MAGNETICALLY COUPLED SUBSURFACE CHOKE
Provided is a retrievable choke insert. The retrievable choke insert, in one aspect, includes an outer housing including a central bore extending axially through the outer housing, an open end, a closed end, and one or more outer housing openings extending through an outer housing sidewall thickness, and a bore flow management actuator disposed in the central bore, the bore flow management actuator having one or more bore flow management openings extending through a bore flow management actuator sidewall thickness, the bore flow management actuator operable to convey subsurface production fluids there through. The retrievable choke insert, in accordance with this aspect, further includes one or more choke insert magnets coupled to the bore flow management actuator, the one or more choke insert magnets configured to magnetically couple with one or more landing nipple magnets of a choke landing nipple to slide the bore flow management actuator and move the one or more bore flow management openings relative to the one or more outer housing openings to control an amount of the subsurface production fluid entering the bore flow management actuator.
Subsurface chokes are well known in the oil and gas industry and provide one of many mechanisms for limiting the amount subsurface production fluids that travel through the tubing string to the surface of the wellbore. Typically, chokes comprise a portion of a tubing string, the entirety of the choke being set in place during completion of a wellbore. What is needed in the art is an improved choke that does not encounter the problems of existing chokes.
Reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:
In the drawings and descriptions that follow, like parts are typically marked throughout the specification and drawings with the same reference numerals, respectively. The drawn figures are not necessarily, but may be, to scale. Certain features of the disclosure may be shown exaggerated in scale or in somewhat schematic form and some details of certain elements may not be shown in the interest of clarity and conciseness. The present disclosure may be implemented in embodiments of different forms. Specific embodiments are described in detail and are shown in the drawings, with the understanding that the present disclosure is to be considered an exemplification of the principles of the disclosure, and is not intended to limit the disclosure to that illustrated and described herein. It is to be fully recognized that the different teachings of the embodiments discussed herein may be employed separately or in any suitable combination to produce desired results. Moreover, all statements herein reciting principles and aspects of the disclosure, as well as specific examples thereof, are intended to encompass equivalents thereof. Additionally, the term, “or,” as used herein, refers to a non-exclusive or, unless otherwise indicated.
Unless otherwise specified, use of the terms “connect,” “engage,” “couple,” “attach,” or any other like term describing an interaction between elements is not meant to limit the interaction to direct interaction between the elements and may also include indirect interaction between the elements described.
Unless otherwise specified, use of the terms “up,” “upper,” “upward,” “uphole,” “upstream,” or other like terms shall be construed as generally away from the bottom, terminal end of a well, regardless of the wellbore orientation; likewise, use of the terms “down,” “lower,” “downward,” “downhole,” or other like terms shall be construed as generally toward the bottom, terminal end of a well, regardless of the wellbore orientation. Use of any one or more of the foregoing terms shall not be construed as denoting positions along a perfectly vertical or horizontal axis. Unless otherwise specified, use of the term “subterranean formation” shall be construed as encompassing both areas below exposed earth and areas below earth covered by water, such as ocean or fresh water.
The present disclosure has acknowledged that offshore wells are being drilled at ever increasing water depths and in environmentally sensitive waters, and thus chokes (e.g., including subsurface chokes are necessary. The present disclosure has further acknowledged that chokes have inherent problems. For instance, the present disclosure has recognized that the operational lifespan of traditional chokes is less than optimal, whether they completely quit working or alternatively begin to leak. In such situations where the chokes completely stop working or alternatively begin to leak, the tubing string that the chokes are coupled to must be pulled out of hole, coupled to a new working choke, and then returned within the wellbore, which is an expensive and time consuming process.
Based, at least in part, on the foregoing acknowledgments and recognitions, the present disclosure has developed a replaceable choke (e.g., tubing string independent replaceable choke). The replaceable choke, in at least one embodiment, may be run in hole in two or more steps. For example, a choke landing nipple of the replaceable choke may first be run in hole with the tubing string, and then a retrievable choke insert may be run in hole (e.g., in either a single trip or two trips), and ultimately engage with the choke landing nipple to complete the replaceable choke. Accordingly, if the replaceable choke were to quit working or alternatively begin to leak, the original retrievable choke insert could easily be removed and replaced with a replacement retrievable choke insert. The process of switching original retrievable choke insert with the replacement retrievable choke insert is a much less expensive and much less time consuming process (e.g., can eliminate the need for a workover unit) than is currently necessary when pulling the tubing string, as discussed above.
