CEILING SYSTEM HAVING A PLURALITY OF DIFFERENT PANELS
A ceiling system is provided for use in a building space having a plurality of walls. The ceiling system includes a grid system that extends to at least two of the plurality of walls and separates the building space into an occupiable space below the grid system and a plenum space above the grid system; and a plurality of ceiling tiles that are supported by the grid system and, with the grid system, create a barrier between the occupiable space and the plenum space, the plurality of ceiling tiles including three different polygonal non-rectangular ceiling tiles
This application is a continuation application of U.S. patent application Ser. No. 17/223,313, which in turn is a continuation application of U.S. patent application Ser. No. 16/876,651, which issued as U.S. Pat. No. 10,995,489, filed on May 18, 2020, which in turn is a continuation application of U.S. patent application Ser. No. 16/359,481, filed on Mar. 20, 2019, which issued as U.S. Pat. No. 10,676,925, which in turn claims the benefit of U.S. Provisional Application No. 62/645,990, filed on Mar. 21, 2018. The disclosures of of the above applications are incorporated herein by reference in their entireties.
FIELDThe present invention relates to building panel systems. Particular embodiments of the invention relate to ceiling systems having removable panels. The removable panels can include a plurality of different shapes, colors, and/or textures.
BACKGROUNDMany types of ceiling systems and ceiling panels exist. Some ceiling systems include a grid system and lay in ceiling tiles that are supported by the grid system. These grid systems can have a plurality of metal or plastic main beams and a plurality of metal or plastic cross members that span the gaps between the main beams.
A problem exists in that these grid systems with lay in ceiling tiles can be restrictive in that the possible visual appearances that can be created are limited.
Accordingly, embodiments of the invention provide ceiling systems that allow more creativity and less restriction due to the use of multiple different tiles and the use of grid systems that permit the use of multiple different tiles.
SUMMARYEmbodiments of the invention provide a solution to the above problem by allowing more flexibility in grid design and more flexibility in ceiling tile construction and arrangement.
In one aspect, a ceiling system is for use in a building space having a plurality of walls. The ceiling system includes a grid system that extends to at least two of the plurality of walls and separates the building space into an occupiable space below the grid system and a plenum space above the grid system; and a plurality of ceiling tiles that are supported by the grid system and, with the grid system, create a barrier between the occupiable space and the plenum space, the plurality of ceiling tiles including three different polygonal non-rectangular ceiling tiles.
In another aspect, the plenum space is a closed space.
In another aspect, a difference in the three different polygonal non-rectangular ceiling tiles is shape.
In another aspect, a difference in the three different polygonal non-rectangular ceiling tiles is color.
In another aspect, a difference in the three different polygonal non-rectangular ceiling tiles is shade of the same color.
In another aspect, a difference in the three different polygonal non-rectangular ceiling tiles is size.
In another aspect, a difference in the three different polygonal non-rectangular ceiling tiles is texture.
In another aspect, two of the three different ceiling tiles are different sizes of a first shape, and a third of the three different ceiling tiles is a second shape that is different from the first shape.
In another aspect, two of the three different ceiling tiles are different shades of a first color, and a third of the three different ceiling tiles is a second color that is different from the first color.
In another aspect, the grid system has a first main beam, a second main beam parallel to the first main beam, the first and second main beams extending longitudinally in a main beam direction, a field area having a plurality of field area cross members that attach to the main beams, the field area cross members intersecting the main beams at a first angle, the first angle being an acute angle, and a perimeter area that surrounds the field area, the perimeter area having a plurality of perimeter area cross members that attach to the main beams, the perimeter area cross members intersecting the main beams at a second angle, the second angle and the first angle being different.
In another aspect, the second angle is a right angle.
In another aspect, all the perimeter area cross members are parallel to each other.
In another aspect, all the field area cross members are parallel to each other.
In another aspect, one of the ceiling tiles has a front face that faces the occupiable space and a back face that faces the plenum space, and the front face and the back face are different colors.
In another aspect, a portion of the ceiling tiles are tegular ceiling tiles.
