 25 LNU949 80557.1 - - - 83.8 0.05 24 LNU949 80557.4 - - - 77.9 0.23 15 LNU901 80474.2 4.70 0.16 21 86.9 0.20 28 LNU901 80474.3 4.70 0.09 21 98.7 0.04 46 LNU901 80476.4 4.33 0.29 11 - - - LNU892 80414.5 - - - 80.2 0.25 19 LNU866 80444.6 4.47 0.21 15 87.8 0.11 30 LNU843 78963.5 - - - 79.5 0.27 17 LNU834_H1 80402.3 - - - 80.6 0.12 19 LNU834_H1 80402.7 - - - 75.9 0.24 12 LNU798 79671.4 - - - 86.8 0.20 28 LNU798 79673.2 - - - 80.9 0.24 20 LNU787 80547.5 4.97 0.12 27 93.0 L 37 LNU766 78932.1 4.60 0.04 18 100.7 0.13 49 CONT. - 3.90 - - 67.7 - - LNU844 80344.2 - - - 94.6 0.13 18 CONT. - - - - 80.2 - - Table 101: “CONT.” - Control; “Ave.” - Average; “% Incr.” =% increment; “p-val.” - p-value; L means that p-value is less than 0.01, p<0.1 was considered as significant.

TABLE 102 Genes showing improved plant performance at nitrogen deficient conditions (T2 generation) Gene Name Event # Leaf Area [cm2] Roots Coverage [cm2] Roots Length [cm] Ave. P-Val. % Incr. Ave. P-Val. % Incr. Ave. P-Val. % Incr. LNU954 80358.5 0.434 0.02 21 10.8 0.06 40 7.19 L 16 LNU938 80352.1 - - - 12.4 L 60 6.92 0.02 12 LNU938 80353.1 0.440 L 22 10.2 0.01 32 7.48 L 21 LNU938 80355.5 0.400 0.18 11 12.8 0.25 66 7.22 0.05 17 LNU910 80346.1 - - - - - - 6.80 0.28 10 LNU910 80348.1 0.403 0.08 12 - - - 6.82 0.04 11 LNU910 80350.1 0.461 0.02 28 11.3 0.09 47 7.18 L 16 LNU869 80083.3 - - - 13.0 0.16 69 7.16 L 16 LNU869 80084.3 0.424 0.09 18 10.3 L 33 6.55 0.23 6 LNU869 80084.4 0.404 0.28 12 9.92 0.16 28 - - - LNU869 80085.2 0.414 0.14 15 - - - - - - LNU869 80085.3 0.477 L 33 13.9 0.02 80 7.69 L 25 LNU840 78676.4 0.456 L 27 - - - 6.82 0.28 11 LNU840 78677.1 0.415 0.08 15 8.73 0.18 13 - - - LNU840 78763.2 - - - 9.27 0.09 20 - - - LNU840 78763.6 0.432 0.11 20 - - - - - - LNU837 79574.5 0.433 0.09 20 11.2 0.17 44 - - - LNU837 79574.7 0.434 0.02 21 10.6 0.03 38 7.16 0.02 16 LNU837 79575.2 - - - - - - 6.54 0.18 6 LNU837 79575.4 0.437 0.19 21 - - - - - - LNU771 80077.2 0.490 L 36 12.9 L 67 7.53 L 22 LNU771 80078.5 0.398 0.22 11 8.87 0.18 15 6.58 0.23 7 LNU771 80079.3 0.495 L 37 - - - 7.16 0.22 16 LNU771 80079.4 0.459 L 28 10.0 0.19 30 6.89 0.03 12 CONT. - 0.360 - - 7.72 - - 6.17 - - LNU964 80552.4 0.460 0.05 8 12.5 L 39 7.62 0.11 11 LNU964 80552.6 0.514 0.10 21 12.2 0.11 35 8.16 L 19 LNU957 80437.1 0.478 0.16 13 11.8 L 30 7.34 0.19 7 LNU957 80437.6 - - - - - - 7.61 0.05 11 LNU953 80428.1 0.467 0.26 10 10.9 0.02 20 7.32 0.15 7 LNU920 78509.5 - - - 10.8 0.05 19 7.70 0.04 12 LNU920 78510.1 - - - 10.7 0.17 18 7.66 0.02 12 LNU911 80420.5 - - - 10.8 0.26 19 7.50 0.09 9 LNU911 80424.2 0.493 0.03 16 11.8 0.19 31 7.51 0.04 10 LNU910 80350.1 - - - - - - 7.20 0.20 5 LNU903 80417.6 - - - 10.7 0.11 18 7.36 0.10 7 LNU901 80474.3 - - - 10.6 0.17 17 - - - LNU901 80476.4 0.450 0.29 6 10.9 0.27 20 7.38 0.07 8 LNU897 80448.3 - - - 11.1 0.22 23 - - - LNU897 80449.1 - - - 10.8 0.14 20 7.50 0.05 9 LNU892 80412.1 - - - 12.5 0.07 39 7.57 0.04 10 LNU884 80407.1 0.481 0.07 13 15.0 0.05 66 7.46 0.07 9 LNU872 77724.7 - - - - - - 7.52 0.08 10 LNU872 77725.6 - - - - - - 7.24 0.20 6 LNU869 80084.4 0.481 0.27 13 15.0 L 66 8.19 L 19 LNU866 80443.5 0.464 0.07 9 - - - - - - LNU844 80341.2 - - - - - - 7.31 0.22 7 LNU844 80342.1 0.457 0.23 8 11.6 0.06 29 7.54 0.13 10 LNU844 80342.4 - - - 10.1 0.19 11 7.21 0.20 5 LNU844 80344.2 - - - 11.3 0.06 25 7.64 0.08 12 LNU834_H1 80402.7 0.499 L 18 12.9 0.09 43 7.77 0.01 13 LNU805 80784.1 - - - - - - 7.37 0.18 8 LNU773 80398.1 - - - 10.7 0.13 19 - - - LNU749 80793.5 - - - 11.9 0.09 32 7.82 0.02 14 CONT. - 0.424 - - 9.05 - - 6.85 - - LNU956 80856.3 0.372 0.21 12 8.68 0.23 20 7.25 0.29 7 LNU818 80919.1 - - - - - - 7.21 0.09 6 CONT. - 0.334 - - 7.23 - - 6.79 - - LNU975 80622.1 0.400 0.16 15 - - - - - - LNU975 80624.3 0.375 0.17 7 7.86 L 18 7.03 L 14 LNU832_H2 80605.6 0.407 0.02 17 8.29 0.12 25 6.82 L 11 LNU819 78133.3 0.405 0.07 16 9.58 0.01 44 6.60 L 7 LNU817 80596.2 - - - 7.47 0.19 12 - - - LNU801 78584.7 - - - 7.34 0.04 11 - - - LNU801 78585.5 - - - 7.32 0.09 10 - - - LNU801 78585.7 0.427 0.09 22 8.56 0.07 29 6.47 0.26 5 LNU800 77896.2 0.433 L 24 10.00 0.02 51 - - - LNU799 78672.5 - - - 7.39 0.24 11 - - - LNU794 78522.1 - - - 8.83 0.21 33 6.69 0.08 9 LNU760_H1 80127.4 0.378 0.17 8 9.25 0.06 39 6.45 0.30 5 LNU760_H1 80130.1 - - - 7.87 0.09 19 - - - LNU760_H1 80130.4 - - - 8.15 0.01 23 6.38 0.16 4 CONT. - 0.350 - - 6.64 - - 6.14 - - LNU971 78393.3 - - - - - - 7.22 0.14 7 LNU971 78395.2 - - - - - - 7.06 0.21 5 LNU971 78395.5 0.486 0.05 19 - - - 7.11 0.19 5 LNU931 79774.1 - - - - - - 7.25 0.07 7 LNU930 79770.5 - - - 10.3 0.30 10 7.15 0.16 6 LNU930 79772.5 - - - 11.8 0.02 26 7.10 0.24 5 LNU928 78211.4 0.442 0.15 8 11.0 0.18 17 7.40 0.01 10 LNU917 77500.1 0.497 L 22 12.7 0.01 36 7.47 0.01 11 LNU904 78987.1 0.471 0.11 15 - - - 7.38 0.17 9 LNU904 78987.2 - - - 10.7 0.26 14 - - - LNU904 78989.1 - - - - - - 7.04 0.16 4 LNU899 79765.4 - - - 10.4 0.21 11 7.57 L 12 LNU899 79765.5 - - - - - - 7.26 0.03 8 LNU874 78369.1 0.460 0.08 13 - - - 7.15 0.16 6 LNU870 78501.1 0.441 0.16 8 12.1 0.14 29 7.23 0.12 7 LNU870 78505.7 0.474 0.09 16 - - - - - - LNU867 79589.3 - - - 14.0 0.05 49 7.27 0.27 8 LNU867 79590.5 - - - - - - 7.08 0.24 5 LNU862 79755.9 - - - 12.7 0.09 36 7.39 0.02 10 LNU862 79757.1 0.447 0.18 9 12.5 0.04 33 7.29 0.04 8 LNU856 79753.3 0.481 0.13 18 12.3 0.02 31 7.93 L 18 LNU829 77912.3 - - - - - - 7.16 0.27 6 LNU829 77912.5 0.455 0.24 11 10.1 0.28 8 7.44 L 10 LNU829 77914.1 - - - - - - 7.18 0.07 6 LNU829 77914.2 - - - - - - 7.51 L 11 LNU796 78234.5 - - - - - - 7.31 0.04 8 LNU796 78235.7 - - - - - - 7.44 0.10 10 LNU792 79161.2 0.499 0.03 22 11.3 0.08 21 7.29 0.03 8 LNU792 79215.3 0.469 0.21 15 - - - 7.16 0.08 6 LNU763 77588.1 - - - 10.5 0.28 11 - - - LNU763 77588.6 0.459 0.14 12 - - - - - - LNU753 77143.3 - - - - - - 7.38 0.02 9 CONT. - 0.409 - - 9.38 - - 6.75 - - LNU955 80432.7 - - - - - - 6.81 0.27 17 LNU953 80428.1 0.458 0.06 11 9.88 0.04 32 6.52 0.07 12 LNU949 80557.1 - - - 9.85 0.05 32 6.31 0.15 9 LNU949 80557.2 0.468 0.10 13 8.31 0.29 11 - - - LNU949 80557.4 - - - 9.07 0.10 21 - - - LNU901 80474.2 0.525 0.10 27 10.4 0.09 39 7.03 0.02 21 LNU901 80476.4 0.454 0.25 9 10.5 0.10 40 6.40 0.15 10 LNU892 80410.1 - - - 9.13 0.03 22 6.37 0.09 10 LNU892 80414.7 - - - 9.87 0.11 32 - - - LNU873 80473.6 - - - 12.1 0.17 61 6.45 0.26 11 LNU866 80444.6 0.467 0.05 13 9.26 0.18 24 6.23 0.29 7 LNU834_H1 80402.1 - - - 9.04 0.21 21 - - - LNU834_H1 80402.3 - - - 8.88 0.21 19 - - - LNU834_H1 80402.7 - - - - - - 6.38 0.16 10 LNU834_H1 80404.5 0.466 0.17 12 11.5 0.30 54 - - - LNU798 79671.4 0.465 0.09 12 9.92 0.07 32 6.56 0.04 13 LNU798 79673.2 - - - - - - 6.61 0.04 14 LNU787 80546.5 - - - 8.44 0.19 13 - - - LNU787 80547.4 - - - 8.78 0.12 17 6.83 0.01 18 LNU787 80547.5 0.484 L 17 11.8 L 58 7.34 L 27 LNU766 78932.1 0.509 0.02 23 10.3 0.14 37 7.05 L 22 CONT. - 0.415 - - 7.49 - - 5.79 - - LNU884 80407.5 0.490 0.23 11 11.9 0.27 17 6.99 0.23 7 LNU844 80341.2 - - - 12.4 0.26 23 6.90 0.25 6 LNU791 77895.4 - - - 11.8 0.14 17 7.07 0.05 8 CONT. - 0.440 - - 10.1 - - 6.53 - - Table 102: CONT.” - Control; “Ave.” - Average; “% Incr.” =% increment; “p-val.” - p-value; L means that p-value is less than 0.01, p<0.1 was considered as significant.

TABLE 103 Genes showing improved plant performance at nitrogen deficient conditions (T1 generation) Gene Name Dry Weight [mg] Fresh Weight [mg] Ave. P- Val. % Incr. Ave. P- Val. % Incr. LNU859 5.75 0.30 19 - - - CONT. 4.84 - - - - - LNU919 5.47 0.11 21 - - - LNU886 - - - 113.1 0.13 29 LNU859 5.65 0.07 26 - - - LNU821 - - - 100.6 0.23 14 CONT. 4.50 - - 88.0 - - LNU936 5.53 0.22 20 - - - LNU786 5.87 0.02 27 - - - CONT. 4.62 - - - - - Table 103: “CONT.” - Control; “Ave.” - Average; “% Incr.” =% increment. “p-val.” - p-value; L means that p-value is less than 0.01, p<0.1 was considered as significant.

TABLE 104 Genes showing improved plant performance at nitrogen deficient conditions (T1 generation) Gene Name Roots Coverage [cm2] Roots Length [cm] Ave. P-Val. % Incr. Ave. P-Val. % Incr. LNU818 - - - 6.65 0.28 11 CONT. - - - 6.00 - - LNU956 17.2 0.17 20 - - - CONT. 14.3 - - - - - LNU946 12.3 0.25 22 - - - LNU887 12.6 0.22 25 7.14 0.16 13 LNU786 13.5 0.03 34 7.03 0.19 11 CONT. 10.1 - - 6.34 - - Table 104: “CONT.” - Control; “Ave.” - Average; “% Incr.” =% increment; “p-val.” - p-value; L means that p-value is less than 0.01, p<0.1 was considered as significant.

The genes listed in Tables 105-106 have improved plant relative growth rate (relative growth rate of the leaf area, root coverage and root length) when grown under limiting nitrogen growth conditions compared to control plants (T2 and T1 generations) that were grown under identical growth conditions. Plants showing fast growth rate show a better plant establishment in soil under nitrogen deficient conditions. Faster growth was observed when growth rate of leaf area, root length and root coverage was measured.

TABLE 105 Genes showing improved plant growth rate at nitrogen deficient conditions (T2 generation) Gene Name Event # RGR Of Leaf Area RGR Of Roots Coverage RGR Of Root Length Ave. P-Val. % Incr. Ave. P-Val. % Incr. Ave. P-Val. % Incr. LNU954 80358.5 0.0422 0.08 22 1.29 0.01 42 0.649 0.03 22 LNU938 80352.1 - - - 1.48 L 63 0.640 0.03 21 LNU938 80352.2 - - - - - - 0.613 0.08 16 LNU938 80353.1 0.0418 0.09 20 1.21 0.01 33 0.666 L 26 LNU938 80354.1 - - - - - - 0.588 0.28 11 LNU938 80355.5 - - - 1.55 0.01 70 0.673 0.02 27 LNU910 80346.1 - - - - - - 0.631 0.14 19 LNU910 80348.1 - - - - - - 0.615 0.09 16 LNU910 80350.1 0.0445 0.04 28 1.33 0.01 47 0.646 0.03 22 LNU869 80083.3 - - - 1.56 L 72 0.680 0.03 28 LNU869 80084.3 0.0410 0.15 18 1.23 L 35 0.614 0.11 16 LNU869 80084.4 - - - 1.15 0.11 27 - - - LNU869 80085.2 - - - 1.12 0.21 23 - - - LNU869 80085.3 0.0444 0.08 28 1.66 L 82 0.673 0.05 27 LNU840 78676.4 0.0428 0.15 23 - - - - - - LNU840 78677.1 - - - 1.04 0.24 15 0.606 0.15 14 LNU840 78763.2 - - - 1.12 0.13 24 0.605 0.24 14 LNU840 78763.6 0.0405 0.23 17 - - - 0.598 0.26 13 LNU837 79574.5 - - - 1.35 0.02 49 0.622 0.13 17 LNU837 79574.7 0.0416 0.11 20 1.27 L 40 0.664 0.01 25 LNU837 79575.2 - - - - - - 0.589 0.23 11 LNU837 79575.4 0.0420 0.22 21 1.13 0.19 24 - - - LNU771 80077.2 0.0454 0.02 31 1.52 L 68 0.689 L 30 LNU771 80077.4 - - - - - - 0.594 0.22 12 LNU771 80078.5 - - - 1.06 0.21 17 0.605 0.15 14 LNU771 80079.3 0.0451 0.07 30 1.25 0.06 38 0.656 0.08 24 LNU771 80079.4 0.0454 0.02 31 1.18 0.08 30 0.613 0.12 16 CONT. - 0.0347 - - 0.908 - - 0.530 - - LNU964 80548.3 - - - - - - 0.685 0.26 12 LNU964 80552.4 0.0460 0.23 13 1.49 0.01 40 0.727 0.07 19 LNU964 80552.6 0.0475 0.17 17 1.45 0.04 37 0.734 0.04 20 LNU957 80437.1 - - - 1.38 0.06 30 - - - LNU953 80428.1 - - - 1.27 0.18 20 - - - LNU920 78509.5 - - - 1.27 0.19 19 0.703 0.14 15 LNU920 78510.1 - - - 1.26 0.22 18 - - - LNU911 80424.2 0.0463 0.23 14 1.35 0.13 27 - - - LNU903 80417.6 - - - 1.29 0.18 21 0.693 0.18 14 LNU901 80474.3 - - - 1.27 0.22 19 0.709 0.15 16 LNU901 80476.4 - - - 1.27 0.25 19 - - - LNU897 80448.3 - - - 1.31 0.17 23 - - - LNU897 80449.1 - - - 1.30 0.17 22 0.696 0.17 14 LNU892 80412.1 - - - 1.51 0.02 42 0.701 0.15 15 LNU884 80407.1 - - - 1.81 L 70 - - - LNU872 77724.7 - - - - - - 0.691 0.19 13 LNU872 77725.6 - - - - - - 0.704 0.13 15 LNU869 80084.3 - - - 1.26 0.28 18 - - - LNU869 80084.4 0.0473 0.20 16 1.80 L 69 0.760 0.02 25 LNU844 0341.2 - - - - - - 0.701 0.16 15 LNU844 80342.1 - - - 1.38 0.06 29 - - - LNU844 80344.2 - - - 1.35 0.09 27 0.698 0.18 14 LNU834_H1 80402.7 - - - 1.55 0.01 46 0.765 0.02 25 LNU773 80398.1 - - - 1.30 0.18 22 - - - LNU749 80793.5 - - - 1.42 0.05 33 0.722 0.08 18 CONT. - 0.0407 - - 1.06 - - 0.610 - - LNU956 80854.3 - - - 1.06 0.29 21 - - - LNU956 80856.3 0.0385 0.26 12 1.06 0.19 22 0.711 0.26 8 CONT. - 0.0344 - - 0.873 - - 0.661 - - LNU975 80624.3 - - - 0.904 0.17 16 - - - LNU832_H2 80605.6 0.0371 0.14 17 0.951 0.11 22 0.610 0.02 11 LNU819 78133.3 0.0361 0.26 14 1.12 L 44 - - - LNU801 78585.7 0.0370 0.21 17 0.994 0.05 27 - - - LNU800 77896.2 0.0377 0.09 19 1.18 L 51 - - - LNU794 78522.1 - - - 1.03 0.06 31 - - - LNU760_H1 80127.2 - - - 0.896 0.27 15 - - - LNU760_H1 80127.4 - - - 1.08 L 37 - - - LNU760_H1 80130.1 - - - 0.909 0.20 16 - - - LNU760_H1 80130.4 - - - 0.964 0.05 23 0.600 0.05 10 CONT. - 0.0317 - - 0.782 - - 0.548 - - LNU971 78395.2 - - - - - - 0.658 0.21 10 LNU971 78395.5 0.0486 0.09 21 - - - - - - LNU930 79772.5 - - - 1.39 0.04 26 - - - LNU928 78211.4 0.0470 0.14 17 1.30 0.19 18 0.672 0.13 12 LNU917 77500.1 0.0487 0.08 21 1.49 0.01 36 - - - LNU904 78987.1 0.0469 0.19 17 - - - - - - LNU904 78987.2 0.0455 0.26 13 1.26 0.27 15 - - - LNU874 78369.1 0.0481 0.09 20 - - - - - - LNU870 78501.1 - - - 1.45 0.04 32 0.659 0.25 10 LNU870 78505.7 0.0478 0.13 19 1.28 0.26 16 - - - LNU867 79589.3 - - - 1.68 L 52 0.684 0.12 14 LNU862 79755.9 - - - 1.52 0.01 38 0.702 0.03 17 LNU862 79757.1 0.0463 0.20 15 1.51 0.01 37 0.696 0.06 16 LNU856 79753.3 0.0495 0.08 23 1.47 0.01 33 0.693 0.07 16 LNU856 79753.5 0.0453 0.29 13 1.31 0.21 19 - - - LNU852 79580.2 - - - - - - 0.654 0.24 9 LNU829 77912.3 - - - - - - 0.658 0.25 10 LNU796 78234.5 0.0455 0.23 13 - - - - - - LNU796 78235.7 - - - 1.45 0.08 32 0.668 0.20 11 LNU792 79161.2 0.0485 0.09 21 1.37 0.06 24 0.680 0.10 14 LNU792 79215.1 - - - - - - 0.665 0.17 11 LNU792 79215.3 - - - 1.38 0.12 26 - - - LNU763 77588.1 - - - 1.26 0.26 15 - - - LNU763 77588.8 - - - - - - 0.706 0.04 18 LNU753 77141.2 - - - 1.46 0.07 32 0.666 0.21 11 CONT. - 0.0402 - - 1.10 - - 0.599 - - LNU955 80432.7 - - - 1.61 0.01 78 0.669 0.22 19 LNU953 80428.1 - - - 1.19 0.04 31 - - - LNU949 80557.1 - - - 1.18 0.05 30 - - - LNU949 80557.2 0.0476 0.13 18 - - - - - - LNU949 80557.4 - - - 1.11 0.16 22 - - - LNU914 80514.5 - - - 1.09 0.25 20 - - - LNU901 80474.2 0.0513 0.06 27 1.24 0.03 37 - - - LNU901 80474.3 - - - 1.10 0.23 21 - - - LNU901 80476.4 - - - 1.27 0.03 39 0.632 0.30 12 LNU892 80410.1 - - - 1.11 0.09 23 0.649 0.14 15 LNU892 80414.7 - - - 1.21 0.05 34 - - - LNU873 80473.6 - - - 1.44 L 59 - - - LNU866 80444.6 - - - 1.12 0.16 24 0.643 0.25 14 LNU834_H1 80402.1 - - - 1.11 0.16 22 - - - LNU834_H1 80402.3 - - - 1.08 0.20 19 - - - LNU834_H1 80404.5 - - - 1.40 0.04 55 0.656 0.22 16 LNU798 79671.4 - - - 1.18 0.06 30 - - - LNU798 79673.2 - - - 1.08 0.26 19 - - - LNU787 80546.5 - - - - - - 0.648 0.20 15 LNU787 80547.4 - - - 1.06 0.21 16 - - - LNU787 80547.5 0.0478 0.11 18 1.41 L 56 0.686 0.08 22 LNU766 78932.1 0.0482 0.11 19 1.23 0.04 36 0.653 0.19 16 CONT. - 0.0404 - - 0.907 - - 0.565 - - LNU884 80407.5 - - - 1.42 0.22 21 0.633 0.04 17 LNU872 77725.4 - - - - - - 0.584 0.22 8 LNU844 80341.2 - - - 1.47 0.17 24 0.591 0.25 9 LNU791 77895.4 - - - 1.37 0.26 16 0.584 0.22 8 CONT. - - - - 1.18 - - 0.541 - - Table 105: “CONT.” - Control; “Ave.” - Average; “% Incr.” =% increment; “p-val.” - p-value; L means that p-value is less than 0.01, p<0.1 was considered as significant.

TABLE 106 Genes showing improved plant growth rate at nitrogen deficient conditions (T1 generation) Gene Name RGR Of Roots Coverage RGR Of Root Length Ave. P-Val. % Incr. Ave. P-Val. % Incr. LNU818 - - - 0.691 0.11 14 CONT. - - - 0.606 - - LNU956 2.09 0.13 20 - - - CONT. 1.74 - - - - - LNU946 1.51 0.20 23 - - - LNU932 - - - 0.739 0.23 17 LNU887 1.53 0.17 25 0.722 0.18 14 LNU786 1.65 0.04 35 0.741 0.15 17 CONT. 1.22 - - 0.635 - - Table 106: “CONT.” - Control; “Ave.” - Average; “% Incr.” =% increment; “p-val.” - p-value; L means that p-value is less than 0.01, p<0.1 was considered as significant.

The genes listed in Tables 107-110 improved plant NUE when grown at standard nitrogen concentration levels. These genes produced larger plant biomass (plant fresh and dry weight; leaf area, root coverage and roots length) when grown under standard nitrogen growth conditions compared to control plants that were grown under identical growth conditions in T2 (Tables 107-108) and T1 (Tables 109-110) generations. Larger plant biomass under these growth conditions indicates the high ability of the plant to better metabolize the nitrogen present in the medium. Plants producing larger root biomass have better possibilities to absorb larger amount of nitrogen from soil.

TABLE 107 Genes showing improved plant performance at standard nitrogen growth conditions (T2 generation) Gene Name Event # Dry Weight [mg] Fresh Weight [mg] Ave. P-Val. % Incr. Ave. P- Val. % Incr. LNU938 80355.5 6.80 0.27 16 140.0 0.21 43 LNU910 80348.5 - - - 129.1 0.21 32 LNU910 80350.1 7.17 0.12 23 118.7 0.18 21 LNU869 80083.3 7.10 0.09 21 142.9 0.12 46 LNU869 80084.4 10.3 0.10 77 184.2 L 88 LNU869 80085.3 8.25 0.01 41 158.8 0.02 63 LNU771 80077.2 - - - 170.8 L 75 LNU771 80079.3 - - - 123.8 0.26 27 CONT. - 5.85 - - 97.7 - - LNU964 80548.3 5.30 0.25 25 112.8 0.03 40 LNU964 80552.4 7.85 0.04 86 162.1 0.06 101 LNU964 80552.6 5.70 0.01 35 103.6 0.07 28 LNU955 80432.7 6.63 0.03 57 120.4 0.03 49 LNU953 80428.1 5.40 0.15 28 - - - LNU953 80429.2 6.83 0.16 62 143.8 0.24 78 LNU949 80557.4 5.85 L 38 112.4 L 39 LNU914 80514.5 5.70 0.16 35 115.7 0.18 43 LNU901 80474.2 6.75 0.03 60 128.8 L 60 LNU901 80474.3 7.58 0.02 79 130.8 0.06 62 LNU901 80476.4 - - - 116.2 0.17 44 LNU892 80410.1 6.50 L 54 137.1 0.03 70 LNU892 80412.1 5.70 0.21 35 - - - LNU892 80414.7 6.03 0.13 43 125.5 0.19 55 LNU873 80469.3 6.42 0.10 52 119.8 0.18 49 LNU873 80473.6 4.80 0.20 14 96.2 0.24 19 LNU866 80444.6 7.20 0.03 70 150.2 0.15 86 LNU843 78963.5 4.60 0.23 9 93.2 0.21 16 LNU834_H1 80402.1 6.35 0.14 50 116.8 0.08 45 LNU834_H1 80402.3 5.88 0.04 39 97.9 0.22 21 LNU834_H1 80404.5 6.05 0.05 43 113.1 0.03 40 LNU798 79669.1 5.67 0.12 34 102.2 0.04 27 LNU798 79671.4 - - - 132.5 L 64 LNU798 79673.2 5.62 0.13 33 106.7 0.14 32 LNU787 80546.5 6.68 0.04 58 126.0 0.01 56 LNU787 80547.5 6.70 0.07 59 139.7 0.01 73 LNU766 78931.1 6.05 L 43 117.1 L 45 LNU766 78931.10 7.52 L 78 129.5 0.02 60 LNU766 78932.1 5.47 0.20 30 102.8 0.03 27 CONT. - 4.22 - - 80.7 - - LNU952 78218.3 6.10 0.25 34 - - - LNU952 78218.6 6.17 0.26 35 133.8 0.14 28 LNU905 79674.4 7.12 0.15 56 138.1 0.20 32 LNU897 80449.1 6.10 0.16 34 - - - LNU884 80407.5 8.55 0.05 87 172.8 0.16 66 LNU872 77723.2 - - - 138.9 0.15 33 LNU872 77724.7 8.20 0.02 80 154.9 0.07 48 CONT. - 4.57 - - 104.4 - - Table 107: “CONT.” - Control; “Ave.” - Average; “% Incr.” =% increment; “p-val.” - p-value; L means that p-value is less than 0.01, p<0.1 was considered as significant.

