SYSTEM FOR TRADE-IN BONUS
Embodiments of the present invention are directed to gaming systems that allow customers to wager, or “trade-in” an object of value or winning situation for a chance to win an even more valuable award. The chance for valuable award may be a bonus game or chance to win a bonus game. Bonus awards are “funded” by the savings achieved from the players trading in their wins in the base game, which would otherwise be paid. Players who do not trade-in see no changes from the base game paytable, while those players who participate in the trade-in bonus have a different gaming experience.
This application is a continuation of U.S. patent application Ser. No. 17/173,811, filed Feb. 11, 2021, which is a continuation of U.S. patent application Ser. No. 16/846,749, filed Apr. 13, 2020, now U.S. Pat. No. 10,937,276, issued Mar. 2, 2021, which is a continuation of U.S. application Ser. No. 16/507,379 filed Jul. 10, 2019, now U.S. Pat. No. 10,650,640, issued May 12, 2020, which is a continuation of U.S. application Ser. No. 15/885,991 filed Feb. 1, 2018, now U.S. Pat. No. 10/388,114 issued Aug. 20, 2019, which is a continuation of U.S. application Ser. No. 15/686,759 filed Aug. 25, 2017, now U.S. Pat. No. 9,922,499 issued Mar. 20, 2018, which is a continuation of U.S. application Ser. No. 15/349,449 filed Nov. 11, 2016, now U.S. Pat. No. 9,767,653 issued Sep. 19, 2017, which is a continuation of U.S. application Ser. No. 15/013,264 filed Feb. 2, 2016, now U.S. Pat. No. 9,524,612 issued Dec. 20, 2016, which is a divisional of U.S. application Ser. No. 12/716,181 filed Mar. 2, 2010, now U.S. Pat. No. 9,286,761 issued Mar. 15, 2016, the contents of which are hereby incorporated by reference.
This application is related to the following applications entitled PERSONAL ELECTRONIC DEVICE FOR GAMING AND BONUS SYSTEM: U.S. application Ser. No. 17/366,298, filed Jul. 2, 2021, which is a continuation of U.S. application Ser. No. 16/701,476 filed Dec. 3, 2019, now U.S. Pat. No. 11,069,180, which is a continuation of U.S. application Ser. No. 15/376,040, filed Dec. 12, 2016, which is a Continuation of U.S. application Ser. No. 15/012,484, filed Feb. 1, 2016, now U.S. Pat. No. 9,542,798, which is a Continuation of U.S. application Ser. No. 14/470,639, filed Aug. 27, 2014, now U.S. Pat. No. 9,275,513, issued Mar. 1, 2016, and Continuation of U.S. application Ser. No. 12/716,188, filed Mar. 2, 2010, and Continuation-In-Part of U.S. application Ser. No. 12/713,090, filed Feb. 25, 2010.
FIELD OF THE INVENTIONThis disclosure relates generally to gaming systems, and more particularly to bonuses for gaming systems.
BACKGROUNDGaming systems are designed around the thrill of winning. Gamblers wager something of value, i.e. money or credits, for the chance to win even more. Personal preferences abound regarding styles of gaming, however. Some prefer to play for a relatively long time without much change in their holdings. For example, some players prefer to start with a certain size “bank” of credits, and enjoy winning and losing relatively small amounts compared to their bank, or their individual game wagers, over time. These players may wager only a few credits, repeatedly, and prefer such low-volatility games that do not typically award extremely high wins, but award them relatively frequently.
Other players find more thrill with volatile style of play. Such players will often bet the “max” bet and will sustain losses for a relatively long time, or in a relatively large amount in comparison to their wagers or credit bank, in search of the big payoff.
This chance of loss is important for both entertainment reasons and to allow the game operator to profit. By providing wins and losses of varying amounts, depending on game outcome but according to a known paytable, an advantage to the game operator can be ensured over a statistically significant large number of games. Individual players may win or lose any particular game, or gaming session, but, over a long period of time, the odds statistically favor the house. This “house advantage” is important because it allows the game operator to operate a business that offers the games for the enjoyment of the customers.
Gaming paytables are set by controlling authorities, and are not easily changeable. Because not all paytables provide a good match for the style of play of every player, there exists an enjoyment chasm where a player may enjoy a game more were there more or different paytable options available.