Chokes according to the disclosure may include hydraulic and/or electric actuation, among others. For example, in at least one embodiment, the hydraulic and/or electric actuation moves a first magnet (e.g., to compress a power spring in an isolated chamber in the choke landing nipple). As the first magnet is magnetically coupled to a second magnet associated with a bore flow management actuator (e.g., flow tube) of the retrievable choke insert, the hydraulic and/or electric actuation can be used to slide the bore flow management actuator to determine a flow condition of subsurface production fluids through the choke.
Chokes according to the disclosure may also have increased failsafe ability as compared to other chokes. Failsafe may be defined as a condition in which the choke or associated control system may be damaged and the choke retains the ability to close. In some examples, the choke may fail in a closed position (e.g., closed state), thus ensuring that wellbore fluids and pressure are contained. In another example, the choke may fail while in an open position (e.g., flow state), but closes automatically (e.g., using a power spring, the actuator or a second actuator) when a hydraulic and/or electrical connection to the surface is damaged or severed without any additional external input.
The choke 170, or at least a portion thereof, may be interconnected in conduit 140 and positioned in the wellbore 130. Although the well system 100 is depicted in
Turning now to
In at least one embodiment, the choke landing nipple 200 further includes a latch profile 235 located in the passageway 220. The latch profile 235, in at least one embodiment, is a specifically designed latch profile configured to engage with a latch of a retrievable choke insert (e.g., the retrievable choke insert 300 of
The choke landing nipple 200 of
In the embodiment of
In the embodiment of
Turning now to
The retrievable choke insert 300 of the embodiment of
The bore flow management actuator 330, in the illustrated embodiment, is configured to move between a fully closed state, a fully open state, and depending on the design many states (e.g., finite and infinite states) therebetween. For example, when the bore flow management actuator 330 is in a fully closed state, the bore flow management openings 335 are fully misaligned (e.g., either axially or rotationally) with the one or more bore flow management openings 320. In contrast, when the bore flow management actuator 330 is in the fully open state, the bore flow management openings 335 are fully aligned with the one or more bore flow management openings 320, and thus allows all the subsurface production fluids to access the bore flow management actuator 330, and thus allows the subsurface production fluids to exit the wellbore. In other embodiments, the bore flow actuator 330 is partially open/closed, such that the bore flow management openings 335 are partially aligned/misaligned with the one or more bore flow management openings 320. The bore flow management actuator 330 may comprise many different features and remain within the scope of the disclosure. Nevertheless, in at least on embodiment, the bore flow management actuator 330 comprises a flow tube.
In accordance with the disclosure, the retrievable choke insert 300 may additionally include one or more choke insert magnets 340. For example, the one or more choke insert magnets 340 may be coupled to (e.g., integrated with) the bore flow management actuator 330. Accordingly, when the one or more choke insert magnets 340 move, the bore flow management actuator 330 moves. In at least one embodiment, the bore flow management actuator 330 moves in lock step with the one or more choke inert magnets 340, for example to partially or fully align or misalign the bore flow management openings 335 with the one or more bore flow management openings 320.
