A DOWNHOLE ASSEMBLY WITH SPRING ISOLATION FILTER
The present invention is directed to an apparatus for use on a structural member having a longitudinal axis, the structural member being configured to propagate stress wave energy in an operational state, the stress wave energy being characterized by an operational frequency spectrum. The apparatus has a housing assembly including a first end, a second end, and one or more protective enclosures configured to accommodate one or more devices. The housing assembly is configured to be rotationally registered to the structural member when coupled to the structural member, and is characterized by a predetermined housing mass. A spring arrangement is coupled between the structural member and the first end and/or coupled between the structural member and the second end in the operational state. The spring arrangement is characterized by a predetermined force-displacement relationship. The housing assembly and the spring arrangement form an isolation filter characterized by a predetermined spectral transfer function, the predetermined spectral transfer function being a function of the predetermined housing mass and the predetermined force-displacement relationship. The predetermined spectral transfer function includes a passband having frequencies that are substantially outside the operational frequency spectrum wherein the stress wave energy is substantially attenuated in the operational state so that the housing member is substantially isolated from the stress wave energy.
Latest Vector Magnetics, LLC Patents:
The present invention relates generally to an apparatus and method for drilling boreholes, and particularly to a downhole assembly and method for generating rotating magnetic fields or sensing magnetic fields (or other such parameters) used for guiding directional drilling of a borehole.
2. Technical BackgroundIn underground drilling operations such as oil and gas drilling operations, it is often desirable to precisely control the drilling path of a new borehole relative to a known location (which may be disposed within the pathway of an existing borehole). To do that, operators may precisely monitor the location of the drill bit forming the new borehole relative to the existing borehole. For example, when a group of wells are drilled from an offshore platform, it is often necessary to drill new wells spaced three meters or less from existing wells for 300 meters or more during the initial depth interval. Subsequently, the wells may be directionally deviated and drilled to targets which may be two kilometers or more away in lateral directions. In another example application, this procedure may be useful when twin horizontal wells are drilled for the steam-assisted gravity drainage (SAGD) of heavy oils. In this example, it may be necessary to drill one well directly above the other while maintaining a five meter (±2 meter) spacing over 500 meters of horizontal extension at depths of 500 or more meters. Moreover, the present invention may be employed in various types of underground drilling operations such as geothermal drilling, mining, hammer drilling and/or other such drilling operations; and the present invention should not be deemed to be limited to the aforementioned examples.
The monitoring system used to control the drilling operations can include a magnetic field sensor that is disposed in the existing borehole and a magnetic source that is disposed in the new borehole. Specifically, the magnetic source assembly may be disposed in a drill string proximate the drill bit/tool. The magnetic source generates rotating magnetic fields. The sensor apparatus typically includes a magnetometer assembly that is configured to measure the magnetic field radiating from the magnetic source assembly. The sensor apparatus precisely calculates the location of the source from the field measurements. In this way, the drilling of the new borehole may be precisely controlled to achieve a desired separation between the existing borehole and the new borehole.
One issue that may be associated with a magnetic source assembly or a sensor assembly relates to their sensitivity to stress waves. Briefly stated, the drilling process may generate stress waves and vibrational forces which propagate along the drill string to the magnetic source or sensor assembly. The stress waves may cause the magnetic source assembly or the sensor assembly to fail.
Another issue relates to the thermal energy generated from various sources. Those skilled in the drilling/mining arts will appreciate that a drill bit may become relatively hot during mining and drilling operations. Magnetic materials may lose their magnetic remanence if temperatures exceed the temperature rating of the magnetic material.
Another issue relates to rotationally registering the magnetic source assembly or the sensor assembly to the drill bit. Rotational registration allows the monitoring system to determine the orientation of the drill bit, as well the location of the drill bit, to more effectively control the drilling process.
SUMMARY OF THE INVENTIONThe present invention substantially addresses the needs described above by providing an apparatus and method configured to substantially isolate a downhole assembly from the stress waves experienced during drilling operations. The present invention includes cooling means that direct thermal energy away from the apparatus. The present invention is also configured to rotationally register a downhole assembly to a drill bit to thus provide drill bit orientation data during the drilling control operation.
One aspect of the present invention is directed to an apparatus for use on a structural member having a longitudinal axis, the structural member being configured to propagate stress wave energy in an operational state. The stress wave energy is characterized by an operational frequency spectrum. The apparatus comprises a housing assembly including a first end, a second end, and at least one protective enclosure configured to accommodate at least one device. The housing assembly is configured to be rotationally registered to the structural member when coupled to the structural member. The housing assembly is characterized by a predetermined housing mass. A spring arrangement is coupled between the structural member and the first end and/or coupled between the structural member and the second end in the operational state. The spring arrangement is characterized by a predetermined force-displacement relationship. The housing assembly and the spring arrangement form an isolation filter characterized by a predetermined spectral transfer function, the predetermined spectral transfer function being a function of the predetermined housing mass and the predetermined force-displacement relationship. The predetermined spectral transfer function includes a passband having frequencies that are substantially outside the operational frequency spectrum wherein the stress wave energy is substantially attenuated in the operational state so that the housing member is substantially isolated from the stress wave energy.
In one embodiment, the spring arrangement includes at least one first spring element coupled between the first end and the structural member in the operational state, and wherein the spring arrangement includes at least one second spring element coupled between the second end and the structural member in the operational state.
In one version of the embodiment, the housing assembly is substantially cylindrical, and wherein the at least one first spring element and the at least one second spring element have an outer diameter substantially equal to an outer diameter of the housing assembly.
In one version of the embodiment, the at least one first spring element includes a plurality of first spring elements coupled in parallel between the first end and the structural member in the operational state, and the at least one second spring element includes a plurality of second spring elements coupled in parallel between the second end and the structural member in the operational state.
In one version of the embodiment, the plurality of first spring elements includes four spring elements or the plurality of second spring elements includes four spring elements.
In another embodiment, the spring arrangement includes at least one compression spring, the at least one compression spring being configured to oppose compression along the longitudinal axis.
In another embodiment, the at least one device includes at least one sensor device or at least one magnetic source element.
In one version of the embodiment, the at least one sensor device includes at least one accelerometer, at least one magnetometer, a gyro sensor, at least one environmental sensor, a piezoelectric transducer, or a battery device.
In one version of the embodiment, the at least one protective enclosure includes at least one set of pockets orientated in a plane perpendicular to the longitudinal axis, and wherein each pocket of the at least one set of pockets is configured to accommodate a magnetic source element.
In another embodiment, the isolation filter is a low pass filter and the passband includes frequencies substantially between 0 Hz and a natural resonant frequency, and wherein the isolation filter includes a stopband having frequencies substantially greater than the natural resonant frequency, and wherein the stress wave energy includes frequencies within the stopband so that the stress wave energy is substantially attenuated in the operational state in accordance with a 1/f2 roll-off attenuation factor, wherein f is a frequency within the operational frequency spectrum, and wherein the attenuation factor increases as the frequency f increases.