Embodiments of the invention address these and other limitations of the prior art.
In general, a gaming network 50 connects any of a number of EGMs 10, or other gaming devices, such as those described below, for central management. Accounting and other functions may be served by a connected server 60 and database 70. For example, many player tracking functions, bonusing systems, and promotional systems may be centrally administrated from the server 60 and database 70. In some embodiments there may be multiple servers 60 and databases 70, each performing different functions. In other embodiments functions may be combined and operate on a single or small group of servers 60, each with their own database 70 or combined databases.
Many of the EGMs 10 of
Other EGMs 10 in
Other games or devices on which games may be played are connected to the gaming network using other connection and/or communication methods. For instance, an EGM 12 may couple directly to the network 50 without any intervening hardware, other than hardware that is built into the EGM 12 to connect it to the network 50. Likewise, a player kiosk 14 may be directly coupled to the gaming network. The player kiosk 14 allows players, managers, or other personnel to access data on the gaming network 50, such as a player tracking record, and/or to perform other functions using the network. For example, a player may be able to check the current holdings of the player account, transfer balances, redeem player points for credits, cash, or other merchandise or coupons, such as food or travel coupons, for instance.
A wireless transceiver 32 couples the gaming network 50 to a wireless EGM 36, such as a handheld device, or, through a cell phone or other compatible data network, the transceiver 32 connects to a cellular phone 34. The cellular phone 34 may be a “smart phone,” which in essence is a handheld computer capable of playing games or performing other functions on the gaming network 50, as described in some embodiments of the invention.
The gaming network 50 also couples to the internet 70, which in turn is coupled to a number of computers, such as the personal computer 72 illustrated in
In general, in operation, a player inserts a starting credit into one of the games, such as an EGM 10. The EGM 10 sends data through its SAS or other data communication port through the MID 20 and/or bonus controller 50 to the gaming network 50. Various servers 60 and databases 70 collect information about the gameplay on the EGM 10, such as wagers made, results, various pressing of the buttons on the EGM 10, for example. In addition, the SAS port on the EGM 10 may also be coupled, through the MID 20 as described below, to other systems, such as player tracking systems, accounting, and ticketing systems, such as Ticket-In-Ticket-Out (TITO) systems.
In addition, the EGM 10 accepts information from systems external to the EGM itself to cause the EGM 10 to perform other functions. For example, these external systems may drive the EGM 10 to issue additional credits to the player. In another example, a promotional server may direct the EGM 10 to print a promotional coupon on the ticket printer of the EGM.
The bonus controller 40 is structured to perform some of the above-described functions as well. For example, in addition to standard games on the EGM 10, the bonus controller 40 is structured to drive the EGM 10 to pay bonus awards to the player based on any of the factors, or combination of factors, related to the EGM 10, the player playing the EGM 10, particular game outcomes of the game being played, or other factors.
In this manner, the combination of the bonus controller 40 and MID 20 are a sub-system capable of interfacing with each of the EGMs on a gaming network 50. Through this interface, the MID 20 may gather data about the game, gameplay, or player, or other data on the EGM 10, and forward it to the bonus controller 40. The bonus controller 40 then uses such collected data as input and, when certain conditions are met, sends information and/or data to the EGM 10 to cause it to perform certain functions.
In a more detailed example, suppose a player is playing an EGM 10 coupled to the MID 20 and the bonus controller 40 described above. The player inserts a player tracking card so the gaming network 50 knows the player identity. The MID 20 also stores such identifying information, or perhaps stores only information that the player is a level-2 identified player, for instance. The MID 20 passes such information to the bonus controller 40, which has been programmed to provide a welcome-back bonus to any level-2 player after he or she has played two games. Gameplay on the EGM 10 continues and, after the player plays two games, the bonus controller 40 instructs the EGM 10 to add an additional 40 credits to the EGM 10 as the welcome-back bonus. Such monitoring and control of the EGM 10 can occur in conjunction with, but completely separate from any player tracking or bonusing function that is already present on the gaming network 50. In other words, the server 60, when structured at least in part as a bonusing server, may be set to provide a time-based bonus of 10 credits for every hour played by the player of the EGM 10. The above-described welcome-back bonus may be managed completely separately through the bonus controller 40 and MID 20. Further, all of the actions on the EGM 10 caused by the bonus controller 40 are also communicated to the standard accounting, tracking, and other systems already present on the gaming network 50.