TABLE 108 Genes showing improved plant performance at standard nitrogen growth conditions (T2 generation) Gene Name Event # Leaf Area [cm2] Roots Coverage [cm2] Roots Length [cm] Ave. P-Val. % Incr. Ave. P-Val. % Incr. Ave. P-Val. % Incr. LNU954 80360.1 0.510 0.16 9 - - - - - - LNU938 80355.5 0.554 0.05 19 - - - - - - LNU910 80348.1 0.560 0.27 20 - - - - - - LNU910 80348.5 0.586 L 26 - - - 6.83 0.26 9 LNU910 80350.1 0.620 0.02 33 7.98 0.11 22 6.97 L 11 LNU869 80083.3 0.603 0.06 29 - - - - - - LNU869 80084.3 0.564 0.07 21 - - - - - - LNU869 80084.4 0.767 L 65 - - - - - - LNU869 80085.3 0.656 L 41 8.85 L 36 7.14 L 14 LNU840 78676.4 0.527 0.18 13 - - - 6.55 0.19 5 LNU840 78677.1 0.533 0.24 14 - - - - - - LNU840 78763.2 0.540 0.16 16 - - - - - - LNU771 80077.2 0.646 0.19 38 9.56 L 47 7.19 L 15 LNU771 80079.3 0.572 0.19 23 - - - - - - LNU771 80079.4 0.538 0.07 15 - - - - - - CONT. - 0.466 - - 6.52 - - 6.26 - - LNU964 80548.1 0.557 L 23 6.39 0.20 15 6.21 0.06 8 LNU964 80548.3 0.514 0.02 14 - - - - - - LNU964 80552.4 0.699 0.01 54 7.77 0.13 40 6.15 0.26 7 LNU964 80552.6 0.500 0.10 10 - - - 6.06 0.28 6 LNU955 80432.7 0.597 0.03 32 9.08 0.09 64 - - - LNU953 80428.1 0.554 0.03 22 7.46 0.07 35 6.21 0.01 8 LNU953 80429.2 0.640 0.12 41 - - - - - - LNU949 80557.4 0.612 L 35 8.01 0.02 45 6.43 L 12 LNU914 80514.5 0.598 L 32 - - - - - - LNU914 80515.6 0.543 0.09 20 - - - - - - LNU901 80474.2 0.598 0.02 32 8.49 0.02 53 6.53 0.07 14 LNU901 80474.3 0.605 L 34 6.52 0.10 18 - - - LNU901 80476.4 0.513 0.05 13 - - - 6.25 0.20 9 LNU892 80410.1 0.582 0.07 29 7.37 0.01 33 6.24 0.04 9 LNU892 80414.7 0.552 0.12 22 - - - - - - LNU873 80469.3 0.540 L 19 6.46 0.21 17 - - - LNU873 80473.6 0.502 0.16 11 6.19 0.25 12 - - - LNU866 80444.6 0.678 0.13 50 - - - - - - LNU834_H1 80402.1 0.597 0.03 32 8.21 0.09 48 6.67 L 16 LNU834_H1 80402.3 0.519 0.03 15 6.42 0.10 16 - - - LNU834_H1 80404.5 0.588 L 30 7.17 L 30 6.30 0.21 10 LNU798 79669.1 0.517 0.02 14 - - - - - - LNU798 79671.4 0.681 L 51 9.55 0.29 73 6.63 0.26 16 LNU798 79673.2 0.573 0.13 27 7.55 0.29 36 6.66 0.14 16 LNU787 80546.5 0.568 0.01 26 7.62 0.19 38 6.31 0.24 10 LNU787 80547.4 - - - 6.11 0.29 10 6.47 0.02 13 LNU787 80547.5 0.607 0.06 34 8.87 0.03 60 6.53 0.02 14 LNU766 78931.1 0.535 0.12 18 7.02 0.09 27 - - - LNU766 78931.10 0.648 0.03 43 8.84 0.01 60 6.78 0.03 18 LNU766 78932.1 0.589 0.05 30 7.38 0.17 33 6.79 0.04 19 CONT. - 0.453 - - 5.53 - - 5.73 - - LNU952 78218.6 0.695 0.04 34 7.32 0.16 26 - - - LNU920 78507.1 - - - 7.69 0.24 33 - - - LNU920 78510.1 - - - - - - 6.53 0.29 10 LNU905 79674.4 0.663 0.16 28 8.22 0.07 42 - - - LNU905 79676.1 0.614 0.20 19 7.19 0.28 24 - - - LNU897 80449.1 0.620 0.17 20 - - - - - - LNU884 80407.5 0.791 0.03 53 9.14 0.04 57 6.76 0.19 14 LNU872 77723.2 0.689 0.15 33 - - - - - - LNU872 77724.7 0.650 0.10 26 9.50 0.05 64 6.90 0.13 17 LNU791 77895.4 - - - - - - 6.62 0.24 12 CONT. - 0.517 - - 5.81 - - 5.91 - - Table 108: “CONT.” - Control; “Ave.” - Average; “% Incr.” =% increment; “p-val.” - p-value; L means that p-value is less than 0.01, p<0.1 was considered as significant.

TABLE 109 Genes showing improved plant performance at standard nitrogen growth conditions (T1 generation) Gene Name Dry Weight [mg] Fresh Weight [mg] Ave. P- Val. % Incr. Ave. P- Val. % Incr. LNU919 - - - 139.8 0.19 15 CONT. - - - 121.4 - - LNU956 9.90 0.18 24 - - - LNU749 10.0 0.20 26 - - - CONT. 7.97 - - - - - Table 109: “CONT.” - Control; “Ave.” - Average; “% Incr.” =% increment; “p-val.” - p-value; L means that p- value is less than 0.01, p<0.1 was considered as significant.

TABLE 110 Genes showing improved plant performance at standard nitrogen growth conditions (T1 generation) Gene Name Leaf Area [cm2] Roots Coverage [cm2] Roots Length [cm] Ave. P-Val. % Incr. Ave. P-Val. % Incr. Ave. P-Val. % Incr. LNU886 0.752 0.19 14 - - - - - - LNU821 - - - 6.89 0.27 18 5.89 0.19 7 CONT. 0.660 - - 5.83 - - 5.50 - - Table 110: “CONT.” - Control; “Ave.” - Average; “% Incr.” =% increment; “p-val.” - p-value; L means that p-value is less than 0.01, p<0.1 was considered as significant.

The genes listed in Tables 111-112 improved plant relative growth rate (RGR of leaf area, root length and root coverage) when grown at standard nitrogen concentration levels. These genes produced plants that grew faster than control plants when grown under standard nitrogen growth conditions. Faster growth was observed when growth rate of leaf area, root length and root coverage was measured.

TABLE 111 Genes showing improved growth rate at standard nitrogen growth conditions (T2 generation) Gene Name Event # RGR Of Leaf Area RGR Of Roots Coverage RGR Of Root Length Ave. P-Val. % Incr. Ave. P-Val. % Incr. Ave. P-Val. % Incr. LNU954 80360.4 - - - - - - 0.583 0.23 10 LNU938 80354.1 - - - - - - 0.588 0.21 11 LNU938 80355.5 0.0549 0.14 18 - - - - - - LNU910 80348.1 0.0555 0.22 19 - - - - - - LNU910 80348.5 0.0588 0.11 26 - - - - - - LNU910 80350.1 0.0617 0.02 32 0.929 0.07 23 0.611 0.06 16 LNU869 80083.3 0.0584 0.12 25 - - - - - - LNU869 80084.3 0.0549 0.16 18 - - - - - - LNU869 80084.4 0.0767 L 64 0.911 0.23 20 - - - LNU869 80085.3 0.0652 L 40 1.02 L 34 0.583 0.21 10 LNU840 78677.1 0.0537 0.25 15 - - - - - - LNU840 78763.2 0.0529 0.30 13 - - - - - - LNU771 80077.2 0.630 0.05 35 1.11 L 46 0.627 0.09 19 LNU771 80079.3 0.0537 0.30 15 0.859 0.29 13 - - - LNU771 80079.4 0.0544 0.18 17 - - - 0.577 0.29 9 CONT. - 0.0466 - - 0.758 - - 0.528 - - LNU964 80548.1 0.0578 0.03 23 0.773 0.24 16 0.632 0.08 11 LNU964 80548.3 0.0522 0.26 12 - - - - - - LNU964 80552.4 0.0733 L 58 0.917 0.03 38 - - - LNU964 80552.6 0.0543 0.12 17 - - - - - - LNU955 80432.7 0.0607 0.02 31 1.11 L 67 - - - LNU953 80428.1 0.0561 0.04 21 0.879 0.04 32 - - - LNU953 80429.2 0.0662 L 42 0.787 0.27 18 - - - LNU949 80557.4 0.0630 L 36 0.971 L 46 0.627 0.13 10 LNU914 80514.5 0.0596 0.03 28 - - - - - - LNU914 80515.6 0.0550 0.12 18 - - - - - - LNU901 80474.2 0.0592 0.01 27 1.01 L 52 - - - LNU901 80474.3 0.0623 L 34 0.792 0.16 19 - - - LNU901 80476.4 0.0534 0.15 15 - - - LNU892 80410.1 0.0589 0.02 27 0.890 0.02 34 0.615 0.17 8 LNU892 80414.7 0.0551 0.12 19 - - - - - - LNU873 80469.3 0.0550 0.08 18 0.779 0.26 17 - - - LNU873 80473.6 0.0522 0.24 12 - - - - - - LNU866 80444.6 0.0664 L 43 0.901 0.08 35 - - - LNU834_H1 80402.1 0.0614 L 32 0.965 0.01 45 0.614 0.21 8 LNU834_H1 80402.3 0.0529 0.14 14 0.768 0.25 15 - - - LNU834_H1 80404.5 0.0588 0.01 27 0.859 0.03 29 - - - LNU798 79671.4 0.0701 L 51 1.12 L 68 - - - Gene Name Event # RGR Of Leaf Area RGR Of Roots Coverage RGR Of Root Length Ave. P-Val. % Incr. Ave. P-Val. % Incr. Ave. P-Val. % Incr. LNU798 79673.2 0.0585 0.05 26 0.903 0.10 36 0.636 0.17 12 LNU787 80546.5 0.0572 0.03 23 0.899 0.06 35 - - - LNU787 80547.4 - - - - - - 0.609 0.25 7 LNU787 80547.5 0.0659 L 42 1.06 L 59 0.634 0.07 12 LNU766 78931.1 0.0539 0.15 16 0.830 0.09 25 - - - LNU766 78931.10 0.0668 L 44 1.02 L 54 0.639 0.10 13 LNU766 78932.1 0.0584 0.04 26 0.864 0.08 30 0.612 0.30 8 CONT. - 0.0464 - - 0.665 - - 0.568 - - LNU952 78218.6 0.0694 0.04 41 0.879 0.15 31 0.589 0.13 19 LNU920 78507.1 - - - 0.907 0.20 36 - - - LNU905 79674.4 0.0658 0.16 33 0.960 0.06 44 - - - LNU905 79676.1 0.0620 0.15 26 0.848 0.22 27 0.584 0.12 18 LNU897 80449.1 0.0618 0.17 25 - - - - - - LNU884 80407.5 0.0776 0.01 57 1.06 0.02 58 0.593 0.21 19 LNU872 77723.2 0.0681 0.07 38 0.834 0.26 25 0.582 0.26 17 LNU872 77724.7 0.0670 0.03 36 1.08 0.03 61 - - - LNU773 80399.2 - - - 0.895 0.24 34 0.583 0.28 17 CONT. - 0.0493 - - 0.669 - - 0.497 - - Table 111: “CONT.” - Control; “Ave.” - Average; “% Incr.” =% increment; “p-val.” - p-value; L means that p-value is less than 0.01, p<0.1 was considered as significant.

TABLE 112 Genes showing improved growth rate at standard nitrogen growth conditions (T1 generation) Gene Name RGR Of Leaf Area RGR Of Roots Coverage RGR Of Root Length Ave. P-Val. % Incr. Ave. P-Val. % Incr. Ave. P-Val. % Incr. LNU886 - - - 0.809 0.25 19 - - - LNU821 - - - 0.815 0.19 20 0.590 0.18 9 CONT. - - - 0.680 - - 0.540 - - LNU956 0.0900 0.29 21 - - - - - - CONT. 0.0741 - - - - - - - - Table 112. “CONT.” - Control; “Ave.” - Average; “% Incr.” =% increment; “p-val.” - p-value; L means that p-value is less than 0.01, p<0.1 was considered as significant.

Example 17 Evaluation of Transgenic Arabidopsis Nue, Yield and Plant Growth Rate Under Low or Normal Nitrogen Fertilization in Greenhouse Assay

Assay 1: Nitrogen Use efficiency: Seed yield plant biomass and plant growth rate at limited and optimal nitrogen concentration under greenhouse conditions - This assay follows seed yield production, the biomass formation and the rosette area growth of plants grown in the greenhouse at limiting and non-limiting nitrogen growth conditions. Transgenic Arabidopsis seeds were sown in agar media supplemented with ½ MS medium and a selection agent (Kanamycin). The T2 transgenic seedlings were then transplanted to 1.7 trays filled with peat and perlite in a 1:1 ratio. The trays were irrigated with a solution containing nitrogen limiting conditions, which were achieved by irrigating the plants with a solution containing 1.5 mM inorganic nitrogen in the form of KNO3, supplemented with 1 mM KH2PO4, 1 mM MgSO4, 3.6 mM KC1, 2 mM CaCl2 and microelements, while normal nitrogen levels were achieved by applying a solution of 6 mM inorganic nitrogen also in the form of KNO3 with 1 mM KH2PO4, 1 mM MgSO4,2 mM CaCl2 and microelements. All plants were grown in the greenhouse until mature seeds. Seeds were harvested, extracted and weight. The remaining plant biomass (the above ground tissue) was also harvested, and weighted immediately or following drying in oven at 50° C. for 24 hours.

Each construct was validated at its T2 generation. Transgenic plants transformed with a construct conformed by an empty vector carrying the 35S promoter and the selectable marker was used as control.

The plants are analyzed for their overall size, growth rate, flowering, seed yield, 1,000-seed weight, dry matter and harvest index (HI- seed yield/dry matter). Transgenic plants performance was compared to control plants grown in parallel under the same conditions. Mock- transgenic plants expressing the uidA reporter gene (GUS-Intron) or with no gene at all, under the same promoter were used as control.

The experiment was planned in nested randomized plot distribution. For each gene of the invention three to five independent transformation events were analyzed from each construct.

Digital imaging - A laboratory image acquisition system, which consists of a digital reflex camera (Canon EOS 300D) attached with a 55 mm focal length lens (Canon EF-S series), mounted on a reproduction device (Kaiser RS), which includes 4 light units (4 x 150 Watts light bulb) was used for capturing images of plant samples.

The image capturing process was repeated every 2 days starting from day 1 after transplanting till day 15. Same camera, placed in a custom made iron mount, was used for capturing images of larger plants sawn in white tubs in an environmental controlled greenhouse. The tubs were square shape include 1.7 liter trays. During the capture process, the tubs were placed beneath the iron mount, while avoiding direct sun light and casting of shadows.

An image analysis system was used, which consists of a personal desktop computer (Intel P4 3.0 GHz processor) and a public domain program - ImageJ 1.39 [Java based image processing program which was developed at the U.S. National Institutes of Health and freely available on the internet at rsbweb (dot) nih (dot) gov/]. Images are captured in resolution of 10 Mega Pixels (3888 x 2592 pixels) and stored in a low compression JPEG (Joint Photographic Experts Group standard) format. Next, analyzed data was saved to text files and processed using the JMP statistical analysis software (SAS institute).

Leaf analysis - Using the digital analysis leaves data was calculated, including leaf number, rosette area, rosette diameter, leaf blade area.

Vegetative growth rate: the relative growth rate (RGR) of leaf number [Formula VIII (described above)], rosette area (Formula IX, described above), plot coverage (Formula XI, described above) and harvest index (Formula XV) is calculated with the indicated formulas.

Seeds average weight - At the end of the experiment all seeds were collected. The seeds were scattered on a glass tray and a picture is taken. Using the digital analysis, the number of seeds in each sample was calculated.

Dry weight and seed yield - On about day 80 from sowing, the plants were harvested and left to dry at 30° C. in a drying chamber. The biomass and seed weight of each plot were measured and divided by the number of plants in each plot. Dry weight = total weight of the vegetative portion above ground (excluding roots) after drying at 30° C. in a drying chamber; Seed yield per plant = total seed weight per plant (gr). 1000 seed weight (the weight of 1000 seeds) (gr.).

The harvest index (HI) is calculated using Formula XV as described above.

Oil percentage in seeds - At the end of the experiment all seeds from each plot were collected. Seeds from 3 plots were mixed grounded and then mounted onto the extraction chamber. 210 ml of n-Hexane (Cat No. 080951 Biolab Ltd.) were used as the solvent. The extraction was performed for 30 hours at medium heat 50° C. Once the extraction has ended the n-Hexane was evaporated using the evaporator at 35° C. and vacuum conditions. The process was repeated twice. The information gained from the Soxhlet extractor (Soxhlet, F. Die gewichtsanalytische Bestimmung des Milchfettes, Polytechnisches J. (Dingler’s) 1879, 232, 461) was used to create a calibration curve for the Low Resonance NMR. The content of oil of all seed samples is determined using the Low Resonance NMR (MARAN Ultra- Oxford Instrument) and its MultiQuant software package

Silique length analysis - On day 50 from sowing, 30 siliques from different plants in each plot were sampled in block A. The chosen siliques were green-yellow in color and were collected from the bottom parts of a grown plant’s stem. A digital photograph was taken to determine silique’s length.

Statistical analyses - To identify genes conferring significantly improved tolerance to abiotic stresses, the results obtained from the transgenic plants were compared to those obtained from control plants. To identify outperforming genes and constructs, results from the independent transformation events tested were analyzed separately. Data was analyzed using Student’s t-test and results were considered significant if the p value was less than 0.1. The JMP statistics software package was used (Version 5.2.1, SAS Institute Inc., Cary, NC, USA).

Tables 113-122 summarize the observed phenotypes of transgenic plants exogenously expressing the gene constructs using the greenhouse seed maturation (GH-SM) assays under low nitrogen (Tables 113-117) or normal nitrogen (Tables 118-122) conditions. The evaluation of each gene was performed by testing the performance of different number of events. Event with p-value <0.1 was considered statistically significant.

TABLE 113 Genes showing improved plant performance at low Nitrogen growth conditions under regulation of At6669 promoter Gene Name Event # Dry Weight [mg] Flowering Inflorescence Emergence Ave. P-Val. % Incr. Ave. P-Val. % Incr. Ave. P-Val. % Incr. LNU947 77448.4 458.1 0.03 17 - - - - - - LNU895 77934.1 416.9 0.10 6 - - - - - - LNU895 77935.3 424.4 0.05 8 - - - - - - LNU878 77252.1 474.4 0.21 21 - - - - - - LNU878 77254.3 420.6 0.07 7 - - - - - - LNU820 77806.2 431.9 0.02 10 - - - - - - LNU820 77807.2 423.8 0.05 8 - - - - - - LNU820 77809.1 445.6 0.22 14 - - - - - - LNU815 77494.1 425.6 0.08 9 - - - - - - LNU808 77678.3 456.9 0.03 17 - - - - - - LNU803 77902.2 446.9 L 14 - - - - - - LNU784 77612.3 480.0 L 23 - - - - - - LNU784 77615.1 429.4 0.03 10 - - - - - - LNU779 77887.1 428.1 0.03 9 - - - - - - LNU774 77247.4 408.5 0.25 4 - - - - - - CONT. - 391.6 - - - - - - - - LNU895 77934.4 616.9 0.07 8 23.0 0.04 -5 18.3 0.21 -4 LNU895 77935.4 - - - - - - 18.9 0.30 -1 LNU890 78202.1 616.9 0.18 8 - - - - - - LNU878 77251.3 633.1 0.19 11 23.5 0.02 -3 18.0 L -6 LNU878 77254.2 606.9 0.12 6 - - - - - - LNU838 77616.2 - - - 23.5 0.02 -3 - - - LNU838 77616.3 593.8 0.30 4 23.6 0.04 -2 - - - LNU838 77617.2 - - - - - - 18.5 0.02 -3 LNU838 77617.5 - - - 23.7 0.19 -2 - - - LNU811 78179.1 - - - 23.2 0.26 -4 18.4 0.01 -4 LNU808 77677.2 - - - - - - 18.8 0.27 -1 LNU808 77678.3 633.8 0.12 11 22.7 0.19 -6 17.4 0.21 -9 LNU808 77679.3 - - - 23.2 0.09 -4 17.4 L -9 LNU803 77901.2 - - - 23.7 0.06 -2 - - - LNU803 77902.2 676.2 L 18 - - - - - - LNU793 78169.2 - - - 22.9 L -5 - - - LNU784 77615.1 - - - 23.2 0.09 -4 - - - LNU784 77615.12 - - - 23.1 0.15 -4 17.5 L -8 LNU775 77592.3 819.8 0.06 43 23.1 0.01 -5 16.6 L -13 LNU774 77246.3 678.1 0.23 18 21.4 L -12 16.6 L -13 LNU774 77247.4 587.5 0.25 3 23.1 0.17 -5 18.6 0.06 -2 LNU754 77801.2 - - - 23.1 0.15 -4 18.2 0.05 -5 CONT. - 572.3 - - 24.2 - - 19.1 - - Table 113 “CONT.” - Control; “Ave.” - Average; “% Incr.” =% increment ;“p-val.” - p-value; L means that p-value is less than 0.01, p<0.1 was considered as significant. The transgenes were under the transcriptional regulation of the new At6669 promoter (SEQ ID NO: 4880). It should be noted that a negative increment (in percentages) when found in flowering or inflorescence emergence indicates drought avoidance of the plant.

TABLE 114 Genes showing improved plant performance at low Nitrogen growth conditions under regulation of At6669 promoter Gene Name Event # Leaf Blade Area [cm2] Leaf Number Plot Coverage [cm2] Ave. P-Val. % Incr. Ave. P-Val. % Incr. Ave. P-Val. % Incr. LNU895 77933.2 - - - 11.8 0.15 3 - - - LNU878 77251.3 - - - - - - 107.1 0.24 19 LNU878 77252.1 2.10 0.15 40 - - - 125.2 0.21 39 LNU878 77254.3 1.58 0.04 5 - - - 94.6 0.02 5 LNU815 77492.6 - - - 11.8 0.15 3 104.9 0.24 17 LNU815 77495.1 1.62 0.19 8 - - - 99.5 0.28 11 LNU808 77678.3 1.62 0.26 8 - - - 95.9 0.04 7 LNU803 77902.2 - - - 12.2 L 8 - - - LNU803 77904.4 1.78 0.15 19 - - - 105.6 L 18 LNU784 77615.7 - - - - - - 101.6 0.18 13 LNU784 77615.9 1.76 0.11 17 - - - 101.2 0.04 13 LNU779 77887.1 - - - - - - 93.5 0.25 4 LNU775 77593.3 - - - - - - 93.6 0.18 4 LNU774 77246.3 - - - 11.8 0.18 4 - - - LNU774 77247.2 - - - 11.9 0.11 5 - - - LNU756 77581.3 - - - - - - 99.9 0.06 11 LNU756 77585.4 1.55 0.18 3 - - - 94.7 0.19 5 CONT. - 1.50 - - 11.4 - - 89.8 - - LNU895 77934.4 1.74 0.07 21 - - - 108.2 0.29 19 LNU878 77251.3 1.56 0.10 8 - - - -- - - LNU838 77616.3 1.54 0.29 7 - - - - - - LNU811 78179.1 1.63 0.02 13 - --- - 98.9 0.15 9 LNU808 77677.2 1.52 0.28 5 - - - - - - LNU808 77677.3 1.54 0.28 7 - - - - - - LNU808 77678.3 1.61 0.05 12 11.9 0.09 6 104.8 0.06 15 LNU803 77902.2 - - - 12.2 0.15 8 - - - LNU803 77904.4 - - - 11.9 0.09 6 - - - LNU793 78169.2 1.57 0.11 9 - - - - - - LNU784 77615.1 1.63 0.12 13 - - - 102.1 0.05 12 LNU775 77593.1 1.55 0.22 8 - - - - - - LNU774 77246.3 1.96 0.04 36 - - - 120.5 0.03 32 LNU769 78165.2 - - - 11.8 0.14 5 - - - CONT. - 1.44 - - 11.3 - - 91.1 - - Table 114. “CONT.” - Control; “Ave.” - Average; “% Incr.” =% increment; “p-val.” - p-value; L means that p-value is less than 0.01, p<0.1 was considered as significant. The transgenes were under the transcriptional regulation of the new At6669 promoter (SEQ ID NO: 4880).

TABLE 115 Genes showing improved plant performance at low Nitrogen growth conditions under regulation of At6669 promoter Gene Name Event # RGR Of Leaf Number RGR Of Plot Coverage [cm2/day] RGR Of Rosette Diameter [cm/day] Ave. P-Val. % Incr. Ave. P-Val. % Incr. Ave. P-Val. % Incr. LNU940 77812.1 0.886 0.08 17 - - - - - - LNU878 77251.3 - - - 13.8 0.13 19 - - - LNU878 77252.1 - - - 16.2 L 39 0.597 0.03 17 LNU820 77807.2 0.838 0.28 11 - - - - - - LNU815 77492.6 - - - 13.7 0.16 17 - - - LNU815 77495.1 - - - - - - 0.562 0.15 10 LNU803 77902.2 0.905 0.04 19 - - - - - - LNU803 77902.3 0.855 0.22 13 - - - - - - LNU803 77904.4 - - - 13.7 0.14 18 0.570 0.09 11 LNU784 77612.3 0.905 0.08 19 - - - - - - LNU784 77615.7 - - - 13.2 0.27 13 - - - LNU784 77615.9 - - - 13.1 0.30 12 - - - LNU756 77581.3 - - - - - - 0.550 0.28 7 LNU756 77584.2 0.851 0.20 12 - - - - - - LNU754 77805.2 0.863 0.17 14 - - - - - - CONT. - 0.758 - - 11.7 - - 0.513 - - LNU895 77934.4 - - - 13.3 0.20 19 0.542 0.23 13 LNU890 78204.6 0.798 0.22 14 - - - - - - LNU811 78179.1 - - - - - - 0.542 0.23 13 LNU803 77901.2 - - - - - - 0.547 0.22 14 LNU803 77902.2 0.841 0.09 20 - - - - - - LNU775 77591.2 0.798 0.23 14 - - - - - - LNU775 77593.1 - - - - - - 0.544 0.23 13 LNU774 77246.3 - - - 14.9 0.03 33 0.573 0.08 19 LNU769 78165.1 0.796 0.23 13 - - - - - - CONT. - 0.703 - - 11.2 - - 0.481 - - Table 115. “CONT.” - Control; “Ave.” - Average; “% Incr.” =% increment; “p-val.” - p-value; L means that p-value is less than 0.01 p<0.1 was considered as significant. The transgenes were under the transcriptional regulation of the new At6669 promoter (SEQ ID NO: 4880).

TABLE 116 Genes showing improved plant performance at low Nitrogen growth conditions under regulation of At6669 promoter Gene Name Event # Harvest Index Rosette Area [cm2] Rosette Diameter [cm] Ave. P-Val. % Incr. Ave. P-Val. % Incr. Ave. P-Val. % Incr. LNU940 77811.5 0.458 0.18 7 - - - - - - LNU878 77251.3 - - - 13.4 0.24 19 6.05 0.10 8 LNU878 77252.1 - - - 15.7 0.21 39 6.61 0.19 18 LNU878 77254.3 - - - 11.8 0.02 5 - - - LNU838 77616.2 0.476 0.11 11 - - - - - - LNU838 77617.2 0.472 0.07 10 - - - - - - LNU820 77806.6 0.471 0.08 10 - - - - - - LNU815 77492.2 0.484 0.03 13 - - - - - - LNU815 77492.6 - - - 13.1 0.24 17 5.91 0.28 5 LNU815 77495.1 - - - 12.4 0.28 11 - - - LNU808 77678.3 - - - 12.0 0.04 7 - - - LNU808 77679.3 0.466 0.11 9 - - - - - - LNU803 77901.2 0.497 0.01 16 - - - - - - LNU803 77904.4 - - - 13.2 L 18 6.22 L 11 LNU784 77615.12 0.458 0.18 7 - - - - - - LNU784 77615.7 - - - 12.7 0.18 13 5.98 0.17 6 LNU784 77615.9 - - - 12.7 0.04 13 6.05 L 8 LNU779 77887.1 - - - 11.7 0.25 4 5.78 0.20 3 LNU779 77890.3 0.464 0.17 8 - - - - - - LNU777 77573.3 - - - - - - 6.02 0.14 7 LNU775 77593.3 - - - 11.7 0.18 4 - - - LNU756 77581.3 0.469 0.26 10 12.5 0.06 11 - - - LNU756 77585.3 0.452 0.28 6 - - - - - - LNU756 77585.4 - - - 11.8 0.19 5 5.86 0.03 4 CONT. - 0.428 - - 11.2 - - 5.61 - - LNU895 77934.4 - - - 13.5 0.29 19 6.18 0.14 11 LNU878 77251.1 0.461 0.27 6 - - - - - - LNU878 77251.3 - - - - - - 5.84 0.16 5 LNU838 77620.3 0.464 0.23 6 - - - - - - LNU811 78179.1 - - - 12.4 0.15 9 6.09 0.01 9 LNU811 78180.3 0.489 0.03 12 - - - - - - LNU808 77677.5 0.494 0.06 13 - - - - - - LNU808 77678.3 - - - 13.1 0.06 15 5.95 0.11 7 LNU797 78021.2 0.467 0.17 7 - - - - - - LNU797 78025.3 0.485 0.22 11 - - - - - - LNU793 78169.1 0.474 0.09 8 - - - - - - LNU784 77615.1 - - - 12.8 0.05 12 6.06 0.04 9 LNU775 77593.1 - - - - - - 5.84 0.19 5 LNU774 77246.3 - - - 15.1 0.03 32 6.62 0.13 19 LNU774 77247.4 0.481 0.07 10 - - - - - - LNU770 77922.1 0.499 0.15 14 - - - - - - LNU770 77925.3 0.460 0.27 5 - - - - - - LNU761 78159.1 0.473 0.10 8 - - - - - - CONT. - 0.437 - - 11.4 - - 5.58 - - Table 116. “CONT.” - Control; “Ave.” - Average; “% Incr.” =% increment; “p-val.” - p-value; L means that p-value is less than 0.01, p<0.1 was considered as significant. The transgenes were under the transcriptional regulation of the new At6669 promoter (SEQ ID NO: 4880).