In another embodiment, the housing assembly is substantially cylindrical having an inner diameter and an outer diameter respectively defining an interior housing surface and an exterior housing surface; and wherein the housing assembly includes a first housing portion coupled to a second housing portion, each of the first housing portion and the second housing portion having a substantially semicircular cross-section so that the housing assembly has a substantially circular cross-section when the first housing portion is coupled to the second housing portion; and wherein a key channel arrangement is formed in the interior housing surface where the first housing portion coupled to the second housing portion, the key channel arrangement being configured to mate with a portion of the structural member to effect rotational registration.
In one version of the embodiment, the at least one protective enclosure includes a plurality of pockets formed in the interior housing surface or the exterior housing surface, each pocket of the plurality of pockets being configured to accommodate a magnetic source device; or wherein the at least one protective enclosure is formed in the exterior housing surface and configured to accommodate a sensor assembly.
In one version of the embodiment, the magnetic source device is selected from a group of magnetic source devices including a permanent magnet and an electromagnet.
In one version of the embodiment, a protective cover is disposed over the housing assembly in the operational state, the protective cover substantially configured to conform to the exterior housing surface.
In one version of the embodiment, the protective cover is disposed over the spring arrangement in the operational state.
In another embodiment, the predetermined force-displacement relationship includes a constant spring rate or a variable spring rate.
Another aspect of the present invention is directed to an assembly comprising a structural member having a longitudinal axis, the structural member being configured to propagate stress wave energy in an operational state, the stress wave energy being characterized by an operational frequency spectrum. An apparatus is coupled and rotationally registered to the structural member, the apparatus comprises a housing assembly including a first end, a second end, and at least one protective enclosure configured to accommodate at least one device, the housing assembly being characterized by a predetermined housing mass. A spring arrangement is coupled between the structural member and the first end and/or coupled between the structural member and the second end, the spring arrangement being characterized by a predetermined force-displacement relationship. The housing assembly and the spring arrangement form an isolation filter characterized by a predetermined spectral transfer function, the predetermined spectral transfer function being a function of the predetermined housing mass and the predetermined force-displacement relationship. The predetermined spectral transfer function includes a passband having frequencies that are substantially outside the operational frequency spectrum wherein the stress wave energy is substantially attenuated in the operational state so that the housing member is substantially isolated from the stress wave energy.
In an embodiment, the spring arrangement includes at least one first spring element coupled between the first end and the structural member, and at least one second spring element coupled between the second end and the structural member.
In one version of the embodiment, the at least one first spring element and the at least one second spring element have an outer diameter substantially equal to an outer diameter of the housing assembly.
In one version of the embodiment, the at least one first spring element includes a plurality of first spring elements coupled in parallel between the first end and the structural member, and wherein the at least one second spring element includes a plurality of second spring elements coupled in parallel between the second end and the structural member.
In one version of the embodiment, the plurality of first spring elements includes four spring elements and/or wherein the plurality of second spring elements includes four spring elements.
In one version of the embodiment, the structural member is a drill rod or a drill rod attachment including a central fluid channel configured to conduct a pressurized fluid along the longitudinal axis in the operational state, the structural member including a plurality of fluid openings in a region where the structural member is coupled to the housing assembly, the pressurized fluid including a gas or a liquid.
In another embodiment, the structural member includes a carrying region, a first shoulder member being disposed at a first end portion of the carrying region and a second shoulder member being disposed at a second end portion of the carrying region, wherein the housing assembly is coupled to the carrying region between the first shoulder member and the second shoulder member, and wherein the spring arrangement includes at least one first spring element coupled between the first end and the first shoulder member, and at least one second spring element coupled between the second end and the second shoulder member.
In one version of the embodiment, the structural member further comprises a box portion disposed at a first end of the structural member, a pin portion disposed at a second end of the structural member, and a carrying region being disposed between the box portion and the pin portion, the box portion being configured to accommodate a drive element of a drill string and the pin portion being configured to accommodate a tool bit or a drill bit.
In another embodiment, the spring arrangement includes at least one first spring element and at least one second spring element, and wherein the structural member further comprises a first collar member and a second collar member, and wherein the at least one first spring element is coupled between the first end and the first collar member, and wherein the at least one second spring element is coupled between the second collar member and the second end.
In one version of the embodiment, the first collar member includes a first registration feature configured to rotationally register the at least one first spring element to an orientation feature on the structural member, and/or wherein the second collar member includes a second registration feature configured to rotationally register the at least one second spring element to an orientation feature on the structural member.
In another embodiment, the at least one device includes at least one sensor device or at least one magnetic source element.
In one version of the embodiment, the at least one sensor device includes at least one accelerometer, at least one magnetometer module, a gyro sensor, at least one environmental sensor, a piezoelectric transducer, or a battery device.
In one version of the embodiment, the at least one protective enclosure includes at least one set of pockets orientated in a plane perpendicular to the longitudinal axis, and wherein each pocket of the at least one set of pockets is configured to accommodate a magnetic source element.
In another embodiment, the isolation filter is a low pass filter and the passband includes frequencies substantially between 0 Hz and a natural resonant frequency, and wherein the isolation filter includes a stopband having frequencies substantially greater than the natural resonant frequency, wherein the stress wave energy includes frequencies within the stopband so that the stress wave energy is substantially attenuated in the operational state in accordance with a 1/f2 roll-off attenuation factor, wherein f is a frequency within the operational frequency spectrum and wherein the attenuation factor increases as the frequency f increases.
In another embodiment, the predetermined force-displacement relationship includes a constant spring rate or a variable spring rate.
Another aspect of the present invention is directed to a method comprising: providing a structural member having a longitudinal axis, the structural member being configured to propagate stress wave energy in an operational state, the stress wave energy being characterized by an operational frequency spectrum; providing a housing assembly including a first end, a second end, and at least one protective enclosure configured to accommodate at least one device, the housing assembly being characterized by a predetermined housing mass; providing a spring arrangement, the spring arrangement being characterized by a predetermined force-displacement relationship, the housing assembly and the spring arrangement forming an isolation filter characterized by a predetermined spectral transfer function, the predetermined spectral transfer function being a function of the predetermined housing mass and the predetermined force-displacement relationship, the predetermined spectral transfer function including a passband having frequencies that are substantially outside the operational frequency spectrum; coupling the housing assembly to the structural member such that the housing assembly is rotationally registered to the structural member; coupling the spring arrangement between the structural member and the first end and/or between the structural member and the second end; and entering an operational state wherein stress wave energy propagates along the structural member, the stress wave energy being substantially attenuated by the isolation filter so that the housing member is substantially isolated from the stress wave energy.
In another embodiment, the isolation filter is a low pass filter and the passband includes frequencies substantially between 0 Hz and a natural resonant frequency, and wherein the isolation filter includes a stopband having frequencies substantially greater than the natural resonant frequency, wherein the stress wave energy includes frequencies within the stopband so that the stress wave energy is substantially attenuated in the operational state in accordance with a 1/f2 roll-off attenuation factor, wherein f is a frequency within the operational frequency spectrum and wherein the attenuation factor increases as the frequency f increases.