Returning to
The memory 110 is connected to the game processor 120 and may be configured to store various game information about gameplay or player interactions with the gaming device 100. This memory may be volatile (e.g., RAM), non-volatile (e.g., flash memory), or include both types of memory. The connection port 130 is also connected to the game processor 120. This connection port 130 typically connects the gaming device 100 to a gaming network, such as the gaming network 50 described above. The connection port 130 may be structured as a serial port, parallel port, Ethernet port, optical connection, wireless antenna, or any other type of communication port used to transmit and receive data. Although only one connection port 130 is shown in
The player input/output devices housed by the gaming cabinet 105 include a game display 130, a button panel 140 having one or more buttons 145, a ticket printer 150, a bill/ticket reader 170, a credit meter 175, a player club interface device 160, and one or more game speakers 195. Various gaming devices may include fewer or more input/output devices (e.g., a game handle, a coin acceptor, a coin hopper, etc.) depending upon the configuration of the gaming device.
The gaming display 130 may have mechanical spinning reels, a video display, or include a combination of both spinning reels and a video display, or use other methods to display aspects of the gameplay to the player. If the gaming display 130 is a video display, the gaming display may include a touch screen to further allow the player to interact with game indicia, soft buttons, or other displayed objects. The button panel 140 allows the player to select and place wagers on the game of chance, as well as allowing the player to control other aspects of gaming. For example, some gaming devices allow the player to press a button 145 to signal that he or she requires player assistance. Other buttons may bring up a help menu and/or game information. The buttons 145 may also be used to play bonuses or make selections during bonus rounds.
Ticket printers 150 have relatively recently been included on most gaming devices to eliminate the need to restock coin hoppers and allow a player to quickly cash-out credits and transfer those credits to another gaming device. The tickets can also typically be redeemed for cash at a cashier cage or kiosk. The ticket printers are usually connected to the game processor and to a remote server, such as a TITO server to accomplish its intended purpose. In gaming devices that have more than one peripheral device, and which include only a single SAS port, the peripheral devices all share communication time over the connection port 130.
Another peripheral device that often requires communication with a remote server is the player club interface device 160. The player club interface device 160 may include a reader device and one or more input mechanisms. The reader is configured to read an object or indicia identifying the player. The identifying object may be a player club card issued by the casino to a player that includes player information encoded on the card. Once the player is identified by a gaming device, the player club interface device 160 communicates with a remote player server through the connection port 130 to associate a player account with the gaming device 100. This allows various information regarding the player to be communicated between the gaming device 100 and the player server, such as amounts wagered, credits won, and rate of play. In other embodiments, the card reader may read other identifying cards (such as driver licenses, credit cards, etc.) to identify a player. Although
Other input/output devices of the gaming device 100 include a credit meter 175, a bill/ticket acceptor 170, and speakers 195. The credit meter 175 generally indicates the total number of credits remaining on the gaming device 100 that are eligible to be wagered. The credit meter 175 may reflect a monetary unit, such as dollars, or an amount of credits, which are related to a monetary unit, but may be easier to display. For example, one credit may equal one cent so that portion of a dollar won can be displayed as a whole number instead of decimal. The bill/ticket acceptor 170 typically recognizes and validates paper bills and/or printed tickets and causes the game processor 120 to display a corresponding amount on the credit meter 175. The speakers 195 play auditory signals in response to game play or may play enticing sounds while in an “attract-mode,” when a player is not at the gaming device. The auditory signals may also convey information about the game, such as by playing a particularly festive sound when a large award is won.
The gaming device 100 may include various other devices to interact with players, such as light configurations, top box displays 190, and secondary displays 180. The top box display 190 may include illuminated artwork to announce a game style, a video display (such as an LCD), a mechanical and/or electrical bonus display (such as a wheel), or other known top box devices. The secondary display 180 may be a vacuum fluorescent display (VFD), a liquid crystal display (LCD), a cathode ray tube (CRT), a plasma screen, or the like. The secondary display 180 may show any combination of primary game information and ancillary information to the player. For example, the secondary display 180 may show player tracking information, secondary bonus information, advertisements, or player selectable game options. The secondary display may be attached to the game cabinet 105 or may be located near the gaming device 100. The secondary display 180 may also be a display that is associated with multiple gaming devices 100, such as a bank-wide bonus meter, or a common display for linked gaming devices.