In at least one embodiment, the one or more choke insert magnets 340 are configured to magnetically couple with one or more landing nipple magnets of the choke landing nipple (e.g., the one or more landing nipple magnets 260 of the choke landing nipple 200 of
In accordance with the disclosure, the retrievable choke insert 300 may additionally include a landing nipple locking feature 350. The landing nipple locking feature 350, in one or more embodiments, is configured to engage (e.g., removably engage) with a choke landing nipple (e.g., the latch profile 235 of the choke landing nipple 200 of
The landing nipple locking feature 350, in one or more embodiments, includes a sliding sleeve 360, as well as one or more locking features 370. In the illustrated embodiment, the sliding sleeve 360 extends at least partially around, and may slide relative to, the bore flow management actuator 330. Furthermore, the locking features 370, in one or more embodiments, are movable from a radially retracted state to a radially extended state (e.g., extending through one or more openings in the outer housing 310). For example, in at least one embodiment, as the sliding sleeve slides relative to the bore flow management actuator 330, the sliding sleeve 360 engages a radially interior surface of the locking feature 370 to move the locking feature from the radially retracted state to the radially extended state. When the retrievable choke insert 300 is appropriately positioned within a choke landing nipple (e.g., the choke landing nipple 200 of
In accordance with the disclosure, the retrievable choke insert 300 may additionally include one or more seals 380. In at least one embodiment, the one or more seals 380 are one or more stacked seals that engage with a surface of the choke landing nipple. In at least one other embodiment, the one or more seals 380 are one or more stacked seals that engage with a polished bore receptacle (e.g., polished bore receptacle 238 of
Turning now to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
In at least one embodiment, the power spring 270 is configured to return the one or more landing nipple magnets 260 from the second landing nipple magnet state or third landing nipple magnet state to the first landing nipple magnet state when the actuator 250 is not powered. For example, if the power (e.g., hydraulic and/or electric power) to the actuator 250 were to be intentionally removed or reduced, the power spring 270 could move (e.g., whether independently or in conjunction with the actuator 250) the one or more landing nipple magnets 260 from the second landing nipple magnet state or third landing nipple magnet state to the first landing nipple magnet state. Similarly, if the power (e.g., hydraulic and/or electric power) to the actuator 250 were to be unintentionally cut, the power spring 270 would act as a failsafe and move (e.g., independently) the one or more landing nipple magnets 260 from the second landing nipple magnet state or third landing nipple magnet state to the first landing nipple magnet state.
Referring to
Referring to
Turning now to
Turning now to
Turning now to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
In at least one embodiment, the second actuator 550 is configured to return the one or more landing nipple magnets 260 from the second landing nipple magnet state or third landing nipple magnet state to the first landing nipple magnet state when the first and second actuators 250, 550 are not powered. For example, if the power (e.g., hydraulic and/or electric power) to the first and second actuators 250, 550 were to be intentionally removed or reduced, the second actuator 550 could move (e.g., whether independently or in conjunction with the actuator 250) the one or more landing nipple magnets 260 from the second landing nipple magnet state or third landing nipple magnet state to the first landing nipple magnet state. Similarly, if the power (e.g., hydraulic and/or electric power) to the first and second actuators 250, 550 were to be unintentionally cut, the second actuator 550 would act as a failsafe and move (e.g., independently) the one or more landing nipple magnets 260 from the second landing nipple magnet state or third landing nipple magnet state to the first landing nipple magnet state.
Referring to
Referring to
Turning now to
Turning now to
Turning now to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
In at least one embodiment, the actuator 250 is configured to return the one or more landing nipple magnets 260 from the second landing nipple magnet state or third landing nipple magnet state to the first landing nipple magnet state when the actuator 250 is not powered. For example, if the power (e.g., hydraulic and/or electric power) to the actuator 250 were to be intentionally removed or reduced, the actuator 250 could move the one or more landing nipple magnets 260 from the second landing nipple magnet state or third landing nipple magnet state to the first landing nipple magnet state. Similarly, if the power (e.g., hydraulic and/or electric power) to the actuator 250 were to be unintentionally cut, the actuator 250 would act as a failsafe and move (e.g., independently) the one or more landing nipple magnets 260 from the second landing nipple magnet state or third landing nipple magnet state to the first landing nipple magnet state.
Referring to
Referring to
Aspects Disclosed Herein Include:
A. A retrievable choke insert, the retrievable choke insert including: 1) an outer housing including a central bore extending axially through the outer housing, an open end, a closed end, and one or more outer housing openings extending through an outer housing sidewall thickness; 2) a bore flow management actuator disposed in the central bore, the bore flow management actuator having one or more bore flow management openings extending through a bore flow management actuator sidewall thickness, the bore flow management actuator operable to convey subsurface production fluids there through; and 3) one or more choke insert magnets coupled to the bore flow management actuator, the one or more choke insert magnets configured to magnetically couple with one or more landing nipple magnets of a choke landing nipple to slide the bore flow management actuator and move the one or more bore flow management openings relative to the one or more outer housing openings to control an amount of the subsurface production fluid entering the bore flow management actuator.