Additional features and advantages of the invention will be set forth in the detailed description which follows, and in part will be readily apparent to those skilled in the art from that description or recognized by practicing the invention as described herein, including the detailed description which follows, the claims, as well as the appended drawings.
It is to be understood that both the foregoing general description and the following detailed description are merely exemplary of the invention, and are intended to provide an overview or framework for understanding the nature and character of the invention as it is claimed. It should be appreciated that all combinations of the foregoing concepts and additional concepts discussed in greater detail below (provided such concepts are not mutually inconsistent) are contemplated as being part of the inventive subject matter disclosed herein. In particular, all combinations of claimed subject matter appearing at the end of this disclosure are contemplated as being part of the inventive subject matter disclosed herein. It should also be appreciated that terminology explicitly employed herein that also may appear in any disclosure incorporated by reference should be accorded a meaning most consistent with the particular concepts disclosed herein.
The accompanying drawings are included to provide a further understanding of the invention, and are incorporated in and constitute a part of this specification. The drawings illustrate various embodiments of the invention and together with the description serve to explain the principles and operation of the invention.
In the drawings, like reference characters generally refer to the same parts throughout the different views. Also, the drawings are not necessarily to scale, emphasis instead generally being placed upon illustrating the principles of the invention.
Reference will now be made in detail to the present embodiments of the invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts. An exemplary embodiment of the downhole assembly of the present invention is shown in
As depicted in
The existing borehole 5 is illustrative of a horizontal well of the type which may be used for steam assisted gravity drainage of heavy oil (SADG). Of course, the present invention may be employed in any type of drilling application (and/or in any orientation) such as oil and gas drilling operations, geothermal, hammer drilling, top-hammer drilling, mining and/or other such drilling operations. In the example depicted in
Again, the magnetic field sensor 50 is located at an observation point 52 and may incorporate a plurality of fluxgate magnetometers having their axes of maximum sensitivity intersecting each other at one or more observation points and substantially at right angles to each other. In one embodiment, the sensor may include two magnetometers; in another embodiment, there may be three magnetometers. If a gradient measurement is required, there may be six magnetometers in the sensor 50. The magnetometers measure the amplitude and the phase of two perpendicular components of the magnetic field 300. The measuring tool 50 may also include additional sensors such as earth's field sensors, inclinometers, and/or a gyroscope (depending on the application).
As embodied herein and depicted in
Like the application depicted at
As embodied herein and depicted in
One skilled in the art will appreciate that the present invention may be employed in other applications and thus, the drill rod 4 may be implemented using any structural member suitable for the application at hand. One such alternate application includes performing a borehole surveying operation. In another alternate application, the carriage apparatus 20 includes a sensor assembly 16 for use in a previously drilled borehole, in an extant pipeline, in a borehole survey or any other suitable application.
The drill rod 4 (or structural member) may include shoulder members (4-2, 4-4) that are used to accommodate the carriage apparatus 20 therebetween. The drill rod 4 may include a box portion 4-6 (i.e., a female thread) at one end thereof, and a pin portion 4-1 (i.e., a male thread) at second, opposite end thereof. The pin portion 4-1 may also include a drill bit shoulder 4-10 which abuts the drill bit 8 when the drill bit 8 is screwed onto the pin portion 4-1. The box portion 4-6 may be configured to accommodate a drive member associated with the drilling assembly 1000 (
The carriage apparatus 20 is shown to include a protective cover member 30. The cover member 30 is employed to protect a downhole carriage housing 12 disposed under the cover member 30, between the shoulders 4-2 and 4-4. The cover 30 may be fastened to the housing 12 using any suitable fastener elements or techniques (e.g., screws, rivets, press fit, etc.).
The carriage apparatus also includes a plurality of spring elements 14 that are coupled between the carriage apparatus 20 and the shoulders (4-2, 4-4). As described below, the spring elements 14 and the mass of the carriage apparatus 20 form an isolation filter that is characterized by a low pass frequency transfer function (
Specifically, the low pass frequency transfer function is a function of a predetermined mass of the carriage apparatus and the total effective spring rate (force-displacement relationship) of springs 14. Specifically, each spring 14 may have a spring rate equal to k, where k is some numerical value. Also, the spring may have a variable rate. The springs 14 at each end of the carriage apparatus 20 can be implemented as four springs 14 disposed in a parallel spring arrangement with a composite spring rate being substantially equal to 4k. Since there are four springs at each end, the total spring rate would be about 8k. The spring rate is selected based on the carriage apparatus mass to obtain a desired low pass frequency transfer function (see
The operational frequency spectrum can refer to the frequency content of surface accelerations propagating along the drill rod as a result of a given drilling or mining operation. (The surface accelerations are derived from the stress wave energy produced by drilling/hammering). Because the frequency content of the surface accelerations mostly includes frequencies greater than the low pass frequency (spectral) transfer function, the stress wave energy is attenuated and substantially prevented from disturbing the carriage apparatus 20. Those skilled in the art will appreciate that the resonant frequency is selected so that it is well below the operational frequency spectrum (
As embodied herein and depicted in
In the magnetic source embodiment, each housing portion (12-1, 12-2) includes a plurality of magnetic field source elements (e.g., permanent magnets, electromagnets) 100 disposed within respective pockets 12-3. The permanent magnets 100 are configured to generate magnetic field 300 (as shown at
As noted above, the downhole housing 12 may also be configured to accommodate a sensor assembly 16 (
As embodied herein and depicted in
Referring to
Those skilled in the art will appreciate that the size and number of the fluid channels 4-3 may vary depending on the application. For example, the number and size of the fluid channels 4-3 may be a function of the type of fluid traversing the channels (e.g., air, water, etc.) as well as the application for which the assembly is being used. Those skilled in the art will appreciate that the number of fluid channels 4-3 may vary depending on the thermal energy characteristics of the operating environment. In relatively warmer environments, the drill rod 4 will include additional fluid channels 4-3 to better direct the thermal energy away from the carriage 20. In relatively cooler environments, the drill rod 4 may include fewer fluid channels 4-3 (or none at all if cooling is not an issue in the application). The number of fluid channels 4-3 shown in
The number of key members 4-8 may vary depending on the application for which the assembly is being used. Accordingly, more or less channels 4-3 and/or key members 4-8 may be employed depending on the embodiment and/or application.
The existence of fluid channels 4-3 presupposes the existence of a central fluid-flow channel (not shown) that extends through the entire length of the drill rod 4 and is centered about the longitudinal axis 7 (see, e.g.,
In one embodiment, the drill rod 4 is formed by a machining a steel alloy billet (e.g., using a CNC milling machine) to produce an integrally formed drill rod. In another alternate embodiment, the shoulder members (4-2, 4-4) and/or the key members 4-8 may be formed on a steel alloy rod using a sputter-welding process, wherein layers of steel material are deposited and built-up along the circumference of the rod at appropriate locations. The built-up portions are then machined (using, e.g., a lathe) to form the shoulder portions (4-2, 4-4) and the key members 4-8. The box portion 4-6 and the pin portion 4-1 may be welded to their respective ends of the drill rod 4 by way of a friction-welding process. In the various alternate embodiments, those of ordinary skill in the art will appreciate that the shoulders (4-2, 4-4), key members 4-8, pin 4-1, box 4-6, and other such features may be formed and/or machined using any suitable fabrication method(s).
