METHOD FOR PROCESSING TISSUE SAMPLES
This disclosure provides methods for producing a sample of subcellular organelles, particularly nuclei, from a tissue. In some embodiments, this disclosure provides a method of processing a tissue sample involves performing enzymatic/chemical disruption of tissue in a chamber to produce disrupted tissue comprising released cells and/or nuclei and debris; separating the released cells and/or nuclei from the debris therein; and moving the released cells and/or nuclei. In some instances, the method comprises mechanical disruption of the tissue sample.
This application is a continuation of and claims priority to U.S. application Ser. No. 17/581,940, filed on Jan. 23, 2022 (Jovanovich, Zaugg, Chear, McIntosh and Pereira “Method For Processing Tissue Samples”), which is a continuation of and claims priority to U.S. application Ser. No. 17/513,204, filed on Oct. 28, 2021 for (Jovanovich, Zaugg, Chear, McIntosh and Pereira “Method and Apparatus For Processing Tissue Samples”), now U.S. Pat. No. 11,441,976, Issued Sep. 13, 2022, which is a continuation of and claims priority to U.S. application Ser. No. 16/301,249, filed on Nov. 13, 2018 (Jovanovich, Zaugg, Chear, McIntosh and Pereira, “Method and Apparatus for Processing Tissue Samples”), now U.S. Pat. No. 11,231,347, Issued Jan. 25, 2022, which claims the benefit of international application PCT/US17/63811, filed on Nov. 29, 2017 (Jovanovich, Zaugg, Chear, McIntosh and Pereira, “Method and Apparatus for Processing Tissue Samples”), which claims the priority date of provisional patent application 62/526,267, filed Jun. 28, 2017, (Jovanovich, Chear, McIntosh, Pereira, and Zaugg, “Method and Apparatus for Producing Single Cell Suspensions and Next Generation Sequencing Libraries for bulk DNA and Single-Cells from Tissue and Other Samples”), which also claims the priority date of provisional patent application, 62/427,150, filed Nov. 29, 2016, (Jovanovich, Zaugg, Chear, Wagner, Kernen, and McIntosh, “Method and Apparatus for Producing Single Cell Suspensions from Tissue and Other Samples), the contents of which are incorporated herein in their entirety and the benefit of the priority date of provisional patent applications.
STATEMENT OF FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT (IF ANY)None.
The names of the parties to a joint research agreement if the claimed invention was made as a result of activities within the scope of a joint research agreement:
None.
REFERENCE TO A “SEQUENCE LISTING”None.
BACKGROUND OF THE INVENTION A) Field of InventionThis invention relates to the field of sample preparation from biological materials. More specifically, the invention relates to the processing of solid tissues into single cells, nuclei, biomolecules, and processed samples for bioanalysis.
B) Description of Related ArtAnalysis of single cells and groups of cells is now beginning to provide information to dissect and understand how cells function individually and unprecedented insight into the range of individual responses aggregated in ensemble measurements. Single cell methods for electrophysiology, flow cytometry, imaging, mass spectrometry (Lanni, E. J., et. al. J Am Soc Mass Spectrom. 2014; 25(11):1897-907.), microarray (Wang L and KA Janes. Nat Protoc. 2013; 8(2):282-301.), and Next Generation Sequencing (NGS) (Saliba A. E., et. al. Nucleic Acids Res. 2014; 42(14):8845-60.) have been developed and are driving an increased understanding of fundamental cellular processes, functions, and interconnected networks. As the individual processes and functions are understood and differentiated from ensemble measurements, the individual information can in turn lead to discovery of how network processes among cells operate. The networks may be in tissues, organs, multicellular organisms, symbionts, biofilms, surfaces, environments, or anywhere cells interact.
Next Generation Sequencing (NGS) of single cells is rapidly changing the state of knowledge of cells and tissue, discovering new cell types, and increasing understanding of the diversity of how cells and tissue function. Single cell NGS RNA sequencing (Saliba A. E., et. al., Nucleic Acids Res. 2014; 42(14):8845-60.) (Shapiro E. et. al., Nat Rev Genet. 2013; 14(9):618-30.) is unveiling the complexity of cellular expression, and the heterogenity from cell to cell, and from cell type to cell type (Buettner F. et. al., Nat Biotechnol. 2015; 33(2):155-60.). In situ sequencing (Ke R et. al., Nat Methods. 2013; 10(9):857-60.), (Lee J H, et. al., Nat Protoc. 2015; 10(3):442-58.) (Lee J H, et. al., Science. 2014, 21; 343(6177):1360-3.) has shown the feasibility of directly sequencing of fixed cells. However, for RNA, many fewer reads are generated with in situ sequencing, biasing against detection of low abundant transcripts. Photoactivatable tags have been used to capture mRNA from single cells (Lovatt, D., et. al., Nat Methods. 2014; 11(2):190-6.) from known location in tissue, albeit with low throughput capture and manual cell collection.
The NGS market has grown explosively over the last 10 years with costs reductions and throughput increases exceeding Moore's law. The applications have expanded from whole genome sequencing to RNA-Seq, ChIP-Seq, exome sequencing, to now single-cell sequencing, single nuclei sequencing, and many other exciting applications. The power and low cost of NGS is broadly changing life sciences and moving into translational medicine and the clinic as precision medicine begins. Until recent years essentially all of the NGS analysis was of ‘bulk samples’ where the nucleic acids of numerous cells had been pooled. There is a need for systems that integrate the sample preparation of single-cell suspensions, and single-cell libraries, and bulk libraries starting from original unprocessed specimens.
Single-cell sequencing is rapidly changing the state of knowledge of cells and tissue, discovering new cell types, and increasing the understanding of the diversity of how cells and tissue function. Single-cell RNA sequencing (Shapiro E. Biezuner T, Linnarsson S. Single-cell sequencing-based technologies will revolutionize whole-organism science. Nat Rev Genet. 2013; 14(9):618-30. PMID: 23897237) has highlighted the complexity of cellular expression, and the large heterogeneity from cell-to-cell, and from cell type-to-cell type (Buettner F. Natarajan K N, Casale F P, Proserpio V, Scialdone A, Theis F J, Teichmann S A, Marioni J C, Stegle O. Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nat Biotechnol. 2015; 33(2):155-60. PMID: 25599176). Single-cell sequencing (Wang., Y. and N. E. Navin. Advanced and Applications of single-cell sequencing technologies. Molecular Cell. 2015. 58:598-609. PMID 26000845.) is being applied to development, brain structure and function, tumor progression and resistance, immunogenetics, and more.
Single cell nucleic acid sequencing technology and methods using NGS and Next Next Generation Sequencing (NNGS), such as nanopores, are rapidly evolving. Common components are incorporation of a marker or barcode for each cell and molecule, reverse transcriptase for RNA sequencing, amplification, and pooling of sample for NGS and NNGS (collectively termed NGS) library preparation and analysis. Starting with isolated single cells in wells, barcodes for individual cells and molecules have been incorporated by reverse transcriptase template switching before pooling and polymerase chain reaction (PCR) amplification (Islam S. et. al. Genome Res. 2011; 21(7):1160-7.) (Ramskold D. et. al. Nat Biotechnol. 2012; 30(8):777-82.) or on a barcoded poly-T primer with linear amplification (Hashimshony T. et. al. Cell Rep. 2012 Sep. 27; 2(3):666-73.) and unique molecular identifiers (Jaitin D. A. et. al. Science. 2014; 343(6172):776-9.).
Recent pioneering work has used the power of nanodroplets to perform highly parallel processing of mRNA from single cells with reverse transcription incorporating cell and molecular barcodes from freed primers (inDrop) (Klein A. M. et. al. Cell. 2015; 161(5):1187-201.) or primers attached to paramagnetic beads (DropSeq) (Macosko E. Z. et. al. Cell. 2015; 161(5):1202-14.) and using micronozzles such as described by them or Geng T. et. al. Anal Chem. 2014; 86(1):703-12 or others, and; the lysis conditions and reverse transcriptase described by (Fekete R. A. and A. Nguyen. U.S. Pat. No. 8,288,106. Oct. 16, 2012) are incorporated by reference cited therein are incorporated by reference, including instrumentation, chemistry, workflows, reactions conditions, flowcell design, and other teachings. Both inDrop and DropSeq are scalable approaches have change the scale from 100s of cells previously analyzed to 1,000s and more.
Single-cell sequencing is now providing new information to biologists, genomic scientists, and clinical practitioners, and the single-cell market is growing explosively, perhaps the next great disruption in life sciences and medicine. Multiple companies are providing systems to take single-cell suspensions and create Single-cell RNA sequencing (scRNA-Seq) libraries that are analyzed by the robust NGS sequencing and analysis pipeline. No system integrates the upstream process to produce single-cell suspensions for NGS single-cell sequencing or has integrated from tissue to single-cell libraries.
The production of single-cells or nuclei or nucleic acids from solid and liquid tissue is usually performed manually with a number of devices used without process integration. A combination of gentle mechanical disruption with enzymatic dissociation has been shown to produce single-cells with the highest viability and least cellular stress response (Quatromoni J G, Singhal S, Bhojnagarwala P, Hancock W W, Albelda S M, Eruslanov E. An optimized disaggregation method for human lung tumors that preserves the phenotype and function of the immune cells. J Leukoc Biol. 2015 January; 97(1):201-9. doi: 10.1189/jlb.5TA0814-373. Epub 2014 Oct. 30.).
Many manual protocols for dissociating different tissues exist, for example, Jungblut M., Oeltze K., Zehnter I., Hasselmann D., Bosio A. (2009). Standardized Preparation of Single-Cell Suspensions from Mouse Lung Tissue using the gentleMACS Dissociator. JoVE. 29, doi: 10.3791/1266; Stagg A J, Burke F, Hill S, Knight S C. Isolation of Mouse Spleen Dendritic Cells. Protocols, Methods in Molecular Medicine. 2001: 64: 9-22. Doi: 10.1385/1592591507.; Lancelin, W., Guerrero-Plata, A. Isolation of Mouse Lung Dendritic Cells. J. Vis. Exp. (57), e3563, 2011. DOI: 10.3791/3563; Smedsrod B, Pertoft H. Preparation of pure hepatocytes and reticuloendothelial cells in high yield from a single rat liver by means of Percoll centrifugation and selective adherence. J Leukocyte Biol. 1985: 38: 213-30.; Meyer J, Gonelle-Gispert C, Morel P, Buhler L Methods for Isolation and Purification of Murine Liver Sinusoidal Endothelial Cells: A Systematic Review. PLoS ONE 11(3) 2016: e0151945. doi:10.1371/journal.pone.0151945.; Kondo S. Scheef E A, Sheibani N, Sorenson C M. “PECAM-1 isoform-specific regulation of kidney endothelial cell migration and capillary morphogenesis”, Am J Physiol Cell Physiol 292: C2070-C2083, (2007); doi: 10.1152/ajpcell.00489.2006.; Ehler, E., Moore-Morris, T., Lange, S. Isolation and Culture of Neonatal Mouse Cardiomyocytes. J. Vis. Exp. (79), e50154, doi:10.3791/50154 (2013).; Volovitz I Shapira N, Ezer H, Gafni A, Lustgarten M, Alter T, Ben-Horin I, Barzilai O, Shahar T, Kanner A, Fried I, Veshchev I, Grossman R, Ram, Z. A non-aggressive, highly efficient, enzymatic method for dissociation of human brain-tumors and brain-tissues to viable single cells. BMC Neuroscience (2016) 17:30 doi: 10.1186/s12868-016-0262-y; F. E Dwulet and M. E. Smith, “Enzyme composition for tissue dissociation,” U.S. Pat. No. 5,952,215, Sep. 14, 1999.
For example, solid tissue of interest is usually dissected and then minced into 1-5 mm pieces by hand or a blender type of disruptor is used. Enzymes or a mixture of enzymes, such as collagenases, hydrauronadase, papain, proteases, DNase, etc., are added and the specimen incubated, typically with shaking or rotation to aid dissociation to prepare single cells or nuclei from tissue. In many procedures, the specimen is titurated multiple times or mechanically disrupted. The mechanical disruption may be through orifices, grinding, homogenization, forcing tissue through screens or filters, sonication, blending, bead-beating, rotors with features that dissociate tissue, and other methods to physically disrupt tissue to help produce single cells.
Following dissociation, in some embodiments the dissociated sample is passed through a filter, such as a 70 □m filter, to retain clumps of cells or debris. The filtrate which contains single cells or nuclei may be further processed to change the media or buffer; add, remove, or deactivate enzymes; concentrate cells or biomolecules, lyse red blood cells, or capture specific cell types. The processing typically involves multiple steps of centrifugation and resuspension, density gradients, or magnetic bead capture of specific cell types using antibodies or other affinity capture ligands, or fluorescent cell-activated sorting (FACS). The titer and viability of the single-cell suspension is usually determined using optical imaging with a microscope and haemocytometer, or an automated instrument. In many cases, the viability is determined using Trypan blue or fluorescent dyes. Quality control can include characterization of the nucleic acids by gel electrophoresis on an instrument such as a BioAnalyzer, or the determination of the expression of certain genes using reverse transcripatase and quantitative polymerase chain reaction (RT-qPCR), or other relevant methods.
The rapid production of nuclei can give a snapshot of gene expression (Habib N, Li Y, Heidenreich M, Swiech L, Avraham-Davidi I, Trombetta J J, Hession C, Zhang F, Regev A. Div-Seq: Single-nucleus RNA-Seq reveals dynamics of rare adult newborn neurons. Science. 2016 Aug. 26; 353(6302):925-8. doi: 10.1126/science.aad7038. Epub 2016 Jul. 28.; Grindberg R V, Yee-Greenbaum J L, McConnell M J, Novotny M, O'Shaughnessy A L, Lambert G M, Araúzo-Bravo M J, Lee J, Fishman M, Robbins G E, Lin X, Venepally P, Badger J H, Galbraith D W, Gage F H, Lasken R S. RNA-sequencing from single nuclei. Proc Natl Acad Sci USA. 2013 Dec. 3; 110(49):19802-7. doi: 10.1073/pnas.1319700110. Epub 2013 Nov. 18.).
