Constant-Torque Intraosseous Access Devices and Methods Thereof

An intraosseous access device can include a constant-torque spring assembly disposed in a housing, a drive shaft extending from the housing, and an intraosseous needle coupled to the drive shaft configured to provide intraosseous access to a medullary cavity of a patient. A method of using an intraosseous access device can include inserting a distal end of the intraosseous needle through skin at an insertion site of a patient and applying a contacting force to a bone beneath the insertion site with the distal end of the intraosseous needle. The contacting force can initiate a winding of a metal ribbon of the constant-torque spring assembly from an output spool onto a storage spool, thereby initiating drilling rotation of the intraosseous needle. The method can further include drilling through the bone until the intraosseous needle enters a medullary cavity of the patient.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
PRIORITY

This application is a division of U.S. patent application Ser. No. 17/035,272, filed Sep. 28, 2020, now U.S. Pat. No. 11,759,235, which claims the benefit of priority to U.S. Provisional Application No. 62/907,454, filed Sep. 27, 2019, each of which is incorporated by reference in its entirety into this application.

BACKGROUND

Peripheral intravenous catheter (“PIVC”) insertions are increasingly challenging in emergency scenarios as critically ill patients deteriorate. Intraosseous (“IO”) access is often the only means available to clinicians to increase the patient's chances of recovery and even save the patients' lives.

IO access can be acquired in as little as 2-5 seconds with a relatively high chance of success. The commercial state-of-the-art medical device for IO access is a small, drill-like device built around a relatively primitive electric motor. Motors such as the foregoing provide an adequate means for drilling to effectuate IO access, but such motors are not necessarily tuned to the needs of IO access. The infrastructure of such motors (e.g., batteries, wires, gear trains, gear-reduction hardware, switches, etc.) is largely overbuilt for just 1-2 seconds of drilling. Additionally, the drill-like device and the motors thereof must be monitored and managed by clinical personnel for readiness, and there are requirements and regulations related to the disposal of the foregoing medical devices. What is needed is needed is a better tuned medical device that significantly reduces design and manufacturing complexity while optimizing user experience.

Disclosed herein are constant-torque IO access devices and methods thereof that address the forgoing shortcomings.

SUMMARY

Disclosed herein is an IO access device including, in some embodiments, a constant-torque spring assembly disposed in a housing, a drive shaft extending from the housing, and an IO needle coupled to the drive shaft. The drive shaft is coupled to the constant-torque spring. The IO needle is configured to provide IO access to a medullary cavity of a patient.

In some embodiments, the constant-torque spring assembly includes a metal ribbon reversely wound onto an output spool. The metal ribbon is configured to wind onto a storage spool with a constant torque when the output spool is released.

In some embodiments, spindles of the output spool and the storage spool are coupled together by at least one elastomeric loop to prevent any timing-related errors between the output spool and the storage spool.

In some embodiments, the housing includes a set of housing teeth around an aperture of the housing from which the drive shaft extends. The drive shaft includes a set of complementary drive-shaft teeth around the drive shaft opposing the set of housing teeth. The set of housing teeth and the set of drive-shaft teeth engage in an inactive state of the IO access device by a compression spring between a back side of the set of drive-shaft teeth and the output spool.

In some embodiments, the drive shaft is slideably disposed in an axial channel of the output spool such that force applied to a distal end of the IO needle simultaneously compresses the compression spring and inserts the drive shaft deeper into the axial channel. This disengages the set of drive-shaft teeth from the set of housing teeth and initiates an active state of the IO access device. In the active state of the IO access device, rotation of the IO needle is effectuated by the output spool of the constant-torque spring assembly on the drive shaft.

In some embodiments, a combination of a molded piece within the housing and an extension pin disposed in the axial channel of the output spool between the drive shaft and the molded piece is configured to stop over insertion of the drive shaft into the axial channel of the output spool. In addition, the combination of the extension pin and the molded piece is configured to decouple the force applied to the distal end of the IO needle from the constant-torque spring assembly.