In one embodiment of the present invention, the drill rod may be formed using a chrome-molybdenum AISI Alloy 4140 steel bar (which has, e.g., a tensile strength of about 95,000 psi, and an elastic modulus within a range of about 27,557-30,458 ksi). Thus, chrome-molybdenum AISI Alloy 4140 steel bars may be employed in each of the fabrication and machining embodiments described above.
As embodied herein and depicted in
Each spring 14 may be formed using any suitable material, but in one embodiment, the springs 14 are formed from a chrome-silicon steel material. In one embodiment, the spring conforms to a spring pocket 12-8 diameter of about ⅜″ and has an interior diameter of about 3/16″. The spring rate may be about 10.5 N/mm. In one embodiment, the springs 14 may be manufactured by McMaster-Carr and be implemented by the McMaster-Carr Blue Chrome-Silicon Steel Die Spring PN 9573K11.
Referring to
A key channel 12-6 is formed in an interior portion of the housing 12 at the connection interface 12-4. Each key channel 12-6 is configured to accommodate one of the key members 4-8 therein. When the key members 4-8 are disposed within their respective key channels 12-6, the carriage housing 12 is rotationally registered to a predetermined portion of the drill bit 8, and is substantially prevented from rotating about the central longitudinal axis 7 of the drill string (see, e.g.,
Four spring pockets 12-8 are formed in each end of the carriage housing 12, with two spring pockets 12-8 being formed at one end of each housing portion (12-1, 12-2). The depth of each spring pocket can be a function of the spring composition such that a pocket depth can allow a spring 14 to fully retract within the pocket 12-8 without the spring becoming fully compressed into a solid cylinder.
Referring to
In this embodiment, the mating holes 12-10 are configured to accommodate mating pins 12-100 that are used to couple the first housing 12-1 to the second housing 12-2. The rivet holes 12-12 are configured to accommodate rivets which are used to secure the housing cover 30 to the carriage housing 12.
Referring to
Referring to
In one embodiment, the carriage housing 12 may be formed from a cylindrical or tube-shaped material (hereinafter “stock material”) that is divided into two halves to form the first housing portion 12-1 and the second housing portion 12-2. (There is no significance placed on the terms first housing or second housing other than the fact that the housing 12 includes two housing portions (12-1, 12-2)). In one embodiment, the stock material may be comprised of a Teflon PTFE resin material that substantially complies with UL 94V0 and ASTM D1710 standards. In other embodiments, the tube material may be comprised of any suitable material; for example, the material may be an acetal homopolymer (Polyoxymethylene POM) material sometimes known as Delrin. In another example, the material may be a Polyether ether ketone (PEEK) material, which is a colorless, organic, thermoplastic polymer. In yet another embodiment, the material may be bronze or a bronze alloy material, titanium, stainless steel, or any suitable non-magnetic material. Those skilled in the art will appreciate that the materials of the tube used to form the magnetic source housing 12 may vary in accordance with the application since the environment (vibrations, shock, temperature, etc.) may also differ from application to application.
In one embodiment, the stock material may have an outer diameter (OD) of about 4 inches, an inner diameter (ID) of about two inches, and a wall thickness of about one inch. Those of ordinary skill in the art will appreciate that the dimensions of the stock material used to form the downhole housing 12 may vary in accordance with the embodiment and/or application.
Before the stock material is separated into two parts (i.e., to form the first housing portion 12-1 and the second housing portion 12-2), the stock material may be machined to include the various features depicted herein. For example, the stock material may be machined to include the mating pins 12-100, mating holes 12-10, rivet holes 12-12, magnetic source pockets 12-3, and the sensor assembly pockets 12-27 (See
Each magnetic source pocket 12-3 is configured to accommodate a magnetic source element 100 and an epoxy (or other) potting material. The potting material is employed to hold the magnetic element 100 in place within its respective pocket 12-3.
The magnetic sources 100 employed in the invention may vary in accordance with the application since the environment (vibrations, shock, temperature, etc.) or desired operating parameters may also change in accordance with the application. Some non-limiting examples of operating parameters may be remanence, coercivity, Curie temperature, etc. Accordingly, the magnetic source elements 100 may be implemented using neodymium rare earth magnets, samarium cobalt magnets or any suitable magnetic source elements depending on the application. In another embodiment, the magnetic source elements may be implemented by electromagnetic source elements. In this embodiment, a wireline may be fed to carriage apparatus 20 via the central fluid channel of the drill rod. The wireline would provide electrical power from an uphole location to the carriage 20. In another embodiment, one of more piezoelectric transducers would be included in the carriage housing 12 and be configured to convert the mechanical energy (Wh) generated by the drilling operations into electrical energy. The electrical energy would be stored in a battery which would, in turn, provide power to the electromagnets. In another embodiment, a battery without piezoelectric transducers can be employed.
As described herein, the key channel 12-6 may be configured as a rectangularly-shaped channel that is machined (or otherwise formed) to accommodate the key element 4-8 formed in the carrying region 4-9 of the drill rod 4. (Note that key channel 12-6, the key element 4-8 and source-carrying region 4-9 may be machined to conform to any suitable geometry and is thus not limited to a rectangular shape). In any event, the key channel 12-6 conforms to the key element 4-8 of the drill rod such that the downhole housing 12 is in a fixed spatial relationship and registered to the drill rod 4 in at least two-dimensions. On the other hand, the reader should note that the downhole housing 12 is configured to slide along the source-carrying region 4-9 between the two shoulders (4-2, 4-4) in a substantially frictionless manner under certain circumstances. A person skilled in the art will appreciate that the term substantially frictionless is predicated on the coefficient of friction of the interior surface of the housing 12, the coefficient of friction of the carrying region 4-8 of drill rod 4 and the operational characteristics of the isolation filter. In addition, the interface between the interior surface of the housing 12 and the surface of the carrying region 4-8 may be packed with grease or some other lubricant material.
As embodied herein and depicted in
During operations, examples of which are shown at
In this case, the isolation filter of the present invention is configured to substantially isolate the housing 12 from the stress, energy and power flow associated with the drilling. To be clear, the spring elements 14 do not function as a damping mechanism, but rather as a low pass filter, since the frequency spectrum of the surface accelerations characterizing the hammering/drilling operations are greater than the low pass frequency response spectrum of the isolation filter, and thus, the stress waves are substantially attenuated and substantially prevented from disturbing the carriage apparatus 20. (The surface accelerations are derived from the stress wave energy produced by drilling/hammering).