The production of nuclei from tissue can be performed using a Dounce homogenizer in the presence of a buffer with a detergent that lyses cells but not nuclei. Nuclei can also be prepared starting from single cell suspensions (CG000124_SamplePrepDemonstratedProtocol_-_Nuclei_RevB, 10× Genomics, https://assets.contentful.com/an68im79xiti/6FhJX6yndYy0OwskGmMc8l/48c341c178feafa3c e21f5345ed3367b/CG000124_SamplePrepDemonstratedProtocol_-_Nuclei_RevB.pdf) by addition of a lysis buffer such as 10 mM Tris-HCl, 10 mM NaCl, 3 mM MgCl2 and 0.005% Nonidet P40 in nuclease-free water and incubation for 5 min on ice before centifugation to pellet the nuclei followed by resuspension in a resuspension buffer such as 1×PBS with 1.0% BSA and 0.2 U/μl RNase Inhibitor. The nuclei may be repeatedly pelleted and resuspended to purify them or density gradients or other purification methods used. The titer and viability of the nuclei suspension is usually determined using optical imaging with a microscope and haemocytometer, or an automated instrument with viability determined using Trypan blue or fluorescent dyes.
The multi-process workflow to produce and characterize single-cells and nuclei from tissue is a usually performed manually using several devices without process integration, limiting the scalability of single cell sequencing and the integration with downstream processes to create a sample-to-answer system. It is laborious and requires skilled technicians or scientists, and results in variability in the quality of the single-cells, and, therefore, in the downstream libraries, analysis, and data. The multiple steps and skill required can lead to differing qualities of single cells or nuclei produced even from the same specimen. Today, the production of high quality single-cells can take months of optimization.
Standarization is necessary before routine single-cell preparation can be performed, particularly in clinical settings. In addition, the length of the process and the process of dissociation can lead to the tissue and cells changing physiology such as altering their expression of RNA and proteins in response to the stresses of the procedure, accentuated by potentially long processing times. A crucial recent insight is that cell processing methods can alter gene expression by placing cells under stress. For example, the use of protease to dissociate cells from tissue, confounding analysis of the true transcriptome (Lacar B, Linker S B, Jaeger B N, Krishnaswami S, Barron J, Kelder M, Parylak S, Paquola A, Venepally P, Novotny M, O'Connor C, Fitzpatrick C, Erwin J, Hsu J Y, Husband D, McConnell M J, Lasken R, Gage F H. Nuclear RNA-seq of single neurons reveals molecular signatures of activation. Nat Commun. 2016 Apr. 19; 7:11022. doi: 10.1038/ncomms11022. PMID: 27090946.).
Robust, automated sample preparation is required to simplify workflows before full integration can be achieved with downstream NGS analysis to produce true sample-to-answer systems in the future. Robust processes are required that will input a wide range of tissues from a wide range of organisms and tissues and produce high-quality single-cell or nuclei suspensions without intervention, at acceptable viability for suspensions, with minimal changes to gene expression patterns.
To achieve a standardized process will require a system that automates the sample preparation of cells or nuclei from tissue with a single-use disposable cartridge. In some cases, microvalves can be used in cartridges. Microvalves are comprised of mechanical (thermopneumatic, pneumatic, and shape memory alloy), non-mechanical (hydrogel, sol-gel, paraffin, and ice), and external (modular built-in, pneumatic, and non-pneumatic) microvalves (as described in: C. Zhang, D. Xing, and Y. Li., Micropumps, microvalves, and micromixers within PCR microfluidic chips: Advances and trends. Biotechnology Advances. Volume 25, Issue 5, September-October 2007, Pages 483-514; Diaz-Gonzalez M., C. Fernandez-Sanchez, and A. Baldi A. Multiple actuation microvalves in wax microfluidics. Lab Chip. 2016 Oct. 5; 16(20):3969-3976.; Kim J., Stockton A M, Jensen E C, Mathies R A. Pneumatically actuated microvalve circuits for programmable automation of chemical and biochemical analysis. Lab Chip. 2016 Mar. 7; 16(5):812-9. doi: 10.1039/c51c01397f; Samad M F, Kouzani A Z. Design and analysis of a low actuation voltage electrowetting-on-dielectric microvalve for drug delivery applications. Conf Proc IEEE Eng Med Biol Soc. 2014; 2014:4423-6. doi: 10.1109/EMBC.2014.6944605.; Samad M F, Kouzani A Z. Design and analysis of a low actuation voltage electrowetting-on-dielectric microvalve for drug delivery applications. Conf Proc IEEE Eng Med Biol Soc. 2014; 2014:4423-6. doi: 10.1109/EMBC.2014.6944605.; Lee E, Lee H, Yoo S I, Yoon J. Photothermally triggered fast responding hydrogels incorporating a hydrophobic moiety for light-controlled microvalves. ACS Appl Mater Interfaces. 2014 Oct. 8; 6(19):16949-55. doi: 10.1021/am504502y. Epub 2014 Sep. 25.; Liu X, Li S. An electromagnetic microvalve for pneumatic control of microfluidic systems. J Lab Autom. 2014 October; 19(5):444-53. doi: 10.1177/2211068214531760. Epub 2014 Apr. 17; Desai A V, Tice J D, Apblett C A, Kenis P J. Design considerations for electrostatic microvalves with applications in poly(dimethylsiloxane)-based microfluidics. Lab Chip. 2012 Mar. 21; 12(6):1078-88. doi: 10.1039/c21c21133e. Epub 2012 Feb. 3.; Kim J, Kang M, Jensen E C, Mathies R A Lifting gate polydimethylsiloxane microvalves and pumps for microfluidic control. Anal Chem. 2012 Feb. 21; 84(4):2067-71. doi: 10.1021/ac202934x. Epub 2012 Feb. 1; Lai H, Folch A. Design and dynamic characterization of “single-stroke” peristaltic PDMS micropumps. Lab Chip. 2011 Jan. 21; 11(2):336-42. doi: 10.1039/c0lc00023j. Epub 2010 Oct. 19).
Fluidic connections between cartridges and the instrument fluidics can be achieved by the use of spring-loaded connectors and modular microfluidic connectors as taught by Jovanovich, S. B. et. al. Capillary valve, connector, and router. Feb. 20, 2001. U.S. Pat. No. 6,190,616 and Jovanovich; S. B. et. al. Method of merging chemical reactants in capillary tubes, Apr. 22, 2003, U.S. Pat. No. 6,551,839; and Jovanovich, S., I. Blaga, and R. McIntosh. Integrated system with modular microfluidic components. U.S. Pat. No. 7,244,961. Jul. 17, 2007. which are incorporated by reference and their teachings which describe the modular microfluidic connectors and details of modular microfluidic connectors, including their use as multiway valves, routers, and other functions including microfluidic circuits to perform flowthrough reactions and flow cells with internally reflecting surfaces.
The surface chemistries of the paramagnetic beads and conditions to bind cells or precipitate, wash, and elute nucleic acids and other biomolecules onto surfaces is well understood, (Boom, W. R. et. al. U.S. Pat. No. 5,234,809. Aug. 10, 1993.), (Reeve, M. and P. Robinson. U.S. Pat. No. 5,665,554. Sep. 9, 1997.), (Hawkins, T. U.S. Pat. No. 5,898,071. Apr. 27, 1999.), (McKernan, K. et. al. U.S. Pat. No. 6,534,262. Mar. 18, 2003.), (Han, Z. U.S. Pat. No. 8,536,322. Sep. 17, 2013.), (Dressman et al., “Transforming single DNA molecules into fluorescent magnetic particles for detection and enumeration of genetic variation” Proc. Natl. Acad. Sci. 100(15):8817-8822 (2003)), (Ghadessy et al., “Directed evolution of polymerase function by compartmentalized self-replication”, Proc. Natl. Acad. Sci. 98(8):4552-4557 (2000)), (Tawfik and Griffiths, “Man-made cell-like compartments for molecular evolution” Nat. Biotech. 16(7):652-656 (1998)), (Williams et al., “Amplification of complex gene libraries by emulsion PCR” Nat. Meth. 3(7):545-550 (2006)), and many chemistries are possible and within the scope of the instant disclosure.
BRIEF SUMMARY OF THE INVENTIONDisclosed herein is a Sample Processing System that processes original or processed samples for bioanalysis. The Sample Processing System processes are comprised of enzymatic and mechanical disruption mechanisms with integrated fluidic processes. This invention enables, among other things, the implementation of a Sample Processing System that inputs solid, liquid, or gaseous samples including tissue or other biological samples, and processes the samples for bioanalysis and other analyses.
In some embodiments, the sample or specimen is a tissue specimen. The tissue can be from any source such as a human, animal, or plant tissue. Examples of tissues include, without limitation, a biopsy sample, a cellular conglomerate, an organ fragment, whole blood, bone marrow, a biofilm, a fine needle aspirate, or any other solid, semi-solid, gelatinous, frozen or fixed three dimensional or two dimensional cellular matrix of biological. In another embodiment the released nucleic acid is bound to a membrane, chip surface, bead, surface, flow cell, or particle. The term specimen is used to mean samples and tissue specimens.
In one embodiment the Sample Processing System is used for tissue processing. A Tissue Processing System embodiment can be implemented as a flexible, extensible system that can process solid or liquid tissue and other samples into single cells, nuclei, organelles, and biomolecules with mechanical and enzymatic or chemical processes to produce single cells in suspension, nuclei, subcellular components, and biomolecules such as macromolecules comprised of nucleic acids, comprised of DNA and RNA; proteins; carbohydrates; lipids; biomolecules with multiple types of macromolecules; metabolites; and other biological components, including natural products for bioanalysis. In some embodiments, the Tissue Processing System performs affinity or other purifications to enrich or deplete cell types, organelles such as nuclei, mitochondria, ribosomes, or other organelles, or extracellular fluids. In some embodiments the Tissue Processing System can perform NGS library preparation. In some embodiments, the Tissue Processing System processes tissue into single-cell libraries for sequencing including Sanger, NGS, NNGS and other nucleic acid sequencing technolgies, or protoeomics, or other analytical methods.
Disclosed herein are different embodiments of Sample Processing Systems that integrate two or more of the overall steps to take samples from specimens (i.e., tissue, biofilms, other multi-dimensional matrices with cells or viruses, liquids) and prepare single cell or nuclei in suspensions or on surfaces, or further process the specimens into biomolecules including macromolecules comprised of nucleic acids, comprised of DNA and RNA; proteins; carbohydrates; lipids; biomolecules with multiple types of macromolecules: metabolites; and other biological components, including natural products). In some embodiments specimen can be processed into NGS sequencing libraries, or fully integrated with an analytical system to produce a sample-to-answer systems such as a sample-to-answer genomic system.
In some embodiments the Sample Processing System can be integrated with downstream bioanalysis to create a sample-to-answer system. In a preferred embodiment of the Sample Processing System, a Tissue Processing System processing embodiment is integrated with a nucleic acid bioanalysis system to sequence nucleic acids from tissues. Integrated is used to mean the workflows directly interface or in other contexts that the physical system directly interfaces or is incorporated into a system, instrument, or device. In one embodiment, the Tissue Processing System is integrated with a nucleic acid sequencer to produce a sample-to-answer system.
The Sample Processing System can have multiple subsystems and modules that perform processing or analysis. In a preferred embodiment of the Sample Processing System, one or more cartridges performs one or more steps in the processing workflow. In some embodiments the cartridges have multiple processing sites such as processing chambers that can process more than one sample. In some embodiments a cap couples mechanical disruption on the cartridge from a Physical Dissociation Subsystem. In some embodiments reagents from an Enzymatic and Chemical Dissociation Subsystem are delivered to the cartridge by a Fluidic Subystem to regions that are used as Pre-Processing Chambers and Processing Chambers to disrupt or dissociate specimen and process the cells, subcellular components, and biomolecules for bioanalysis.
The addition of fluids can be controlled by a Fluidic Subsystem with the complete system controlled by software in a Control Subsystem which can include the user interface through a device comprised of monitor, embedded display, touch screen; or through audio commands through the system or an accessory devices such as a cell phone or microphone. In some instances the Control Subsytem can include interfaces to laboratory information management systems, other instruments, databases, analysis software, email, and other applications.
In some embodiments, the amount of dissociation is monitored at intervals during the dissociation and in some instances the viability determined during processing using a Measurement Subsystem. The degree of dissociation and/or viability can be determined inside the main dissociation compartment and/or in a separate compartment or channel, and/or in the external instrument.
In some embodiments, cell imaging solutions, such as cell type specific antibodies, stains, or other reagents, can be added to the tissue or single cells or nuclei for additional processing or imaging. The imaging can capture cells, subcellular structures, or histological or other data. In some embodiments the images can be analyzed to direct the operation and workflow of the Sample Processing System through decisions trees, hash tables, machine learning, or artificial intelligence.
In some embodiments, single cells or nuclei in suspension or on surfaces are further processed using magnetic bead or particle technologies using a Magnetic Processing module to purify or deplete cell types, nuclei, nucleic acids, or other biomolecules.
The term singulated cells is used to mean single cells in suspension or on a surface or in a well including a microwell or nanowell such that they can be processed as single cells. The term singulated cells is also used at times to encompass single nuclei.