In some embodiments, the compression spring is configured to relax when the force applied to the distal end of the IO needle is removed. This reengages the set of drive-shaft teeth with the set of housing teeth and reinitiates the inactive state of the IO access device.

In some embodiments, the IO access device is configured such that entry of the IO needle into the medullary cavity of the patient automatically removes the force applied to the distal end of the IO needle.

In some embodiments, the IO access device further includes an interlock including a trigger and a lock pin disposed between the trigger and the output spool in the inactive state of the IO access device. The trigger is configured to release the lock pin allowing the force applied to the distal end of the IO needle to simultaneously compress the compression spring and insert the drive shaft deeper into the axial channel.

In some embodiments, the IO access device further includes a braking system configured to act on the output spool to slow the metal ribbon from winding onto the storage spool.

In some embodiments, the IO needle is configured to separate from the IO access device subsequent to achieving IO access to the medullary cavity of the patient.

In some embodiments, the IO needle includes an obturator removably disposed in a cannula. The cannular has a lumen configured for at least interosseous infusion upon removal of the obturator.

Also disclosed herein is an IO access device including, in some embodiments, a constant-torque spring assembly disposed in a housing, a drive shaft extending from the housing, and an IO needle coupled to the drive shaft configured to provide IO access to a medullary cavity of a patient. The constant-torque spring assembly includes a metal ribbon reversely wound onto an output spool. The metal ribbon is configured to wind onto a storage spool from the output spool with a constant torque in an active state of the IO access device. The drive shaft is slideably disposed in an axial channel of the output spool. Force applied to a distal-end portion of the drive shaft simultaneously compresses a compression spring and inserts the drive shaft deeper into the axial channel. This disengages a set of drive-shaft teeth around the drive shaft from an opposing set of housing teeth around an aperture of the housing from which the drive shaft extends and initiates the active state of the IO access device. The IO needle is configured to rotate in the active state of the IO access device and provide IO access to a medullary cavity of a patient by way of drilling with the IO needle.

In some embodiments, a combination of a molded piece within the housing and an extension pin disposed in the axial channel of the output spool between the drive shaft and the molded piece is configured to stop over insertion of the drive shaft into the axial channel of the output spool. In addition, the combination of the extension pin and the molded piece is configured to decouple the force applied to the distal-end portion of the drive shaft from the constant-torque spring assembly.

In some embodiments, the compression spring is configured to relax when the force applied to the distal-end portion of the drive shaft is removed. This reengages the set of drive-shaft teeth with the set of housing teeth and reinitiates the inactive state of the IO access device.

In some embodiments, the IO access device is configured such that entry of the IO needle into the medullary cavity of the patient automatically removes the force applied to the distal-portion of the drive shaft.

Also disclosed herein is a method of an IO access device including, in some embodiments, an obtaining step of obtaining the IO access device. The IO access device includes a constant-torque spring assembly disposed in a housing, a drive shaft coupled to the constant-torque spring assembly and extending from the housing, and an IO needle coupled to the drive shaft. The method also includes an inserting step of inserting a distal end of the IO needle through skin at an insertion site of a patient. The method also includes an applying step of applying force to bone at the insertion site with the distal end of the IO needle. The applying step starts winding a metal ribbon of the constant-torque spring assembly from an output spool onto a storage spool, thereby starting rotation of the IO needle. The method also includes a drilling step of drilling through the bone until the IO needle enters a medullary cavity of the patient, thereby achieving IO access to the medullary cavity of the patient with the IO access device.

In some embodiments, the applying step inserts the drive shaft deeper into an axial channel of the output spool of the constant-torque spring assembly. The applying step also compresses a compression spring between a back side of a set of drive-shaft teeth around the drive shaft and the output spool. The applying step also disengages the set of drive-shaft teeth from an opposing set of housing teeth around an aperture of the housing from which the drive shaft extends to start the rotation of the IO needle.