TABLE 117 Genes showing improved plant performance at low Nitrogen growth conditions under regulation of At6669 promoter Gene Name Event # Seed Yield [mg] 1000 Seed Weight [mg] Ave. P-Val. % Incr. Ave. P-Val. % Incr. LNU947 77448.4 - - - 26.4 0.09 26 LNU878 77252.1 - - - 25.9 0.08 23 LNU878 77254.3 - - - 22.6 0.19 7 LNU841 77146.1 - - - 21.7 L 3 LNU841 77148.1 - - - 21.6 0.12 3 LNU838 77616.2 187.7 0.22 12 - - - LNU820 77807.2 - - - 22.7 0.12 8 LNU820 77809.1 - - - 24.4 0.21 16 LNU815 77494.1 - - - 23.6 0.25 12 LNU808 77678.1 180.2 0.25 8 21.5 0.25 3 LNU808 77678.3 - - - 22.8 L 9 LNU808 77679.3 182.7 0.21 9 - - - LNU803 77901.2 182.5 0.22 9 - - - LNU784 77615.1 - - - 22.7 0.07 8 LNU784 77615.9 - - - 22.3 0.13 6 LNU779 77887.1 186.2 0.10 11 - - - LNU779 77890.3 187.5 0.19 12 - - - LNU777 77573.3 - - - 22.1 L 5 LNU774 77246.3 - - - 23.1 0.23 10 LNU770 77922.1 183.6 0.14 10 - - - LNU756 77584.6 - - - 23.0 0.09 10 CONT. - 167.4 - - 21.0 - - LNU890 78202.1 - - - 22.7 0.17 13 LNU878 77254.2 273.8 0.01 10 - - - LNU878 77254.3 - - - 20.8 L 4 LNU838 77616.3 262.1 0.13 5 - - - LNU811 78180.3 266.8 0.26 7 - - - LNU808 77678.3 - - - 20.9 0.03 4 LNU803 77902.2 - - - 21.8 0.19 9 LNU797 78025.2 - - - 21.4 0.28 7 LNU797 78025.3 266.7 0.11 7 - - - LNU793 78169.2 262.4 0.19 5 - - - LNU775 77592.3 - - - 24.0 0.01 20 LNU774 77246.3 - - - 21.0 0.01 5 LNU774 77247.4 282.3 0.02 13 - - - CONT. - 249.0 - - 20.0 - - Table 117. “CONT.” - Control; “Ave.” - Average; “% Incr.” =% increment; “p-val.” - p-value; L means that p-value is less than 0.01, p<0.1 was considered as significant. The transgenes were under the transcriptional regulation of the new At6669 promoter (SEQ ID NO: 4880).

TABLE 118 Genes showing improved plant performance at Normal growth conditions under regulation of At6669 promoter Gene Name Event # Dry Weight [mg] Flowering Inflorescence Emergence Ave. P-Val. % Incr. Ave. P-Val. % Incr. Ave. P-Val. % Incr. LNU947 77446.1 - - - 17.1 0.23 -4 - - - LNU947 77447.3 - - - 17.0 0.15 -5 - - - LNU947 77448.3 - - - 17.0 0.15 -5 - - - LNU947 77448.4 831.9 0.14 5 17.0 0.15 -5 - - - LNU895 77935.4 893.8 0.19 13 - - - - - - LNU878 77251.3 871.2 0.06 10 17.0 0.15 -5 - - - LNU878 77252.1 859.4 0.03 9 17.0 0.15 -5 - - - LNU878 77254.3 884.4 L 12 - - - - - - LNU841 77148.4 - - - 17.1 0.23 -4 - - - LNU820 77807.2 833.1 0.13 5 - - - - - - LNU815 77492.2 - - - 17.0 0.15 -5 - - - LNU808 77678.3 904.3 0.30 14 - - - - - - LNU808 77679.3 - - - 17.0 0.15 -5 - - - LNU803 77902.2 879.9 0.11 11 - - - - - - LNU803 77904.4 - - - 17.0 0.15 -5 - - - LNU784 77612.3 970.6 0.21 23 - - - - - - LNU779 77889.3 836.2 0.12 6 - - - - - - LNU777 77573.3 893.1 L 13 17.0 0.15 -5 - - - LNU777 77574.4 - - - 17.1 0.23 -4 - - - LNU774 77246.3 - - - 17.0 0.15 -5 - - - LNU774 77248.2 - - - 17.0 0.15 -5 - - - LNU756 77581.3 - - - 17.0 0.15 -5 - - - LNU756 77584.2 835.7 0.11 6 - - - - - - LNU756 77584.6 887.9 L 12 - - - - - - LNU754 77801.2 - - - 17.0 0.15 -5 - - - CONT. - 791.6 - - 17.9 - - - - - LNU895 77934.4 1115.6 0.09 15 - - - - - - LNU890 78202.1 1017.5 0.19 5 - - - - - - LNU878 77251.3 1237.0 0.01 28 22.8 L -6 18.1 L -5 LNU878 77252.1 - - - 23.2 0.21 -5 17.7 0.08 -7 LNU878 77254.2 1026.6 0.24 6 23.7 0.03 -3 18.6 0.28 -2 LNU878 77254.3 1068.1 0.02 10 - - - - - - LNU841 77148.1 - - - - - - 18.5 0.29 -2 LNU838 77616.2 - - - - - - 18.7 0.10 -2 LNU838 77617.5 - - - 23.5 L -4 - - - LNU811 78179.1 - - - 23.6 0.18 -3 17.9 0.25 -6 LNU808 77678.3 - - - 22.9 L -6 17.2 0.25 -9 LNU808 77679.3 - - - 23.7 0.02 -3 18.2 0.07 -4 LNU803 77902.2 1035.0 0.07 7 - - - 18.2 0.07 -4 LNU803 77904.4 - - - 23.7 0.03 -3 - - - LNU797 78025.2 1087.7 L 12 - - - - - - LNU793 78168.1 1024.6 0.24 6 - - - - - - LNU793 78169.2 - - - 22.1 0.05 -9 17.3 0.06 -9 LNU784 77615.12 - - - 23.6 0.02 -3 17.9 0.25 -6 LNU784 77615.9 - - - - - - 18.2 0.07 -4 LNU775 77592.3 1193.1 L 23 22.7 L -7 16.6 L -13 LNU775 77593.3 - - - 23.2 0.06 -5 18.7 0.10 -2 LNU774 77246.3 1090.6 L 13 22.0 L -10 16.5 L -13 LNU774 77247.2 - - - - - - 18.8 0.27 -1 LNU774 77247.4 - - - 23.2- 0.06 -5 - - - LNU761 78159.1 1029.3 0.09 6 - - - - - - LNU761 78160.7 1050.0 0.23 9 - - - - - - LNU754 77801.2 - - - 23.1 0.30 -5 - - - CONT. - 967.7 - - 24.4 - - 19.0 - - Table 118. “CONT.” - Control; “Ave.” - Average; “% Incr.” =% increment; “p-val.” - p-value; L means that p-value is less than 0.01, p<0.1 was considered as significant. The transgenes were under the transcriptional regulation of the new At6669 promoter (SEQ ID NO: 4880). It should be noted that a negative increment (in percentages) when found in flowering or inflorescence emergence indicates drought avoidance of the plant.

TABLE 119 Genes showing improved plant performance at Normal growth conditions under regulation of At6669 promoter Gene Name Event # Leaf Blade Area [cm2] Leaf Number Plot Coverage [cm2] Ave. P-Val. % Incr. Ave. P-Val. % Incr. Ave. P-Val. % Incr. LNU947 77448.4 - - - - - - 107.3 0.29 13 LNU940 77812.1 - - - 11.6 0.19 5 - - - LNU895 77935.4 1.76 0.16 7 11.7 0.11 6 106.3 0.07 11 LNU878 77251.3 1.95 0.27 19 11.8 0.05 6 - - - LNU878 77252.1 2.01 0.18 22 - - - 117.3 0.10 23 LNU841 77146.2 - - - 11.9 0.13 8 - - - LNU820 77807.2 - - - 11.7 0.07 6 - - - LNU808 77677.5 - - - 12.1 0.20 9 - - - LNU803 77901.2 1.75 0.23 7 - - - - - - LNU803 77902.2 - - - 11.9 0.02 8 - - - LNU803 77904.4 - - - 12.1 0.20 9 - - - LNU777 77573.3 1.85 0.19 12 11.6 0.11 5 108.5 0.26 14 LNU777 77574.4 - - - 11.8 0.29 7 - - - LNU775 77593.3 - - - 11.6 0.19 5 - - - LNU774 77247.2 - - - 11.6 0.19 5 - - - LNU770 77922.1 - - - 11.4 0.30 3 - - - LNU770 77925.3 - - - 11.4 0.30 3 - - - LNU756 77585.3 - - - 12.1 0.05 10 - - - LNU754 77801.2 - - - - - - 102.1 0.21 7 LNU754 77802.2 - - -- - - - 105.1 0.25 10 CONT. - 1.64 - - 11.1 - - 95.3 - - LNU878 77251.3 1.86 0.03 21 11.8 0.10 8 115.4 0.03 23 LNU878 77252.1 1.74 0.13 13 - - - 108.2 0.13 15 LNU838 77616.3 - - - 11.2 0.17 3 - - - LNU838 77620.3 - - - 11.4 0.07 4 - - - LNU808 77679.3 - - - 11.5 0.05 5 - - - LNU803 77902.3 - - - 11.3 0.24 4 - - - LNU784 77615.1 - - - 12.0 0.15 10 - - - LNU775 77592.3 1.94 0.20 26 - - - 115.8 0.11 23 LNU774 77246.3 2.07 0.02 34 12.1 L 11 132.2 0.09 41 LNU774 77247.4 - - - 11.2 0.23 3 - - - CONT. - 1.54 - - 10.9 - - 94.0 - - Table 119. “CONT.” - Control; “Ave.” - Average; “% Incr.” =% increment; “p-val.” - p-value; L means that p-value is less than 0.01, p<0.1 was considered as significant. The transgenes were under the transcriptional regulation of the new At6669 promoter (SEQ ID NO:4880).

TABLE 120 Genes showing improved plant performance at Normal growth conditions under regulation of At6669 promoter Gene Name Event # RGR Of Leaf Number RGR Of Plot Coverage [cm2/day] RGR Of Rosette Diameter [cm/day] Ave. P-Val. % Incr. Ave. P-Val. % Incr. Ave. P-Val. % Incr. LNU947 77446.1 0.846 0.15 20 - - - - - - LNU947 77448.4 0.879 0.09 25 - - - - - - LNU940 77811.2 0.810 0.28 15 - - - - - - LNU878 77251.1 0.813 0.28 16 - - - - - - LNU878 77251.3 - - - 15.5 0.11 25 - - - LNU878 77252.1 - - - 15.2 0.12 23 - - - LNU841 77146.2 0.845 0.16 20 - - - - - - LNU838 77620.3 0.818 0.24 16 - - - - - - LNU820 77807.2 0.889 0.06 27 - - - - - - LNU808 77677.5 0.854 0.13 22 - - - - - - LNU803 77902.2 0.913 0.03 30 - - - - - - LNU803 77903.1 0.827 0.21 18 - - - - - - LNU779 77887.3 0.817 0.25 16 - - - - - - LNU777 77574.4 0.843 0.15 20 - - - - - - LNU775 77591.2 0.818 0.26 17 - - - - - - LNU774 77247.2 - - - 15.9 0.09 28 0.632 0.21 13 LNU770 77925.3 0.811 0.26 16 - - - - - - LNU756 77585.3 0.859 0.12 22 - - - - - - CONT. - 0.702 - - 12.4 - - 0.558 - - LNU959 78222.8 0.790 0.23 17 - - - - - - LNU878 77251.3 - - - 14.2 0.22 21 - - - LNU878 77254.2 0.803 0.16 19 - - - - - - LNU811 78179.1 0.782 0.26 16 - - - - - - LNU803 77901.2 0.820 0.12 21 - - - - - - LNU797 78022.1 0.811 0.12 20 - - - - - - LNU797 78025.3 0.822 0.13 22 - - - - - - LNU793 78168.1 0.790 0.23 17 - - - - - - LNU793 78169.2 - - - 14.3 0.28 22 - - - LNU784 77612.3 0.781 0.22 16 - - - - - - LNU784 77615.1 0.784 0.25 16 - - - - - - LNU775 77592.3 - - - 14.3 0.21 22 - - - LNU774 77246.3 - - - 16.5 0.03 40 0.588 0.20 16 LNU774 77247.2 0.812 0.13 20 - - - - - -- LNU761 78159.1 0.775 0.27 15 - - - - - - LNU754 77801.2 0.799 0.19 18 - - - - - - CONT. - 0.675 - - 11.7 - - 0.508 - - Table 120. “CONT.” - Control; “Ave.” - Average; “% Incr.” =% increment; “p-val.” - p-value; L means that p-value is less than 0.01, p<0.1 was considered as significant. The transgenes were under the transcriptional regulation of the new At6669 promoter (SEQ ID NO: 4880).

TABLE 121 Genes showing improved plant performance at Normal growth conditions under regulation of At6669 promoter Gene Name Event # Harvest Index Rosette Area [cm2] Rosette Diameter [cm] Ave. P-Val. % Incr. Ave. P-Val. % Incr. Ave. P-Val. % Incr. LNU947 77448.4 - - - 13.4 0.29 13 - - - LNU940 77812.4 0.500 0.05 7 - - - - - - LNU895 77935.4 - - - 13.3 0.07 11 6.22 0.09 5 LNU878 77252.1 - - - 14.7 0.10 23 6.58 0.21 12 LNU838 77616.2 0.504 0.02 8 - - - - - - LNU815 77492.2 0.482 0.28 3 - - - - - - LNU808 77677.3 0.488 0.30 5 - - - - - - LNU808 77678.1 0.497 0.05 6 - - - - - - LNU803 77904.4 0.489 0.29 5 - - - - - - LNU784 77615.12 0.505 0.02 8 - - - - - - LNU779 77887.1 0.512 0.08 10 - - - - - - LNU777 77573.3 - - - 13.6 0.26 14 6.41 0.19 9 LNU775 77591.2 0.503 0.28 8 - - - - - - LNU775 77593.3 0.503 0.03 8 - - - - - - LNU775 77595.1 0.509 0.01 9 - - - - - - LNU770 77922.4 0.499 0.08 7 - - - - - - LNU756 77585.4 0.491 0.19 5 - - - - - - LNU754 77801.2 0.506 0.26 8 12.8 0.21 7 6.26 0.07 6 LNU754 77802.2 - - - 13.1 0.25 10 - - - CONT. - 0.467 - - 11.9 - - 5.90 - - LNU959 78224.4 0.527 0.08 22 - - - - - - LNU895 77933.2 0.483 0.07 12 - - - - - - LNU890 78204.4 0.508 0.07 18 - - - - - - LNU890 78204.8 0.519 0.12 20 - - - - - - LNU878 77251.3 - - - 14.4 0.03 23 6.46 0.03 12 LNU878 77252.1 - - - 13.5 0.13 15 6.18 0.08 7 LNU878 77254.2 0.480 0.14 11 - - - - - - LNU811 78176.8 0.481 0.04 11 - - - - - - LNU808 77677.5 0.498 0.07 15 - - - - - - LNU803 77902.3 0.471 0.08 9 - - - - - - LNU803 77903.1 0.464 0.21 7 - - - - - - LNU793 78166.4 0.483 0.03 12 - - - - - - LNU775 77592.3 - - - 14.5 0.11 23 6.46 0.27 12 LNU775 77593.1 0.500 0.19 16 - - - - - - LNU774 77246.3 - - - 16.5 0.09 41 6.75 0.03 17 LNU769 78163.4 0.467 0.19 8 - - - - - - LNU769 78165.1 0.481 0.04 11 - - - - - - LNU761 78157.1 0.533 L 23 - - - - - - LNU761 78157.6 0.515 L 19 - - - - - - LNU761 78160.7 0.471 0.09 9 - - - - - - LNU754 77801.1 0.490 0.08 13 - - - - - - LNU754 77802.2 0.492 0.02 14 - - - - - - LNU754 77804.1 0.491 0.20 14 - - - - - - CONT. - 0.432 - - 11.7 - - 5.75 - - Table 121. “CONT.” - Control; “Ave.” - Average; “% Incr.” =% increment; “p-val.” - p-value; L means that p-value is less than 0.01, p<0.1 was considered as significant. The transgenes were under the transcriptional regulation of the new At6669 promoter (SEQ ID NO: 4880).

TABLE 122 Genes showing improved plant performance at Normal growth conditions under regulation of At6669 promoter Gene Name Event # Seed Yield [mg] 1000 Seed Weight [mg] Ave. P-Val. % Incr. Ave. P-Val. % Incr. LNU947 77447.3 409.8 0.09 11 - - - LNU947 77448.4 - - - 25.7 0.10 16 LNU895 77933.2 - - - 23.5 0.06 6 LNU895 77935.3 - - - 23.6 0.27 6 LNU878 77251.3 - - - 25.2 0.24 13 LNU878 77254.3 414.6 0.21 12 25.0 L 12 LNU820 77807.2 - - - 25.2 L 13 LNU820 77809.1 - - - 25.3 0.12 13 LNU815 77494.1 - - - 24.7 0.03 11 LNU815 77495.3 406.0 0.14 10 - - - LNU808 77678.3 - - - 24.5 0.22 10 LNU803 77901.2 395.8 0.20 7 - - - LNU803 77902.2 - - - 24.9 L 12 LNU784 77612.3 - - - 23.4 0.04 5 LNU784 77615.1 -- - - 25.2 L 13 LNU784 77615.9 - - - 23.1 0.10 4 LNU779 77887.1 407.7 0.07 10 22.8 0.25 2 LNU777 77573.3 - - - 27.4 L 23 LNU775 77595.1 413.4 0.10 12 - - - LNU774 77246.3 - - - 24.0 0.02 8 LNU774 77247.2 406.2 0.08 10 - - - LNU756 77584.6 - - - 24.5 0.01 10 CONT. - 370.6 - - 22.3 - - LNU959 78224.4 471.4 0.22 13 - - - LNU895 77934.4 - - - 24.3 0.03 16 LNU895 77935.3 - - - 22.6 0.03 7 LNU890 78202.1 - - - 22.2 0.04 5 LNU890 78204.4 488.9 0.07 17 - - - LNU890 78204.8 560.4 0.05 34 - - - LNU878 77251.3 - - - 24.3 0.18 15 LNU878 77252.1 - - - 25.4 0.08 21 LNU878 77254.2 493.1 0.20 18 - - - LNU878 77254.3 - - - 23.1 0.27 10 LNU811 78176.8 478.0 0.29 14 - - - LNU797 78021.4 445.1 0.25 7 - - - LNU797 78025.2 - - - 25.2 0.06 20 LNU797 78025.3 - - - 21.6 0.23 3 LNU793 78168.1 - - - 23.3 L 11 LNU784 77615.1 - - - 22.5 0.01 7 LNU775 77592.3 - - - 26.2 L 25 LNU774 77246.3 - - - 22.4 0.22 6 LNU774 77249.1 - - - 23.1 L 10 LNU761 78157.1 495.8 0.12 19 - - - LNU761 78157.6 475.0 0.08 14 - - - LNU761 78159.1 466.0 0.26 12 - - - LNU761 78160.7 493.9 0.01 18 - - - CONT. - 417.6 - - 21.0 - - Table 122. “CONT.” - Control; “Ave.” - Average; “% Incr.” =% increment; “p-val.” - p-value; L means that p-value is less than 0.01, p<0.1 was considered as significant. The transgenes were under the transcriptional regulation of the new At6669 promoter (SEQ ID NO: 4880).

Example 18 Evaluation of Transgenic Arabidopsis Nue, Yield and Plant Growth Rate Under Low or Normal Nitrogen Fertilization in Greenhouse Assay

Assay 2: Nitrogen Use efficiency measured until bolting stage: plant biomass and plant growth rate at limited and optimal nitrogen concentration under greenhouse conditions - This assay follows the plant biomass formation and the rosette area growth of plants grown in the greenhouse at limiting and non-limiting nitrogen growth conditions. Transgenic Arabidopsis seeds were sown in agar media supplemented with ½ MS medium and a selection agent (Kanamycin). The T2 transgenic seedlings were then transplanted to 1.7 trays filled with peat and perlite in a 1:1 ratio. The trays were irrigated with a solution containing nitrogen limiting conditions, which were achieved by irrigating the plants with a solution containing 1.5 mM inorganic nitrogen in the form of KNO3, supplemented with 1 mM KH2PO4, 1 mM MgSO4, 3.6 mM KC1, 2 mM CaCl2 and microelements, while normal nitrogen levels were achieved by applying a solution of 6 mM inorganic nitrogen also in the form of KNO3 with 1 mM KH2PO4, 1 mM MgSO4, 2 mM CaCl2 and microelements. All plants were grown in the greenhouse until bolting stage. Plant biomass (the above ground tissue) was weight in directly after harvesting the rosette (plant fresh weight [FW]). Following plants were dried in an oven at 50° C. for 48 hours and weighted (plant dry weight [DW]).

Each construct is validated at its T2 generation. Transgenic plants transformed with a construct conformed by an empty vector carrying the 35S promoter and the selectable marker was used as control.

The plants were analyzed for their overall size, growth rate, fresh weight and dry matter. Transgenic plants performance was compared to control plants grown in parallel under the same conditions. Mock- transgenic plants expressing the uidA reporter gene (GUS-Intron) or with no gene at all, under the same promoter were used as control.

The experiment was planned in nested randomized plot distribution. For each gene of the invention three to five independent transformation events were analyzed from each construct.

Digital imaging - A laboratory image acquisition system, which consists of a digital reflex camera (Canon EOS 300D) attached with a 55 mm focal length lens (Canon EF-S series), mounted on a reproduction device (Kaiser RS), which includes 4 light units (4 x 150 Watts light bulb) was used for capturing images of plant samples.

The image capturing process was repeated every 2 days starting from day 1 after transplanting till day 15. Same camera, placed in a custom made iron mount, was used for capturing images of larger plants sawn in white tubs in an environmental controlled greenhouse. The tubs were square shape include 1.7 liter trays. During the capture process, the tubes were placed beneath the iron mount, while avoiding direct sun light and casting of shadows.

An image analysis system was used, which consists of a personal desktop computer (Intel P4 3.0 GHz processor) and a public domain program - ImageJ 1.39 [Java based image processing program which was developed at the U.S. National Institutes of Health and freely available on the internet at rsbweb (dot) nih (dot) gov/]. Images were captured in resolution of 10 Mega Pixels (3888 x 2592 pixels) and stored in a low compression JPEG (Joint Photographic Experts Group standard) format. Next, analyzed data was saved to text files and processed using the JMP statistical analysis software (SAS institute).

Leaf analysis - Using the digital analysis leaves data was calculated, including leaf number, rosette area, rosette diameter, leaf blade area.

Vegetative growth rate: the relative growth rate (RGR) of leaf number (Formula VIII described above), rosette area (Formula IX described above) and plot coverage (Formula XI, described above) are calculated using the indicated formulas.

Plant Fresh and Dry weight - On about day 80 from sowing, the plants were harvested and directly weight for the determination of the plant fresh weight (FW) and left to dry at 50° C. in a drying chamber for about 48 hours before weighting to determine plant dry weight (DW).

Statistical analyses - To identify genes conferring significantly improved tolerance to abiotic stresses, the results obtained from the transgenic plants were compared to those obtained from control plants. To identify outperforming genes and constructs, results from the independent transformation events tested were analyzed separately. Data was analyzed using Student’s t-test and results were considered significant if the p value was less than 0.1. The JMP statistics software package was used (Version 5.2.1, SAS Institute Inc., Cary, NC, USA).

The genes listed in Tables 123-124 improved plant NUE when grown at limiting nitrogen concentration levels. These genes produced larger plants with a larger photosynthetic area, biomass (fresh weight, dry weight, leaf number, rosette diameter, rosette area and plot coverage) when grown under limiting nitrogen conditions (nutrient deficiency stress) as compared to control plants grown under identical growth conditions.