In another aspect, the tegular ceiling tiles have a recess along their entire perimeter such that a support surface is parallel to the front face and an edge extends between the front face and the support surface, and the front face, the edge, and the support surface are all the same color.
In one aspect, a ceiling system for use in a building space having a plurality of walls, the ceiling system includes a grid system that extends to at least two of the plurality of walls and separates the building space into an occupiable space below the grid system and a plenum space above the grid system, the grid system has a first main beam, a second main beam parallel to the first main beam, the first and second main beams extending longitudinally in a main beam direction, a first cross member that interests the first main beam at a first location and intersects the second main beam at a second location, and a second cross member that intersects the second main beam at a third location, the third location being offset from the second location along the main beam direction; and a plurality of ceiling tiles that are supported by the grid system and, with the grid system, create a barrier between the occupiable space and the plenum space. All cross members that intersect the second main beam at the second location are on a side of the second main beam that faces the first main beam, and at least one of the first cross member and the second cross member is at an acute angle relative to the main beam direction.
In another aspect, the second location is offset from the first location along the main beam direction.
In another aspect, the first location and the third location are at the same location along the main beam direction.
In one aspect, a ceiling system for use in a building space having a plurality of walls, the ceiling system includes a grid system that extends to at least two of the plurality of walls and separates the building space into an occupiable space below the grid system and a plenum space above the grid system, the grid system having a first main beam, a second main beam parallel to the first main beam, the first and second main beams extending longitudinally in a main beam direction, a first cross member that interests the first main beam at a first location and intersects the second main beam at a second location, and a second cross member that intersects the second main beam at a third location, the third location being offset from the second location along the main beam direction; and a plurality of ceiling tiles that are supported by the grid system and, with the grid system, create a barrier between the occupiable space and the plenum space. One of the plurality of ceiling tiles has a non-white color on its surface that faces the occupiable space, and no color on its surface that faces the plenum space.
In an even further aspect, the invention can be a ceiling system for use in a building space having a plurality of walls, the ceiling system comprising: a grid system that extends to at least two of the plurality of walls and separates the building space into an occupiable space below the grid system and a plenum space above the grid system; a plurality of ceiling tiles supported by the grid system, the plurality of ceiling tiles including a first ceiling tile, a second ceiling tile, and a third ceiling tile, the plurality of ceiling tiles arranged in a manner such that a downward ceiling surface is formed that comprises a repeating pattern that includes: a first repeating visual element; and a second repeating visual element that is different from the first repeating visual element; wherein the first repeating visual element is formed by at least the first building tile and the second repeating visual element is formed by at least the second building tile and the third building tile; and wherein the repeating pattern is a change in color, shape, or texture of the plurality of ceiling tiles.
In a still further aspect, the invention can be a grid system for use installing a ceiling system within a building space having a plurality of walls, the grid system comprising: a plurality of main beams configured to be supported within the building space in parallel manner to one another; a plurality of cross members configured to extend between and be supported by adjacent ones of the plurality of main beams; a plurality of brackets, each of the brackets comprising: a central portion; a first tab extending outward from the central portion and configured to connect to the plurality of cross members, the first tab comprising a first tab vertical wall; and a second tab extending outward from the central portion and configured to connect to the plurality of cross members, the second tab comprising a second tab vertical wall, an acute first bracket angle being formed between the first tab and the second tab
In a yet further aspect, the invention can be a ceiling system for use in a building space having a plurality of walls, the ceiling system comprising: a grid system comprising: a first main beam comprising a first main beam vertical web extending from a first main beam bottom flange; a second main beam parallel to the first main beam; a first cross member comprising a first cross member vertical web extending upward from a first cross member bottom flange; a second cross member comprising a second cross member vertical web extending upward from a second cross member bottom flange; a first bracket comprising: a central portion comprising a central vertical wall extending upward from a central bottom flange; a first tab extending outward from the central portion, the first tab comprising a first tab vertical wall; a second tab extending outward from the central portion so as to form an acute first bracket angle between the first and second tabs, the second tab comprising a second tab vertical wall; and the first bracket connected to the first main beam so that the central bottom flange overlaps with the first main beam bottom flange in a vertical direction; a plurality of ceiling tiles supported by the grid system.