In some embodiments, the method further includes a ceasing step of ceasing to apply the force to the bone with the distal end of the IO needle. The ceasing step removes at least a portion of the drive shaft from the axial channel of the output spool, relaxes the compression spring, and reengages the set of drive-shaft teeth with the set of housing teeth to stop the rotation of the IO needle.

In some embodiments, the ceasing step is manually initiated by a clinician after feeling a change in tissue density upon entering the medullary cavity of the patient.

In some embodiments, the ceasing step is automatically initiated by the IO access device after experiencing a change in tissue density upon entering the medullary cavity of the patient.

In some embodiments, the method further includes a triggering step of triggering a trigger of an interlock of the IO access device. The triggering step releases a lock pin disposed between the trigger and the output spool allowing the force applied to the bone at the distal end of the IO needle to start the rotation of the IO needle.

In some embodiments, the method further includes a detaching step of detaching the IO needle from a remainder of the IO access device; a removing step of removing from the IO needle an obturator removably disposed in a cannula; a confirming step of confirming the cannula is disposed in the medullary cavity by aspirating bone marrow through a syringe; a securing step of securing the cannula to the patient; and a starting step of starting interosseous infusion as boluses with a same or different syringe.

These and other features of the concepts provided herein will become more apparent to those of skill in the art in view of the accompanying drawings and following description, which describe particular embodiments of such concepts in greater detail.

DRAWINGS

FIG. 1 illustrates a first IO access device in accordance with some embodiments.

FIG. 2 illustrates the first IO access device with a side of housing removed in accordance with some embodiments.

FIG. 3 illustrates a second IO access device in accordance with some embodiments.

FIG. 4 illustrates the first IO access device with a side of housing removed in accordance with some embodiments.

FIG. 5 illustrates a constant-torque spring assembly in accordance with some embodiments.

FIG. 6 illustrates an activation mechanism in accordance with some embodiments.

DESCRIPTION

Before some particular embodiments are disclosed in greater detail, it should be understood that the particular embodiments disclosed herein do not limit the scope of the concepts provided herein. It should also be understood that a particular embodiment disclosed herein can have features that can be readily separated from the particular embodiment and optionally combined with or substituted for features of any of a number of other embodiments disclosed herein.

Regarding terms used herein, it should also be understood the terms are for the purpose of describing some particular embodiments, and the terms do not limit the scope of the concepts provided herein. Ordinal numbers (e.g., first, second, third, etc.) are generally used to distinguish or identify different features or steps in a group of features or steps, and do not supply a serial or numerical limitation. For example, “first,” “second,” and “third” features or steps need not necessarily appear in that order, and the particular embodiments including such features or steps need not necessarily be limited to the three features or steps. Labels such as “left,” “right,” “top,” “bottom,” “front,” “back,” and the like are used for convenience and are not intended to imply, for example, any particular fixed location, orientation, or direction. Instead, such labels are used to reflect, for example, relative location, orientation, or directions. Singular forms of “a,” “an,” and “the” include plural references unless the context clearly dictates otherwise.

With respect to “proximal,” a “proximal portion” or a “proximal-end portion” of, for example, a catheter includes a portion of the catheter intended to be near a clinician when the catheter is used on a patient. Likewise, a “proximal length” of, for example, the catheter includes a length of the catheter intended to be near the clinician when the catheter is used on the patient. A “proximal end” of, for example, the catheter includes an end of the catheter intended to be near the clinician when the catheter is used on the patient. The proximal portion, the proximal-end portion, or the proximal length of the catheter can include the proximal end of the catheter; however, the proximal portion, the proximal-end portion, or the proximal length of the catheter need not include the proximal end of the catheter. That is, unless context suggests otherwise, the proximal portion, the proximal-end portion, or the proximal length of the catheter is not a terminal portion or terminal length of the catheter.