B. A choke landing nipple, the choke landing nipple including: 1) a housing having a passageway extending from a first end to a second end thereof; 2) an isolated chamber located in the housing; 3) an actuator positioned within the isolated chamber; and 4) one or more landing nipple magnets coupled to the actuator within the isolated chamber, the one or more landing nipple magnets configured to move from a first landing nipple magnet state to a second landing nipple state when the actuator moves from a first actuator state to a second actuator state, the one or more landing nipple magnets configured to magnetically coupled to one or more choke insert magnets located in the passageway.
C. A well system, the well system including: 1) a wellbore extending through one or more subterranean formations; 2) production tubing disposed in the wellbore; 3) a subsurface choke disposed in line with the production tubing, the subsurface choke including: a) a choke landing nipple, the choke landing nipple including: i) a housing having a passageway extending from a first end to a second end thereof; ii) an isolated chamber located in the housing; iii) an actuator positioned within the isolated chamber; and iv) one or more landing nipple magnets coupled to the actuator within the isolated chamber, the one or more landing nipple magnets configured to move from a first landing nipple magnet state to a second landing nipple state when the actuator moves from a first actuator state to a second actuator state; and b) a retrievable choke insert located within the choke landing nipple, the retrievable choke insert including: i) an outer housing including a central bore extending axially through the outer housing, an open end, a closed end, and one or more outer housing openings extending through an outer housing sidewall thickness; ii) a bore flow management actuator disposed in the central bore, the bore flow management actuator having one or more bore flow management openings extending through a bore flow management actuator sidewall thickness, the bore flow management actuator operable to convey subsurface production fluids there through; and iii) one or more choke insert magnets coupled to the bore flow management actuator, the one or more choke insert magnets magnetically coupled with the one or more landing nipple magnets of the choke landing nipple to slide the bore flow management actuator and move the one or more bore flow management openings relative to the one or more outer housing openings to control an amount of the subsurface production fluid entering the bore flow management actuator.
D. A method for assembling and operating a subsurface choke, the method including: 1) positioning a choke landing nipple disposed in line with production tubing in a wellbore, the choke landing nipple including: a) a housing having a passageway extending from a first end to a second end thereof; b) an isolated chamber located in the housing; c) an actuator positioned within the isolated chamber; and d) one or more landing nipple magnets coupled to the actuator within the isolated chamber, the one or more landing nipple magnets configured to move from a first landing nipple magnet state to a second landing nipple state when the actuator moves from a first actuator state to a second actuator state; and 2) inserting a retrievable choke insert within the choke landing nipple located in the wellbore, the retrievable choke insert including: a) an outer housing including a central bore extending axially through the outer housing, an open end, a closed end, and one or more outer housing openings extending through an outer housing sidewall thickness; b) a bore flow management actuator disposed in the central bore, the bore flow management actuator having one or more bore flow management openings extending through a bore flow management actuator sidewall thickness, the bore flow management actuator operable to convey subsurface production fluids there through; and c) one or more choke insert magnets coupled to the bore flow management actuator, the one or more choke insert magnets magnetically coupled with the one or more landing nipple magnets of the choke landing nipple to slide the bore flow management actuator and move the one or more bore flow management openings relative to the one or more outer housing openings to control an amount of the subsurface production fluid entering the bore flow management actuator.