TABLE 123 Genes showing improved plant biomass production at limiting nitrogen growth conditions Gene Name Event # Dry Weight [mg] Fresh Weight [mg] Leaf Number Ave. P-Val. % Incr. Ave. P-Val. % Incr. Ave. P-Val. % Incr. LNU952 78218.1 - - - 112.5 0.05 26 - - - LNU952 78218.3 - - - 106.2 0.18 19 - - - LNU952 78218.6 - - - 100.0 0.29 12 - - - LNU952 78219.3 - - - 118.8 0.04 33 - - - LNU945 78998.2 - - - - - - 10.9 0.13 6 LNU945 78999.1 - - - 100.0 0.29 12 - - - LNU920 78507.1 - - - 106.2 0.18 19 - - - LNU920 78508.1 - - - 112.5 0.27 26 - - - LNU920 78508.2 - - - 112.5 0.05 26 - - - LNU916 78208.3 - - - 106.2 0.18 19 - - - LNU914 80516.2 - - - 127.7 0.18 43 - - - LNU911 80420.3 - - - 106.2 0.18 19 - - - LNU911 80420.5 - - - - - - 10.4 0.22 1 LNU905 79674.3 - - - 112.5 0.05 26 - - - LNU905 79674.4 - - - 106.2 0.18 19 - - - LNU905 79675.3 - - - 118.8 0.04 33 - - - LNU844 80342.4 - - - 106.2 0.18 19 - - - LNU840 78676.1 - - - 106.2 0.18 19 - - - LNU840 78676.4 11.2 L 54 131.2 0.23 47 - - - LNU840 78763.6 9.38 0.09 29 106.2 0.18 19 - - - LNU832_H2 80602.1 - - - 106.2 0.18 19 - - - LNU832_H2 80604.2 - - - 106.2 0.18 19 - - - LNU832_H2 80605.1 - - - 107.1 0.19 20 10.6 0.05 3 LNU819 78133.3 8.75 0.06 20 - - - - - - LNU801 78585.2 - - - 100.0 0.29 12 - - - LNU791 77893.2 - - - 106.2 0.18 19 - - - LNU791 77895.2 - - - 100.0 0.29 12 - - - LNU760_H1 80127.2 - - - 131.2 0.23 47 - - - CONT. - 7.29 - - 89.6 - - 10.3 - - LNU966 78605.5 102.5 0.01 20 968.8 0.11 16 12.6 L 13 LNU966 78605.7 94.4 0.14 10 - - - 11.5 0.14 3 LNU941 78611.1 - - - - - - 11.7 0.02 5 LNU941 78613.1 105.0 L 23 1050.0 L 26 - - - LNU941 78613.5 92.5 0.13 8 937.5 0.05 12 - - - LNU941 78615.3 91.2 0.20 7 - - - 12.2 0.29 10 LNU925 78991.5 - - - - - - 12.1 0.24 8 LNU925 78992.1 - - - - - - 11.8 0.17 6 LNU925 78992.6 - - - 951.8 0.04 14 - - - LNU922 78290.1 - - - 956.2 0.29 14 - - - LNU918 78433.1 - - - - - - 11.6 0.06 4 LNU918 78433.2 99.4 0.02 16 906.2 0.22 8 11.8 0.17 6 LNU918 78433.3 98.1 0.02 15 - - - - - - LNU918 78433.8 - - - 975.0 0.01 17 12.1 L 8 LNU918 78434.2 93.1 0.19 9 925.0 0.07 11 - - - LNU915 78426.1 107.5 0.20 26 1025.0 0.03 23 - - - LNU915 78427.1 101.4 0.28 19 964.3 0.07 15 - - - LNU915 78428.1 108.1 0.03 26 1056.2 L 26 12.6 L 13 LNU915 78428.2 - - - 931.2 0.29 11 11.6 0.07 4 LNU909 78424.3 91.2 0.20 7 - - - 11.8 0.03 6 LNU909 78425.4 - - - 943.8 0.04 13 - - - LNU909 78425.5 118.1 0.07 38 1062.5 L 27 12.7 L 14 LNU909 78425.7 90.6 0.24 6 - - - - - - LNU890 78202.1 - - - - - - 12.4 L 12 LNU854 78236.1 93.1 0.19 9 - - - - - - LNU854 78236.3 - - - 885.7 0.28 6 - - - LNU854 78238.1 91.9 0.16 7 - - - 11.8 0.22 6 LNU854 78240.1 - - - - - - 11.6 0.23 4 LNU849 78498.3 - - - 968.8 0.02 16 - - - LNU849 78498.4 - - - 1018.8 0.02 22 - - - LNU849 78499.1 93.8 0.08 10 - - - - - - LNU849 78500.1 - - - 893.8 0.23 7 - - - LNU849 78500.3 - - - - - - 12.2 0.29 10 LNU830 78741.1 - - - 918.8 0.16 10 - - - LNU830 78741.3 - - - 925.0 0.18 11 11.4 0.15 3 LNU830 78741.5 - - - - - - 13.2 0.27 19 LNU824 77826.1 100.0 0.02 17 956.2 0.02 14 12.6 0.28 13 LNU824 77827.2 110.2 0.12 29 974.1 0.01 17 11.6 0.07 4 LNU824 77828.4 - - - 925.0 0.07 11 11.8 0.22 6 LNU824 77829.3 103.1 0.28 21 950.0 0.11 14 11.5 0.08 3 LNU822 78623.2 108.8 0.14 27 1062.5 0.14 27 11.9 L 7 LNU822 78623.6 115.6 L 35 1056.2 0.03 26 12.1 L 8 LNU822 78623.7 - - - - - - 12.2 0.06 10 LNU822 78625.7 91.2 0.19 7 - - - - - - LNU813 77681.3 94.4 0.14 10 918.8 0.10 10 - - - LNU813 77682.3 97.5 0.02 14 881.2 0.30 5 - - - LNU813 77685.1 - - - 918.8 0.08 10 - - - LNU813 77685.2 95.6 0.19 12 - - - - - - LNU806 78512.7 98.1 0.20 15 918.8 0.10 10 - - - LNU806 78514.2 - - - 987.5 0.30 18 12.8 0.16 15 LNU806 78515.3 98.8 0.15 15 - - - - - - LNU806 78515.4 - - - 950.0 0.05 14 12.5 0.19 12 LNU806 78515.5 95.6 0.27 12 1037.5 0.12 24 12.5 0.25 12 LNU802 80307.3 94.4 0.08 10 - - - - - - LNU802 80309.2 - - - - - - 11.5 0.14 3 LNU802 80309.3 101.9 0.25 19 943.8 0.04 13 11.6 0.06 4 LNU802 80310.1 93.1 0.12 9 975.0 0.01 17 - - - LNU779 77887.2 111.2 0.30 30 975.0 0.01 17 12.2 L 10 LNU779 77889.3 90.0 0.29 5 - - - - - - LNU761 78157.1 99.1 0.23 16 983.0 0.10 18 - - - LNU761 78157.6 96.2 0.06 13 925.0 0.07 11 - - - LNU761 78160.3 104.4 0.21 22 - - - 12.6 0.07 13 CONT. - 85.5 - - 835.7 - - 11.1 - - LNU970 78389.7 - - - - - - 9.88 0.02 6 LNU970 78389.8 - - - - - - 10.2 0.04 9 LNU968 77919.4 - - - - - - 9.62 0.21 3 LNU950 78913.4 - - - - - - 9.56 0.22 3 LNU934 79007.5 - - - - - - 9.69 0.08 4 LNU934 79008.3 - - - - - - 9.56 0.22 3 LNU908 79736.2 - - - - - - 9.56 0.22 3 LNU908 79738.5 - - - - - - 9.56 0.22 3 LNU843 78962.4 - - - - - - 9.81 0.15 5 LNU843 78963.2 - - - - - - 9.62 0.21 3 LNU790 78886.2 - - - - - - 10.8 0.30 15 LNU790 78886.3 - - - - - - 9.69 0.24 4 LNU790 78890.3 - - - - - - 9.62 0.21 3 CONT. - - - - - - - 9.32 - - LNU966 78604.1 275.0 0.06 8 3195.8 0.05 12 - - - LNU966 78605.5 - - - - - - 11.8 0.26 8 LNU942 77243.2 - - - - - - 11.6 L 6 LNU941 78611.1 272.1 0.14 7 3107.1 0.13 9 - - - LNU941 78614.2 - - - - - - 11.3 0.09 4 LNU941 78615.3 280.0 0.01 10 150.0 L 11 - - - LNU922 78287.3 276.6 0.19 8 3225.9 0.06 13 11.8 0.10 8 LNU922 78287.5 275.4 0.25 8 - - - - - - LNU922 78290.1 - - - 3121.4 L 10 - - - LNU922 78290.7 - - - 3031.2 0.28 7 - - - LNU915 78426.1 - - - 2937.5 0.23 3 - - - LNU915 78427.1 - - - - - - 11.8 0.10 8 LNU915 78428.1 - - - 3191.1 0.25 12 11.6 0.14 6 LNU915 78428.2 - - - - - - 11.6 0.01 6 LNU909 78424.3 267.1 0.23 5 - - - - - - LNU909 78425.5 266.9 0.13 5 3088.4 0.01 9 - - - LNU909 78425.7 273.1 0.02 7 031.2 0.09 7 - - - LNU868 77621.5 - - - - - - 11.5 0.02 5 LNU854 78237.2 - - - - - - 11.8 0.26 8 LNU854 78238.1 - - - 3093.8 0.11 9 - - - LNU830 78741.3 - - - - - - 11.3 0.18 3 LNU830 78741.5 - - - - - - 11.2 0.23 2 LNU824 77826.1 266.2 0.16 4 - - - - - - LNU824 77827.3 266.2 0.11 4 3000.0 0.07 6 - - - LNU824 77829.3 - - - 2987.5 0.09 5 11.6 0.27 6 LNU822 78623.7 - - - 3032.1 0.04 7 - - - LNU822 78625.2 - - - 3012.5 0.06 6 - - - LNU813 77681.3 - - - - - - 11.6 0.02 6 LNU813 77681.4 - - - - - - 11.6 0.09 6 LNU806 78514.2 - - - - - - 12.1 0.10 10 LNU806 78515.3 - - - 3031.2 0.04 7 11.6 0.02 6 LNU806 78515.5 - - - 2992.9 0.08 5 - - - LNU759 77236.8 - - - 2950.0 0.18 4 - - - LNU751 77477.1 - - - - - - 12.0 0.25 10 LNU751 77480.1 - - - 3118.8 0.20 10 - - - CONT. - 255.1 - - 2842.4 - - 10.9 - - LNU948 78378.1 83.1 0.02 17 - - - - - - LNU948 78380.2 84.8 0.02 19 - - - - - - LNU921 79063.2 78.6 0.16 10 628.6 0.22 12 - - - LNU888 78771.1 84.4 0.06 18 - - - 12.2 L 9 LNU888 78772.7 - - - - - - 11.8 0.06 5 LNU881 78372.2 79.4 0.04 11 650.0 0.07 16 - - - LNU857 78867.1 77.2 0.11 8 627.7 0.15 12 - - - LNU816 78958.4 78.8 0.12 11 618.8 0.22 10 - - - LNU816 78958.5 91.2 L 28 693.8 0.02 23 - - - LNU816 78958.7 90.0 L 26 718.8 0.01 28 - - - LNU809 79168.2 - - - 618.8 0.19 10 - - - LNU809 79168.3 79.4 0.15 11 618.8 0.19 10 11.5 0.23 3 LNU807 79248.1 - - - 625.0 0.15 11 - - - LNU788 78516.1 86.7 L 22 660.7 0.05 17 - - - LNU788 78517.2 76.2 0.14 7 637.5 0.11 13 - - - LNU788 78518.1 87.5 L 23 693.8 0.02 23 - - - LNU783 79178.2 80.0 0.03 12 650.0 0.07 16 - - - LNU778 78941.1 81.9 0.02 15 637.5 0.10 13 - - - LNU778 78944.2 - - - - - - 11.5 0.28 3 LNU762 79329.2 78.1 0.10 10 612.5 0.24 9 - - - LNU752 78153.10 92.5 0.04 30 700.0 0.03 24 11.6 0.30 4 LNU752 78155.2 82.2 0.11 15 - - - - - - CONT. - 71.2 - - 562.5 - - 11.2 - - LNU977 78032.1 162.5 0.16 11 - - - 11.6 0.08 2 LNU977 78033.1 167.5 0.29 15 - - - - - - LNU958 77687.7 165.0 0.19 13 - - - - - - LNU958 77689.2 178.8 0.02 22 1450.0 0.21 12 - - - LNU933 78897.1 168.1 0.19 15 - - - - - - LNU907 78872.8 162.1 0.17 11 - - - - - - LNU882 78973.1 - - - - - - 11.8 0.10 4 LNU880 78196.1 180.6 0.01 24 1503.6 0.13 16 - - - LNU880 78197.4 167.9 0.08 15 - - - - - - LNU880 78200.6 197.9 L 35 1456.2 0.24 13 11.6 0.19 2 LNU871 78195.4 - - - - - - 12.2 L 7 LNU848 77909.2 170.0 0.06 16 - - - - - - LNU848 77909.3 178.1 0.14 22 1450.0 0.23 12 - - - LNU847 78967.2 197.5 0.02 35 1543.8 0.09 19 12.2 0.22 8 LNU847 78967.4 - - - - - - 11.9 L 5 LNU846 78436.2 - - - - - - 12.4 0.09 9 LNU846 78438.2 184.4 0.13 26 - - - 11.9 0.23 5 LNU846 78439.2 - - - - - - 11.6 0.21 2 LNU846 78439.4 - - - - - - 12.1 0.08 6 LNU845 78917.3 194.2 0.10 33 1520.8 0.19 18 - - - LNU845 78917.6 173.1 0.16 18 - - - - - - LNU835 78186.2 204.4 0.27 40 1506.2 0.21 16 - - - LNU828 77598.3 193.8 0.29 33 - - - 12.2 0.11 8 LNU823 78122.2 178.1 0.02 22 - - - - - - LNU823 78136.4 166.2 0.12 14 - - - - - - LNU823 78139.1 174.5 0.03 19 - - - - - - LNU814 78953.2 179.4 0.02 23 1500.0 0.13 16 - - - LNU814 78953.3 177.5 0.02 21 - - - 11.9 0.05 5 LNU814 78954.1 - - - - - - 12.1 0.23 6 LNU814 78955.4 188.8 L 29 1493.8 0.14 15 - - - LNU772 78938.1 - - - - - - 12.0 0.03 6 LNU772 78940.2 - - - - - - 11.8 0.17 4 LNU757 77485.4 210.6 0.02 44 1612.5 0.06 25 - - - CONT. - 146.2 - - 1293.4 - - 11.4 - - LNU972 78907.1 - - - - - - 11.7 0.08 6 LNU972 78908.2 - - - - - - 11.9 0.05 9 LNU972 78909.3 - - - - - - 11.9 0.03 9 LNU972 78910.2 - - - 3500.9 0.13 21 - - - LNU961 79143.3 350.0 0.04 16 3556.2 0.07 23 11.6 0.14 5 LNU961 79145.3 - - - 3562.5 0.02 23 11.8 0.15 8 LNU958 77687.2 - - - - - - 12.7 0.25 16 LNU958 77687.5 - - - - - - 12.1 0.02 10 LNU958 77689.1 - - - 3200.0 0.20 10 12.2 L 12 LNU958 77689.2 - - - - - - 11.6 0.28 5 LNU948 78379.4 - - - - - - 12.1 0.04 10 LNU948 78380.2 380.6 0.04 27 3618.8 0.01 25 12.3 0.05 12 LNU948 78380.3 358.1 0.24 19 3618.8 0.12 25 - - - LNU921 79061.1 - - - 3163.4 0.26 9 - - - LNU921 79063.2 - - - - - - 12.0 0.14 9 LNU921 79064.3 - - - - - - 11.4 0.28 4 LNU913 78592.4 - - - - - - 11.9 0.20 9 LNU913 78593.1 - - - - - - 12.1 0.03 10 LNU913 78593.6 - - - - - - 12.0 0.14 9 LNU912 78403.2 - - - - - - 12.4 L 13 LNU912 78404.1 342.5 0.28 14 - - - 11.7 0.08 6 LNU888 78772.1 - - - - - - 11.9 0.05 9 LNU888 78772.2 - - - - - - 11.8 0.07 8 LNU888 78772.7 - - - - - - 11.6 0.12 6 LNU881 78372.2 - - - - - - 12.5 0.06 14 LNU881 78373.1 344.4 0.04 15 - - - 12.0 0.14 9 LNU881 78373.2 - - - - - - 12.3 0.05 12 LNU881 78374.1 343.3 0.27 14 - - - - - - LNU823 78136.1 353.8 0.01 18 3318.8 0.09 15 - - - LNU823 78136.4 - - - - - - 12.4 0.04 13 LNU823 78137.3 - - - - - - 11.5 0.27 5 LNU823 78139.1 397.1 0.08 32 - - - - - - LNU816 78957.1 - - - - - - 11.6 0.12 6 LNU816 78958.4 - - - - - - 11.9 0.03 9 LNU816 78958.7 - - - - - - 12.8 0.04 16 LNU809 79168.3 - - - - - - 11.6 0.14 5 LNU809 79169.2 - - - 3212.5 0.19 11 11.6 0.14 5 LNU782 77441.1 350.0 0.17 16 - - - - - - LNU782 77444.10 - - - - - - 11.6 0.14 5 LNU782 77444.9 - - - - - - 12.1 0.08 10 LNU772 78937.4 335.6 0.13 12 3468.8 0.05 20 - - - LNU772 78938.1 433.1 L 44 3181.2 0.23 10 13.0 0.08 18 LNU772 8940.2 - - - - - - 11.8 0.15 8 LNU762 79329.2 - - - - - - 11.9 0.20 9 LNU762 79330.3 - - - 3287.5 0.12 13 - - - LNU757 77481.1 - - - - - - 11.9 0.04 8 LNU757 77483.2 - - - - - - 11.6 0.29 6 LNU757 77483.3 - - - - - - 12.3 0.01 12 LNU757 77485.4 346.9 0.08 15 - - - - - - CONT. - 300.5 - - 2898.0 - - 11.0 - - LNU933 78897.1 - - - - - - 12.8 L 5 LNU882 78973.1 - - - - - - 12.9 0.18 6 LNU871 78191.1 - - - 1093.8 0.19 7 - - - LNU871 78191.3 163.1 0.27 10 1112.5 0.11 8 - - - LNU871 78195.4 - - - - - - 13.1 L 7 LNU865 79761.7 - - - 1162.5 0.02 13 13.1 L 8 LNU847 78967.4 - - - - - - 13.3 0.22 9 LNU835 78189.1 - - - - - - 13.1 0.12 8 LNU828 77597.3 165.6 0.24 11 1131.2 0.18 10 - - - LNU795 79521.6 - - - 1112.5 0.29 8 - - - LNU766 78931.2 - - - - - - 12.7 0.17 4 LNU766 78932.1 - - - 1100.0 0.20 7 - - - CONT. - 148.6 - - 1026.5 - - 12.2 - - LNU975 80622.1 - - - - - - 10.5 0.01 8 LNU975 80624.5 - - - - - - 10.7 L 10 LNU975 80625.5 - - - - - - 10.2 L 5 LNU971 78391.1 9.38 0.16 22 - - - - - - LNU971 78391.6 - - - - - - 10.1 0.03 4 LNU971 78395.1 - - - 131.2 0.12 17 10.1 0.30 3 LNU971 78395.2 10.7 0.04 39 135.7 0.09 21 - - - LNU964 80552.8 - - - - - - 10.0 0.26 3 LNU960 78599.4 - - - - - - 10.1 0.11 4 LNU960 78600.3 - - - - - - 10.2 0.05 5 LNU957 80435.3 - - - - - - 10.1 0.03 4 LNU957 80437.6 - - - - - - 10.3 L 6 LNU957 80437.8 10.0 0.26 30 - - - - - - LNU955 80432.1 - - - - - - 10.1 0.30 3 LNU953 80427.1 8.75 0.23 14 - - - - - - LNU953 80428.1 - - - - - - 10.1 0.08 3 LNU953 80429.1 - - - - - - 10.0 0.26 3 LNU949 80553.7 - - - - - - 10.3 0.12 6 LNU949 80557.4 8.75 0.23 14 - - - - - - LNU946 80648.1 - - - - - - 10.2 0.05 5 LNU946 80648.2 10.0 0.02 30 - - - - - - LNU946 80650.2 9.29 0.21 21 - - - - - - LNU944 79781.2 - - - - - - 9.94 0.27 2 LNU944 79781.6 - - - - - - 10.1 0.03 4 LNU930 79771.1 - - - - - - 10.0 0.13 3 LNU928 78213.1 - - - - - - 10.1 0.30 3 LNU917 77496.2 - - - - - - 10.2 0.05 5 LNU917 77500.2 - - - 137.5 0.24 22 10.1 0.11 4 LNU917 77500.4 - - - 137.5 0.24 22 - - - LNU917 77500.6 - - - - - - 10.6 L 8 LNU906 79219.5 - - - - - - 10.2 0.18 4 LNU904 78986.5 - - - - - - 9.94 0.27 2 LNU904 78987.2 - - - - - - 10.2 0.18 4 LNU903 80417.4 10.6 0.03 38 - - - - - - LNU901 80474.1 - - - 126.8 0.13 13 - - - LNU901 80474.5 - - - - - - 10.4 0.18 6 LNU899 79765.4 9.38 0.16 22 131.2 0.12 17 - - - LNU899 79765.5 - - - - - - 10.2 0.18 4 LNU899 79766.3 - - - - - - 10.0 0.26 3 LNU897 80445.2 11.9 0.23 54 150.0 L 33 11.1 L 13 LNU897 80448.4 - - - - - - 10.1 0.08 3 LNU892 80410.1 - - - 125.0 0.17 11 - - - LNU892 80414.2 12.0 L 55 - - - - - - LNU892 80414.5 - - - - - - 10.3 L 6 LNU884 80405.3 - - - - - - 10.5 0.26 8 LNU884 80407.1 - - - - - - 10.5 L 8 LNU884 80408.2 - - - 137.5 0.24 22 10.1 0.11 4 LNU874 78366.3 10.0 0.26 30 - - - 10.1 0.03 4 LNU874 78370.1 - - - 162.5 0.27 44 - - - LNU874 78370.3 - - - 133.9 0.17 19 - - - LNU874 78370.7 - - - - - - 10.2 0.18 4 LNU873 80469.1 - - - 125.0 0.17 11 10.6 L 8 LNU870 78505.1 8.75 0.23 14 131.2 0.12 17 - - - LNU870 78505.5 11.2 0.14 46 - - - 10.1 0.30 3 LNU867 79590.3 - - - - - - 9.94 0.27 2 LNU866 80443.2 - - - - - - 10.3 0.12 6 LNU862 79758.5 11.2 0.14 46 156.2 L 39 11.1 L 13 LNU856 79753.3 - - - - - - 9.94 0.27 2 LNU856 79753.9 8.66 0.27 13 - - - 9.94 0.27 2 LNU852 79580.2 9.38 0.16 22 - - - - - - LNU831 79331.7 - - - 131.2 0.12 17 10.2 0.24 5 LNU831 79333.1 8.75 0.23 14 - - - - - - LNU831 79335.2 - - - - - - 10.4 L 7 LNU829 77912.3 - - - - - - 10.4 L 6 LNU829 77914.1 - - - - - - 10.6 0.11 9 LNU825 77716.4 - - - - - - 10.1 0.08 3 LNU825 77717.4 10.0 0.26 30 - - - - - - LNU817 80596.1 - - - - - - 10.3 L 6 LNU817 80596.2 9.38 0.16 22 125.0 0.17 11 - - - LNU817 80598.1 - - - 125.0 0.17 11 - - - LNU817 80599.2 8.75 0.23 14 - - - 10.1 0.11 4 LNU805 80783.2 - - - - - - 10.0 0.26 3 LNU805 80784.1 - - - - - - 10.2 0.05 5 LNU800 77896.1 - - - - - - 10.0 0.26 3 LNU800 77896.4 - - - 137.5 0.24 22 10.2 0.18 4 LNU800 77900.7 8.75 0.23 14 - - - - - - LNU799 78672.5 - - - - - - 10.4 0.18 6 LNU799 78672.7 - - - 162.5 0.08 44 - - - LNU799 78674.2 9.38 0.16 22 - - - - - - LNU799 78674.5 - - - 150.0 0.13 33 10.2 0.05 5 LNU796 78235.5 - - - - - - 10.1 0.11 4 LNU794 78522.1 - - - 131.2 0.12 17 10.4 0.03 6 LNU794 78524.1 10.0 0.02 30 - - - - - - LNU794 78524.5 - - - - - - 10.2 0.24 5 LNU794 78525.2 - - - - - - 10.1 0.11 4 LNU792 79161.2 - - - - - - 10.6 L 8 LNU792 79162.2 - - - - - - 10.3 L 6 LNU792 79215.1 - - - - - - 10.2 0.18 4 LNU778 78943.5 - - - - - - 10.5 0.01 8 LNU778 78944.5 11.9 L 54 137.5 0.01 22 - - - LNU773 80399.1 - - - - - - 10.4 0.08 7 LNU771 80077.2 - - - 125.0 0.17 11 - - - LNU763 77588.2 - - - - - - 10.2 0.24 5 LNU763 77588.6 10.0 0.26 30 125.0 0.17 11 10.4 0.08 7 LNU758 79739.10 10.6 0.03 38 150.0 0.13 33 11.2 0.12 15 LNU758 79739.5 - - - - - - 10.2 0.02 4 LNU758 79741.2 - - - - - - 10.1 0.11 4 LNU753 77141.2 - - - 125.0 0.17 11 - - - LNU753 77143.3 - - - - - - 9.94 0.27 2 LNU753 77144.1 9.38 0.16 22 131.2 0.12 17 10.2 0.24 5 LNU753 77144.2 - - - - - - 10.0 0.26 3 LNU749 80792.2 - - - 125.0 0.17 11 10.0 0.26 3 CONT. - 7.70 - - 112.5 - - 9.75 - - LNU976 78364.1 - - - - - - 12.9 0.12 6 LNU968 77919.4 - - - 1231.2 0.03 8 - - - LNU963 78385.1 - - - - - - 12.8 0.07 6 LNU950 78911.3 - - - 1212.5 0.08 6 - - - LNU934 79007.3 - - - - - - 12.8 0.07 6 LNU934 79008.3 122.1 0.15 5 - - - - - - LNU908 79736.2 134.4 0.28 16 1312.5 0.10 15 - - - LNU893 77154.4 - - - - - - 13.4 L 10 LNU885 78416.5 125.0 0.05 8 1300.0 0.05 14 - - - LNU858 79587.2 - - - - - - 12.6 0.06 4 LNU790 78886.2 - - - - - - 12.6 0.22 4 LNU790 78890.1 134.4 0.06 16 1237.5 0.07 8 12.6 0.18 4 CONT. - 116.2 - - 1141.1 - - 12.1 - - LNU947 77448.4 - - - - - - 12.7 0.03 6 LNU947 77449.1 - - - - - - 12.4 0.22 3 LNU940 77811.6 - - - - - - 12.6 0.13 5 LNU900 78851.3 - - - - - - 12.4 0.22 3 LNU898 78981.3 - - - - - - 12.3 0.26 2 LNU898 78983.4 - - - - - - 12.9 0.09 7 LNU898 78985.1 - - - 1393.8 0.16 14 - - - LNU894 78282.3 - - - - - - 12.4 0.22 3 LNU894 78283.7 - - - - - - 12.9 0.03 8 LNU846 78436.2 - - - 1368.8 0.04 12 - - - LNU846 78438.2 - - - - - - 12.4 0.22 3 LNU846 78439.4 - - - 1393.8 0.02 14 12.9 0.03 8 LNU820 77806.2 227.0 0.06 37 1410.7 0.11 15 - - - LNU820 77807.2 - - - - - - 12.5 0.11 4 LNU820 77809.1 - - - 1413.4 0.26 16 - - - LNU815 77492.2 193.1 0.05 17 1343.8 0.21 10 - - - LNU815 77492.6 - - - 1331.2 0.12 9 - - - LNU815 77494.1 - - - 1337.5 0.07 10 12.9 0.03 8 LNU814 78953.2 - - - - - - 12.3 0.26 2 LNU814 78955.4 - - - - - - 12.5 0.08 4 LNU811 78179.1 - - - 1412.5 0.03 16 12.8 0.28 7 LNU811 78180.3 - - - 1300.0 0.19 6 - - - LNU797 78022.1 - - - - - - 12.5 0.25 4 LNU793 78166.4 - - - 1325.0 0.23 8 - - - LNU759 77236.2 - - - - - - 12.3 0.26 2 LNU756 77581.3 - - - - - - 12.8 0.25 6 LNU756 77584.6 - - - 1285.7 0.28 5 - - - LNU751 77477.1 - - - 1416.1 0.09 16 - - - LNU751 77478.4 - - - - - - 12.4 0.22 3 LNU751 77480.1 - - - - - - 12.6 0.04 5 CONT. - 165.1 - - 1221.4 - - 12.0 - - LNU972 78909.3 - - - 1531.2 0.28 5 12.4 0.09 5 LNU972 78910.2 - - - 1506.2 0.28 4 - - - LNU965 78360.5 - - - - - - 12.2 0.13 4 LNU961 79143.2 - - - 1568.8 0.30 8 - - - LNU961 79145.3 - - - 1525.0 0.14 5 - - - LNU943 78407.2 - - - - - - 12.1 0.26 3 LNU943 78407.4 - - - 1581.2 0.02 9 - - - LNU926 78858.8 - - - - - - 12.1 0.26 3 LNU913 78593.1 - - - - - - 12.4 0.09 5 LNU896 78979.5 - - - 1531.2 0.11 5 - - - LNU876 79596.2 - - - 1525.0 0.18 5 - - - LNU864 79339.2 195.8 0.20 7 1617.0 0.08 11 - - - LNU833 78184.1 - - - - - - 12.1 0.26 3 LNU804 78950.4 - - - 1537.5 0.13 6 - - - LNU789 78891.6 - - - 1766.7 0.30 22 - - - LNU789 78893.3 - - - 1500.0 0.30 3 - - - LNU768 77881.3 194.4 0.26 6 1537.5 0.21 6 - - - LNU768 77883.4 198.1 0.13 8 1581.2 0.02 9 - - - LNU764 78926.1 214.4 0.28 17 1618.8 0.07 11 12.4 0.17 5 CONT. - 183.8 - - 1453.6 - - 11.7 - - Table 123. “CONT.” - Control; “Ave.” - Average; “% Incr.” =% increment; “p-val.” - p-value; L means that p-value is less than 0.01, p<0.1 was considered as significant.