Further areas of applicability of the present invention will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention.
The present invention will become more fully understood from the detailed description and the accompanying drawings, wherein:
All drawings are schematic and not necessarily to scale. Parts given a reference numerical designation in one figure may be considered to be the same parts where they appear in other figures without a numerical designation for brevity unless specifically labeled with a different part number and described herein.
DETAILED DESCRIPTIONThe following description of the preferred embodiment(s) is merely exemplary in nature and is in no way intended to limit the invention, its application, or uses.
In the description of embodiments disclosed herein, any reference to direction or orientation is merely intended for convenience of description and is not intended in any way to limit the scope of the present invention. Relative terms such as “lower,” “upper,” “horizontal,” “vertical,”, “above,” “below,” “up,” “down,” “top” and “bottom” as well as derivative thereof (e.g., “horizontally,” “downwardly,” “upwardly,” etc.) should be construed to refer to the orientation as then described or as shown in the drawing under discussion. These relative terms are for convenience of description only and do not require that the apparatus be constructed or operated in a particular orientation. Terms such as “attached,” “connected,” “coupled,” “interconnected,” and similar refer to a relationship wherein structures are secured or attached to one another either directly or indirectly through intervening structures, as well as both movable or rigid attachments or relationships, unless expressly described otherwise. The term “fixed” refers to two structures that cannot be separated without damaging one of the structures. The term “filled” refers to a state that includes completely filled or partially filled.
As used throughout, ranges are used as shorthand for describing each and every value that is within the range. Any value within the range can be selected as the terminus of the range. In addition, all references cited herein are hereby incorporated by reference in their entireties. In the event of a conflict in a definition in the present disclosure and that of a cited reference, the present disclosure controls.
Various type of tiles can be used with the grid system. In the case of acoustical tiles, the tiles may comprise fiberglass, mineral wool (such as rock wool, slag wool, or a combination thereof), synthetic polymers (such as melamine foam, polyurethane foam, or a combination thereof), mineral cotton, silicate cotton, gypsum, or combinations thereof. In some embodiments, the tile provides a sound attenuation function and preferred materials for providing the sound attenuation function include mineral wool. Such a tile can provide a CAC (Ceiling Attenuation Class) rating of at least 35, preferably at least 40. CAC is further described below. In some non-limiting embodiments, the tile may be selected from the School ZoneTM and CallaTM panel lines produced by Armstrong—for example, School Zone 1810.
Acoustic ceiling panels exhibit certain acoustical performance properties. Specifically, the American Society for Testing and Materials (ASTM) has developed test method E1414 to standardize the measurement of airborne sound attenuation between room environments 3 sharing a common plenary space 2. The rating derived from this measurement standard is known as the Ceiling Attenuation Class (CAC). Ceiling materials and systems having higher CAC values have a greater ability to reduce sound transmission through a plenary space—i.e. sound attenuation function.
Another important characteristic for acoustic ceiling panel materials is the ability to reduce the amount of reflected sound in a room. One measurement of this ability is the Noise Reduction Coefficient (NRC) rating as described in ASTM test method C423. This rating is the average of sound absorption coefficients at four V3 octave bands (250, 500, 1000, and 2000 Hz), where, for example, a system having an NRC of 0.90 has about 90% of the absorbing ability of an ideal absorber. A higher NRC value indicates that the material provides better sound absorption and reduced sound reflection—sound absorption function.
Acoustic ceiling panels can have different constructions. In some cases, the body may be porous, thereby allowing airflow through the body between an upper surface and a lower surface 121. The body may be comprised of a binder and fibers. In some embodiments, the body may further comprise a filler and/or additive.
Non-limiting examples of binder may include a starch-based polymer, polyvinyl alcohol (PVOH), a latex, polysaccharide polymers, cellulosic polymers, protein solution polymers, an acrylic polymer, polymaleic anhydride, epoxy resins, or a combination of two or more thereof.