In operation, typical play on a gaming device 100 commences with a player placing a wager on a game to generate a game outcome. In some games, a player need not interact with the game after placing the wager and initiating the game, while in other games, the player may be prompted to interact with the gaming device 100 during game play. Interaction between the player and the gaming device 100 is more common during bonuses, but may occur as part of the game, such as with video poker. Play may continue on the gaming device 100 until a player decides to cash out or until insufficient credits remain on the credit meter 175 to place a minimum wager for the gaming device.
Communication between gaming devices, such as those described above, and other devices on gaming systems 2 (
The MID 200 is capable of communicating using other communication protocols as well, as described below. Each processor 210 is structured to couple to two Electronic Gaming Devices (EGDs). EGDs may include, for example, gaming devices such as EGM 10 of
As illustrated in
Further, the third communication pair, a two-wire interface labeled TWI, presents opportunity for expansion to future systems installed on the EGM 10, or a new EGM, so that any data may be communicated between the EGM 10 and the MID 200. The TWI may be connected to card readers, top boxes, ticket dispensers, lighting panels, etc. that are coupled to or work in conjunction with an EGM 10.
Besides simply passing information between communication interfaces, the MID 200 also generates information directly for connected EGDs, which may originate from the MID 200 or from another device as described below. In such a case the SAS processor 210 sends the appropriate data through its appropriate serial line or two-wire interface directly to the desired EGD. Then the EGD may send its own data to its connected peripheral.
Referring back to
The communication processor 220 collects and aggregates information from the EGDs that are coupled to each of the SAS processors 210 and sends the aggregated information to the bonus controller 40 of
The communication processor 220 may also accept information from the bonus controller 40, or other connected devices, and pass such information to the EGDs coupled to the SAS processors 210. The information may include data, instructions, or commands, for instance.
A memory 224, which may be, for instance Ferroelectric Random Access Memory (FRAM) capable of retaining stored contents for over 10 years may be used by the communication processor for both program and data storage. Of course, other memory technologies may be used instead of or in addition to FRAM.
A program/debug circuit 230 in the MID 200 connects to the communication processor 220 as well as to each of the SAS processors 210. During manufacture of the MID 200, the programming functions of the program/debug circuit 230 load program code to each of the SAS processors 210 as well as the communication processor 220. This initial loading may take place through a program/debug communication port. Further, the program codes stored in each of the SAS processors 210 and the communication processor 230 may be updated through commands and data sent from an external device, such as the bonus controller 40, through the communication processor 220 to the program/debug circuit 230. The program/debug circuit 230 then formats the updated program data for each of the connected SAS processors 210 and communication processor 220, and sends a command to each of the processors to be updated to load the new program code.
As described above, each of the SAS processors 210 include two separate ports, Port A and Port B, illustrated here as separate ports of a microprocessor 260. The microprocessor 260 in the SAS processor 210 may be embodied by an Atmel ATXMEGA256A3, as described above.
Each of the ports of the microprocessor 260 is structured to couple to an EGD, which may be an EGM 10 of
Additionally, and as described above, each SAS processor 210 includes two, two-wire interfaces, illustrated as a separate interface pair and labeled as TWI. In this embodiment, there is one pair for each port of the microprocessor 260. Each two-wire interface creates a bi-directional serial port that may be used for communicating with peripheral or expansion devices associated with the EGD of the particular microprocessor 260, or with other devices on the gaming system 2 of
The SAS processor 210 includes a memory 280 for storing instruction data of the microprocessor 260 as well as providing data storage used by the SAS processor. The memory 280 is preferably non-volatile memory, such as FRAM that is connected to the microprocessor 260 through a serial interface.
As described above, the SAS processor 210 of the MIB 200 (
Similarly, as described above, the microprocessor 260 of each SAS processor 210 is coupled to a program/debug circuit 230 for initial or later programming. To communicate with each SAS processor 210 individually, each SAS processor is given an individual identification number, which may be set for the microprocessor 260 by tying particular data pins of the microprocessor to permanent low or high signals. Using binary encoding, n individual lines are used to identify 2n separate processors. A set of expansion pins couples to the microprocessor 260 of each SAS processor 210 so that each processor may determine system identification and revisions of the MIB 200 and the connected bonus controller 40.