TABLE 124 Genes showing improved plant biomass production at limiting nitrogen growth conditions Gene Name Event # Plot Coverage [cm2] Rosette Area [cm2] Rosette Diameter [cm] Ave. P-Val. % Incr. Ave. P-Val. % Incr. Ave. P-Val. % Incr. LNU952 78218.1 49.8 0.02 19 6.23 0.02 19 4.62 0.02 12 LNU952 78218.3 45.0 0.24 7 5.62 0.24 7 4.37 0.09 6 LNU952 78218.6 46.3 0.24 11 5.79 0.24 11 4.33 0.22 5 LNU952 78219.3 47.1 0.08 12 5.88 0.08 12 4.51 0.04 9 LNU945 78998.2 45.8 0.20 9 5.72 0.20 9 4.45 0.12 8 LNU920 78507.1 52.9 0.08 26 6.62 0.08 26 4.94 0.06 20 LNU920 78507.2 45.8 0.25 9 5.73 0.25 9 4.35 0.11 6 LNU920 78508.1 51.6 L 23 6.45 L 23 4.72 L 15 LNU920 78508.2 53.6 L 28 6.70 L 28 4.84 L 18 LNU916 78208.3 50.8 0.02 21 6.35 0.02 21 4.63 L 12 LNU914 80514.5 46.2 0.15 10 5.78 0.15 10 4.36 0.15 6 LNU914 80516.2 50.4 0.14 20 6.29 0.14 20 4.71 L 14 LNU914 80516.4 - - - - - - 4.50 0.03 9 LNU911 80420.3 46.2 0.12 10 5.77 0.12 10 4.36 0.09 6 LNU911 80424.2 46.3 0.12 10 5.78 0.12 10 4.43 0.05 7 LNU905 79674.3 47.4 0.08 13 5.92 0.08 13 4.51 0.09 9 LNU905 79674.4 - - - - - - 4.40 0.08 7 LNU905 79675.3 51.5 L 23 6.44 L 23 4.65 L 13 LNU844 80342.3 - - - - - - 4.27 0.27 4 LNU844 80342.4 - - - - - - 4.32 0.29 5 LNU840 78676.1 49.2 0.02 17 6.15 0.02 17 4.71 L 14 LNU840 78676.4 52.9 0.09 26 6.62 0.09 26 4.74 0.05 15 LNU840 78763.6 46.7 0.10 11 5.83 0.10 11 4.45 0.04 8 LNU834_H1 80402.7 47.6 0.21 14 5.95 0.21 14 4.47 0.23 8 LNU832_H2 80604.2 48.2 0.06 15 6.03 0.06 15 4.58 0.11 11 LNU819 78133.3 - - - - - - 4.56 0.02 11 LNU801 78585.2 45.6 0.29 9 5.70 0.29 9 4.42 0.20 7 LNU791 77893.1 54.0 0.01 29 6.74 0.01 29 4.86 L 18 LNU791 77893.2 48.8 0.03 16 6.09 0.03 16 4.52 0.04 10 LNU760_H1 80127.2 51.7 0.17 23 6.47 0.17 23 4.65 0.05 13 CONT. - 41.9 - - 5.24 - - 4.12 - - LNU966 78605.5 81.2 0.03 38 10.2 0.03 38 5.22 0.05 15 LNU966 78605.7 72.2 L 22 9.03 L 22 4.94 0.01 9 LNU941 78611.1 67.9 L 15 8.48 L 15 4.67 0.22 3 LNU941 78613.1 75.3 0.03 27 9.41 0.03 27 5.10 L 13 LNU941 78615.3 75.2 L 27 9.40 L 27 5.03 L 11 LNU925 78992.1 77.2 0.26 31 9.65 0.26 31 5.18 0.21 15 LNU925 78992.6 62.1 0.26 5 7.76 0.26 5 - - - LNU918 78433.1 - - - - - - 4.73 0.23 5 LNU918 78433.2 69.7 0.21 18 8.72 0.21 18 4.90 0.23 8 LNU918 78433.3 70.2 L 19 8.78 L 19 4.85 0.02 7 LNU918 78434.2 65.6 0.02 11 8.21 0.02 11 4.82 0.03 6 LNU915 78426.1 71.3 L 21 8.91 L 21 5.05 L 12 LNU915 78427.1 69.8 0.29 18 8.73 0.29 18 - - - LNU915 78428.1 78.8 L 33 9.85 L 33 5.14 L 14 LNU915 78428.2 66.3 0.27 12 8.28 0.27 12 - - - LNU909 78424.3 69.3 0.29 17 8.66 0.29 17 - - - LNU909 78425.4 - - - - - - 5.10 0.05 13 LNU909 78425.5 81.3 0.25 38 10.2 0.25 38 5.29 0.20 17 LNU909 78425.7 67.8 0.14 15 8.48 0.14 15 4.83 0.15 7 LNU890 78202.1 74.4 L 26 9.30 L 26 4.84 0.08 7 LNU854 78236.1 62.9 0.14 6 7.86 0.14 6 4.67 0.22 3 LNU854 78238.1 68.7 L 16 8.59 L 16 4.74 0.11 5 LNU849 78498.4 72.6 L 23 9.08 L 23 4.93 0.09 9 LNU849 78499.1 69.3 0.04 17 8.66 0.04 17 4.84 0.29 7 LNU830 78741.5 79.8 0.17 35 9.98 0.17 35 5.18 0.20 15 LNU830 78742.8 63.8 0.20 8 7.97 0.20 8 - - - LNU824 77826.1 82.9 0.20 40 10.4 0.20 40 5.40 0.11 19 LNU824 77827.3 64.6 0.20 9 8.08 0.20 9 - - - LNU824 77828.4 69.4 0.04 18 8.68 0.04 18 4.73 0.11 5 LNU824 77829.3 73.8 0.05 25 9.22 0.05 25 4.97 0.10 10 LNU822 78623.2 82.2 0.27 39 10.3 0.27 39 5.29 0.22 17 LNU822 78623.6 87.8 L 49 11.0 L 49 5.56 0.04 23 LNU822 78623.7 74.0 0.21 25 9.26 0.21 25 4.96 0.14 10 LNU822 78625.2 75.9 0.29 28 9.48 0.29 28 5.12 0.25 13 LNU813 77682.3 77.3 0.16 31 9.66 0.16 31 5.20 L 15 LNU806 78514.2 87.1 0.02 47 10.9 0.02 47 5.61 L 24 LNU806 78515.3 69.3 L 17 8.66 L 17 4.75 0.10 5 LNU806 78515.4 - - - - - - 4.87 0.26 8 LNU806 78515.5 76.4 L 29 9.55 L 29 4.98 L 10 LNU802 80307.3 65.9 0.03 12 8.24 0.03 12 4.68 0.20 3 LNU802 80309.2 67.0 0.27 13 8.38 0.27 13 - - - LNU802 80309.3 67.3 0.09 14 8.41 0.09 14 4.81 0.04 6 LNU802 80310.1 67.1 0.08 14 8.39 0.08 14 4.81 0.14 6 LNU779 77887.2 77.0 0.03 30 9.63 0.03 30 5.09 0.11 13 LNU761 78157.6 67.8 0.15 15 8.48 0.15 15 4.79 0.28 6 LNU761 78159.1 66.3 0.08 12 8.29 0.08 12 4.75 0.08 5 LNU761 78160.3 84.0 0.07 42 10.5 0.07 42 5.44 0.02 20 CONT. - 59.1 - - 7.38 - - 4.52 - - LNU976 78364.1 45.6 L 47 5.71 L 47 4.19 L 25 LNU976 78364.2 34.1 0.22 10 4.27 0.22 10 - - - LNU976 78364.5 - - - - - - 3.50 0.26 4 LNU970 78388.1 36.2 0.02 17 4.52 0.02 17 3.63 0.03 8 LNU970 78389.7 33.4 0.27 8 4.18 0.27 8 3.62 0.06 8 LNU970 78389.8 44.2 0.03 42 5.52 0.03 42 4.00 L 19 LNU968 77919.4 36.5 0.01 18 4.57 0.01 18 3.66 0.02 9 LNU963 78383.4 36.6 0.07 18 4.57 0.07 18 3.65 0.27 9 LNU950 78913.4 39.1 0.12 26 4.89 0.12 26 3.74 0.18 11 LNU950 78915.2 35.7 0.03 15 4.46 0.03 15 3.66 0.04 9 LNU949 80553.5 37.5 0.22 21 4.69 0.22 21 3.74 0.21 11 LNU949 80553.8 39.6 0.01 28 4.95 0.01 28 3.69 0.16 10 LNU934 79007.5 33.2 0.27 7 4.16 0.27 7 - - - LNU934 79008.1 33.9 0.14 9 4.24 0.14 9 3.64 0.15 8 LNU902 79606.5 38.2 0.03 23 4.77 0.03 23 3.77 0.10 12 LNU875 78413.4 36.3 0.29 17 4.54 0.29 17 3.68 0.22 9 LNU873 80473.4 - - - - - - 3.73 0.27 11 LNU843 78962.4 37.7 L 22 4.71 L 22 3.67 0.02 9 LNU843 78963.2 36.3 0.11 17 4.53 0.11 17 3.68 0.08 9 LNU790 78886.2 40.8 L 31 5.10 L 31 3.72 0.08 11 LNU790 78886.3 35.0 0.04 13 4.38 0.04 13 3.67 0.07 9 LNU790 78889.2 - - - - - - 3.59 0.07 7 LNU767 79146.1 41.6 0.09 34 5.20 0.09 34 3.85 0.15 15 LNU767 79146.2 36.5 0.01 18 4.57 0.01 18 3.72 L 11 CONT. - 31.0 - - 3.88 - - 3.36 - - LNU941 78613.1 107.3 0.04 19 13.4 0.04 19 6.23 0.02 11 LNU941 78614.2 111.8 0.01 24 14.0 0.01 24 6.25 0.02 12 LNU941 78615.3 102.4 0.13 13 12.8 0.13 13 6.03 0.15 8 LNU918 78433.3 - - - - - - 5.92 0.16 6 LNU915 78427.1 104.1 0.06 15 13.0 0.06 15 5.92 0.17 6 LNU915 78428.1 101.4 0.24 12 12.7 0.24 12 - - - LNU909 78425.5 99.4 0.26 10 12.4 0.26 10 - - - LNU868 77621.5 - - - - - - 6.06 0.25 8 LNU854 78237.2 114.2 L 26 14.3 L 26 6.00 0.20 7 LNU849 78498.3 - - - - - - 6.09 0.10 9 LNU849 78498.4 105.0 0.05 16 13.1 0.05 16 5.99 0.10 7 LNU830 78741.3 - - - 12.3 0.26 9 - - - LNU830 78741.5 107.9 0.09 19 13.5 0.09 19 6.26 0.02 12 LNU813 77682.3 - - - - - - 5.88 0.28 5 LNU813 77685.1 109.6 0.02 21 13.7 0.02 21 6.28 0.12 12 LNU806 78514.2 100.4 0.28 11 12.6 0.28 11 5.86 0.29 5 LNU806 78515.3 100.7 0.13 11 12.6 0.13 11 5.93 0.15 6 LNU806 78515.5 101.9 0.15 13 12.7 0.15 13 5.96 0.11 6 LNU780 77489.4 - - - - - - 6.04 0.24 8 CONT. - 90.5 - - 11.3 - - 5.60 - - LNU948 78378.1 74.9 0.04 20 9.36 0.04 20 5.02 0.18 8 LNU948 78380.2 67.9 0.07 9 8.49 0.07 9 4.84 0.22 5 LNU921 79063.2 64.6 0.28 4 8.07 0.28 4 - - - LNU889 79601.4 67.5 0.08 8 8.44 0.08 8 4.83 0.19 4 LNU888 78771.1 75.6 0.22 21 9.45 0.22 21 5.13 0.29 11 LNU881 78372.2 71.0 0.07 14 8.87 0.07 14 4.95 0.07 7 LNU857 78867.2 69.8 0.27 12 8.72 0.27 12 4.95 0.27 7 LNU857 78870.1 - - - - - - 4.77 0.22 3 LNU816 78958.5 75.0 L 20 9.37 L 20 5.17 L 12 LNU816 78958.7 76.6 0.03 23 9.58 0.03 23 5.22 L 13 LNU809 79168.2 72.6 0.24 16 9.07 0.24 16 4.98 0.20 8 LNU809 79168.3 67.9 0.26 9 8.49 0.26 9 - - - LNU807 79248.1 66.3 0.13 6 8.28 0.13 6 4.81 0.10 4 LNU807 79250.2 65.0 0.22 4 8.13 0.22 4 - - - LNU795 79525.1 70.5 0.01 13 8.82 0.01 13 - - - LNU795 79525.5 66.0 0.15 6 8.25 0.15 6 4.80 0.11 4 LNU788 78516.1 76.3 0.07 22 9.54 0.07 22 5.11 0.30 10 LNU788 78517.2 66.7 0.07 7 8.34 0.07 7 4.86 0.06 5 LNU788 78518.1 89.3 0.11 43 11.2 0.11 43 5.59 L 21 LNU778 78941.1 72.6 0.15 16 9.07 0.15 16 4.94 0.16 7 LNU778 78944.2 70.0 0.01 12 8.75 0.01 12 4.90 0.16 6 LNU752 78153.10 75.8 0.26 22 9.48 0.26 22 5.24 0.16 13 LNU752 78155.2 64.9 0.29 4 8.11 0.29 4 4.83 0.26 4 CONT. - 62.3 - - 7.79 - - 4.63 - - LNU977 78032.1 89.1 0.28 11 - - - - - - LNU933 78897.1 - - - - - - 5.57 0.24 6 LNU880 78197.2 85.7 0.28 7 - - - - - - LNU871 78195.4 90.4 0.07 12 11.3 0.11 10 5.46 0.23 4 LNU848 77906.2 - - - - - - 5.58 0.06 6 LNU847 78967.2 87.7 0.07 9 11.0 0.14 7 5.39 0.20 2 LNU846 78438.2 - - - - - - 5.53 0.12 5 LNU846 78439.2 - - - - - - 5.52 0.22 5 LNU846 78439.4 105.8 L 32 13.2 L 29 6.04 L 15 LNU828 77598.3 96.6 0.17 20 12.1 0.20 18 5.85 0.10 11 LNU823 78122.2 90.5 0.25 13 - - - 5.62 0.30 7 LNU772 78938.1 105.8 0.14 32 13.2 0.15 29 6.10 0.26 16 LNU757 77485.4 93.2 L 16 11.7 0.01 14 5.63 0.08 7 CONT. - 80.4 - - 10.2 - - 5.26 - - LNU972 78907.1 79.1 0.15 21 9.89 0.15 21 5.43 0.24 9 LNU972 78908.2 77.3 0.06 18 9.66 0.06 18 5.40 L 8 LNU972 78909.3 88.0 0.12 35 11.0 0.12 35 5.78 0.09 16 LNU961 79143.3 78.3 0.01 20 9.79 0.01 20 5.51 L 10 LNU961 79143.4 72.6 0.13 11 9.07 0.13 11 5.42 0.05 9 LNU961 79145.3 79.1 0.01 21 9.89 0.01 21 5.38 L 8 LNU961 79145.6 70.6 0.24 8 8.83 0.24 8 5.14 0.19 3 LNU958 77687.2 87.1 L 33 10.9 L 33 5.75 L 15 LNU958 77687.5 83.6 L 28 10.5 L 28 5.72 L 15 LNU958 77689.1 84.4 L 29 10.6 L 29 5.76 L 16 LNU958 77689.2 76.8 0.15 17 9.59 0.15 17 5.37 0.22 8 LNU948 78378.1 83.1 L 27 10.4 L 27 5.66 L 13 LNU948 78379.4 77.8 0.19 19 9.73 0.19 19 - - - LNU948 78380.2 84.5 L 29 10.6 L 29 5.64 L 13 LNU948 78380.3 71.6 0.27 9 8.95 0.27 9 5.21 0.09 5 LNU921 79063.2 82.4 L 26 10.3 L 26 5.53 L 11 LNU921 79064.2 - - - - - - 5.25 0.05 5 LNU921 79064.3 74.3 0.14 14 9.28 0.14 14 5.34 0.07 7 LNU913 78592.1 79.5 L 22 9.94 L 22 5.36 0.01 7 LNU913 78592.3 77.5 0.14 18 9.69 0.14 18 5.39 0.21 8 LNU913 78592.4 86.6 L 32 10.8 L 32 5.73 0.07 15 LNU913 78593.1 86.4 L 32 10.8 L 32 5.63 L 13 LNU913 78593.6 92.6 L 42 11.6 L 42 5.96 L 20 LNU912 78401.3 - - - - - - 5.25 0.18 5 LNU912 78403.2 83.9 0.06 28 10.5 0.06 28 5.70 0.06 14 LNU912 78404.1 80.3 L 23 10.0 L 23 5.44 L 9 LNU889 79601.4 76.4 0.03 17 9.55 0.03 17 5.42 L 9 LNU889 79602.4 - - - - - - 5.27 0.21 6 LNU881 78372.2 91.4 L 40 11.4 L 40 5.88 L 18 LNU881 78373.1 73.9 0.14 13 9.24 0.14 13 - - - LNU881 78373.2 91.7 L 40 11.5 L 40 5.96 0.01 19 LNU823 78136.4 87.2 L 33 10.9 L 33 5.68 0.05 14 LNU816 78957.1 76.3 0.04 17 9.54 0.04 17 5.42 0.02 9 LNU816 78958.4 86.4 L 32 10.8 L 32 5.60 L 12 LNU816 78958.7 96.1 0.02 47 12.0 0.02 47 6.27 0.01 26 LNU809 79168.3 77.9 0.14 19 9.74 0.14 19 5.46 0.18 9 LNU809 79169.2 78.2 0.17 20 9.77 0.17 20 5.32 0.21 7 LNU783 79176.3 74.1 0.14 13 9.26 0.14 13 - - - LNU783 79176.6 77.0 0.03 18 9.62 0.03 18 5.44 0.08 9 LNU783 79178.4 70.3 0.27 7 8.79 0.27 7 5.54 L 11 LNU782 77441.1 84.1 L 29 10.5 L 29 5.45 L 9 LNU782 77444.10 73.5 0.15 12 9.19 0.15 12 5.17 0.23 4 LNU782 77444.9 91.8 0.07 40 11.5 0.07 40 6.19 0.03 24 LNU772 78937.4 - - - - - - 5.22 0.26 5 LNU772 78938.1 96.4 L 47 12.1 L 47 6.07 L 22 LNU772 78938.2 73.9 0.12 13 9.23 0.12 13 5.29 0.02 6 LNU772 78940.2 78.9 0.04 21 9.87 0.04 21 5.43 0.12 9 LNU762 79329.2 80.9 L 24 10.1 L 24 5.50 L 10 LNU757 77481.1 - - - - - - 5.12 0.23 3 LNU757 77483.3 74.8 0.05 14 9.34 0.05 14 5.40 L 8 CONT. - 65.4 - - 8.18 - - 4.99 - - LNU907 78872.1 - - - - - - 5.68 0.11 9 LNU907 78872.3 - - - - - - 5.32 0.21 2 LNU882 78973.1 78.8 L 10 9.85 L 10 5.48 L 5 LNU882 78973.4 85.5 0.23 20 10.7 0.23 20 5.74 0.17 10 LNU871 78195.4 77.2 L 8 9.66 L 8 5.37 0.07 3 LNU865 79761.7 80.8 L 13 10.1 L 13 5.49 0.14 5 LNU847 78968.3 - - - - - - 5.41 0.07 4 LNU845 78917.3 75.2 0.29 5 9.40 0.29 5 5.34 0.11 2 LNU835 78186.2 76.3 0.10 7 9.54 0.10 7 - - - LNU835 78189.1 73.5 0.26 3 9.19 0.26 3 5.34 0.27 2 LNU807 79250.1 81.1 0.15 13 10.1 0.15 13 5.50 L 6 LNU766 78931.1 - - - - - - 5.31 0.28 2 LNU766 78931.2 - - - - - - 5.49 0.26 5 LNU766 78932.1 88.4 0.16 24 11.1 0.16 24 5.78 0.16 11 CONT. - 71.6 - - 8.94 - - 5.21 - - LNU975 80622.1 62.2 0.11 26 7.78 0.11 26 4.99 0.19 11 LNU975 80624.5 56.3 L 14 7.04 L 14 4.62 0.14 3 LNU971 78395.1 57.1 L 15 7.14 L 15 4.82 L 7 LNU971 78395.2 60.4 L 22 7.55 L 22 5.02 L 12 LNU964 80548.6 - - - - - - 4.58 0.26 2 LNU960 78600.3 60.4 0.06 22 7.55 0.06 22 4.91 0.03 9 LNU957 80437.8 52.0 0.13 5 6.50 0.13 5 4.70 0.07 5 LNU955 80432.4 53.8 0.07 9 6.72 0.07 9 4.58 0.28 2 LNU953 80427.1 - - - - - - 4.76 0.29 6 LNU949 80553.7 55.9 L 13 6.99 L 13 4.64 0.15 3 LNU949 80553.8 55.1 0.09 11 6.89 0.09 11 4.74 0.02 5 LNU949 80557.4 - - - - - - 4.94 0.21 10 LNU946 80648.2 52.2 0.24 5 6.52 0.24 5 - - - LNU944 79781.6 53.2 0.03 8 6.65 0.03 8 4.68 0.02 4 LNU928 78213.1 53.7 0.28 9 6.71 0.28 9 4.67 0.05 4 LNU917 77500.4 - - - - - - 4.79 0.27 7 LNU917 77500.6 - - - - - - 4.82 0.06 7 LNU906 79219.1 - - - - - - 4.61 0.15 3 LNU906 79219.6 - - - - - - 4.69 0.08 4 LNU904 78987.3 - - - - - - 4.68 0.19 4 LNU901 80474.1 57.2 L 16 7.15 L 16 4.77 L 6 LNU901 80474.5 53.2 0.04 8 6.65 0.04 8 4.66 0.04 4 LNU901 80476.5 59.5 0.16 20 7.44 0.16 20 4.81 0.17 7 LNU899 79765.4 - - - - - - 4.75 0.13 6 LNU899 79766.2 52.3 0.17 6 6.54 0.17 6 - - - LNU899 79766.3 55.1 0.02 11 6.89 0.02 11 - - - LNU897 80445.2 69.1 L 40 8.63 L 40 5.15 L 15 LNU892 80410.1 54.1 0.17 9 6.77 0.17 9 - - - LNU892 80414.5 53.5 0.02 8 6.68 0.02 8 4.63 0.09 3 LNU884 80405.3 58.0 L 17 7.25 L 17 4.74 L 6 LNU874 78366.3 61.6 L 24 7.70 L 24 5.05 L 12 LNU874 78370.1 56.4 L 14 7.05 L 14 4.80 0.25 7 LNU874 78370.3 56.6 L 14 7.08 L 14 4.82 L 7 LNU873 80469.3 53.2 0.28 8 6.65 0.28 8 - - - LNU873 80473.3 55.1 0.09 11 6.88 0.09 11 4.62 0.14 3 LNU873 80473.6 54.4 0.10 10 6.79 0.10 10 4.68 0.24 4 LNU870 78501.1 - - - - - - 4.70 0.03 5 LNU870 78505.5 53.7 0.15 9 6.72 0.15 9 4.64 0.12 3 LNU867 79590.4 61.1 0.13 23 7.63 0.13 23 4.89 L 9 LNU867 79590.7 58.6 L 18 7.32 L 18 4.93 0.13 10 LNU866 80443.2 52.9 0.04 7 6.62 0.04 7 - - - LNU862 79755.6 - - - - - - 4.69 0.28 4 LNU862 79757.1 54.9 0.16 11 6.87 0.16 11 4.82 0.27 7 LNU862 79758.3 - - - - - - 4.69 0.09 4 LNU862 79758.5 70.4 L 42 8.80 L 42 5.41 L 20 LNU856 79753.3 55.3 L 12 6.91 L 12 4.79 L 7 LNU831 79331.7 67.1 0.08 35 8.38 0.08 35 5.18 L 15 LNU829 77912.3 58.6 0.23 18 7.33 0.23 18 4.98 0.22 11 LNU829 77914.2 55.7 0.25 13 6.96 0.25 13 4.78 L 6 LNU817 80599.2 53.0 0.03 7 6.62 0.03 7 - - - LNU800 77896.1 59.7 L 21 7.46 L 21 4.84 0.06 8 LNU800 77896.4 53.7 0.05 8 6.71 0.05 8 4.76 0.16 6 LNU799 78672.7 57.7 0.03 17 7.21 0.03 17 4.84 0.11 8 LNU799 78674.5 60.7 0.08 23 7.59 0.08 23 4.94 0.13 10 LNU794 78522.1 61.8 0.18 25 7.73 0.18 25 4.81 0.15 7 LNU794 78524.1 - - - - - - 4.95 0.30 10 LNU794 78524.5 58.6 0.24 18 7.33 0.24 18 4.93 0.20 10 LNU794 78525.2 56.8 L 15 7.10 L 15 4.72 L 5 LNU792 79161.2 51.6 0.28 4 6.45 0.28 4 - - - LNU778 78944.5 63.7 L 29 7.96 L 29 5.16 L 15 LNU773 80399.1 57.2 0.01 16 7.16 0.01 16 4.79 0.23 7 LNU763 77588.6 64.2 L 30 8.02 L 30 4.83 0.05 8 LNU758 79739.10 63.0 0.15 27 7.88 0.15 27 - - - LNU753 77141.2 56.3 L 14 7.03 L 14 4.77 L 6 LNU753 7143.3 57.6 0.02 16 7.19 0.02 16 4.79 0.07 7 LNU753 77144.1 56.0 L 13 7.00 L 13 4.80 L 7 LNU749 80792.2 - - - - - - 4.76 0.17 6 LNU749 80792.3 54.1 0.09 9 6.76 0.09 9 4.66 0.07 4 CONT. - 49.5 - - 6.19 - - 4.49 - - LNU970 78390.3 101.4 0.22 8 12.7 0.22 8 - - - LNU893 77154.4 105.3 0.09 12 13.2 0.09 12 5.96 0.18 6 LNU885 78416.5 - - - - - - 6.04 0.24 7 LNU790 78890.1 121.6 L 29 15.2 L 29 6.42 0.01 14 CONT. - 94.1 - - 11.8 - - 5.64 - - LNU947 77448.4 104.8 L 33 13.1 L 31 5.95 L 12 LNU940 77811.6 90.4 0.27 15 - - - - - - LNU940 77813.1 96.4 0.01 23 12.0 L 21 5.73 0.03 8 LNU900 78851.3 94.7 0.07 20 11.8 0.09 19 5.60 0.10 6 LNU898 78983.4 96.3 0.10 23 12.0 0.13 21 5.81 0.05 10 LNU894 78283.4 85.5 0.25 9 10.7 0.28 7 5.49 0.25 4 LNU894 78283.7 102.3 L 30 12.8 L 28 5.96 L 13 LNU846 78436.2 87.5 0.26 11 10.9 0.30 10 - - - LNU846 78439.4 103.6 0.07 32 13.0 0.09 30 6.04 0.08 14 LNU820 77807.2 89.2 0.22 14 11.2 0.26 12 - - - LNU820 77809.1 86.5 0.15 10 10.8 0.15 8 - - - LNU815 77492.6 85.2 0.22 8 10.7 0.23 7 - - - LNU815 77494.1 103.8 0.02 32 13.0 0.03 30 5.94 L 12 LNU814 78953.2 84.6 0.25 8 10.6 0.27 6 - - - LNU811 78176.8 86.8 0.22 10 10.9 0.24 9 - - - LNU811 78179.1 97.6 0.22 24 12.2 0.25 22 5.78 0.25 9 LNU811 78180.3 85.4 0.21 9 10.7 0.22 7 - - - LNU797 78025.3 - - - - - - 5.59 0.16 6 LNU793 78168.1 87.7 0.11 11 11.0 0.10 10 - - - LNU793 78169.1 85.3 0.21 8 10.7 0.21 7 - - - LNU769 78163.4 85.6 0.23 9 10.7 0.25 7 - - - LNU756 77581.3 90.6 0.06 15 11.3 0.05 14 5.51 0.18 4 LNU751 77478.3 90.0 0.10 14 11.3 0.12 13 - - - CONT. - 78.6 - - 9.97 - - 5.30 - - LNU965 78360.5 112.4 0.02 20 14.0 0.06 18 - - - LNU943 78407.2 110.0 0.10 17 13.8 0.15 15 - - - LNU913 78593.1 115.2 0.01 23 14.4 0.04 21 6.19 0.07 8 LNU833 78184.1 101.4 0.07 8 12.7 0.09 6 5.85 0.14 2 LNU764 78926.1 103.8 0.01 11 13.0 L 9 5.97 0.18 4 CONT. - 93.7 - - 11.9 - - 5.75 - - Table 124: “CONT.” - Control; “Ave.” - Average; “% Incr.” =% increment; “p-val.” - p-value; L means that p-value is less than 0.01, p<0.1 was considered as significant.

The genes listed in Table 125 improved plant NUE when grown at limiting nitrogen concentration levels. These genes produced faster developing plants when grown under limiting nitrogen growth conditions, compared to control plants, grown under identical conditions as measured by growth rate of leaf number, rosette diameter and plot coverage.