The binder may be present in an amount ranging from about 1 wt. % to about 25 wt. % based on the total dry weight of the body—including all values and sub-ranges there-between. The phrase “dry-weight” refers to the weight of a referenced component without the weight of any carrier. Thus, when calculating the weight percentages of components in the dry-state, the calculation should be based solely on the solid components (e.g., binder, filler, hydrophobic component, fibers, etc.) and should exclude any amount of residual carrier (e.g., water, VOC solvent) that may still be present from a wet-state, which will be discussed further herein. According to the present invention, the phrase “dry-state” may also be used to indicate a component that is substantially free of a carrier, as compared to the term “wet-state,” which refers to that component still containing various amounts of carrier.
Non-limiting examples of filler may include powders of calcium carbonate, including limestone, titanium dioxide, sand, barium sulfate, clay, mica, dolomite, silica, talc, perlite, polymers, gypsum, wollastonite, expanded-perlite, calcite, aluminum trihydrate, pigments, zinc oxide, or zinc sulfate. The filler may be present in an amount ranging from about 25 wt. % to about 99 wt. % based on the total dry weight of the body—including all values and sub-ranges there-between.
Non-limiting examples of additives include defoamers, wetting agents, biocides, dispersing agents, flame retardants, and the like. The additive may be present in an amount ranging from about 0.01 wt. % to about 30 wt. % based on the total dry weight of the body—including all values and sub-ranges there-between.
The fibers may be organic fibers, inorganic fibers, or a blend thereof. Non-limiting examples of inorganic fibers mineral wool (also referred to as slag wool), rock wool, stone wool, and glass fibers. Non-limiting examples of organic fiber include fiberglass, cellulosic fibers (e.g. paper fiber—such as newspaper, hemp fiber, jute fiber, flax fiber, wood fiber, or other natural fibers), polymer fibers (including polyester, polyethylene, aramid—i.e., aromatic polyamide, and/or polypropylene), protein fibers (e.g., sheep wool), and combinations thereof. Depending on the specific type of material, the fibers 130 may either be hydrophilic (e.g., cellulosic fibers) or hydrophobic (e.g. fiberglass, mineral wool, rock wool, stone wool). The fibers may be present in an amount ranging from about 5 wt. % to about 99 wt. % based on the total dry weight of the body—including all values and sub-ranges there-between.
A face coating may comprise a binder, a pigment, and optionally a dispersant.
Non-limiting examples of a binder include polymers selected from polyvinyl alcohol (PVOH), latex, an acrylic polymer, polymaleic anhydride, or a combination of two or more thereof. Non-limiting examples of a latex binder may include a homopolymer or copolymer formed from the following monomers: vinyl acetate (i.e., polyvinyl acetate), vinyl propinoate, vinyl butyrate, ethylene, vinyl chloride, vinylidene chloride, vinyl fluoride, vinylidene fluoride, ethyl acrylate, methyl acrylate, propyl acrylate, butyl acrylate, ethyl methacrylate, methyl methacrylate, butyl methacrylate, hydroxyethyl methacrylate, hydroxyethyl acrylate, styrene, butadiene, urethane, epoxy, melamine, and an ester. Preferably the binder is selected from the group consisting of aqueous lattices of polyvinyl acetate, polyvinyl acrylic, polyurethane, polyurethane acrylic, polystyrene acrylic, epoxy, polyethylene vinyl chloride, polyvinylidene chloride, and polyvinyl chloride.
The face coating may be a color surface coating. The term “color surface coating” refers to a surface coating comprising a color pigment and the resulting surface coating exhibits a color on the visible color spectrum—i.e., violet, blue, green, yellow, orange, or red. The color surface coating may also have a color of white, black, or grey. The color surface coating may further comprise combinations of two or more colors—such a primary color (i.e., red, yellow, blue) as well as an achromatic color (i.e., white, grey).
A non-limiting example of a color surface coating may be pink and produced from a combination of red and white pigments. Another non-limiting example of a color surface coating may be green and produced from a combination of blue and yellow pigments. Another non-limiting example of a color surface coating may be brown and produced from a combination of red, yellow, and black pigments.