In one embodiment, the specimen is added to a cartridge which performs both physical and enzymatic dissociation of the tissue. In some embodiments the Singulator System performs tituration and other physical dissociation modalities as a step or steps in the process of singulating cells. The physical dissociation modalities include passing the specimen through screens, filters, orifices, grinding, blending, sonication, smearing, bead beating, and other methods known to one skilled in the art to physically disrupt tissue to help produce single cells or nuclei or nucleic acids or other biomolecules.
In one embodiment, the Sample Processing System is a Singulator System embodiment. The Singulator System described can input raw, unprocessed samples, or other primary or secondary samples, and output single cells or nuclei ready for single cell or nuclei analysis or for additional processing, e.g., to purify specific cell types with antibodies or by cell sorting or growth, library preparation, or many other applications. A Singulator System embodiment dissociates single cells or nuclei from specimens such as tissue, blood, bodily fluid or other liquids or solids containing cells to produce single cells in suspensions or nuclei, or on surfaces, in matrices, or other output configurations. In a preferred Singulation System described embodiment, there is a cartridge that inputs tissue and/or other specimens and outputs single cells or nuclei, preferably of known titer in a buffer supplemented with media such as Hank's buffer with 2% fetal calf serum.
In some embodiments, the Sample Processing System, such as a Singulator System embodiment, uses enzymes to assist in the process of singulating cells including enzymes to preserve nucleic acids and prevent clumping. The enzymes are comprised of but not limited to collagenases (e.g., collagenases type I, II, III, IV, and others), elastase, trypsin, papain, tyrpLE, hyaluronidase, chymotrypsin, neutral protease, pronase, liberase, clostripain, caseinase, neutral protease (Dispase®), DNAse, protease XIV, RNase inhibitors, or other enzymes, biochemicals, or chemicals such as Triton X-100, Nonidet P40, detergents, surfactants, etc. In other embodiments, different reagents or mixtures of reagents are applied sequentially to dissociate the biological sample or specimen into single-cell suspensions.
In some embodiments the Singulator System produces cell suspensions of known titers and viability. In some embodiments the Singulator System monitors the viability and/or the amount of singulation of a sample and adjusts the treatment time and concentration of enzymes or other dissociation agents by monitoring of the dissociation, for example by the production of single cells or nuclei. The monitoring can be in real time, in intervals, or endpoints or any combinations thereof.
The Singulator System can in some embodiments select from sets of reagents to dissociate tissue and adjust according to production of single cells or viability of cells as monitored by the system, in some instances in real time, at intervals, or as an endpoint. The single-cell suspensions produced by the Singulator System can be used to generate cells with therapeutic application, e.g., re-grow new tissues and/or organs and/or organisms.
The Singulator System has advantages over existing technology and can produce single cells, nuclei, or biomolecules from tissue in an automated and standardized instrument that can in some embodiments process the specimens into NGS libraries or other preparations. The Singulator System will enable users, e.g., researchers, clinicians, forensic scientists, and many disciplines to perform identical processing on biosamples, reducing user variability, and throughput constraints of manual processing.
Embodiments of the Singulation System can prepare single-cells or nuclei or nucleic acids for analysis by methods comprised of DNA sequencing, DNA microarrays, RNA sequencing, mass spectrometry, Raman spectroscopy, electrophysiology, flow cytometry, mass cytometry, and many other analytical methods well known to one skilled in the art including multidimensional analysis (e.g., LC/MS, CE/MS, etc.). In addition, single-cell suspensions or on surfaces or matrices can be used to grow additional cells including genetically altered by methods such as CRISPR, engineered viral or nucleic acid sequences, in tissue culture, or to grow tissues or organs for research and therapeutic purposes.
The Singulator System embodiment described is compatible with commercially available downstream library preparation and analysis by both NGS and NNGS sequencers. The term NGS is used to connote either NGS or NNGS sequencers or sample preparation methods as appropriate. As contemplated herein, next generation sequencing or next-next generation sequencing refers to high-throughput sequencing, such as massively parallel sequencing, (e.g., simultaneously (or in rapid succession) sequencing any of at least 1,000, 100,000, 1 million, 10 million, 100 million, or 1 billion polynucleotide molecules). Sequencing methods may include, but are not limited to: high-throughput sequencing, pyrosequencing, sequencing-by-synthesis, single-molecule sequencing, nanopore sequencing, semiconductor sequencing, sequencing-by-ligation, sequencing-by-hybridization, RNA-Seq (Illumina), Digital Gene Expression (Helicos), next generation sequencing, Single Molecule Sequencing by Synthesis (SMSS) (Helicos), massively-parallel sequencing, Clonal Single Molecule Array (Solexa), shotgun sequencing, Maxam-Gilbert or Sanger sequencing, primer walking, sequencing using PacBio, SOLiD, Ion Torrent, Genius (GenapSys) or nanopore (e.g., Oxford Nanopore, Roche) platforms and any other sequencing methods known in the art.
In another aspect provided herein is an apparatus, composition of matter, or article of manufacture, and any improvements, enhancements, and modifications thereto, as described in part or in full herein and as shown in any applicable Figures, including one or more features in one or more embodiment.
In another aspect provided herein is an apparatus, composition of matter, or article of manufacture, and any improvements, enhancements, and modifications thereto, as described in part of in full herein and as shown in any applicable Figures, including each and every feature.
In another aspect provided herein is a method or process of operation or production, and any improvements, enhancements, and modifications thereto, as described in part or in full herein and as shown in any applicable Figures, including one or more feature in one or more embodiment.
In another aspect provided herein is a method or process of operation or production, and any improvements, enhancements, and modifications thereto, as described in part or in full herein and as shown in any applicable Figures, including each and every feature.
In another aspect provided herein is a product, composition of matter, or article of manufacture, and any improvements, enhancements, and modifications thereto, produced or resulting from any processes described in full or in part herein and as shown in any applicable Figures.
In one embodiment the single-cell suspension is prepared for a bioanalysis module for downstream analysis including but not limited to sequencing, next generation sequencing, next next generation sequencing, proteomic, genomic, gene expression, gene mapping, carbohydrate characterization and profiling, lipid characterization and profiling, flow cytometry, imaging, DNA or RNA microarray analysis, metabolic profiling, functional, or mass spectrometry, or combinations thereof.
In another aspect provided herein is a data analysis system that correlates, analyzes, and visualizes the analytical information of a sample component such as its viability, degree of single cell or nuclei dissociation, with the processing step and measures the change over time, and/or amount of enzymatic activity, and/or physical disruptions of the original biological specimen.
In another aspect provided herein is a data analysis system that correlates, analyzes, and visualizes the analytical information of a sample component such as its viability, degree of single cell or nuclei dissociation, with the processing step and measures the change over time, and/or amount of enzymatic activity, and/or physical disruptions of the original biological specimen and adjusts the processing parameters from the analytical information.
The Singulator System is a novel platform that automates and standardizes the only portion of the single-cell NGS workflow that has not been automated. This will have broad impacts. Process standardization will be critical for comparison of data from lab to lab or research to researcher. The Human Cell Atlas project intends to freely share the multi-national results in an open database. However, with no standardization of the complete process, direct comparisons will greatly suffer from widely varying impacts of the first processing step of producing single-cells or nuclei from tissue. Additionally, when single-cell or nuclei sequencing becomes clinically relevant, the standardization and de-skilling of the production of single-cells or nuclei will be required to be performed by an automated instrument such as the Singulator System.
In another aspect, provided herein is a system comprising: (a) an instrument comprising: (i) one or more cartridge interfaces configured to engage a cartridge; (ii) a fluidics module comprising: (1) one or more containers containing one or more liquids and/or gasses; (2) one or more fluid lines connecting the containers with fluid ports in the cartridge interface; and (3) one or more pumps configured to move liquids and/or gasses into and/or out of the fluid port(s); (iii) a mechanical module comprising an actuator; (iv) optionally, a magnetic processing module comprising a source of magnetic force, wherein the magnetic force is positioned to form a magnetic field in the processing chamber; (v) optionally, a measurement module; (vi) optionally, a control module comprising a processor and memory, wherein the memory comprises code that, when executed by the processor, operates the system; and (b) one or more cartridges, each engaged with one of the cartridge interfaces, wherein each cartridge comprises: (i) a sample inlet port; (ii) one or more cartridge ports communicating with the fluid ports in the cartridge interface; (iii) a preprocessing chamber communicating with the sample inlet port and with at least one cartridge port, and comprising a tissue disruptor configured for mechanical disruption of tissue, wherein the tissue disruptor engages with and is actuated by the actuator when the cartridge is engaged with the cartridge interface; (iv) a strain chamber communicating with the preprocessing chamber configured to separate cells and/or nuclei from disrupted tissue; (v) a processing chamber communicating with the strain chamber, optionally communicating with one or more cartridge ports and configured to perform one or more processing steps on separated cells and/or nuclei; and (vi) optionally, one or more waste chambers fluidically connected with the processing chamber. In one embodiment the tissue disruptor comprises a grinder, a pestle or a variable orifice. In another embodiment the system further comprises a barcode reader. In another embodiment the system comprises a measurement module (v) that performs optical imaging to measure titer, clumping, and/or viability of cells or nuclei or properties of biomolecules. In another embodiment the system comprises a measurement module (v) and a control system (vi), wherein the measurement module measures, and one or more time points, characteristics of a sample in the processing chamber, and control system comprises code that determines a state of the sample, e.g., viability or degree of single cell or nuclei dissociation, and that adjusts processing parameters. In another embodiment the system further comprises (c) an analysis module, wherein an input port of the analysis module is in fluid communication with the processing chamber. In another embodiment the analysis module performs an analysis selected from one or more of: DNA sequencing, next generation DNA sequencing, next next generation DNA sequencing, proteomic analysis, genomic analysis, gene expression analysis, gene mapping, carbohydrate characterization and profiling, lipid characterization and profiling, flow cytometry, imaging, DNA or RNA microarray analysis, metabolic profiling, functional analysis, and mass spectrometry. In another embodiment the cartridge interface comprises a means of positioning the cartridge in the instrument that engages the fluidic module and the mechanical module and optionally is temperature controlled. In another embodiment the cartridge is disposable.
In another aspect provided herein is a method comprising: (a) providing a tissue sample to a preprocessing chamber; (b) automatically performing mechanical and enzymatic/chemical disruption of the tissue in the preprocessing chamber to produce disrupted tissue comprising released cells and/or nuclei and debris; (c) automatically moving the disrupted tissue into a strain chamber comprising a strainer and/or filter and separating the released cells and/or nuclei from the debris therein; and (d) automatically moving the released cells and/or nuclei into a processing chamber. In another embodiment (d) further comprises performing at least one processing step on the released cells and/or nuclei in the processing chamber. In another embodiment processing comprises one or more automatically performed processes selected from: (I) lysing cells; (II) capturing cells; (Ill) isolating nucleic acid; (IV) isolating protein; (V) converting RNA into cDNA; (VI) preparing one or more libraries of adapter tagged nucleic acids; (VII) performing PCR; (VIII) isolating individual cells or individual nuclei in nanodrops or nanoboluses; and (IX) outputting released cells and/or nuclei into output vessels such as 8 well strip tubes, microtiter plates, Eppendorf tubes, a chamber in the cartridge, or other vessels capable of receiving cell suspensions. In another embodiment the method further comprises: (e) automatically capturing the released cells and/or nuclei in the processing chamber by binding to magnetically attractable particles comprising moieties having affinity for the cells and/or nuclei and applying a magnetic force to the processing chamber to immobilize the captured cells and/or nuclei. In another embodiment the method further comprises: (e) automatically monitoring cell and/or nuclei titer in the processing chamber and, when the titer reaches a desired level, exchanging a dissociation solution used to dissociate the tissue for a buffer.
In another aspect provided herein is a cartridge comprising: (i) a sample inlet port; (ii) one or more cartridge ports configured to communicate with fluid ports in a cartridge interface; (iii) a preprocessing chamber communicating with the sample inlet port and with at least one cartridge port, and comprising a tissue disruptor configured for mechanical disruption of tissue, wherein the tissue disruptor engages with and is actuated by the actuator when the cartridge is engaged with the cartridge interface; (iv) a strain chamber communicating with the preprocessing chamber configured to separate cells from disrupted tissue; (v) a processing chamber communicating with the strain chamber, optionally communicating with one or more cartridge ports and configured to perform one or more processing steps on separated cells; and (vi) optionally, one or more waste chambers fluidically connected with the processing chamber. In another embodiment the cartridge further comprises a cap that opens and closes the sample inlet port. In another embodiment the cap comprises a tissue disruptor element that moves about rotationally and back and forth along an axis. In another embodiment the cartridge further comprises a holder. In another embodiment the cartridge further comprises a top piece and a bottom piece connected by collapsible element which allow the top piece and/or the bottom piece to move relative to the holder. In another embodiment the holder comprises a mesh screen. In another embodiment the cartridge further comprises a grinding element for grinding tissue in the preprocessing chamber. In another embodiment the cartridge further comprises a barcode comprising information about the cartridge and/or its use. In another embodiment the cartridge further comprises a plunger configured to move slideably within the preprocessing chamber.
In another aspect provided herein is a variable orifice device for disrupting tissue comprising: (a) a first container and a second container fluidically connected through a flexible tube comprising a lumen; (b) an adjustable clamp positioned to clamp the flexible tube, wherein adjusting the clamp alters the cross-sectional area of the lumen; and (c) one or more pumps or devices operatively coupled with the first and/or second containers configured to push liquid in one container through the flexible tubing into the other container. In another embodiment the adjustable clamp comprises an eccentric cam operatively coupled to a motor, wherein rotating the cam closes or opens the clamp.