TABLE 125 Genes showing improved rosette growth performance at limiting nitrogen growth conditions Gene Name Event # RGR Of Leaf Number RGR Of Plot Coverage (cm2/day) RGR Of Rosette Diameter [cm/day] Ave. P-Val. % Incr. Ave. P-Val. % Incr. Ave. P-Val. % Incr. LNU952 78218.1 - - - 5.74 0.18 17 0.354 0.12 13 LNU952 78219.3 - - - - - - 0.345 0.23 10 LNU945 78998.2 - - - - - - 0.347 0.20 10 LNU920 78507.1 - - - 6.13 0.06 25 0.377 0.03 20 LNU920 78508.1 - - - 5.90 0.10 20 - - - LNU920 78508.2 - - - 6.12 0.05 25 0.372 0.02 18 LNU916 78208.3 - - - 5.84 0.15 19 0.349 0.19 11 LNU914 80516.2 - - - 5.79 0.15 18 0.356 0.09 13 LNU914 80516.4 - - - - - - 0.344 0.24 10 LNU911 80424.2 - - - - - - 0.349 0.16 11 LNU905 79674.3 - - - 5.56 0.28 13 0.349 0.21 11 LNU905 79675.3 - - - 6.01 0.08 23 0.369 0.03 17 LNU840 78676.1 - - - 5.78 0.15 18 0.368 0.04 17 LNU840 78676.4 - - - 6.08 0.06 24 0.346 0.21 10 LNU834_H1 80402.7 - - - 5.61 0.26 14 0.348 0.20 11 LNU832_H2 80605.1 - - - - - - 0.348 0.22 11 LNU819 78133.3 - - - - - - 0.342 0.26 9 LNU791 77893.1 - - - 6.26 0.04 28 0.381 0.01 21 LNU791 77893.2 - - - 5.77 0.16 18 0.357 0.09 14 LNU760_H1 80127.2 - - - 6.04 0.08 23 0.358 0.09 14 CONT. - - - - 4.90 - - 0.314 - - LNU966 78604.1 0.819 0.23 12 9.03 0.03 29 - - - LNU966 78605.5 0.839 0.15 15 9.63 L 38 0.374 0.25 11 LNU966 78605.7 - - - 8.64 0.04 24 0.375 0.23 11 LNU941 78611.1 0.833 0.13 14 8.08 0.16 16 - - - LNU941 78613.1 - - - 8.95 0.02 28 0.381 0.17 13 LNU941 78613.5 - - - 8.12 0.22 16 - - - LNU941 78615.3 0.812 0.28 11 8.86 0.02 27 0.376 0.22 11 LNU925 78992.1 - - - 9.16 0.02 31 0.385 0.16 14 LNU925 78992.6 - - - - - - 0.371 0.29 10 LNU922 78290.1 0.833 0.18 14 8.73 0.05 25 - - - LNU918 78433.1 0.805 0.22 10 - - - - - - LNU918 78433.2 - - - 8.28 0.13 18 - - - LNU918 78433.3 - - - 8.35 0.08 20 - - - LNU918 78433.8 0.841 0.08 15 - - - - - - LNU918 78434.2 - - - 7.84 0.27 12 0.375 0.22 11 LNU915 78426.1 - - - 8.47 0.07 21 0.375 0.24 11 LNU915 78427.1 - - - 8.24 0.14 18 - - - LNU915 78428.1 0.880 0.03 21 9.41 L 35 - - - LNU915 78428.2 0.812 0.20 11 7.87 0.26 13 - - - LNU909 78424.3 0.832 0.12 14 8.23 0.13 18 - - - LNU909 78425.4 0.802 0.26 10 8.36 0.11 20 - - - LNU909 78425.5 0.858 0.09 18 9.77 L 40 0.390 0.15 16 LNU909 78425.7 - - - 8.12 0.16 16 - - - LNU890 78202.1 0.871 0.05 19 8.89 0.02 27 - - - LNU854 78238.1 - - - 8.07 0.18 16 - - - LNU854 78240.1 - - - 8.49 0.10 22 0.383 0.24 14 LNU849 78498.4 - - - 8.44 0.06 21 - - - LNU849 78499.1 - - - 8.31 0.10 19 - - - LNU849 78500.3 - - - 8.66 0.07 24 0.380 0.24 13 LNU830 78741.3 - - - 8.18 0.15 17 0.378 0.22 12 LNU830 78741.5 0.917 0.05 26 9.41 L 35 0.379 0.22 12 LNU824 77826.1 0.877 0.07 20 9.81 L 40 0.403 0.06 20 LNU824 77828.4 - - - 8.21 0.13 17 - - - LNU824 77829.3 - - - 8.66 0.04 24 - - - LNU822 78623.2 - - - 9.81 L 40 0.398 0.13 18 LNU822 78623.6 0.809 0.27 11 10.5 L 50 0.418 0.02 24 LNU822 78623.7 0.817 0.23 12 8.88 0.03 27 0.379 0.20 13 LNU822 78625.2 0.828 0.28 13 9.05 0.03 29 0.381 0.23 13 LNU822 78625.7 - - - 8.20 0.16 17 - - - LNU813 77682.3 - - - 9.07 0.02 30 0.399 0.07 18 LNU806 78514.2 - - - 10.4 L 48 0.428 L 27 LNU806 78515.3 - - - 8.21 0.12 18 - - - LNU806 78515.4 0.876 0.04 20 8.08 0.17 16 - - - LNU806 78515.5 0.895 0.05 23 8.97 0.02 28 - - - LNU802 80307.3 - - - 7.86 0.26 13 - - - LNU802 80309.2 - - - 7.87 0.28 13 - - - LNU802 80309.3 - - - 8.00 0.21 15 - - - LNU802 80310.1 - - - 8.08 0.17 16 - - - LNU779 77887.2 0.822 0.18 13 9.09 0.01 30 0.377 0.23 12 LNU761 78157.6 0.828 0.20 13 8.18 0.14 17 - - - LNU761 78159.1 - - - 7.91 0.25 13 - - - LNU761 78160.3 0.848 0.12 16 9.99 L 43 0.410 0.03 22 CONT. - 0.730 - - 6.99 - - 0.337 - - LNU976 78364.1 - - - 5.53 L 48 0.334 0.01 27 LNU970 78388.1 - - - 4.43 0.15 18 - - - LNU970 78389.8 0.669 0.27 14 5.28 L 41 0.299 0.20 13 LNU968 77919.4 - - - 4.44 0.15 19 - - - LNU963 78383.4 - - - 4.46 0.14 19 - - - LNU962 78635.8 0.666 0.27 13 - - - - - - LNU950 78913.4 - - - 4.81 0.03 29 0.297 0.24 13 LNU950 78915.2 - - - 4.35 0.20 16 - - - LNU949 80553.5 - - - 4.56 0.11 22 0.299 0.23 14 LNU949 80553.8 - - - 4.80 0.03 28 - - - LNU949 80557.4 - - - 4.25 0.30 14 - - - LNU934 79008.1 - - - - - - 0.297 0.22 13 LNU908 79738.5 0.670 0.28 14 - - - - - - LNU902 79606.5 - - - 4.51 0.12 21 - - - LNU875 78413.4 - - - 4.40 0.19 18 - - - LNU873 80473.4 - - - 4.40 0.20 18 0.300 0.21 14 LNU843 78962.4 - - - 4.61 0.08 23 - - - LNU843 78963.2 - - - 4.35 0.20 16 - - - LNU790 78886.2 0.697 0.16 18 4.94 0.02 32 - - - LNU790 78886.3 0.677 0.27 15 4.25 0.28 14 0.292 0.30 11 LNU790 78889.2 0.686 0.21 17 - - - - - - LNU787 80547.7 0.721 0.09 22 - - - - - - LNU767 79146.1 0.695 0.20 18 5.12 L 37 0.302 0.17 15 LNU767 79146.2 - - - 4.43 0.15 19 0.300 0.18 14 CONT. - 0.589 - - 3.74 - - 0.263 - - LNU966 78605.5 0.819 0.20 17 - - - - - - LNU941 78614.2 - - - 13.8 0.19 23 - - - LNU922 78287.3 0.798 0.26 14 - - - - - - LNU915 78428.2 0.807 0.26 15 - - - - - - LNU854 78237.2 - - - 14.2 0.14 27 - - - LNU830 78741.5 - - - 13.3 0.28 19 - - - LNU813 77685.1 - - - 13.6 0.21 22 - - - LNU751 77477.1 0.878 0.07 25 - - - - - - CONT. - 0.702 - - 11.2 - - - - - LNU948 78378.1 - - - 10.5 0.04 22 - - - LNU888 78771.1 - - - 10.7 0.05 25 0.481 0.05 24 LNU881 78372.2 - - - 9.74 0.19 13 - - - LNU857 78867.2 - - - 9.70 0.23 13 - - - LNU816 78958.5 - - - 10.9 0.02 26 0.481 0.02 24 LNU816 78958.7 - - - 10.4 0.05 21 0.449 0.10 16 LNU809 79168.2 - - - 10.1 0.15 17 - - - LNU809 79168.3 - - - 9.60 0.28 11 0.430 0.26 11 LNU807 79248.1 - - - - - - 0.430 0.24 11 LNU795 79525.1 - - - 9.66 0.24 12 - - - LNU795 79525.5 - - - - - - 0.429 0.23 11 LNU788 78516.1 - - - 10.8 0.02 25 0.454 0.14 17 LNU788 78518.1 - - - 12.2 L 41 0.466 0.04 20 LNU783 79178.2 - - - - - - 0.446 0.19 15 LNU778 78941.1 - - - 10.0 0.15 16 - - - LNU778 78944.2 - - - 9.86 0.16 14 0.432 0.22 12 LNU752 78153.10 - - - 11.1 0.03 29 0.503 0.01 30 CONT. - - - - 8.61 - - 0.388 - - LNU933 78897.1 0.890 0.12 17 - - - - - - LNU882 78975.3 0.863 0.23 13 - - - - - - LNU880 78196.1 - - - - - - 0.490 0.30 9 LNU880 78200.6 - - - 12.0 0.15 21 0.502 0.18 11 LNU848 77906.2 - - - 11.6 0.24 17 - - - LNU848 77907.4 0.866 0.18 14 - - - - - - LNU847 78967.2 0.892 0.13 17 - - - - - - LNU847 78967.4 0.858 0.23 13 - - - - - - LNU846 78436.2 0.938 0.04 23 - - - - - - LNU846 78438.2 - - - - - - 0.502 0.16 11 LNU846 78439.4 0.852 0.26 12 13.1 0.02 32 0.506 0.13 12 LNU828 77598.3 0.876 0.16 15 12.0 0.14 21 0.512 0.11 14 LNU814 78953.3 0.885 0.15 16 - - - - - - LNU814 78955.4 0.865 0.23 13 - - - - - - LNU772 78937.4 0.849 0.29 11 - - - - - - LNU772 78938.1 - - - 13.0 0.04 31 0.500 0.21 11 LNU772 78940.2 0.861 0.26 13 - - - - - - LNU757 77485.4 - - - 11.6 0.23 17 - - - LNU750 78863.2 - - - - - - 0.493 0.23 9 CONT. - 0.762 - - 9.91 - - 0.451 - - LNU972 78907.1 - - - 9.59 0.11 22 - - - LNU972 78908.2 0.810 0.24 14 9.30 0.17 18 0.443 0.13 13 LNU972 78909.3 0.862 0.08 22 10.8 0.01 38 0.481 0.02 23 LNU961 79143.3 - - - 9.64 0.10 23 0.455 0.07 16 LNU961 79143.4 - - - - - - 0.438 0.18 12 LNU961 79145.3 0.801 0.27 13 9.44 0.14 20 0.443 0.13 13 LNU961 79145.6 0.806 0.26 14 - - - - - - LNU958 77687.2 0.893 0.05 26 10.5 0.02 33 0.492 L 26 LNU958 77687.5 - - - 9.85 0.06 25 0.448 0.10 14 LNU958 77689.1 - - - 10.2 0.03 30 0.479 0.02 22 LNU958 77689.2 - - - 9.40 0.15 20 0.440 0.17 12 LNU948 78378.1 0.810 0.26 14 10.0 0.04 28 0.472 0.02 20 LNU948 78379.4 - - - 9.34 0.17 19 0.437 0.20 12 LNU948 78380.2 0.836 0.14 18 10.1 0.04 29 0.443 0.14 13 LNU921 79063.2 0.889 0.04 25 10.1 0.04 28 0.445 0.12 14 LNU921 79064.3 0.806 0.28 14 - - - 0.433 0.23 11 LNU913 78592.1 - - - 9.58 0.11 22 - - - LNU913 78592.3 0.798 0.29 13 9.17 0.22 17 - - - LNU913 78592.4 - - - 10.4 0.02 32 0.454 0.09 16 LNU913 78593.1 0.831 0.16 17 10.4 0.02 32 0.452 0.08 16 LNU913 78593.6 - - - 11.1 L 42 0.482 0.01 23 LNU912 78401.3 - - - - - - 0.431 0.28 10 LNU912 78403.2 - - - 10.1 0.04 28 0.462 0.05 18 LNU912 78404.1 0.806 0.25 14 9.74 0.08 24 0.441 0.16 13 LNU889 79601.4 - - - 9.11 0.23 16 0.433 0.23 11 LNU889 79602.4 0.802 0.29 13 9.30 0.19 18 - - - LNU888 78772.2 0.804 0.30 13 - - - - - - LNU881 78372.2 0.833 0.15 18 10.9 L 39 0.471 0.02 20 LNU881 78373.1 0.846 0.12 19 - - - - - - LNU881 78373.2 0.831 0.20 17 10.8 0.01 37 0.466 0.04 19 LNU823 78136.4 0.856 0.10 21 10.5 0.02 34 0.466 0.04 19 LNU816 78957.1 - - - 9.02 0.27 15 - - - LNU816 78958.4 - - - 10.5 0.01 34 0.455 0.07 16 LNU816 78958.7 - - - 11.3 L 44 0.497 L 27 LNU809 79168.3 - - - 9.38 0.17 19 0.456 0.07 16 LNU809 79169.2 - - - 9.42 0.15 20 0.444 0.13 13 LNU783 79176.3 - - - 9.01 0.27 15 - - - LNU783 79176.6 - - - 9.33 0.16 19 0.445 0.13 14 LNU783 79178.4 - - - - - - 0.462 0.04 18 LNU782 77441.1 0.884 0.07 25 10.1 0.04 29 0.428 0.28 9 LNU782 77444.10 0.812 0.23 15 - - - - - - LNU782 77444.2 0.798 0.29 13 - - - - - - LNU782 77444.9 - - - 10.9 L 39 0.509 L 30 LNU772 78938.1 0.945 0.02 33 11.7 L 49 0.506 L 29 LNU772 78940.2 - - - 9.42 0.14 20 - - - LNU762 79329.2 - - - 9.70 0.09 23 0.440 0.15 12 LNU757 77481.1 0.857 0.09 21 - - - - - - LNU757 77483.2 0.820 0.21 16 - - - - - - LNU757 77483.3 0.832 0.16 17 - - - 0.447 0.12 14 CONT. - 0.708 - - 7.85 - - 0.391 - - LNU882 78973.4 - - - 10.2 0.09 18 0.449 0.25 8 LNU807 79250.1 - - - 9.82 0.18 14 - - - LNU766 78932.1 - - - 10.6 0.04 22 - - - CONT. - - - - 8.64 - - 0.416 - - LNU975 80622.1 - - - 7.90 L 28 0.416 0.05 16 LNU975 80624.5 0.743 0.20 19 7.02 0.14 14 - - - LNU971 78395.1 - - - 7.01 0.16 14 - - - LNU971 78395.2 - - - 7.28 0.06 18 0.400 0.13 12 LNU960 78599.4 0.725 0.28 17 - - - - - - LNU960 78600.3 - - - 7.49 0.03 22 0.400 0.13 12 LNU957 80435.3 0.723 0.30 16 - - - - - - LNU955 80432.3 0.735 0.24 18 - - - - - - LNU955 80432.4 - - - 6.83 0.25 11 - - - LNU953 80429.1 0.722 0.30 16 - - - - - - LNU949 80553.7 - - - 6.94 0.19 13 - - - LNU949 80557.4 - - - 7.12 0.12 16 0.396 0.19 11 LNU928 78212.1 0.818 0.04 31 - - - - - - LNU928 78213.1 - - - 6.82 0.25 11 - - - LNU923 77603.3 - - - - - - 0.391 0.24 9 LNU917 77500.4 - - - 6.91 0.25 12 - - - LNU906 79219.5 0.743 0.21 19 - - - - - - LNU904 78987.2 0.775 0.11 25 - - - - - - LNU901 80476.5 - - - 7.41 0.04 20 - - - LNU899 79765.4 - - - 6.88 0.22 12 0.395 0.18 10 LNU899 79766.2 - - - - - - 0.390 0.28 9 LNU897 80445.2 - - - 8.64 L 40 0.431 0.01 20 LNU892 80410.1 - - - - - - 0.393 0.23 10 LNU884 80405.3 - - - 7.35 0.04 19 - - - LNU884 80407.1 - - - 7.09 0.13 15 - - - LNU884 80408.2 - - - 7.12 0.15 16 - - - LNU884 80408.4 - - - 7.10 0.13 15 0.395 0.21 10 LNU874 78366.3 - - - 7.47 0.03 21 0.402 0.11 12 LNU874 78370.1 - - - 7.03 0.13 14 - - - LNU874 78370.3 - - - 7.05 0.12 15 0.398 0.15 11 LNU874 78370.7 0.727 0.28 17 - - - - - - LNU873 80469.1 0.771 0.12 24 - - - - - - LNU873 80473.3 - - - 6.91 0.19 12 - - - LNU873 80473.6 - - - 6.88 0.21 12 0.400 0.13 12 LNU870 78501.1 - - - - - - 0.398 0.15 11 LNU870 78505.1 - - - - - - 0.401 0.14 12 LNU867 79589.3 - - - - - - 0.389 0.27 9 LNU867 79590.3 0.746 0.22 20 - - - - - - LNU867 79590.4 - - - 7.30 0.07 18 - - - LNU867 79590.7 - - - 7.30 0.05 19 0.405 0.10 13 LNU866 80442.2 0.734 0.25 18 - - - - - - LNU866 80443.2 0.752 0.17 21 - - - - - - LNU866 80444.6 - - - 6.87 0.24 12 - - - LNU862 79757.1 - - - - - - 0.391 0.26 9 LNU862 79758.3 - - - - - - 0.392 0.22 10 LNU862 79758.5 - - - 8.82 L 43 0.459 L 28 LNU856 79753.3 - - - 6.80 0.26 10 - - - LNU856 79753.5 0.742 0.21 19 - - - - - - LNU831 79331.7 - - - 8.43 L 37 0.428 0.01 20 LNU831 79335.2 0.783 0.10 26 - - - - - - LNU829 77912.3 - - - 7.24 0.07 18 0.399 0.16 11 LNU829 77914.1 0.774 0.11 24 - - - - - - LNU829 77914.2 - - - 6.90 0.21 12 0.398 0.15 11 LNU817 80598.1 - - - 6.81 0.28 11 - - - LNU800 77896.1 - - - 7.38 0.04 20 - - - LNU799 78672.5 0.725 0.29 17 - - - - - - LNU799 78672.7 - - - 7.09 0.11 15 - - - LNU799 78674.2 - - - 7.03 0.15 14 - - - LNU799 78674.5 - - - 7.50 0.02 22 0.406 0.10 13 LNU796 78235.5 0.755 0.16 21 - - - - - - LNU794 78522.1 - - - 7.67 0.02 25 - - - LNU794 78524.1 - - - 7.85 0.01 28 0.399 0.18 11 LNU794 78524.5 - - - 7.30 0.06 19 0.392 0.24 9 LNU794 78525.2 - - - 7.14 0.09 16 - - - LNU792 79161.2 0.778 0.11 25 - - - - - - LNU792 79162.2 0.720 0.30 16 - - - - - - LNU778 78943.5 0.778 0.10 25 - - - - - - LNU778 78944.1 0.841 0.03 35 - - - - - - LNU778 78944.5 - - - 8.11 L 32 0.432 L 21 LNU773 80399.1 - - - 6.96 0.16 13 - - - LNU771 80077.2 - - - 6.83 0.28 11 0.403 0.12 13 LNU763 77588.6 - - - 7.62 0.02 24 - - - LNU763 77589.3 0.725 0.28 16 - - - - - - LNU758 79739.10 - - - 7.84 L 27 0.400 0.17 12 LNU753 77141.2 - - - 6.90 0.20 12 - - - LNU753 77143.3 - - - 7.23 0.06- 17 - - - LNU753 77144.1 - - - 6.88 0.21 12 0.387 0.29 8 CONT. - 0.622 - - 6.16 - - 0.358 - - LNU790 78890.1 - - - 14.8 0.04 29 0.510 0.25 13 CONT. - - - - 11.5 - - 0.452 - - LNU947 77448.4 - - - 12.6 0.02 32 - - - LNU940 77813.1 - - - 12.1 0.06 26 0.470 0.21 13 LNU900 78851.3 - - - 11.3 0.19 18 - - - LNU898 78983.4 - - - 11.7 0.11 23 0.468 0.23 13 LNU894 78283.7 - - - 12.4 0.04 29 - - - LNU846 78439.4 - - - 12.5 0.03 31 0.468 0.23 13 LNU815 77494.1 - - - 12.7 0.02 33 - - - LNU811 78179.1 - - - 11.8 0.10 24 - - - LNU756 77581.3 - - - 11.0 0.27 15 - - - LNU751 77477.4 0.941 0.11 18 - - - - - - LNU751 77478.3 - - - 11.1 0.23 16 - - - CONT. - 0.800 - - 9.56 - - 0.415 - - LNU965 78360.5 - - - 13.7 0.11 20 0.534 0.16 10 LNU943 78407.2 - - - 13.4 0.16 17 - - - LNU913 78593.1 - - - 14.0 0.07 23 - - - CONT. - - - - 11.4 - - 0.487 - - Table 125. “CONT.” - Control; “Ave.” - Average; “% Incr.” =% increment; “p-val.” - p-value; L means that p-value is less than 0.01, p<0.1 was considered as significant.

The genes listed in Tables 126-127 improved plant NUE when grown at standard nitrogen concentration levels. These genes produced larger plants with a larger photosynthetic area and increased biomass (fresh weight, dry weight, leaf number, rosette diameter, rosette area and plot coverage) when grown under standard nitrogen conditions as compared to control plants grown under identical growth conditions.