In step 1201, the hammer 2-6 is shown prior to impact and is shown to have a length “Lp” (also referred to herein as “L”). In step 1202, the hammer 2-6 moves toward the drill rod 4 with a velocity ν and strikes the drill rod 4. In step 1203, a compressive stress wave Cy is generated in the hammer 2-6 and a compressive stress wave C is also generated in the drill rod 4. These stress waves are depicted in the diagram as an increased diameter in each element. The maximum induced compressive stress (G) is substantially equal to:
σ=νE/2c (1)
Where, ν is the hammer velocity, E is Young's (elastic) modulus of the material (hammer and drill rod), and c is the speed of sound in the hammer/rod. This assumes that the diameter and material of the hammer 2-6 and the drill rod 4 are the same.
In step 1204, the stress wave Cp reaches the upper end of the hammer 2-6 and is reflected; and the compressive stress wave C continues to propagate down the length of the drill rod 4. In step 1205, the reflected wave Cy propagates down the hammer 2-6 and is transmitted into the drill rod 4 such that the stress waves C and Cy are combined. In step 1206, the combined stress wave C exits the hammer 2-6; and in response to being elastically compressed by the stress waves, a portion of the drill rod 4 has been displaced. Assuming a square wave shape, the elastic compression (A) is substantially equal to:
Δ=vL/c (2)
In a typical top hammer application, μ0 may be about 1.2 mm given a velocity (ν) of 10 m/s and a hammer length (L) of about 0.6 m.
In step 1207, the stress wave has a length 2 L and propagates along the drill rod 4 at the speed of sound c, which is substantially equal to
c=√(E/ρ) (3),
wherein ρ is the density of the drill rod material. The stress wave propagates the initial mechanical energy Wh to the drill bit 8, where
Wh=1/2mv2 (4),
wherein m is the mass of the hammer 2-6. Of course, only a fraction of the mechanical energy Wh is applied to fragment the rock 1 (See, e.g.,
Referring to
Referring to
Referring to
Briefly stated, therefore, the mathematical model makes the following assumptions: first, it assumes that the stress wave is sinusoidal; and second, it assumes that the geometry and material of the hammer 2-6 and drill rod 4 are substantially the same so that they both have the same acoustic impedance. The model is based on the stress wave formulation steps shown at
du/dt=−(ν/2)sin[(π/2L)(x−c t)], for −2L<x−ct<0 (5)
The velocity du/dt is based on u(x,t), which is a tiny displacement of an element on the drill rod from its equilibrium location x at time t. The factor “(x−ct)” indicates that u(x, t) describes a displacement propagating along the longitudinal axis “x” of the drill rod 4 toward the drill bit 8. While the shape of a wave pulse may assume any form, x and t must always appear in the combination with each other to satisfy the governing wave equation (i.e., the argument must include either (x−ct) or (x+ct). If the argument is (x+ct), the stress wave displacement is propagating along the longitudinal axis “x” of the drill rod 4 toward the hammer 2-6 and away from the drill bit 8.
Again, while equation (5) models the stress wave as a sinusoidal wave, those skilled in the art will appreciate that the wave could be modeled as a trapezoidal wave, a square wave or as a rectangular pulse. (Those skilled in the art will appreciate that mathematical models are only approximations of real world mechanical phenomena). The factor 2 L in equation (5) indicates that the wave has a length 2 L, which corresponds to twice the hammer's length, as shown at
Referring to
The mechanical isolation filter system 1400 is configured as a low pass axial shock and vibration filter and not as a damping mechanism. Specifically, note that a damping mechanism typically uses significant dissipative forces (frictional or fluid forces) to dampen vibrational motions; however, these dissipative frictional forces generate thermal energy. In contrast, the mechanical isolation filter system 1400 of the present invention substantially isolates the sensor 16 or the magnetic sources 100 from potentially damaging shock and vibrations (axial or otherwise) while substantially obviating any frictional forces. Stated differently, because of the filtering operation, the carriage 20 will exhibit very little oscillation, if any. As a result, the amount of thermal energy (heat) generated by the spring-mass filter 1400 is relatively small when compared to a frictional damping device.
In the various drilling applications contemplated by the present invention, such as a reciprocating drilling action (e.g., hammer-drilling), the excitation frequencies propagating along the longitudinal axis 7 of the drill rod 4 are on the order of approximately 100 Hz and above (see
As shown in
Note that in the embodiments depicted
In another example embodiment, the carriage apparatus 20 may be coupled between the shoulders (4-2, 4-4) by a set of two springs at each end, i.e., four springs total. In this case the two sets of springs 14 would have a rate of about 42,000 N/m; and with a carriage mass of 3 kg, the natural frequency would be about 18.8 Hz. In all of these embodiments, a variable rate spring may be employed.
Accordingly, one skilled in the art will appreciate that the design may be adapted to various environmental scenarios. That is, the stress wave parameters may vary depending on the type of drilling/mining application, and thus, the carriage mass, spring rate and/or total number of springs may be selected in accordance with a given application. Any excitations along the longitudinal axis that are greater than 1.5 times the natural (fundamental) frequency will be substantially attenuated (i.e., filtered out) by the low pass filter 1400. The spring rate k used in the above calculations is a constant value; however, the present invention contemplates that the spring rate may be non-constant (i.e., non-linear). Thus, the present invention contemplates that the spring rate may be construed to refer to or encompass any predetermined force-displacement relationship.
In reference to
The transfer function curve 1503 represents the second filter example wherein the isolation filter has two sets of two springs 14 (one at each end) that are disposed in parallel. In this case, the system example is characterized by a natural frequency of about 18.8 Hz. Thus, the adaptability of isolation filter 1400 to different drilling/mining environments should be readily apparent to the reader. As noted herein, the isolation filter uses very little damping to avoid generating thermal energy. Briefly stated, 2% of critical damping is assumed in the calculations. This damping amount represents small spring losses, minimal friction between the drill rod and the carriage assembly, etc. Also, those skilled in the art will appreciate that this minimal amount of damping is included in the transfer functions of
Thus, the isolation filter implemented by the carriage apparatus 20 is characterized by a low pass frequency transfer function 1502 (1503) that includes pass band frequencies that are substantially below the operational frequency spectrum (1500) wherein stress waves propagating along the drill rod 4 from a predetermined drilling operation are substantially attenuated and substantially prevented from disturbing the carriage apparatus 20.
As embodied herein and depicted at
On the other hand, in this embodiment the drill rod 4 is modified so that the shoulders (4-2, 4-4) are replaced by clamped collar devices (18-1, 18-2). Here, collar 18-1 is shown as having a smaller diameter than collar 18-2; however, the collar diameter size may be relatively unimportant in this case since the collars 18 can be attached to drill rod 4 after the carriage apparatus 20 is coupled to the drill rod 4. The collars (18-1, 18-2) are two-piece devices that include matching tap holes 18-3 that are configured to accommodate a screw or other such fastener used to tighten the collar pieces around the drill rod 4.