In another aspect provided herein is a method for disrupting tissue comprising: (a) providing a variable orifice device comprising first container and a second container fluidically connected through a flexible tube comprising a lumen; (b) moving a sample comprising tissue from one of the containers through the flexible tube to another one of the containers; (c) decreasing the cross-sectional area of the lumen and moving the sample from one of the containers through the flexible tube to another one of the containers; (d) repeating step (c) one or more times to disrupt the tissue.
In another aspect provided herein is a method of determining an amount of amplification of a nucleic acid molecule comprising amplifying the nucleic acid molecule with primers comprising random barcode (e.g., a barcode wherein each round of amplification adds in additional barcode to an amplified nucleic acid molecule); and after amplification, counting incorporated barcodes, wherein the number of incorporated barcodes indicates the amount of amplification.
The skilled artisan will understand that the drawings, described below, are for illustration purposes only. The drawings are not intended to limit the scope of the present teachings in any way.
NGS, mass spectrometry, FACS, and other modern high-throughput analysis systems have revolutionized life and medical sciences. The progression of information has been from the gross level of organism, to tissue, and now to single cell analysis. Single cell analysis of genomic, proteomic including protein expression, carbohydrate, lipid, and metabolism of individual cells is providing fundamental scientific knowledge and revolutionizing research and clinical capabilities.
All patents, patent applications, published applications, treatises and other publications referred to herein, both supra and infra, are incorporated by reference in their entirety. If a definition and/or description is set forth herein that is contrary to or otherwise inconsistent with any definition set forth in the patents, patent applications, published applications, and other publications that are herein incorporated by reference, the definition and/or description set forth herein prevails over the definition that is incorporated by reference.
As used herein, the terms “comprises,” “comprising,” “includes,” “including,” “has,” “having” or any other variation thereof, are intended to cover a non-exclusive inclusion. For example, a process, method, article, or apparatus that comprises a list of features is not necessarily limited only to those features but may include other features not expressly listed or inherent to such process, method, article, or apparatus. Further, unless expressly stated to the contrary, “or” refers to an inclusive-or and not to an exclusive-or. For example, a condition A or B is satisfied by any one of the following: A is true (or present) and B is false (or not present), A is false (or not present) and B is true (or present), and both A and B are true (or present). Both plural and singular means may be included.
Specimen: The term “specimen,” as used herein, refers to an in vitro cell, cell culture, virus, bacterial cell, fungal cell, plant cell, bodily sample, or tissue sample that contains genetic material. In certain embodiments, the genetic material of the specimen comprises RNA. In other embodiments, the genetic material of the specimen is DNA, or both RNA and DNA. In certain embodiments the genetic material is modified. In certain embodiments, a tissue specimen includes a cell isolated from a subject. A subject includes any organism from which a specimen can be isolated. Non-limiting examples of organisms include prokaryotes, eukaryotes or archaebacteria, including bacteria, fungi, animals, plants, or protists. The animal, for example, can be a mammal or a non-mammal. The mammal can be, for example, a rabbit, dog, pig, cow, horse, human, or a rodent such as a mouse or rat. In particular aspects, the tissue specimen is a human tissue sample. The tissue specimen can be liquid, for example, a blood sample, red blood cells, white blood cells, platelets, plasma, serum. The specimen, in other non-limiting embodiments, can be saliva, a cheek, throat, or nasal swab, a fine needle aspirate, a tissue print, cerebral spinal fluid, mucus, lymph, feces, urine, skin, spinal fluid, peritoneal fluid, lymphatic fluid, aqueous or vitreous humor, synovial fluid, tears, semen, seminal fluid, vaginal fluids, pulmonary effusion, serosal fluid, organs, bronchio-alveolar lavage, tumors, frozen cells, or constituents or components of in vitro cell cultures. In other aspects, the tissue specimen is a solid tissue sample or a frozen tissue sample or a biopsy sample such as a fine needle aspirate or a core biopsy or a resection or other clinical or veterinary specimen. In still further aspects, the specimen comprises a virus, bacteria, or fungus. The specimen can be an ex vivo tissue or sample or a specimen obtained by laser capture microdissection. The specimen can be a fixed specimen, including as set forth by U.S. Published Patent Application No. 2003/0170617 filed Jan. 28, 2003.
In some embodiments, the single cells can be analyzed further for biomolecules including one or more polynucleotides or polypeptides or other macromolecules. In some embodiments, the polynucleotides can include a single-stranded or double-stranded polynucleotide. In some embodiments, the polypeptide can include an enzyme, antigen, hormone or antibody. In some embodiments, the one or more biomolecules can include RNA, mRNA, cDNA, DNA, genomic DNA, microRNA, long noncoding RNA, ribosomal RNA, transfer RNA, chloroplast DNA, mitochondrial DNA, or other nucleic acids including modified nucleic acids and complexes of nucleic acids with proteins or other macromolecules.
It will be readily apparent to one of ordinary skill in the art that the embodiments and implementations are not necessarily inclusive or exclusive of each other and may be combined in any manner that is non-conflicting and otherwise possible, whether they be presented in association with a same, or a different, embodiment or implementation. The description of one embodiment or implementation is not intended to be limiting with respect to other embodiments and/or implementations. Also, any one or more function, step, operation, or technique described elsewhere in this specification may, in alternative implementations, be combined with any one or more function, step, operation, or technique described in the summary. Thus, the above embodiment and implementations are illustrative rather than limiting.
Referring to
Referring to
The Physical Dissociation Subsystem 300 can perform physical disruption by passing the specimen through orifices, grinding, rotating a rotor with features to dissociate tissue, forcing tissue through screens or mesh, sonication, blending, homogenization, bead beating, and other methods known to one skilled in the art to physically disrupt tissue to help produce single cells.
The Enzymatic and Chemical Dissociation Subsystem 400 can perform enzymatic disruption by adding formulations of a reagents or mixture of components comprised of but not limited to collagenases (e.g., collagenases type I, II, III, IV, and others), elastase, trypsin, papain, hyaluronidase, chymotrypsin, neutral protease, clostripain, caseinase, neutral protease (Dispase®), DNAse, protease XIV, RNase inhibitors, or other enzymes, biochemicals, or chemicals such as EDTA, protease inhibitors, buffers, acids, or base.
Another aspect or the Enzymatic and Chemical Dissociation Subsystem 400 can perform chemical disruption or chemical and enzymatic disruption is by adding formulations of a chemicals that might disrupt tissue or cellular integrity such as Triton X-100, Tween, Nonident P40, other surfactants, or chemicals that can dissociate tissue into cells or produce nuclei or other organelles.
In other embodiments, different reagents or mixtures of reagents are applied sequentially to dissociate the biological sample or specimen into single cells. The physical and enzymatic/chemical dissociation systems can be separate from each other, or they can be co-located (e.g., acting upon the sample simultaneously or sequentially).
In some embodiments, the amount of dissociation is monitored at intervals during the dissociation or at the endpoint, and in some instances the viability is determined during processing using a Measurement Subsystem 500. The Measurement Subsystem 500 can be an optical imaging device to image cells using brightfield, phase contrast, fluorescence, chemiluminescence, near-field, or other optical readouts, or an electrical measurement, such as an impedance measurement of the change in conductivity, when a cell passes through a sensor, or other types of measurement.
The addition and movement of fluids can be performed by a Fluidic Subsystem 600. The Fluidic Subsystem 600 can use syringe pumps, piezopumps, on-cartridge pumps and valves, pressure, pneumatics, or other components well known to one skilled in the art.
The Singulation System 100 can be controlled by software in a Control Subsystem 700 which can be comprised of a user interface 740 through a monitor, embedded display, or a touch screen 730. In some instances the Control Subsytem 700 can include interfaces to laboratory information management systems, other instruments, analysis software, display software, databases, email, and other applications. The Control Subsystem 700 can include control software 725 and scripts that control the operation and in some embodiments the scripts can be revised, created, or edited by the operator.
In another aspect provided herein is a device for the dissociation of a biological sample, the device comprising: (i) a biological sample or specimen 101; (ii) a cartridge 200 capable of dissociating tissue; (iii) an instrument to operate the cartridge 200 and provide fluids as needed (iv) a measurement module 500 such as an optical imaging to measure titer, clumping, and/or viability, (v) exchange of dissociation solution for buffer or growth media at the desired titer, and (vi) output vessels such as a chamber in the cartridge, 8 well strip tubes, microtiter plates, Eppendorf tubes or other vessels capable of receiving cell suspensions.
In another aspect provided herein is a device for the dissociation of a biological sample and the production of single-cell 1000 or nuclei 1050 suspensions or matched bulk nucleic acids 1010 or single cell libraries 1200 or matched bulk libraries 1210, the device comprising: (i) a chamber or area to input a biological sample or specimen; (ii) a cartridge capable of dissociating tissue or specimen; (iii) an instrument to operate the cartridge and provide fluids as needed (iv) a measurement module such as an optical imaging to measure titer, clumping, and/or viability, (v) exchange of dissociation solution for buffer or growth media at the desired titer, (vi) the production of single-cell 1000 or nuclei 1050 suspensions or single cell libraries 1200, and matched bulk nucleic acid libraries 1210, in output vessels such as 8 well strip tubes, microtiter plates, Eppendorf tubes, a chamber in the cartridge, or other vessels capable of receiving cell suspensions.
Referring to
In another aspect provided herein is a device for the dissociation and single-cell library preparation of a biological sample, the device comprising: (i) a chamber or area to input a biological sample or specimen; (ii) a cartridge 200 capable of dissociating tissue specimens 120 into single-cells 1000 and then produce single-cell libraries 1200; (iii) an instrument to operate the cartridge 200 and provide fluids as needed (iv) a measurement subsystem 500 such as an optical imaging to measure titer, clumping, and/or viability, (v) exchange of dissociation solution for buffer at the desired titer, (vi) a magnetic processing or other processing chamber or tubing to perform magnetic separations, normalizations, purifications, and other magnetic processes, for example, to purify nucleic acids, couple enzymatic reactions such as library preparation reactions, and other processes including producing single-cells or nuclei in isolation, such as nanodrops, nanoboluses, or physical separation, (vii) output vessels such as 8 well strip tubes, microtiter plates, Eppendorf tubes, a chamber in the cartridge, or other vessels capable of receiving cell suspensions.
The basic elements of the Singulation System 100 can be configured in multiple ways depending on the specimen(s) 101 and analytes to be analyzed. In the following examples, a few of the numerous configurations are described in detail but in no way is the invention limited to these configurations as will be obvious to one skilled in the art. The Singulation System 100 can accommodate many different types of specimens 101, comprised of fresh tissue; snap-frozen tissue; microtome slices (cryo, laser or vibrating) of tissue; fixed tissue; bulk material obtained by surgical excision, biopsies, fine needle aspirates; samples from surfaces, and other matrices.
There is a need to fill gap in the single-cell and nuclei NGS sample preparation pipeline by starting the workflow at processing raw solid tissues or liquids into single-cell 1000 and nuclei 1050 suspensions. The instant disclosure teaches how to produce a system that processes tissue specimens 120 and other samples into single-cells 1000 or nuclei 1050, and other samples types then extend the processing all the way to libraries, such as single cell libraries 1200, with little or no intervention by the operator once the process is started. This requires adapting to the widely varying starting types of tissue, with different requirements depending on the tissue, species, age, and state.
In the instant invention, many embodiments are possible. Systems with increasing capabilities can be developed as a series of embodiments, five are described: two embodiment as a Single Sample Singulator System 2000, a Four Sample Singulator System 2400, an Enhanced Singulator System 2500, and the Single Librarian 3000 embodiments.
Two embodiments of a Single Sample Singulator System 2000 embodiment are described to process tissue into single-cell suspensions and purified single-cell subtypes or nuclei for many tissues. A Four Sample Singulator System 2400 is described to process four specimens 101 into single-cell 1000 or nuclei 1050 suspensions. An Enhanced Singulator System 2500 is described with additional capabilities to titer, adjust the buffer, and purify or deplete cell types, nuclei, organelles, or biomolecules. A Single Librarian 3000 embodiment is described that integration with single-cell library preparation, and bulk nucleic acid and library preparation and adds QC capabilities. It will be obvious to one skilled in the art that the systems can continue to be expanded with additional capabilities or be configured in many other embodiments.
This disclosure describes how to automate, integrate, and importantly standardize the complete process for single-cell 1000 or nuclei 1050 suspensions in a single Singulator System 100 system embodiment. The Singulator System 100 will greatly enable basic researchers, students, and translational researchers as well as clinicians and others with its ease of use and high performance. Designed for genomics and easily adaptable to other applications, the Singulator System 100 performs the most upstream sample preparation steps—from tissue specimens 120 or other sample types—and standardize the complete sample preparation process for single-cell 1000 and nuclei 1050 suspensions. Single-use cartridge designs.
Cartridges 200 can be used to process tissue into single-cell 1000 suspensions or nuclei 1050 and are preferrably single-use. The major workflow steps to produce single-cell suspensions 1000 are mechanical disruption of tissue, enzymatic dissociation, and straining to remove clumps, and optional cell type isolation by magnetic bead capture.
Ideally, the cartridge 200 will input specimen 101 and output viable singulated cells 1000 or nuclei 1050 in suspension and can be designed to incorporate magnetic and other downstream processing to also allow production of biomolecules 1070 such as nucleic acids 1072. It is desirable that disposable cartridge 200 process multiple types of samples with mechanical disruption and enzymatic or chemical dissociation according to the tissue type and condition. The cartridge 200 can be designed to process tissue as quickly and as gently as possible, not expose the operator to the tissue being processed, and be manufacturable at low cost. Multiple mechanical methods may be needed to accommodate the wide range of tissues and their individual requirements: designs are shown that can be readily adapted to multiple different mechanical disruption methods comprising variable orifice 490, grinding with rotating plungers 336, pestles 361, and straining and filtering using a plunger 362 as well as other mechanical methods without limitation.