With respect to “distal,” a “distal portion” or a “distal-end portion” of, for example, a catheter includes a portion of the catheter intended to be near or in a patient when the catheter is used on the patient. Likewise, a “distal length” of, for example, the catheter includes a length of the catheter intended to be near or in the patient when the catheter is used on the patient. A “distal end” of, for example, the catheter includes an end of the catheter intended to be near or in the patient when the catheter is used on the patient. The distal portion, the distal-end portion, or the distal length of the catheter can include the distal end of the catheter; however, the distal portion, the distal-end portion, or the distal length of the catheter need not include the distal end of the catheter. That is, unless context suggests otherwise, the distal portion, the distal-end portion, or the distal length of the catheter is not a terminal portion or terminal length of the catheter.

Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by those of ordinary skill in the art.

As set forth above, PIVC insertions are increasingly challenging in emergency scenarios as critically ill patients deteriorate. Intraosseous (“IO”) access is often the only means available to clinicians to increase the patient's chances of recovery and even save the patients' lives. However, better tuned medical devices are needed that can significantly reduce design and manufacturing complexity while optimizing user experience. Disclosed herein are constant-torque IO access devices and methods thereof that address the forgoing shortcomings.

IO Access Devices

FIG. 1 and FIG. 3 respectively illustrate a first IO access device 100 and a second IO access device 300 in accordance with some embodiments. FIG. 2 and FIG. 4 respectively illustrate the first IO access device 100 and the second IO access device 300 with a side of housing 102 or 302 removed in accordance with some embodiments. FIG. 5 illustrates a constant-torque spring assembly 204 in accordance with some embodiments.

As shown, the IO access device 100 or 300 includes the constant-torque spring assembly 204 or 404 disposed in the housing 102 or 302, a drive shaft 106 extending from the housing 102 or 302, and an IO needle 108 coupled to the drive shaft 106 configured to provide IO access to a medullary cavity of a patient.

The housing 102 or 302 houses components of the IO access device 100 or 300. While the components of the IO access devices 100 and 300 are largely the same in terms of function, the components can be physically different in order to accommodate a particular form factor. For example, the IO access device 100 has a form factor for holding the IO access device 100 in a way that permits the IO needle 108 to access a medullary cavity of a patient with a stabbing motion. In contrast, the IO access device 300 has a form factor for holding the IO access device 100 in a way that permits the IO needle 108 to access a medullary cavity of a patient with in a more traditional drilling motion. The housing 102 or 302 is molded of a medically acceptable polymer such that sagittal halves of the housing 102 or 302 can be snapped or bound (e.g., mechanically fastened with fasteners, chemically bonded by adhesive, etc.) together around the components of the IO access device 100 or 300.

The constant-torque spring assembly 204 or 404 includes a metal ribbon (e.g., a stainless-steel ribbon) 210, at least a portion of which is reversely wound onto an output spool 212 and correctly wound onto a storage spool 214 with respect to a bias of the metal ribbon 210. The metal ribbon 210 is configured to wind onto the storage spool 214 or into a storage cavity with a constant torque across a range of revolutions-per-minute (“RPMs”) when the output spool 212 is released or otherwise allowed to do so.

The constant-torque spring assembly 204 or 404 is unique in that stresses associated with deflection of the metal ribbon 210 are not cumulative over an entire length of the metal ribbon 210. The stresses are temporary and apply to only a short length (e.g., the exposed length) of the metal ribbon 210 at any given time. In addition, the metal ribbon 210 can be tuned with respect to any characteristic selected from its thickness, width, number of winds around the output spool 212, and the like for configuration of the constant-torque spring assembly 204 or 404 with an optimal rotary action of the IO needle for IO insertion.