The pigment may be an inorganic pigment. Non-limiting examples of inorganic pigment include particles of carbon black, graphite, graphene, copper oxide, iron oxide, zinc oxide, calcium carbonate, manganese oxide, titanium dioxide and combinations thereof. The inorganic pigments may include individual particles having colors selected from, but not limited to, red, blue, yellow, black, green, brown, violet, white, grey and combinations thereof. The particles that make up the first pigment may have a particle size ranging from about 15 nm to about 1000 μm—including all sizes and sub-ranges there-between.
Ceiling tiles other than the acoustic tiles described above can also be used in embodiments of the invention. For example, tiles made from metal, wood, plastic, composites, or other materials can be used.
Some existing ceiling systems use a square grid system and all of the tiles are the same size and shape. This configuration limits the changes possible to the visual appearance of the system.
In the lower section of
Grid system 100 includes a perimeter member 215 along the perimeter of grid 100. Because
Like in
While particular examples of grid layouts and particular sizes, shapes, and colors/shades of ceiling tiles are shown, it is noted that many other grid payouts, tiles shapes, tile sizes, tile colors/shades, and tile patterns can be used and still be within the scope of embodiments of the invention. It is also noted that in cases where main beams and cross members are exposed to the occupiable space, the main beams and cross members can be colored/shaded to enhance the visual appearance of the ceiling design.
While the foregoing description and drawings represent exemplary embodiments of the present disclosure, it will be understood that various additions, modifications and substitutions may be made therein without departing from the spirit and scope and range of equivalents of the accompanying claims. In particular, it will be clear to those skilled in the art that the present invention may be embodied in other forms, structures, arrangements, proportions, sizes, and with other elements, materials, and components, without departing from the spirit or essential characteristics thereof. In addition, numerous variations in the methods/processes described herein may be made within the scope of the present disclosure. One skilled in the art will further appreciate that the embodiments may be used with many modifications of structure, arrangement, proportions, sizes, materials, and components and otherwise, used in the practice of the disclosure, which are particularly adapted to specific environments and operative requirements without departing from the principles described herein. The presently disclosed embodiments are therefore to be considered in all respects as illustrative and not restrictive. The appended claims should be construed broadly, to include other variants and embodiments of the disclosure, which may be made by those skilled in the art without departing from the scope and range of equivalents. In addition, all combinations of any and all of the features described in the disclosure, in any combination, are part of the invention.
Claims
1. A ceiling system for use in a building space having a plurality of walls, the ceiling system comprising:
- a grid system comprising: a first main beam comprising a first main beam vertical web extending from a first main beam bottom flange; a second main beam parallel to the first main beam; a first cross member comprising a first cross member vertical web extending upward from a first cross member bottom flange; a second cross member comprising a second cross member vertical web extending upward from a second cross member bottom flange; a first bracket comprising: a central portion comprising a central vertical wall extending upward from a central bottom flange; a first tab extending outward from the central portion, the first tab comprising a first tab vertical wall; a second tab extending outward from the central portion so as to form an acute first bracket angle between the first and second tabs, the second tab comprising a second tab vertical wall; and the first bracket connected to the first main beam so that the central bottom flange overlaps with the first main beam bottom flange in a vertical direction; and
- a plurality of ceiling tiles supported by the grid system.
2. The ceiling system according to claim 1 wherein the first cross member has a first end connected to the first tab of the first bracket and second end supported by the second main beam.
3. The ceiling system according to claim 2 wherein the first cross member vertical web and the first tab vertical wall are parallel.
4. The ceiling system according to claim 2 wherein the second cross member has a first end connected to the second tab of the first bracket and second end supported by the second main beam.
5. The ceiling system according to claim 4 wherein a portion of the first main beam, a portion of the second main beam, the first cross member, and the second cross member form a non-rectangular opening, a non-rectangular one of the plurality of ceiling tiles positioned within the opening.
6. The ceiling system according to claim 1 wherein the first cross member bottom flange and the second cross member bottom flange are coplanar.
7. The ceiling system according to claim 1 further comprising:
- the first tab comprising a first tab bottom flange, the first tab vertical wall extending upward from the first tab bottom flange; and
- the second tab comprising a second tab bottom flange, the second tab vertical wall extending upward from the second tab bottom flange.