Cartridges 200 can be designed for 3D printing, injection molding in plastics with single or double pulls and low labor assembly, or layered assembly of fluidic and other layers, combinations of methods, and other methods well known to one skilled in the art. Fluids can be delivered to cartridge 200 by a syringe pump 2130 or can be preloaded onto cartridge 200 or many combinations. In some embodiments, flexible tubing 493 can connect chambers and creates simple pinch valves 491 to direct flow. In other embodiments, channels are created in the cartridge 200 and valves can be incorporated such as pneumatic valves, or other valves.
Example: Cartridge with Collapsible FeaturesIn a preferred embodiment, referring to
Referring to
In some embodiments the fluidics of the Singulation System 100 are incorporated onto cartridge(s) 200. In some embodiments of the Singulation System 100, the valves for the subsystems are microvalves, which in some embodiments are created in microchips with microchannels. Microvalves are well know to those skilled in the art. Microvalves can be actuated by, for example, mechanical force, pneumatic pressure, electrostatic force, piezoelectric force, thermal expansion force, etc. They may be have internal or external actuators. Pneumatic valves include, for example, diaphragm valves that employ a flexible membrane of the pneumatic pressure or vacuum to close or open a fluid channel. Electrostatic valves may include, for example, a polysilicon membrane or a polyimide cantilever that is operable to cover a hole formed in a substrate. Piezoelectric valves may include external (or internal) piezoelectric disks that expand against a valve actuator. Thermal expansion valves may include a sealed pressure chamber bounded by a diaphragm. Heating the chamber causes the diaphragm to expand against a valve seat.
In some embodiments, cartridges 200 are used with functionality from a group of reagents, valves or microvalves, microchannels, syringe pumps, optical devices, integrated electronics for control of cartridge 200 functions, and lot tracking. In some embodiments microchips are used as parts of instrument or cartridges 200. The cartridges 200 in some embodiments hold kits to perform the chemistries including all needed reagents, stains, library preparation chemistry, and other consumables. In other embodiments, the reagents or parts of the reagents are on board the instrument or added manually by the user. In some embodiments the reagents are stabilized for long term room temperature storage by freeze drying or the addition of osmoprotectants.
Referring to
The Fluidic Subsystem 600 engages with a modular microfluidic connector 620 located on the holder. The modular microfluidic connector 620 are true zero dead volume connectors and can join two or more capillaries to one, or join microchannels to microchips or cartridges, and be used as multiway microvalves. The modular microfluidic connectors 620 can have a linear array of microchannels, such as four, on both sides of the connection. The relative position of one side of the connection can be moved to line up different sets of microchannels or close off a microchannel as taught in U.S. Pat. No. 7,244,961. In the embodiment taught in this disclosure, the modular microfluidic connectors are used to open and close fluidics to cartridge 200 to take aliquots for measurement, change media, and output the single cells.
Referring to
At appropriate intervals, aliquots can optionally be withdrawn through modular microfluidic connector 610 or other fluidic connectors or by pipetting, and the number of cells or the viability determined by Measurement Subsystem 500. In some embodiments, a solution, such as a dye such as trypan blue, can be added to the aliquot to visualize live versus dead cells using a brightfield readout. The solutions can be imaging reagents, such as fluorescently directly conjugated antibodies or secondary antibodies, stains, fluorescent probes and dyes; imaging nanomaterials (including quantum dots and other nanoparticles), or other contrast or straining reagents. Many other compounds can be added if fluorescence or other imaging systems are used. In addition, in some embodiments, Measurement Subsystem 500 does not image the aliquot but measures light scattering or fluorescence of the aliquot to determine the number of cells, or the viability; in some instances, after an initial readout of the fluorescence assay of ATP or other intracellular components, all the cells in the aliquot can be lyzed to determine the total amount of ATP or other intracellular component to create a ratio of the percentage of viability. The Measurement Subsystem 500 can perform multiple readings as required and in some embodiments the amount of grinding, tituration, or enzymatic composition or concentrations can be adjusted based upon the measurements.
Referring to
Referring to
Referring to
In some embodiment, labeling solutions such as antibodies or particles, such as paramagnetic beads, can be added to cartridge 200. In other embodiments, the Fluidic Subsystem 600 is cleaned of debri, single cells, or tissue fragments by separate cleaning modules that operate in direct contact or non-contact mode utilizing various cleaning mechanisms including, but not limited to, mechanical brushes or chemical agents comprised of ethanol, alcohols, detergents, non-ionic detergents, surfactants, water, buffers, acidic solutions, basic solutions, and other chemicals.
In other embodiments, solutions that dissolve the cellular membrane, such as 0.1% Triton X-100 or 0.005% Nonident P40 are added either alone or in combination with physical, chemical, acoustic, enzymatic, thermal, or other methods to produce cellular organelles such as nuclei, mitochondria, ribosomes, long non-coding RNA, or other nucleic acids.
Example: Orifice CartridgeIn another example,
In one embodiment, five actuators, 325, 326, 327, 328, and 329 in the instrument engage with plungers 331, 332, 333, 334, and 335 respectively on the cartridge in a manner to allow them to pull or push the plungers up or down. Piezoelectric pump 626 can access dissolution solution 410 from a reservoir and piezoelectric pump 627 can access media 418 from a reservoir. Strip heater 620 can control the temperature in the cartridge. Waste reservoir 430 collects waste from cartridge 200 as needed. The eye represents an optics imaging system 520 including illuminator and detector.
In some embodiments, the number of actuators can be one or more. In some embodiments, the actuators are syringe plungers, in others, on cartridge pumps, or off cartridge pressure or vacuum sources. In another embodiment one actuator such as a syringe plunger can move specimen 101 from chamber 1 251 through orifice 250 into chamber 2 252 which can have a plunger or be open to atmospheric or other pressure and serve as a reservoir for specimen 101 as it is processed through orifice 250. In some embodiment a strainer or filter to disrupt tissue or filter single-cells for clumps can be incorporated.
As shown in
Referring to
Referring to
Actuator 4 328 can then push down on plunger 4 334 while actuator 5 329 can pull up on plunger 5 335 to move the debris and enzyme solution to chamber 5 255. Actuator 5 329 can then push down on plunger 5 335 to move the debris and enzyme solution to waste 430.
Optics 520 can interrogate the solution to determine the titer of single cells 1000 or nuclei 1050 and when desired the viability. Referring to
To then change the media or wash the cells, actuator 3 327 pushes plunger 3 333 down while actuator 4 328 pulls up plunger 4 334 to move the added solution through filter 630 into chamber 3 253 while singulated cells 1000 remain on the Chamber 3 253 side of the filter 630. The solutions can be moved back and forth between chambers 3 253 and chamber 4 254 as needed using actuators 3 327 and 4 328.
These steps illustrated in
Referring to
There are many ways to mechanically disrupt tissue. In one embodiment of a Singulator System 100, a mechanical device, the AutoSingulator™ 2100, automated and standardized multiplied mechanical disruption methods. In one embodiment the device in
A standard disruption method is trituration, passaging tissue through orifices which can be of successively smaller diameters of fixed orifices, e.g., needles, Pasteur pipettes, etc. which works well for some tissues. However, the fundamental problems in developing a cartridge using orifices are incorporating the orifices in series, preventing clogging, and adapting the orifice sizes to the requirements of different tissue types. These problems are all solved by a variable orifice 490 that can be adjusted to create successively smaller orifices on demand or lumens of different sizes.
As shown in
Rotation of one or more surfaces is a method to physically dissociate tissue and methods are herein disclosed. The rotating part can be directly driven by a mechanical coupling or use a magnetic coupling to achieve the rotation. The speed of rotation can be programmed by Control Subsystem 700 for example to 1, 10, or 100 rotations per minute or other speeds and the direction reversed as desired. In some embodiments, the rotation can create fluid flow which can be exploited to move specimen 101 into grinding or crushing features. The rotating physical dissociators can be combined with features described for the cartridge with collapsable features or the orifice cartridge as will be obvious to one skilled in the art.
Referring to
As shown in
Referring to
Cartridges 200 have been designed to accommodate multiple mechanical disruption methods-variable orifice, pestle, grinding, and straining—with mechanical transduction in many designs through the cartridge cap 210. The cartridges can be designed for tissue samples of different sizes, such as ˜3 mm3 or larger and process the tissue in 0.3 to 1.0 mL of liquid, or for tissues <3 mm3 and process the tissue in volumes such as <0.1 mL, or in 0.1 to 0.3 mL, or in greater than 0.3 to 1.0 mL or larger of liquid.
Referring to
The embodiment shown in
Preferred embodiments for formulation of enzymes for each mouse tissue were used in HBBS without Ca or Mg. For lung 0.1% Collagenase II with 5 u/mL Dispase and 0.03% DNase was used; for kidney 0.05% Collegenase I with 0.075% Papain and 0.03% DNase was used; for spleen, 0.05% Collagenase I with 0.03% DNase was used; for liver, 0.1% Collagenase IV with 0.05% Hyaluronidase and 0.03% DNase was used; for brain, 0.2% Papain with 0.03% DNase was used; and for gut, 0.1% Collagenase I with 0.025% Hyaluronidase and 0.03% DNase was used.
The operator then lowered grinder rotor 420 until it contacted the tissue. The rest of the operation was automated. The tissue specimen 120 was incubated for 30 min with the the grinder rotor 420 moved up and down every 5 min to mix. After a 30 min incubation at room temperature, the grinder rotor 420 was rotated seven times forward and seven times backward at 75 rpm against the tissue specimen 120 with fixed stator 421 in the bottom of the Pre-Processing Chamber 440. The grinder rotor 420 was moved by the Z stepper 2110 about 200 □m down and the process repeated six to seven times until the grinder rotor 420 reached the bottom of the Pre-Processing Chamber 440 which had grinder stator 421. When the grinder rotor 420 reached the bottom of Pre-Processing Chamber 440, the dissociated sample was displaced through reagent addition port 470 through a 100 □m filter 341 held in a Sweeney filter holder 347 followed by a rinse with 3 mL of HBSS delivered backflushing through the 100 um filter 341 held in a Sweeney filter holder 347 into reagent addition port 470 and withdrawn back through 100 um filter 341 held in a Sweeney filter holder 347 and the output collected. The samples were centrifuged at 300 g for 5 min, the supernatant discarded, and the cells resuspended in RBC lysis buffer (G-Biosciences) for 3 min and then centrifuged at 300 g for 5 min and the pellet resuspended in 1 mL of HBSS. The viability and titer were determined on a Countess FL using Trypan blue. As shown in
Many tissue samples are only present in small amounts, such as core biopsies or fine needle aspirates, where 5 to 25 mg of tissue may be obtained. The AutoSingulator 2100 was shown to be able to process these small samples effectively using the setup as shown in
The results shown in
Speed, yield, viability, and cellular damage are key first QC metrics for high quality, reproducible workflows. As manual and automated disruption methods are refined, after initial screening, additional quality metrics of qPCR of IEG and other transcripts, RIN determination using capillary electrophoresis, and single-cell NGS can be used as more sophisticated metrics.
It is important to identify enzymatic methods to produce single cells 1000 or nuclei 1050 with minimal alterations of gene expression as a major improvement to the state-of-the-art. Combinations of less digestive enzymes into formulations with less cellular reactions can be tested. Additives can help freeze the state of the cell, such as transcription, membrane, or other inhibitors, to prevent clumping, and to preserve RNA.
In one embodiment of the Sample Processing System 50 as a Tissue Processing System 80, as shown in
In this preferred embodiment a Cell Singulation module 800 and a Magnetic Processing module 900 are integrated into a Single-Sample Singulator System 2000 or into a Four-Sample Singulator System 2400. Mechanical and enzymatic dissociation is performed in single-use cartridges 200 in the Pre-Processing chamber 440 to produce single-cell suspension 1000 or nuclei suspensions 1200, nucleic acids 1072, biomolecules 1070, subcellular components 1060, or other products from pre-processing. The samples can then be processed in the Processing chamber 460 by optional bead-based affinity purification of cell types by surface antigens to produce affinity purified single-cell suspensions 1100 or nuclear suspension by nuclear antigens 1105 or nucleic acids 1072, biomolecules 1070, subcellular components 1060 can be further processed into purified mRNA, NGS libraries, or other sample types.
To accomplish this, in a preferred embodiment, a Single-Sample Singulator System 2000 was designed with reagents 411 on-board the instrument and with cartridges 200 potentially with tissue-specific mechanical disruption modalities to accommodate the wide diversity of processing needs. The system can input raw, unprocessed tissue samples and output single-cells 1000 or nuclei 1050 in suspension, ready for processing into single cell NGS libraries off device or can process the single cells 1000 or nuclei 1050 into bulk libraries on the system.
Example: A Single-Sample Singulation SystemThe Singulator System 100 can mechanically disrupt tissue and enzymatically dissociate the disrupted tissue in a cartridge 200 into single-cells 1000 or nuclei 1050 in suspension. As shown in the top of
The Cell Singulation module 800 as shown in
Referring to
A 3D CAD representation of one embodiment of a Single-Sample Singulator System 2000 design packaged with a ‘skin’ is shown in
This embodiment of the Single-Sample Singulator System 2000 has one syringe pump 2130 with a six-way valve 2140 to supply liquids, pressure, or vacuum to cartridge 200. The cartridge 200 shown is similar to
Referring to
A single-sample Magnetic Processing module 900 can have a motor 930 moving a magnet 910 such as a neodymium magnet on an arm 920 to capture paramagnetic beads inside Processing Chamber 460 when the arm is in the horizontal position as shown or release the beads when it is in the raised vertical position (shown in a dashed outline). It will be obvious to one skilled in the art that many other configurations are possible, with in some embodiments magnet 910 moving in a linear fashion, or in a circle, or other geometries. Features can be incorporated into the cartridge 200 to improve magnetic processing performance such as having a region with a smaller distal distance to increase the magnetic field locally to improve bead capture. The field of the magnet 910 can also be directed by blocking certain regions with non-magnetic materials and enhanced in other areas of the field. Sensing devices such as optical sensors or magnetic sensors can be implemented for positional feedback. Motor 930 can be controlled using Control Subsystem 700. Magnetic fields can also be produced using electromagnetic coils.