Each spool of the output spool 212 and the storage spool 214 optionally includes a spindle co-incident with an axis of the spool for mounting the spool in the housing 102 or 302. Such a spindle can be on one side of the spool or both sides of the spool. For example, the constant-torque spring assembly 204 of the IO access device 100 includes spindle 216 and spindle 218 of the output spool 212 and spindle 220 and spindle 222 of the storage spool 214. Likewise, the constant-torque spring assembly 404 of the IO access device 300 includes spindle 416 and spindle 418 of the output spool 212 and spindle 420 and spindle 422 of the storage spool 214.

Alternatively or additionally to the foregoing spindles, each spool of the output spool 212 and the storage spool 214 optionally includes an axial channel co-incident with the axis of the spool, which can be for mounting the spool in the housing 102 or 302, driving another component (e.g., the drive shaft 106) of the IO access device 100 or 300, etc. Such an axial channel can be in one side of the spool, both sides of the spool, or extending from one side of the spool to the other side of the spool. For example, the constant-torque spring assembly 204 or 404 of the IO access device 100 or 300 includes an axial channel 524, which, in at least this case, includes a hexagonal shape to drive the hexagonal proximal-end portion of the drive shaft 106. (See FIGS. 5 and 6.) If the output spool 212 or the storage spool 214 includes a spindle on a side of the spool 212 or 214 and an axial channel in the same side of the spool 212 or 214, the spindle has an outer diameter large enough to accommodate an inner diameter of the axial channel as shown in FIG. 5 by the spindle 218 and the axial channel 524.

As shown in FIG. 5, same-side spindles such as the spindles 218 and 222 respectively of the output spool 212 and the storage spool 214 can be coupled together by at least one elastomeric loop 526 (e.g., an ‘O’-ring) to prevent any timing-related errors between the output spool 212 and the storage spool 214. Such timing-related errors are possible if the metal ribbon 210 winds onto the storage spool 214 more slowly than the metal ribbon 210 winds off the output spool 212—or vice versa. As shown, the elastomeric loop 526 includes a half twist such that it crosses over itself to match the rotational motion of both the output spool 212 and the storage spool 214.

FIG. 6 illustrates an activation mechanism 600 for activating rotation of the IO needle 108 in accordance with some embodiments.

As shown, the activation mechanism 600 for activating rotation of the IO needle 108 includes the drive shaft 106 slideably disposed in the axial channel 524 of the output spool 212, a set of drive-shaft teeth 628 around the drive shaft 106, a set of opposing but complementary housing teeth 630 around an aperture of the housing 102 or 302 from which the drive shaft 106 extends, and a compression spring 632 between a back side of the set of drive-shaft teeth 628 and the output spool 212.

In an inactive state of the IO access device 100 or 300, a spring force is exerted on the back side of the set of drive-shaft teeth 628 by extension of the compression spring 632 between the back side of the set of drive-shaft teeth 628 and the output spool 212. Extension of the compression spring 632 keeps the drive shaft 106 pushed out of the axial channel 524, which also keeps the set of drive-shaft teeth 628 thereof away from the output spool 212 such that the set of drive-shaft teeth 628 and the set of housing teeth 630 are engaged with each other. Each set of teeth of the set of drive-shaft teeth 628 and the set of housing teeth 630 can include sawtooth-shaped teeth. When such sets of teeth are engaged with each other as in the inactive state of the IO access device 100 or 300, rotation of the drive shaft 106 and, thus, the rotation of the IO needle 108 is prevented.

In an active state of the IO access device 100 or 300, the spring force exerted on the back side of the set of drive-shaft teeth 628 by the extension of the compression spring 632 is overwhelmed by force applied to a distal-end portion of the drive shaft 106 by way of a distal end of the IO needle 108. Compression of the compression spring 632 keeps the drive shaft 106 pushed into the axial channel 524, which also keeps the set of drive-shaft teeth 628 thereof close to the output spool 212 such that the set of drive-shaft teeth 628 and the set of housing teeth 630 are disengaged with each other. When such sets of teeth are disengaged with each other as in the active state of the IO access device 100 or 300, rotation of the drive shaft 106 and, thus, the rotation of the IO needle 108 is allowed.