With reference back to
A bonus controller 300 of
The microprocessor 310 also couples to a pair of card readers, 340, 345, which are structured to accept easily replaceable, portable memory cards, as are widely known. Each card reader may further include Electro-Static Discharge (ESD) devices to prevent damage to internal circuitry, such as the microprocessor 310, when cards are inserted or removed from the card readers 340, 345. In practice, a card in one of the card readers 340, 345 may store program code for the microprocessor 310 while a card in the other reader may store data for use by the bonus controller 300. Alternatively, a single card in either of the card readers 340, 345 may store both program and data information.
A port connector 330 includes multiple communication ports for communicating with other devices. With reference back to
Further, a second port connector 335 may be included in the bonus controller 300. The second port connector may also be an Ethernet connector. The purpose of the second port connector 335 is to allow additionally connectivity to the bonus controller 300. In most embodiments the second port connector 335 may couple to another bonus controller 300 or to other server devices, such as the server 60 on the gaming network 50 of
Yet further, Ethernet connections are easily replicated with a switch, external to the bonus controller 300 itself, which may be used to greatly expand the number of devices to which the bonus controller 300 may connect.
Because the bonus controller 300 is intended to be present on a gaming network 50, and may be exposed to the general public, systems to protect the integrity of the bonus controller 300 are included. An intrusion detection circuit 360 signals the processor 310 if a cabinet or housing that contains the bonus controller 300 is breached, even if no power is supplied to the bonus controller 300. The intrusion detection circuit may include a magnetic switch that closes (or opens) when a breach occurs. The microprocessor 310 then generates a signal that may be detected on the gaming network 50 indicating that such a breach occurred, so that an appropriate response may be made. An on-board power circuit 370 may provide power to the bonus controller 300 for a relatively long time, such as a day or more, so that any data generated by the processor 310 is preserved and so that the processor 310 may continue to function, even when no external power is applied. The on-board power circuit 370 may include an energy-storing material such as a battery or a large and/or efficient capacitor.
Similar to the microprocessor processor 260 of the SAS processor 210 described above, the microprocessor 310 of the bonus controller 300 is additionally coupled to a program/debug port for initially programming the microprocessor 310 during production, and so that program and/or other data for the microprocessor may be updated through the program/debug port.
In operation the bonus controller 300 configures and controls bonus features on gaming devices through a gaming network 50 or through other communication systems. Bonus features are implemented through each gaming device's internal structure and capabilities, and may include integration with additional peripheral devices. Bonusing programs for the connected games may be introduced to the bonus controller 300 by updating data stored in the memory systems directly on the bonus controller, or by inserting new memory cards in one or more of the card readers 340, 345. Such a platform provides a facility for game developers, even third-party developers, to define and program new types of bonus games that may be used in conjunction with existing EGMs on existing gaming networks, or on new games and new networks as they are developed.
More specifically, the paytable 500 illustrates a pay award value, in number of credits, for each credit wagered. Only the winning awards are illustrated, and not those in which the wager is lost to the house. The lowest paying hand for the paytable 500 is a pair of jacks, and thus no hands having a lower value are paid. For example, a pair of 9's is a losing hand, and no credits are returned to the player. As illustrated on the paytable 500, the “hit-frequency” for this game is 45.5%, which means that, when optimally played, credits are returned to the player 45.5 percent of the time. The probability for each of the listed winning hand outcomes is given in the paytable 500. For example, there is a 7.4531% chance that the player will finish the game with a three of a kind.
In addition to probabilities of winning, a paytable, such as the paytable 500 also includes pay amounts for each of the potential outcomes. For example, a three-of-a-kind pays three credits for each credit wagered, while four aces pays 80 times the wagered amount. The “contribution” column of the paytable 500 provides information about how much payout is made for each outcome, in terms of percentage of credits wagered. For example, for every 100 credits accepted, approximately 21.5 credits will be paid back to players for hands of a pair of jacks, queens, kings, or aces, i.e., “jacks or better.” Summing the contribution column yields the total for how much is paid back to the player, over time, for the particular game having the particular paytable. In this example, the paytable 500 pays back 96.872% of each credit received. Stated differently, this paytable gives the game a hold percentage of 100%-96.872%, or 3.28%. Thus, for every 100 credits wagered, the house keeps just over 3 credits, while providing the rest back to players in the form of winnings.
