SPINAL FIXATION ACCESS AND DELIVERY SYSTEM
A spinal fixation access and delivery system is disclosed. In some aspects, the system is used to access the cervical facet joint via a posterior access approach. The system may include an access device including a body having a proximal portion and a distal portion and a chamfered or beveled end feature positioned at the distal portion of the body and configured for insertion at the cervical facet joint. The system may further include a guide device having access device engagement features and a spinal fixation member. The access device includes at least one guide device receiving feature complementary to or keyed to the engagement feature of the guide device.
This application is a continuation of U.S. patent application Ser. No. 16/614,888, filed Nov. 19, 2019, which is a national stage application of International Application No. PCT/US2015/033505, filed May 18, 2018, and entitled “SPINAL FIXATION ACCESS AND DELIVERY SYSTEM,” which claims priority to U.S. Patent Application No. 62/508,434, filed May 19, 2017 and entitled SPINAL FIXATION ACCESS AND DELIVERY SYSTEM, which are hereby incorporated by reference in its entirety and for all purposes.
FIELDThis application is directed to medical devices and methods. More specifically, the application is directed to devices and methods related to spinal fixation to provide stability to the spine and promote spinal fusion.
BACKGROUNDChronic back problems are one of the most common causes of pain and disability in the United States and other developed countries. According to at least one estimate, spinal fusion procedures, in which two adjacent vertebrae are fused together using plates, screws and other implants, are the most commonly performed surgical procedures in the United States. Spinal fusion is often performed in an attempt to increase space between the two adjacent vertebrae being operated on (known as spinal distraction) and to thus prevent impingement of the spinal cord or nerve roots branching from the spinal cord and passing through openings in the vertebral column. Unfortunately, most techniques and devices used for performing spinal fusion are relatively invasive and involve a number of risks and difficult recovery and rehabilitation.
Posterior spinal fusion is one method of surgical intervention. However, in order to provide direct visualization of the target area, it requires extensive dissection of muscles and ligaments. This dissection causes acute and chronic soft tissue pain syndrome. Acutely, patients are typically hospitalized for three to four days for pain control that requires IV narcotics. Long-term, patients frequently have persistent pain due to the extensive nature of the dissection. This is compared to one-day hospitalization for anterior approaches that do not require any muscle or soft tissue dissection. In some cases, soft tissues may not return to anatomic position and may be permanently deformed. Persistent pain after posterior surgical approaches is referred to as post-laminectomy syndrome.
Therefore, since it is considered less traumatic to the patient, anterior spinal fusion surgery has generally been preferred over posterior fusion surgery. However, posterior approaches to the cervical spine do have some advantages over anterior approaches.
Lateral mass or pedicle screw fixation provides more rigid fixation of the cervical spine than anterior plates, interbody devices and interspinous wiring. It is often used for traumatic instability, but it has also been used for degenerative conditions. Despite providing good results, lateral mass fixation is often avoided because of the morbidity of the soft tissue dissection, as noted above.
Therefore, a need exists for alternative devices and methods for fixation of the spine following surgery for fusion of adjacent vertebrae. Ideally, these devices, systems and methods would allow for minimally invasive or less invasive access and fixation that many of the currently available techniques do not provide. For example, it may be advantageous to have devices, systems and methods that use a posterior approach for accessing the spine. At least some of these objectives will be met by the embodiments described herein.
BRIEF SUMMARYThe various embodiments described herein provide devices, systems and methods for accessing the cervical spine via a posterior approach and delivering or providing a spinal fixation device for fixation of the cervical spine. The embodiments described below generally include an access and delivery system through which or along which one or more spinal fixation devices may be advanced. The access devices described herein generally include a distal end that can be inserted into a cervical facet. Once inserted into the facet, the access device can be used as a point of stabilization.