The Magnetic Processing module 900 can capture and purify cell types from eukaryotic, prokaryotics, or archea. Following creation of a single-cell suspensions, antibodies against cell surface components or other targets coupled to nanoparticles or paramagnetic beads, using standard coupling chemistries or commercially available beads with antibodies to cell surface proteins, can be added from reagents 411 by syringe pump 2130 and six-way valves 2140 and 2141 to Processing Chamber 460 containing the single-cell suspensions. Mixing can be by bubbling air through the Processing Chamber 460 or application of a ‘stirring’ magnetic field, or use of fluidics to agitate the single-cell suspensions and beads, or moving the sample with beads back and forth in tubing or channels, or between the two Pre-Processing Chambers 440 or other methods well known to one skilled in the art. The antibodies or other affinity agent will then bind target cells with the target antigen. The Magnetic Processing module 900 can move arm 920 to the horizontal position with magnet 910 positioned at the Processing Chamber 460. The beads with captured cells, including from a media 418 such as containing enzymes or chemicals used to dissociated specimen 101, are in turn captured by magnet 910. The media 418 can be pumped out by syringe pump 2130 and as desired captured beads can be washed to remove cell debris, enzymes, buffer, and uncaptured cells with reagents 411 or to change buffers. The Magnetic Processing module 900 can then move arm 920 to the vertical position with magnet 910 positioned away from the Processing Chamber 460 to release the beads captured by the magnetic field of magnet 910. The beads are then attached to single-cell suspensions that are now affinity purified for a desired subtype or depleted for a cell-subtype 1100. Resuspending the beads in a different buffer or media 418 is an effective way to change buffer. It will be obvious to one skilled in the art that the beads can be used to deplete cell types, debris, or other material from a cell suspension by holding the beads on the magnet and moving the now depleted fluid to a different chamber or output it to a tube or other device.
The Magnetic Processing module 900 can capture and purify nuclei 1050 or other subcellular components 1060 including organelles from eukaryotic organisms. Following creation of a suspension of nuclei 1050, antibodies against nuclear surface components, such as biotinylated anti-nuclear protein NeuN antibodies or other nuclear targets, can coupled to nanoparticles or paramagnetic beads, using standard coupling chemistries such as streptavidin nanoparticles or commercially available beads with antibodies to nuclear proteins, can be added by syringe pump 2130 to Processing Chamber 460 containing the nuclei 1050 suspension. Mixing can be by bubbling air through the Processing Chamber 460 or application of a ‘stirring’ magnetic field, or use of fluidics to agitate the single-cell suspensions and beads, or moving the sample with beads back and forth in tubing or channels or other methods well known to one skilled in the art. The antibodies or other affinity agent will bind nuclei 1050 or other target organelles with the target antigen(s). The Magnetic Processing module 900 can move arm 920 to the horizontal position with magnet 910 positioned at the Processing Chamber 460. The beads can then capture the nuclei 1050 bound to beads, including from a media such as containing chemicals or enzymes used to dissociated specimen 101 into nuclei 1050. The captured nuclei, now bound to the beads, can be washed to remove cell debris, enzymes, buffer, and other unbound components or to change buffers. The Magnetic Processing module 900 can then move arm 920 to the vertical position with magnet 910 positioned away from the Processing Chamber 460, which will release any beads captured in the magnetic field of magnet 910. The beads are attached to affinity purified nuclei suspensions 1105.
The Magnetic Processing module 900 can also be applied to process single cells 1000 or nuclei 1050 or tissue specimens 120 into nucleic acids 1072 and to further process the nucleic acids 1072 into bulk libraries. Tissue specimens can be lysed in Pre-Processing Chamber 440 by addition of chaotrophs, as described below, and the lysate can be strained through strainer 450, and moved into Processing Chamber 460. The lyzed tissue is then processed by magnetic beads to purify nucleic acids 1072. In another embodiment, the single cells 1000 or nuclei 1050 in Processing Chamber 460 are lysed by addition of chaotrophs processed with magnetic beads to purify nucleic acids 1072. In some embodiments, the purified nucleic acids 1072 are further processed into bulk libraries 1210 as described in
The systems are controlled by a Control Subsystem 700 that uses control software 725 to control electronics 710 that actuates modules and devices. Control software 725 runs on a computer 720 which can be a standalone computer 725 or a tablet 750. The control software 725 is a rapid development software platform designed to accelerate development and commercialization. The software has support for IoT-based protocols, cloud-based protocols, Microsoft development tools and libraries, and machine learning technologies. The control software 725 Host provides a standardized scripting interface to develop, maintain, and run scripts, with a range of utilities to allow scripts to interact with the user and to interoperate with other software.
Control software 725 scripts are coded in any .Net languages and compiled to standardized DLL's; other languages are within the scope of the present invention. Once the scripting logic is developed, the scripting host layer is replaced with a dedicated executable that references the same DLL and that executes the script, dramatically shortening the development cycle.
The control software 725 Library has precompiled DLL's that provide critical functionalities including scripting interface and base libraries, support for ZMQ and other IoT libraries for intercommunication, real-time scheduling engine for autonomously optimized non-deterministic scheduling of operations, databasing, image analysis, statistical analysis, data storage, and HDF5 numerical storage libraries. Supported hardware components include: a) pumps and valves using Cavro communication protocols, b) Tecan RSP/MSP robots, c) motor controllers and I/O devices (quadrature encoders, optical sensors, etc.), d) RS232, RS485, USB HID, and other generic interface devices, e) CAN devices using the KVASER™ Communication Library, f) LabSmith pProcess devices, including micro-pumps, valves, and pressure sensors, and g) Arduino based devices. Control software 725 can support hardware device added and integrate overall protocols through scripting. Other software can be substituted for the control software 725.
Example of Another Preferred Embodiment of a Single-Sample Singulator System.Referring to
In a preferred embodiment, cartridge 200 and the cartridge interface 1500 have features for ‘click-in docking’ to the instrument and self-aligning connections to the instrument fluidic system. In the embodiment shown in
The operator can select a program to process tissue specimen 120 through user interface 740 on touchscreen 730 of tablet 750. As shown in
Referring to
Computer 720 controls all devices. It has direct connections to syringe pump and six-way valve controller 2131 which in turn controls syringe pump 2130 and six-way valve 2140; six-way valve controller 2210 which in turn controls six-way valve 2141, and six-way valve controller 2212 which in turn controls six-way valve 2142. Computer 720 connects to controller 2112 (control line not shown) which controls stepper driver board 2114 which in turn drives z-axis stepper 2110. Computer 720 connects to controller 2114 (control line not shown) which controls DC motor relay board 2132 which drives magnetic motor 930, DC motor relay board 2134 which drives rotary motor 2120, heater relay board 2250 which drives reagent Peltier 1420, and heater relay board 2240 which drives cartridge Peltier 1440. Many other embodiments are within the scope of the invention and are obvious to one skilled in the art.
Referring to
Using Z-axis stepper 2110, rotary motor coupler 2125 is lowered until it engages with cap 210. In some embodiments the engagement is using a locking mechanism such as a crown shaped coupler 2126 shown in
When the cap 210 has been engaged by the rotary motor coupler 2125 and the appropriate enzymatic or chemical dissolution solution 410 has been delivered to Pre-Processing Chamber 440, Z-axis stepper 2110 can move rotary grinder 420 down. In some embodiments a force sensor monitors the force used to move rotary grinder 420 down to ascertain when tissue specimen 120 is encountered. In some embodiments rotary motor 2120 is rotating as Z-axis stepper 2110 is lowered and the current draw is monitored to to ascertain when tissue specimen 120 is encountered. In other embodiment, rotary grinder 2120 is moved to a position without any force feedback. Rotary motor 2120 can be actuated and the tissue disrupted according to the desired program for the tissue.
The program may include many variations of moving in one direction, then reversing direction. In some versions, the grinder may move downward during the grinding and then move upwards to relieve pressure on the tissue. In some embodiments rotary grinder 420 can be rotated at slow speeds such as 25, 50, or 75 rpm or slower; in other embodiments at speeds such as 100, 200, 500, or 1,000 rpm or more. The speed of the rotation can be changed or the direction reversed and the position controlled by Z-axis stepper 2110. In other embodiments, cartridge 200 has a plunger, variable orifice, pestle or other mechanical disruption device.
The Pre-Processing chamber 440 can be temperature controlled by thermal transfer plate 1470 which is controlled by cartridge Peltier 1440. In many cell singulation protocols, the tissue is incubated at 37° C. for 30 min and for many nuclei 1050 protocols, the tissue is incubated at 4° C. The system can accommodate a wide range of temperatures, incubation times, and mechanical disruption protocols.
Referring to
Waste chambers 431 and 432 are designed to be connected to the top and the bottom of Processing Chamber 460 respectively. This allows waste chamber 432 to withdraw liquid from the bottom of Processing Chamber 460 when vacuum is applied while waste chamber 431 will not withdraw liquid from Processing Chamber 460 in most circumstances. Waste chambers 431 and 432 can optionally contain a liquid absorbent or solid absorbent.
In some instances, the operator will have selected a program that further processes the dissociated tissue specimen 120 in Processing Chamber 460. For example, the sample can be further processed by magnetic processing with the Magnetic Processing Module 900. For cells, antibodies to capture specific cell types coupled to magnetic beads or particles can be added to Processing Chamber 460 by syringe pump 2130 from a reagent reservoir such as magnetic beads in 2145 R8 through line 2166 and six-way valve 2142 through line 2162 and six-way valve 2140 to line 2161 to six-way valve 2141 and line 497 to reagent addition port 485 on Processing Chamber 460. The beads and cells can be mixed by moving them back and forth in line 475 into the bottom of strain chamber 450 by applying vacuum or pressure through lines 472 and 495 and 2161 using syringe pump 2130 and six-way valves 2141 and 2140. After mixing and incubation for the desired time, the specific cells for the antibodies attached to the magnetic beads can be collected by using Magnetic Processing module 900 to move magnet 910 close to Processing Chamber 460, such as within 1 mm, or 5 mm, or 1 cm, and waiting for 1 min, or 2 min, or 5 min or other times. The magnetic beads are captured on the side of Processing Chamber 460 or in a line such as 475. The uncaptured cells in the enzymatic or chemical dissolution solution 410 can be then removed by applying vacuum to the lower port 483 on processing chamber 460 through line 482 to port 481 on waste chamber 432 by using port 484 and line 496 through six-way valve 2141 and line 2161 and six-way valve 2140 with syringe pump 2130. The desired buffer can then be added from a reagent reservoir such as 2145 R7 through port 485 and line 497 and the magnet 910 moved away from Processing Chamber 460. The cells can be resuspended by again mixing in line 475 as described. Additional cycles of wash can be applied when desired. The purified cells attached to the magnetic beads through the antibodies or other affinity reagents can then be removed through Processing Chamber cap 465.
It will be obvious to one skilled in the art that many variations of magnetic bead processing can be used including depletion of types of cells, removal of cellular debris or tissue debris, capture of nuclei 1050 or subcellular components 1060, processing of nucleic acids 1072, or other biomolecules 1070. Other processes can also be performed in Processing Chamber 460 such as library preparation or other reactions as described herein.
Example Using a Vertical Cartridge in the Singulator System.Another preferred embodiment of cartridge 200 is shown in
Referring to
Enzymatic or chemical dissolution solution 410 is injected into the Pre-Processing Chamber 440 through the fluid channel 441. The solution may be heated or cooled by the action of the temperature regulation elements engaged with Pre-Processing Chamber 440. The enzymatic or chemical dissolution solution 410 can contain enzymes or chemicals to help dissociate the tissue specimen 120 or convert cells to nuclei 1050. The grinder rotor 420 is then mechanically rotated and brought up/down by the Singulator System 100 whereby tissue specimen 120 is separated into smaller and smaller pieces by the action of the grinding features on the grinder rotor 420 and grinder stator 421 Single cell 1000 or nuclei 1050 production is achieved by the combined action of the grinding elements and incubation/exposure of the tissue specimen 120 to reagents 411, e.g., enzymes, or chemicals, or combinations of enzymes and chemicals as described herein. After the tissue disruption is sufficiently advanced, the grinder rotor 420 is brought completely down until it touches the grinder stator 421 whereby the singulated cells 1000 or nuclei 1050 in the enzymatic or chemical dissolution solution 410 are pushed around and above the grinder rotor 420.
All the Fluid/Gas Inlets/Outlets 480 are then sealed and the singulated cells 1000 or nuclei 1050 suspension, or nucleic acids 1072 are pulled from the Pre-Processing Chambers 440 through channel 442 to Strain Chamber 450 and then through channel 443 into the Processing Chamber 461 by applying negative pressure through channels 446 or 444. A filter 431 in Strain Chamber 450 prevents undissociated tissue, cell aggregates, and debris from entering the Processing Chamber 461. Waste Chamber 431 can containing a liquid absorbent or solid absorbent to prevent any liquid from exiting through the Fluid/Gas Inlets/Outlets 480 and into the Singulator System 100.
If desired, the single cell 1000 or nuclei 1050 suspension or other prepared tissue specimen 120 can then be mixed through Channel 448 by applying alternative negative (and or positive) pressure to channels 444 and 445 to move the sample back and forth from Processing Chamber 461 to Processing Chamber 462. If no further processing is desired, the operator can pull out the single cell 1000 or nuclei 1050 suspension or other processed sample through an opening or processing chamber cap 465 (not shown) in the top wall of Processing Chamber 461 or Processing Chamber 462.