TABLE 126 Genes showing improved plant biomass production at standard nitrogen growth conditions Gene Name Event # Dry Weight [mg] Fresh Weight [mg] Leaf Number Ave. P-Val. % Incr. Ave. P-Val. % Incr. Ave. P-Val. % Incr. LNU966 78605.5 - - - - - - 12.1 0.07 5 LNU941 78611.1 - - - 3018.8 0.07 7 - - - LNU941 78613.1 - - - 2987.5 0.15 5 11.9 0.30 2 LNU941 78614.2 - - - 3137.5 L 11 - - - LNU941 78615.3 - - - - - - 13.1 L 13 LNU925 78991.7 - - - - - - 12.6 0.03 8 LNU925 78992.1 230.6 0.28 4 3031.2 0.21 7 12.2 0.28 6 LNU925 78992.6 - - - 2957.1 0.17 4 - - - LNU922 78290.1 - - - 2943.8 0.27 4 12.9 0.11 11 LNU918 78433.3 238.6 0.23 8 - - - - - - LNU918 78433.8 - - - 3156.2 0.06 11 - - - LNU918 78434.2 - - - - - - 12.5 0.19 8 LNU915 78426.1 236.2 0.25 7 - - - 12.4 0.04 7 LNU915 78428.1 242.5 0.30 10 3131.2 0.13 11 12.3 0.06 6 LNU915 78428.2 - - - - - - 12.1 0.05 5 LNU909 78424.3 236.2 0.16 7 - - - 12.9 L 12 LNU909 78425.4 - - - - - - 12.6 L 9 LNU909 78425.7 - - - - - - 12.4 L 7 LNU890 78202.1 - - - - - - 12.3 0.01 6 LNU854 78238.1 - - - - - - 12.0 0.15 4 LNU849 78498.4 - - - - - - 12.4 0.10 7 LNU849 78499.1 - - - 2981.2 0.27 5 - - - LNU849 78500.3 234.4 0.16 6 - - - - - - LNU830 78741.3 - - - - - - 12.0 0.11 4 LNU830 78741.5 - - - - - - 12.1 0.07 5 LNU824 77826.1 235.6 0.11 6 - - - 12.6 0.16 9 LNU822 78623.2 - - - 2943.8 0.22 4 12.8 0.01 11 LNU822 78623.6 - - - 2937.5 0.25 4 11.9 0.30 2 LNU822 78625.2 - - - - - - 11.9 0.17 3 LNU822 78625.7 - - - - - - 12.1 0.05 5 LNU813 77682.3 - - - - - - 12.7 0.19 9 LNU806 78515.4 - - - - - - 12.9 L 12 LNU806 78515.5 - - - - - - 12.2 0.15 6 LNU802 80310.1 239.4 0.07 8 - - - - - - LNU779 77887.2 - - - - - - 12.1 0.17 4 LNU779 77887.3 - - - - - - 12.6 0.12 8 LNU761 78159.1 - - - - - - 11.9 0.29 3 LNU761 78160.3 235.0 0.19 6 - - - 12.5 0.08 8 CONT. - 221.4 - - 2832.1 - - 11.6 - - LNU976 78364.1 - - - - - - 9.75 0.11 5 LNU976 78364.2 - - - - - - 9.75 0.11 5 LNU976 78364.5 - - - - - - 9.69 0.22 5 LNU843 78962.4 - - - - - - 9.56 0.25 3 LNU790 78890.3 - - - - - - 9.81 0.28 6 CONT. - - - - - - - 9.27 - - LNU966 78605.5 - - - - - - 11.9 0.02 8 LNU941 78613.1 403.2 0.03 14 5655.4 0.16 19 11.5 0.15 4 LNU941 78614.2 - - - 5047.3 0.24 6 12.1 0.04 10 LNU941 78615.3 377.9 0.24 7 - - - - - - LNU915 78427.1 - - - 5133.3 0.12 8 - - - LNU915 78428.1 373.8 0.27 5 5237.5 0.21 10 - - - LNU915 78428.2 - - - 5231.2 0.17 10 - - - LNU854 78238.1 - - - 5087.5 0.15 7 11.9 0.02 8 LNU849 78499.1 - - - - - - 11.4 0.17 4 LNU849 78500.1 - - - - - - 11.8 0.06 7 LNU830 78741.5 - - - - - - 12.3 L 12 LNU830 78742.6 - - - - - - 11.8 0.02 7 LNU813 77681.4 - - - - - - 11.5 0.15 4 LNU806 78514.2 - - - 5231.2 0.08 10 11.4 0.26 4 LNU806 78515.3 - - - - - - 11.5 0.27 4 LNU780 77489.4 - - - - - - 11.6 0.15 5 LNU751 77477.4 - - - - - - 11.4 0.23 3 LNU751 77480.1 - - - - - - 11.6 0.18 5 CONT. - 354.5 - - 4755.4 - - 11.0 - - LNU948 78376.3 240.0 L 32 2737.5 L 49 - - - LNU948 78378.1 226.2 0.03 24 2212.5 0.13 20 11.8 0.05 5 LNU921 79063.2 - - - - - - 12.1 L 8 LNU921 79064.2 257.5 0.02 41 2868.8 L 56 - - - LNU921 79064.3 286.2 L 57 3000.0 L 63 11.8 0.23 6 LNU912 78402.3 231.9 0.04 27 2581.2 0.04 40 - - - LNU912 78405.2 - - - - - - 12.3 0.19 10 LNU889 79599.1 237.5 0.07 30 2681.2 0.04 46 12.1 0.18 8 LNU889 79602.4 - - - - - - 11.9 0.30 7 LNU881 78373.1 231.2 0.02 27 2643.8 L 44 - - - LNU881 78373.2 259.4 0.06 42 3143.8 0.03 71 11.9 0.13 6 LNU881 78374.1 - - - - - - 12.0 0.01 7 LNU865 79761.2 267.5 L 47 3018.8 L 64 12.0 0.10 7 LNU865 79761.4 227.5 0.06 25 2618.8 0.17 42 12.0 L 7 LNU865 79761.7 281.2 L 54 3112.5 L 69 - - - LNU857 78868.2 - - - - - - 11.6 0.12 3 LNU831 79331.2 - - - - - - 11.7 0.14 5 LNU831 79333.1 265.0 0.04 45 3087.5 L 68 - - - LNU831 79333.2 258.5 L 42 2945.8 L 60 - - - LNU816 78957.1 242.5 L 33 2956.2 L 61 - - - LNU816 78958.5 - - - - - - 11.9 0.03 6 LNU816 78958.7 - - - - - - 11.9 0.13 6 LNU809 79168.5 229.4 0.23 26 2550.0 0.02 38 - - - LNU807 79248.1 - - - - - - 11.9 0.18 7 LNU807 79250.1 - - - - - - 11.6 0.12 3 LNU795 79521.6 - - - - - - 11.4 0.27 2 LNU795 79525.1 203.1 0.21 11 - - - - - - LNU795 79525.4 265.6 L 46 2950.0 L 60 - - - LNU788 78516.1 225.6 0.03 24 2437.5 0.03 32 - - - LNU788 78517.1 - - - - - - 12.4 0.08 11 LNU788 78517.2 - - - - - - 11.9 0.03 6 LNU788 78518.1 238.8 0.17 31 2331.2 0.07 27 12.4 0.04 11 LNU788 78520.4 - - - - - - 11.9 0.01 7 LNU783 79178.4 - - - - - - 11.8 0.23 6 LNU778 78944.1 - - - - - - 11.8 0.02 6 LNU778 78944.2 - - - - - - 11.8 0.05 5 LNU762 79328.3 - - - - - - 12.2 0.11 9 LNU762 79329.2 - - - - - - 11.8 0.02 6 LNU752 78153.1 264.4 L 45 3043.8 L 65 12.1 L 8 LNU752 78155.2 - - - - - - 12.0 0.10 7 CONT. - 182.3 - - 1841.3 - - 11.2 - - LNU977 77991.4 - - - 4112.5 0.14 10 - - - LNU977 78033.1 365.0 0.24 19 4481.2 0.24 20 - - - LNU880 78196.1 342.5 0.02 12 4043.8 0.02 9 - - - LNU880 78197.4 - - - 3981.2 0.03 7 - - - LNU871 78191.1 319.4 0.24 5 - - - - - - LNU871 78191.3 326.2 0.20 7 4243.8 L 14 - - - LNU848 77906.2 - - - 4100.0 0.29 10 - - - LNU848 77909.2 - - - 3987.5 0.08 7 - - - LNU848 77909.5 - - - 4031.2 0.09 8 - - - LNU846 78438.1 322.1 0.18 5 - - - - - - LNU845 78920.1 - - - 4000.0 0.02 7 - - - LNU828 77600.4 331.9 0.23 9 4100.0 0.07 10 - - - LNU823 78122.2 321.2 0.19 5 3918.8 0.10 5 - - - LNU823 78136.1 327.5 0.28 7 - - - - - - LNU823 78136.4 320.8 0.30 5 - - - - - - LNU823 78137.3 - - - - - - 12.3 0.11 6 LNU772 78937.4 - - - - - - 11.9 0.03 3 LNU772 78938.1 331.9 0.06 9 - - - 12.8 0.01 10 LNU757 77481.1 - - - 4098.2 0.13 10 - - - LNU757 77485.2 335.6 0.19 10 4081.2 0.28 10 - - - LNU757 77485.4 338.1 0.02 11 4250.0 0.08 14 - - - LNU750 78863.2 - - - - - - 11.9 0.23 2 CONT. - 305.5 - - 3722.0 - - 11.6 - - LNU972 78907.1 386.2 0.29 7 5068.8 0.04 10 11.9 0.02 6 LNU972 78909.3 - - - - - - 12.5 0.29 11 LNU961 79143.3 - - - - - - 11.6 0.24 2 LNU961 79145.3 396.9 0.24 9 5556.2 L 20 - - - LNU961 79145.8 - - - 5037.5 0.05 9 - - - LNU958 77687.2 - - - - - - 12.4 L 9 LNU958 77687.5 - - - - - - 12.5 0.05 11 LNU958 77689.1 - - - - - - 12.0 0.02 6 LNU958 77689.2 - - - 5093.8 0.04 10 - - - LNU948 78379.4 - - - - - - 12.1 L 7 LNU948 78380.2 - - - 5275.0 0.16 14 12.3 L 9 LNU921 79063.2 - - - - - - 12.5 L 11 LNU921 79064.3 - - - - - - 11.9 0.05 5 LNU913 78592.1 - - - - - - 12.1 L 7 LNU913 78592.3 - - - - - - 12.4 0.16 9 LNU913 78592.4 - - - - - - 13.1 0.26 16 LNU913 78593.6 - - - - - - 13.1 L 16 LNU912 78403.2 - - - - - - 12.0 0.02 6 LNU912 78404.1 406.9 L 12 5300.0 0.07 15 - - - LNU888 78772.7 - - - - - - 12.3 0.02 9 LNU881 78372.2 - - - 5393.8 0.19 17 - - - LNU881 78373.1 406.2 L 12 5431.2 L 18 - - - LNU881 78373.2 - - - - - - 12.6 0.08 11 LNU881 78374.1 398.0 L 10 5265.2 L 14 12.4 0.06 9 LNU881 78374.4 - - - 5157.1 0.03 12 - - - LNU823 78136.1 - - - 5000.0 0.06 8 - - - LNU823 78136.4 391.2 0.03 8 5093.8 0.03 10 - - - LNU823 78137.3 390.3 0.24 8 5273.2 0.01 14 - - - LNU816 78957.1 - - - 5250.0 0.12 14 12.1 0.18 7 LNU816 78958.7 - - - - - - 12.7 0.28 12 LNU809 79168.3 - - - - - - 11.9 0.24 6 LNU782 77441.1 - - - - - - 12.2 0.04- 8 LNU782 77443.3 - - - 4943.8 0.12 7 - - - LNU782 77444.9 - - - - - - 12.6 0.20 12 LNU772 78937.4 - - - 4962.5 0.08 8 - - - LNU772 78938.1 387.5 0.16 7 - - - 12.4 L 9 LNU772 78940.2 - - - - - - 12.6 0.04 12 LNU762 79330.3 - - - 5019.6 0.22 9 - - - LNU757 77481.1 - - - - - - 12.5 0.05 11 LNU757 77483.2 - - - - - - 11.8 0.14 5 LNU757 77485.2 - - - 4937.5 0.13 7 - - - LNU757 77485.4 - - - - - - 12.2 0.04 8 CONT. - 362.5 - - 4614.3 - - 11.3 - - LNU933 78900.5 - - - 2568.8 0.23 6 - - - LNU907 78872.3 - - - 2850.0 0.08 17 - - - LNU907 78872.8 - - - 2662.5 0.04 9 - - - LNU882 78973.4 - - - - - - 13.8 0.11 8 LNU871 78195.4 286.2 0.13 13 2625.0 0.21 8 - - - LNU865 79761.2 271.9 0.25 7 - - - - - - LNU857 78867.2 - - - 2622.3 0.08 8 - - - LNU848 77909.3 - - - - - - 13.2 0.08 4 LNU847 78967.4 - - - 2687.5 0.30 10 - - - LNU835 78186.6 - - - 2731.2 0.29 12 - - - LNU835 78187.2 - - - 2706.2 0.12 11 - - - LNU835 78189.1 - - - 2637.5 0.06 8 - - - LNU828 77600.4 - - - 2718.8 0.05 12 - - - LNU807 79250.1 - - - - - - 13.3 0.12 4 LNU798 79671.4 - - - - - - 13.1 0.20 2 LNU795 79521.3 295.6 0.03 17 2650.0 0.05 9 - - - LNU795 79525.4 - - - 2556.2 0.24 5 - - - LNU766 78931.2 - - - - - - 13.1 0.20 2 LNU766 78932.1 291.9 0.03 15 2937.5 L 21 13.3 0.03 4 LNU752 78153.1 - - - 2662.5 0.04 9 - - - LNU750 78863.3 - - - 2650.0 0.13 9 - - - CONT. - 253.4 - - 2433.9 - - 12.8 - - LNU976 78364.1 - - - 3637.5 0.27 11 - - - LNU976 78364.2 - - - - - - 12.2 0.14 3 LNU970 78389.8 276.2 0.11 12 3700.0 L 13 - - - LNU968 77917.3 - - - 3470.5 0.12 6 - - - LNU967 79001.1 - - - 3493.8 0.14 7 - - - LNU967 79002.4 258.1 0.07 5 3511.6 0.24 8 - - - LNU963 78383.4 255.0 0.22 4 3668.8 L 12 - - - LNU963 78384.2 268.8 0.02 9 3493.8 0.11 7 - - - LNU950 78915.2 263.1 0.06 7 3581.2 0.06 10 - - - LNU934 79007.5 - - - - - - 12.2 0.09 3 LNU908 79734.4 - - - 3443.8 0.14 6 12.1 0.29 2 LNU908 79736.2 - - - 3525.0 0.18 8 - - - LNU908 79736.4 258.1 0.21 5 - - - - - - LNU902 79604.2 256.2 0.24 4 3600.0 0.11 10 - - - LNU902 79604.4 - - - - - - 12.5 0.03 5 LNU902 79606.1 - - - 3518.8 0.05 8 - - - LNU885 78416.1 - - - 3481.2 0.08 7 - - - LNU885 78416.5 - - - 3437.5 0.14 5 - - - LNU885 78419.3 261.9 0.04 6 3475.0 0.15 7 - - - LNU885 78420.1 265.6 0.01 8 3718.8 L 14 - - - LNU879 77799.2 - - - 3481.2 0.08 7 - - - LNU879 77799.3 259.4 0.24 5 - - - - - - LNU875 78413.4 - - - - - - 12.4 0.07 4 LNU875 78415.1 - - - 3562.5 0.24 9 - - - LNU858 79584.2 - - - 3625.0 0.15 11 - - - LNU858 79585.1 263.3 0.02 7 3747.3 0.05 15 - - - LNU858 79586.3 275.0 0.28 12 - - - 12.4 0.22 4 LNU790 78889.2 - - - - - - 12.5 0.16 5 LNU790 78890.1 268.1 0.11 9 3662.5 0.08 12 - - - LNU790 78890.3 - - - 3400.0 0.25 4 12.6 0.07 6 LNU767 79146.1 - - - - - - 12.3 0.06 4 LNU767 79146.2 263.1 0.02 7 3506.2 0.08 7 12.3 0.18 4 CONT. - 246.0 - - 3262.5 - - 11.9 - - LNU947 77446.1 318.8 0.02 8 3731.2 0.11 5 - - - LNU947 77447.3 318.1 0.02 8 3737.5 0.03 5 12.5 0.07 4 LNU940 77812.4 - - - 3737.5 0.03 5 - - - LNU900 78851.3 317.5 0.11 8 3800.0 0.03 7 - - - LNU900 78852.5 - - - 3678.6 0.11 3 - - - LNU900 78854.3 314.4 0.09 7 - - - - - - LNU898 78981.3 322.1 0.01 9 3873.2 0.11 9 12.4 0.14 3 LNU898 78983.4 325.6 0.01 10 3843.8 L 8 12.4 0.05 3 LNU898 78985.1 308.1 0.14 5 3750.0 0.07 5 - - - LNU898 78985.4 - - - 3656.2 0.18 3 - - - LNU894 78282.3 - - - 3750.0 0.07 5 12.6 0.20 5 LNU894 78283.4 316.2 0.13 7 3718.8 0.18 5 - - - LNU894 78283.7 322.5 0.10 9 3775.0 0.16 6 12.8 L 6 LNU846 78436.2 323.8 L 10 3825.0 0.02 8 - - - LNU820 77807.2 325.0 0.19 10 3737.5 0.05 5 - - - LNU815 77492.2 - - - 3712.5 0.06 4 - - - LNU815 77492.6 315.6 0.24 7 3818.8 0.10 7 12.5 0.07 4 LNU815 77494.1 - - - - - - 13.1 0.14 9 LNU815 77495.3 - - - - - - 12.5 0.02 4 LNU814 78953.2 - - - - - - 12.7 0.09 5 LNU814 78953.3 311.9 0.13 6 - - - - - - LNU814 78955.4 - - - - - - 12.6 0.14 4 LNU811 78176.1 - - - 3775.0 0.02 6 - - - LNU811 78176.8 - - - - - - 12.4 0.05 3 LNU797 78025.2 - - - 3916.1 L 10 - - - LNU797 78025.3 - - - 3812.5 0.05 7 - - - LNU793 78166.4 303.8 0.29 3 - - - - - - LNU793 78167.2 - - - - - - 12.4 0.14 3 LNU793 78169.1 - - - - - - 12.5 0.27 4 LNU780 77489.4 - - - 3689.6 0.28 4 - - - LNU776 79747.1 - - - 3834.5 0.28 8 - - - LNU769 78163.8 308.1 0.27 5 - - - - - - LNU769 78165.2 327.5 0.13 11 3681.2 0.13 4 - - - LNU759 77236.2 - - - 3632.1 0.30 2 - - - LNU759 77236.8 312.5 0.06 6 3825.0 0.08 8 - - - LNU751 77477.1 - - - 3806.2 L 7 - - - LNU751 77478.3 308.1 0.14 5 - - - - - - CONT. - 294.8 - - 3555.4 - - 12.0 - - LNU972 78907.1 - - - 4868.8 0.04 12 - - - LNU943 78407.1 - - - - - - 12.4 0.13 3 LNU943 78407.2 - - - - - - 12.2 0.29 2 LNU913 78592.1 - - - - - - 12.4 0.03 3 LNU913 78592.4 432.5 0.25 17 4681.2 0.21 8 - - - LNU864 79339.2 - - - 4718.8 0.12 9 - - - LNU850 78638.7 - - - 4837.5 0.05 11 - - - LNU768 77883.4 - - - 4587.5 0.30 6 - - - CONT. - 368.8 - - 4341.1 - - 12.0 - - Table 126. “CONT.” - Control; “Ave.” - Average; “% Incr.” =% increment; “p-val.” - p-value; L means that p-value is less than 0.01, p<0.1 was considered as significant.

TABLE 127 Genes showing improved plant biomass production at standard nitrogen growth conditions Gene Name Event # Plot Coverage [cm2] Rosette Area [cm2] Rosette Diameter [cm] Ave. P-Val. % Incr. Ave. P-Val. % Incr. Ave. P-Val. % Incr. LNU966 78604.1 87.4 0.28 11 10.9 0.28 11 5.52 0.28 7 LNU966 78605.5 87.3 0.17 11 10.9 0.17 11 - - - LNU941 78615.3 87.8 0.29 12 11.0 0.29 12 - - - LNU918 78434.2 - - - - - - 5.48 0.19 6 LNU915 78426.1 91.7 0.26 17 11.5 0.26 17 5.74 0.21 11 LNU915 78428.1 94.7 0.03 20 11.8 0.03 20 5.69 0.06 10 LNU909 78424.3 96.2 0.24 22 12.0 0.24 22 5.78 0.11 12 LNU830 78741.5 - - - - - - 5.51 0.24 7 LNU824 77826.1 87.0 0.18 11 10.9 0.18 11 - - - LNU822 78623.7 91.8 0.28 17 11.5 0.28 17 5.61 0.29 8 LNU806 78515.4 86.7 0.19 10 10.8 0.19 10 5.49 0.17 6 LNU806 78515.5 100.9 0.19 28 12.6 0.19 28 5.96 0.27 15 CONT. - 78.6 - - 9.83 - - 5.17 - - LNU976 78364.1 42.6 L 44 5.33 L 44 4.05 L 24 LNU976 78364.5 35.5 0.01 20 4.44 0.01 20 3.64 0.02 11 LNU970 78388.1 35.7 0.02 21 4.46 0.02 21 3.70 0.15 13 LNU970 78389.2 - - - - - - 3.39 0.16 3 LNU970 78389.8 36.1 0.18 22 4.81 L 30 3.80 L 16 LNU970 78390.3 - - - - - - 3.41 0.10 4 LNU968 77918.3 33.3 0.15 13 4.17 0.15 13 3.46 0.26 6 LNU968 77919.4 35.9 L 21 4.49 L 21 3.64 L 11 LNU963 78383.4 32.2 0.07 9 4.03 0.07 9 3.43 0.18 5 LNU963 78385.1 34.1 0.20 15 4.26 0.20 15 3.53 0.21 8 LNU950 78913.4 - - - - - - 3.46 0.29 6 LNU949 80557.4 33.2 0.15 12 4.15 0.15 12 3.51 0.23 7 LNU934 79007.5 32.9 0.10 11 4.11 0.10 11 - - - LNU934 79008.1 32.7 0.22 10 4.09 0.22 10 3.48 0.20 6 LNU902 79606.5 - - - - - - 3.77 0.26 15 LNU843 78962.4 33.8 0.24 14 4.23 0.24 14 - - - LNU790 78886.3 31.7 0.19 7 3.96 0.19 7 3.39 0.16 4 LNU790 78890.1 35.0 L 18 4.38 L 18 3.62 L 10 LNU787 80547.3 31.4 0.21 6 3.92 0.21 6 3.43 0.07 5 LNU785 79616.8 35.5 0.01 20 4.43 0.01 20 3.49 0.02 7 LNU767 79146.1 35.0 0.27 18 4.38 0.27 18 - - - LNU767 79146.2 33.5 0.03 13 4.18 0.03 13 3.49 0.02 7 CONT. - 29.6 - - 3.70 - - 3.27 - - LNU941 78613.1 105.6 0.15 14 13.2 0.15 13 6.16 0.13 7 LNU915 78428.1 - - - - - - 6.18 0.26 7 LNU909 78425.4 - - - - - - 6.08 0.25 6 LNU830 78741.3 123.8 0.21 34 16.5 0.01 41 6.88 L 19 LNU830 78741.5 127.1 L 38 15.9 L 36 6.74 0.01 17 LNU830 78742.6 103.8 0.23 12 13.0 0.25 11 6.03 0.29 5 LNU813 77681.4 115.6 0.16 25 14.4 0.18 24 6.63 0.03 15 CONT. - 92.4 - - 11.7 - - 5.76 - - LNU948 78376.3 94.8 0.03 23 11.9 0.03 23 5.98 0.17 11 LNU948 78378.1 103.6 0.11 34 13.0 0.11 34 6.04 0.15 12 LNU921 79063.2 93.0 0.02 20 11.6 0.02 20 5.65 0.14 5 LNU921 79064.2 97.5 L 26 12.2 L 26 6.27 L 16 LNU921 79064.3 109.9 L 42 13.7 L 42 6.10 L 13 LNU889 79599.1 91.9 0.01 19 11.5 0.01 19 5.75 0.05 7 LNU889 79602.4 86.1 0.08 11 10.8 0.08 11 5.58 0.29 3 LNU888 78771.1 84.6 0.27 9 10.6 0.27 9 - - - LNU881 78372.2 94.2 L 22 11.8 L 22 5.94 L 10 LNU881 78373.1 95.7 0.03 24 12.0 0.03 24 5.81 0.04 8 LNU881 78373.2 108.9 0.08 41 13.6 0.08 41 6.31 0.14 17 LNU881 78374.1 95.8 0.03 24 12.0 0.03 24 5.93 0.01 10 LNU865 79761.2 129.8 L 68 16.2 L 68 6.89 L 28 LNU865 79761.4 111.1 L 44 13.9 L 44 6.58 0.03 22 LNU865 79761.7 95.8 0.23 24 12.0 0.23 24 5.92 0.12 10 LNU831 79333.1 93.5 0.11 21 11.7 0.11 21 5.88 0.12 9 LNU816 78957.1 101.1 0.27 31 12.6 0.27 31 6.04 0.02 12 LNU816 78958.5 100.6 0.09 30 12.6 0.09 30 5.99 0.03 11 LNU816 78958.7 95.0 L 23 11.9 L 23 5.82 0.02 8 LNU809 79168.3 84.4 0.14 9 10.5 0.14 9 5.72 0.07 6 LNU809 79169.5 87.1 0.20 13 10.9 0.20 13 5.67 0.14 5 LNU795 79525.1 92.3 0.07 19 11.5 0.07 19 5.85 0.02 8 LNU795 79525.4 92.7 0.20 20 11.6 0.20 20 - - - LNU795 79525.5 - - - - - - 5.61 0.17 4 LNU788 78516.1 110.6 0.06 43 13.8 0.06 43 6.25 L 16 LNU788 78517.1 97.7 L 26 12.2 L 26 5.88 0.01 9 LNU788 78518.1 125.2 0.06 62 15.6 0.06 62 6.62 L 23 LNU783 79178.2 85.4 0.15 10 10.7 0.15 10 5.58 0.24 3 LNU783 79178.4 84.9 0.22 10 10.6 0.22 10 5.95 0.02 10 LNU778 78944.1 109.0 0.16 41 13.6 0.16 41 6.16 0.18 14 LNU778 78944.2 87.1 0.06 13 10.9 0.06 13 5.61 0.22 4 LNU762 79328.3 86.0 0.15 11 10.7 0.15 11 - - - LNU762 79330.3 82.6 0.26 7 10.3 0.26 7 - - - LNU752 78153.1 - - - - - - 6.16 0.22 14 LNU752 78155.2 84.2 0.23 9 10.5 0.23 9 5.69 0.11 5 CONT. - 77.4 - - 9.67 - - 5.40 - - LNU882 78973.4 105.5 0.10 7 13.2 0.10 7 6.07 0.11 4 LNU848 77906.2 112.2 0.07 13 14.0 0.07 13 6.37 L 9 LNU846 78439.4 120.8 0.20 22 15.1 0.20 22 6.53 L 12 LNU823 78122.2 - - - - - - 6.04 0.19 3 LNU823 78137.3 109.4 0.19 10 13.7 0.19 10 - - - LNU814 78955.4 - - - - - - 5.99 0.28 2 LNU772 78938.1 122.1 L 23 15.3 L 23 6.48 0.11 11 LNU757 77485.4 103.0 0.28 4 12.9 0.28 4 - - - CONT. - 99.0 - - 12.4 - - 5.84 - - LNU972 78907.1 77.6 0.27 10 9.69 0.27 10 - - - LNU972 78909.3 87.4 L 23 10.9 L 23 5.90 0.09 13 LNU961 79143.4 - - - - - - 5.57 0.20 7 LNU961 79145.3 80.9 0.10 14 10.1 0.10 14 5.50 0.20 5 LNU958 77687.2 86.2 0.08 22 10.8 0.08 22 - - - LNU958 77687.5 88.0 0.05 24 11.0 0.05 24 6.04 0.05 16 LNU958 77689.1 81.8 L 16 10.2 L 16 5.53 0.02 6 LNU948 78378.1 84.7 0.28 20 10.6 0.28 20 5.76 0.24 10 LNU948 78379.4 75.6 0.14 7 9.45 0.14 7 - - - LNU948 78380.2 81.3 0.25 15 10.2 0.25 15 5.54 0.16 6 LNU921 79063.2 83.6 0.19 18 10.4 0.19 18 - - - LNU921 79064.3 83.6 L 18 10.5 L 18 5.65 0.02 8 LNU913 78592.1 90.3 0.03 28 11.3 0.03 28 5.91 L 13 LNU913 78592.3 83.4 0.03 18 10.4 0.03 18 5.58 0.15 7 LNU913 78592.4 90.8 L 28 11.4 L 28 5.79 0.03 11 LNU913 78593.1 85.4 L 21 10.7 L 21 5.68 L 9 LNU913 78593.6 95.2 L 35 11.9 L 35 5.88 L 13 LNU912 78403.2 81.4 L 15 10.2 L 15 5.70 L 9 LNU912 78404.1 80.8 0.17 14 10.1 0.17 14 - - - LNU889 79599.1 74.2 0.29 5 9.28 0.29 5 - - - LNU889 79601.4 75.9 0.16 7 9.49 0.16 7 5.46 0.14 5 LNU889 79602.4 74.8 0.21 6 9.35 0.21 6 5.43 0.14 4 LNU881 78372.2 86.7 0.08 22 10.8 0.08 22 5.84 L 12 LNU881 78373.2 92.0 L 30 11.5 L 30 5.81 L 11 LNU881 78374.1 79.5 0.14 12 9.94 0.14 12 - - - LNU823 78136.4 80.5 0.01 14 10.1 0.01 14 5.50 0.03 5 LNU816 78957.1 86.7 0.03 22 10.8 0.03 22 5.78 0.11 11 LNU816 78958.7 96.7 L 37 12.1 L 37 6.13 L 17 LNU809 79168.3 80.8 0.14 14 10.1 0.14 14 5.48 0.12 5 LNU809 79169.2 80.4 0.01 14 10.1 0.01 14 5.48 0.04 5 LNU782 77441.1 87.6 0.04 24 10.9 0.04 24 5.72 0.02 10 LNU782 77444.2 76.2 0.26 8 9.53 0.26 8 - - - LNU782 77444.9 87.9 0.19 24 11.0 0.19 24 5.66 0.07 8 LNU772 78937.4 75.5 0.14 7 9.44 0.14 7 - - - LNU772 78938.1 99.5 L 41 12.4 L 41 6.35 0.03 22 LNU772 78940.2 85.8 L 21 10.7 L 21 5.86 L 12 LNU762 79329.2 75.6 0.24 7 9.45 0.24 7 - - - CONT. - 70.8 - - 8.85 - - 5.22 - - LNU882 78973.1 89.3 L 19 11.2 L 19 5.94 0.20 12 LNU882 78973.4 92.0 0.02 23 11.5 0.02 23 5.91 L 11 LNU871 78195.4 78.1 0.18 4 9.77 0.18 4 5.45 0.24 3 LNU865 79761.2 83.8 0.11 12 10.5 0.11 12 5.69 0.06 7 LNU865 79761.7 87.1 0.23 16 10.9 0.23 16 5.89 0.21 11 LNU857 78867.1 84.7 0.17 13 10.6 0.17 13 5.79 0.20 9 LNU835 78186.2 84.2 L 12 10.5 L 12 5.78 0.02 9 LNU807 79250.1 81.1 0.08 8 10.1 0.08 8 - - - LNU798 79671.4 88.0 0.03 17 11.0 0.03 17 5.72 0.08 8 LNU795 79525.4 80.8 0.09 8 10.1 0.09 8 5.48 0.18 3 LNU766 78931.2 84.1 0.07 12 10.5 0.07 12 5.71 L 8 LNU766 78932.1 94.9 0.14 27 11.9 0.14 27 5.91 0.06 11 CONT. - 74.9 - - 9.36 - - 5.30 - - LNU976 78362.2 - - - - - - 6.38 0.08 6 LNU976 78364.2 116.5 0.10 14 14.6 0.08 12 6.57 0.02 10 LNU970 78389.8 140.6 L 38 17.6 L 36 6.84 L 14 LNU970 78390.3 119.1 0.06 16 14.9 0.05 15 6.53 0.11 9 LNU963 78383.1 - - - - - - 6.31 0.12 5 LNU963 78383.3 - - - - - - 6.28 0.22 5 LNU963 78384.2 119.9 0.05 17 15.0 0.03 16 6.38 0.07 6 LNU934 79007.5 127.0 0.17 24 15.9 0.19 23 - - - LNU902 79606.1 110.6 0.29 8 13.8 0.30 7 6.32 0.11 5 LNU885 78416.1 110.6 0.28 8 13.8 0.28 7 6.28 0.16 5 LNU885 78419.3 111.5 0.24 9 13.9 0.24 8 6.42 0.24 7 LNU879 77799.2 - - - - - - 6.25 0.29 4 LNU858 79586.3 113.6 0.22 11 14.2 0.24 10 6.41 0.06 7 LNU858 79587.2 - - - - - - 6.29 0.16 5 LNU790 78890.1 119.7 0.08 17 15.0 0.08 16 6.50 0.14 8 CONT. - 102.2 - - 12.9 - - 5.99 - - LNU947 77446.1 89.3 0.29 7 11.2 0.29 7 - - - LNU947 77447.3 96.7 0.01 16 12.1 0.01 16 5.74 0.16 6 LNU947 77448.4 125.6 L 50 15.7 L 50 6.93 0.09 28 LNU940 77812.4 95.1 0.04 14 11.9 0.04 14 5.79 0.05 7 LNU940 77813.1 106.9 L 28 13.4 L 28 6.02 L 11 LNU900 78851.3 101.5 0.03 21 12.7 0.03 21 5.85 0.07 8 LNU900 78854.3 95.3 0.05 14 11.9 0.05 14 6.01 0.07 11 LNU898 78983.4 104.6 L 25 13.1 L 25 6.00 0.02 11 LNU898 78985.1 97.5 0.30 16 12.2 0.30 16 - - - LNU898 78985.4 92.5 0.09 10 11.6 0.09 10 5.65 0.18 4 LNU894 78283.7 106.3 0.28 27 13.3 0.28 27 - - - LNU846 78439.4 114.8 0.19 37 14.4 0.19 37 6.41 0.17 18 LNU820 77807.2 100.2 L 20 12.5 L 20 6.00 L 11 LNU815 77494.1 113.0 L 35 14.1 L 35 6.26 L 15 LNU815 77495.3 91.5 0.07 9 11.4 0.07 9 5.77 0.13 6 LNU814 78953.2 100.2 0.12 20 12.5 0.12 20 5.94 0.19 10 LNU814 78953.3 97.3 0.23 16 12.2 0.23 16 5.79 0.22 7 LNU811 78176.3 - - - - - - 5.66 0.18 4 LNU811 78176.8 95.2 0.21 14 11.9 0.21 14 - - - LNU811 78179.1 119.1 0.09 42 14.9 0.09 42 6.49 0.17 20 LNU797 78021.4 - - - - - - 5.70 0.10 5 LNU797 78025.3 100.3 0.15 20 12.5 0.15 20 5.96 0.08 10 LNU793 78166.4 - - - - - - 5.96 0.27 10 LNU793 78168.1 97.7 0.02 17 12.2 0.02 17 5.88 0.08 8 LNU793 78169.2 97.8 0.04 17 12.2 0.04 17 5.80 0.07 7 LNU769 78163.8 - - - - - - 5.78 0.08 6 LNU756 77581.3 98.6 0.26 18 12.3 0.26 18 5.89 0.20 9 LNU751 77478.3 95.4 0.02 14 11.9 0.02 14 - - - CONT. - 83.7 - - 10.5 - - 5.43 - - LNU972 78909.3 122.2 0.04 11 15.3 0.04 11 - - - LNU943 78407.2 123.5 0.23 12 15.4 0.23 12 - - - LNU913 78592.1 121.9 0.05 11 15.2 0.05 11 6.47 0.10 4 LNU913 78593.1 134.7 0.15 22 16.8 0.15 22 6.91 L 11 LNU864 79339.2 118.0 0.13 7 14.7 0.13 7 - - - LNU833 78184.1 117.7 0.11 7 14.7 0.11 7 6.52 0.18 5 LNU764 78926.1 116.1 0.16 5 14.5 0.16 5 - - - LNU764 78929.1 118.2 0.07 7 14.8 0.07 7 - - - CONT. - 110.3 - - 13.8 - - 6.21 - - Table 127: “CONT.” - Control; “Ave.” - Average; “% Incr.” =% increment; “p-val.” - p-value; L means that p-value is less than 0.01, p<0.1 was considered as significant.

The genes listed in Table 128 improved plant NUE when grown at standard nitrogen concentration levels. These genes produced faster developing plants when grown under limiting nitrogen growth conditions, compared to control plants, grown under identical growth conditions, as measured by growth rate of leaf number, rosette diameter and plot coverage.