Looking at the bottom portion of the paytable 500, notice that just over 21% of the outcomes (jacks or better) provide only the wagered amount back, i.e., one credit, while another 12% pay two credits for having two pair. Neither of these wins provides great excitement for many players, especially skilled players who play often and may be seeking a bigger thrill.
The above numbers are given for the theoretical “optimum” player, which means that a player always plays for maximum payback from the machine, and makes perfect discard decisions. As described below, embodiments of the invention provide an incentive for a player to play non-optimally, at least according to some measures.
Embodiments of the invention allow a draw poker player to discard cards that are already winning outcomes, or those that could contribute to a winning outcome, in favor of a chance at a larger award. As described below, these embodiments improve the chances of the player winning a larger payback, during a bonus round, but this increased chance at a larger payback comes at an expense of a reduced probability of winning a smaller award in the base game.
In an example bonus game in accordance with the invention, bonus points or “points” are accumulated when a player plays non-optimally, or makes other decisions, that may affect the base game outcome. For example, with reference to a poker example that uses the paytable 500 of
In this embodiment, points are awarded on a per-credit-wagered basis. Thus, trading in a pair of jacks after wagering two credits yields 6 points toward a bonus game. The same pair with five credits earns 15 points. It is important to notice that if a player chooses to never “turn-in” cards that generate bonus points, then the paytable for that player is not affected whatsoever. Of course, players who do not participate in the “trade-in” are ineligible to win the bonus. It is also worth noting that, when bonuses are paid to the player for participating in or winning a bonus, that the “cost” for paying those bonuses may be borne or at last partially borne by savings realized by not having to pay for winning outcomes (or potentially winning outcomes) that the participating player “turns-in.”
The payback reduction portion of Table 1 describes the potential winnings (theoretical payback) given up by the player in the base game for a chance to receive an award in the bonus game. Reductions arise primarily from a loss of a low paying outcome such as two-pair or jacks-or-better.
In one embodiment, whenever 15 points are accumulated, the points are automatically traded in for an entry card, randomly selected from a deck of 52 cards. The entry card, or notice of it, or some other indicator, may be stored in a player account, using a player-server embodiment of the server 60 and database 70 described above with reference to
As illustrated in
Periodically, for example every 5 minutes, a bonus drawing is held and a target card is randomly drawn from another deck of 52 cards. Any player who holds a bonus card that matches the selected target card wins, or is eligible for, the particular bonus. A target area 620 on the bonus screen 600 informs the player that the current target card is the 6 of diamonds, which does not match either of the two bonus cards held by the player in the area 610, and thus no bonus is won. A feedback area 630 of the bonus screen 600 informs the player that they have not yet won the bonus. A timer 640 informs the player when the next drawing will be.
With reference to
In other variations, bonus cards held by the player may be substituted for discard cards in the base game, or may be allowed to be used by the player to make a hand of more than the typical five cards. For example, if a player held an 8 of hearts, he or she could discard a card of a different suit and substitute the 8 of hearts to complete a flush of five hearts. In another embodiment the player could simply “add” the 8 of hearts to a base hand and use six cards to make a five-card flush of five hearts.
Of course, the paytable 500 described above is but one example of how embodiments of the invention may operate, and those with skill in the art may easily adapt the invention to various implementations.
Variations of the bonus game abound. In some embodiments the bonus cards are awarded only after accumulating more or fewer points than 15. Intervals between rounds, points won per discard combination, and even the discard combinations may deviate from those described herein. Great latitude is afforded by bonus game designer by manipulating each of these variables independently or in concert to generate a desired outcome.
In other embodiments cards are not used at all, but rather another method of chance determines winning the bonus. In one such example the player may accumulate numbers, such as 1-100, and the periodic drawing draws a target number. If the bonus number held by the player matches the target number, the player wins the bonus, or is eligible to win the bonus. In yet other embodiments the bonus is won by spinning a wheel and matching a target number or by accumulating points above a minimum. Bonuses may be active for more or fewer games than fifty. In short, any method of awarding a bonus (or awarding a right to participate in a bonus) that may provide an incentive to the player for surrendering something of value, such as a win (or potential win) on a base game falls within the scope and spirit of the invention.