Aspects A, B, C and D may have one or more of the following additional elements in combination: Element 1: further including a landing nipple locking feature. Element 2: wherein the landing nipple locking feature includes a sliding sleeve and one or more locking features, the one or more locking features configured to engage with one or more latch profiles in the choke landing nipple. Element 3: wherein the sliding sleeve is configured to slide to move the one or more locking features from a radially retracted state to a radially extended state to engage with the one or more latch profiles in the choke landing nipple. Element 4: wherein the outer housing entirely surrounds the bore flow management actuator and couples to and surrounds at least a portion of the landing nipple locking feature. Element 5: wherein the landing nipple locking feature is slidingly fixed to the bore flow management actuator. Element 6: wherein the one or more locking features are configured to extend through the outer housing to engage with the one or more latch profiles in the choke landing nipple. Element 7: wherein the landing nipple locking feature and the bore flow management actuator are separate and distinct features. Element 8: further including one or more seals disposed radially about the outer housing, the one or more seals configured to engage with a polished bore receptacle of the choke landing nipple. Element 9: wherein the outer housing includes two or more outer housing openings extending through an outer housing sidewall thickness and the bore flow management actuator includes two or more bore flow management openings extending through a bore flow management actuator sidewall thickness. Element 10: wherein the actuator is configured to move the one or more landing nipple magnets from the first landing nipple magnet state to the second landing nipple magnet state, and further including a power spring located in the isolated chamber and coupled to the one or more landing nipple magnets, the power spring configured to return the one or more landing nipple magnets from the second landing nipple magnet state to the first landing nipple magnet state. Element 11: wherein the actuator is a first actuator configured to move the one or more landing nipple magnets from the first landing nipple magnet state to the second landing nipple magnet state, and further including a second actuator positioned within the isolated chamber and configured to return the one or more landing nipple magnets from the second landing nipple magnet state to the first landing nipple magnet state. Element 12: wherein the actuator is a single actuator configured to move the one or more landing nipple magnets from the first landing nipple magnet state to the second landing nipple magnet state and return the one or more landing nipple magnets from the second landing nipple magnet state to the first landing nipple magnet state. Element 13: further including a polished bore receptacle located proximate the second end, the polished bore receptacle configured to engage with a seal of a retrievable choke insert. Element 14: further including actuating the actuator to move the landing nipple magnets from a first landing nipple magnet state to a second landing nipple state and in turn move the one or more choke magnets from a first choke insert magnet state to a second choke insert magnet state and in turn move the bore flow management actuator to at least partially align the one or more bore flow management openings and the one or more outer housing openings. Element 15: further including removing the retrievable choke insert from within the choke landing nipple, and then inserting a replacement retrievable choke insert within the choke landing nipple. Element 16: wherein the inserting and the removing including using a wireline, coiled tubing or a wellbore tractor to replace and remove. Element 17: wherein the inserting the retrievable choke insert within the choke landing nipple includes inserting the retrievable choke insert within the choke landing nipple in a single downhole trip. Element 18: wherein the inserting the retrievable choke insert within the choke landing nipple includes inserting the retrievable choke insert within the choke landing nipple in two downhole trips.
Those skilled in the art to which this application relates will appreciate that other and further additions, deletions, substitutions and modifications may be made to the described embodiments.
Claims
1. A retrievable choke insert, comprising:
- an outer housing including a central bore extending axially through the outer housing, an open end, a closed end, and one or more outer housing openings extending through an outer housing sidewall thickness;
- a bore flow management actuator disposed in the central bore, the bore flow management actuator having one or more bore flow management openings extending through a bore flow management actuator sidewall thickness, the bore flow management actuator operable to convey subsurface production fluids there through; and
- one or more choke insert magnets coupled to the bore flow management actuator, the one or more choke insert magnets configured to magnetically couple with one or more landing nipple magnets of a choke landing nipple to slide the bore flow management actuator and move the one or more bore flow management openings relative to the one or more outer housing openings to control an amount of the subsurface production fluid entering the bore flow management actuator.
2. The retrievable choke insert as recited in claim 1, further including a landing nipple locking feature.
3. The retrievable choke insert as recited in claim 2, wherein the landing nipple locking feature includes a sliding sleeve and one or more locking features, the one or more locking features configured to engage with one or more latch profiles in the choke landing nipple.
4. The retrievable choke insert as recited in claim 3, wherein the sliding sleeve is configured to slide to move the one or more locking features from a radially retracted state to a radially extended state to engage with the one or more latch profiles in the choke landing nipple.
3. The retrievable choke insert as recited in claim 3, wherein the outer housing entirely surrounds the bore flow management actuator and couples to and surrounds at least a portion of the landing nipple locking feature.
6. The retrievable choke insert as recited in claim 5, wherein the landing nipple locking feature is slidingly fixed to the bore flow management actuator.
7. The retrievable choke insert as recited in claim 5, wherein the one or more locking features are configured to extend through the outer housing to engage with the one or more latch profiles in the choke landing nipple.
8. The retrievable choke insert as recited in claim 3, wherein the landing nipple locking feature and the bore flow management actuator are separate and distinct features.