In reference to
Those skilled in the art will appreciate that the collar 18 may be implemented as a two-piece shaft collar with a 60 mm bore, 88 mm OD, and 19 mm width. The collar may be manufactured from 1215 lead free steel having a black oxide finish that increases holding power and resists corrosion. In one embodiment, the collar 18 may be implemented by an MSP-60-F collar arrangement manufactured by the Ruland Manufacturing Company.
In reference to
Note that each drawing (
Referring to
As embodied herein and depicted in
Turning to
As embodied herein and depicted in
As embodied herein and depicted in
As embodied herein and depicted in
Referring to
As those skilled in the art will appreciate, the accelerometer module 16-4 may be configured to measure the Earth's gravity vector and provide the gravity vector components gx, gy, gz of the Earth's gravity vector g. The gyroscope 16-7 is used for measuring the device's orientation and/or angular velocity. The gyro 16-7 may be configured as a rate gyroscope which is configured to produce an output voltage proportional to a rate of rotation. The magnetometer module 16-5 may include a plurality of fluxgate magnetometers having their axes of maximum sensitivity intersecting each other at one or more observation points and substantially at right angles to each other. (As before, the magnetometer module 16-5 may have a magnetometer sensor having up to three magnetometers; and, the magnetometer module 16-5 may have multiple magnetometer sensors). Magnetometers measure the amplitude and the phase of two perpendicular components of the magnetic field 300. The inclinometer may be employed to measure the angles of slope/tilt of carriage 20 with respect to the gravity vector. The environmental sensor module 16-11 may be configured to measure one or more of temperature, pressure, radiation, etc.
The microprocessor 16-2 may be configured to use the sensor inputs to determine the spatial relationships between the borehole axis 7, borehole inclination, roll angle, borehole azimuth, the Earth's rotation vector, and other such spatial relationships.
The sensor assembly 16 also includes a piezoelectric transducer 16-8 that is configured to convert the mechanical energy (Wh) generated by the drilling operations into electrical energy. (An expression for the mechanical energy is provided herein). As those skilled in the relevant arts would appreciate, the piezoelectric effect converts mechanical strain into electric current or voltage. The electrical current is provided to an electrical storage device 16-9 which includes a battery for storing the harvested energy. In an alternate embodiment, electrical power may be provided to the carriage 20 (and sensor assembly 16) by way of wireline.
Finally, the sensor assembly 16 may include a transmitter device 16-10 and a receiver 16-12. The transmitter 16-10 and receiver may be configured as a wireless or as a wireline transceiver configured to communicate with an uphole telemetry system (not shown in this view). In one embodiment, the uphole telemetry system is configured to manipulate all of the sensor data provided by the sensor assembly 16 (disposed down-hole). This information, or some of the information, may be transmitted to a driller controller (
The microprocessor 16-2 may be configured to bi-directionally communicate with the various components coupled to the bus 16-2. In this embodiment, the microprocessor 16-2 may include on-board analog-to-digital conversion (ADC) channels that accommodate the analog output signals of the accelerometers (16-4-16-6). The analog voltage output signal of the gyro sensor 16-7 may also be converted into digital signals.
The sizing and selection of the microprocessor 16-2 is considered to be within the skill of one of ordinary skill in the art with the following proviso: obviously, if the functionality of the up-hole control system is incorporated into the down-hole system, the computational burden of the resultant processor will necessarily be greater. In any event, in accordance with the embodiment of
The term “computer-readable medium” as used herein refers to any medium that participates in providing data and/or instructions to the processor 16-2 for execution. Such a medium may take many forms, including but not limited to RAM, PROM, EPROM, EEPROM, FLASH-EPROM or any suitable memory device, either disposed on-board the processor 16-2 or provided separately. In one embodiment, the processor 16-2 may include 256 KB of flash memory and 32 KB of SRAM.
As embodied herein and depicted in
The spring member 14-1 is coupled to the collar member 16-1 at a first end portion of the magnetic source apparatus 20; the collar members (16-1, 16-2) function as attachment points for the apparatus 20. Stated differently, the collar member 16-1 is fixedly attached to a portion of the drill string 4 proximate to the drill bit 8 (not shown in this view). Similarly, the spring member 14-2 is coupled to a second collar member 16-2 at a second end portion of the magnetic source apparatus 10 distal from the drill bit 8. The second collar member 16-2 is fixedly attached to an up-hole portion of the drill string 4.
As described below, the carriage apparatus 20 is configured such that the magnet elements 100 are rotationally registered to a registration portion of the drill bit 8 such that measurements of the magnetic field by the sensor apparatus 50 will include knowledge of the drill bit (tool face) 8 orientation. This allows the measurement system 1000 (
In reference to
As embodied herein and depicted in
The housing 12 is assembled such that each magnetic source 100 is positioned over a corresponding cooling hole 4-3. Thus, the cooling holes 4-3 may be used to rotationally register the magnetic source housing 12 to the drill rod 4-1, and hence to the drill bit registration feature 8-1 formed on the drill bit 8. At this point, a few words concerning the meaning of the term “rotational registration” may be in order. If the drill bit registration feature 8-1 is designated as, for example, 0°, every other feature on the drill rod will have a predetermined angular position θ relative to feature 8-1 when the assembly 10 is properly configured. The drill bit orientation feature 8-1 may be an asymmetrical feature or drill orientation that allows the drilling control system 2 to perform directional drilling (i.e., precisely control the direction of the borehole as it is being drilled). The orientation is known and programmed in software. The magnetic field orientation relative to the magnet source elements 100 is also known and programmed in software. By determining the magnetic field orientation via the sensor assembly (
As before, the springs 14-1 and 14-2, along with the mass of the carriage are configured to form a low pass isolation filter in accordance with the principles outlined above. See
In reference to
In reference to
In reference to
In another embodiment, the attachment collars (16-1, 16-2) may also be implemented as an end portion of the spring members (14-1, 14-2). In this embodiment, the end-collar portion of the spring includes a registration mark or indicia that are aligned to a registration mark/indicia formed on the drill rod. Upon alignment, the end-collar may be welded to the drill rod 4-1.
In yet another embodiment of the invention, the attachment collars (16-1, 16-2) may be integrally formed with the drill rod 4-1 itself. In this embodiment, each attachment collar includes a spring member interface that accommodates the spring registration portion 14-10 to rotationally register the spring 14-1 with the drill rod 4-1.
As embodied herein and depicted in
While several inventive embodiments have been described and illustrated herein, those of ordinary skill in the art will readily envision a variety of other means and/or structures for performing the function and/or obtaining the results and/or one or more of the advantages described herein, and each of such variations and/or modifications is deemed to be within the scope of the inventive embodiments described herein. More generally, those skilled in the art will readily appreciate that all parameters, dimensions, materials, and configurations described herein are meant to be exemplary and that the actual parameters, dimensions, materials, and/or configurations will depend upon the specific application or applications for which the inventive teachings is/are used. Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific inventive embodiments described herein. It is, therefore, to be understood that the foregoing embodiments are presented by way of example only and that, within the scope of the appended claims and equivalents thereto; inventive embodiments may be practiced otherwise than as specifically described and claimed.