A cervical facet joint access device for accessing the cervical facet joint via a posterior access approach is disclosed. In some aspects, the device includes a body having a proximal portion and a distal portion and a chamfered or beveled end feature positioned at the distal portion of the body and configured for insertion at the cervical facet joint. In some aspects, the chamfered or beveled end feature is offset from the body. In some aspects, the body is an elongated body having opposing top and bottom faces, opposing side faces and opposing end faces and the chamfered or beveled end feature is offset from the body and positioned on one of the opposing side faces. In some aspects, the body has a rectangular shaped cross section. In some aspects, the proximal portion has a first height and the distal portion has a second height and the first height is greater than the second height. In some aspects, the body is an elongated tubular body. In some aspects, the chamfered or beveled end feature is positioned at an end of the distal portion. In some aspects, the end further includes a stop adapted to abut a posterior edge of the facet joint. The stop may include a raised or protruding feature adapted to engage the facet joint. In some aspects, the end feature includes an expandable anchor held in a closed position via a detent feature and opened by actuation of an internal rod to pivot the arms of the end feature into an open position. In some aspects, the end feature includes an expandable member held in a closed position for delivery and expanded into an open position by actuation of an internal rod. In some aspects, the end feature comprises an articulating tip. In some aspects, the body is a tubular body adapted to receive other surgical instruments for spinal fixation.
A spinal fixation access and delivery system for accessing the cervical facet joint via a posterior access approach is disclosed. In some aspects, the system includes an access device including a body having a proximal portion and a distal portion and a chamfered or beveled end feature positioned at the distal portion of the body and configured for insertion at the cervical facet joint. The system may further include a guide device having access device engagement features and a spinal fixation member. The access device includes at least one guide device receiving feature complementary to or keyed to the engagement feature of the guide device.
The access device may be the access device as disclosed herein. In some aspects, the chamfered or beveled end feature of the access device is offset from the body. In some aspects, the body is an elongated body having opposing top and bottom faces, opposing side faces and opposing end faces and the chamfered or beveled end feature is offset from the body and positioned on one of the opposing side faces. In some aspects, the body has a rectangular shaped cross section. In some aspects, the proximal portion has a first height and the distal portion has a second height and the first height is greater than the second height. In some aspects, the body is an elongated tubular body. In some aspects, the chamfered or beveled end feature is positioned at an end of the distal portion. In some aspects, the end further includes a stop adapted to abut a posterior edge of the facet joint. The stop may include a raised or protruding feature adapted to engage the facet joint. In some aspects, the end feature includes an expandable anchor held in a closed position via a detent feature and opened by actuation of an internal rod to pivot the arms of the end feature into an open position. In some aspects, the end feature includes an expandable member held in a closed position for delivery and expanded into an open position by actuation of an internal rod. In some aspects, the end feature comprises an articulating tip. In some aspects, the body is a tubular body adapted to receive other surgical instruments for spinal fixation.
In some aspects, the device engagement features are selected from a protrusion, a notch or a recess. In some aspects, the system may further include a decortication tool. A portion of the decortication tool may optionally include a burr, a rasp or one or more teeth.
A spinal fixation access and delivery system for accessing the cervical facet joint via a posterior access approach is disclosed. In some aspects, the system includes an access device, a spinal fixation member, and a guide device having at least one spinal fixation member engagement feature. The spinal fixation member includes at least one guide device receiving feature complementary to or keyed to the engagement feature of the guide device. In some aspects, the spinal fixation member is a tower or a polyaxial screw with a tower feature. In some aspects, the at least one spinal fixation member engagement feature is a generally cylindrical body protruding from an outer surface of the guide device and generally extending the length of the guide device. The access device may be the access device as disclosed herein.
In some aspects, the chamfered or beveled end feature of the access device is offset from the body. In some aspects, the body is an elongated body having opposing top and bottom faces, opposing side faces and opposing end faces and the chamfered or beveled end feature is offset from the body and positioned on one of the opposing side faces. In some aspects, the body has a rectangular shaped cross section. In some aspects, the proximal portion has a first height and the distal portion has a second height and the first height is greater than the second height. In some aspects, the body is an elongated tubular body. In some aspects, the chamfered or beveled end feature is positioned at an end of the distal portion. In some aspects, the end further includes a stop adapted to abut a posterior edge of the facet joint. The stop may include a raised or protruding feature adapted to engage the facet joint. In some aspects, the end feature includes an expandable anchor held in a closed position via a detent feature and opened by actuation of an internal rod to pivot the arms of the end feature into an open position. In some aspects, the end feature includes an expandable member held in a closed position for delivery and expanded into an open position by actuation of an internal rod. In some aspects, the end feature comprises an articulating tip. In some aspects, the body is a tubular body adapted to receive other surgical instruments for spinal fixation.