9. The retrievable choke insert as recited in claim 1, further including one or more seals disposed radially about the outer housing, the one or more seals configured to engage with a polished bore receptacle of the choke landing nipple.
10. The retrievable choke insert as recited in claim 1, wherein the outer housing includes two or more outer housing openings extending through an outer housing sidewall thickness and the bore flow management actuator includes two or more bore flow management openings extending through a bore flow management actuator sidewall thickness.
11. A choke landing nipple, comprising:
- a housing having a passageway extending from a first end to a second end thereof;
- an isolated chamber located in the housing;
- an actuator positioned within the isolated chamber; and
- one or more landing nipple magnets coupled to the actuator within the isolated chamber, the one or more landing nipple magnets configured to move from a first landing nipple magnet state to a second landing nipple state when the actuator moves from a first actuator state to a second actuator state, the one or more landing nipple magnets configured to magnetically coupled to one or more choke insert magnets located in the passageway.
12. The choke landing nipple as recited in claim 11, wherein the actuator is configured to move the one or more landing nipple magnets from the first landing nipple magnet state to the second landing nipple magnet state, and further including a power spring located in the isolated chamber and coupled to the one or more landing nipple magnets, the power spring configured to return the one or more landing nipple magnets from the second landing nipple magnet state to the first landing nipple magnet state.
13. The choke landing nipple as recited in claim 11, wherein the actuator is a first actuator configured to move the one or more landing nipple magnets from the first landing nipple magnet state to the second landing nipple magnet state, and further including a second actuator positioned within the isolated chamber and configured to return the one or more landing nipple magnets from the second landing nipple magnet state to the first landing nipple magnet state.
14. The choke landing nipple as recited in claim 11, wherein the actuator is a single actuator configured to move the one or more landing nipple magnets from the first landing nipple magnet state to the second landing nipple magnet state and return the one or more landing nipple magnets from the second landing nipple magnet state to the first landing nipple magnet state.
15. The choke landing nipple as recited in claim 11, further including a polished bore receptacle located proximate the second end, the polished bore receptacle configured to engage with a seal of a retrievable choke insert.
16. A well system, comprising:
- a wellbore extending through one or more subterranean formations;
- production tubing disposed in the wellbore;
- a subsurface choke disposed in line with the production tubing, the subsurface choke including: a choke landing nipple, the choke landing nipple including: a housing having a passageway extending from a first end to a second end thereof; an isolated chamber located in the housing; an actuator positioned within the isolated chamber; and one or more landing nipple magnets coupled to the actuator within the isolated chamber, the one or more landing nipple magnets configured to move from a first landing nipple magnet state to a second landing nipple state when the actuator moves from a first actuator state to a second actuator state; and a retrievable choke insert located within the choke landing nipple, the retrievable choke insert including: an outer housing including a central bore extending axially through the outer housing, an open end, a closed end, and one or more outer housing openings extending through an outer housing sidewall thickness; a bore flow management actuator disposed in the central bore, the bore flow management actuator having one or more bore flow management openings extending through a bore flow management actuator sidewall thickness, the bore flow management actuator operable to convey subsurface production fluids there through; and one or more choke insert magnets coupled to the bore flow management actuator, the one or more choke insert magnets magnetically coupled with the one or more landing nipple magnets of the choke landing nipple to slide the bore flow management actuator and move the one or more bore flow management openings relative to the one or more outer housing openings to control an amount of the subsurface production fluid entering the bore flow management actuator.
17. The well system as recited in claim 16, further including a landing nipple locking feature.
18. The well system as recited in claim 17, wherein the landing nipple locking feature includes a sliding sleeve and one or more locking features, the one or more locking features configured to engage with one or more latch profiles in the choke landing nipple.
19. The well system as recited in claim 18, wherein the sliding sleeve is configured to slide to move the one or more locking features from a radially retracted state to a radially extended state to engage with the one or more latch profiles in the choke landing nipple.
20. The wall system as recited in claim 18, wherein the outer housing entirely surrounds the bore flow management actuator and couples to and surrounds at least a portion of the landing nipple locking feature.
21. The well system as recited in claim 20, wherein the landing nipple locking feature is slidingly fixed to the bore flow management actuator.