In a transition between the inactive state and the active state of the IO access device 100 or 300, force applied to the distal-end portion of the drive shaft 106 by way of, for example, engaging bone with the distal end of the IO needle 108, simultaneously inserts the drive shaft 106 deeper into the axial channel 524 and compresses the compression spring 632 between the back side of the set of drive-shaft teeth 628 and the output spool 212. Inserting the drive shaft 106 deeper into the axial channel disengages the set of drive-shaft teeth 628 from the set of housing teeth 630 to initiate the active state of the IO access device 100 or 300, in which state rotation of the IO needle 108 is effectuated by the output spool 212 of the constant-torque spring assembly 204 or 404 on the drive shaft 106.

In a transition between the active state and the inactive state of the IO access device 100 or 300, force removed from the distal-end portion of the drive shaft 106 by way of, for example, disengaging the distal end of the IO needle 108 from bone, allows the compression spring 632 between the back side of the set of drive-shaft teeth 628 and the output spool 212 to relax, which pushes the drive shaft 106 out of the axial channel 524 away from the output spool 212. Pushing the drive shaft 106 out of the axial channel 524 reengages the set of drive-shaft teeth 628 with the set of housing teeth 630 to initiate the inactive state of the IO access device 100 or 300, in which state rotation of the IO needle 108 is by the output spool 212 of the constant-torque spring assembly 204 or 404 on the drive shaft 106 is prevented.

The transition between the active state and the inactive state of the IO access device 100 or 300 can be automatically initiated by the IO access device 100 or 300. In such an IO access device, the compression spring 632 is configured by way of its material, construction, or both to have a spring constant and a compressible length proportional to a spring force greater than an average force that can be applied on the distal end of the IO needle 108 by marrow in a medullary cavity of a patient. Entry of the IO needle 108 into the medullary cavity of the patient automatically replaces the force applied on the distal end of the IO needle 108 by compact bone, which force is greater than the foregoing spring force, with the force applied on the distal end of the IO needle 108 by the marrow in the medullary cavity, which force is less than the foregoing spring force, thereby allowing the compression spring 632 to push the drive shaft 106 out of the axial channel 524 away from the output spool 212 to initiate the transition to the inactive state of the IO access device 100 or 300. Notwithstanding the foregoing, the transition between the active state and the inactive state can be manually initiated by a clinician after feeling a change in tissue density upon entering the medullary cavity from compact bone.

As shown in FIG. 2 for at least the IO access device 100, a combination of a molded piece 236 within the housing 102 and an extension pin 234 disposed in the axial channel 524 of the output spool 212 between the drive shaft 106 and the molded piece 236 is configured to stop over insertion of the drive shaft 106 into the axial channel 524 of the output spool 212 during the transition between the inactive state and the active state of the IO access device 100. In addition to stopping the over insertion of the drive shaft 106 into the axial channel 524 of the output spool 212, the combination of the extension pin 234 and the molded piece 236 is configured to decouple the force applied to the distal end of the IO needle 108 from the constant-torque spring assembly 204. That is, any further force applied to the distal end of the IO needle 108 than that needed for the transition between the inactive state and the active state of the IO access device 100 is applied to the molded piece 236 of the housing 102 by the extension pin 234 instead of the constant-torque spring assembly 204. Indeed, minimization of bearing surface area and reduction of extraneous moment arm lengths further decouple the force applied to the distal end of the IO needle 108 from the constant-torque spring assembly 204.

As shown in FIG. 2, the IO access device 100 further includes an interlock including a trigger 238 and a lock pin 240 disposed between the trigger 238 and the output spool 212 in the inactive state of the IO access device 100. When pressed toward the housing, the trigger 238 is configured to release the lock pin 240 allowing the force applied to the distal end of the IO needle 108 to simultaneously compress the compression spring 632 and insert the drive shaft 106 deeper into the axial channel 524.