All references, including publications, patent applications, and patents, cited herein are hereby incorporated by reference to the same extent as if each reference were individually and specifically indicated to be incorporated by reference and were set forth in its entirety herein.
All definitions, as defined and used herein, should be understood to control over dictionary definitions, definitions in documents incorporated by reference, and/or ordinary meanings of the defined terms.
The use of the terms “a” and “an” and “the” and similar referents in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. The terms “comprising,” “having,” “including,” and “containing” are to be construed as open-ended terms (i.e., meaning “including, but not limited to,”) unless otherwise noted. The term “connected” is to be construed as partly or wholly contained within, attached to, or joined together, even if there is something intervening.
As used herein in the specification and in the claims, the phrase “at least one,” in reference to a list of one or more elements, should be understood to mean at least one element selected from any one or more of the elements in the list of elements, but not necessarily including at least one of each and every element specifically listed within the list of elements and not excluding any combinations of elements in the list of elements. This definition also allows that elements may optionally be present other than the elements specifically identified within the list of elements to which the phrase “at least one” refers, whether related or unrelated to those elements specifically identified. Thus, as a non-limiting example, “at least one of A and B” (or, equivalently, “at least one of A or B,” or, equivalently “at least one of A and/or B”) can refer, in one embodiment, to at least one, optionally including more than one, A, with no B present (and optionally including elements other than B); in another embodiment, to at least one, optionally including more than one, B, with no A present (and optionally including elements other than A); in yet another embodiment, to at least one, optionally including more than one, A, and at least one, optionally including more than one, B (and optionally including other elements); etc.
It should also be understood that, unless clearly indicated to the contrary, in any methods claimed herein that include more than one step or act, the order of the steps or acts of the method is not necessarily limited to the order in which the steps or acts of the method are recited.
Approximating language, as used herein throughout the specification and claims, may be applied to modify any quantitative representation that could permissibly vary without resulting in a change in the basic function to which it is related. Accordingly, a value modified by a term or terms, such as “about” and “substantially”, are not to be limited to the precise value specified. In at least some instances, the approximating language may correspond to the precision am instrument for measuring the value. Here and throughout the specification and claims, range limitations may be combined and/or interchanged; such ranges are identified and include all the sub-ranges contained therein unless context or language indicates otherwise.
The recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein.
All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein, is intended merely to better illuminate embodiments of the invention and does not impose a limitation on the scope of the invention unless otherwise claimed.
No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.
In the claims, as well as in the specification above, all transitional phrases such as “comprising,” “including,” “carrying,” “having,” “containing,” “involving,” “holding,” “composed of,” and the like are to be understood to be open-ended, i.e., to mean including but not limited to. Only the transitional phrases “consisting of” and “consisting essentially of” shall be closed or semi-closed transitional phrases, respectively, as set forth in the United States Patent Office Manual of Patent Examining Procedures, Section 2111.03.
It will be apparent to those skilled in the art that various modifications and variations can be made to the present invention without departing from the spirit and scope of the invention. There is no intention to limit the invention to the specific form or forms disclosed, but on the contrary, the intention is to cover all modifications, alternative constructions, and equivalents falling within the spirit and scope of the invention, as defined in the appended claims. Thus, it is intended that the present invention cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.
Claims
1. An apparatus for use on a structural member having a longitudinal axis, the structural member being configured to propagate stress wave energy in an operational state, the stress wave energy being characterized by an operational frequency spectrum, the apparatus comprising:
- a housing assembly including a first end, a second end, and at least one protective enclosure configured to accommodate at least one device, the housing assembly being configured to be rotationally registered to the structural member when coupled to the structural member, the housing assembly being characterized by a predetermined housing mass; and
- a spring arrangement coupled between the structural member and the first end and/or coupled between the structural member and the second end in the operational state, the spring arrangement being characterized by a predetermined force-displacement relationship, the housing assembly and the spring arrangement forming an isolation filter characterized by a predetermined spectral transfer function, the predetermined spectral transfer function being a function of the predetermined housing mass and the predetermined force-displacement relationship, the predetermined spectral transfer function including a passband having frequencies that are substantially outside the operational frequency spectrum wherein the stress wave energy is substantially attenuated in the operational state so that the housing assembly is substantially isolated from the stress wave energy.
2. The apparatus of claim 1, wherein the spring arrangement includes at least one first spring element coupled between the first end and the structural member in the operational state, and wherein the spring arrangement includes at least one second spring element coupled between the second end and the structural member in the operational state.
3. The apparatus of claim 2, wherein the housing assembly is substantially cylindrical, and wherein the at least one first spring element and the at least one second spring element have an outer diameter substantially equal to an outer diameter of the housing assembly.
4. The apparatus of claim 2, wherein the at least one first spring element includes a plurality of first spring elements coupled in parallel between the first end and the structural member in the operational state, and the at least one second spring element includes a plurality of second spring elements coupled in parallel between the second end and the structural member in the operational state.
5. The apparatus of claim 4, wherein the plurality of first spring elements includes four spring elements or the plurality of second spring elements includes four spring elements.
6. The apparatus of claim 1, wherein the spring arrangement includes at least one compression spring, the at least one compression spring being configured to oppose compression along the longitudinal axis.
7. The apparatus of claim 1, wherein the at least one device includes at least one sensor device or at least one magnetic source element.
8. The apparatus of claim 7, wherein the at least one sensor device includes at least one accelerometer, at least one magnetometer, a gyro sensor, at least one environmental sensor, a piezoelectric transducer, or a battery device.
9. The apparatus of claim 7, wherein the at least one protective enclosure includes at least one set of pockets orientated in a plane perpendicular to the longitudinal axis, and wherein each pocket of the at least one set of pockets is configured to accommodate a magnetic source element.
10. The apparatus of claim 1, wherein the isolation filter is a low pass filter and the passband includes frequencies substantially between 0 Hz and a natural resonant frequency, and wherein the isolation filter includes a stopband having frequencies substantially greater than the natural resonant frequency, and wherein the stress wave energy includes frequencies within the stopband so that the stress wave energy is substantially attenuated in the operational state in accordance with a 1/f2 roll-off attenuation factor, wherein f is a frequency within the operational frequency spectrum, and wherein the attenuation factor increases as the frequency f increases.
11. The apparatus of claim 1, wherein the housing assembly is substantially cylindrical having an inner diameter and an outer diameter respectively defining an interior housing surface and an exterior housing surface; and
- wherein the housing assembly includes a first housing portion coupled to a second housing portion, each of the first housing portion and the second housing portion having a substantially semicircular cross-section so that the housing assembly has a substantially circular cross-section when the first housing portion is coupled to the second housing portion; and
- wherein a key channel arrangement is formed in the interior housing surface where the first housing portion coupled to the second housing portion, the key channel arrangement being configured to mate with a portion of the structural member to effect rotational registration.
12. The apparatus of claim 11, wherein the at least one protective enclosure includes a plurality of pockets formed in the interior housing surface or the exterior housing surface, each pocket of the plurality of pockets being configured to accommodate a magnetic source device; or wherein the at least one protective enclosure is formed in the exterior housing surface and configured to accommodate a sensor assembly.