8. The ceiling system according to claim 7 wherein the first tab bottom flange and the first cross member bottom flange extend parallel to one another.
9. The ceiling system according to claim 7 wherein the second tab bottom flange and the second cross member bottom flange extend parallel to one another.
10. The ceiling system according to claim 7 wherein the first tab bottom flange, the second tab bottom flange, and the central bottom flange of the first bracket is a monolithic structure.
11. The ceiling system according to claim 1 wherein the central portion of the first bracket forms an apex of the acute first bracket angle.
12. The ceiling system according to claim 1 further comprising:
- a second bracket comprising: a central portion connected to the second main beam; a first tab extending outward from the central portion of the second bracket; and a second tab extending outward from the central portion of the second bracket and connected to the first cross member; and an acute second bracket tab angle measured between the first tab of the second bracket and the second tab of the second bracket;
- wherein, the acute first and second bracket tab angles are equal.
13. The ceiling system according to claim 12 wherein
- the central portion of the second bracket comprises a central vertical wall extending upward from a central bottom flange;
- the first tab of the second bracket comprises a first tab bottom flange, the first tab vertical wall of the second bracket extending upward from the first tab bottom flange of the second bracket; and
- the second tab of the second bracket comprises a second tab bottom flange, the second tab vertical wall of the second bracket extending upward from the second tab bottom flange of the second bracket.
14. A grid system for use installing a ceiling system within a building space having a plurality of walls, the grid system comprising:
- a plurality of main beams configured to be supported within the building space in parallel manner to one another;
- a plurality of cross members configured to extend between and be supported by adjacent ones of the plurality of main beams;
- a plurality of brackets, each of the brackets comprising: a central portion; a first tab extending outward from the central portion and configured to connect to the plurality of cross members, the first tab comprising a first tab vertical wall; and a second tab extending outward from the central portion and configured to connect to the plurality of cross members, the second tab comprising a second tab vertical wall, an acute first bracket angle being formed between the first tab and the second tab.
15. The grid system according to claim 14 further comprising, for each of the brackets:
- the first tab comprising a first tab bottom flange, the first tab vertical wall extending upward from the first tab bottom flange; and
- the second tab comprising a second tab bottom flange, the second tab vertical wall extending upward from the second tab bottom flange.
16. The grid system according to claim 15 wherein, for each of the brackets, the first tab bottom flange, the second tab bottom flange, and the central bottom flange of the first bracket is a monolithic structure..
17. The grid system according to claim 14 wherein, for each of the brackets, the central portion of the first bracket forms an apex of the acute first bracket angle.
18. A ceiling system for use in a building space having a plurality of walls, the ceiling system comprising:
- a grid system that extends to at least two of the plurality of walls and separates the building space into an occupiable space below the grid system and a plenum space above the grid system;
- a plurality of ceiling tiles supported by the grid system, the plurality of ceiling tiles including a first ceiling tile, a second ceiling tile, and a third ceiling tile, the plurality of ceiling tiles arranged in a manner such that a downward ceiling surface is formed that comprises a repeating pattern that includes: a first repeating visual element; and a second repeating visual element that is different from the first repeating visual element; wherein the first repeating visual element is formed by at least the first building tile and the second repeating visual element is formed by at least the second building tile and the third building tile; and
- wherein the repeating pattern is a change in color, shape, or texture of the plurality of ceiling tiles.
19. The ceiling system according to claim 18, wherein the repeating pattern extends across the entirety of the downward ceiling surface.
20. The ceiling system according to claim 18 wherein the first, second, and third ceiling tiles have a different shape from one another.
Type: Application
Filed: Jun 30, 2023
Publication Date: Oct 26, 2023
Patent Grant number: 12258756
Inventors: Nathan J. BAXTER (Lancaster, PA), Samuel D. PAWLAK (Lancaster, PA), Scott D. HARNISH (Lancaster, PA), Ryan D. HANUSCHAK (Lancaster, PA), Nicholas J. FRIEZ (Lancaster, PA), Nathan H. CANFIJN (Lancaster, PA), Marie A. DePAUL (West Chester, PA), Kain A. PLACE (Lancaster, PA)
Application Number: 18/216,731