As shown in FIG. 4, the IOaccess device 300 further includes an interlock including a trigger 438 pivotally mounted on a transversely oriented pin 440 disposed between the trigger 438 and the output spool 212. Both the trigger 438 and the output spool 212 have interlocking teeth that are interlocked in the inactive state of the IOaccess device 300. When pressed toward the housing, the trigger 438 is configured to pivot about the pin 440 and withdraw the interlocking teeth of the trigger 438 from those of the storage spool 214 allowing the force applied to the distal end of the IOneedle 108 to simultaneously compress the compression spring 632 and insert the drive shaft 106 deeper into the axial channel 524.

While not shown, the IOaccess device 100 or 300 can further include a hand-actuated braking system configured to act on the output spool 212 to slow the metal ribbon 210 from winding onto the storage spool 214. The braking system can be initiated at a start of the winding of the metal ribbon 210 onto the storage spool 214 or at any time throughout the winding.

The IO needle 108 is configured to separate from the IO access device 100 or 300 subsequent to achieving IO access to a medullary cavity of a patient. While not shown, the IO needle 108 includes an obturator removably disposed in a cannula. The cannula has a lumen configured for at least interosseous infusion upon removal of the obturator.

Methods

Methods of the IO access device 100 or 300 include at least a method of using the IO access device 100 or 300.

A method of using the IO access device 100 or 300 includes at least an obtaining step of obtaining the IO access device 100 or 300.

The method can also include a preparing step of preparing skin of the patient with an antiseptic (e.g., iodopovidone) at an insertion site of a patient. The insertion site can be about the proximal tibia, the distal tibia, or the distal femur.

The method can also include an inserting step of inserting the distal end of the IO needle 108 through the skin at the insertion site.

The method can also include an applying step of applying force to bone at the insertion site with the distal end of the IO needle 108. In accordance with applying the force to the bone at the insertion site, the applying step includes inserting the drive shaft 106 deeper into the axial channel 524 of the output spool 212 of the constant-torque spring assembly 204 or 404. The applying step also compresses the compression spring 632 between the back side of the set of drive-shaft teeth 628 around the drive shaft 106 and the output spool 212. The applying step also disengages the set of drive-shaft teeth 628 from the opposing set of housing teeth 630 around the aperture of the housing 102 or 302 from which the drive shaft 106 extends to start the rotation of the IO needle 108. The applying step starts winding the metal ribbon 210 of the constant-torque spring assembly 204 or 404 from the output spool 212 onto the storage spool 214, thereby starting rotation of the IO needle 108.

The method can also include a drilling step of drilling through the bone until the IO needle 108 enters a medullary cavity of the patient, thereby achieving IO access to the medullary cavity of the patient with the IO access device 100 or 300.

The method can also include a ceasing step of ceasing to apply the force to the bone with the distal end of the IO needle 108. The ceasing step removes at least a portion of the drive shaft 106 from the axial channel 524 of the output spool 212, relaxes the compression spring 632, and reengages the set of drive-shaft teeth 628 with the set of housing teeth 630 to stop the rotation of the IO needle 108. The ceasing step can be automatically initiated by the IO access device 100 or 300 after experiencing a change in tissue density (e.g., compact bone to marrow) upon entering the medullary cavity of the patient. The ceasing step can alternatively be manually initiated by a clinician after feeling the change in tissue density upon entering the medullary cavity of the patient.

The method can also include a triggering step of triggering the trigger 238 or 438 of the interlock of the IO access device 100 or 300. With respect to at least the IO access device 100, the triggering step releases the lock pin 240 disposed between the trigger 238 and the output spool 212 allowing the force applied to the bone at the distal end of the IO needle 108 to start the rotation of the IO needle 108.

The method can also include a detaching step of detaching the IO needle 108 from a remainder of the IO access device 100 or 300.

The method can also include a removing step of removing from the IO needle 108 the obturator removably disposed in the cannula.