For the positive selection or depletion of specific cell types, or nuclei 1050, or subcellular components 1060, or biomolecules 1070, or for washing the cells and/or for exchanging the buffer, the single cell 1000 or nuclei 1050 suspensions can be further processed by using cell-specific, or nuclei-specific, or other affinity reagents coupled to magnetic beads or using paramagnetic bead purification of nucleic acids 1072 or other methods. For example, cell-type specific or nuclei-specific, or other affinity magnetic beads and reaction solutions are injected through Channel 444 into Processing Chamber 461. The beads are incubated with the single cell 1000 or nuclei 1050 suspension by mixing though channel 448 as described above, whereby the magnetic beads bind to their target cells. Then, magnet(s) 910 is/are applied to the backside of Processing Chambers 461 and/or 462 depending where the sample is moved to, whereby the magnetic beads (and attached cells or nuclei or other biocomponents) are attracted to and held at the Processing Chamber 461 or 462 wall(s). The single cell 1000 or nuclei 1050 solution now depleted of specific targets is pulled into Processing Chamber 461 by applying negative pressure to channel 444 (and/or positive pressure to channels 445 and 446 and then sequentially into the Waste Chamber 432 containing a liquid or solid absorbent substance by applying a negative pressure through channels 447 and 449.
Simultaneously or subsequently, washing solution can be injected through channel 444 and the beads attached to magnet 910 can be washed with a wash buffer by combinations of mixing, magnetic release/application and pulling liquid to the Waste Chamber 432. This process can be repeated one or more times. Similar processing can also be used to resuspend the single cells 1000 or nuclei 1050 in a specific buffer or growth solution.
After the single cells 1000 or nuclei 1050 are in the desired output buffer, the magnet 910 is released, the cells homogeneously resuspended by mixing in channel 448, and then the single cell 1000 or nuclei 1050 suspension is pulled either into Processing Chamber 461 or 462. The operator can then pull out the single cell 1000 or nuclei 1050 suspension through an opening in the top wall of Processing Chamber 461 or 462 covered by a foil-seal, or septum, or processing chamber cap 465 or other mechanism (not shown). Other processing/reaction/fluidic elements can be added to the cartridge as desired to enable additional processing modes in including without limitation tangential flow filtration, optical interrogation, library preparation, and nucleic acid purification.
Four-Sample Singulator SystemA Four-Sample Singulator System 2400 is shown in
The workflow of the Singulator System 100 can be extended downstream in an Enhanced Singulator System 2500 as shown in
The determination of the viability and number of cells is critical to produce titered cell suspensions 1300 automatically for downstream processing without further intervention. Currently, after cells are prepared from tissue, separate instruments are used to count the number of cells and viability, e.g., FACS, a cell counter, or a microscope, and centrifugation to wash and concentrate the cells, or FACS to select certain cell types and remove debris.
An optical module 2600 can be incorporated into an Enhanced Singulator System 2500 to interrogate samples for titer, viability, and process control to potentially produce less stressed cells. The viability determination can be performed using bright-field illumination with an added stain, e.g., Trypan Blue, or with fluorescence live/dead stains such as SYTOX Green or others. Viability staining can be detrimental to the viability of the cells, interfere with downstream labeling, or require optical quality cartridges.
Referring to
The mixed aliquot and dye is then moved into the flowcell 2620 by applying vacuum on line 2627 through waste container 2626 and line 2625 and connector 2622 to pull the mixed aliquot and dye into flowcell 2620. Alternatively, the dimensions of the flowcell 2620 may sufficiently small for the mixed aliquot and dye to be pulled in by capillary action with the aliquot and dye can be premixed in the pipettor 2660 or other place. In another embodiment, pipettor 2660 can seal at the end of reservoir 2621 to push the mixed aliquot and dye into flowcell 2620. Many other methods of moving the aliquot are envisioned and within the scope of the present invention including pneumatic pumps, peristaltic pumps, electrokinetic pumps, mechanical pumps, and other pumps located on or off the device, as well as many other ways to move the aliquot. The mixed aliquot and dye in flowcell 2620 can then be interrogated by an optical imaging device 2675 to measure brightfield or fluorescence or other images of the cells or nuclei in flowcell 2620.
In one embodiment, as shown in
In a preferred embodiment, the flowcell 2620 geometry is made from optical glass with a 100 □m channel. In other embodiments, arrays of fluidic channels are used in flowcell 2620 to allow multiple aliquots to be detected. In some embodiments, one or more glass capillaries with burned windows are used as flowcell 2620. In some embodiment, pipettor 2660 and two axis robot 2665 are replaced with fluidic plumbing to deliver the aliquot to reservoir 2621.
In some embodiments, the imager 2675 and detector 2650 can be autofocused with flowcell 2620. In one embodiment, the autofocusing moves imager 2675 and detector 2650 using motor 2680 to move in small increments, e.g., less than 1 □m, less than 2 □m, less than 5 □m, less than 10 □m, less than 20 □m, less than 25 □m, less than 50 □m, or less than 100 □m to focus on features on flowcell 2620 or the Raman line of water in flowcell 2620 or other features. The features may be the top or bottom surface of the flowcell 2620 or may be features designed into flowcell 2620 to simplify focusing such as a grid of lines or 3-D features. Software interprets the images to determine the focal plane for best resolution. In another embodiment, the detector 2650 and the flowcell 2620 are rigidly fixed optically to place flowcell 2620 always in the plane of focus.
After the mixed aliquot with dye has been interrogated by imager 2675, in one embodiment, the mixed aliquot and dye is then moved into waste container 2626 by applying vacuum on line 2627 through waste container 2626, line 2625, and connector 2622 to pull the mixed aliquot and dye from flowcell 2620 into waste container 2626. The flowcell 2620 is then cleaned for reuse, such as by having pipettor 2660 pipetting cleaning solutions, such as 100 mM NaOH followed by 10 mM Tris HCl, pH 7 followed by deionized water into reservoir 2621 and after a suitable incubation time, pulling the cleaning solution into waste 2626 as described. Many other cleaning protocols are within the scope of the invention.
Camera control and image acquisition can be based on Point Grey/FLIR Spinnaker SDK optimized for machine vision applications or other image processing software such as Image J freeware, Cell Profiler, or other software. The output of the imaging device 2675 can be processed in software to quantify total number of viable cells and non-viable cells or to detect subcellular components 1060 and nuclei 1050 or quantify biomolecules 1070 such as nucleic acids 1072. In some embodiments, chemicals or biologicals can be added to the aliquot to allow measurement of their impact on freshly produced cells 1000 or nuclei 1050 or other cellular components. In some embodiments, with two or more fluidic channels, chemicals or biologicals can be added to one or more of two or more identical aliquots but not to another aliquot which can serve as the control. In some embodiments, the single cells 1000 can be imaged and genetically modified such as with CRISPR and the cells collected for subsequent usage.
Monitoring of cell titer and viability at intervals will enable the Singulator System 100 to adjust the mechanical or enzymatic regime to gentler or harsher enzymatic and mechanical conditions as needed for a tissue that dissociates easier than expected or harder. For example, cancerous tissues have different properties than normal tissues and may need individual adjustment and optimization of disruption conditions for best results. Singulator System 100 can process images from imager 2675 with Control Subsystem 700 control software 725 to monitor the tissue dissociation rate by the number of cells or cellular components produced per time interval. When applicable, the operator or control software 725 can increase or decrease the mechanical disruption or the enzymatic or chemical formulation changed to stronger or weaker solutions. Tangential flow filtration module.
The production of titered single cells for direct processing by single cell DNA sequencing or scRNA-Seq can simplify the tasks for the genomic scientist. The optical module 2600 can measure the number and viability of the single cells and the single cell 1000 or nuclei 1050 suspensions can be adjusted for titer, typically by dilution. In the lab, the workflow involves centrifugation, washing, and resuspension to replace the buffer and remove debris, or by FACS sorting. In a fluidic device accomplishing this can be done using magnetic bead processing or filtration; however, ‘dead-end’ filtration is prone to clogging, can shear cells, and recovery of filtered cells can be problematic. These problems have been solved in the biopharmaceutical industry by using tangential flow filtration (TFF).
In one embodiment, referring to
TFF can be incorporated in many embodiments of cartridges 200 in the Processing Chamber 460 to add the ability to concentrate cell suspensions, remove debris, and change buffers. The implementation is an interplay between cartridge design and the on-instrument process development. Cartridge 200 can be designed to incorporate parallel filters into the molding process, routinely done for syringe filters. The Enhanced Singulator System 2500 can seal the cartridge 200 and provide the circulation of buffer driven by pumps comprised of peristaltic pumps, micropumps (e.g., TCS Micropumps), or others directed by control software 725. The TFF module can be incorporated in many cartridge 200 designs and with many embodiments of the Sample Processing System 50, Tissue Processing System 80, or the Singulator System 100.
Downstream Processing: Red Blood Cell Lysis.The Enhanced Singulator System 2500 has the capability to perform additional biochemistry after single cells 1000, nuclei 1050, or biomolecules 1070 have been produced or purified. Syringe pump 2130 can deliver reagents to the Preprocessing Chamber 440 or Processing Chamber 460 of the cartridge 200 which enables multiple process options.
In many procedures, red blood cells (RBC) are present in high titer in the starting tissue and need to be removed by perfusion or later by lysis. Red blood cell lysis can be added as an option to the workflow after production of single-cell suspensions 1000 or purified single-cell suspensions 1100 or other outputs as follows. RBC lysis solution (e.g., 0.5% ammonium chloride or commercially available solutions) is moved by syringe pump 2130 into Processing Chamber 460 and mixed with the single-cell 1000 in suspensions by methods such as bubbling, fluid flow, magnetic stirring, or other methods, and the lysis solution and the single-cell 1000 suspensions incubated for five minutes or less at room temperature or other temperatures. The time course and temperature can be optimized to adjust parameters to conditions that favor high viability for the tissue specimen 120 with the requirements of the RBC lysis. After lysis, the RBC lysis solution can be removed or diluted to protect the other cell types either by TFF processing or rapid dilution with buffer.
Single Librarian EmbodimentThe Enhanced Singulator System 2500 embodiment can be extended to create a Single Librarian 3000 embodiment with integrated optical analysis to determine viability and titer, tangential flow filtration to wash cells or nuclei to replace the buffer and adjust the titer, magnetic processing to capture nucleic acids and integrate pooled library enzymatic steps, and integration of single-cell/nuclei nanodroplet or nanobolus processing and library preparation. Real-time titer and viability data enables adapting tissue processing reagents and mechanical disruption in almost real-time using machine learning or other analytical methods: the system could potentially autotune sample preparation of single-cells 1000, nuclei 1050 or other cellular components using singulation and viability metrics or production metrics such as the concentration of cellular components.
The Single Librarian 3000 embodiment as shown in
In a preferred embodiment, the Single Librarian 3000 can be configured to process any number of tissue samples automatically with tissue-specific disposable cartridges and enzymatic formulations to produce single-cell 1000 and nuclei 1050 suspensions and libraries, such a single sample, or four, or eight, or 12, or 96, or 384, or more samples. The processing time for single-cell 1000 or nuclei 1050 suspensions can be less than 2 min, or less than ten min, or less than 30 min, or less than two hours or less than four hours or other times. The processing can use optimized enzyme formulations for the production of single-cells 1000 or nuclei 1050. Magnetic bead processing can purify cell types, or nuclei, or organelles, or nucleic acids, or link biochemical reactions for library preparation.
Nanodroplets without single-cells 2810 or with single-cells 2820 can be produced with microfluidic nozzles 2800, as shown in
An optical module 2600 can determine titer, viability, and QC samples during preparation, and the information can used for real-time process optimization by adjusting parameters comprising temperature, enzyme concentration and formulation including purified enzymes and use of acetate counterion salts in buffers and osmoprotectants such as glycine betaine, proline, glutamate, trehalose, etc. or chemicals and conditions.
The Single Librarian 3000 embodiment can integrate the workflows and processing of solid tissues from raw specimens to genomic samples to de-skill the workflow for single-cell sequencing and standardize production of single-cell suspensions and libraries. This will help researchers at laboratories in educational and research institutions, biopharmaceuticals, and applied markets (e.g., food testing, agriculture, animal sciences, etc.), and ultimately the clinical community to access single-cell sequencing and to NGS sample preparation for tissue.
The Single Librarian 3000 embodiment can function as follows in one embodiment, as shown in the workflow outlined in
Libraries for NGS can be prepared using tagmentation with transposons including the Nextera Tagmentation (http://www.epibio.com/docs/default-source/protocols/nextera-dna-sample-prep-kit-(illumina-compatible).pdf?sfvrsn=4). In this embodiment, referring to
Another embodiment of the workflow to produce libraries is illustrated in
The fragmented nucleic acid can be end-polished in Processing Chamber 460 by addition of reaction mix and enzymes, for example, the NEBNext® End Repair Module (NEB E 6050S) reagents, from syringe pump 2130 to generate end-polished DNA product 810, an end-polished, blunt-ended double-stranded DNA having 5′-phosphates and 3′-hydroxyls; other kits such as Agilent PCR polishing kit 200409 and other enzymology can perform the same function. Following end polishing, a magnetic separation is performed in Processing Chamber 460 to remove reactants and enzymes from end-polished DNA product 810.