In some embodiments the bonus cards are held only until a bonus is won by the player, who then surrenders all of the bonus cards to participate in the bonus. In other embodiments, only the bonus card that matches the target card is eliminated. In yet other embodiments, a player holds on to all accumulated bonus cards, even the ones that have matched previously drawn target cards, until the end of the bonus. The end of the bonus may be based on time, such as 24 hours, or based on session length, such as the time between when credits are entered on the machine and when the credits are cashed out or lower to zero. In other embodiments the state of the bonus game may be stored on a player account and renewed when a player inserts his or her player card to identify the player to the gaming network 2 (
After the third reel stops, the game gives the player the option to surrender any or all of the interim holdings currently held. Different values of bonus points/opportunities are given for surrendering different holdings. In one embodiment, the higher the value of the surrendered holdings yields a higher number of bonus points awarded. If the player, however, chooses to not surrender any of the interim holdings, then there is no difference from the original game. Such an example is illustrated in
Alternatively, as illustrated in
With reference to
These described embodiments of surrendering an interim holding are significantly different than a nudge, which is a known procedure in which a player is allowed to move a current holding one or perhaps two positions in either direction. Most differently, a nudge is typically awarded as a bonus itself, i.e., the act of being able to play a nudge is the bonus award, rather than the act of surrendering a holding cause a bonus to be awarded or bonus points accumulated.
The same concept of surrendering an interim holding applies to surrendering a holding during a bonus game. With reference to
In
If the player chooses to not participate in the trade-in, the flow 900 proceeds to a process 930 where the game is played as if the trade-in bonus were not even present, and the flow loops back to the process 920 until the player decides to take advantage of a trade-in.
In a process 940, the player trades-in something of value, such as a game outcome, for a right to earn a bonus award, which is awarded in a process 950. As described above, the bonus award may be an accumulation of points, or may be the awarding of a bonus card itself. In a process 960, a decision is made whether the accumulated bonus points or bonus opportunities qualify for a bonus. An example occurrence of this is when a target card is drawn that matches a bonus card held by the player, as described above with reference to
After the bonus is awarded, the player may choose to continue play in a process 980, and the flow 900 loops back to the beginning where he or she may choose to make another trade-in bonus.
In operation, as described above, the bonus controller 40 may include the code to implement the above-described bonus system. The bonus controller 40 receives information about gameplay on the gaming device 10, and about the player himself or herself, by monitoring the connection port of the game, such as the connection port 130 of
In yet other embodiments or implementations, also described above, the operation of the herein-described bonus is managed solely by a gaming device, such as the gaming device 10 (
Some embodiments of the invention have been described above, and in addition, some specific details are shown for purposes of illustrating the inventive principles. However, numerous other arrangements may be devised in accordance with the inventive principles of this patent disclosure. Further, well known processes have not been described in detail in order not to obscure the invention. Thus, while the invention is described in conjunction with the specific embodiments illustrated in the drawings, it is not limited to these embodiments or drawings. Rather, the invention is intended to cover alternatives, modifications, and equivalents that come within the scope and spirit of the inventive principles set out in the appended claims.
Claims
1. A method comprising:
- receiving, by a wager receiving module of an electronic gaming device, one or more wagers, wherein the electronic gaming device is associated with a paytable;
- based on receiving the one or more wagers, executing, by the electronic gaming device, one or more game instances;
- based on executing the one or more game instances, determining one or more deal stage outcomes;
- outputting, via a display of the electronic gaming device, the one or more deal stage outcomes;
- receiving, via a user interface of the electronic gaming device, one or more trade-in indications associated with the one or more deal stage outcomes; and
- adjusting, based on the one or more trade-in indications, the paytable.
2. The method of claim 1, wherein the wager receiving module is configured to receive one or more of: hard currency, digital currency, one or more credits, one or tokens, or one or more electronic funds transfers.
3. The method of claim 1, wherein the one or more deal stage outcomes are associated with one or more games, wherein the one or more comprise one or more of: a virtual poker game, a virtual table game, or a slots game.