22. The well system as recited in claim 20, wherein the one or more locking features are configured to extend through the outer housing to engage with the one or more latch profiles in the choke landing nipple.
23. The well system as recited in claim 18, wherein the landing nipple locking feature and the bore flow management actuator are separate and distinct features.
24. The well system as recited in claim 16, further including one or more seals disposed radially about the outer housing, the one or more seals configured to engage with a polished bore receptacle of the choke landing nipple.
25. The wall system as recited in claim 16, wherein the outer housing includes two or more outer housing openings extending through an outer housing sidewall thickness and the bore flow management actuator includes two or more bore flow management openings extending through a bore flow management actuator sidewall thickness.
26. The well system as recited in claim 16, wherein the actuator is configured to move the one or more landing nipple magnets from the first landing nipple magnet state to the second landing nipple magnet state, and further including a power spring located in the isolated chamber and coupled to the one or more landing nipple magnets, the power spring configured to return the one or more landing nipple magnets from the second landing nipple magnet state to the first landing nipple magnet state.
27. The well system as recited in claim 16, wherein the actuator is a first actuator configured to move the one or more landing nipple magnets from the first landing nipple magnet state to the second landing nipple magnet state, and further including a second actuator located in the isolated chamber and coupled to the one or more landing nipple magnets, the second actuator configured to return the one or more landing nipple magnets from the second landing nipple magnet state to the first landing nipple magnet state.
28. The well system as recited in claim 16, wherein the actuator is a single actuator configured to move the one or more landing nipple magnets from the first landing nipple magnet state to the second landing nipple magnet state and return the one or more landing nipple magnets from the second landing nipple magnet state to the first landing nipple magnet state.
29. A method for assembling and operating a subsurface choke, comprising:
- positioning a choke landing nipple disposed in line with production tubing in a wellbore, the choke landing nipple including: a housing having a passageway extending from a first end to a second end thereof; an isolated chamber located in the housing; an actuator positioned within the isolated chamber; and one or more landing nipple magnets coupled to the actuator within the isolated chamber, the one or more landing nipple magnets configured to move from a first landing nipple magnet state to a second landing nipple state when the actuator moves from a first actuator state to a second actuator state; and
- inserting a retrievable choke insert within the choke landing nipple located in the wellbore, the retrievable choke insert including: an outer housing including a central bore extending axially through the outer housing, an open end, a closed end, and one or more outer housing openings extending through an outer housing sidewall thickness; a bore flow management actuator disposed in the central bore, the bore flow management actuator having one or more bore flow management openings extending through a bore flow management actuator sidewall thickness, the bore flow management actuator operable to convey subsurface production fluids there through; and one or more choke insert magnets coupled to the bore flow management actuator, the one or more choke insert magnets magnetically coupled with the one or more landing nipple magnets of the choke landing nipple to slide the bore flow management actuator and move the one or more bore flow management openings relative to the one or more outer housing openings to control an amount of the subsurface production fluid entering the bore flow management actuator.
29. The method as recited in claim 29, further including actuating the actuator to move the landing nipple magnets from a first landing nipple magnet state to a second landing nipple state and in turn move the one or more choke magnets from a first choke insert magnet state to a second choke insert magnet state and in turn move the bore flow management actuator to at least partially align the one or more bore flow management openings and the one or more outer housing openings.
31. The method as recited in claim 29, further including removing the retrievable choke insert from within the choke landing nipple, and then inserting a replacement retrievable choke insert within the choke landing nipple.
32. The method as recited in claim 31, wherein the inserting and the removing including using a wireline, coiled tubing or a wellbore tractor to replace and remove.
33. The method as recited in claim 29, wherein the inserting the retrievable choke insert within the choke landing nipple includes inserting the retrievable choke insert within the choke landing nipple in a single downhole trip.
34. The method as recited in claim 29, wherein the inserting the retrievable choke insert within the choke landing nipple includes inserting the retrievable choke insert within the choke landing nipple in two downhole trips.
Type: Application
Filed: Jun 9, 2022
Publication Date: Dec 14, 2023
Inventors: Kevin Robin Passmore (Carrollton, TX), Bruce Edward Scott (Carrollton, TX)
Application Number: 17/836,352