A cervical spinal fixation member is disclosed. In some aspects, the spinal fixation member includes an elongated tubular body having a length extending between a distal and a proximal end, a rod receiving slot defined in at least a portion of the length of the tubular body; and a polyaxial screw. The spinal fixation member may further include a rod. In some aspects, the rod receiving slot further includes an opening defined in the outer circumference of the elongated tubular body. In some aspects, the rod receiving slot extends only a portion of the length of the elongated body and the elongated body is solid for the remainder of the length.
These and other aspects and embodiments will be described in further detail below, in reference to the attached drawing figures.
Spinal stenosis reflects a narrowing of one or more areas of the spine, often in the upper or lower back. This narrowing can put pressure on the spinal cord or on the nerves that branch out from the compressed areas. Individual vertebrae of the spine are positioned relative to each other, and their separation is maintained by discs separating main vertebral bodies and by capsules positioned within facet joints. The discs and capsules are separated from the bone of their respective joints by cartilage. Spinal stenosis is often indicative of degeneration of a disc, a capsule, or the cartilage in a joint, which leads to a compression of the joints and the narrowing mentioned.
Options for distracting two adjacent vertebrae of a spine, such as the cervical vertebrae shown in
Still further, it may be advantageous to provide additional stabilization to the fusion site with the use of a pedicle screw and/or a lateral mass screw as a supplement to spinal fusion surgery. A pedicle screw or lateral mass screw are types of bone screws designed for insertion into the pedicle or lateral mass of a vertebra, respectively. The screws are inserted in adjacent vertebrae (e.g., consecutive spine segments such as C5 and C6) and then connected via a rod to prevent motion at those segments that are being fused. In this way, the screws act as anchor points for the rod and provide additional stability to fusion site to promote better fusion. Post-fusion, the rods and screws can be removed.
Described herein are devices, systems and methods for accessing the cervical spine via a posterior approach and introducing, implanting and/or securing a spinal fixation device, such as screws and rods, in the spine. Accessing the cervical spine via a posterior approach utilizes minimally invasive or less invasive techniques. Aspects described below generally include an access tool and a guide tool, through which or along which one or more spinal fixation devices may be advanced. In addition, a separate decortication tool may be advanced through or with the help of the guide tool. The decortication tool may include a burr or a rasp or teeth or other bone roughening feature for preparing the bone surface prior to insertion of the spinal fixation device.
In use, the surgeon advances the access tool into the facet joint through a minimally invasive or less invasive incision. Once anchored into place, this access tool provides a fixed point deep in the spine that is then used as a marker to advance drills, awls, plates, rods and screws, and other instruments to the cervical spine from a posterior approach without direct visualization. Such an approach with the disclosed devices prevents instruments from slipping off the spine or drills catching soft tissue and skidding out of control. In addition, the cervical facet has a fixed anatomical relationship to lateral mass bone consistent in most, if not all, patients. Instruments can be advanced over, along or about the access tool to reliable landmarks on or at the lateral mass without direct visualization. For example, to aid in spinal fixation, lateral mass screws or pedicle screws may be inserted with the help of a guide tool.
Turning now to the figures, the access tool or access device may also be referred to as an access chisel or an access anchor. The access device is advanced to the facet joint defined between adjacent vertebra, such as the vertebra of the cervical spine. The device provides access to the facet joint and surrounding anatomical structures, such as the lateral mass and the pedicle.
Referring now to
In some aspects, as depicted in
As can be understood from
As depicted in
In some aspects, and as can be understood from
In some aspects, and as can be understood from
As shown in
As illustrated in
In some aspects, and as can be understood from
In some aspects, and as can be understood from
As indicated in
As indicated in
As indicated in
As indicated in
As indicated in
As noted above, the access device may be used with other tools to deliver a spinal fixation device. The delivery may be achieved with, for example, a guide portal or device.