Following polishing, A-tailing is used to generate fragments ready to ligate with a primer with a complementary T overhang and to prevent concatamer formation during ligation. A-tailing can be performed using commercially available kits such as the NEBNext® dA-Tailing Module (NEB E6053S) with enzyme and master mix added from the syringe pump 2130 to Processing Chamber 460 containing end-polished DNA product 810 and incubating the reaction to produce blunt-ended double-stranded DNA having 5′-phosphates with an A residue overhang on the 3′ end, A-tailing DNA product 815. Following A tailing, a magnetic separation is performed in Processing Chamber 460 to remove reactants and enzymes from A-tailing DNA product 815.
A double stranded second primer 611 with a complementary T overhang can be ligated by DNA ligase onto the 3′ end of A-tailing DNA product 815. DNA ligase, DNA ligase reaction mix, and second primer 611 (such as NEB Next Adapter) are added by syringe pump 2130 to Processing Chamber 460 and incubating the reaction. DNA ligation can be performed using commercially available kits or reactions, e.g. NEBNext® Quick Ligation Module, NEB E6056S. Following DNA ligation, a magnetic separation is performed in Processing Chamber 460 to remove reactants and enzymes. The product is now a double stranded DNA product 820 that has incorporated second sequencing primer 611 or can have two adapters attached depending on the workflow. The product of the ligation can be a matched bulk nucleic acid library 1210. The fragment sizes for the downstream NGS analysis can be selected by a two step ‘heart cut’ precipitation onto beads, with one cut selecting for fragments longer than a lower cutoff, e.g., 400 bases, and the second cut selecting for fragments shorter than a high cutoff, e.g., 600 bases.
For bulk RNA, after nucleic acid purification to produce bulk matched nucleic acid 1010, the RNA can optionally be fragmented by addition of metal cations from syringe pump 2130 to Processing Chamber 460 followed by magnetic bead purification to produce purified fragmented nucleic acid. The polyadenylated RNA can then be converted to cDNA using a poly T primer and reverse transcriptase in Processing Chamber 460. The cDNA can now be treated as described above for DNA Library Production using polishing, end repair, and ligation or with Tagmentation to produce bulk matched RNA libraries.
Production of Single-Cell Libraries from Polyadenylated mRNA in Single-Cell or Nuclei Suspensions.
In one embodiment of the single-cell 1000 or nuclei 1050 library workflow, after production of single-cell suspensions 1000 in the Preprocessing Chamber 440 in the Cell Singulation module 800, the cells are moved through the strainer into the Processing Chamber 460. Referring to
The single-cell suspension in appropriate buffer is then mixed with beads which can have poly T containing primers embedded for mRNA, and moved to a microfluidic nozzle 2800, e.g., as shown in
The processing of the single-cells can be as described in International Patent Publication WO 2017/075,293 (Jovanovich and Wagner, “Method and apparatus for encoding cellular spatial position information”), the contents of which are incorporated herein in their entirety. The same methods can be utilized in the Single Librarian without the use of spatial barcodes.
A preferred embodiment for mRNA is described in more detail. In one embodiment, single channel fluidics are used. Referring to
After lysis and capture of the mRNA onto the poly T, a reverse transcriptase reaction is performed in Processing Chamber 460 to produce cDNA attached to bead 683, formed from the mRNA, and now containing the cellular and molecular barcodes as well as the optional spatial barcode in addition to any sequencing and amplification primers attached to the bead 680 through an optional cleavable linker. Cleavage of the linker can release the cDNA from the bead when desired. A photocleavable or chemical cleavable linker and fluorescent tag(s) to aid in quality control and process development is included in the instant disclosure. As required, fragmentation of the RNA or cDNA can be performed using methods comprised of chemical, biochemical, and physical methods. Alternative preferred embodiments include performing an RNA ligase reaction to covalently join the mRNA to one strand of the double stranded oligonucleotide after lysis and capture of the mRNA onto oligonucleotide-functionalized beads 680 with a poly T sequence as the capture region 610, or ligating RNA to a single stranded RNA or DNA attached to the bead. The produced cDNA can then be used in the library preparation as described above for bulk nucleic acid library preparation. In an alternative embodiment, the cDNA still attached to the bead can be ligated with a second primer or adapter to produce a library. In some embodiments the cDNA can be directly readout on a nanopore or other sequencer.
Determination of Amplification of Nucleic Acid and Normalization Thereof.In many applications in genomics, an amplification step is required to produce enough material for the downstream analysis instrument. For example, in NGS after library creation, a PCR step may be required before loading the DNA sequencer. While PCR amplification is straightforward, many targets may amplify unevenly, leading to uncertainty about the actual amount of the target in the unamplified library. This prevents determination of the absolute amount of the target.
scRNA-Seq is a novel method to sequence mRNA from single-cells. After capture of the mRNA typically onto a bead with a poly T sequence, the mRNA is processed with reverse transcriptase to produce cDNA using primers that may have barcodes for the cell and the molecules that are then made into a library.
The amount of amplification for each molecule can be measured and used to normalize the resulting sequencing data to minimize amplification or readout biases. To do this, the PCR amplification primer can incorporate a set of enumeration barcodes such as a three base long barcode that is random. Once the fragment is amplified and sequenced, the number of bases that appear in the enumeration barcodes can be counted to determine the degree of amplification. A three base enumeration barcode would be useful for up to a 64-fold amplification: enumeration barcodes with more bases could extend the range as high as desired. For the example where three bases are used in the enumeration barcode, the representation of each of the 64 possible sequences is determined and that number is used to normalize the representation of that molecule in the final NGS data, such that if 32 combinations were found in a first sequence and 16 in a second sequence, the depth of the first sequence would be adjusted by a factor of two with respect to the second sequence to normalize for the amplification and readout biases.
Example: Sample-to-Answer SystemIn other embodiments a Sample Processing System 50 is combined with an analyzer 4000 to create a sample to answer system. In a preferred embodiment, referring to
This produces a tissue-to-answer genomic system 5000 capable of performing bulk sequencing of tissue, or single cell sequencing of tissue, or single nuclei sequencing of tissue, or mitochondria sequencing of tissue, or other sample-to-answer genetic analysis for nucleic acids 1072, DNA 1073, RNA 1074 comprised of microRNAs, long non-coding RNA, ribosomal RNA, message RNAs, etc.
As used herein, the following meanings apply unless otherwise specified. The word “may” is used in a permissive sense (i.e., meaning having the potential to), rather than the mandatory sense (i.e., meaning must). The words “include”, “including”, and “includes” and the like mean including, but not limited to. The singular forms “a,” “an,” and “the” include plural referents. Thus, for example, reference to “an element” includes a combination of two or more elements, notwithstanding use of other terms and phrases for one or more elements, such as “one or more.” The term “or” is, unless indicated otherwise, non-exclusive, i.e., encompassing both “and” and “or.”
It should be understood that the description and the drawings are not intended to limit the invention to the particular form disclosed, but to the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the present invention as defined by the appended claims. Further modifications and alternative embodiments of various aspects of the invention will be apparent to those skilled in the art in view of this description. Accordingly, this description and the drawings are to be construed as illustrative only and are for the purpose of teaching those skilled in the art the general manner of carrying out the invention. It is to be understood that the forms of the invention shown and described herein are to be taken as examples of embodiments. Elements and materials may be substituted for those illustrated and described herein, parts and processes may be reversed or omitted, and certain features of the invention may be utilized independently, all as would be apparent to one skilled in the art after having the benefit of this description of the invention. Changes may be made in the elements described herein without departing from the spirit and scope of the invention as described in the following claims. Headings used herein are for organizational purposes only and are not meant to be used to limit the scope of the description.
Claims
1. A system comprising:
- (a) an instrument comprising: (i) one or more cartridge interfaces configured to engage a cartridge; (ii) a fluidics module comprising: (1) one or more containers containing one or more liquids and/or gasses; (2) one or more fluid lines connecting the containers with fluid ports in the cartridge interface; and (3) one or more pumps configured to move liquids and/or gasses into and/or out of the fluid port(s); (iii) a mechanical module comprising an actuator; (iv) optionally, a magnetic processing module comprising a source of magnetic force, wherein the magnetic force is positioned to form a magnetic field in the processing chamber; (v) optionally, a measurement module; (vi) optionally, a control module comprising a processor and memory, wherein the memory comprises code that, when executed by the processor, operates the system; and
- (b) one or more cartridges, each engaged with one of the cartridge interfaces, wherein each cartridge comprises: (i) a sample inlet port; (ii) one or more cartridge ports communicating with the fluid ports in the cartridge interface; (iii) a preprocessing chamber communicating with the sample inlet port and with at least one cartridge port, and comprising a tissue disruptor configured for mechanical disruption of tissue, wherein the tissue disruptor engages with and is actuated by the actuator when the cartridge is engaged with the cartridge interface; (iv) a strain chamber communicating with the preprocessing chamber configured to separate cells and/or nuclei from disrupted tissue; (v) a processing chamber communicating with the strain chamber, optionally communicating with one or more cartridge ports and optionally configured to perform one or more processing steps on separated cells and/or nuclei; and (vi) optionally, one or more waste chambers fluidically connected with the processing chamber.
2. The system of claim 1, wherein the tissue disruptor comprises a grinder, a pestle, or a variable orifice.
3. The system of claim 1, further comprising a barcode reader.
4. The system of claim 1, comprising a measurement module (v) that performs optical imaging to measure titer, clumping, and/or viability of cells or nuclei.
5. The system of claim 1, comprising a measurement module (v) and a control system (vi), wherein the measurement module measures, and one or more time points, characteristics of a sample in the processing chamber, and control system comprises code that determines a state of the sample, e.g., viability or degree of single cell or nuclei dissociation, and that adjusts processing parameters.
6. The system of claim 1, further comprising:
- (c) an analysis module, wherein an input port of the analysis module is in fluid communication with the processing chamber.
7. The system of claim 6, wherein the analysis module performs an analysis selected from one or more of: DNA sequencing, next generation DNA sequencing, next next generation DNA sequencing, proteomic analysis, genomic analysis, gene expression analysis, gene mapping, carbohydrate characterization and profiling, lipid characterization and profiling, flow cytometry, imaging, DNA or RNA microarray analysis, metabolic profiling, functional analysis, and mass spectrometry.
8. The system of claim 1, wherein the cartridge interface comprises a means of positioning the cartridge in the instrument that engages the fluidic module and the mechanical module and optionally is temperature controlled.
9. (canceled)
10. A method comprising:
- (a) providing a tissue sample to a preprocessing chamber;
- (b) automatically performing mechanical and enzymatic/chemical disruption of the tissue in the preprocessing chamber to produce disrupted tissue comprising released cells and/or nuclei and debris;
- (c) automatically moving the disrupted tissue into a strain chamber comprising a strainer and/or filter and separating the released cells and/or nuclei from the debris therein; and
- (d) automatically moving the released cells and/or nuclei into a processing chamber.
11. The method of claim 9, wherein (d) further comprises performing at least one processing step on the released cells and/or nuclei in the processing chamber.
12. The method of claim 11, wherein processing comprises one or more automatically performed processes selected from:
- (I) lysing cells;
- (II) capturing cells;
- (III) isolating nucleic acid;
- (IV) isolating protein;
- (V) converting RNA into cDNA;
- (VI) preparing one or more libraries of adapter tagged nucleic acids;
- (VII) performing PCR;
- (VIII) isolating individual cells or individual nuclei in nanodrops or nanoboluses; and
- (IX) outputting released cells and/or nuclei into output vessels such as 8 well strip tubes, microtiter plates, tubes, a chamber in the cartridge, or other vessels capable of receiving cell suspensions.
13. The method of claim 9, further comprising:
- (e) automatically capturing the released cells and/or nuclei in the processing chamber by binding to magnetically attractable particles comprising moieties having affinity for the cells and/or nuclei and applying a magnetic force to the processing chamber to immobilize the captured cells and/or nuclei; and
- (f) automatically capturing debris in the processing chamber by binding to magnetically attractable particles comprising moieties having affinity for cell and/or nuclei debris and applying a magnetic force to the processing chamber to immobilize the captured cells and/or nuclei debris.
14. The method of claim 9, further comprising:
- (e) automatically monitoring cell and/or nuclei titer in the processing chamber and, when the titer reaches a desired level, exchanging a dissociation solution used to dissociate the tissue for a buffer.
15. A cartridge comprising:
- (i) a sample inlet port;
- (ii) one or more cartridge ports configured to communicate with fluid ports in a cartridge interface;
- (iii) a preprocessing chamber communicating with the sample inlet port and with at least one cartridge port, and comprising a tissue disruptor configured for mechanical disruption of tissue, wherein the tissue disruptor engages with and is actuated by the actuator when the cartridge is engaged with the cartridge interface;
- (iv) a strain chamber communicating with the preprocessing chamber configured to separate cells from disrupted tissue;
- (v) a processing chamber communicating with the strain chamber, optionally communicating with one or more cartridge ports and configured to perform one or more processing steps on separated cells; and
- (vi) optionally, one or more waste chambers fluidically connected with the processing chamber.
16. The cartridge of claim 15, further comprising a cap that opens and closes the sample inlet port.
17. The cartridge of claim 16, wherein the cap comprises a tissue disruptor element that moves about rotationally and back and forth along an axis.
18. (canceled)
19. (canceled)
20. The cartridge of claim 18, wherein the holder comprises a mesh screen.
21. The cartridge of claim 18, further comprising a grinding element for grinding tissue in the preprocessing chamber.
22. (canceled)
23. The cartridge of claim 15, further comprising a plunger configured to move slideably within the preprocessing chamber.
24. (canceled)
25. (canceled)
26. (canceled)
27. (canceled)
Type: Application
Filed: Aug 1, 2023
Publication Date: Jan 25, 2024
Inventors: Stevan Bogdan Jovanovich (Livermore, CA), Frank Zaugg (Redwood City, CA), Kaiwan Chear (Livermore, CA), Roger McIntosh (San Ramon, CA), Nathan Pereira (Pleasanton, CA)
Application Number: 18/229,141