TABLE 128 Genes showing improved rosette growth performance at standard nitrogen growth conditions Gene Name Event # RGR Of Leaf Number RGR Of Plot Coverage [cm2/day] RGR Of Rosette Diameter [cm/day] Ave. P-Val. % Incr. Ave. P-Val. % Incr. Ave. P-Val. % Incr. LNU941 78613.5 0.870 0.22 18 - - - - - - LNU941 78615.3 0.902 0.14 23 - - - - - - LNU922 78290.1 0.916 0.11 25 - - - - - - LNU918 78433.8 0.889 0.16 21 - - - - - - LNU918 78434.2 0.864 0.27 18 - - - - - - LNU915 78426.1 - - - 11.0 0.28 18 0.454 0.29 16 LNU915 78428.1 - - - 11.4 0.19 22 - - - LNU915 78428.2 0.871 0.20 19 - - - - - - LNU909 78424.3 0.919 0.09 25 11.4 0.19 23 0.463 0.23 18 LNU909 78425.4 0.881 0.19 20 - - - - - - LNU849 78498.4 0.880 0.19 20 - - - - - - LNU830 78741.3 0.859 0.25 17 - - - - - - LNU830 78741.5 0.851 0.29 16 - - - - - - LNU822 78623.2 0.859 0.28 17 - - - - - - LNU813 77682.3 0.862 0.27 17 - - - - - - LNU806 78515.4 0.921 0.10 25 - - - - - - LNU806 78515.5 - - - 12.0 0.09 30 0.460 0.27 18 LNU779 77887.3 0.887 0.16 21 - - - - - - CONT. - 0.734 - - 9.29 - - 0.391 - - LNU976 78364.1 - - - 5.11 L 43 0.312 0.02 22 LNU976 78364.5 - - - 4.32 0.07 21 0.297 0.07 17 LNU970 78388.1 - - - 4.32 0.07 21 - - - LNU970 78389.8 - - - 4.21 0.12 18 0.293 0.10 15 LNU968 77918.3 - - - 4.01 0.28 13 - - - LNU968 77919.4 - - - 4.37 0.06 23 - - - LNU963 78385.1 - - - 4.07 0.22 14 - - - LNU949 80553.8 - - - 4.22 0.12 19 0.286 0.20 12 LNU949 80557.4 - - - 4.05 0.24 14 0.282 0.25 11 LNU902 79606.5 - - - 4.36 0.09 23 0.288 0.21 13 LNU843 78962.4 - - - 4.08 0.20 15 - - - LNU790 78890.1 - - - 4.16 0.14 17 0.284 0.22 11 LNU785 79616.8 - - - 4.26 0.09 20 - - - LNU767 79146.1 - - - 4.20 0.14 18 - - - LNU767 79146.2 - - - 4.01 0.27 13 - - - CONT. - - - - 3.56 - - 0.255 - - LNU918 78433.1 0.818 0.28 15 - - - - - - LNU854 78238.1 0.816 0.30 15 - - - - - - LNU849 78500.1 0.819 0.29 15 - - - - - - LNU830 78741.3 - - - 15.4 0.09 35 0.615 0.12 24 LNU830 78741.5 - - - 15.3 0.11 34 - - - LNU813 77681.4 - - - 14.3 0.21 25 - - - LNU780 77489.4 - - - 14.3 0.23 25 - - - CONT. - 0.712 - - 11.5 - - 0.497 - - LNU948 78376.3 - - - 13.9 0.13 26 0.579 0.29 15 LNU948 78378.1 - - - 15.2 0.04 38 - - - LNU948 78380.3 0.791 0.04 41 - - - - - - LNU921 79061.1 0.796 0.05 42 - - - - - - LNU921 79063.2 - - - 13.8 0.14 25 - - - LNU921 79064.2 - - - 14.4 0.06 31 0.632 0.06 25 LNU921 79064.3 - - - 16.4 L 49 0.597 0.16 18 LNU921 79065.1 0.781 0.05 39 - - - - - - LNU912 78401.4 - - - - - - 0.582 0.27 15 LNU912 78402.3 0.711 0.23 27 - - - - - - LNU912 78405.2 0.905 0.01 61 - - - - - - LNU889 79599.1 0.863 0.03 54 13.8 0.14 25 - - - LNU889 79601.4 0.686 0.28 22 - - - - - - LNU888 78771.1 0.699 0.25 25 - - - - - - LNU881 78372.2 0.740 0.22 32 13.4 0.18 22 - - - LNU881 78373.1 0.688 0.24 23 14.6 0.06 33 0.584 0.22 16 LNU881 78373.2 - - - 16.3 0.01 48 0.639 0.06 27 LNU881 78374.1 - - - 13.9 0.13 26 - - - LNU881 78374.4 0.725 0.16 29 - - - - - - LNU865 79759.4 0.829 0.03 48 - - - - - - LNU865 79761.2 - - - 19.3 L 76 0.680 0.01 35 LNU865 79761.4 - - - 16.5 L 50 0.663 0.02 31 LNU865 79761.7 - - - 14.1 0.12 28 0.583 0.25 16 LNU857 78866.1 0.755 0.09 35 - - - - - - LNU857 78867.1 0.789 0.08 41 - - - - - - LNU857 78868.2 0.717 0.21 28 - - - - - - LNU857 78870.1 0.704 0.25 25 - - - - - - LNU831 79331.2 0.720 0.21 28 - - - - - - LNU831 79331.5 0.704 0.24 25 - - - - - - LNU831 79333.1 - - - 14.1 0.11 28 0.615 0.11 22 LNU831 79333.2 - - - 13.4 0.25 21 - - - LNU816 78957.1 - - - 15.2 0.05 38 0.603 0.15 20 LNU816 78958.2 0.692 0.25 23 - - - - - - LNU816 78958.4 0.768 0.10 37 - - - - - - LNU816 78958.5 - - - 14.8 0.05 35 0.576 0.28 14 LNU816 78958.7 - - - 13.7 0.14 25 - - - LNU809 79167.2 0.762 0.08 36 - - - - - - LNU809 79168.5 0.831 0.03 48 - - - - - - LNU807 79248.1 0.773 0.10 38 - - - - - - LNU807 79250.1 0.688 0.26 23 - - - - - - LNU795 79521.6 0.766 0.07 37 - - - - - - LNU795 79525.1 - - - 13.3 0.21 21 - - - LNU795 79525.4 - - - 14.1 0.11 28 0.606 0.15 20 LNU788 78516.1 - - - 16.2 L 47 0.594 0.17 18 LNU788 78517.1 - - - 14.3 0.08 30 - - - LNU788 78517.2 - - - 13.3 0.25 21 - - - LNU788 78518.1 - - - 17.8 L 62 0.575 0.29 14 LNU788 78520.4 0.791 0.07 41 - - - - - - LNU783 79178.2 0.720 0.19 28 - - - - - - LNU783 79178.4 - - - - - - 0.587 0.21 16 LNU778 78944.1 - - - 16.3 0.01 48 0.593 0.21 18 LNU778 78944.2 0.719 0.23 28 - - - - - - LNU762 79326.1 0.697 0.29 24 - - - - - - LNU752 78151.2 0.686 0.26 22 - - - - - - LNU752 78153.1 0.684 0.28 22 15.3 0.05 39 0.618 0.12 22 CONT. - 0.561 - - 11.0 - - 0.504 - - LNU846 78439.4 - - - 15.1 0.13 22 - - - LNU814 78955.5 0.958 0.09 17 - - - - - - LNU772 78938.1 - - - 15.1 0.13 22 - - - LNU757 77483.2 0.925 0.19 13 - - - - - - CONT. - 0.818 - - 12.4 - - - - - LNU972 78907.1 0.923 0.01 20 - - - - - - LNU972 78909.3 - - - 10.4 0.06 23 0.484 0.08 16 LNU961 79143.3 0.835 0.26 8 - - - - - - LNU961 79143.4 - - - - - - 0.458 0.28 10 LNU958 77687.2 - - - 10.2 0.09 21 - - - LNU958 77687.5 - - - 10.5 0.05 24 0.491 0.06 17 LNU958 77689.1 - - - 9.75 0.21 15 - - - LNU948 78378.1 - - - 9.85 0.21 17 0.469 0.19 12 LNU948 78380.2 - - - 9.66 0.26 14 - - - LNU921 79063.2 - - - 10.0 0.15 18 - - - LNU921 79064.3 - - - 9.89 0.17 17 - - - LNU913 78592.1 - - - 10.8 0.04 27 0.471 0.16 13 LNU913 78592.3 0.874 0.09 13 10.1 0.12 19 - - - LNU913 78592.4 0.887 0.14 15 10.8 0.03 27 0.462 0.24 10 LNU913 78593.1 - - - 10.2 0.09 21 - - - LNU913 78593.6 0.923 0.04 20 11.2 0.01 33 0.460 0.25 10 LNU912 78403.2 0.846 0.22 10 9.68 0.24 15 0.471 0.17 13 LNU912 78404.1 - - - 9.60 0.27 14 - - - LNU888 78772.1 0.847 0.26 10 - - - - - - LNU888 78772.7 0.877 0.14 14 - - - - - - LNU881 78372.2 - - - 10.1 0.12 20 0.467 0.19 12 LNU881 78373.2 0.856 0.21 11 11.0 0.02 31 0.466 0.19 11 LNU881 78374.1 0.890 0.08 16 - - - - - - LNU823 78136.4 - - - 9.63 0.26 14 - - - LNU816 78957.1 - - - 10.3 0.09 22 0.472 0.16 13 LNU816 78958.7 - - - 11.5 L 36 0.500 0.03 20 LNU809 79168.3 0.844 0.26 10 9.74 0.22 15 - - - LNU809 79169.2 - - - 9.59 0.27 13 - - - LNU782 77441.1 - - - 10.4 0.07 23 - - - LNU782 77444.9 - - - 10.4 0.08 22 - - - LNU772 78938.1 - - - 11.9 L 41 0.524 L 25 LNU772 78940.2 - - - 10.2 0.10 21 0.482 0.09 15 LNU757 77481.1 0.911 0.05 18 - - - - - - LNU757 77483.3 0.841 0.29 9 - - - - - - LNU757 77485.4 0.925 0.01 20 - - - - - - CONT. - 0.770 - - 8.45 - - 0.418 - - LNU882 78973.1 - - - 10.8 0.06 21 0.469 0.09 14 LNU882 78973.4 - - - 11.1 0.03 24 0.456 0.16 11 LNU865 79761.2 - - - 10.0 0.24 13 0.461 0.12 12 LNU865 79761.7 - - - 10.4 0.13 17 0.466 0.10 14 LNU857 78867.1 - - - 10.3 0.17 15 0.459 0.15 12 LNU848 77909.3 - - - 10.2 0.21 15 - - - LNU835 78186.2 - - - 10.1 0.23 13 0.461 0.12 13 LNU828 77598.3 - - - 10.3 0.18 15 - - - LNU807 79248.5 0.998 0.24 14 - - - - - - LNU798 79671.4 - - - 10.7 0.06 20 0.450 0.22 10 LNU766 78931.2 - - - 10.0 0.24 13 0.444 0.30 8 LNU766 78932.1 - - - 11.3 0.02 26 0.456 0.18 11 LNU752 78153.1 1.02 0.16 17 - - - - - - CONT. - 0.873 - - 8.92 - - 0.410 - - LNU976 78364.2 - - - - - - 0.579 0.14 15 LNU970 78389.8 - - - 17.5 0.01 38 0.578 0.14 15 LNU970 78390.3 - - - 14.8 0.25 17 0.560 0.28 11 LNU963 78384.2 - - - 15.0 0.20 19 - - - LNU934 79007.5 - - - 15.5 0.14 23 - - - LNU924 77608.3 - - - - - - 0.558 0.30 11 LNU902 79604.4 0.894 0.11 19 - - - - - - LNU790 78890.1 - - - 14.7 0.26 16 - - - LNU790 78890.3 0.881 0.16 17 - - - - - - LNU767 79146.1 0.862 0.21 15 - - - - - - CONT. - 0.750 - - 12.6 - - 0.503 - - LNU947 77447.3 - - - 11.7 0.23 15 - - - LNU947 77448.4 - - - 15.2 L 50 0.552 L 28 LNU940 77812.4 - - - 11.7 0.25 15 - - - LNU940 77813.1 - - - 13.0 0.03 28 0.482 0.18 12 LNU900 78851.3 - - - 12.2 0.11 21 - - - LNU900 78854.3 - - - 11.6 0.26 14 0.511 0.04 19 LNU898 78983.4 - - - 12.7 0.05 26 0.482 0.17 12 LNU898 78985.1 - - - 12.0 0.17 18 0.480 0.21 12 LNU894 78282.3 - - - 12.0 0.20 18 - - - LNU894 78283.4 0.909 0.18 16 12.4 0.11 22 - - - LNU894 78283.7 - - - 12.8 0.07 27 0.485 0.28 13 LNU846 78438.2 - - - - - - 0.476 0.26 11 LNU846 78439.4 - - - 13.8 0.01 36 0.499 0.13 16 LNU820 77807.2 - - - 12.2 0.11 21 0.502 0.06 17 LNU815 77492.6 - - - 12.5 0.11 23 0.479 0.28 11 LNU815 77494.1 - - - 13.8 L 36 0.510 0.04 19 LNU815 77495.3 - - - - - - 0.476 0.23 11 LNU814 78953.2 - - - 12.1 0.13 20 0.490 0.13 14 LNU814 78953.3 - - - 11.8 0.23 16 - - - LNU811 78176.8 - - - 11.6 0.25 15 - - - LNU811 78179.1 - - - 14.2 L 41 0.517 0.05 20 LNU797 78025.3 - - - 12.2 0.14 20 0.487 0.16 13 LNU793 78166.4 - - - 12.1 0.15 19 0.479 0.24 11 LNU793 78168.1 - - - 12.1 0.13 19 0.493 0.11 15 LNU793 78169.2 - - - 11.9 0.19 17 - - - LNU769 78163.4 - - - - - - 0.488 0.20 14 LNU769 78163.8 - - - - - - 0.480 0.22 12 LNU756 77581.3 - - - 12.1 0.14 20 0.483 0.19 12 LNU751 77477.1 0.878 0.25 12 - - - - - - LNU751 77477.4 0.914 0.19 16 - - - - - - LNU751 77478.3 - - - 11.7 0.23 15 - - - CONT. - 0.786 - - 10.1 - - 0.430 - - LNU913 78593.1 - - - 16.7 0.09 23 - - - LNU896 78978.1 0.887 0.26 14 - - - - - - CONT. - 0.777 - - 13.6 - - - - - Table 128. “CONT.” - Control; “Ave.” - Average; “% Incr.” =% increment; “p-val.” - p-value; L means that p-value is less than 0.01, p<0.1 was considered as significant.

Example 19 Evaluation of Transgenic Brachypodium Nue and Yield Under Low or Normal Nitrogen Fertilization in Greenhouse Assay

Assay 1: Nitrogen Use efficiency measured plant biomass and yield at limited and optimal nitrogen concentration under greenhouse conditions until heading - This assay follows the plant biomass formation and growth (measured by height) of plants which are grown in the greenhouse at limiting and non-limiting (e.g., normal) nitrogen growth conditions. Transgenic Brachypodium seeds were sown in peat plugs. The T1 transgenic seedlings were then transplanted to 27.8 X 11.8 X 8.5 cm trays filled with peat and perlite in a 1:1 ratio. The trays were irrigated with a solution containing nitrogen limiting conditions, which were achieved by irrigating the plants with a solution containing 3 mM inorganic nitrogen in the form of NH4NO3, supplemented with 1 mM KH2PO4, 1 mM MgSO4, 3.6 mM KCl, 2 mM CaCl2 and microelements, while normal nitrogen levels were achieved by applying a solution of 6 mM inorganic nitrogen also in the form of NH4NO3 with 1 mM KH2PO4, 1 mM MgSO4, 2 mM CaCl2, 3.6 mM KCl and microelements. All plants were grown in the greenhouse until heading. Plant biomass (the above ground tissue) was weighted right after harvesting the shoots (plant fresh weight [FW]). Following, plants were dried in an oven at 70° C. for 48 hours and weighed (plant dry weight [DW]).

Each construct was validated at its T1 generation. Transgenic plants transformed with a construct conformed by an empty vector carrying the BASTA selectable marker were used as control (FIG. 9B).

The plants were analyzed for their overall size, fresh weight and dry matter. Transgenic plants performance was compared to control plants grown in parallel under the same conditions. Mock- transgenic plants with no gene and no promoter at all, were used as control (FIG. 9B).

The experiment was planned in blocks and nested randomized plot distribution within them. For each gene of the invention five independent transformation events were analyzed from each construct.

Phenotyping

Plant Fresh and Dry shoot weight - In Heading assays when heading stage has completed (about day 30 from sowing), the plants were harvested and directly weighed for the determination of the plant fresh weight on semi-analytical scales (0.01 gr) (FW) and left to dry at 70° C. in a drying chamber for about 48 hours before weighting to determine plant dry weight (DW).

Time to Heading - In both Seed Maturation and Heading assays heading was defined as the full appearance of the first spikelet in the plant. The time to heading occurrence is defined by the date the heading is completely visible. The time to heading occurrence date was documented for all plants and then the time from planting to heading was calculated.

Leaf thickness - In Heading assays when minimum 5 plants per plot in at least 90% of the plots in an experiment have been documented at heading, measurement of leaf thickness was performed using a micro-meter on the second leaf below the flag leaf.

Plant Height - In both Seed Maturation and Heading assays once heading was completely visible, the height of the first spikelet was measured from soil level to the bottom of the spikelet.

Tillers number - In Heading assays manual count of tillers was preformed per plant after harvest, before weighing.

Example 20 Evaluation of Transgenic Brachypodium Nue and Yield Under Low or Normal Nitrogen Fertilization in Greenhouse Assay

Assay 2: Nitrogen Use efficiency measured plant biomass and yield at limited and optimal nitrogen concentration under greenhouse conditions until Seed Maturation - This assay follows the plant biomass and yield production of plants that were grown in the greenhouse at limiting and non-limiting nitrogen growth conditions. Transgenic Brachypodium seeds were sown in peat plugs. The T1 transgenic seedlings were then transplanted to 27.8 X 11.8 X 8.5 cm trays filled with peat and perlite in a 1:1 ratio. The trays were irrigated with a solution containing nitrogen limiting conditions, which were achieved by irrigating the plants with a solution containing 3 mM inorganic nitrogen in the form of NH4NO3, supplemented with 1 mM KH2PO4, 1 mM MgSO4, 3.6 mM KCl, 2 mM CaCl2 and microelements, while normal nitrogen levels were achieved by applying a solution of 6 mM inorganic nitrogen also in the form of NH4NO3 with 1 mM KH2PO4, 1 mM MgSO4, 2 mM CaCl2, 3.6 mM KCl and microelements. All plants were grown in the greenhouse until seed maturation. Each construct was validated at its T1 generation. Transgenic plants transformed with a construct conformed by an empty vector carrying the BASTA selectable marker were used as control (FIG. 9B).

The plants were analyzed for their overall biomass, fresh weight and dry matter, as well as a large number of yield and yield components related parameters. Transgenic plants performance was compared to control plants grown in parallel under the same conditions. Mock- transgenic plants with no gene and no promoter at all (FIG. 9B). The experiment was planned in blocks and nested randomized plot distribution within them. For each gene of the invention five independent transformation events were analyzed from each construct.

Phenotyping

Plant Fresh and Dry vegetative weight - In Seed Maturation assays when maturity stage has completed (about day 80 from sowing), the plants were harvested and directly weighed for the determination of the plant fresh weight (FW) and left to dry at 70° C. in a drying chamber for about 48 hours before weighting to determine plant dry weight (DW).

Spikelets Dry weight (SDW) - In Seed Maturation assays when maturity stage has completed (about day 80 from sowing), the spikelets were separated from the biomass, left to dry at 70° C. in a drying chamber for about 48 hours before weighting to determine spikelets dry weight (SDW).

Grain Yield per Plant - In Seed Maturation assays after drying of spikelets for SDW, spikelets were run through production machine, then through cleaning machine, until seeds were produced per plot, then weighed and Grain Yield per Plant was calculated.

Grain Number - In Seed Maturation assays after seeds per plot were produced and cleaned, the seeds were run through a counting machine and counted.

1000 Seed Weight - In Seed Maturation assays after seed production, a fraction was taken from each sample (seeds per plot; ~0.5 gr), counted and photographed. 1000 seed weight was calculated.

Harvest Index - In Seed Maturation assays after seed production, harvest index was calculated by dividing grain yield and vegetative dry weight.

Time to Heading - In both Seed Maturation and Heading assays heading was defined as the full appearance of the first spikelet in the plant. The time to heading occurrence is defined by the date the heading is completely visible. The time to heading occurrence date was documented for all plants and then the time from planting to heading was calculated.

Leaf thickness - In Heading assays when minimum 5 plants per plot in at least 90% of the plots in an experiment have been documented at heading, measurement of leaf thickness was performed using a micro-meter on the second leaf below the flag leaf.

Grain filling period - In Seed Maturation assays maturation was defined by the first color-break of spikelet + stem on the plant, from green to yellow/brown.

Plant Height - In both Seed Maturation and Heading assays once heading was completely visible, the height of the first spikelet was measured from soil level to the bottom of the spikelet.

Tillers number - In Heading assays manual count of tillers was preformed per plant after harvest, before weighing.

Number of reproductive heads per plant - In Heading assays manual count of heads per plant was performed.

Statistical analyses - To identify genes conferring significantly improved tolerance to abiotic stresses, the results obtained from the transgenic plants were compared to those obtained from control plants. To identify outperforming genes and constructs, results from the independent transformation events tested were analyzed separately. Data was analyzed using Student’s t-test and results were considered significant if the p value was less than 0.1. The JMP statistics software package was used (Version 5.2.1, SAS Institute Inc., Cary, NC, USA).

Although the invention has been described in conjunction with specific embodiments thereof, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art. Accordingly, it is intended to embrace all such alternatives, modifications and variations that fall within the spirit and broad scope of the appended claims.

It is the intent of the applicant(s) that all publications, patents and patent applications referred to in this specification are to be incorporated in their entirety by reference into the specification, as if each individual publication, patent or patent application was specifically and individually noted when referenced that it is to be incorporated herein by reference. In addition, citation or identification of any reference in this application shall not be construed as an admission that such reference is available as prior art to the present invention. To the extent that section headings are used, they should not be construed as necessarily limiting. In addition, any priority document(s) of this application is/are hereby incorporated herein by reference in its/their entirety.

Claims

1. A method of increasing nitrogen use efficiency, yield, growth rate, biomass, vigor, oil content, seed yield, fiber yield, fiber quality, fiber length, photosynthetic capacity, abiotic stress tolerance, and/or reducing time to flowering or time to inflorescence emergence of a plant, as compared to a control plant of the same species which is grown under the same growth conditions, the method comprising over-expressing within the plant a polypeptide comprising an amino acid sequence as set forth by SEQ ID NO: 778, or an orthologue polypeptide thereof having an amino acid sequence at least 80% identical to SEQ ID NO: 778, wherein said orthologue polypeptide is capable of increasing the nitrogen use efficiency, yield, growth rate, biomass, vigor, oil content, seed yield, fiber yield, fiber quality, fiber length, photosynthetic capacity, abiotic stress tolerance, and/or reducing the time to flowering or time to inflorescence emergence of the plant.

2. The method of claim 1, further comprising selecting plants over-expressing said polypeptide for an increased nitrogen use efficiency, yield, growth rate, biomass, vigor, oil content, seed yield, fiber yield, fiber quality, fiber length, photosynthetic capacity, and/or abiotic stress tolerance of a plant as compared to a control plant of the same species which is grown under the same growth conditions.

3. The method of claim 1, further comprising selecting plants over-expressing said polypeptide for a reduced time to flowering and/or a reduced time to inflorescence emergence of a plant as compared to a control plant of the same species which is grown under the same growth conditions.

4. The method of claim 1, wherein said orthologue polypeptide is at least 95% identical to the polypeptide set forth by SEQ ID NO: 778.

5. The method of claim 1, wherein said polypeptide is selected from the group consisting of SEQ ID NOs: 778, 632 and 4798-4806.

6. The method of claim 1, wherein said polypeptide is expressed from a polynucleotide comprising a nucleic acid sequence at least 80% identical to SEQ ID NO: 418.

7. The method of claim 1, wherein said polypeptide is expressed from a polynucleotide comprising a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 418, 137 and 2840-2848.

8. The method of claim 1, further comprising growing the plant over-expressing said polypeptide under the abiotic stress.

9. The method of claim 1, wherein said abiotic stress is selected from the group consisting of salinity, drought, osmotic stress, water deprivation, flood, etiolation, low temperature, high temperature, heavy metal toxicity, anaerobiosis, nutrient deficiency, nitrogen deficiency, nutrient excess, atmospheric pollution and UV irradiation.

10. The method of claim 1, further comprising growing the plant over-expressing said polypeptide under nitrogen-limiting conditions.

11. A method of producing a crop, comprising growing a crop plant over-expressing a polypeptide comprising an amino acid sequence at least 80% identical to the amino acid sequence set forth by SEQ ID NO: 778 as compared to a control plant of the same species which is grown under the same growth conditions, wherein the crop plant is derived from plants selected for increased nitrogen use efficiency, increased yield, increased growth rate, increased biomass, increased vigor, increased oil content, increased seed yield, increased fiber yield, increased fiber quality, increased fiber length, increased photosynthetic capacity, increased abiotic stress tolerance, reduced time to flowering and/or reduced time to inflorescence emergence as compared to a wild type plant of the same species which is grown under the same growth conditions, and the crop plant has the increased nitrogen use efficiency, increased yield, increased growth rate, increased biomass, increased vigor, increased oil content, increased seed yield, increased fiber yield, increased fiber quality, increased fiber length, increased photosynthetic capacity, increased abiotic stress tolerance, reduced time to flowering and/or reduced time to inflorescence emergence, thereby producing the crop.

12. The method of claim 11, wherein said polypeptide is expressed from a polynucleotide comprising a nucleic acid sequence which is at least 80% identical to the nucleic acid sequence set forth by SEQ ID NO: 418.

13. A nucleic acid construct comprising an isolated polynucleotide comprising a nucleic acid sequence encoding a polypeptide which comprises an amino acid sequence at least 80% identical to the amino acid sequence set forth in SEQ ID NO: 778, and a heterologous promoter for directing transcription of said nucleic acid sequence in a host cell, wherein said amino acid sequence is capable of increasing nitrogen use efficiency, yield, growth rate, biomass, vigor, oil content, seed yield, fiber yield, fiber quality, fiber length, photosynthetic capacity, and/or abiotic stress tolerance, and/or reducing time to flowering or to inflorescence emergence of a plant.

14. The nucleic acid construct of claim 13, wherein said polypeptide comprises the amino acid sequence selected from the group consisting of SEQ ID NOs: 778, 632 and 4798-4806.

15. The nucleic acid construct of claim 13, wherein said nucleic acid sequence is selected from the group consisting of SEQ ID NOs: 418, 137 and 2840-2848.

16. A plant cell comprising the nucleic acid construct of claim 13.

17. A transgenic plant comprising the nucleic acid construct of claim 13.

18. A method of growing a crop, the method comprising seeding seeds and/or planting plantlets of a plant transformed with the nucleic acid construct of claim 13, wherein the plant is derived from plants selected for at least one trait selected from the group consisting of: increased nitrogen use efficiency, increased abiotic stress tolerance, increased biomass, increased growth rate, increased vigor, increased yield and increased fiber yield, increased fiber quality, increased fiber length, increased photosynthetic capacity, increased oil content, reduced time to flowering and reduced time to inflorescence emergence as compared to a non-transformed plant, thereby growing the crop.

19. A method of selecting a transformed plant having increased nitrogen use efficiency, yield, growth rate, biomass, vigor, oil content, seed yield, fiber yield, fiber quality, fiber length, photosynthetic capacity, and/or abiotic stress tolerance, and/or reducing time to flowering or inflorescence emergence, as compared to a wild type plant of the same species which is grown under the same growth conditions, the method comprising:

(a) providing the transgenic plants of claim 17; and
(b) selecting from said plants a plant having increased nitrogen use efficiency, increased yield, increased growth rate, increased biomass, increased vigor, increased oil content, increased seed yield, increased fiber yield, increased fiber quality, increased fiber length, increased photosynthetic capacity, increased abiotic stress tolerance, reduced time to flowering and/or reduced time to inflorescence emergence, as compared to wild type plant of the same species which is grown under the same growth conditions.

20. The nucleic acid construct of claim 13, wherein said promoter is a constitutive promoter.

Patent History
Publication number: 20230313218
Type: Application
Filed: Aug 31, 2022
Publication Date: Oct 5, 2023
Applicant: Evogene Ltd. (Rehovot)
Inventors: Adi ETZIONI (Kibbutz Tzora), Hagai KARCHI (Moshav Sitriya)
Application Number: 17/899,699
Classifications
International Classification: C12N 15/82 (20060101); C07K 14/415 (20060101);