As shown in
As illustrated in
As shown in the perspective and cross section views of
As shown in the perspective and cross section views of
In some aspects, guide device 130 may be used with only a portion of the access device 10, such as the tip 50 and may be further stabilized by engagement with a fixation device, such as a tower or a polyaxial screw with a tower feature, that is already implanted.
For example, and as shown in
In use in the spine, the tower is screwed into the lateral mass (19F). The screw 190 is inserted into the tower 145 with a hex driver (19G). The head 215 is oriented as shown (19H). The hex driver is rotated clockwise to tighten the screw until the head contacts the saddle (19I-J). The guide device 130 is inserted onto the tower, abutting the back surface of the temporary locking screw 190 (
In various embodiments, a fixation device 145, such as a polyaxial screw with tower feature, is used to provide additional stability to the spine following a spinal fusion procedure. The tower is an extension to a polyaxial screw, such as a pedicle screw or a lateral mass screw, that is used for minimally invasive posterior fixation systems as described herein. The tower may be a removable tower. The embodiments described above include a tower having a full length slot that permit a fixation rod to be lowered into place.
In another aspect, and as illustrated in
All relative and directional references (including: upper, lower, upward, downward, left, right, leftward, rightward, top, bottom, side, above, below, front, middle, back, vertical, horizontal, and so forth) are given by way of example to aid the reader's understanding of the particular embodiments described herein. They should not be read to be requirements or limitations, particularly as to the position, orientation, or use unless specifically set forth in the claims. Connection references (e.g., attached, coupled, connected, joined, and the like) are to be construed broadly and may include intermediate members between a connection of elements and relative movement between elements. As such, connection references do not necessarily infer that two elements are directly connected and in fixed relation to each other, unless specifically set forth in the claims.
Although the invention has been disclosed in the context of certain embodiments and examples, the present invention extends beyond the specifically disclosed embodiments to other alternative embodiments and/or uses of the invention and obvious modifications and equivalents thereof. Thus, it is intended that the scope of the present invention herein disclosed should not be limited by the particular disclosed embodiments described above.
Claims
1. A spinal joint access device for accessing a spinal joint via a posterior access approach, the device comprising
- a body having a proximal portion and a distal portion; and
- a chamfered or beveled end feature positioned at the distal portion of the body and configured for insertion at the spinal joint.
2. The access device of claim 1, wherein the chamfered or beveled end feature is offset from the body.
3. The access device of claim 1, wherein the chamfered or beveled end feature is positioned at an end of the distal portion.
4. The access device of claim 3, wherein the body is an elongated tubular body.
5. The access device of claim 1, wherein the body has a rectangular shaped cross section
6. The access device of claim 1, wherein the proximal portion has a first height and the distal portion has a second height and the first height is greater than the second height.
7. The access device of claim 1, wherein the body is an elongated tubular body.
8. The access device of claim 1, wherein the spinal joint is a cervical facet joint.
9. The access device of claim 1, wherein the device further comprises a stop adapted to abut an edge or posterior portion of the spinal joint.
10. A spinal fixation access and delivery system for accessing the spinal joint via a posterior access approach, the system comprising:
- a spinal joint access device comprising: a body having a proximal portion and a distal portion; and a chamfered or beveled end feature positioned at the distal portion of the body and configured for insertion at the spinal joint.
11. The system of claim 10 further comprising a decortication tool.
12. The system of claim 11, wherein a portion of the decortication tool optionally includes a burr, a rasp or teeth.
13. The system of claim 10, wherein the spinal joint is a cervical facet joint.
Type: Application
Filed: Oct 16, 2023
Publication Date: Feb 1, 2024
Inventors: Shigeru Tanaka (Half Moon Bay, CA), Christopher U. Phan (Dublin, CA), Christopher Lambert (Concord, CA), Nicholas Domek (Walnut Creek, CA), Bon Champ (Campbell, CA), Edward Liou (Pleasanton, CA)
Application Number: 18/380,371