4. The method of claim 1, wherein adjusting the paytable comprises determining one or more probabilities associated with the one or more trade-in indications associated with the one or more deal stage outcomes.
5. The method of claim 1, further comprising receiving, via a player identify module, a player identifier.
6. The method of claim 1, further comprising:
- determining one or more game stage outcomes; and
- paying, based on the adjusted paytable, one or more bonuses.
7. The method of claim 1, further comprising determining, based on the adjusted paytable, one or more bonus amounts.
8. One or more non-transitory computer-readable media storing processor-executable instructions thereon, which, when executed by at least one processor cause the at least one processor to:
- receive, by a wager receiving module of an electronic gaming device, one or more wagers, wherein the electronic gaming device is associated with a paytable;
- based on receiving the one or more wagers, execute, by the electronic gaming device, one or more game instances;
- based on executing the one or more game instances, determine one or more deal stage outcomes;
- output, via a display of the electronic gaming device, the one or more deal stage outcomes;
- receive, via a user interface of the electronic gaming device, one or more trade-in indications associated with the one or more deal stage outcomes; and
- adjust, based on the one or more trade-in indications, the paytable.
9. The one or more non-transitory computer-readable media of claim 8, wherein the wager receiving module is configured to receive one or more of: hard currency, digital currency, one or more credits, one or tokens, or one or more electronic funds transfers.
10. The one or more non-transitory computer-readable media of claim 8, wherein the one or more deal stage outcomes are associated with one or more games, wherein the one or more comprise one or more of: a virtual poker game, a virtual table game, or a slots game.
11. The one or more non-transitory computer-readable media of claim 8, wherein the processor-executable instructions that, when executed by the at least one processor, cause the at least one processor to adjust the paytable, further cause the at least one processor to determine one or more probabilities associated with the one or more trade-in indications associated with the one or more deal stage outcomes.
12. The one or more non-transitory computer-readable media of claim 8, wherein the processor-executable instructions, when executed by the at least one processor, further cause the at least one processor to receive, via a player identify module, a player identifier.
13. The one or more non-transitory computer-readable media of claim 8, wherein the processor-executable instructions, when executed by the at least one processor, further cause the at least one processor to:
- determine one or more game stage outcomes; and
- pay, based on the adjusted paytable, one or more bonuses.
14. The one or more non-transitory computer-readable media of claim 8, wherein the processor-executable instructions, when executed by the at least one processor, further cause the at least one processor to determine, based on the adjusted paytable, one or more bonus amounts.
15. An apparatus comprising:
- one or more processors; and
- memory storing processor-executable instruction that, when executed by the one or more processors, cause the apparatus to: receive, by a wager receiving module of an electronic gaming device, one or more wagers, wherein the electronic gaming device is associated with a paytable; based on receiving the one or more wagers, execute, by the electronic gaming device, one or more game instances; based on executing the one or more game instances, determine one or more deal stage outcomes; output, via a display of the electronic gaming device, the one or more deal stage outcomes; receive, via a user interface of the electronic gaming device, one or more trade-in indications associated with the one or more deal stage outcomes; and adjust, based on the one or more trade-in indications, the paytable.
16. The apparatus of claim 15, wherein the wager receiving module is configured to receive one or more of: hard currency, digital currency, one or more credits, one or tokens, or one or more electronic funds transfers.
17. The apparatus of claim 15, wherein the one or more deal stage outcomes are associated with one or more games, wherein the one or more comprise one or more of: a virtual poker game, a virtual table game, or a slots game.
18. The apparatus of claim 15, wherein the processor-executable instructions that, when executed by the one or more processors, cause the one or more processors to adjust the paytable, further cause the one or more processors to determine one or more probabilities associated with the one or more trade-in indications associated with the one or more deal stage outcomes.
19. The apparatus of claim 15, wherein the processor-executable instructions, when executed by the one or more processors, further cause the one or more processors to receive, via a player identify module, a player identifier.
20. The apparatus of claim 15, wherein the processor-executable instructions, when executed by the one or more processors, further cause the one or more processors to:
- determine one or more game stage outcomes; and
- pay, based on the adjusted paytable, one or more bonuses.
Type: Application
Filed: Apr 3, 2023
Publication Date: Nov 2, 2023
Inventor: John F. Acres (Las Vegas, NV)
Application Number: 18/194,946