The method can also include a confirming step of confirming the cannula is disposed in the medullary cavity by aspirating bone marrow through a syringe.

The method can also include a securing step of securing the cannula to the patient with a dressing.

The method can also include a starting step of starting interosseous infusion as boluses with a same or different syringe.

While some particular embodiments have been disclosed herein, and while the particular embodiments have been disclosed in some detail, it is not the intention for the particular embodiments to limit the scope of the concepts provided herein. Additional adaptations and/or modifications can appear to those of ordinary skill in the art, and, in broader aspects, these adaptations and/or modifications are encompassed as well. Accordingly, departures may be made from the particular embodiments disclosed herein without departing from the scope of the concepts provided herein.

Claims

1. A method of using an intraosseous access device including a constant-torque spring assembly disposed in a housing, the constant-torque spring assembly including a metal ribbon reversely wound onto an output spool, a drive shaft extending from the housing, the drive shaft coupled to the constant-torque spring, and an intraosseous needle coupled to the drive shaft, the method comprising:

inserting a distal end of the intraosseous needle through a skin surface at an insertion site of a patient;
applying a contacting force to a bone beneath the insertion site via the distal end of the intraosseous needle, the contacting force initiating a winding of the metal ribbon of the constant-torque spring assembly from the output spool onto a storage spool, thereby initiating a drilling rotation of the intraosseous needle; and
drilling through the bone until the intraosseous needle enters a medullary cavity of the patient.

2. The method according to claim 1, wherein pressing the distal end of the intraosseous needle against the bone beneath the insertion site with the contacting force:

inserts the drive shaft deeper into an axial channel of the output spool of the constant-torque spring assembly,
compresses a compression spring between a back side of a set of drive-shaft teeth around the drive shaft and the output spool, and
disengages the set of drive-shaft teeth from an opposing set of housing teeth around an aperture of the housing from which the drive shaft extends to initiate the drilling rotation of the intraosseous needle.

3. The method according to claim 2, further comprising removing the contacting force from the bone, wherein removing the contacting force:

removes at least a portion of the drive shaft from the axial channel of the output spool,
relaxes the compression spring, and
reengages the set of drive-shaft teeth with the set of housing teeth to stop the drilling rotation of the intraosseous needle.

4. The method according to claim 3, wherein removing the contacting force from the bone is manually initiated by a clinician after feeling a change in tissue density upon entering the medullary cavity of the patient.

5. The method according to claim 3, wherein removing the contacting force from the bone is automatically initiated by the intraosseous access device after the change in the tissue density is detected upon entering the medullary cavity of the patient.

6. The method according to claim 1, further comprising activating a trigger of an interlock of the intraosseous access device, wherein the activating releases a lock pin disposed between the trigger and the output spool allowing the contacting force applied to the bone to initiate the drilling rotation of the intraosseous needle.

7. The method according to claim 1, wherein the intraosseous access device further comprises a cannula, the method further comprising:

removing the intraosseous needle from the medullary cavity of the patient;
confirming the cannula is disposed in the medullary cavity by aspirating bone marrow through a syringe;
securing the cannula to the patient; and
initiating interosseous infusion.

8. The method according to claim 1, further comprising preventing timing-related errors between the output spool and the storage spool by coupling spindles of the output spool and the storage spool together by at least one elastomeric loop.

9. The method according to claim 1, further comprising slowing the metal ribbon from winding onto the storage spool via a braking system.

Patent History
Publication number: 20230414251
Type: Application
Filed: Sep 11, 2023
Publication Date: Dec 28, 2023
Inventors: Daniel Pett (Sandy, UT), Daniel B. Blanchard (Bountiful, UT), Eric W. Lindekugel (Salt Lake City, UT), Joe Spataro (Cottonwood Heights, UT), Ralph Sonderegger (Farmington, UT)
Application Number: 18/244,730
Classifications
International Classification: A61B 17/34 (20060101); A61B 17/16 (20060101);