13. The apparatus of claim 12, wherein the magnetic source device is selected from a group of magnetic source devices including a permanent magnet and an electromagnet.
14. The apparatus of claim 11, further comprising a protective cover disposed over the housing assembly in the operational state, the protective cover substantially configured to conform to the exterior housing surface.
15. The apparatus of claim 14, wherein the protective cover is disposed over the spring arrangement in the operational state.
16. The apparatus of claim 1, wherein the predetermined force-displacement relationship includes a constant spring rate or a variable spring rate.
17. An assembly comprising:
- a structural member having a longitudinal axis, the structural member being configured to propagate stress wave energy in an operational state, the stress wave energy being characterized by an operational frequency spectrum; and
- an apparatus coupled and rotationally registered to the structural member, the apparatus comprising, a housing assembly including a first end, a second end, and at least one protective enclosure configured to accommodate at least one device, the housing assembly being characterized by a predetermined housing mass; and a spring arrangement coupled between the structural member and the first end and/or coupled between the structural member and the second end, the spring arrangement being characterized by a predetermined force-displacement relationship, the housing assembly and the spring arrangement forming an isolation filter characterized by a predetermined spectral transfer function, the predetermined spectral transfer function being a function of the predetermined housing mass and the predetermined force-displacement relationship, the predetermined spectral transfer function including a passband having frequencies that are substantially outside the operational frequency spectrum wherein the stress wave energy is substantially attenuated in the operational state so that the housing assembly is substantially isolated from the stress wave energy.
18. The assembly of claim 17, wherein the spring arrangement includes at least one first spring element coupled between the first end and the structural member, and at least one second spring element coupled between the second end and the structural member.
19. The assembly of claim 18, wherein the at least one first spring element and the at least one second spring element have an outer diameter substantially equal to an outer diameter of the housing assembly.
20. The assembly of claim 18, wherein the at least one first spring element includes a plurality of first spring elements coupled in parallel between the first end and the structural member, and wherein the at least one second spring element includes a plurality of second spring elements coupled in parallel between the second end and the structural member.
21. The assembly of claim 20, wherein the plurality of first spring elements includes four spring elements and/or wherein the plurality of second spring elements includes four spring elements.
22. The assembly of claim 17, wherein the structural member is a drill rod or a drill rod attachment including a central fluid channel configured to conduct a pressurized fluid along the longitudinal axis in the operational state, the structural member including a plurality of fluid openings in a region where the structural member is coupled to the housing assembly, the pressurized fluid including a gas or a liquid.
23. The assembly of claim 17, wherein the structural member includes a carrying region, a first shoulder member being disposed at a first end portion of the carrying region and a second shoulder member being disposed at a second end portion of the carrying region, wherein the housing assembly is coupled to the carrying region between the first shoulder member and the second shoulder member, and wherein the spring arrangement includes at least one first spring element coupled between the first end and the first shoulder member, and at least one second spring element coupled between the second end and the second shoulder member.
24. The assembly of claim 23, wherein the structural member further comprises a box portion disposed at a first end of the structural member, a pin portion disposed at a second end of the structural member, and a carrying region being disposed between the box portion and the pin portion, the box portion being configured to accommodate a drive element of a drill string and the pin portion being configured to accommodate a tool bit or a drill bit.
25. The assembly of claim 17, wherein the spring arrangement includes at least one first spring element and at least one second spring element, and wherein the structural member further comprises a first collar member and a second collar member, and wherein the at least one first spring element is coupled between the first end and the first collar member, and wherein the at least one second spring element is coupled between the second collar member and the second end.
26. The assembly of claim 25, wherein the first collar member includes a first registration feature configured to rotationally register the at least one first spring element to an orientation feature on the structural member, and/or wherein the second collar member includes a second registration feature configured to rotationally register the at least one second spring element to an orientation feature on the structural member.
27. The assembly of claim 17, wherein the at least one device includes at least one sensor device or at least one magnetic source element.
28. The assembly of claim 27, wherein the at least one sensor device includes at least one accelerometer, at least one magnetometer module, a gyro sensor, at least one environmental sensor, a piezoelectric transducer, or a battery device.
29. The assembly of claim 27, wherein the at least one protective enclosure includes at least one set of pockets orientated in a plane perpendicular to the longitudinal axis, and wherein each pocket of the at least one set of pockets is configured to accommodate a magnetic source element.
30. The assembly of claim 17, wherein the isolation filter is a low pass filter and the passband includes frequencies substantially between 0 Hz and a natural resonant frequency, and wherein the isolation filter includes a stopband having frequencies substantially greater than the natural resonant frequency, wherein the stress wave energy includes frequencies within the stopband so that the stress wave energy is substantially attenuated in the operational state in accordance with a 1/f2 roll-off attenuation factor, wherein f is a frequency within the operational frequency spectrum and wherein the attenuation factor increases as the frequency f increases.
31. The assembly of claim 17, wherein the predetermined force-displacement relationship includes a constant spring rate or a variable spring rate.
32. A method comprising:
- providing a structural member having a longitudinal axis, the structural member being configured to propagate stress wave energy in an operational state, the stress wave energy being characterized by an operational frequency spectrum;
- providing a housing assembly including a first end, a second end, and at least one protective enclosure configured to accommodate at least one device, the housing assembly being characterized by a predetermined housing mass;
- providing a spring arrangement, the spring arrangement being characterized by a predetermined force-displacement relationship, the housing assembly and the spring arrangement forming an isolation filter characterized by a predetermined spectral transfer function, the predetermined spectral transfer function being a function of the predetermined housing mass and the predetermined force-displacement relationship, the predetermined spectral transfer function including a passband having frequencies that are substantially outside the operational frequency spectrum;
- coupling the housing assembly to the structural member such that the housing assembly is rotationally registered to the structural member;
- coupling the spring arrangement between the structural member and the first end and/or between the structural member and the second end; and
- entering an operational state wherein stress wave energy propagates along the structural member, the stress wave energy being substantially attenuated by the isolation filter so that the housing assembly is substantially isolated from the stress wave energy.
33. The method of claim 32, wherein the isolation filter is a low pass filter and the passband includes frequencies substantially between 0 Hz and a natural resonant frequency, and wherein the isolation filter includes a stopband having frequencies substantially greater than the natural resonant frequency, wherein the stress wave energy includes frequencies within the stopband so that the stress wave energy is substantially attenuated in the operational state in accordance with a 1/f2 roll-off attenuation factor, wherein f is a frequency within the operational frequency spectrum and wherein the attenuation factor increases as the frequency f increases.
Type: Application
Filed: May 27, 2021
Publication Date: Apr 11, 2024
Applicant: Vector Magnetics, LLC (Ithaca, NY)
Inventors: Mariano Garcia (Ithaca, NY), Arthur F. Kuckes (Ithaca, NY), Morgan Thompson (Ithaca, NY)
Application Number: 18/554,684